WorldWideScience

Sample records for space flight mission

  1. IceBridge Mission Flight Reports

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Mission Flight Reports data set contains flight reports from NASA Operation IceBridge Greenland, Arctic, Antarctic, and Alaska missions. Flight reports...

  2. Human space flight and future major space astrophysics missions: servicing and assembly

    Science.gov (United States)

    Thronson, Harley; Peterson, Bradley M.; Greenhouse, Matthew; MacEwen, Howard; Mukherjee, Rudranarayan; Polidan, Ronald; Reed, Benjamin; Siegler, Nicholas; Smith, Hsiao

    2017-09-01

    Some concepts for candidate future "flagship" space observatories approach the payload limits of the largest launch vehicles planned for the next few decades, specifically in the available volume in the vehicle fairing. This indicates that an alternative to autonomous self-deployment similar to that of the James Webb Space Telescope will eventually be required. Moreover, even before this size limit is reached, there will be significant motivation to service, repair, and upgrade in-space missions of all sizes, whether to extend the life of expensive facilities or to replace outworn or obsolete onboard systems as was demonstrated so effectively by the Hubble Space Telescope program. In parallel with these challenges to future major space astronomy missions, the capabilities of in-space robotic systems and the goals for human space flight in the 2020s and 2030s offer opportunities for achieving the most exciting science goals of the early 21st Century. In this paper, we summarize the history of concepts for human operations beyond the immediate vicinity of the Earth, the importance of very large apertures for scientific discovery, and current capabilities and future developments in robot- and astronaut-enabled servicing and assembly.

  3. Space Flight Applications of Optical Fiber; 30 Years of Space Flight Success

    Science.gov (United States)

    Ott, Melanie N.

    2010-01-01

    For over thirty years NASA has had success with space flight missions that utilize optical fiber component technology. One of the early environmental characterization experiments that included optical fiber was launched as the Long Duration Exposure Facility in 1978. Since then, multiple missions have launched with optical fiber components that functioned as expected, without failure throughout the mission life. The use of optical fiber in NASA space flight communications links and exploration and science instrumentation is reviewed.

  4. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  5. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  6. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  7. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    Science.gov (United States)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  8. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    Science.gov (United States)

    Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.

  9. The Integrated Medical Model - Optimizing In-flight Space Medical Systems to Reduce Crew Health Risk and Mission Impacts

    Science.gov (United States)

    Kerstman, Eric; Walton, Marlei; Minard, Charles; Saile, Lynn; Myers, Jerry; Butler, Doug; Lyengar, Sriram; Fitts, Mary; Johnson-Throop, Kathy

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool used by medical system planners and designers as they prepare for exploration planning activities of the Constellation program (CxP). IMM provides an evidence-based approach to help optimize the allocation of in-flight medical resources for a specified level of risk within spacecraft operational constraints. Eighty medical conditions and associated resources are represented in IMM. Nine conditions are due to Space Adaptation Syndrome. The IMM helps answer fundamental medical mission planning questions such as What medical conditions can be expected? What type and quantity of medical resources are most likely to be used?", and "What is the probability of crew death or evacuation due to medical events?" For a specified mission and crew profile, the IMM effectively characterizes the sequence of events that could potentially occur should a medical condition happen. The mathematical relationships among mission and crew attributes, medical conditions and incidence data, in-flight medical resources, potential clinical and crew health end states are established to generate end state probabilities. A Monte Carlo computational method is used to determine the probable outcomes and requires up to 25,000 mission trials to reach convergence. For each mission trial, the pharmaceuticals and supplies required to diagnose and treat prevalent medical conditions are tracked and decremented. The uncertainty of patient response to treatment is bounded via a best-case, worst-case, untreated case algorithm. A Crew Health Index (CHI) metric, developed to account for functional impairment due to a medical condition, provides a quantified measure of risk and enables risk comparisons across mission scenarios. The use of historical in-flight medical data, terrestrial surrogate data as appropriate, and space medicine subject matter expertise has enabled the development of a probabilistic, stochastic decision support tool capable of

  10. Earth observations during Space Shuttle flight STS-41 - Discovery's mission to planet earth

    Science.gov (United States)

    Lulla, Kamlesh P.; Helfert, Michael R.; Amsbury, David L.; Whitehead, Victor S.; Richards, Richard N.; Cabana, Robert D.; Shepherd, William M.; Akers, Thomas D.; Melnick, Bruce E.

    1991-01-01

    An overview of space flight STS-41 is presented, including personal observations and comments by the mission astronauts. The crew deployed the Ulysses spacecraft to study the polar regions of the sun and the interplanetary space above the poles. Environmental observations, including those of Lake Turkana, Lake Chad, biomass burning in Madagascar and Argentina, and circular features in Yucatan are described. Observations that include landforms and geology, continental sedimentation, desert landscapes, and river morphology are discussed.

  11. Habitability and Behavioral Issues of Space Flight.

    Science.gov (United States)

    Stewart, R. A., Jr.

    1988-01-01

    Reviews group behavioral issues from past space missions and simulations such as the Skylab Medical Experiments Altitude Test, Skylab missions, and Shuttle Spacelab I mission. Makes recommendations for future flights concerning commandership, crew selection, and ground-crew communications. Pre- and in-flight behavioral countermeasures are…

  12. STS-61 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-02-01

    The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

  13. STS-62 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

  14. Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS.

    Science.gov (United States)

    Petersen, Nora; Jaekel, Patrick; Rosenberger, Andre; Weber, Tobias; Scott, Jonathan; Castrucci, Filippo; Lambrecht, Gunda; Ploutz-Snyder, Lori; Damann, Volker; Kozlovskaya, Inessa; Mester, Joachim

    2016-01-01

    To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA's individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA's eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33-46 %), whilst treadmill running (42-33 %) and cycle ergometry (26-20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues

  15. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    Science.gov (United States)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Wear, Mary L.; Van Baalen, Mary

    2016-01-01

    Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors.

  16. Cognitive Assessment During Long-Duration Space Flight

    Science.gov (United States)

    Seaton, Kimberly; Kane, R. L.; Sipes, Walter

    2010-01-01

    The Space Flight Cognitive Assessment Tool for Windows (WinSCAT) is a computer-based, self-administered battery of five cognitive assessment tests developed for medical operations at NASA's Johnson Space Center in Houston, Texas. WinSCAT is a medical requirement for U.S. long-duration astronauts and has been implemented with U.S. astronauts from one NASA/Mir mission (NASA-7 mission) and all expeditions to date on the International Space Station (ISS). Its purpose is to provide ISS crew surgeons with an objective clinical tool after an unexpected traumatic event, a medical condition, or the cumulative effects of space flight that could negatively affect an astronaut's cognitive status and threaten mission success. WinSCAT was recently updated to add network capability to support a 6-person crew on the station support computers. Additionally, WinSCAT Version 2.0.28 has increased difficulty of items in Mathematics, increased number of items in Match-to-Sample, incorporates a moving rather than a fixed baseline, and implements stricter interpretation rules. ISS performance data were assessed to compare initial to modified interpretation rules for detecting potential changes in cognitive functioning during space flight. WinSCAT tests are routinely taken monthly during an ISS mission. Performance data from these ISS missions do not indicate significant cognitive decrements due to microgravity/space flight alone but have shown decrements. Applying the newly derived rules to ISS data results in a number of off-nominal performances at various times during and after flight.. Correlation to actual events is needed, but possible explanations for off-nominal performances could include actual physical factors such as toxic exposure, medication effects, or fatigue; emotional factors including stress from the mission or life events; or failure to exert adequate effort on the tests.

  17. Human tolerance to space flight

    Science.gov (United States)

    Huntoon, C. L.

    1989-01-01

    Medical studies of astronauts and cosmonauts before, during, and after space missions have identified several effects of weightlessness and other factors that influence the ability of humans to tolerate space flight. Weightlessness effects include space motion sickness, cardiovascular abnormalities, reduction in immune system function, loss of red blood cells, loss of bone mass, and muscle atrophy. Extravehicular activity (EVA) increases the likelihood that decompression sickness may occur. Radiation also gives reason for concern about health of crewmembers, and psychological factors are important on long-term flights. Countermeasures that have been used include sensory preadaptation, prebreathing and use of various air mixtures for EVA, loading with water and electrolytes, exercise, use of pharmacological agents and special diets, and psychological support. It appears that humans can tolerate and recover satisfactorily from at least one year of space flight, but a number of conditions must be further ameliorated before long-duration missions can be considered routine.

  18. Mission Specialist Scott Parazynski checks his flight suit

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski gets help with his flight suit in the Operations and Checkout Building from a suit technician George Brittingham. The final fitting takes place prior to the crew walkout and transport to Launch Pad 39B. Targeted for launch at 2 p.m. EST on Oct. 29, the mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  19. Nutritional Biochemistry of Space Flight

    Science.gov (United States)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  20. Orion's Powered Flight Guidance Burn Options for Near Term Exploration Missions

    Science.gov (United States)

    Fill, Thomas; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  1. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts: Persistence of Damage After Flight and the Effects of Repeat Long Duration Missions

    Science.gov (United States)

    George, Kerry; Rhone, Jordan; Chappell, L. J.; Cucinotta, F. A.

    2010-01-01

    Cytogenetic damage was assessed in blood lymphocytes from astronauts before and after they participated in long-duration space missions of three months or more. The frequency of chromosome damage was measured by fluorescence in situ hybridization (FISH) chromosome painting before flight and at various intervals from a few days to many months after return from the mission. For all individuals, the frequency of chromosome exchanges measured within a month of return from space was higher than their prefight yield. However, some individuals showed a temporal decline in chromosome damage with time after flight. Statistical analysis using combined data for all astronauts indicated a significant overall decreasing trend in total chromosome exchanges with time after flight, although this trend was not seen for all astronauts and the yield of chromosome damage in some individuals actually increased with time after flight. The decreasing trend in total exchanges was slightly more significant when statistical analysis was restricted to data collected more than 220 days after return from flight. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from three crewmembers who has participated in two separate long-duration space missions provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  2. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  3. Validation of the in-flight calibration procedures for the MICROSCOPE space mission

    Science.gov (United States)

    Hardy, Émilie; Levy, Agnès; Rodrigues, Manuel; Touboul, Pierre; Métris, Gilles

    2013-11-01

    The MICROSCOPE space mission aims to test the Equivalence Principle with an accuracy of 10-15. The drag-free micro-satellite will orbit around the Earth and embark a differential electrostatic accelerometer including two cylindrical test masses submitted to the same gravitational field and made of different materials. The experience consists in testing the equality of the electrostatic acceleration applied to the masses to maintain them relatively motionless. The accuracy of the measurements exploited for the test of the Equivalence Principle is limited by our a priori knowledge of several physical parameters of the instrument. These parameters are partially estimated on-ground, but with an insufficient accuracy, and an in-orbit calibration is therefore required to correct the measurements. The calibration procedures have been defined and their analytical performances have been evaluated. In addition, a simulator software including the dynamics model of the instrument, the satellite drag-free system and the perturbing environment has been developed to numerically validate the analytical results. After an overall presentation of the MICROSCOPE mission, this paper will describe the calibration procedures and focus on the simulator. Such an in-flight calibration is mandatory for similar space missions taking advantage of a drag-free system.

  4. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    Science.gov (United States)

    Laughlin, M. S.; Murray, J. D.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    INTRODUCTION Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors. Thus, the purpose of this project was to perform an initial evaluation of reported post-flight back pain and injury cases to relevant spaceflight risk factors in United States astronauts that have completed an ISS mission. METHODS All US astronauts who completed an ISS mission between Expeditions (EXP) 1 and 41 (2000-2015) were included in this evaluation. Forty-five astronauts (36 males and 9 females) completed 50 ISS missions during the study time period, as 5 astronauts completed 2 ISS missions. Researchers queried medical records of the 45 astronauts for occurrences of back pain and injury. A case was defined as any reported event of back pain or injury to the cervical, thoracic, lumbar, sacral, or coccyx spine regions. Data sources for the cases included the Flight Medicine Clinic's electronic medical record; Astronaut Strength, Conditioning and Rehabilitation electronic documentation; the Private Medical Conference tool; and the Space Medicine Operations Team records. Post-flight cases were classified as an early case if reported within 45 days of landing (R + 45) or a late case if reported from R + 46 to R + 365 days after landing (R + 1y). Risk factors in the astronaut population for back pain include age, sex, prior military service, and prior history of back pain. Additionally, spaceflight specific risk factors such as type of landing vehicle and onboard exercise countermeasures were included to evaluate their

  5. Ethernet for Space Flight Applications

    Science.gov (United States)

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will

  6. The deep space 1 extended mission

    Science.gov (United States)

    Rayman, Marc D.; Varghese, Philip

    2001-03-01

    The primary mission of Deep Space 1 (DS1), the first flight of the New Millennium program, completed successfully in September 1999, having exceeded its objectives of testing new, high-risk technologies important for future space and Earth science missions. DS1 is now in its extended mission, with plans to take advantage of the advanced technologies, including solar electric propulsion, to conduct an encounter with comet 19P/Borrelly in September 2001. During the extended mission, the spacecraft's commercial star tracker failed; this critical loss prevented the spacecraft from achieving three-axis attitude control or knowledge. A two-phase approach to recovering the mission was undertaken. The first involved devising a new method of pointing the high-gain antenna to Earth using the radio signal received at the Deep Space Network as an indicator of spacecraft attitude. The second was the development of new flight software that allowed the spacecraft to return to three-axis operation without substantial ground assistance. The principal new feature of this software is the use of the science camera as an attitude sensor. The differences between the science camera and the star tracker have important implications not only for the design of the new software but also for the methods of operating the spacecraft and conducting the mission. The ambitious rescue was fully successful, and the extended mission is back on track.

  7. Deep-Space Ka-Band Flight Experience

    Science.gov (United States)

    Morabito, D. D.

    2017-11-01

    Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.

  8. Space Flight Software Development Software for Intelligent System Health Management

    Science.gov (United States)

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  9. Psychological considerations in future space missions

    Science.gov (United States)

    Helmreich, R. L.; Wilhelm, J. A.; Runge, T. E.

    1980-01-01

    Issues affecting human psychological adjustments to long space missions are discussed. Noting that the Shuttle flight crewmembers will not have extensive flight qualification requirements, the effects of a more heterogeneous crew mixture than in early space flights is considered to create possibilities of social conflicts. Routine space flight will decrease the novelty of a formerly unique experience, and the necessity of providing personal space or other mechanisms for coping with crowded, permanently occupied space habitats is stressed. Women are noted to display more permeable personal space requirements. The desirability of planning leisure activities is reviewed, and psychological test results for female and male characteristics are cited to show that individuals with high scores in both traditionally male and female attributes are most capable of effective goal-oriented behavior and interpersonal relationships. Finally, it is shown that competitiveness is negatively correlated with the success of collaborative work and the social climate of an environment.

  10. Space Flight-Associated Neuro-ocular Syndrome.

    Science.gov (United States)

    Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Tarver, William

    2017-09-01

    New and unique physiologic and pathologic systemic and neuro-ocular responses have been documented in astronauts during and after long-duration space flight. Although the precise cause remains unknown, space flight-associated neuro-ocular syndrome (SANS) has been adopted as an appropriate descriptive term. The Space Medicine Operations Division of the US National Aeronautics and Space Administration (NASA) has documented the variable occurrence of SANS in astronauts returning from long-duration space flight on the International Space Station. These clinical findings have included unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts. The clinical findings of SANS have been correlated with structural changes on intraorbital and intracranial magnetic resonance imaging and in-flight and terrestrial ultrasonographic studies and ocular optical coherence tomography. Further study of SANS is ongoing for consideration of future manned missions to space, including a return trip to the moon or Mars.

  11. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    Science.gov (United States)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  12. Long-Duration Space Flight and Bed Rest Effects on Testosterone and Other Steroids

    Science.gov (United States)

    Heer, Martina; Wang, Zuwei; Huntoon, Carolyn L.; Zwart, Sara R.

    2012-01-01

    Context: Limited data suggest that testosterone is decreased during space flight, which could contribute to bone and muscle loss. Objective: The main objective was to assess testosterone and hormone status in long- and short-duration space flight and bed rest environments and to determine relationships with other physiological systems, including bone and muscle. Design: Blood and urine samples were collected before, during, and after long-duration space flight. Samples were also collected before and after 12- to 14-d missions and from participants in 30- to 90-d bed rest studies. Setting: Space flight studies were conducted on the International Space Station and before and after Space Shuttle missions. Bed rest studies were conducted in a clinical research center setting. Data from Skylab missions are also presented. Participants: All of the participants were male, and they included 15 long-duration and nine short-duration mission crew members and 30 bed rest subjects. Main Outcome Measures: Serum total, free, and bioavailable testosterone were measured along with serum and urinary cortisol, serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and SHBG. Results: Total, free, and bioavailable testosterone was not changed during long-duration space flight but were decreased (P space flight. There were no changes in other hormones measured. Testosterone concentrations dropped before and soon after bed rest, but bed rest itself had no effect on testosterone. Conclusions: There was no evidence for decrements in testosterone during long-duration space flight or bed rest. PMID:22049169

  13. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    Science.gov (United States)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  14. Assessment of Nutritional Intake During Space Flight and Space Flight Analogs

    Science.gov (United States)

    Rice, Barbara L.; Dlouhy, Holly; Zwart, Sara R.; Smith, Scott M.

    2011-01-01

    Background: Maintaining adequate nutrient intake in microgravity is important not only to meet health maintenance needs of astronauts but also to help counteract the negative effects of space flight. Beyond this, food provides psychosocial benefits throughout a mission. Objective: The purpose of this presentation is to discuss dietary intake data from multiple space programs, including Space Shuttle and the International Space Station. Description: These data arise from medical monitoring of both dietary intake and crew health, as well as research protocols designed to assess the role of diet in counteracting bone loss and other health concerns. Ground-based studies are conducted to better understand some of the negative issues related to space flight. Examples of these analog studies are extended bed rest studies, vitamin D supplementation studies in Antarctica, and saturation diving missions on the floor of the ocean. Methods and findings will be presented describing the use of weighed records, diet diaries, and food frequency questionnaires in these various environments. Provision of food and nutrients in spaceflight is important for many body systems including cardiovascular, musculoskeletal, endocrine, immune, and others. Some key areas of concern are loss of body mass, bone and muscle loss, radiation exposure, nutrient intakes during spacewalks, depletion of nutrient stores, and inadequate dietary intake. Initial experimental research studies using food and nutrition as a countermeasure to aid in mitigating these concerns are underway. Conclusion: Beyond their importance for the few individuals leaving the planet, these studies have significant implications for those remaining on Earth.

  15. Gemini flies! unmanned flights and the first manned mission

    CERN Document Server

    Shayler, David J

    2018-01-01

    In May 1961, President John F. Kennedy committed the United States to landing a man on the moon before the end of the decade. With just a handful of years to pull it off, NASA authorized the Project Gemini space program, which gathered vital knowledge needed to achieve the nation’s goal. This book introduces the crucial three-step test program employed by the Gemini system, covering:  The short unmanned orbital flight of Gemini 1 that tested the compatibility of launch vehicle, spacecraft and ground systems.  The unmanned suborbital flight of Gemini 2 to establish the integrity of the reentry system and protective heat shield.  The three-orbit manned evaluation flight of Gemini 3, christened ‘Molly Brown’ by her crew. A mission recalled orbit by orbit, using mission transcripts, post-flight reports and the astronauts’ own account of their historic journey. The missions of Project Gemini was the pivotal steppingstone between Project Mercury and the Apollo Program. Following the success of its fi...

  16. Summary results of the first United States manned orbital space flight

    Science.gov (United States)

    Glenn, J. H. Jr

    1963-01-01

    This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.

  17. Space Mission Human Reliability Analysis (HRA) Project

    Science.gov (United States)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  18. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  19. NASA Aerosciences Activities to Support Human Space Flight

    Science.gov (United States)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  20. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  1. Development of an In Flight Vision Self-Assessment Questionnaire for Long Duration Space Missions

    Science.gov (United States)

    Byrne, Vicky E.; Gibson, Charles R.; Pierpoline, Katherine M.

    2010-01-01

    OVERVIEW A NASA Flight Medicine optometrist teamed with a human factors specialist to develop an electronic questionnaire for crewmembers to record their visual acuity test scores and perceived vision assessment. It will be implemented on the International Space Station (ISS) and administered as part of a suite of tools for early detection of potential vision changes. The goal of this effort was to rapidly develop a set of questions to help in early detection of visual (e.g. blurred vision) and/or non-visual (e.g. headaches) symptoms by allowing the ISS crewmembers to think about their own current vision during their spaceflight missions. PROCESS An iterative process began with a Space Shuttle one-page paper questionnaire generated by the optometrist that was updated by applying human factors design principles. It was used as a baseline to establish an electronic questionnaire for ISS missions. Additional questions needed for the ISS missions were included and the information was organized to take advantage of the computer-based file format available. Human factors heuristics were applied to the prototype and then they were reviewed by the optometrist and procedures specialists with rapid-turn around updates that lead to the final questionnaire. CONCLUSIONS With about only a month lead time, a usable tool to collect crewmember assessments was developed through this cross-discipline collaboration. With only a little expenditure of energy, the potential payoff is great. ISS crewmembers will complete the questionnaire at 30 days into the mission, 100 days into the mission and 30 days prior to return to Earth. The systematic layout may also facilitate physicians later data extraction for quick interpretation of the data. The data collected along with other measures (e.g. retinal and ultrasound imaging) at regular intervals could potentially lead to early detection and treatment of related vision problems than using the other measures alone.

  2. Human and Robotic Space Mission Use Cases for High-Performance Spaceflight Computing

    Science.gov (United States)

    Some, Raphael; Doyle, Richard; Bergman, Larry; Whitaker, William; Powell, Wesley; Johnson, Michael; Goforth, Montgomery; Lowry, Michael

    2013-01-01

    Spaceflight computing is a key resource in NASA space missions and a core determining factor of spacecraft capability, with ripple effects throughout the spacecraft, end-to-end system, and mission. Onboard computing can be aptly viewed as a "technology multiplier" in that advances provide direct dramatic improvements in flight functions and capabilities across the NASA mission classes, and enable new flight capabilities and mission scenarios, increasing science and exploration return. Space-qualified computing technology, however, has not advanced significantly in well over ten years and the current state of the practice fails to meet the near- to mid-term needs of NASA missions. Recognizing this gap, the NASA Game Changing Development Program (GCDP), under the auspices of the NASA Space Technology Mission Directorate, commissioned a study on space-based computing needs, looking out 15-20 years. The study resulted in a recommendation to pursue high-performance spaceflight computing (HPSC) for next-generation missions, and a decision to partner with the Air Force Research Lab (AFRL) in this development.

  3. Space flight calcium: implications for astronaut health, spacecraft operations, and Earth.

    Science.gov (United States)

    Smith, Scott M; McCoy, Torin; Gazda, Daniel; Morgan, Jennifer L L; Heer, Martina; Zwart, Sara R

    2012-12-18

    The space flight environment is known to induce bone loss and, subsequently, calcium loss. The longer the mission, generally the more bone and calcium are lost. This review provides a history of bone and calcium studies related to space flight and highlights issues related to calcium excretion that the space program must consider so that urine can be recycled. It also discusses a novel technique using natural stable isotopes of calcium that will be helpful in the future to determine calcium and bone balance during space flight.

  4. Potable water supply in U.S. manned space missions

    Science.gov (United States)

    Sauer, Richard L.; Straub, John E., II

    1992-01-01

    A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.

  5. Human Factors in Training - Space Flight Resource Management Training

    Science.gov (United States)

    Bryne, Vicky; Connell, Erin; Barshi, Immanuel; Arsintescu, L.

    2009-01-01

    Accidents and incidents show that high workload-induced stress and poor teamwork skills lead to performance decrements and errors. Research on teamwork shows that effective teams are able to adapt to stressful situations, and to reduce workload by using successful strategies for communication and decision making, and through dynamic redistribution of tasks among team members. Furthermore, superior teams are able to recognize signs and symptoms of workload-induced stress early, and to adapt their coordination and communication strategies to the high workload, or stress conditions. Mission Control Center (MCC) teams often face demanding situations in which they must operate as an effective team to solve problems with crew and vehicle during onorbit operations. To be successful as a team, flight controllers (FCers) must learn effective teamwork strategies. Such strategies are the focus of Space Flight Resource Management (SFRM) training. SFRM training in MOD has been structured to include some classroom presentations of basic concepts and case studies, with the assumption that skill development happens in mission simulation. Integrated mission simulations do provide excellent opportunities for FCers to practice teamwork, but also require extensive technical knowledge of vehicle systems, mission operations, and crew actions. Such technical knowledge requires lengthy training. When SFRM training is relegated to integrated simulations, FCers can only practice SFRM after they have already mastered the technical knowledge necessary for these simulations. Given the centrality of teamwork to the success of MCC, holding SFRM training till late in the flow is inefficient. But to be able to train SFRM earlier in the flow, the training cannot rely on extensive mission-specific technical knowledge. Hence, the need for a generic SFRM training framework that would allow FCers to develop basic teamwork skills which are mission relevant, but without the required mission knowledge

  6. Expert systems and advanced automation for space missions operations

    Science.gov (United States)

    Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

    1990-01-01

    Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

  7. Future Standardization of Space Telecommunications Radio System with Core Flight System

    Science.gov (United States)

    Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and

  8. R and T report: Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  9. Leaders in space: Mission commanders and crew on the International Space Station

    Science.gov (United States)

    Brcic, Jelena

    Understanding the relationship between leaders and their subordinates is important for building better interpersonal connections, improving group cohesion and cooperation, and increasing task success. This relationship has been examined in many types of groups but not a great amount of analysis has been applied to spaceflight crews. We specifically investigated differences between mission commanders and flight commanders during missions to the International Space Station (ISS). Astronauts and cosmonauts on the ISS participate in long-duration missions (2 to 6 months in length) in which they live and work in close proximity with their 2 or 3 member crews. The leaders are physically distant from their command centres which may result in delay of instructions or important advice. Therefore, the leaders must be able to make quick, sound decisions with unwavering certainty. Potential complications include that the leaders may not be able to exercise their power fully, since material reward or punishment of any one member affects the whole group, and that the leader's actions (or lack thereof) in this isolated, confined environment could create stress in members. To be effective, the mission commander must be able to prevent or alleviate any group conflict and be able to relate to members on an emotional level. Mission commanders and crew are equal in the competencies of spaceflight; therefore, what are the unique characteristics that enable the commanders to fulfill their role? To highlight the differences between commander and crew, astronaut journals, diaries, pre- flight interviews, NASA oral histories, and letters written to family from space were scored and analyzed for values and coping styles. During pre-flight, mission commanders scored higher than other crew members on the values of Stimulation, Security, Universalism, Conformity, Spirituality, and Benevolence, and more often used Self-Control as a coping style. During the long-duration mission on ISS, mission

  10. Space dosimetry measurement results using the Pille instrument during the EUROMIR/NASAMIR space flights

    International Nuclear Information System (INIS)

    Hejja, I.; Apathy, J.; Deme, S.

    1997-01-01

    The Pille dosimeter developed in Hungary for space applications is described briefly, and its two versions are presented for the two space flights. The results of the EUROMIR mission in 1995-1996 are discussed for positional dosimetric applications. The characteristic dose rates at various space stations in the Salyut range are displayed. The NASAMIR4 mission between January 1997 and September 1998 are also discussed from the dosimetric point of view. The results of the measurements are presented and a preliminary analysis is reported. (R.P.)

  11. Physiology, medicine, long-duration space flight and the NSBRI

    Science.gov (United States)

    McPhee, J. C.; White, R. J.

    2003-01-01

    The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach. c2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  12. Space Mission Operations Ground Systems Integration Customer Service

    Science.gov (United States)

    Roth, Karl

    2014-01-01

    The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security

  13. Research & Technology Report Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  14. Psychology and culture during long-duration space missions

    Science.gov (United States)

    Kanas, N.; Sandal, G.; Boyd, J. E.; Gushin, V. I.; Manzey, D.; North, R.; Leon, G. R.; Suedfeld, P.; Bishop, S.; Fiedler, E. R.; Inoue, N.; Johannes, B.; Kealey, D. J.; Kraft, N.; Matsuzaki, I.; Musson, D.; Palinkas, L. A.; Salnitskiy, V. P.; Sipes, W.; Stuster, J.; Wang, J.

    2009-04-01

    The objective of this paper is twofold: (a) to review the current knowledge of cultural, psychological, psychiatric, cognitive, interpersonal, and organizational issues that are relevant to the behavior and performance of astronaut crews and ground support personnel and (b) to make recommendations for future human space missions, including both transit and planetary surface operations involving the Moon or Mars. The focus will be on long-duration missions lasting at least six weeks, when important psychological and interpersonal factors begin to take their toll on crewmembers. This information is designed to provide guidelines for astronaut selection and training, in-flight monitoring and support, and post-flight recovery and re-adaptation.

  15. Advanced biosensors for monitoring astronauts' health during long-duration space missions.

    Science.gov (United States)

    Roda, Aldo; Mirasoli, Mara; Guardigli, Massimo; Zangheri, Martina; Caliceti, Cristiana; Calabria, Donato; Simoni, Patrizia

    2018-07-15

    Long-duration space missions pose important health concerns for astronauts, especially regarding the adverse effects of microgravity and exposure to high-energy cosmic rays. The long-term maintenance of crew health and performance mainly relies on prevention, early diagnoses, condition management, and medical interventions in situ. In-flight biosensor diagnostic devices and medical procedures must use few resources and operate in a microgravity environment, which complicates the collection and management of biological samples. Moreover, the biosensors must be certified for in-flight operation according to strict design and safety regulations. Herein, we report on the state of the art and recent advances in biosensing diagnostic instrumentation for monitoring astronauts' health during long-duration space missions, including portable and wearable biosensors. We discuss perspectives on new-format biosensors in autonomous space clinics. We also describe our own work in developing biosensing devices for non-invasively diagnosing space-related diseases, and how they are used in long-duration missions. Finally, we discuss the benefits of space exploration for Earth-based medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Men and Women in Space: Bone Loss and Kidney Stone Risk after Long-Duration Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.; Heer, Martina; Hudson, Edgar, K.; Shackelford, Linda; Morgan, Jennifer L. L.

    2014-01-01

    Bone loss on Earth is more prevalent in women than men, leading to the assumption that women may be at greater risk from bone loss during flight. Until recently, the number of women having flown long-duration missions was too small to allow any type of statistical analysis. We report here data from 42 astronauts on long-duration missions to the International Space Station, 33 men and 9 women. Bone mineral density (dual-energy X-ray absorptiometry), bone biochemistry (from blood and urine samples), and renal stone risk factors were evaluated before and after flight. Data were analyzed in two groups, based on available resistance exercise equipment. The response of bone mineral density to flight was the same for men and women, and the typical decrease in bone mineral density (whole body and/or regional) after flight was not observed for either sex for those using an Advanced Resistive Exercise Device. Bone biochemistry, specifically markers of formation and resorption, generally responded similarly in male and female astronauts. The response of urinary supersaturation risk to space flight was not significantly different between men and women, although risks were typically increased after flight in both groups and risks were generally greater in men than in women before and after flight. Overall, the bone and renal stone responses of men and women to space flight were not different.

  17. NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions

    Science.gov (United States)

    Creech, Stephen A.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced propulsion technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability after 2021, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include asteroids, Lagrange Points, and Mars, among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions destined to rewrite textbooks with the

  18. Mission environments for the Isotope Brayton Flight System (preliminary)

    International Nuclear Information System (INIS)

    1975-01-01

    The mission environments for the Isotope Brayton Flight Systems (IBFS) are summarized. These are based on (1) those environments established for the MHW-RTG system in the LES 8/9 and Mariner J/S and (2) engineering projections of those likely to exit for the IBFS. The pre-launch environments address transportation, storage, handling and assembly (to spacecraft) and checkout, field transportation, and launch site operations. Launch environments address the Titan IIIC and Shuttle launch vehicles. Operational mission environments address normal space temperature and meteoroide environments. Special environments that may be applicable to DOD missions are not included. Accident environments address explosion and fire for the Titan IIIC and the Shuttle, reentry, earth impact and post impact

  19. Critical Technology Determination for Future Human Space Flight

    Science.gov (United States)

    Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Stecklein, Jonette M.; Rahman, Shamim A.; Rosenthal, Matthew E.; Hornyak, David M.; Alexander, Leslie; Korsmeyer, David J.; Tu, Eugene L.; hide

    2012-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture-driven technology development assessment ("technology pull"), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.

  20. Flight Operations . [Zero Knowledge to Mission Complete

    Science.gov (United States)

    Forest, Greg; Apyan, Alex; Hillin, Andrew

    2016-01-01

    Outline the process that takes new hires with zero knowledge all the way to the point of completing missions in Flight Operations. Audience members should be able to outline the attributes of a flight controller and instructor, outline the training flow for flight controllers and instructors, and identify how the flight controller and instructor attributes are necessary to ensure operational excellence in mission prep and execution. Identify how the simulation environment is used to develop crisis management, communication, teamwork, and leadership skills for SGT employees beyond what can be provided by classroom training.

  1. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    Science.gov (United States)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.

  2. Disruption Tolerant Networking Flight Validation Experiment on NASA's EPOXI Mission

    Science.gov (United States)

    Wyatt, Jay; Burleigh, Scott; Jones, Ross; Torgerson, Leigh; Wissler, Steve

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions. This activity was part of a larger NASA space DTN development program to mature DTN to flight readiness for a wide variety of mission types by the end of 2011. This paper describes the DTN protocols, the flight demo implementation, validation metrics which were created for the experiment, and validation results.

  3. Habitability and Performance Issues for Long Duration Space Flights

    Science.gov (United States)

    Whitmore, Mihriban; McQuilkin, Meredith L.; Woolford, Barbara J.

    1997-01-01

    Advancing technology, coupled with the desire to explore space has resulted in increasingly longer manned space missions. Although the Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on human ability to function in extreme environments, findings indicate long duration missions take a toll on the individual, both physiologically and psychologically. These physiological and psychological issues manifest themselves in performance decrements; and could lead to serious errors endangering the mission, spacecraft and crew. The purpose of this paper is to document existing knowledge of the effects of LDSF on performance, habitability, and workload and to identify and assess potential tools designed to address these decrements as well as propose an implementation plan to address the habitability, performance and workload issues.

  4. System security in the space flight operations center

    Science.gov (United States)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  5. Definition of technology development missions for early space station satellite servicing, volume 1

    Science.gov (United States)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  6. Cosmic ray exposure in aircraft and space flight

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Iimoto, Takeshi

    2000-01-01

    The exposure from cosmic ray radiation to the workers and public is a new aspect of exposure that was cased by the development of science and technology. ICRP Publication 60 says: 'to provide some practical guidance, the Commission recommends that there should be a requirement to include exposure to natural sources as part of occupational exposure only in the following cases: radon..., some natural radionuclides..., operation of jet air craft, space flight'. For this situation what kind of radiation protection concept is applicable? And what kind of radiation guideline and procedure are possible to propose? Here, we would like to review the past activities on this issue and to summarize the concepts in ICRP concerning to these exposure. Then the recommended radiation protection system will be proposed as one trial to this solution. In the paper the characters of cosmic ray were firstly reviewed. Cosmic rays are consisted by solar one and galactic one. Both of them have high energy and this will cause the difficulty of dosimetry because of lacking of physical and biological data. Next discussion point is a classification of exposure. For this, several classifications were done: jet airplane flight, supersonic airplane flight and space flight. Other classification is aircrew (occupational exposure), passengers (public exposure), frequent flyers (gray zone), space astronauts (special mission), and pregnant women. Considering the real level of radiation the practical radiation control is proposed including the cosmic radiation exposure prediction method by computer codes. The discussion of space astronauts is a little different for the highness of radiation doses. The dose levels will be obtained through the discussion of lifetime risk balancing their mission importance. (author)

  7. Advances in Autonomous Systems for Missions of Space Exploration

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  8. Cognitive Assessment in Long-Duration Space Flight

    Science.gov (United States)

    Kane, Robert; Seaton, Kimberly; Sipes, Walter

    2011-01-01

    This slide presentation reviews the development and use of a tool for assessing spaceflight cognitive ability in astronauts. This tool. the Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) has been used to provide ISS flight surgeons with an objective clinical tool to monitor the astronauts cognitive status during long-duration space flight and allow immediate feedback to the astronaut. Its use is medically required for all long-duration missions and it contains a battery of five cognitive assessment subtests that are scheduled monthly and compared against the individual preflight baseline.

  9. Data catalog series for space science and applications flight missions. Volume 1B: Descriptions of data sets from planetary and heliocentric spacecraft and investigations

    Science.gov (United States)

    Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)

    1987-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  10. Keynote speech - Manned Space Flights: Lessons Learned from Space Craft Operation and Maintenance

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Following graduation in 1973 from the Ecole de l'Air (the French Air Force Academy), Michel Tognini served in the French Air Force as an operational fighter pilot, flight leader in 1976, flight commander in 1979, test pilot then chief test pilot from 1983 to 1985. In 1985, France opened a recruitment program to expand its astronaut corps, and Michel Tognini was one of seven candidates selected by CNES. In July 1986, he was one of four candidates to undergo medical examinations in Moscow. In August 1986, he was assigned as a back-up crew member for the Soyuz TM-7 mission. Although he remained a French Air Force officer, he was placed on detachment to CNES for his space flight activities from September 1986 onwards. In 1991 he went to Star City, Russia, to start prime crew training for the third Soviet-French ANTARES mission. During his stay in Russia, he linked up with Mir (ANTARES mission) and spent 14 days (July 27–Aug. 10, 1992; Soyuz TM-14 and TM-14)carrying out a program of joint Soviet-French experimen...

  11. Orbital mechanics and astrodynamics techniques and tools for space missions

    CERN Document Server

    Hintz, Gerald R

    2015-01-01

    This textbook covers fundamental and advanced topics in orbital mechanics and astrodynamics to expose the student to the basic dynamics of space flight. The engineers and graduate students who read this class-tested text will be able to apply their knowledge to mission design and navigation of space missions. Through highlighting basic, analytic and computer-based methods for designing interplanetary and orbital trajectories, this text provides excellent insight into astronautical techniques and tools. This book is ideal for graduate students in Astronautical or Aerospace Engineering and related fields of study, researchers in space industrial and governmental research and development facilities, as well as researchers in astronautics. This book also: ·       Illustrates all key concepts with examples ·       Includes exercises for each chapter ·       Explains concepts and engineering tools a student or experienced engineer can apply to mission design and navigation of space missions ·�...

  12. Enhancing data from commercial space flights (Conference Presentation)

    Science.gov (United States)

    Sherman, Ariel; Paolini, Aaron; Kozacik, Stephen; Kelmelis, Eric J.

    2017-05-01

    Video tracking of rocket launches inherently must be done from long range. Due to the high temperatures produced, cameras are often placed far from launch sites and their distance to the rocket increases as it is tracked through the flight. Consequently, the imagery collected is generally severely degraded by atmospheric turbulence. In this talk, we present our experience in enhancing commercial space flight videos. We will present the mission objectives, the unique challenges faced, and the solutions to overcome them.

  13. A passion for space adventures of a pioneering female NASA flight controller

    CERN Document Server

    Dyson, Marianne J

    2016-01-01

    Marianne J. Dyson recounts for us a time when women were making the first inroads into space flight control, a previously male-dominated profession. The story begins with the inspiration of the Apollo 11 landing on the Moon and follows the challenges of pursuing a science career as a woman in the 70s and 80s, when it was far from an easy path.  Dyson relates the first five space shuttle flights from the personal perspective of mission planning and operations in Houston at the Johnson Space Center, based almost exclusively on original sources such as journals and NASA weekly activity reports. The book’s historical details about astronaut and flight controller training exemplify both the humorous and serious aspects of space operations up through the Challenger disaster, including the almost unknown fire in Mission Control during STS-5 that nearly caused an emergency entry of the shuttle.  From an insider with a unique perspective and credentials to match, this a must-read for anyone interested in the worki...

  14. Internet Technology for Future Space Missions

    Science.gov (United States)

    Hennessy, Joseph F. (Technical Monitor); Rash, James; Casasanta, Ralph; Hogie, Keith

    2002-01-01

    Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and the present labor-intensive, mission-specific techniques for processing and routing data become prohibitively. This paper describes how an IP-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.

  15. Stability of Dosage Forms in the Pharmaceutical Payload Aboard Space Missions

    Science.gov (United States)

    Du, Brian J.; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick; Younker, Diane R.; Putcha, Lakshmi

    2009-01-01

    Efficacious pharmaceuticals with adequate shelf lives are essential for successful space medical operations. Stability of pharmaceuticals, therefore, is of paramount importance for assuring the health and wellness of astronauts on future space exploration missions. Unique physical and environmental factors of space missions may contribute to the instability of pharmaceuticals, e.g., radiation, humidity and temperature variations. Degradation of pharmaceutical formulations can result in inadequate efficacy and/or untoward toxic effects, which could compromise astronaut safety and health. Methods: Four identical pharmaceutical payload kits containing 31 medications in different dosage forms (liquid, tablet, capsule, ointment and suppository) were transported to the International Space Station aboard the Space Shuttle (STS-121). One of the 4 kits was stored on the Shuttle and the other 3 were stored on the International Space Station (ISS) for return to Earth at 6-month interval aboard a pre-designated Shuttle flight for each kit. The kit stored on the Shuttle was returned to Earth aboard STS-121 and 2 kits from ISS were returned on STS 117 and STS-122. Results: Analysis of standard physical and chemical parameters of degradation was completed for pharmaceuticals returned by STS-121 after14 days, STS - 117 after11 months and STS 122 after 19 months storage aboard ISS. Analysis of all flight samples along with ground-based matching controls was completed and results were compiled. Conclusion: Evaluation of results from the shuttle (1) and ISS increments (2) indicate that the number of formulations degraded in space increased with duration of storage in space and was higher in space compared to their ground-based counterparts. Rate of degradation for some of the formulations tested was faster in space than on Earth. Additionally, some of the formulations included in the medical kits were unstable, more so in space than on the ground. These results indicate that the

  16. STS-93 Mission Specialist Tognini and daughter prepare to board aircraft for return flight to Housto

    Science.gov (United States)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Mission Specialist Michel Tognini of France, representing the Centre National d'Etudes Spatiales (CNES), and his daughter Tatinana prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander.

  17. NASA flight controllers - Meeting cultural and leadership challenges on the critical path to mission success

    Science.gov (United States)

    Clement, James L., Jr.; Ritsher, Jennifer Boyd

    2006-01-01

    As part of its preparation for missions to the Moon and Mars, NASA has identified high priority critical path roadmap (CPR) questions, two of which focus on the performance of mission control personnel. NASA flight controllers have always worked in an incredibly demanding setting, but the International Space Station poses even more challenges than prior missions. We surveyed 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers about the management and cultural challenges they face and the most effective strategies for addressing them. There was substantial consensus among participants on some issues, such as the importance of building a personal relationship with Russian colleagues. Responses from junior and senior controllers differed in some areas, such as training. We frame the results in terms of two CPR questions. We aim to use our results to improve flight controller training.

  18. Seeds-in-space education experiment during the Dutch soyuz mission DELTA

    Science.gov (United States)

    Weterings, Koen; Wamsteker, Jasper; Loon, Jack van

    2007-09-01

    We have used the broad appeal of the universe and space flight to boost interest in science education in The Netherlands via a classroom experiment designated Seeds In Space (SIS). By germinating Rucola seeds in the dark and in the light in ground classrooms and by comparing these results with those obtained in the same experiment performed in the International Space Station (ISS) during the Dutch Soyuz mission DELTA, students could learn about the cues that determine direction of plant growth. This paper describes both the preparations that led up to the SIS experiment as well as the popular and scientific outcome. Within The Netherlands, some 80.000 students participated, representing 15% of the population in the age group of 10-14 years old. In addition, another 80.000 German pupils, a few local schools in the Moscow -Koroljov- area and some in the Dutch Antilles also participated in the SIS experiment. Considering these numbers, it can be concluded that SIS was a very successful educational project and might be considered for future space flight missions.

  19. Pancreas of C57 black mice after long-term space flight (Bion-M1 Space Mission).

    Science.gov (United States)

    Proshchina, A E; Krivova, Y S; Saveliev, S C

    2015-11-01

    In this study, we analysed the pancreases of C57BL/6N mice in order to estimate the effects of long-term space flights. Mice were flown aboard the Bion-M1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control group was used to account for housing effects. Each of the groups included mice designated for recovery studies. Mice pancreases were dissected for histological and immunohistochemical examinations. Using a morphometry and statistical analysis, a strong correlation between the mean islet size and the mean body weight was revealed in all groups. Therefore, we propose that hypokinesia and an increase in nutrition play an important role in alterations of the endocrine pancreas, both in space flight and terrestrial conditions. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  20. Data catalog series for space science and applications flight missions. Volume 3B: Descriptions of data sets from low- and medium-altitude scientific spacecraft and investigations

    Science.gov (United States)

    Jackson, John E. (Editor); Horowitz, Richard (Editor)

    1986-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from low and medium altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  1. Data Catalog Series for Space Science and Applications Flight Missions. Volume 2B; Descriptions of Data Sets from Geostationary and High-Altitude Scientific Spacecraft and Investigations

    Science.gov (United States)

    Schofield, Norman J. (Editor); Parthasarathy, R. (Editor); Hills, H. Kent (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from geostationary and high altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  2. Effects of Short- and Long-Duration Space Flight on Neuromuscular Function

    Science.gov (United States)

    Buxton, Roxanne E.; Spiering, Barry A.; Ryder, Jeffrey W.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.

    2010-01-01

    The Functional Task Tests (FTT) is an interdisciplinary study designed to correlate the changes in functional tasks (such as emergency egress, ladder climbing, and hatch opening) with changes in neuromuscular, cardiovascular, and sensorimotor function. One aspect of the FTT, the neuromuscular function test, is used to investigate the neuromuscular component underlying changes in the ability of astronauts to perform functional tasks (representative of critical mission tasks) safely and quickly after flight. PURPOSE: To describe neuromuscular function after short- and long-duration space flight. METHODS: To date, 5 crewmembers on short-duration (10- to 15-day) missions and 3 on long-duration missions have participated. Crewmembers were assessed 30 days before flight, on landing day (short-duration subjects only) and 1, 6, and 30 days after landing. The interpolated twitch technique, which utilizes a combination of maximal voluntary contractions and electrically evoked contractions, was used to assess the maximal voluntary isometric force (MIF) and central activation capacity of the knee extensors. Leg-press and bench-press devices were used to assess MIF and maximal dynamic power of the lower and upper body respectively. Specifically, power was measured during concentric-only ballistic throws of the leg-press sled and bench-press bar loaded to 40% and 30% of MIF respectively. RESULTS: Data are currently being collected from both Shuttle and ISS crewmembers. Emerging data indicate that measures of knee extensor muscle function are decreased with long-duration flight. DISCUSSION: The relationships between flight duration, neural drive, and muscle performance are of particular interest. Ongoing research will add to the current sample size and will focus on defining changes in muscle performance measures after long-duration space flight.

  3. Mentoring SFRM: A New Approach to International Space Station Flight Control Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2009-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (Operator) to a basic level of effectiveness in 1 year. SFRM training uses a twopronged approach to expediting operator certification: 1) imbed SFRM skills training into all Operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills.

  4. Results from the NASA Spacecraft Fault Management Workshop: Cost Drivers for Deep Space Missions

    Science.gov (United States)

    Newhouse, Marilyn E.; McDougal, John; Barley, Bryan; Stephens Karen; Fesq, Lorraine M.

    2010-01-01

    Fault Management, the detection of and response to in-flight anomalies, is a critical aspect of deep-space missions. Fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for five missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that four out of the five missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, and academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the

  5. The ISS flight of Richard Garriott: a template for medicine and science investigation on future spaceflight participant missions.

    Science.gov (United States)

    Jennings, Richard T; Garriott, Owen K; Bogomolov, Valery V; Pochuev, Vladimir I; Morgun, Valery V; Garriott, Richard A

    2010-02-01

    A total of eight commercial spaceflight participants have launched to the International Space Station (ISS) on Soyuz vehicles. Based on an older mean age compared to career astronauts and an increased prevalence of medical conditions, spaceflight participants have provided the opportunity to learn about the effect of space travel on crewmembers with medical problems. The 12-d Soyuz TMA-13/12 ISS flight of spaceflight participant Richard Garriott included medical factors that required preflight intervention, risk mitigation strategies, and provided the opportunity for medical study on-orbit. Equally important, Mr. Garriott conducted extensive medical, scientific, and educational payload operations during the flight. These included 7 medical experiments and a total of 15 scientific projects such as protein crystal growth, Earth observations/photography, educational projects with schools, and amateur radio. The medical studies included the effect of microgravity on immune function, sleep, bone loss, corneal refractive surgery, low back pain, motion perception, and intraocular pressure. The overall mission success resulted from non-bureaucratic agility in mission planning, cooperation with investigators from NASA, ISS, International Partners, and the Korean Aerospace Research Institute, in-flight support and leadership from a team with spaceflight and Capcom experience, and overall mission support from the ISS program. This article focuses on science opportunities that suborbital and orbital spaceflight participant flights offer and suggests that the science program on Richard Garriott's flight be considered a model for future orbital and suborbital missions. The medical challenges are presented in a companion article.

  6. Psychological Selection of NASA Astronauts for International Space Station Missions

    Science.gov (United States)

    Galarza, Laura

    1999-01-01

    During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.

  7. Pancreas of C57 black mice after long-term space flight (Bion-M1 Space Mission)

    Science.gov (United States)

    Proshchina, A. E.; Krivova, Y. S.; Saveliev, S. C.

    2015-11-01

    In this study, we analysed the pancreases of C57BL/6N mice in order to estimate the effects of long-term space flights. Mice were flown aboard the Bion-M1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control group was used to account for housing effects. Each of the groups included mice designated for recovery studies. Mice pancreases were dissected for histological and immunohistochemical examinations. Using a morphometry and statistical analysis, a strong correlation between the mean islet size and the mean body weight was revealed in all groups. Therefore, we propose that hypokinesia and an increase in nutrition play an important role in alterations of the endocrine pancreas, both in space flight and terrestrial conditions.

  8. IXV re-entry demonstrator: Mission overview, system challenges and flight reward

    Science.gov (United States)

    Angelini, Roberto; Denaro, Angelo

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an advanced re-entry demonstrator vehicle aimed to perform in-flight experimentation of atmospheric re-entry enabling systems and technologies. The IXV integrates key technologies at the system level, with significant advancements on Europe's previous flying test-beds. The project builds on previous achievements at system and technology levels, and provides a unique and concrete way of establishing and consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention is paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight. Following the extensive detailed design, manufacturing, qualification, integration and testing of the flight segment and ground segment elements, IXV has performed a full successful flight on February 11th 2015. After the launch with the VEGA launcher form the CSG spaceport in French Guyana, IXV has performed a full nominal mission ending with a successful splashdown in the Pacific Ocean. During Flight Phase, the IXV space and ground segments worked perfectly, implementing the whole flight program in line with the commanded maneuvers and trajectory prediction, performing an overall flight of 34.400 km including 7.600 km with hot atmospheric re-entry in automatic guidance, concluding with successful precision landing at a distance of ~1

  9. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  10. Space Missions for Automation and Robotics Technologies (SMART) Program

    Science.gov (United States)

    Cliffone, D. L.; Lum, H., Jr.

    1985-01-01

    NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

  11. Human System Risk Management for Space Flight

    Science.gov (United States)

    Davis, Jeffrey

    2015-01-01

    This brief abstract reviews the development of the current day approach to human system risk management for space flight and the development of the critical components of this process over the past few years. The human system risk management process now provides a comprehensive assessment of each human system risk by design reference mission (DRM) and is evaluated not only for mission success but also for long-term health impacts for the astronauts. The discipline of bioastronautics is the study of the biological and medical effects of space flight on humans. In 1997, the Space Life Sciences Directorate (SLSD) initiated the Bioastronautics Roadmap (Roadmap) as the "Critical Path Roadmap", and in 1998 participation in the roadmap was expanded to include the National Space Biomedical Research Institute (NSBRI) and the external community. A total of 55 risks and 250 questions were identified and prioritized and in 2000, the Roadmap was base-lined and put under configuration control. The Roadmap took into account several major advisory committee reviews including the Institute of Medicine (IOM) "Safe Passage: Astronaut care for Exploration Missions", 2001. Subsequently, three collaborating organizations at NASA HQ (Chief Health and Medical Officer, Office of Space Flight and Office of Biological & Physical Research), published the Bioastronautics Strategy in 2003, that identified the human as a "critical subsystem of space flight" and noted that "tolerance limits and safe operating bands must be established" to enable human space flight. These offices also requested a review by the IOM of the Roadmap and that review was published in October 2005 as "A Risk Reduction Strategy for Human Exploration of Space: A Review of NASA's Bioastronautics Roadmap", that noted several strengths and weaknesses of the Roadmap and made several recommendations. In parallel with the development of the Roadmap, the Office of the Chief Health and Medical Officer (OCHMO) began a process in

  12. Mining potential biomarkers associated with space flight in Caenorhabditis elegans experienced Shenzhou-8 mission with multiple feature selection techniques

    International Nuclear Information System (INIS)

    Zhao, Lei; Gao, Ying; Mi, Dong; Sun, Yeqing

    2016-01-01

    Highlights: • A combined algorithm is proposed to mine biomarkers of spaceflight in C. elegans. • This algorithm makes the feature selection more reliable and robust. • Apply this algorithm to predict 17 positive biomarkers to space environment stress. • The strategy can be used as a general method to select important features. - Abstract: To identify the potential biomarkers associated with space flight, a combined algorithm, which integrates the feature selection techniques, was used to deal with the microarray datasets of Caenorhabditis elegans obtained in the Shenzhou-8 mission. Compared with the ground control treatment, a total of 86 differentially expressed (DE) genes in responses to space synthetic environment or space radiation environment were identified by two filter methods. And then the top 30 ranking genes were selected by the random forest algorithm. Gene Ontology annotation and functional enrichment analyses showed that these genes were mainly associated with metabolism process. Furthermore, clustering analysis showed that 17 genes among these are positive, including 9 for space synthetic environment and 8 for space radiation environment only. These genes could be used as the biomarkers to reflect the space environment stresses. In addition, we also found that microgravity is the main stress factor to change the expression patterns of biomarkers for the short-duration spaceflight.

  13. Mining potential biomarkers associated with space flight in Caenorhabditis elegans experienced Shenzhou-8 mission with multiple feature selection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei [Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China); Gao, Ying [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Mi, Dong, E-mail: mid@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Sun, Yeqing, E-mail: yqsun@dlmu.edu.cn [Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)

    2016-09-15

    Highlights: • A combined algorithm is proposed to mine biomarkers of spaceflight in C. elegans. • This algorithm makes the feature selection more reliable and robust. • Apply this algorithm to predict 17 positive biomarkers to space environment stress. • The strategy can be used as a general method to select important features. - Abstract: To identify the potential biomarkers associated with space flight, a combined algorithm, which integrates the feature selection techniques, was used to deal with the microarray datasets of Caenorhabditis elegans obtained in the Shenzhou-8 mission. Compared with the ground control treatment, a total of 86 differentially expressed (DE) genes in responses to space synthetic environment or space radiation environment were identified by two filter methods. And then the top 30 ranking genes were selected by the random forest algorithm. Gene Ontology annotation and functional enrichment analyses showed that these genes were mainly associated with metabolism process. Furthermore, clustering analysis showed that 17 genes among these are positive, including 9 for space synthetic environment and 8 for space radiation environment only. These genes could be used as the biomarkers to reflect the space environment stresses. In addition, we also found that microgravity is the main stress factor to change the expression patterns of biomarkers for the short-duration spaceflight.

  14. NASA Goddard Space Flight Center Supply Chain Management Program

    Science.gov (United States)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  15. Biosafety in manned space flight

    International Nuclear Information System (INIS)

    De Boever, P.

    2006-01-01

    The main goal of manned exploration is to achieve a prolonged stay in space, for example in an orbital station (such as the International Space Station (ISS)) or in planetary bases on the Moon and/or Mars. It goes without saying that such missions can only be realized when the astronaut's health and well-being is secured. In this respect, the characterization of the microbiological contamination on board spacecraft and orbital stations and the influence of cosmic radiation and microgravity are of paramount importance. Microbial contamination may originate from different sources and includes the initial contamination of space flight materials during manufacturing and assembly, the delivery of supplies to the orbital station, the supplies themselves, secondary contamination during the lifetime of the orbital station, the crew and any other biological material on board e.g. animals, plants, micro-organisms used in scientific experiments. Although most microorganisms do not threaten human health, it has been reported that in a confined environment, such as a space cabin, microorganisms may produce adverse effects on the optimal performance of the space crew and the integrity of the spacecraft or habitat. These effects range from infections, allergies, and toxicities to degradation of air and water supplies. Biodegradation of critical materials may result in system failure and this may jeopardize the crew. The research aims at monitoring the biological airborne and surface contamination during manned space flight. The ISS has been selected as primary test bed for this study. The majority of the investigations are being done by the Russian Institute of Biomedical Problems (IBMP), which is responsible for monitoring the biological contamination in the habitable compartments of the ISS for safety and hygienic reasons. Within the frame of a collaboration between IBMP and the European Space Agency (ESA), SCK-CEN is able to participate in the analyses

  16. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    Science.gov (United States)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  17. Post flight analysis of NASA standard star trackers recovered from the solar maximum mission

    Science.gov (United States)

    Newman, P.

    1985-01-01

    The flight hardware returned after the Solar Maximum Mission Repair Mission was analyzed to determine the effects of 4 years in space. The NASA Standard Star Tracker would be a good candidate for such analysis because it is moderately complex and had a very elaborate calibration during the acceptance procedure. However, the recovery process extensively damaged the cathode of the image dissector detector making proper operation of the tracker and a comparison with preflight characteristics impossible. Otherwise, the tracker functioned nominally during testing.

  18. Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions

    Science.gov (United States)

    Tuttle, JIm; Canavan, Ed; Jahromi, Amir

    2017-01-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. In addition to having mechanical properties appropriate for surviving the launch environment, these materials generally must have thermal conductivity values which meet specific requirements in their operating temperature ranges. Space missions commonly propose to include materials for which the thermal conductivity is not well known at cryogenic temperatures. We developed a test facility in 2004 at NASAs Goddard Space Flight Center to measure material thermal conductivity at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for several materials.

  19. NASA Space Flight Program and Project Management Handbook

    Science.gov (United States)

    Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.

    2014-01-01

    This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.

  20. EXPOSE-R2: The Astrobiological ESA Mission on Board of the International Space Station

    Directory of Open Access Journals (Sweden)

    Elke Rabbow

    2017-08-01

    Full Text Available On July 23, 2014, the Progress cargo spacecraft 56P was launched from Baikonur to the International Space Station (ISS, carrying EXPOSE-R2, the third ESA (European Space Agency EXPOSE facility, the second EXPOSE on the outside platform of the Russian Zvezda module, with four international astrobiological experiments into space. More than 600 biological samples of archaea, bacteria (as biofilms and in planktonic form, lichens, fungi, plant seeds, triops eggs, mosses and 150 samples of organic compounds were exposed to the harsh space environment and to parameters similar to those on the Mars surface. Radiation dosimeters distributed over the whole facility complemented the scientific payload. Three extravehicular activities later the chemical samples were returned to Earth on March 2, 2016, with Soyuz 44S, having spent 588 days in space. The biological samples arrived back later, on June 18, 2016, with 45S, after a total duration in space of 531 days. The exposure of the samples to Low Earth Orbit vacuum lasted for 531 days and was divided in two parts: protected against solar irradiation during the first 62 days, followed by exposure to solar radiation during the subsequent 469 days. In parallel to the space mission, a Mission Ground Reference (MGR experiment with a flight identical Hardware and a complete flight identical set of samples was performed at the premises of DLR (German Aerospace Center in Cologne by MUSC (Microgravity User Support Center, according to the mission data either downloaded from the ISS (temperature data, facility status, inner pressure status or provided by RedShift Design and Engineering BVBA, Belgium (calculated ultra violet radiation fluence data. In this paper, the EXPOSE-R2 facility, the experimental samples, mission parameters, environmental parameters, and the overall mission and MGR sequences are described, building the background for the research papers of the individual experiments, their analysis and results.

  1. Cardiovascular Aspects of Space Shuttle Flights: At the Heart of Three Decades of American Spaceflight Experience

    Science.gov (United States)

    Charles, John B.; Platts, S. H.

    2011-01-01

    The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.

  2. Constraint and Flight Rule Management for Space Mission Operations

    Science.gov (United States)

    Barreiro, J.; Chachere, J.; Frank, J.; Bertels, C.; Crocker, A.

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et al, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et al., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et al, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on some of the latest research results as well as the latest challenges still facing the field.

  3. In-flight evaluation of aerodynamic predictions of an air-launched space booster

    Science.gov (United States)

    Curry, Robert E.; Mendenhall, Michael R.; Moulton, Bryan

    1993-01-01

    Several analytical aerodynamic design tools that were applied to the Pegasus air-launched space booster were evaluated using flight measurements. The study was limited to existing codes and was conducted with limited computational resources. The flight instrumentation was constrained to have minimal impact on the primary Pegasus missions. Where appropriate, the flight measurements were compared with computational data. Aerodynamic performance and trim data from the first two flights were correlated with predictions. Local measurements in the wing and wing-body interference region were correlated with analytical data. This complex flow region includes the effect of aerothermal heating magnification caused by the presence of a corner vortex and interaction of the wing leading edge shock and fuselage boundary layer. The operation of the first two missions indicates that the aerodynamic design approach for Pegasus was adequate, and data show that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent.

  4. Launch and Assembly Reliability Analysis for Human Space Exploration Missions

    Science.gov (United States)

    Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2012-01-01

    NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

  5. Radiations and space flight

    International Nuclear Information System (INIS)

    Maalouf, M.; Vogin, G.; Foray, N.; Maalouf; Vogin, G.

    2011-01-01

    A space flight is submitted to 3 main sources of radiation: -) cosmic radiation (4 protons/cm 2 /s and 10000 times less for the heaviest particles), -) solar radiation (10 8 protons/cm 2 /s in the solar wind), -) the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm 2 /s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 μGray per day with an average dose rate of 0.28 μGray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  6. Advances in Rodent Research Missions on the International Space Station

    Science.gov (United States)

    Choi, S. Y.; Ronca, A.; Leveson-Gower, D.; Gong, C.; Stube, K.; Pletcher, D.; Wigley, C.; Beegle, J.; Globus, R. K.

    2016-01-01

    A research platform for rodent experiment on the ISS is a valuable tool for advancing biomedical research in space. Capabilities offered by the Rodent Research project developed at NASA Ames Research Center can support experiments of much longer duration on the ISS than previous experiments performed on the Space Shuttle. NASAs Rodent Research (RR)-1 mission was completed successfully and achieved a number of objectives, including validation of flight hardware, on-orbit operations, and science capabilities as well as support of a CASIS-sponsored experiment (Novartis) on muscle atrophy. Twenty C57BL6J adult female mice were launched on the Space-X (SpX) 4 Dragon vehicle, and thrived for up to 37 days in microgravity. Daily health checks of the mice were performed during the mission via downlinked video; all flight animals were healthy and displayed normal behavior, and higher levels of physical activity compared to ground controls. Behavioral analysis demonstrated that Flight and Ground Control mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions indicative of healthy animals. The animals were euthanized on-orbit and select tissues were collected from some of the mice on orbit to assess the long-term sample storage capabilities of the ISS. In general, the data obtained from the flight mice were comparable to those from the three groups of control mice (baseline, vivarium and ground controls, which were housed in flight hardware), showing that the ISS has adequate capability to support long-duration rodent experiments. The team recovered 35 tissues from 40 RR-1 frozen carcasses, yielding 3300 aliquots of tissues to distribute to the scientific community in the U.S., including NASAs GeneLab project and scientists via Space Biology's Biospecimen Sharing Program Ames Life Science Data Archive. Tissues also were distributed to Russian research colleagues at the Institute for

  7. Game Changing: NASA's Space Launch System and Science Mission Design

    Science.gov (United States)

    Creech, Stephen D.

    2013-01-01

    NASA s Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  8. B-52 Flight Mission Symbology - Close up

    Science.gov (United States)

    1993-01-01

    A close-up view of some of the mission markings that tell the story of the NASA B-52 mothership's colorful history. These particular markings denote some of the experiments the bomber conducted to develop parachute recovery systems for the solid rocket boosters used by the Space Shuttle. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported

  9. Cosmic radiation exposure of future hypersonic flight missions

    International Nuclear Information System (INIS)

    Koops, L.

    2017-01-01

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, air crews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. (author)

  10. Overview of the Radiation Dosimetry Experiment (RaD-X) Flight Mission

    Science.gov (United States)

    Mertens, Christopher J.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5 N, 104.2 W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  11. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  12. Space Flight and Manual Control: Implications for Sensorimotor Function on Future Missions

    Science.gov (United States)

    Reschke, Millard F.; Kornilova, Ludmila; Tomilovskaya, Elena; Parker, Donald E.; Leigh, R. John; Kozlovskaya, Inessa

    2009-01-01

    Control of vehicles, and other complex mechanical motion systems, is a high-level integrative function of the central nervous system (CNS) that requires good visual acuity, eye-hand coordination, spatial (and, in some cases, geographic) orientation perception, and cognitive function. Existing evidence from space flight research (Paloski et.al., 2008, Clement and Reschke 2008, Reschke et al., 2007) demonstrates that the function of each of these systems is altered by removing (and subsequently by reintroducing) a gravitational field that can be sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, navigation, and coordination of movements. Furthermore, much of the operational performance data collected as a function of space flight has not been available for independent analysis, and those data that have been reviewed are equivocal owing to uncontrolled environmental and/or engineering factors. Thus, our current understanding, when it comes to manual control, is limited primarily to a review of those situations where manual control has been a factor. One of the simplest approaches to the manual control problem is to review shuttle landing data. See the Figure below for those landing for which we have Shuttle velocities over the runway threshold.

  13. Young PHD's in Human Space Flight

    Science.gov (United States)

    Wilson, Eleanor

    2002-01-01

    The Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME) in cooperation with the NASA Office of Space Flight, Human Exploration and Development of Space Enterprise sponsored a summer institute, Young PHD#s (Persons Having Dreams) in Human Space Flight. This 3-day institute used the curriculum of a workshop designed for space professionals, 'Human Space Flight-Analysis and Design: An Integrated, Systematic Approach.' The content was tailored to a high school audience. This institute seeks to stimulate the interest of pre-college students in space flight and motivate them to pursue further experiences in this field. Additionally, this institute will serve as a pilot model for a pre- collegiate training program that can be replicated throughout the country. The institute was complemented with a trip to the Goddard Space Flight Center.

  14. Nanotechnology Concepts at Marshall Space Flight Center: Engineering Directorate

    Science.gov (United States)

    Bhat, B.; Kaul, R.; Shah, S.; Smithers, G.; Watson, M. D.

    2001-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has need for miniaturization of components, minimization of weight, and maximization of performance, and nanotechnology will help us get there. Marshall Space Flight Center's (MSFC's) Engineering Directorate is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science, and space optics manufacturing. MSFC has a dedicated group of technologists who are currently developing high-payoff nanotechnology concepts. This poster presentation will outline some of the concepts being developed including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors, and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  15. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    Science.gov (United States)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  16. Model-Based Trade Space Exploration for Near-Earth Space Missions

    Science.gov (United States)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  17. Cosmic Radiation Exposure of Future Hypersonic Flight Missions.

    Science.gov (United States)

    Koops, L

    2017-06-15

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, aircrews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Heart Rate Response During Mission-Critical Tasks After Space Flight

    Science.gov (United States)

    Arzeno, Natalia M.; Lee, S. M. C.; Stenger, M. B.; Lawrence, E. L.; Platts, S. H.; Bloomberg, J. J.

    2010-01-01

    Adaptation to microgravity could impair crewmembers? ability to perform required tasks upon entry into a gravity environment, such as return to Earth, or during extraterrestrial exploration. Historically, data have been collected in a controlled testing environment, but it is unclear whether these physiologic measures result in changes in functional performance. NASA?s Functional Task Test (FTT) aims to investigate whether adaptation to microgravity increases physiologic stress and impairs performance during mission-critical tasks. PURPOSE: To determine whether the well-accepted postflight tachycardia observed during standard laboratory tests also would be observed during simulations of mission-critical tasks during and after recovery from short-duration spaceflight. METHODS: Five astronauts participated in the FTT 30 days before launch, on landing day, and 1, 6, and 30 days after landing. Mean heart rate (HR) was measured during 5 simulations of mission-critical tasks: rising from (1) a chair or (2) recumbent seated position followed by walking through an obstacle course (egress from a space vehicle), (3) translating graduated masses from one location to another (geological sample collection), (4) walking on a treadmill at 6.4 km/h (ambulation on planetary surface), and (5) climbing 40 steps on a passive treadmill ladder (ingress to lander). For tasks 1, 2, 3, and 5, astronauts were encouraged to complete the task as quickly as possible. Time to complete tasks and mean HR during each task were analyzed using repeated measures ANOVA and ANCOVA respectively, in which task duration was a covariate. RESULTS: Landing day HR was higher (P < 0.05) than preflight during the upright seat egress (7%+/-3), treadmill walk (13%+/-3) and ladder climb (10%+/-4), and HR remained elevated during the treadmill walk 1 day after landing. During tasks in which HR was not elevated on landing day, task duration was significantly greater on landing day (recumbent seat egress: 25

  19. The endocrine system in space flight

    Science.gov (United States)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    Hormones are important effectors of the body's response to microgravity in the areas of fluid and electrolyte metabolism, erythropoiesis, and calcium metabolism. For many years antidiuretic hormone, cortisol and aldosterone have been considered the hormones most important for regulation of body fluid volume and blood levels of electrolytes, but they cannot account totally for losses of fluid and electrolytes during space flight. We have now measured atrial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF had decreased by 59%, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell production, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1α, 25-dihydroxyvitamin D 3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  20. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    Science.gov (United States)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  1. Body Unloading Associated with Space Flight and Bed-rest Impacts Functional Performance

    Science.gov (United States)

    Bloomberg, J. J.; Ballard, K. L.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting studies on both ISS crewmembers and on subjects experiencing 70 days of 6 degrees head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading component on functional performance. In this on-going study both ISS crewmembers and bed-rest subjects were tested using an interdisciplinary protocol that evaluated functional performance and related physiological changes before and after 6 months in space and 70 days of 6? head-down bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Crewmembers were tested three times before flight, and on 1, 6 and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6 and 12 days after reambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with

  2. Using NASA's Space Launch System to Enable Game Changing Science Mission Designs

    Science.gov (United States)

    Creech, Stephen D.

    2013-01-01

    NASA's Marshall Space Flight Center is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will help restore U.S. leadership in space by carrying the Orion Multi-Purpose Crew Vehicle and other important payloads far beyond Earth orbit. Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids, Mars, and the outer solar system. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required with several gravity-assist planetary fly-bys to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip times and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as monolithic telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  3. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    Science.gov (United States)

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  4. Biotechnological experiments in space flights on board of space stations

    Science.gov (United States)

    Nechitailo, Galina S.

    2012-07-01

    Space flight conditions are stressful for any plant and cause structural-functional transition due to mobiliation of adaptivity. In space flight experiments with pea tissue, wheat and arabidopsis we found anatomical-morphological transformations and biochemistry of plants. In following experiments, tissue of stevia (Stevia rebaudiana), potato (Solanum tuberosum), callus culture and culture and bulbs of suffron (Crocus sativus), callus culture of ginseng (Panax ginseng) were investigated. Experiments with stevia carried out in special chambers. The duration of experiment was 8-14 days. Board lamp was used for illumination of the plants. After experiment the plants grew in the same chamber and after 50 days the plants were moved into artificial ionexchange soil. The biochemical analysis of plants was done. The total concentration of glycozides and ratio of stevioside and rebauside were found different in space and ground plants. In following generations of stevia after flight the total concentration of stevioside and rebauside remains higher than in ground plants. Experiments with callus culture of suffron carried out in tubes. Duration of space flight experiment was 8-167 days. Board lamp was used for illumination of the plants. We found picrocitina pigment in the space plants but not in ground plants. Tissue culture of ginseng was grown in special container in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 167 days. Biological activity of space flight culutre was in 5 times higher than the ground culture. This difference was observed after recultivation of space flight samples on Earth during year after flight. Callus tissue of potato was grown in tubes in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 14 days. Concentration of regenerates in flight samples was in 5 times higher than in ground samples. The space flight experiments show, that microgravity and other

  5. The Impact of Apollo-Era Microbiology on Human Space Flight

    Science.gov (United States)

    Elliott, T. F; Castro, V. A.; Bruce, R. J.; Pierson, D. L.

    2014-01-01

    The microbiota of crewmembers and the spacecraft environment contributes significant risk to crew health during space flight missions. NASA reduces microbial risk with various mitigation methods that originated during the Apollo Program and continued to evolve through subsequent programs: Skylab, Shuttle, and International Space Station (ISS). A quarantine of the crew and lunar surface samples, within the Lunar Receiving Laboratory following return from the Moon, was used to prevent contamination with unknown extraterrestrial organisms. The quarantine durations for the crew and lunar samples were 21 days and 50 days, respectively. A series of infections among Apollo crewmembers resulted in a quarantine before launch to limit exposure to infectious organisms. This Health Stabilization Program isolated the crew for 21 days before flight and was effective in reducing crew illness. After the program developed water recovery hardware for Apollo spacecraft, the 1967 National Academy of Science Space Science Board recommended the monitoring of potable water. NASA implemented acceptability limits of 10 colony forming units (CFU) per mL and the absence of viable E. coli, anaerobes, yeasts, and molds in three separate 150 mL aliquots. Microbiological investigations of the crew and spacecraft environment were conducted during the Apollo program, including the Apollo-Soyuz Test Project and Skylab. Subsequent space programs implemented microbial screening of the crew for pathogens and acceptability limits on spacecraft surfaces and air. Microbiology risk mitigation methods have evolved since the Apollo program. NASA cancelled the quarantine of the crew after return from the lunar surface, reduced the duration of the Health Stabilization Program; and implemented acceptability limits for spacecraft surfaces and air. While microbial risks were not a main focus of the early Mercury and Gemini programs, the extended duration of Apollo flights resulted in the increased scrutiny of

  6. Human interactions during Shuttle/Mir space missions

    Science.gov (United States)

    Kanas, N.; Salnitskiy, V.; Grund, E. M.; Weiss, D. S.; Gushin, V.; Kozerenko, O.; Sled, A.; Marmar, C. R.

    2001-01-01

    To improve the interpersonal climate of crewmembers involved with long-duration space missions, it is important to understand the factors affecting their interactions with each other and with members of mission control. This paper will present findings from a recently completed NASA-funded study during the Shuttle/Mir program which evaluated in-group/out-group displacement of negative emotions; changes in tension, cohesion, and leader support over time; and cultural differences. In-flight data were collected from 5 astronauts, 8 cosmonauts, and 42 American and 16 Russian mission control personnel who signed informed consent. Subjects completed a weekly questionnaire that assessed their mood and perception of their work group's interpersonal climate using questions from well-known, standardized measures (Profile of Mood States, Group and Work Environment Scales) and a critical incident log. There was strong evidence for the displacement of tension and dysphoric emotions from crewmembers to mission control personnel and from mission control personnel to management. There was a perceived decrease in commander support during the 2nd half of the missions, and for American crewmembers a novelty effect was found on several subscales during the first few months on-orbit. There were a number of differences between American and Russian responses which suggested that the former were less happy with their interpersonal environment than the latter. Mission control personnel reported more tension and dysphoria than crewmembers, although both groups scored better than other work groups on Earth. Nearly all reported critical incidents came from ground subjects, with Americans and Russians showing important differences in response frequencies.

  7. Enhancing the Meaningfulness of Work for Astronauts on Long Duration Space Exploration Missions.

    Science.gov (United States)

    Britt, Thomas W; Sytine, Anton; Brady, Ashley; Wilkes, Russ; Pittman, Rebecca; Jennings, Kristen; Goguen, Kandice

    2017-08-01

    Numerous authors have identified the stressors likely to be encountered on long duration space exploration missions (e.g., to Mars), including the possibility of significant crises, separation from family, boredom/monotony, and interpersonal conflict. Although many authors have noted that meaningful work may be beneficial for astronauts on these missions, none have detailed the sources of meaningful work for astronauts and how these sources may differ between astronauts. The present article identifies how engagement in meaningful work during long duration missions may mitigate the adverse effects of demands and increase the potential for benefits resulting from the missions. Semistructured interviews were conducted with nine NASA personnel, including astronauts, flight directors, and flight surgeons. Questions addressed sources of meaning for astronauts, characteristics of tasks that enhance vs. detract from meaning, and recommendations for enhancing meaning. Personnel mentioned contributing to humanity and the next generation, contributing to the mission, and exploration as the most meaningful aspects of their work. Characteristics of tasks that enhanced meaning included using a variety of skills, feeling personal control over their schedule, autonomy in the execution of tasks, and understanding the importance of the experiments conducted on the mission. Top recommendations to sustain meaning were insuring social needs were met through such activities as the strategic use of social media, giving astronauts autonomy as well as structure, and conducting training during transit. Implications are addressed for tailoring meaning-based interventions for astronauts participating on long duration missions and assessing the effectiveness of these interventions.Britt TW, Sytine A, Brady A, Wilkes R, Pittman R, Jennings K, Goguen K. Enhancing the meaningfulness of work for astronauts on long duration space exploration missions. Aerosp Med Hum Perform. 2017; 88(8):779-783.

  8. Weightlessness and Cardiac Rhythm Disorders: Current Knowledge from Space Flight and Bed-Rest Studies

    International Nuclear Information System (INIS)

    Caiani, Enrico G.; Martin-Yebra, Alba; Landreani, Federica; Bolea, Juan; Laguna, Pablo; Vaïda, Pierre

    2016-01-01

    Isolated episodes of heart rhythm disorders have been reported during 40 years of space flight, triggering research to evaluate the risk of developing life-threatening arrhythmias induced by prolonged exposure to weightlessness. In fact, these events could compromise astronaut performance during exploratory missions, as well as pose at risk the astronaut health, due to limited options of care on board the International Space Station. Starting from original observations, this mini review will explore the latest research in this field, considering results obtained both during space flight and on Earth, the latter by simulating long-term exposure to microgravity by head-down bed rest maneuver in order to elicit cardiovascular deconditioning on normal volunteers.

  9. Weightlessness and Cardiac Rhythm Disorders: Current Knowledge from Space Flight and Bed-Rest Studies

    Energy Technology Data Exchange (ETDEWEB)

    Caiani, Enrico G. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Martin-Yebra, Alba [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza (Spain); Landreani, Federica [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Bolea, Juan; Laguna, Pablo [Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza (Spain); Vaïda, Pierre, E-mail: enrico.caiani@polimi.it [École Nationale Supérieure de Cognitique, Institut Polytechnique de Bordeaux, Université de Bordeaux, Bordeaux (France)

    2016-08-23

    Isolated episodes of heart rhythm disorders have been reported during 40 years of space flight, triggering research to evaluate the risk of developing life-threatening arrhythmias induced by prolonged exposure to weightlessness. In fact, these events could compromise astronaut performance during exploratory missions, as well as pose at risk the astronaut health, due to limited options of care on board the International Space Station. Starting from original observations, this mini review will explore the latest research in this field, considering results obtained both during space flight and on Earth, the latter by simulating long-term exposure to microgravity by head-down bed rest maneuver in order to elicit cardiovascular deconditioning on normal volunteers.

  10. Automation of Hubble Space Telescope Mission Operations

    Science.gov (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  11. Epstein-Barr virus shedding by astronauts during space flight

    Science.gov (United States)

    Pierson, D. L.; Stowe, R. P.; Phillips, T. M.; Lugg, D. J.; Mehta, S. K.

    2005-01-01

    Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected from astronauts before, during, and after 10 space shuttle missions of 5-14 days duration. At one time point or another, EBV was detected in saliva from each of the astronauts. Of 1398 saliva specimens from 32 astronauts, polymerase chain reaction analysis showed that 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected from 28 astronauts before flight were positive for EBV DNA, as were 16% of those collected from 25 astronauts during flight and 16% of those collected after flight from 23 astronauts. The mean number of EBV copies from samples taken during the flights was 417 per mL, significantly greater (p<.05) than the number of viral copies from the preflight (40) and postflight (44) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and mean number of EBV copies of 40 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p<.05) greater than baseline levels. On landing day, urinary levels of cortisol and catecholamines were greater than their preflight values. In a limited study (n=5), plasma levels of substance P and other neuropeptides were also greater on landing day. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with EBV reactivation before, during, and after space flight.

  12. In-flight Integrated Mission Management System (I-LIMMS)

    National Research Council Canada - National Science Library

    Emmitt, George D; Greco, Steven; Wood, Sidney

    2006-01-01

    The goal of this Phase I SBIR effort was to determine the feasibility and preliminary design of I-LIMMS, an In-flight Lidar Integrated Mission Management System for the processing and visualization...

  13. Validation of the in-flight calibration procedures for the MICROSCOPE space mission

    OpenAIRE

    Hardy, Emilie; Levy, Agnès; Rodrigues, Manuel; Touboul, Pierre; Métris, Gilles

    2017-01-01

    The MICROSCOPE space mission aims to test the Equivalence Principle with an accuracy of $10^{-15}$. The drag-free micro-satellite will orbit around the Earth and embark a differential electrostatic accelerometer including two cylindrical test masses submitted to the same gravitational field and made of different materials. The experience consists in testing the equality of the electrostatic acceleration applied to the masses to maintain them relatively motionless. The accuracy of the measurem...

  14. Space Flight Operations Center local area network

    Science.gov (United States)

    Goodman, Ross V.

    1988-01-01

    The existing Mission Control and Computer Center at JPL will be replaced by the Space Flight Operations Center (SFOC). One part of the SFOC is the LAN-based distribution system. The purpose of the LAN is to distribute the processed data among the various elements of the SFOC. The SFOC LAN will provide a robust subsystem that will support the Magellan launch configuration and future project adaptation. Its capabilities include (1) a proven cable medium as the backbone for the entire network; (2) hardware components that are reliable, varied, and follow OSI standards; (3) accurate and detailed documentation for fault isolation and future expansion; and (4) proven monitoring and maintenance tools.

  15. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions

    Science.gov (United States)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, M.

    2000-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  16. The transition radiation detector of the PAMELA space mission

    Science.gov (United States)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-04-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta.

  17. The transition radiation detector of the PAMELA space mission

    International Nuclear Information System (INIS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-01-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta

  18. The HYTHIRM Project: Flight Thermography of the Space Shuttle During the Hypersonic Re-entry

    Science.gov (United States)

    Horvath, Thomas J.; Tomek, Deborah M.; Berger, Karen T.; Zalameda, Joseph N.; Splinter, Scott C.; Krasa, Paul W.; Schwartz, Richard J.; Gibson, David M.; Tietjen, Alan B.; Tack, Steve

    2010-01-01

    This report describes a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. A background and an overview of several multidisciplinary efforts that culminated in the acquisition of high resolution calibrated infrared imagery of the Space Shuttle during hypervelocity atmospheric entry is presented. The successful collection of thermal data has demonstrated the feasibility of obtaining remote high-resolution infrared imagery during hypersonic flight for the accurate measurement of surface temperature. To maximize science and engineering return, the acquisition of quantitative thermal imagery and capability demonstration was targeted towards three recent Shuttle flights - two of which involved flight experiments flown on Discovery. In coordination with these two Shuttle flight experiments, a US Navy NP-3D aircraft was flown between 26-41 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 (STS-119) and Mach 14.7 (STS-128) using a long-range infrared optical package referred to as Cast Glance. This same Navy aircraft successfully monitored the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission (STS-125). The purpose of this paper is to describe the systematic approach used by the Hypersonic Thermodynamic Infrared Measurements team to develop and implement a set of mission planning tools designed to establish confidence in the ability of an imaging platform to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. The mission planning tools included a pre-flight capability to predict the infrared signature of the Shuttle. Such tools permitted optimization of the hardware configuration to increase signal-to-noise and to maximize the available

  19. Marshall Space Flight Center's Tower Vector Magnetograph: Upgrades, Hardware, and Operations for the HESSI Mission

    Science.gov (United States)

    Adams, M. L.; Hagyard, M. J.; West, E. A.; Smith, J. E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Marshall Space Flight Center's (MSFC) solar group announces the successful upgrade of our tower vector magnetograph. In operation since 1973, the last major alterations to the system (which includes telescope, filter, polarizing optics, camera, and data acquisition computer) were made in 1982, when we upgraded from an SEC Vidicon camera to a CCD. In 1985, other changes were made which increased the field-of-view from 5 x 5 arc min (2.4 arc sec per pixel) to 6 x 6 arc min with a resolution of 2.81 arc sec. In 1989, the Apollo Telescope Mount H-alpha telescope was coaligned with the optics of the magnetograph. The most recent upgrades (year 2000), funded to support the High Energy Solar Spectroscopic Imager (HESSI) mission, have resulted in a pixel size of 0.64 arc sec over a 7 x 5.2 arc min field-of-view (binning 1x1). This poster describes the physical characteristics of the new system and compares spatial resolution, timing, and versatility with the old system. Finally, we provide a description of our Internet web site, which includes images of our most recent observations, and links to our data archives, as well as the history of magnetography at MSFC and education outreach pages.

  20. Mini AERCam Inspection Robot for Human Space Missions

    Science.gov (United States)

    Fredrickson, Steven E.; Duran, Steve; Mitchell, Jennifer D.

    2004-01-01

    The Engineering Directorate of NASA Johnson Space Center has developed a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam free flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35 pound, 14 inch AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations including automatic stationkeeping and point-to-point maneuvering. Mini AERCam is designed to fulfill the unique requirements and constraints associated with using a free flyer to perform external inspections and remote viewing of human spacecraft operations. This paper describes the application of Mini AERCam for stand-alone spacecraft inspection, as well as for roles on teams of humans and robots conducting future space exploration missions.

  1. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations

  2. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    Directory of Open Access Journals (Sweden)

    Sangwook Park

    2009-12-01

    Full Text Available This paper describes the Flight Dynamics Automation (FDA system for COMS Flight Dynamics System (FDS and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  3. Robust, Radiation Tolerant Command and Data Handling and Power System Electronics from NASA Goddard Space Flight Center

    Science.gov (United States)

    Nguyen, Hanson C.; Fraction, James; Ortiz-Acosta, Melyane; Dakermanji, George; Kercheval, Bradford P.; Hernandez-Pellerano, Amri; Kim, David S.; Jung, David S.; Meyer, Steven E.; Mallik, Udayan; hide

    2016-01-01

    The Goddard Modular Smallsat Architecture (GMSA) is developed at NASA Goddard Space Flight Center (GSFC) to address future reliability along with minimizing cost and schedule challenges for NASA Cubesat and Smallsat missions.

  4. Medical support and technology for long-duration space missions

    Science.gov (United States)

    Furukawa, S.; Nicogossian, A.; Buchanan, P.; Pool, S. L.

    1982-01-01

    The current philosophy and development directions being taken towards realization of medical systems for use on board space stations are discussed. Data was gained on the performance of physical examinations, venipuncture and blood flow, blood smear and staining, white blood cell differential count, throat culture swab and colony count, and microscopy techniques during a 28-day period of the Skylab mission. It is expected that the advent of Shuttle flights will rapidly increase the number of persons in space, create a demand for in-space rather than on-earth medical procedures, and necessitate treatments for disorders without the provision for an early return to earth. Attention is being given to pressurized environment and extravehicular conditions of treatment, the possibilities of the use of the OTV for moving injured or ill crewmembers to other space stations, and to isolation of persons with communicable diseases from station crews.

  5. Final Phase Flight Performance and Touchdown Time Assessment of TDV in RLV-TD HEX-01 Mission

    Science.gov (United States)

    Yadav, Sandeep; Jayakumar, M.; Nizin, Aziya; Kesavabrahmaji, K.; Shyam Mohan, N.

    2017-12-01

    RLV-TD HEX-01 mission was configured as a precursor flight to actual two stages to orbit vehicle. In this mission RLV-TD was designed as a two stage vehicle for demonstrating the hypersonic flight of a winged body vehicle at Mach No. 5. One of the main objectives of this mission was to generate data for better understanding of new technologies required to design the future vehicle. In this mission, the RLV-TD vehicle was heavily instrumented to get data related to performance of different subsystems. As per the mission design, RLV-TD will land in sea after flight duration of 700 s and travelling a distance of nearly 500 km in Bay of Bengal from the launch site for a nominal trajectory. The visibility studies for telemetry data of vehicle for the nominal and off nominal trajectories were carried out. Based on that, three ground stations were proposed for the telemetry data reception (including one in sea). Even with this scheme it was seen that during the final phase of the flight there will not be any ground station visible to the flight due to low elevation. To have the mission critical data during final phase of the flight, telemetry through INSAT scheme was introduced. During the end of the mission RLV-TD will be landing in the sea on a hypothetical runway. To know the exact time of touchdown for the flight in sea, there was no direct measurement available. Simultaneously there were all chances of losing ground station visibility just before touchdown, making it difficult to assess flight performance during that phase. In this work, telemetry and instrumentation scheme of RLV-TD HEX-01 mission is discussed with an objective to determine the flight performance during the final phase. Further, using various flight sensor data the touchdown time of TDV is assessed for this mission.

  6. Evidence Based Medicine in Space Flight: Evaluation of Inflight Vision Data for Operational Decision-Making

    Science.gov (United States)

    Van Baalen, Mary; Mason, Sara; Foy, Millennia; Wear, Mary; Taiym, Wafa; Moynihan, Shannan; Alexander, David; Hart, Steve; Tarver, William

    2015-01-01

    Due to recently identified vision changes associated with space flight, JSC Space and Clinical Operations (SCO) implemented broad mission-related vision testing starting in 2009. Optical Coherence Tomography (OCT), 3 Tesla Brain and Orbit MRIs, Optical Biometry were implemented terrestrially for clinical monitoring. While no inflight vision testing was in place, already available onorbit technology was leveraged to facilitate in-flight clinical monitoring, including visual acuity, Amsler grid, tonometry, and ultrasonography. In 2013, on-orbit testing capabilities were expanded to include contrast sensitivity testing and OCT. As these additional testing capabilities have been added, resource prioritization, particularly crew time, is under evaluation.

  7. SuperAGILE: The hard X-ray imager for the AGILE space mission

    International Nuclear Information System (INIS)

    Feroci, M.; Costa, E.; Soffitta, P.; Del Monte, E.; Di Persio, G.; Donnarumma, I.; Evangelista, Y.; Frutti, M.; Lapshov, I.; Lazzarotto, F.; Mastropietro, M.; Morelli, E.; Pacciani, L.; Porrovecchio, G.; Rapisarda, M.; Rubini, A.; Tavani, M.; Argan, A.

    2007-01-01

    SuperAGILE is a coded mask experiment based on silicon microstrip detectors. It operates in the 15-45 keV nominal energy range, providing crossed one-dimensional images of the X-ray sky with an on-axis angular resolution of 6 arcmin, over a field of view in excess of 1 sr. It was designed as the hard X-ray monitor of the AGILE space mission, a small satellite of the Italian Space Agency devoted to image the gamma-ray sky in the 30 MeV-50 GeV energy band. The AGILE mission was launched in a low-earth orbit on 23rd April 2007. In this paper we describe the SuperAGILE experiment, its construction and test processes, and its performance before flight, based on the on-ground test and calibrations

  8. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    Science.gov (United States)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  9. Space Flight Orthostatic Intolerance Protection

    Science.gov (United States)

    Luty, Wei

    2009-01-01

    This paper summarizes investigations conducted on different orthostatic intolerance protection garments. This paper emphasizes on the engineering and operational aspects of the project. The current Shuttle pneumatic Anti-G Suit or AGS at 25 mmHg (0.5 psi) and customized medical mechanical compressive garments (20-30 mmHg) were tested on human subjects. The test process is presented. The preliminary results conclude that mechanical compressive garments can ameliorate orthostatic hypotension in hypovolemic subjects. A mechanical compressive garment is light, small and works without external pressure gas source; however the current garment design does not provide an adjustment to compensate for the loss of mass and size in the lower torso during long term space missions. It is also difficult to don. Compression garments that do not include an abdominal component are less effective countermeasures than garments which do. An early investigation conducted by the Human Adaptation and Countermeasures Division at Johnson Space Center (JSC) has shown there is no significant difference between the protection function of the AGS (at 77 mmHg or 1.5 psi) and the Russian anti-g suit, Kentavr (at 25 mmHg or 0.5 psi). Although both garments successfully countered hypovolemia-induced orthostatic intolerance, the Kentavr provided protection by using lower levels of compression pressure. This more recent study with a lower AGS pressure shows that pressures at 20-30 mmHg is acceptable but protection function is not as effective as higher pressure. In addition, a questionnaire survey with flight crewmembers who used both AGS and Kentavr during different missions was also performed.

  10. Pulmonary function evaluation during and following Skylab space flights

    Science.gov (United States)

    Sawin, C. F.; Nicogossian, A. E.; Schachter, A. P.; Rummel, J. A.; Michel, E. L.

    1974-01-01

    Previous experience during the Apollo postflight exercise testing indicated no major changes in pulmonary function. Although pulmonary function has been studied in detail following exposure to hypoxic and hyperoxic environments, few studies have dealt with normoxic environments at reduced total pressure as encountered during the Skylab missions. Forced vital capacity was measured during the preflight and postflight periods of the Skylab 2 mission. Initial in-flight measurements of vital capacity were obtained during the last two weeks of the second manned mission (Skylab 3). Comprehensive pulmonary function screening was accomplished during the Skylab 4 mission. The primary measurements made during Skylab 4 testing included residual volume determination, closing volume, vital capacity, and forced vital capacity and its derivatives. In addition, comprehensive in-flight vital capacity measurements were made during the Skylab 4 mission. Vital capacity was decreased slightly during flight in all Skylab 4 crewmen. No major preflight to postflight changes were observed in the other parameters.

  11. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Lacey L.; Slack, Kelley; Holland, Albert; Huning, Therese; O'Keefe, William; Sipes, Walter E.

    2010-01-01

    Although the astronaut training flow for the International Space Station (ISS) spans 2 years, each astronaut or cosmonaut often spends most of their training alone. Rarely is it operationally feasible for all six ISS crewmembers to train together, even more unlikely that crewmembers can practice living together before launch. Likewise, ISS Flight Controller training spans 18 months of learning to manage incredibly complex systems remotely in plug-and-play ground teams that have little to no exposure to crewmembers before a mission. How then do all of these people quickly become a team - a team that must respond flexibly yet decisively to a variety of situations? The answer implemented at NASA is Space Flight Resource Management (SFRM), the so-called "soft skills" or team performance skills. Based on Crew Resource Management, SFRM was developed first for shuttle astronauts and focused on managing human errors during time-critical events (Rogers, et al. 2002). Given the nature of life on ISS, the scope of SFRM for ISS broadened to include teamwork during prolonged and routine operations (O'Keefe, 2008). The ISS SFRM model resembles a star with one competency for each point: Communication, Cross-Culture, Teamwork, Decision Making, Team Care, Leadership/Followership, Conflict Management, and Situation Awareness. These eight competencies were developed with international participation by the Human Behavior and Performance Training Working Group. Over the last two years, these competencies have been used to build a multi-modal SFRM training flow for astronaut candidates and flight controllers that integrates team performance skills into the practice of technical skills. Preliminary results show trainee skill increases as the flow progresses; and participants find the training invaluable to performing well and staying healthy during ISS operations. Future development of SFRM training will aim to help support indirect handovers as ISS operations evolve further with the

  12. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    Science.gov (United States)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  13. Landsat Data Continuity Mission (LDCM) space to ground mission data architecture

    Science.gov (United States)

    Nelson, Jack L.; Ames, J.A.; Williams, J.; Patschke, R.; Mott, C.; Joseph, J.; Garon, H.; Mah, G.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a scientific endeavor to extend the longest continuous multi-spectral imaging record of Earth's land surface. The observatory consists of a spacecraft bus integrated with two imaging instruments; the Operational Land Imager (OLI), built by Ball Aerospace & Technologies Corporation in Boulder, Colorado, and the Thermal Infrared Sensor (TIRS), an in-house instrument built at the Goddard Space Flight Center (GSFC). Both instruments are integrated aboard a fine-pointing, fully redundant, spacecraft bus built by Orbital Sciences Corporation, Gilbert, Arizona. The mission is scheduled for launch in January 2013. This paper will describe the innovative end-to-end approach for efficiently managing high volumes of simultaneous realtime and playback of image and ancillary data from the instruments to the reception at the United States Geological Survey's (USGS) Landsat Ground Network (LGN) and International Cooperator (IC) ground stations. The core enabling capability lies within the spacecraft Command and Data Handling (C&DH) system and Radio Frequency (RF) communications system implementation. Each of these systems uniquely contribute to the efficient processing of high speed image data (up to 265Mbps) from each instrument, and provide virtually error free data delivery to the ground. Onboard methods include a combination of lossless data compression, Consultative Committee for Space Data Systems (CCSDS) data formatting, a file-based/managed Solid State Recorder (SSR), and Low Density Parity Check (LDPC) forward error correction. The 440 Mbps wideband X-Band downlink uses Class 1 CCSDS File Delivery Protocol (CFDP), and an earth coverage antenna to deliver an average of 400 scenes per day to a combination of LGN and IC ground stations. This paper will also describe the integrated capabilities and processes at the LGN ground stations for data reception using adaptive filtering, and the mission operations approach fro- the LDCM

  14. Understanding the Effects of Long-duration Space Flight on Astronant Functional Task Performance

    Science.gov (United States)

    Bloomberg, Jacob J.; Batson, Crystal D.; Buxton, Roxanne E.; Feiveson, Al H.; Kofman, Igor S.; Lee, Stuart M. C.; Miller, Chris A.; Mulavara, Ajitkumar P.; Peters, Brian T.; Phillips, Tiffany; hide

    2014-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These physiological changes cause balance, gait and visual disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. These changes may affect a crewmember's ability to perform critical mission tasks immediately after landing on a planetary surface. To understand how changes in physiological function affect functional performance, an interdisciplinary pre- and postflight testing regimen, Functional Task Test (FTT), was developed to systematically evaluate both astronaut functional performance and related physiological changes. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting the FTT study on International Space Station (ISS) crewmembers before and after 6-month expeditions. Additionally, in a corresponding study we are using the FTT protocol on subjects before and after 70 days of 6deg head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. Therefore, the bed rest analog allows us to investigate the impact of body unloading on both functional tasks and on the underlying physiological factors that lead to decrement in performance and then compare them with the results obtained in our space flight study. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures included assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, heart rate, blood pressure

  15. Utilization of the Space Vision System as an Augmented Reality System For Mission Operations

    Science.gov (United States)

    Maida, James C.; Bowen, Charles

    2003-01-01

    Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to

  16. Computer graphics aid mission operations. [NASA missions

    Science.gov (United States)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  17. Radioastron flight operations

    Science.gov (United States)

    Altunin, V. I.; Sukhanov, K. G.; Altunin, K. R.

    1993-01-01

    Radioastron is a space-based very-long-baseline interferometry (VLBI) mission to be operational in the mid-90's. The spacecraft and space radio telescope (SRT) will be designed, manufactured, and launched by the Russians. The United States is constructing a DSN subnet to be used in conjunction with a Russian subnet for Radioastron SRT science data acquisition, phase link, and spacecraft and science payload health monitoring. Command and control will be performed from a Russian tracking facility. In addition to the flight element, the network of ground radio telescopes which will be performing co-observations with the space telescope are essential to the mission. Observatories in 39 locations around the world are expected to participate in the mission. Some aspects of the mission that have helped shaped the flight operations concept are: separate radio channels will be provided for spacecraft operations and for phase link and science data acquisition; 80-90 percent of the spacecraft operational time will be spent in an autonomous mode; and, mission scheduling must take into account not only spacecraft and science payload constraints, but tracking station and ground observatory availability as well. This paper will describe the flight operations system design for translating the Radioastron science program into spacecraft executed events. Planning for in-orbit checkout and contingency response will also be discussed.

  18. New dimensions for man. [human functions in future space missions

    Science.gov (United States)

    Louviere, A. J.

    1978-01-01

    The functions of man in space have been in a state of constant change since the first manned orbital flight. Initially, the onboard crewmen performed those tasks essential to piloting and navigating the spacecraft. The time devoted to these tasks has steadily decreased and the crewman's time is being allotted to functions other than orbital operations. The evolving functions include added orbital operational capabilities, experimentation, spacecraft maintenance, and fabrication of useful end items. The new functions will include routine utilization of the crewman to extend mission life, satellite retrieval and servicing, remote manipulator systems operations, and piloting of free-flying teleoperator systems. The most demanding tasks are anticipated to be associated with construction of large space structures. The projected changes will introduce innovative designs and revitalize the concepts for utilizing man in space.

  19. Quality Attributes for Mission Flight Software: A Reference for Architects

    Science.gov (United States)

    Wilmot, Jonathan; Fesq, Lorraine; Dvorak, Dan

    2016-01-01

    In the international standards for architecture descriptions in systems and software engineering (ISO/IEC/IEEE 42010), "concern" is a primary concept that often manifests itself in relation to the quality attributes or "ilities" that a system is expected to exhibit - qualities such as reliability, security and modifiability. One of the main uses of an architecture description is to serve as a basis for analyzing how well the architecture achieves its quality attributes, and that requires architects to be as precise as possible about what they mean in claiming, for example, that an architecture supports "modifiability." This paper describes a table, generated by NASA's Software Architecture Review Board, which lists fourteen key quality attributes, identifies different important aspects of each quality attribute and considers each aspect in terms of requirements, rationale, evidence, and tactics to achieve the aspect. This quality attribute table is intended to serve as a guide to software architects, software developers, and software architecture reviewers in the domain of mission-critical real-time embedded systems, such as space mission flight software.

  20. Urinary albumin in space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2002-01-01

    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody...... radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity)....

  1. Production and quality assurance automation in the Goddard Space Flight Center Flight Dynamics Facility

    Science.gov (United States)

    Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.

    1994-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.

  2. STS 63: Post flight presentation

    Science.gov (United States)

    1995-02-01

    At a post flight conference, Captain Jim Wetherbee, of STS Flight 63, introduces each of the other members of the STS 63 crew (Eileen Collins, Pilot; Dr. Bernard Harris, Payload Commander; Dr. Michael Foale, Mission Specialist from England; Dr. Janice Voss, Mission Specialist; and Colonel Vladimir Titor, Mission Specialist from Russia), gave a short autobiography of each member and a brief description of their assignment during this mission. A film was shown that included the preflight suit-up, a view of the launch site, the actual night launch, a tour of the Space Shuttle and several of the experiment areas, several views of earth and the MIR Space Station and cosmonauts, the MlR-Space Shuttle rendezvous, the deployment of the Spartan Ultraviolet Telescope, Foale and Harris's EVA and space walk, the retrieval of Spartan, and the night entry home, including the landing. Several spaceborne experiments were introduced: the radiation monitoring experiment, environment monitoring experiment, solid surface combustion experiment, and protein crystal growth and plant growth experiments. This conference ended with still, color pictures, taken by the astronauts during the entire STS 63 flight, being shown.

  3. B-52 Flight Mission Symbology on Side of Craft

    Science.gov (United States)

    1993-01-01

    A view of some of the mission markings, painted on the side of NASA's B-52 mothership, that tell the story of its colorful history. Just as combat aircraft would paint a bomb on the side of an aircraft for each bombing mission completed, NASA crew members painted a silhouette on the side of the B-52's fuselage to commemorate each drop of an X-15, lifting body, remotely piloted research vehicle, X-38 crew return vehicle, or other experimental vehicle or parachute system. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for

  4. Code-Name: Spider, Flight of Apollo 9.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    Apollo 9, an earth orbiting mission during which the Lunar Module was first tested in space flight in preparation for the eventual moon landing missions, is the subject of this pamphlet. Many color photographs and diagrams of the Lunar Module and flight activities are included with a brief description of the mission. (PR)

  5. Spacelab 1 hematology experiment (INS103): Influence of space flight on erythrokinetics in man

    Science.gov (United States)

    Leach, C. S.; Chen, J. P.; Crosby, W.; Dunn, C. D. R.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.

    1985-01-01

    An experiment conducted on the 10-day Spacelab 1 mission aboard the ninth Space Shuttle flight in November to December 1983 was designed to measure factors involved in the control of erythrocyte turnover that might be altered during weightlessness. Blood samples were collected before, during, and after the flight. Immediately after landing, red cell mass showed a mean decrease of 9.3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate was a cause of the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. Erythropoietin levels decreased during and after flight, but preflight levels were high and the decrease was not significant. The space flight-induced decrease in red cell mass may result from a failure of erythropoiesis to replace cells destroyed by the spleen soon after weightlessness is attained.

  6. TAMU: Blueprint for A New Space Mission Operations System Paradigm

    Science.gov (United States)

    Ruszkowski, James T.; Meshkat, Leila; Haensly, Jean; Pennington, Al; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a System of System (SOS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically disperse locations, to develop the architecture and associated workflow processes of products for a broad range of flight projects. Further, TAMU FPP provides for the automatic execution and re-planning of the workflow processes as they become operational. This paper provides the blueprint for the TAMU FPP paradigm. This blueprint presents a complete, coherent technique, process and tool set that results in an infrastructure that can be used for full lifecycle design and decision making during the flight production process. Based on the many years of experience with the Space Shuttle Program (SSP) and the International Space Station (ISS), the currently cancelled Constellation Program which aimed on returning humans to the moon as a starting point, has been building a modern model-based Systems Engineering infrastructure to Re-engineer the FPP. This infrastructure uses a structured modeling and architecture development approach to optimize the system design thereby reducing the sustaining costs and increasing system efficiency, reliability, robustness and maintainability metrics. With the advent of the new vision for human space exploration, it is now necessary to further generalize this framework to take into consideration a broad range of missions and the participation of multiple organizations outside of the MOD; hence the Transferable, Adaptable, Modular and Upgradeable (TAMU) concept.

  7. Gregory Merkel Tours Marshall Space Flight Center (MSFC)

    Science.gov (United States)

    1972-01-01

    Gregory A. Merkel (left), high school student from Springfield, Massachusetts, is pictured here with Harry Coons of the Marshall Space Flight Center (MSFC) during a visit to the center. Merkel was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  8. Comparing future options for human space flight

    Science.gov (United States)

    Sherwood, Brent

    2011-09-01

    The paper analyzes the "value proposition" for government-funded human space flight, a vexing question that persistently dogs efforts to justify its $10 10/year expense in the US. The original Mercury/Gemini/Apollo value proposition is not valid today. Neither was it the value proposition actually promoted by von Braun, which the post-Apollo 80% of human space flight history has persistently attempted to fulfill. Divergent potential objectives for human space flight are captured in four strategic options— Explore Mars; accelerate Space Passenger Travel; enable Space Power for Earth; and Settle the Moon—which are then analyzed for their purpose, societal myth, legacy benefits, core needs, and result as measured by the number and type of humans they would fly in space. This simple framework is proposed as a way to support productive dialog with public and other stakeholders, to determine a sustainable value proposition for human space flight.

  9. Calcium and Bone Homeostasis During 4-6 Months Space Flight

    Science.gov (United States)

    Smith, Scott M.; OBrien, K.; Wastney, M.; Morukov, B.; Larina, I.; Abrams, S.; Lane, H.; Nillen, J.; Davis-Street, J.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    Bone and calcium homeostasis are altered by weightlessness. We previously reported calcium studies on three subjects from the first joint US/Russian mission to Mir. We report here data on an additional three male subjects, whose stays on Mir were 4 (n= 1) and 6 (n=2) mos. Data were collected before, during, and after the missions. Inflight studies were conducted at 2-3 mos. Endocrine and biochemical indices were measured, along with 3-wk calcium tracer studies. Percent differences are reported compared to preflight. Ionized calcium was unchanged (2.8 +/-2.1 %) during flight. Calcium absorption was variable inflight, but was decreased after landing. Vitamin D stores were decreased 35 +/-24% inflight, similar to previous reports. Serum PTH was decreased 59 +/-9% during flight (greater than we previously reported), while 1,25(OH)(sub 2)-Vitamin D was decreased in 2 of 3 subjects. Markers of bone resorption (e.g., crosslinks) were increased in all subjects. Bone-specific alkaline phosphatase was decreased (n=1) or unchanged (n=2), while osteocalcin was decreased 34 +/-23%. Previously presented data showed that inflight bone loss is associated with increased resorption and unchanged/decreased formation. The data reported here support these earlier findings. These studies will help to extend our understanding of space flight-induced bone loss, and of bone loss associated with diseases such as osteoporosis or paralysis.

  10. Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the International Space Station.

    Science.gov (United States)

    Zwart, Sara R; Morgan, Jennifer L L; Smith, Scott M

    2013-07-01

    Increases in stored iron and dietary intake of iron during space flight have raised concern about the risk of excess iron and oxidative damage, particularly in bone. The objectives of this study were to perform a comprehensive assessment of iron status in men and women before, during, and after long-duration space flight and to quantify the association of iron status with oxidative damage and bone loss. Fasting blood and 24-h urine samples were collected from 23 crew members before, during, and after missions lasting 50 to 247 d to the International Space Station. Serum ferritin and body iron increased early in flight, and transferrin and transferrin receptors decreased later, which indicated that early increases in body iron stores occurred through the mobilization of iron to storage tissues. Acute phase proteins indicated no evidence of an inflammatory response during flight. Serum ferritin was positively correlated with the oxidative damage markers 8-hydroxy-2'-deoxyguanosine (r = 0.53, P < 0.001) and prostaglandin F2α (r = 0.26, P < 0.001), and the greater the area under the curve for ferritin during flight, the greater the decrease in bone mineral density in the total hip (P = 0.031), trochanter (P = 0.006), hip neck (P = 0.044), and pelvis (P = 0.049) after flight. Increased iron stores may be a risk factor for oxidative damage and bone resorption.

  11. Use of animal models for space flight physiology studies, with special focus on the immune system

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-01-01

    Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.

  12. The dynamics of blood biochemical parameters in cosmonauts during long-term space flights

    Science.gov (United States)

    Markin, Andrei; Strogonova, Lubov; Balashov, Oleg; Polyakov, Valery; Tigner, Timoty

    Most of the previously obtained data on cosmonauts' metabolic state concerned certain stages of the postflight period. In this connection, all conclusions, as to metabolism peculiarities during the space flight, were to a large extent probabilistic. The purpose of this work was study of metabolism characteristics in cosmonauts directly during long-term space flights. In the capillary blood samples taken from a finger, by "Reflotron IV" biochemical analyzer, "Boehringer Mannheim" GmbH, Germany, adapted to weightlessness environments, the activity of GOT, GPT, CK, gamma-GT, total and pancreatic amylase, as well as concentration of hemoglobin, glucose, total bilirubin, uric acid, urea, creatinine, total, HDL- and LDL cholesterol, triglycerides had been determined. HDL/LDL-cholesterol ratio also was computed. The crewmembers of 6 main missions to the "Mir" orbital station, a total of 17 cosmonauts, were examined. Biochemical tests were carryed out 30-60 days before lounch, and in the flights different stages between the 25-th and the 423-rd days of flights. In cosmonauts during space flight had been found tendency to increase, in compare with basal level, GOT, GPT, total amylase activity, glucose and total cholesterol concentration, and tendency to decrease of CK activity, hemoglobin, HDL-cholesterol concentration, and HDL/LDL — cholesterol ratio. Some definite trends in variations of other determined biochemical parameters had not been found. The same trends of mentioned biochemical parameters alterations observed in majority of tested cosmonauts, allows to suppose existence of connection between noted metabolic alterations with influence of space flight conditions upon cosmonaut's body. Variations of other studied blood biochemical parameters depends on, probably, pure individual causes.

  13. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    Science.gov (United States)

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  14. Cardiovascular response to lower body negative pressure stimulation before, during, and after space flight

    Science.gov (United States)

    Baisch, F.; Beck, L.; Blomqvist, G.; Wolfram, G.; Drescher, J.; Rome, J. L.; Drummer, C.

    2000-01-01

    BACKGROUND: It is well known that space travel cause post-flight orthostatic hypotension and it was assumed that autonomic cardiovascular control deteriorates in space. Lower body negative pressure (LBNP) was used to assess autonomic function of the cardiovascular system. METHODS: LBNP tests were performed on six crew-members before and on the first days post-flight in a series of three space missions. Additionally, two of the subjects performed LBNP tests in-flight. LBNP mimics fluid distribution of upright posture in a gravity independent way. It causes an artificial sequestration of blood, reduces preload, and filtrates plasma into the lower part of the body. Fluid distribution was assessed by bioelectrical impedance and anthropometric measurements. RESULTS: Heart rate, blood pressure, and total peripheral resistance increased significantly during LBNP experiments in-flight. The decrease in stroke volume, the increased pooling of blood, and the increased filtration of plasma into the lower limbs during LBNP indicated that a plasma volume reduction and a deficit of the interstitial volume of lower limbs rather than a change in cardiovascular control was responsible for the in-flight response. Post-flight LBNP showed no signs of cardiovascular deterioration. The still more pronounced haemodynamic changes during LBNP reflected the expected behaviour of cardiovascular control faced with less intravascular volume. In-flight, the status of an intra-and extravascular fluid deficit increases sympathetic activity, the release of vasoactive substances and consequently blood pressure. Post-flight, blood pressure decreases significantly below pre-flight values after restoration of volume deficits. CONCLUSION: We conclude that the cardiovascular changes in-flight are a consequence of a fluid deficit rather than a consequence of changes in autonomic signal processing.

  15. Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight

    Science.gov (United States)

    Bloomberg, Jacob J.; Reschke, Millard F.; Clement, Gilles R.; Mulavara, Ajitkumar P.; Taylor, Laura C..

    2015-01-01

    Control of vehicles and other complex systems is a high-level integrative function of the central nervous system (CNS). It requires well-functioning subsystem performance, including good visual acuity, eye-hand coordination, spatial and geographic orientation perception, and cognitive function. Evidence from space flight research demonstrates that the function of each of these subsystems is altered by removing gravity, a fundamental orientation reference, which is sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, posture, navigation, and coordination of movements. The available evidence also shows that the degree of alteration of each subsystem depends on a number of crew- and mission-related factors. There is only limited operational evidence that these alterations cause functional impacts on mission-critical vehicle (or complex system) control capabilities. Furthermore, while much of the operational performance data collected during space flight has not been available for independent analysis, those that have been reviewed are somewhat equivocal owing to uncontrolled (and/or unmeasured) environmental and/or engineering factors. Whether this can be improved by further analysis of previously inaccessible operational data or by development of new operational research protocols remains to be seen. The true operational risks will be estimable only after we have filled the knowledge gaps and when we can accurately assess integrated performance in off-nominal operational settings (Paloski et al. 2008). Thus, our current understanding of the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight is limited primarily to extrapolation of scientific research findings, and, since there are limited ground-based analogs of the sensorimotor and vestibular changes associated with space flight, observation of their functional

  16. Surviving space flight: case study on MELiSSA's CIII nitrifying compartment

    Science.gov (United States)

    Ilgrande, Chiara; Lasseur, Christophe; Mastroleo, Felice; Paille, Christel; Leys, Natalie; Morozova, Julia; Ilyin, Vyacheslav; Clauwaert, Peter; Christiaens, Marlies E. R.; Lindeboom, Ralph E. F.; Vlaeminck, Siegfried; Prat, Delphine; Arroyo, Jose M. C.; Conincx, Ilse; Van Hoey, Olivier; Roume, Hugo; Udert, Kai; Sas, Benedikt

    2016-07-01

    Space synthetic biology offers key opportunities for long-term space missions. Planets mining, terraformation, space medicine and Life Support technologies would all benefit from an integrative biological approach. However, space is a harsh environment for life: microgravity, temperature, UV and cosmic radiation can affect the health and functionality of microorganisms and plants, possibly preventing the optimal performance of the systems. The European Space Agency's Life Support System (MELiSSA) has been developed as a model for future long term Space missions and Space habitation. MELiSSA is a 5 compartment artificial ecosystem with microorganisms and higher, that aims at completely recycling gas, liquid and solid waste. In this study, the survival and functional activity after Lower Earth Orbit conditions of microbial nitrogen conversions, relevant for MELiSSA's CIII compartment, was tested. Synthetic communities containing Nitrosomonas europeae, Nitrosomonas ureae, Nitrobacter winogradskyi, Nitrospira moscoviensis and Cupriavidus pinatubonensis were exposed to the Lower Earth Orbit conditions of the International Space Station (ISS) for 7 days. Nitrosomonas europeae, Nitrobacter winogradskyi, Cupriavidus pinatubonensis, and three mixed communities (a urine nitrification sludge, a sludge containing aerobic ammonia oxidizing bacteria and anammox bacteria (OLAND), and an aquaculture sludge containing ammonia oxidizing archaea) were exposed to Lower Earth Orbit conditions for 44 days. Survival after both space flights was demonstrated because nitritation, nitratation, denitrification and anammox activity could be restored at a rate comparable to ground storage conditions. Our results validate the potential survival feasibility and suggest future space applications for N-related microorganisms.

  17. Design and Parametric Sizing of Deep Space Habitats Supporting NASA'S Human Space Flight Architecture Team

    Science.gov (United States)

    Toups, Larry; Simon, Matthew; Smitherman, David; Spexarth, Gary

    2012-01-01

    NASA's Human Space Flight Architecture Team (HAT) is a multi-disciplinary, cross-agency study team that conducts strategic analysis of integrated development approaches for human and robotic space exploration architectures. During each analysis cycle, HAT iterates and refines the definition of design reference missions (DRMs), which inform the definition of a set of integrated capabilities required to explore multiple destinations. An important capability identified in this capability-driven approach is habitation, which is necessary for crewmembers to live and work effectively during long duration transits to and operations at exploration destinations beyond Low Earth Orbit (LEO). This capability is captured by an element referred to as the Deep Space Habitat (DSH), which provides all equipment and resources for the functions required to support crew safety, health, and work including: life support, food preparation, waste management, sleep quarters, and housekeeping.The purpose of this paper is to describe the design of the DSH capable of supporting crew during exploration missions. First, the paper describes the functionality required in a DSH to support the HAT defined exploration missions, the parameters affecting its design, and the assumptions used in the sizing of the habitat. Then, the process used for arriving at parametric sizing estimates to support additional HAT analyses is detailed. Finally, results from the HAT Cycle C DSH sizing are presented followed by a brief description of the remaining design trades and technological advancements necessary to enable the exploration habitation capability.

  18. The Successful Conclusion of the Deep Space 1 Mission: Important Results without a Flashy Title

    Science.gov (United States)

    Rayman, Marc D.

    2002-01-01

    Conceived in 1995, Deep Space 1 (DS1) was the first mission of NASA s New Millennium program. Its purpose was to test high-risk, advanced technologies important for space and Earth science missions. DS1 s payload included ion propulsion, solar concentrator arrays, autonomous navigation and other autonomous systems, miniaturized telecommunications and microelectronic systems, and two highly integrated, compact science instruments. DS1 was launched in October 1998, only 39 months after the initial concept study began, and during its 11-month primary mission it exceeded its requirements. All technologies were rigorously exercised and characterized, thus reducing the cost and risk of subsequent science missions that could consider taking advantage of the capabilities offered by these new systems. Following its primary mission, DS1 embarked on an extended mission devoted to comet science, although it had not been designed for a comet encounter. Less than two months after the beginning of the extended mission, the spacecraft suffered a critical failure with the loss of its star tracker, its only source of 3-axis attitude knowledge. Although this was initially considered to be a catastrophic failure, the project completed an ambitious two-phase, seven-month recovery that included the development of extensive new software and new operations procedures. In September 2001, the spacecraft flawlessly completed a high-risk encounter with comet 19P/Borrelly. Using the two instruments included on the flight for technology tests as well as reprogrammed sensors originally intended for monitoring the effects of the ion propulsion system on the space environment, DS1 returned a rich harvest of data, with panchromatic images, infrared spectra, energy and angle distributions of electron and ion fluxes, ion compositions, and magnetic field and plasma wave measurements. These data constitute the most detailed view of a comet and offer surprising and exciting insights. In addition to the

  19. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  20. Space Flight-Induced Reactivation of Latent Epstein-Barr Virus

    Science.gov (United States)

    Stowe, Raymond P.; Barrett, Alan D. T.; Pierson, Duane L.

    2001-01-01

    Reactivation of latent Epstein-Barr virus (EBV) may be an important threat to crew health during extended space missions. Decreased cellular immune function has been reported both during and after space flight. Preliminary studies have demonstrated increased EBV shedding in saliva as well as increased antibody titers to EBV lytic proteins. We hypothesize that the combined effects of microgravity along with associated physical and psychological stress will decrease EBV-specific T-cell immunity and reactivate latent EBV in infected B-lymphocytes. If increased virus production and clonal expansion of infected B-lymphocytes are detected, then pharmacological measures can be developed and instituted prior to onset of overt clinical disease. More importantly, we will begin to understand the basic mechanisms involved in stress-induced reactivation of EBV in circulating B-lymphocytes.

  1. Countermeasures to Mitigate the Negative Impact of Sensory Deprivation and Social Isolation in Long-Duration Space Flight

    Science.gov (United States)

    Bachman, Katharine Ridgeway OBrien; Otto, Christian; Leveton, Lauren

    2012-01-01

    Long-duration space flight presents several challenges to the behavioral health of crew members. The environment that they are likely to experience will be isolated, confined, and extreme (ICE) and, as such, crew members will experience extreme sensory deprivation and social isolation. The current paper briefly notes the behavioral, cognitive, and affective consequences of psychological stress induced by ICE environments and proposes nine countermeasures aimed at mitigating the negative effects of sensory deprivation and social isolation. Implementation of countermeasures aims to maintain successful crew performance and psychological well-being in a long-duration space flight mission.

  2. Space Vehicle Flight Mechanics (La Mecanique du Vol des Vehicules Spatiaux)

    Science.gov (United States)

    1990-06-01

    Space Telescope, an astrophysics spacelab mission, Astro , the Gamma Ray Observatory, Spacelab Life Sciences -1 and ESA/NASA Ulysses. The Great...all the hardware/avionics subsystems, the flight software, and the astro - nauts. Here, the software and the interfaces can be thoroughly checked out...rm6di ai re de Il’angl e G ,(F,,, Fz,)~ = h,, 7 (171) de rotatioa des axes lies 5 la Terre F ,U3P rapport aux axes Fxc ; (Fg.30. Iqest la vitesse de

  3. Marshall Space Flight Center's Virtual Reality Applications Program 1993

    Science.gov (United States)

    Hale, Joseph P., II

    1993-01-01

    A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical

  4. An Integrated Vision-Based System for Spacecraft Attitude and Topology Determination for Formation Flight Missions

    Science.gov (United States)

    Rogers, Aaron; Anderson, Kalle; Mracek, Anna; Zenick, Ray

    2004-01-01

    With the space industry's increasing focus upon multi-spacecraft formation flight missions, the ability to precisely determine system topology and the orientation of member spacecraft relative to both inertial space and each other is becoming a critical design requirement. Topology determination in satellite systems has traditionally made use of GPS or ground uplink position data for low Earth orbits, or, alternatively, inter-satellite ranging between all formation pairs. While these techniques work, they are not ideal for extension to interplanetary missions or to large fleets of decentralized, mixed-function spacecraft. The Vision-Based Attitude and Formation Determination System (VBAFDS) represents a novel solution to both the navigation and topology determination problems with an integrated approach that combines a miniature star tracker with a suite of robust processing algorithms. By combining a single range measurement with vision data to resolve complete system topology, the VBAFDS design represents a simple, resource-efficient solution that is not constrained to certain Earth orbits or formation geometries. In this paper, analysis and design of the VBAFDS integrated guidance, navigation and control (GN&C) technology will be discussed, including hardware requirements, algorithm development, and simulation results in the context of potential mission applications.

  5. NASA Technology Demonstrations Missions Program Overview

    Science.gov (United States)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  6. The Mission Accessibility of Near-Earth Asteroids

    Science.gov (United States)

    Barbee, Brent W.; Abell, P. A.; Adamo, D. R.; Mazanek, D. D.; Johnson, L. N.; Yeomans, D. K.; Chodas, P. W.; Chamberlin, A. B.; Benner, L. A. M.; Taylor, P.; hide

    2015-01-01

    The population of near-Earth asteroids (NEAs) that may be accessible for human space flight missions is defined by the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS). The NHATS is an automated system designed to monitor the accessibility of, and particular mission opportunities offered by, the NEA population. This is analogous to systems that automatically monitor the impact risk posed to Earth by the NEA population. The NHATS system identifies NEAs that are potentially accessible for future round-trip human space flight missions and provides rapid notification to asteroid observers so that crucial follow-up observations can be obtained following discovery of accessible NEAs. The NHATS was developed in 2010 and was automated by early 2012. NHATS data are provided via an interactive web-site, and daily NHATS notification emails are transmitted to a mailing list; both resources are available to the public.

  7. Mouse infection models for space flight immunology

    Science.gov (United States)

    Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  8. Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight

    Science.gov (United States)

    Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.

    2011-01-01

    The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (pperformance metrics were observed in returning Shuttle crew and these adaptations are likely contributors to impaired functional tasks that are ambulatory in nature (See abstract Functional Task Test: 1). Interestingly, no significant changes in central activation capacity were detected. Therefore, impairments in muscle function in response to short-duration space flight are likely myocellular rather than neuromotor in nature.

  9. Future Challenges in Managing Human Health and Performance Risks for Space Flight

    Science.gov (United States)

    Corbin, Barbara J.; Barratt, Michael

    2013-01-01

    The global economy forces many nations to consider their national investments and make difficult decisions regarding their investment in future exploration. To enable safe, reliable, and productive human space exploration, we must pool global resources to understand and mitigate human health & performance risks prior to embarking on human exploration of deep space destinations. Consensus on the largest risks to humans during exploration is required to develop an integrated approach to mitigating risks. International collaboration in human space flight research will focus research on characterizing the effects of spaceflight on humans and the development of countermeasures or systems. Sharing existing data internationally will facilitate high quality research and sufficient power to make sound recommendations. Efficient utilization of ISS and unique ground-based analog facilities allows greater progress. Finally, a means to share results of human research in time to influence decisions for follow-on research, system design, new countermeasures and medical practices should be developed. Although formidable barriers to overcome, International working groups are working to define the risks, establish international research opportunities, share data among partners, share flight hardware and unique analog facilities, and establish forums for timely exchange of results. Representatives from the ISS partnership research and medical communities developed a list of the top ten human health & performance risks and their impact on exploration missions. They also drafted a multilateral data sharing plan to establish guidelines and principles for sharing human spaceflight data. Other working groups are also developing methods to promote international research solicitations. Collaborative use of analog facilities and shared development of space flight research and medical hardware continues. Establishing a forum for exchange of results between researchers, aerospace physicians

  10. Flight trajectory recreation and playback system of aerial mission based on ossimplanet

    OpenAIRE

    Wu, Wu; Hu, Jiulin; Huang, Xiaofang; Chen, Huijie; Sun, Bo

    2014-01-01

    Recreation of flight trajectory is important among research areas. The design of a flight trajectory recreation and playback system is presented in this paper. Rather than transferring the flight data to diagram, graph and table, flight data is visualized on the 3D global of ossimPlanet. ossimPlanet is an open-source 3D global geo-spatial viewer and the system realization is based on analysis it. Users are allowed to choose their interested flight of aerial mission. The aerial ...

  11. Career Excess Mortality Risk from Diagnostic Radiological Exams Required for Crewmembers Participating in Long Duration Space Flight

    Science.gov (United States)

    Dodge, C. W.; Gonzalez, S. M.; Picco, C. E.; Johnston, S. L.; Shavers, M. R.; VanBaalen, M.

    2008-01-01

    NASA requires astronauts to undergo diagnostic x-ray examinations as a condition for their employment. The purpose of these procedures is to assess the astronaut s overall health and to diagnose conditions that could jeopardize the success of long duration space missions. These include exams for acceptance into the astronaut corps, routine periodic exams, as well as evaluations taken pre and post missions. Issues: According to NASA policy these medical examinations are considered occupational radiological exposures, and thus, are included when computing the astronaut s overall radiation dose and associated excess cancer mortality risk. As such, astronauts and administrators are concerned about the amount of radiation received from these procedures due to the possibility that these additional doses may cause astronauts to exceed NASA s administrative limits, thus disqualifying them from future flights. Methods: Radiation doses and cancer mortality risks following required medical radiation exposures are presented herein for representative male and female astronaut careers. Calculation of the excess cancer mortality risk was performed by adapting NASA s operational risk assessment model. Averages for astronaut height, weight, number of space missions and age at selection into the astronaut corps were used as inputs to the NASA risk model. Conclusion: The results show that the level of excess cancer mortality imposed by all required medical procedures over an entire astronaut s career is approximately the same as that resulting from a single short duration space flight (i.e. space shuttle mission). In short the summation of all medical procedures involving ionizing radiation should have no impact on the number of missions an astronaut can fly over their career. Learning Objectives: 1. The types of diagnostic medical exams which astronauts are subjected to will be presented. 2. The level of radiation dose and excess mortality risk to the average male and female

  12. Cultivation in space flight produces minimal alterations in the susceptibility of Bacillus subtilis cells to 72 different antibiotics and growth-inhibiting compounds.

    Science.gov (United States)

    Morrison, Michael D; Fajardo-Cavazos, Patricia; Nicholson, Wayne L

    2017-08-18

    Past results have suggested that bacterial antibiotic susceptibility is altered during space flight. To test this notion, Bacillus subtilis cells were cultivated in matched hardware, medium, and environmental conditions either in spaceflight microgravity on the International Space Station, termed Flight (FL) samples, or at Earth-normal gravity, termed Ground Control (GC) samples. Susceptibility of FL and GC samples was compared to 72 antibiotics and growth-inhibitory compounds using the Omnilog Phenotype Microarray (PM) system. Only 9 compounds were identified by PM screening as exhibiting significant differences ( P flight. Importance: This study addresses a major concern of mission planners for human spaceflight, that bacteria accompanying astronauts on long-duration missions might develop a higher level of resistance to antibiotics due to exposure to the spaceflight environment. The results of this study do not support that notion. Copyright © 2017 American Society for Microbiology.

  13. Correlation of Space Shuttle Landing Performance with Post-Flight Cardiovascular Dysfunction

    Science.gov (United States)

    McCluskey, R.

    2004-01-01

    Introduction: Microgravity induces cardiovascular adaptations resulting in orthostatic intolerance on re-exposure to normal gravity. Orthostasis could interfere with performance of complex tasks during the re-entry phase of Shuttle landings. This study correlated measures of Shuttle landing performance with post-flight indicators of orthostatic intolerance. Methods: Relevant Shuttle landing performance parameters routinely recorded at touchdown by NASA included downrange and crossrange distances, airspeed, and vertical speed. Measures of cardiovascular changes were calculated from operational stand tests performed in the immediate post-flight period on mission commanders from STS-41 to STS-66. Stand test data analyzed included maximum standing heart rate, mean increase in maximum heart rate, minimum standing systolic blood pressure, and mean decrease in standing systolic blood pressure. Pearson correlation coefficients were calculated with the null hypothesis that there was no statistically significant linear correlation between stand test results and Shuttle landing performance. A correlation coefficient? 0.5 with a pcorrelations between landing performance and measures of post-flight cardiovascular dysfunction. Discussion: There was no evidence that post-flight cardiovascular stand test data correlated with Shuttle landing performance. This implies that variations in landing performance were not due to space flight-induced orthostatic intolerance.

  14. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    Science.gov (United States)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    that performance on the closed-loop tilt control task will be improved with this tactile display feedback of tilt orientation. The current plans include testing on eight crewmembers following Space Shuttle missions or short stay onboard the International Space Station. Measurements are obtained pre-flight at L-120 (plus or minus 30), L-90 (plus or minus 30), and L-30, (plus or minus 10) days and post-flight at R+0, R+1, R+2 or 3, R+4 or 5, and R+8 days. Pre-and post-flight testing (from R+1 on) is performed in the Neuroscience Laboratory at the NASA Johnson Space Center on both the Tilt-Translation Device and a variable radius centrifuge. A second variable radius centrifuge, provided by DLR for another joint ESA-NASA project, has been installed at the Baseline Data Collection Facility at Kennedy Space Center to collect data immediately after landing. ZAG was initiated with STS-122/1E and the first post-flight testing will take place after STS-123/1JA landing.

  15. International partnership in lunar missions

    Indian Academy of Sciences (India)

    related to space science and Moon missions are being addressed in this conference. .... flight. The studies in India suggest that an 'aerobic' space transportation vehicle can indeed have a ... space from Earth at very, very low cost first before.

  16. HUMAN SPACE FLIGHTS: FACTS AND DREAMS

    Directory of Open Access Journals (Sweden)

    Mariano Bizzarri

    2011-12-01

    Full Text Available Manned space flight has been the great human and technological adventure of the past half-century. By putting people into places and situations unprecedented in history, it has stirred the imagination while expanding and redefining the human experience. However, space exploration obliges men to confront a hostile environment of cosmic radiation, microgravity, isolation and changes in the magnetic field. Any space traveler is therefore submitted to relevant health threats. In the twenty-first century, human space flight will continue, but it will change in the ways that science and technology have changed on Earth: it will become more networked, more global, and more oriented toward primary objectives. A new international human space flight policy can help achieve these objectives by clarifying the rationales, the ethics of acceptable risk, the role of remote presence, and the need for balance between funding and ambition to justify the risk of human lives.

  17. Mission Operations Directorate - Success Legacy of the Space Shuttle Program (Overview of the Evolution and Success Stories from MOD During the Space Shuttle program)

    Science.gov (United States)

    Azbell, Jim A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. This paper provides specific examples that illustrate how MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. This paper will discuss specific examples for the Plan, Train, Fly, and Facilities aspects within MOD. This paper also provides a discussion of the joint civil servant/contractor environment and the relative badge-less society within MOD. Several Shuttle mission related examples have also been included that encompass all of the aforementioned MOD elements and attributes, and are used to show significant MOD successes within the Shuttle Program. These examples include the STS-49 Intelsat recovery and repair, the (post-Columbia accident) TPS inspection process and the associated R-Bar Pitch Maneuver for ISS missions, and the STS-400 rescue mission preparation efforts for the Hubble Space Telescope repair mission. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  18. The Real Time Interactive Display Environment (RTIDE), a display building tool developed by Space Shuttle flight controllers

    Science.gov (United States)

    Kalvelage, Thomas A.

    1989-01-01

    NASA's Mission Control Center, located at Johnson Space Center, is incrementally moving from a centralized architecture to a distributed architecture. Starting with STS-29, some host-driven console screens will be replaced with graphics terminals driven by workstations. These workstations will be supplied realtime data first by the Real Time Data System (RTDS), a system developed inhouse, and then months later (in parallel with RTDS) by interim and subsequently operational versions of the Mission Control Center Upgrade (MCCU) software package. The Real Time Interactive Display Environment (RTIDE) was built by Space Shuttle flight controllers to support the rapid development of multiple new displays to support Shuttle flights. RTIDE is a display building tool that allows non-programmers to define object-oriented, event-driven, mouseable displays. Particular emphasis was placed on upward compatibility between RTIDE versions, ability to acquire data from different data sources, realtime performance, ability to modularly upgrade RTIDE, machine portability, and a clean, powerful user interface. The operational and organizational factors that drove RTIDE to its present form, the actual design itself, simulation and flight performance, and lessons learned in the process are discussed.

  19. Mission Engineering of a Rapid Cycle Spacecraft Logistics Fleet

    Science.gov (United States)

    Holladay, Jon; McClendon, Randy (Technical Monitor)

    2002-01-01

    The requirement for logistics re-supply of the International Space Station has provided a unique opportunity for engineering the implementation of NASA's first dedicated pressurized logistics carrier fleet. The NASA fleet is comprised of three Multi-Purpose Logistics Modules (MPLM) provided to NASA by the Italian Space Agency in return for operations time aboard the International Space Station. Marshall Space Flight Center was responsible for oversight of the hardware development from preliminary design through acceptance of the third flight unit, and currently manages the flight hardware sustaining engineering and mission engineering activities. The actual MPLM Mission began prior to NASA acceptance of the first flight unit in 1999 and will continue until the de-commission of the International Space Station that is planned for 20xx. Mission engineering of the MPLM program requires a broad focus on three distinct yet inter-related operations processes: pre-flight, flight operations, and post-flight turn-around. Within each primary area exist several complex subsets of distinct and inter-related activities. Pre-flight processing includes the evaluation of carrier hardware readiness for space flight. This includes integration of payload into the carrier, integration of the carrier into the launch vehicle, and integration of the carrier onto the orbital platform. Flight operations include the actual carrier operations during flight and any required real-time ground support. Post-flight processing includes de-integration of the carrier hardware from the launch vehicle, de-integration of the payload, and preparation for returning the carrier to pre-flight staging. Typical space operations are engineered around the requirements and objectives of a dedicated mission on a dedicated operational platform (i.e. Launch or Orbiting Vehicle). The MPLM, however, has expanded this envelope by requiring operations with both vehicles during flight as well as pre-launch and post

  20. First Results of the aerogravity measurements during the geoscientific flight mission GEOHALO over Italy and the adjacent Mediterranean

    Science.gov (United States)

    Heyde, Ingo; Barthelmes, Franz; Scheinert, Mirko

    2013-04-01

    In June 2012 the first scientific flight mission was realized with the new German research aircraft HALO (High Altitude and Long Range Research Aircraft). For this geoscientific flight mission GEOHALO was equipped with geophysical-geodetic instrumentation to acquire data over the tectonically active region of Italy and the adjacent Medtiterranean. The Federal Institute for Geosciences and Resources (BGR) as a member of the "HALO geoscience group" operated the recently modernized KSS32-M aerogravity system. The instrumentation of the group partners consists of an additional gravimeter, vector and scalar magnetometers, a laser altimeter and GNSS equipment with zenith, sideward and nadir antennas. During four flights with duration of up to 10 hours, data along a total track length of 16150 kilometers were obtained. The mission flights started and ended at the special airfield Oberpfaffenhofen, near the compound of the German Aerospace Center (DLR). Eight parallel profiles running from north-west to south-east were flown in an altitude of about 3500 m. The length of each profile was about 1000 km with a line spacing of 40 km. The flight velocity on the survey lines amounted to approximately 450 km/h. Four crossing lines of about 300 km length and a profile at an altitude of about 10500 m along the same track as a line in the lower altitude completed the survey. The first results of the BGR aerogravity will be presented. To determine the free-air gravity anomalies from the measured gravimeter data a number of corrections have to be applied. For their calculation mainly high-precision position and velocity data are mandatory. The kinematic GPS data were combined with INS data. In addition to own GPS base station data from Oberpfaffenhofen, data of Italian GNSS stations were considered to improve the determination of the flight trajectory by differential GPS. The corrected gravity data are compared with the corresponding data from global gravity models. The free

  1. The flights before the flight - An overview of shuttle astronaut training

    Science.gov (United States)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  2. Countermeasures to Neurobehavioral Deficits from Cumulative Partial Sleep Deprivation During Space Flight

    Science.gov (United States)

    Dinges, David F.

    1999-01-01

    sleep attacks. The prevention of cumulative performance deficits and neuroendocrine disruption from sleep restriction during extended duration space flight involves finding the most effective ways to obtain sleep in order to maintain the high-level cognitive and physical performance functions required for manned space flight. There is currently a critical deficiency in knowledge of the effects of how variations in sleep duration and timing relate to the most efficient return of performance per unit time invested in sleep during long-duration missions, and how the nature of sleep physiology (i.e., sleep stages, sleep electroencephalographic [EEG] power spectral analyses) change as a function of sleep restriction and performance degradation. The primary aim of this project is to meet these critical deficiencies through utilization of a response surface experimental paradigm, testing in a dose-response manner, varying combinations of sleep duration and timing, for the purpose of establishing how to most effectively limit the cumulative adverse effects on human performance and physiology of chronic sleep restriction in space operations.

  3. Proceedings of the 20th International Symposium on Space Flight Dynamics

    Science.gov (United States)

    Woodard, Mark (Editor); Stengle, Tom (Editor)

    2007-01-01

    Topics include: Measuring Image Navigation and Registration Performance at the 3-Sigma Level Using Platinum Quality Landmarks; Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations; Visual Navigation - SARE Mission; Determining a Method of Enabling and Disabling the Integral Torque in the SDO Science and Inertial Mode Controllers; Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects; SDO Delta H Mode Design and Analysis; Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter; Broken-Plane Maneuver Applications for Earth to Mars Trajectories; ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses; Mars Reconnaissance Orbiter Aerobraking Daily Operations and Collision Avoidance; Mars Reconnaissance Orbiter Interplanetary Cruise Navigation; Motion Parameters Determination of the SC and Phobos in the Project Phobos-Grunt; GRAS NRT Precise Orbit Determination: Operational Experience; Orbit Determination of LEO Satellites for a Single Pass through a Radar: Comparison of Methods; Orbit Determination System for Low Earth Orbit Satellites; Precise Orbit Determination for ALOS; Anti-Collision Function Design and Performances of the CNES Formation Flying Experiment on the PRISMA Mission; CNES Approaching Guidance Experiment within FFIORD; Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission; SIMBOL-X: A Formation Flying Mission on HEO for Exploring the Universe; Spaceborne Autonomous and Ground Based Relative Orbit Control for the TerraSAR-X/TanDEM-X Formation; First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations; Automated Target Planning for FUSE Using the SOVA Algorithm; Space Technology 5 Post-Launch Ground Attitude Estimation Experience; Standardizing Navigation Data: A Status Update; and A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer.

  4. Management of Operational Support Requirements for Manned Flight Missions

    Science.gov (United States)

    1991-01-01

    This Instruction establishes responsibilities for managing the system whereby operational support requirements are levied for support of manned flight missions including associated payloads. This management system will ensure that support requirements are properly requested and responses are properly obtained to meet operational objectives.

  5. Vitamin D endocrine system after short-term space flight

    Science.gov (United States)

    Rhoten, William B. (Principal Investigator); Sergeev, Igor N. (Principal Investigator)

    1996-01-01

    The exposure of the body to microgravity during space flight causes a series of well-documented changes in Ca(2+) metabolism, yet the cellular/molecular mechanisms leading to these changes are poorly understood. There is some evidence for microgravity-induced alterations in the vitamin D endocrine system, which is known to be primarily involved in the regulation of Ca(2+) metabolism. Vitamin D-dependent Ca(2+) binding proteins, or calbindins, are believed to have a significant role in maintaining cellular Ca(2+) homeostasis. We used immunocytochemical, biochemical and molecular approaches to analyze the expression of calbindin-D(sub 28k) and calbindin-D(sub 9k) in kidneys and intestines of rats flown for 9 days aboard the Spacelab 3 mission. The effects of microgravity on calbindins in rats in space vs. 'grounded' animals (synchronous Animal Enclosure Module controls and tail suspension controls) were compared. Exposure to microgravity resulted in a significant decrease in calbindin-D(sub 28k) content in kidneys and calbindin-D(sub 9k) in the intestine of flight and suspended animals, as measured by enzyme-linked immunosorbent assay (ELISA). Immunocytochemistry (ICC) in combination with quantitative computer image analysis was used to measure in situ the expression of calbindins in kidneys and intestine, and insulin in pancreas. There was a large decrease in the distal tubular cell-associated calbindin-D(sub 28k) and absorptive cell-associated calbindin-D(sub 9k) immunoreactivity in the space and suspension kidneys and intestine, as compared with matched ground controls. No consistent differences in pancreatic insulin immunoreactivity between space, suspension and ground controls was observed. There were significant correlations between results by quantitative ICC and ELISA. Western blot analysis showed no consistent changes in the low levels of intestinal and renal vitamin D receptors. These findings suggest that a decreased expression of calbindins after a short

  6. Telepresence for Deep Space Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Incorporating telepresence technologies into deep space mission operations can give the crew and ground personnel the impression that they are in a location at time...

  7. Mentoring SFRM: A New Approach to International Space Station Flight Controller Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2008-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (operator) to a basic level of effectiveness in 1 year. SFRM training uses a two-pronged approach to expediting operator certification: 1) imbed SFRM skills training into all operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills. Methods: A mentor works with an operator throughout the training flow. Inserted into the training flow are guided-discussion sessions and on-the-job observation opportunities focusing on specific SFRM skills, including: situational leadership, conflict management, stress management, cross-cultural awareness, self care and team care while on-console, communication, workload management, and situation awareness. The mentor and operator discuss the science and art behind the skills, cultural effects on skills applications, recognition of good and bad skills applications, recognition of how skills application changes subtly in different situations, and individual goals and techniques for improving skills. Discussion: This mentoring program provides an additional means of transferring SFRM knowledge compared to traditional CRM training programs. Our future endeavors in training SFRM skills (as well as other organization s) may benefit from adding team performance skills mentoring. This paper

  8. Physiological and psychological stress limits for astronautics Observations during the Skylab I-III missions

    Science.gov (United States)

    Burchard, E. C.

    1975-01-01

    The physiological and psychological factors of manned space flight had a particular significance in the Skylab missions during which astronauts were subjected to a life in a space environment for longer periods of time than on previous space missions. The Skylab missions demonstrated again the great adaptability of human physiology to the environment of man. The results of Skylab have indicated also approaches for enhancing the capability of man to tolerate the physiological and psychological stresses of space flight.

  9. 107 Range Commanders Council Meteorology Group Meeting (RCC-MG): NASA Marshall Space Flight Center Range Report

    Science.gov (United States)

    Roberts, Barry C.

    2016-01-01

    The following is a summary of the major meteorological/atmospheric projects and research that have been or currently are being accomplished at Marshall Space Flight Center (MSFC). Listed below are highlights of work done during the past 6 months in the Engineering Directorate (ED) and in the Science and Mission Systems Office (ZP).

  10. Investigation of periodontal tissue during a long space flights

    Science.gov (United States)

    Solovyeva, Zoya; Viacheslav, Ilyin; Skedina, Marina

    Previous studies conducted on the International Space Station found that upon completion of the space flight there are significant changes in the local immunity and periodontal microflora of astronauts. Also research in ground-based experiments that simulate space flight factors showed that prolonged hypokinesia antiorthostatic leads to impaired functional indicators of the periodontal vascular system, an unidirectional change from the microbiota and the immune system. That results in the appearance and progressive increase of the parodontial pathogenic bacteria and increase of the content of immunoglobulins in the oral fluid. All these changes are classified as risk factors for the development of inflammatory periodontal diseases in astronauts. However, the studies were unable to determine whether the changes result from a long space flight and the peculiarities of formation the local immunity and periodontal microbiota during the space flight, or they are one of the specific manifestations of the readaptationary post-flight condition of the body. In this regard, the planned research in a long space flight suggests: to use the means of microbial control, which can retain of the anaerobes periodontal microbiota sampling directly in the space flight; to assess the specificity of changes of the periodontal immune status under the influence of the space flight factors, and to assess the state of microcirculation of periodontal tissue in astronauts. A comprehensive study of the reaction of dentition during the space flight will make it possible to study the pathogenesis of changes for developing an adequate prevention aimed at optimizing the state of dentition of the astronauts.

  11. Ares I-X Flight Test Philosophy

    Science.gov (United States)

    Davis, S. R.; Tuma, M. L.; Heitzman, K.

    2007-01-01

    In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.

  12. Design, Development and Pre-Flight Testing of the Communications, Navigation, and Networking Reconfigurable Testbed (Connect) to Investigate Software Defined Radio Architecture on the International Space Station

    Science.gov (United States)

    Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.

  13. Parallel Enhancements of the General Mission Analysis Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The General Mission Analysis Tool (GMAT) is a state of the art spacecraft mission design tool under active development at NASA's Goddard Space Flight Center (GSFC)....

  14. MDP: Reliable File Transfer for Space Missions

    Science.gov (United States)

    Rash, James; Criscuolo, Ed; Hogie, Keith; Parise, Ron; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    This paper presents work being done at NASA/GSFC by the Operating Missions as Nodes on the Internet (OMNI) project to demonstrate the application of the Multicast Dissemination Protocol (MDP) to space missions to reliably transfer files. This work builds on previous work by the OMNI project to apply Internet communication technologies to space communication. The goal of this effort is to provide an inexpensive, reliable, standard, and interoperable mechanism for transferring files in the space communication environment. Limited bandwidth, noise, delay, intermittent connectivity, link asymmetry, and one-way links are all possible issues for space missions. Although these are link-layer issues, they can have a profound effect on the performance of transport and application level protocols. MDP, a UDP-based reliable file transfer protocol, was designed for multicast environments which have to address these same issues, and it has done so successfully. Developed by the Naval Research Lab in the mid 1990's, MDP is now in daily use by both the US Post Office and the DoD. This paper describes the use of MDP to provide automated end-to-end data flow for space missions. It examines the results of a parametric study of MDP in a simulated space link environment and discusses the results in terms of their implications for space missions. Lessons learned are addressed, which suggest minor enhancements to the MDP user interface to add specific features for space mission requirements, such as dynamic control of data rate, and a checkpoint/resume capability. These are features that are provided for in the protocol, but are not implemented in the sample MDP application that was provided. A brief look is also taken at the status of standardization. A version of MDP known as NORM (Neck Oriented Reliable Multicast) is in the process of becoming an IETF standard.

  15. Space flight research leading to the development of enhanced plant products: Results from STS-94

    Science.gov (United States)

    Stodieck, Louis S.; Hoehn, Alex; Heyenga, A. Gerard

    1998-01-01

    Products derived from plants, such as foods, pharmaceuticals, lumber, paper, oils, etc., are pervasive in everyday life and generate revenues in the hundreds of billions of dollars. Research on space-grown plants has the potential to alter quantities, properties and types of plant-derived products in beneficial ways. Research on space grown plants may help expand the utilization of this resource for Earth based benefit to an even greater extent. The use of space flight conditions may help provide a greater understanding and ultimate manipulation of the metabolic and genetic control of commercially important plant products. Companies that derive and sell plant products could significantly benefit from investing in space research and development. A flight investigation was conducted on the Shuttle mission STS-94 to establish the initial experimental conditions necessary to test the hypothesis that the exposure of certain plant forms to an adequate period of microgravity may divert the cell metabolic expenditure on structural compounds such as lignin to alternative secondary metabolic compounds which are of commercial interest. Nine species of plants were grown for 16 days in the Astro/Plant Generic Bioprocessing Apparatus (Astro/PGBA) under well-controlled environmental conditions. Approximately half of the plant species exhibited significant growth comparable with synchronous ground controls. The other flight plant species were stunted and showed signs of stress with the cause still under investigation. For the plants that grew well, analyses are underway and are expected to demonstrate the potential for space flight biotechnology research.

  16. The Texas space flight liability act and efficient regulation for the private commercial space flight era

    Science.gov (United States)

    Johnson, Christopher D.

    2013-12-01

    In the spring of 2011, the American state of Texas passed into law an act limiting the liability of commercial space flight entities. Under it, those companies would not be liable for space flight participant injuries, except in cases of intentional injury or injury proximately caused by the company's gross negligence. An analysis within the framework of international and national space law, but especially informed by the academic discipline of law and economics, discusses the incentives of all relevant parties and attempts to understand whether the law is economically "efficient" (allocating resources so as to yield maximum utility), and suited to further the development of the fledgling commercial suborbital tourism industry. Insights into the Texas law are applicable to other states hoping to foster commercial space tourism and considering space tourism related legislation.

  17. Data catalog series for space science and applications flight missions. Volume 5A: Descriptions of astronomy, astrophysics, and solar physics spacecraft and investigations. Volume 5B: Descriptions of data sets from astronomy, astrophysics, and solar physics spacecraft and investigations

    Science.gov (United States)

    Kim, Sang J. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets of astronomy, astrophysics, solar physics spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  18. Benefits to the Europa Clipper Mission Provided by the Space Launch System

    Science.gov (United States)

    Creech, Stephen D.; Patel, Keyur

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) proposed Europa Clipper mission would provide an unprecedented look at the icy Jovian moon, and investigate its environment to determine the possibility that it hosts life. Focused on exploring the water, chemistry, and energy conditions on the moon, the spacecraft would examine Europa's ocean, ice shell, composition and geology by performing 32 low-altitude flybys of Europa from Jupiter orbit over 2.3 years, allowing detailed investigations of globally distributed regions of Europa. In hopes of expediting the scientific program, mission planners at NASA's Jet Propulsion Laboratory are working with the Space Launch System (SLS) program, managed at Marshall Space Flight Center. Designed to be the most powerful launch vehicle ever flown, SLS is making progress toward delivering a new capability for exploration beyond Earth orbit. The SLS rocket will offer an initial low-Earth-orbit lift capability of 70 metric tons (t) beginning with a first launch in 2017 and will then evolve into a 130 t Block 2 version. While the primary focus of the development of the initial version of SLS is on enabling human exploration missions beyond low Earth orbit using the Orion Multi-Purpose Crew Vehicle, the rocket offers unique benefits to robotic planetary exploration missions, thanks to the high characteristic energy it provides. This paper will provide an overview of both the proposed Europa Clipper mission and the Space Launch System vehicle, and explore options provided to the Europa Clipper mission for a launch within a decade by a 70 t version of SLS with a commercially available 5-meter payload fairing, through comparison with a baseline of current Evolved Expendable Launch Vehicle (EELV) capabilities. Compared to that baseline, a mission to the Jovian system could reduce transit times to less than half, or increase mass to more than double, among other benefits. In addition to these primary benefits, the paper will

  19. Growing fresh food on future space missions

    NARCIS (Netherlands)

    Meinen, Esther; Dueck, Tom; Kempkes, Frank; Stanghellini, Cecilia

    2018-01-01

    This paper deals with vegetable cultivation that could be faced in a space mission. This paper focusses on optimization, light, temperature and the harvesting process, while other factors concerning cultivation in space missions, i.e. gravity, radiation, were not addressed. It describes the work

  20. Development of an Antimicrobial Susceptibility Testing Method Suitable for Performing During Space Flight

    Science.gov (United States)

    Jorgensen, James H.; Skweres, Joyce A.; Mishra S. K.; McElmeel, M. Letticia; Maher, Louise A.; Mulder, Ross; Lancaster, Michael V.; Pierson, Duane L.

    1997-01-01

    Very little is known regarding the affects of the microgravity environment of space flight upon the action of antimicrobial agents on bacterial pathogens. This study was undertaken to develop a simple method for conducting antibacterial susceptibility tests during a Space Shuttle mission. Specially prepared susceptibility test research cards (bioMerieux Vitek, Hazelwood, MO) were designed to include 6-11 serial two-fold dilutions of 14 antimicrobial agents, including penicillins, cephalosporins, a Beta-lactamase inhibitor, vancomycin, erythromycin, tetracycline, gentamicin, ciprofloxacin, and trimethoprim/sulfamethoxazole. Minimal inhibitory concentrations (MICS) of the drugs were determined by visual reading of color endpoints in the Vitek research cards made possible by incorporation of a colorimetric growth indicator (alamarBlue(Trademark), Accumed International, Westlake, OH). This study has demonstrated reproducible susceptibility results when testing isolates of Staphylococcus aurezis, Group A Streptococcus, Enterococcusfaecalis, Escherichia coli (beta-lactamase positive and negative strains), Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomoiias aeruginosa. In some instances, the MICs were comparable to those determined using a standard broth microdilution method, while in some cases the unique test media and format yielded slightly different values, that were themselves reproducible. The proposed in-flight experiment will include inoculation of the Vitek cards on the ground prior to launch of the Space Shuttle, storage of inoculated cards at refrigeration temperature aboard the Space Shuttle until experiment initiation, then incubation of the cards for 18-48 h prior to visual interpretation of MICs by the mission's astronauts. Ground-based studies have shown reproducible MICs following storage of inoculated cards for 7 days at 4-8 C to accommodate the mission's time schedule and the astronauts' activities. For comparison, ground-based control

  1. Definition of technology development missions for early Space Station satellite servicing. Volume 2: Technical

    Science.gov (United States)

    Cable, D. A.; Diewald, C. A.; Hills, T. C.; Parmentier, T. J.; Spencer, R. A.; Stone, G. E.

    1984-01-01

    Volume 2 contains the Technical Report of the approach and results of the Phase 2 study. The phase 2 servicing study was initiated in June 1983, and is being reported in this document. The scope of the contract was to: (1) define in detail five selected technology development missions (TDM); (2) conduct a design requirement analysis to refine definitions of satellite servicing requirements at the space station; and (3) develop a technology plan that would identify and schedule prerequisite precursor technology development, associated. STS flight experiments and space station experiments needed to provide onorbit validation of the evolving technology.

  2. Space Physiology and Operational Space Medicine

    Science.gov (United States)

    Scheuring, Richard A.

    2009-01-01

    The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.

  3. Orion Powered Flight Guidance Burn Options for Near Term Exploration

    Science.gov (United States)

    Fill, Tom; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  4. STS-95 Mission Specialist Duque suits up during TCDT

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain, representing the European Space Agency, suits up in the Operations and Checkout Building prior to his trip to Launch Pad 39-B. Duque and the rest of the STS-95 crew are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialist Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  5. Missions and planning for nuclear space power

    International Nuclear Information System (INIS)

    Buden, D.

    1979-01-01

    Requirements for electrical and propulsion power for space are expected to increase dramatically in the 1980s. Nuclear power is probably the only source for some deep space missions and a major competitor for many orbital missions, especially those at geosynchronous orbit. Because of the potential requirements, a technology program on reactor components has been initiated by the Department of Energy. The missions that are foreseen, the current reactor concept, and the technology program plan are described

  6. Collaboration support system for "Phobos-Soil" space mission.

    Science.gov (United States)

    Nazarov, V.; Nazirov, R.; Zakharov, A.

    2009-04-01

    Rapid development of communication facilities leads growth of interactions done via electronic means. However we can see some paradox in this segment in last times: Extending of communication facilities increases collaboration chaos. And it is very sensitive for space missions in general and scientific space mission particularly because effective decision of this task provides successful realization of the missions and promises increasing the ratio of functional characteristic and cost of mission at all. Resolving of this problem may be found by using respective modern technologies and methods which widely used in different branches and not in the space researches only. Such approaches as Social Networking, Web 2.0 and Enterprise 2.0 look most prospective in this context. The primary goal of the "Phobos-Soil" mission is an investigation of the Phobos which is the Martian moon and particularly its regolith, internal structure, peculiarities of the orbital and proper motion, as well as a number of different scientific measurements and experiments for investigation of the Martian environment. A lot of investigators involved in the mission. Effective collaboration system is key facility for information support of the mission therefore. Further to main goal: communication between users of the system, modern approaches allows using such capabilities as self-organizing community, user generated content, centralized and federative control of the system. Also it may have one unique possibility - knowledge management which is very important for space mission realization. Therefore collaboration support system for "Phobos-Soil" mission designed on the base of multilayer model which includes such levels as Communications, Announcement and Information, Data sharing and Knowledge management. The collaboration support system for "Phobos-Soil" mission will be used as prototype for prospective Russian scientific space missions and the presentation describes its architecture

  7. TAMU: A New Space Mission Operations Paradigm

    Science.gov (United States)

    Meshkat, Leila; Ruszkowski, James; Haensly, Jean; Pennington, Granvil A.; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a model-centric System of System (SoS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically diverse locations, to develop the architecture and associated workflow processes for a broad range of mission operations. Further, TAMU FPP envisions the simulation, automatic execution and re-planning of orchestrated workflow processes as they become operational. This paper provides the vision for the TAMU FPP paradigm. This includes a complete, coherent technique, process and tool set that result in an infrastructure that can be used for full lifecycle design and decision making during any flight production process. A flight production process is the process of developing all products that are necessary for flight.

  8. Design of a Mission Data Storage and Retrieval System for NASA Dryden Flight Research Center

    Science.gov (United States)

    Lux, Jessica; Downing, Bob; Sheldon, Jack

    2007-01-01

    The Western Aeronautical Test Range (WATR) at the NASA Dryden Flight Research Center (DFRC) employs the WATR Integrated Next Generation System (WINGS) for the processing and display of aeronautical flight data. This report discusses the post-mission segment of the WINGS architecture. A team designed and implemented a system for the near- and long-term storage and distribution of mission data for flight projects at DFRC, providing the user with intelligent access to data. Discussed are the legacy system, an industry survey, system operational concept, high-level system features, and initial design efforts.

  9. Vital role of nuclear data in space missions

    International Nuclear Information System (INIS)

    Tripathi, R.K.

    2008-01-01

    Nasa has a new vision for space exploration in the 21. Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is a critical design driver. Thus, protection from the hazards of severe space radiation is of paramount importance for the new vision. Accurate risk assessments critically depend on the accuracy of the input information about the interaction of ions with materials, electronics and tissues. We have discussed some of the state-of-the-art cross sections database at Nasa and have demonstrated the role nuclear interaction plays in space missions. The impact of the cross sections on space missions has been shown by the assessment of dose exposure on Moon surface behind a number of materials with increasing hydrogen contents known to be a better radiation shielding material. In addition we have examined an approach to introduce reliability based design methods into shield evaluation and optimization procedure as a means to assess and control the uncertainties in shield design. Applications to Lunar missions for short and long-term duration display a large impact on the design outcome and the choice of the materials. For short duration missions all the examined materials have similar performance. However, for career astronauts who are exposed to longer duration space radiation over the period of time the choice of material plays a very critical role. Computational procedures based on deterministic solution of the Boltzmann equation are well suited for such procedures allowing optimization processes to be implemented, evaluation of biologically important rare events,and rapid analysis of possible shield optimization outcomes resulting from the biological model uncertainty parameter space

  10. SpaceCubeX: A Hybrid Multi-core CPU/FPGA/DSP Flight Architecture for Next Generation Earth Science Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses NASAs Earth Science missions and climate architecture plan and its underlying needs for high performance, modular, and scalable on-board...

  11. NASA's Suborbital Missions Teach Engineering and Technology: Goddard Space Flight Center's Wallops Flight Facility

    Science.gov (United States)

    Winterton, Joyce L.

    2016-01-01

    A 50 minute-workshop based on NASA publicly available information will be conducted at the International Technology and Engineering Educator Association annual conference. Attendees will include middle and high school teachers and university teacher educators. Engineering and technology are essential to NASA's suborbital missions including sounding rockets, scientific balloon and airborne science. The attendees will learn how to include NASA information on these missions in their teaching.

  12. Parametric cost estimation for space science missions

    Science.gov (United States)

    Lillie, Charles F.; Thompson, Bruce E.

    2008-07-01

    Cost estimation for space science missions is critically important in budgeting for successful missions. The process requires consideration of a number of parameters, where many of the values are only known to a limited accuracy. The results of cost estimation are not perfect, but must be calculated and compared with the estimates that the government uses for budgeting purposes. Uncertainties in the input parameters result from evolving requirements for missions that are typically the "first of a kind" with "state-of-the-art" instruments and new spacecraft and payload technologies that make it difficult to base estimates on the cost histories of previous missions. Even the cost of heritage avionics is uncertain due to parts obsolescence and the resulting redesign work. Through experience and use of industry best practices developed in participation with the Aerospace Industries Association (AIA), Northrop Grumman has developed a parametric modeling approach that can provide a reasonably accurate cost range and most probable cost for future space missions. During the initial mission phases, the approach uses mass- and powerbased cost estimating relationships (CER)'s developed with historical data from previous missions. In later mission phases, when the mission requirements are better defined, these estimates are updated with vendor's bids and "bottoms- up", "grass-roots" material and labor cost estimates based on detailed schedules and assigned tasks. In this paper we describe how we develop our CER's for parametric cost estimation and how they can be applied to estimate the costs for future space science missions like those presented to the Astronomy & Astrophysics Decadal Survey Study Committees.

  13. Red Dragon drill missions to Mars

    Science.gov (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  14. Space Nutrition

    Science.gov (United States)

    Smith, Scott M.

    2009-01-01

    Optimal nutrition will be critical for crew members who embark on space exploration missions. Nutritional assessment provides an opportunity to ensure that crewmembers begin their missions in optimal nutritional status, to document changes during a mission and, if necessary, to provide intervention to maintain that status throughout the mission, and to assesses changes after landing in order to facilitate the return to their normal status as soon as possible after landing. We report here the findings from our nutritional assessment of astronauts who participated in the International Space Station (ISS) missions, along with flight and ground-based research findings. We also present ongoing and planned nutrition research activities. These studies provide evidence that bone loss, compromised vitamin status, and oxidative damage are the critical nutritional concerns for space travelers. Other nutrient issues exist, including concerns about the stability of nutrients in the food system, which are exposed to longterm storage and radiation during flight. Defining nutrient requirements, and being able to provide and maintain those nutrients on exploration missions, will be critical for maintaining crew member health.

  15. Designing astrophysics missions for NASA's Space Launch System

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-10-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope was specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultrahigh-contrast spectroscopy and coronagraphy. Association of Universities for Research in Astronomy's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and an LUVOIR as well as Far-IR and an X-ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8- or 10-m diameter fairings and ability to deliver 35 to 45 mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper introduces the mass and volume capacities of the planned SLS, provides a simple mass allocation recipe for designing large space telescope missions to this capacity, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope, and a 12-m segmented on-axis telescope.

  16. New Space at Airbus Defence & Space to facilitate science missions

    Science.gov (United States)

    Boithias, Helene; Benchetrit, Thierry

    2016-10-01

    In addition to Airbus legacy activities, where Airbus satellites usually enable challenging science missions such as Venus Express, Mars Express, Rosetta with an historic landing on a comet, Bepi Colombo mission to Mercury and JUICE to orbit around Jupiter moon Ganymede, Swarm studying the Earth magnetic field, Goce to measure the Earth gravitational field and Cryosat to monitor the Earth polar ice, Airbus is now developing a new approach to facilitate next generation missions.After more than 25 years of collaboration with the scientists on space missions, Airbus has demonstrated its capacity to implement highly demanding missions implying a deep understanding of the science mission requirements and their intrinsic constraints such as- a very fierce competition between the scientific communities,- the pursuit of high maturity for the science instrument in order to be selected,- the very strict institutional budget limiting the number of operational missions.As a matter of fact, the combination of these constraints may lead to the cancellation of valuable missions.Based on that and inspired by the New Space trend, Airbus is developing an highly accessible concept called HYPE.The objective of HYPE is to make access to Space much more simple, affordable and efficient.With a standardized approach, the scientist books only the capacities he needs among the resources available on-board, as the HYPE satellites can host a large range of payloads from 1kg up to 60kg.At prices significantly more affordable than those of comparable dedicated satellite, HYPE is by far a very cost-efficient way of bringing science missions to life.After the launch, the scientist enjoys a plug-and-play access to two-way communications with his instrument through a secure high-speed portal available online 24/7.Everything else is taken care of by Airbus: launch services and the associated risk, reliable power supply, setting up and operating the communication channels, respect of space law

  17. Architecting the Human Space Flight Program with Systems Modeling Language (SysML)

    Science.gov (United States)

    Jackson, Maddalena M.; Fernandez, Michela Munoz; McVittie, Thomas I.; Sindiy, Oleg V.

    2012-01-01

    The next generation of missions in NASA's Human Space Flight program focuses on the development and deployment of highly complex systems (e.g., Orion Multi-Purpose Crew Vehicle, Space Launch System, 21st Century Ground System) that will enable astronauts to venture beyond low Earth orbit and explore the moon, near-Earth asteroids, and beyond. Architecting these highly complex system-of-systems requires formal systems engineering techniques for managing the evolution of the technical features in the information exchange domain (e.g., data exchanges, communication networks, ground software) and also, formal correlation of the technical architecture to stakeholders' programmatic concerns (e.g., budget, schedule, risk) and design development (e.g., assumptions, constraints, trades, tracking of unknowns). This paper will describe how the authors have applied System Modeling Language (SysML) to implement model-based systems engineering for managing the description of the End-to-End Information System (EEIS) architecture and associated development activities and ultimately enables stakeholders to understand, reason, and answer questions about the EEIS under design for proposed lunar Exploration Missions 1 and 2 (EM-1 and EM-2).

  18. Unique Results and Lessons Learned From the TSS Missions

    Science.gov (United States)

    Stone, Nobie H.

    2016-01-01

    The Tethered Satellite System (TSS) Space Shuttle missions, TSS-1 in 1993 and TSS-1R in 1996, were the height of space tether technology development in the U.S. Altogether, the investment made by NASA and the Italian Space Agency (ASI) over the thirteen-year period of the TSS Program totaled approximately $400M-exclusive of the two Space Shuttle flights provided by NASA. Since those two pioneering missions, there have been several smaller tether flight experiments, but interest in this promising technology has waned within NASA as well as the DOD agencies. This is curious in view of the unique capabilities of space tether systems and the fact that they have been flight validated in earth orbit and shown to perform better than the preflight dynamic or electrodynamic theoretical predictions. While it is true that the TSS-1 and TSS-1R missions experienced technical difficulties, the causes of these early developmental problems are now known to have been engineering design flaws, material selection, and procedural issues that (1) are unrelated to the basic viability of space tether technology, and (2) can be readily corrected. The purpose of this paper is to review the dynamic and electrodynamic fundamentals of space tethers and the unique capabilities they afford (that are enabling to certain types of space missions); to elucidate the nature, cause, and solution of the early developmental problems; and to provide an update on progress made in development of the technology.

  19. The Significant Incidents and Close Calls in Human Space Flight Chart: Lessons Learned Gone Viral

    Science.gov (United States)

    Wood, Bill; Pate, Dennis; Thelen, David

    2010-01-01

    This presentation will explore the surprising history and events that transformed a mundane spreadsheet of historical spaceflight incidents into a popular and widely distributed visual compendium of lessons learned. The Significant Incidents and Close Calls in Human Space Flight Chart (a.k.a. The Significant Incidents Chart) is a popular and visually captivating reference product that has arisen from the work of the Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) Flight Safety Office (FSO). It began as an internal tool intended to increase our team s awareness of historical and modern space flight incidents. Today, the chart is widely recognized across the agency as a reference tool. It appears in several training and education programs. It is used in familiarization training in the JSC Building 9 Mockup Facility and is seen by hundreds of center visitors each week. The chart visually summarizes injuries, fatalities, and close calls sustained during the continuing development of human space flight. The poster-sized chart displays over 100 total events that have direct connections to human space flight endeavors. The chart is updated periodically. The update process itself has become a collaborative effort. Many people, spanning multiple NASA organizations, have provided suggestions for additional entries. The FSO maintains a growing list of subscribers who have requested to receive updates. The presenters will discuss the origins and motivations behind the significant incidents chart. A review of the inclusion criteria used to select events will be offered. We will address how the chart is used today by S&MA and offer a vision of how it might be used by other organizations now and in the future. Particular emphasis will be placed on features of the chart that have met with broad acceptance and have helped spread awareness of the most important lessons in human spaceflight.

  20. Low urinary albumin excretion in astronauts during space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2003-01-01

    BACKGROUND: Physiological changes occur in man during space missions also at the renal level. Proteinuria was hypothesized for space missions but research data are missing. METHODS: Urinary albumin, as an index of proteinuria, and other variables were analyzed in 4 astronauts during space missions...... onboard the MIR station and on the ground (control). Mission duration before first urine collection in the four astronauts was 4, 26, 26, and 106 days, respectively. On the ground, data were collected 2 months before mission in two astronauts, 6 months after in the other astronauts. A total of twenty......-two 24-hour urine collections were obtained in space (n per astronaut = 1-14) and on the ground (n per astronaut = 2-12). Urinary albumin was measured by radioimmunoassay. For each astronaut, mean of data in space and on the ground was defined as individual average. RESULTS: The individual averages of 24...

  1. Communicating LightSail: Embedded Reporting and Web Strategies for Citizen-Funded Space Missions

    Science.gov (United States)

    Hilverda, M.; Davis, J.

    2015-12-01

    The Planetary Society (TPS) is a non-profit space advocacy group with a stated mission to "empower the world's citizens to advance space science and exploration." In 2009, TPS began work on LightSail, a small, citizen-funded spacecraft to demonstrate solar sailing propulsion technology. The program included a test flight, completed in June 2015, with a primary mission slated for late 2016. TPS initiated a LightSail public engagement campaign to provide the public with transparent mission updates, and foster educational outreach. A credentialed science journalist was given unrestricted access to the team and data, and provided regular reports without editorial oversight. An accompanying website, sail.planetary.org, provided project updates, multimedia, and real-time spacecraft data during the mission. Design approaches included a clean layout with text optimized for easy reading, balanced by strong visual elements to enhance reader comprehension and interest. A dedicated "Mission Control" page featured social media feeds, links to most recent articles, and a ground track showing the spacecraft's position, including overflight predictions based on user location. A responsive, cross-platform design allowed easy access across a broad range of devices. Efficient web server performance was prioritized by implementing a static content management system (CMS). Despite two spacecraft contingencies, the test mission successfully completed its primary objective of solar sail deployment. Qualitative feedback on the transparent, embedded reporting style was positive, and website metrics showed high user retention times. The website also grew awareness and support for the primary 2016 mission, driving traffic to a Kickstarter campaign that raised $1.24 million. Websites constantly evolve, and changes for the primary mission will include a new CMS to better support multiple authors and a custom dashboard to display real-time spacecraft sensor data.

  2. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  3. Green Propellant Infusion Mission Program Development and Technology Maturation

    Science.gov (United States)

    McLean, Christopher H.; Deininger, William D.; Joniatis, John; Aggarwal, Pravin K.; Spores, Ronald A.; Deans, Matthew; Yim, John T.; Bury, Kristen; Martinez, Jonathan; Cardiff, Eric H.; hide

    2014-01-01

    The NASA Space Technology Mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) is comprised of a cross-cutting team of domestic spacecraft propulsion and storable green propellant technology experts. This TDM is led by Ball Aerospace & Technologies Corp. (BATC), who will use their BCP- 100 spacecraft to carry a propulsion system payload consisting of one 22 N thruster for primary divert (DeltaV) maneuvers and four 1 N thrusters for attitude control, in a flight demonstration of the AF-M315E technology. The GPIM project has technology infusion team members from all three major market sectors: Industry, NASA, and the Department of Defense (DoD). The GPIM project team includes BATC, includes Aerojet Rocketdyne (AR), Air Force Research Laboratory, Aerospace Systems Directorate, Edwards AFB (AFRL), NASA Glenn Research Center (GRC), NASA Kennedy Space Center (KSC), and NASA Goddard Space Flight Center (GSFC). STMD programmatic and technology oversight is provided by NASA Marshall Space Flight Center. The GPIM project shall fly an operational AF-M315E green propulsion subsystem on a Ball-built BCP-100 spacecraft.

  4. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight

    Science.gov (United States)

    Clement, G.; Moore, S. T.; Raphan, T.; Cohen, B.

    2001-01-01

    During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural and head vertical (dorsoventral) linear accelerations of 0.5 g and 1 g during constant velocity rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear-out or right-ear-out (Gy centrifugation), or lay supine along the centrifuge arm with their head off-axis (Gz centrifugation). Pre-flight centrifugation, producing linear accelerations of 0.5 g and 1 g along the Gy (interaural) axis, induced illusions of roll-tilt of 20 degrees and 34 degrees for gravito-inertial acceleration (GIA) vector tilts of 27 degrees and 45 degrees , respectively. Pre-flight 0.5 g and 1 g Gz (head dorsoventral) centrifugation generated perceptions of backward pitch of 5 degrees and 15 degrees , respectively. In the absence of gravity during space flight, the same centrifugation generated a GIA that was equivalent to the centripetal acceleration and aligned with the Gy or Gz axes. Perception of tilt was underestimated relative to this new GIA orientation during early in-flight Gy centrifugation, but was close to the GIA after 16 days in orbit, when subjects reported that they felt as if they were 'lying on side'. During the course of the mission, inflight roll-tilt perception during Gy centrifugation increased from 45 degrees to 83 degrees at 1 g and from 42 degrees to 48 degrees at 0.5 g. Subjects felt 'upside-down' during in-flight Gz centrifugation from the first in-flight test session, which reflected the new GIA orientation along the head dorsoventral axis. The different levels of in-flight tilt perception during 0.5 g and 1 g Gy centrifugation suggests that other non-vestibular inputs, including an internal estimate of the body vertical and somatic sensation, were utilized in generating tilt perception. Interpretation of data by a weighted sum of body vertical and somatic vectors, with an estimate of the GIA from the otoliths, suggests that

  5. Results of the Simulation and Assimilation of Doppler Wind Lidar Observations in Preparation for European Space Agency's Aeolus Mission

    Science.gov (United States)

    McCarty, Will

    2011-01-01

    With the launch of the European Space Agency's Aeolus Mission in 2013, direct spaceborne measurements of vertical wind profiles are imminent via Doppler wind lidar technology. Part of the preparedness for such missions is the development of the proper data assimilation methodology for handling such observations. Since no heritage measurements exist in space, the Joint Observing System Simulation Experiment (Joint OSSE) framework has been utilized to generate a realistic proxy dataset as a precursor to flight. These data are being used for the development of the Gridpoint Statistical Interpolation (GSI) data assimilation system utilized at a number of centers through the United States including the Global Modeling and Assimilation Office (GMAO) at NASA/Goddard Space Flight Center and at the National Centers for Environmental Prediction (NOAA/NWS/NCEP) as an activity through the Joint Center for Satellite Data Assimilation. An update of this ongoing effort will be presented, including the methodology of proxy data generation, the limitations of the proxy data, the handling of line-of-sight wind measurements within the GSI, and the impact on both analyses and forecasts with the addition of the new data type.

  6. Getting to First Flight: Equipping Space Engineers to Break the Start-Stop-Restart Cycle

    Science.gov (United States)

    Singer, Christopher E.; Dumbacher, Daniel L.

    2010-01-01

    The National Aeronautics and Space Administration s (NASA s) history is built on a foundation of can-do strength, while pointing to the Saturn/Apollo Moon missions in the 1960s and 1970s as its apex a sentiment that often overshadows the potential that lies ahead. The chronicle of America s civil space agenda is scattered with programs that got off to good starts with adequate resources and vocal political support but that never made it past a certain milestone review, General Accountability Office report, or Congressional budget appropriation. Over the decades since the fielding of the Space Shuttle in the early 1980s, a start-stop-restart cycle has intervened due to many forces. Despite this impediment, the workforce has delivered engineering feats such as the International Space Station and numerous Shuttle and science missions, which reflect a trend in the early days of the Exploration Age that called for massive infrastructure and matching capital allocations. In the new millennium, the aerospace industry must respond to transforming economic climates, the public will, national agendas, and international possibilities relative to scientific exploration beyond Earth s orbit. Two pressing issues - workforce transition and mission success - are intertwined. As this paper will address, U.S. aerospace must confront related workforce development and industrial base issues head on to take space exploration to the next level. This paper also will formulate specific strategies to equip space engineers to move beyond the seemingly constant start-stop-restart mentality to plan and execute flight projects that actually fly.

  7. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  8. Social and Cultural Issues During Shuttle/Mir Space Missions

    Science.gov (United States)

    Kanas, Nick; Salnitskiy, Vyacheslav; Grund, Ellen M.; Gushin, Vadim; Weiss, Daniel S.; Kozerenko, Olga; Sled, Alexander; Marmar, Charles R.

    2000-07-01

    A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper, we summarize some of our findings related to social and cultural issues from a NASA-funded study conducted during several Shuttle/Mir space missions. We used standardized mood and group climate measures that were completed on a weekly basis by American and Russian crew and mission control subjects who participated in these missions. Our results indicated that American subjects reported more dissatisfaction with their interpersonal environment than their Russian counterparts, especially American astronauts. Mission control personnel were more dysphoric than crewmembers, but both groups were signficantly less dysphoric than other work groups on Earth. Countermeasures based on our findings are discussed which can be applied to future multicultural space missions.

  9. Web Design for Space Operations: An Overview of the Challenges and New Technologies Used in Developing and Operating Web-Based Applications in Real-Time Operational Support Onboard the International Space Station, in Astronaut Mission Planning and Mission Control Operations

    Science.gov (United States)

    Khan, Ahmed

    2010-01-01

    The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX

  10. Space Flight Ionizing Radiation Environments

    Science.gov (United States)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  11. Nutrition, endocrinology, and body composition during space flight

    Science.gov (United States)

    Lane, H. W.; Gretebeck, R. J.; Smith, S. M.

    1998-01-01

    Space flight induces endocrine changes that perturb metabolism. This altered metabolism affects both the astronauts' body composition and the nutritional requirements necessary to maintain their health. During the last 25 years, a combination of studies conducted on Skylab (the first U.S. space laboratory), U.S. Shuttle flights, and Soviet and Russian flights provides a range of data from which general conclusions about energy and protein requirements can be drawn. We have reviewed the endocrine data from those studies and related it to changes in body composition. From these data it appears that protein and energy intake of astronauts are similar to those on Earth. However, a combination of measures, including exercise, appropriate diet, and, potentially, drugs, is required to provide the muscle health needed for long duration space flight.

  12. The Spartan 1 mission

    Science.gov (United States)

    Cruddace, Raymond G.; Fritz, G. G.; Shrewsberry, D. J.; Brandenstein, D. J.; Creighton, D. C.; Gutschewski, G.; Lucid, S. W.; Nagel, J. M.; Fabian, J. M.; Zimmerman, D.

    1989-01-01

    The first Spartan mission is documented. The Spartan program, an outgrowth of a joint Naval Research Laboratory (NRL)/National Aeronautics and Space Administration (NASA)-Goddard Space Flight Center (GSFC) development effort, was instituted by NASA for launching autonomous, recoverable payloads from the space shuttle. These payloads have a precise pointing system and are intended to support a wide range of space-science observations and experiments. The first Spartan, carrying an NRL X-ray astronomy instrument, was launched by the orbiter Discovery (STS51G) on June 20, 1985 and recovered successfully 45 h later, on June 22. During this period, Spartan 1 conducted a preprogrammed series of observations of two X-ray sources: the Perseus cluster of galaxies and the center of our galaxy. The mission was successful from both on engineering and a scientific viewpoint. Only one problem was encountered, the attitude control system (ACS) shut down earlier than planned because of high attitude control system gas consumption. A preplanned emergency mode then placed Spartan 1 into a stable, safe condition and allowed a safe recovery. The events are described of the mission and presents X-ray maps of the two observed sources, which were produced from the flight data.

  13. Space nuclear tug mission applications

    International Nuclear Information System (INIS)

    Hodge, J.R.; Rauen, L.A.

    1996-01-01

    An initial assessment indicates that the NEBA-1 and NEBA-3 bimodal reactor designs can be integrated into a reusable tug which is capable of supporting many missions including GSO delivery, GSO retrieval, lunar trajectory deliveries, interplanetary deliveries, and a variety of satellite servicing. The tug close-quote s nuclear thermal propulsion provides timely transport and payload delivery, with GSO deliveries on the order of 3 endash 7 days. In general, the tug may provide a number of potential benefits to users. The tug may, for example, extend the life of an existing on-orbit spacecraft, boost spacecraft which were not delivered to their operational orbit, offer increased payload capability, or possibly allow payloads to launch on smaller less expensive launch vehicles. Reusing the tug for 5 or 10 missions requires total reactor burn times of 50 and 100 hours, respectively. Shielding, boom structure, and radiator requirements were identified as key factors in the configuration layout. Economic feasibility is still under evaluation, but preliminary estimates indicate that average flight costs may range from $32 M to $34 M for a 10-mission vehicle and from $39 M to $42 M for a 5-mission vehicle. copyright 1996 American Institute of Physics

  14. Concept of Operations Evaluation for Mitigating Space Flight-Relevant Medical Issues in a Planetary Habitat

    Science.gov (United States)

    Barsten, Kristina; Hurst, Victor, IV; Scheuring, Richard; Baumann, David K.; Johnson-Throop, Kathy

    2010-01-01

    Introduction: Analogue environments assist the NASA Human Research Program (HRP) in developing capabilities to mitigate high risk issues to crew health and performance for space exploration. The Habitat Demonstration Unit (HDU) is an analogue habitat used to assess space-related products for planetary missions. The Exploration Medical Capability (ExMC) element at the NASA Johnson Space Center (JSC) was tasked with developing planetary-relevant medical scenarios to evaluate the concept of operations for mitigating medical issues in such an environment. Methods: Two medical scenarios were conducted within the simulated planetary habitat with the crew executing two space flight-relevant procedures: Eye Examination with a corneal injury and Skin Laceration. Remote guidance for the crew was provided by a flight surgeon (FS) stationed at a console outside of the habitat. Audio and video data were collected to capture the communication between the crew and the FS, as well as the movements of the crew executing the procedures. Questionnaire data regarding procedure content and remote guidance performance also were collected from the crew immediately after the sessions. Results: Preliminary review of the audio, video, and questionnaire data from the two scenarios conducted within the HDU indicate that remote guidance techniques from an FS on console can help crew members within a planetary habitat mitigate planetary-relevant medical issues. The content and format of the procedures were considered concise and intuitive, respectively. Discussion: Overall, the preliminary data from the evaluation suggest that use of remote guidance techniques by a FS can help HDU crew execute space exploration-relevant medical procedures within a habitat relevant to planetary missions, however further evaluations will be needed to implement this strategy into the complete concept of operations for conducting general space medicine within similar environments

  15. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  16. Heuristics Applied in the Development of Advanced Space Mission Concepts

    Science.gov (United States)

    Nilsen, Erik N.

    1998-01-01

    Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.

  17. Software Innovation in a Mission Critical Environment

    Science.gov (United States)

    Fredrickson, Steven

    2015-01-01

    Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.

  18. STS-26 crew on fixed based (FB) shuttle mission simulator (SMS) flight deck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey review checklists in their respective stations on the foward flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  19. Persistence of Space Radiation-Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts and the Effects of Repeat Long Duration Space Missions

    Science.gov (United States)

    George, Kerry A.; Cucinotta, Francis A.

    2009-01-01

    The yield of chromosome damage in astronauts blood lymphocytes has been shown to increase after long duration space missions of a few months or more. This provides a useful in vivo measurement of space radiation induced damage that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest follow-up analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times, from directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and estimates derived from samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. Limited data on three individuals who have participated in repeat long duration space flights indicates a lack of correlation between time in space and translocation yields, and show a possible adaptive response to space radiation exposure.

  20. Autonomous, In-Flight Crew Health Risk Management for Exploration-Class Missions: Leveraging the Integrated Medical Model for the Exploration Medical System Demonstration Project

    Science.gov (United States)

    Butler, D. J.; Kerstman, E.; Saile, L.; Myers, J.; Walton, M.; Lopez, V.; McGrath, T.

    2011-01-01

    The Integrated Medical Model (IMM) captures organizational knowledge across the space medicine, training, operations, engineering, and research domains. IMM uses this knowledge in the context of a mission and crew profile to forecast risks to crew health and mission success. The IMM establishes a quantified, statistical relationship among medical conditions, risk factors, available medical resources, and crew health and mission outcomes. These relationships may provide an appropriate foundation for developing an in-flight medical decision support tool that helps optimize the use of medical resources and assists in overall crew health management by an autonomous crew with extremely limited interactions with ground support personnel and no chance of resupply.

  1. Potential large missions enabled by NASA's space launch system

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David A.; Jackman, Angela; Warfield, Keith R.

    2016-07-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  2. Vision Issues and Space Flight: Evaluation of One-Carbon Metabolism Polymorphisms

    Science.gov (United States)

    Smith, Scott M.; Gregory, Jesse F.; Zeisel, Steven; Ueland, Per; Gibson, C. R.; Mader, Thomas; Kinchen, Jason; Ploutz-Snyder, Robert; Zwart, Sara R.

    2015-01-01

    Intermediates of the one-carbon metabolic pathway are altered in astronauts who experience vision-related issues during and after space flight. Serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were higher in astronauts with ophthalmic changes than in those without (Zwart et al., J Nutr, 2012). These differences existed before, during, and after flight. Potential confounding factors did not explain the differences. Genetic polymorphisms could contribute to these differences, and could help explain why crewmembers on the same mission do not all have ophthalmic issues, despite the same environmental factors (e.g., microgravity, exercise, diet). A follow-up study was conducted to evaluate 5 polymorphisms of enzymes in the one-carbon pathway, and to evaluate how these relate to vision and other ophthalmic changes after flight. Preliminary evaluations of the genetic data indicate that all of the crewmembers with the MTRR GG genotype had vision issues to one degree or another. However, not everyone who had vision issues had this genetic polymorphism, so the situation is more complex than the involvement of this single polymorphism. Metabolomic and further data analyses are underway to clarify these findings, but the preliminary assessments are promising.

  3. Preliminary analysis of space mission applications for electromagnetic launchers

    Science.gov (United States)

    Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.

    1984-01-01

    The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.

  4. Blast-Off on Mission: SPACE

    Science.gov (United States)

    2003-01-01

    Part of NASA's mission is to inspire the next generation of explorers. NASA often reaches children - the inventors of tomorrow - through teachers, reporters, exhibit designers, and other third-party entities. Therefore, when Walt Disney Imagineering, the creative force behind the planning, design, and construction of Disney parks and resorts around the world, approached NASA with the desire to put realism into its Mission: SPACE project, the Agency was happy to offer its insight.

  5. Model-Based Systems Engineering for Capturing Mission Architecture System Processes with an Application Case Study - Orion Flight Test 1

    Science.gov (United States)

    Bonanne, Kevin H.

    2011-01-01

    Model-based Systems Engineering (MBSE) is an emerging methodology that can be leveraged to enhance many system development processes. MBSE allows for the centralization of an architecture description that would otherwise be stored in various locations and formats, thus simplifying communication among the project stakeholders, inducing commonality in representation, and expediting report generation. This paper outlines the MBSE approach taken to capture the processes of two different, but related, architectures by employing the Systems Modeling Language (SysML) as a standard for architecture description and the modeling tool MagicDraw. The overarching goal of this study was to demonstrate the effectiveness of MBSE as a means of capturing and designing a mission systems architecture. The first portion of the project focused on capturing the necessary system engineering activities that occur when designing, developing, and deploying a mission systems architecture for a space mission. The second part applies activities from the first to an application problem - the system engineering of the Orion Flight Test 1 (OFT-1) End-to-End Information System (EEIS). By modeling the activities required to create a space mission architecture and then implementing those activities in an application problem, the utility of MBSE as an approach to systems engineering can be demonstrated.

  6. GSFC Safety and Mission Assurance Organization

    Science.gov (United States)

    Kelly, Michael P.

    2010-01-01

    This viewgraph presentation reviews NASA Goddard Space Flight Center's approach to safety and mission assurance. The contents include: 1) NASA GSFC Background; 2) Safety and Mission Assurance Directorate; 3) The Role of SMA-D and the Technical Authority; 4) GSFC Mission assurance Requirements; 5) GSFC Systems Review Office (SRO); 6) GSFC Supply Chain Management Program; and 7) GSFC ISO9001/AS9100 Status Brief.

  7. Evaluation of NASA Foodbars as a Standard Diet for Use in Short-Term Rodent Space Flight Studies

    Science.gov (United States)

    Tou, Janet; Grindeland, Richard; Barrett, Joyce; Dalton, Bonnie; Mandel, Adrian; Wade, Charles

    2003-01-01

    standard diet for short-term space flight studies. However, nutritional adequacy of NASA Rodent Foodbars as a standard diet on longer duration (>20 d) space flight missions remains to be determined.

  8. Knowledge Capture and Management for Space Flight Systems

    Science.gov (United States)

    Goodman, John L.

    2005-01-01

    The incorporation of knowledge capture and knowledge management strategies early in the development phase of an exploration program is necessary for safe and successful missions of human and robotic exploration vehicles over the life of a program. Following the transition from the development to the flight phase, loss of underlying theory and rationale governing design and requirements occur through a number of mechanisms. This degrades the quality of engineering work resulting in increased life cycle costs and risk to mission success and safety of flight. Due to budget constraints, concerned personnel in legacy programs often have to improvise methods for knowledge capture and management using existing, but often sub-optimal, information technology and archival resources. Application of advanced information technology to perform knowledge capture and management would be most effective if program wide requirements are defined at the beginning of a program.

  9. The STS-95 crew and their families prepare for their return flight to JSC

    Science.gov (United States)

    1998-01-01

    At the Skid Strip at Cape Canaveral Air Station, STS-95 Pilot Steven W. Lindsey (left), Lindsey's daughter (front), and Payload Specialist John H. Glenn Jr. (right), a senator from Ohio and one of the original seven Project Mercury astronauts, give a thumbs up on the success of the mission. Members of the STS-95 crew and their families prepared for their return flight to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. Others returning were Mission Commander Curtis L. Brown Jr.; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  10. The CYGNSS flight segment; A major NASA science mission enabled by micro-satellite technology

    Science.gov (United States)

    Rose, R.; Ruf, C.; Rose, D.; Brummitt, M.; Ridley, A.

    While hurricane track forecasts have improved in accuracy by ~50% since 1990, there has been essentially no improvement in the accuracy of intensity prediction. This lack of progress is thought to be caused by inadequate observations and modeling of the inner core due to two causes: 1) much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the inner rain bands and 2) the rapidly evolving stages of the tropical cyclone (TC) life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. NASA's most recently awarded Earth science mission, the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) has been designed to address these deficiencies by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a satellite constellation. This paper provides an overview of the CYGNSS flight segment requirements, implementation, and concept of operations for the CYGNSS constellation; consisting of 8 microsatellite-class spacecraft (historical TC track. The CYGNSS mission is enabled by modern electronic technology; it is an example of how nanosatellite technology can be applied to replace traditional "old school" solutions at significantly reduced cost while providing an increase in performance. This paper provides an overview of how we combined a reliable space-flight proven avionics design with selected microsatellite components to create an innovative, low-cost solution for a mainstream science investigation.

  11. Pharmacotherapeutic Aspects of Space Medicine

    Science.gov (United States)

    Putcha, Lakshmi

    2004-01-01

    Medications are used for a wide variety of indications during space flight. For example, astronauts have taken drugs in flight to ameliorate or prevent symptoms of space motion sickness, headache, sleeplessness, backache, nasal congestion, and constipation. Russian cosmonauts reportedly take medications to prevent metabolic disturbances of the myocardium and intestinal flora, and to optimize their work capacity. Although the discomfort associated with some acute responses to microgravity (e.g., space motion sickness) is expected to diminish with length of time in flight, other responses that have delayed onset (e.g., maintaining nutritional status, bone and muscle strength, and perhaps immune response) may affect health and quality of life during longer missions. Therefore, as the duration of space flights increases, the need for treatment with medications is expected to increase accordingly. Medications carried on Space Shuttle missions have varied somewhat from flight to flight, depending on the individual needs of the crewmembers. Medications use during Shuttle flights seems to be more prevalent than during earlier programs, perhaps because drugs are provided in easy-to-use forms. In fact, nearly all medications taken to date have been ingested orally in tablet form. However, given that the oral route may not be ideal for those suffering motion-sickness symptoms, intramuscular and intranasal preparations are being tested. For example, intramuscular administration of promethazine hydrochloride (Phenergan(Registered TradeMark)) has been reported to be more effective in alleviating motion-sickness symptoms. The difficulties involved in conducting definitive studies of drug efficacy during U.S. space flights have been compounded by the absence of a systematic approach to determining which drugs were taken by whom and under what circumstances. The use of some drugs in space has been less efficacious than expected. The onset, intensity, and duration of the response

  12. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Damiani, R. (Compiler)

    2017-01-01

    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College.

  13. Space Shuttle - A personal view

    Science.gov (United States)

    Mark, H.

    1977-01-01

    A typical flight profile for the Space Shuttle is reviewed, and the operation of the Spacelab, as well as deployment of a satellite from the Shuttle, is considered. Selection of crews for a Space Shuttle mission, which may include as many as four payload specialists, is also discussed. Since medical requirements and flight training standards need not be as high for payload specialists as for the three members of the flight crew, the Shuttle may provide an opportunity for many scientists to perform experiments in space. Investigations of the critical opalescence of fluids and laser holography are proposed for Shuttle missions; X-ray astronomy is another likely candidate for inclusion in the program.

  14. STS-95 Payload Specialist Glenn and his wife pose before their return flight to JSC

    Science.gov (United States)

    1998-01-01

    At the Skid Strip at Cape Canaveral Air Station, STS-95 Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts, poses with his wife Annie before their return flight to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The STS-95 crew also includes Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  15. Micro-Inspector Spacecraft for Space Exploration Missions

    Science.gov (United States)

    Mueller, Juergen; Alkalai, Leon; Lewis, Carol

    2005-01-01

    NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro-inspector design unique in its ability to serve crewed as well as robotic spacecraft, well beyond Earth-orbit and into arenas such

  16. "Space flight is utter bilge"

    Science.gov (United States)

    Yeomans, Donald

    2004-01-01

    Despite skepticism and ridicule from scientists and the public alike, a small handful of dreamers kept faith in their vision of space flight and planned for the day when humanity would break loose from Earth.

  17. Planetary Missions of the 20th Century*

    Science.gov (United States)

    Moroz, V. I.; Huntress, W. T.; Shevalev, I. L.

    2002-09-01

    Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.

  18. Dose measurements and LET-determination in space station MIR during the Russian long term flight RLF

    International Nuclear Information System (INIS)

    Vana, N.; Schoener, N.; Fugger, M.; Akatov, Y.; Shurshakov, V.

    1996-01-01

    For determination of the absorbed dose and the dose equivalent in complex mixed radiation fields, new methods were developed in the frame of the Austrian-Soviet space mission AUSTROMIR in October 1991. The method utilizes the changes of peak height ratios in thermoluminescence glowcurves. Peak height ratios depend on the linear energy transfer (LET) of absorbed radiation. This effect was calibrated in different radiation fields (alpha-, beta-, gamma-, neutron fields and heavy charged particle beams). The method was approached for dose measurements during several space programs (DOSIMIR, BION-10, PHOTONS). During the Russian long term flight RLF six dosemeter packets were exposed in three different periods. Two positions with different shielding (the working area and the cabin of the board engineer) were chosen for the exposition of the dosemeters during each period in order to measure the variation of absorbed dose as well as the variation of average LET of absorbed radiation within the habitable part of space station MIR. These results will be compared with the results during two former periods of measurements on space station MIR (AUSTROMIR/DOSIMIR) and results obtained inside of biosatellite BION-10 and during the space shuttle mission STS-60. (author)

  19. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    Science.gov (United States)

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  20. Insulin secretion and sensitivity in space flight: diabetogenic effects

    Science.gov (United States)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  1. STS-95 Mission Specialist Pedro Duque suits up for launch

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain, with the European Space Agency, is helped with his flight suit by suit tech Tommy McDonald in the Operations and Checkout Building. The final fitting takes place prior to the crew walkout and transport to Launch Pad 39B. Targeted for launch at 2 p.m. EST on Oct. 29, the mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  2. The Importance of HRA in Human Space Flight: Understanding the Risks

    Science.gov (United States)

    Hamlin, Teri

    2010-01-01

    Human performance is critical to crew safety during space missions. Humans interact with hardware and software during ground processing, normal flight, and in response to events. Human interactions with hardware and software can cause Loss of Crew and/or Vehicle (LOCV) through improper actions, or may prevent LOCV through recovery and control actions. Humans have the ability to deal with complex situations and system interactions beyond the capability of machines. Human Reliability Analysis (HRA) is a method used to qualitatively and quantitatively assess the occurrence of human failures that affect availability and reliability of complex systems. Modeling human actions with their corresponding failure probabilities in a Probabilistic Risk Assessment (PRA) provides a more complete picture of system risks and risk contributions. A high-quality HRA can provide valuable information on potential areas for improvement, including training, procedures, human interfaces design, and the need for automation. Modeling human error has always been a challenge in part because performance data is not always readily available. For spaceflight, the challenge is amplified not only because of the small number of participants and limited amount of performance data available, but also due to the lack of definition of the unique factors influencing human performance in space. These factors, called performance shaping factors in HRA terminology, are used in HRA techniques to modify basic human error probabilities in order to capture the context of an analyzed task. Many of the human error modeling techniques were developed within the context of nuclear power plants and therefore the methodologies do not address spaceflight factors such as the effects of microgravity and longer duration missions. This presentation will describe the types of human error risks which have shown up as risk drivers in the Shuttle PRA which may be applicable to commercial space flight. As with other large PRAs

  3. The endocrine system in space flight

    Science.gov (United States)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    1988-01-01

    A trial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, has been measured in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF has increased by 59 percent, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell proudction, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1 alpha, 25-dihydroxyvitamin D-3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  4. STS-114: Discovery TCDT Flight Crew Test Media Event at Pad 39-B

    Science.gov (United States)

    2005-01-01

    The STS-114 Space Shuttle Discovery Terminal Countdown Demonstration Test (TCDT) flight crew is shown at Pad 39-B. Eileen Collins, Commander introduces the astronauts. Andrew Thomas, mission specialist talks about his primary responsibility of performing boom inspections, Wendy Lawrence, Mission Specialist 4 (MS4) describes her role as the robotic arm operator supporting Extravehicular Activities (EVA), Stephen Robinson, Mission Specialist 3 (MS3) talks about his role as flight engineer, Charlie Camarda, Mission Specialist 5 (MS5) says that his duties are to perform boom operations, transfer operations from the space shuttle to the International Space Station and spacecraft rendezvous. Soichi Noguchi, Mission Specialist 1 (MS1) from JAXA, introduces himself as Extravehicular Activity 1 (EVA1), and Jim Kelley, Pilot will operate the robotic arm and perform pilot duties. Questions from the news media about the safety of the external tank, going to the International Space Station and returning, EVA training, and thoughts about the Space Shuttle Columbia crew are answered.

  5. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  6. Discovery touches down after successful mission STS-95

    Science.gov (United States)

    1998-01-01

    Orbiter Discovery touches down on runway 33 at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  7. Effect of 90-day space flight (MDS-ISS) on immunological parameters in mice: lymphocyte distribution and function

    Science.gov (United States)

    Roberts, Arthur; Lhuillier, Andrew; Liu, Yi; Ruggiu, Alessandra; Shi, Yufang

    Elucidation of the effects of space flight on the immune system of astronauts and other animal species is important for the survival and success of manned space flight, especially long-term missions. Space flight exposes astronauts to microgravity, galactic cosmic radiation (GCR), and various psycho-social stressors. Blood samples from astronauts returning from space flight have shown changes in the numbers and types of circulating leukocytes. Similarly, normal lym-phocyte homeostasis has been shown to be severely affected in mice using ground-based models of microgravity and GCR exposure, as demonstrated by profound effects on several immuno-logical parameters examined by other investigators and ourselves. In particular, lymphocyte numbers are significantly reduced and subpopulation distribution is altered in the spleen, thy-mus, and peripheral blood following hindlimb unloading (HU) in mice. Lymphocyte depletion was found to be mediated through corticosteroid-induced apoptosis, although the molecular mechanism of apoptosis induction is still under investigation. The proliferative capacity of TCR-stimulated lymphocytes was also inhibited after HU. We have similarly shown that mice exposed to high-energy 56Fe ion radiation have decreased lymphocyte numbers and perturba-tions in proportions of various subpopulations, including CD4+ and CD8+ T cells, and B cells in the spleen, and maturation stages of immature T cells in the thymus. To compare these ground-based results to the effects of actual space-flight, fresh spleen and thymus samples were recently obtained from normal and transgenic mice immediately after 90 d. space-flight in the MDS, and identically-housed ground control mice. Total leukocyte numbers in each organ were enumerated, and subpopulation distribution was examined by flow cytometric analysis of CD3, CD4, CD8, CD19, CD25, DX-5, and CD11b. Splenic T cells were stimulated with anti-CD3 and assessed for proliferation after 2-4 d., and production of

  8. SCOC3: A Brand New Heart for Space Mission

    Science.gov (United States)

    Poupat, Jean-Luc; Lefevre, Aurelien

    2012-08-01

    Satellites are controlled via a platform On Board Computer (OBC) that manages different parameters (attitude, orbit, modes, temperatures ...) with respect to its payload mission (telecommunication, earth observation, scientific mission). The platform OBC is connected to the satellite and the ground control via digital links, and executes on board software.The main functions of a platform OBC are to provide the satellite flight segment with the following features: o Processing resources for the flight mission softwareo TM/TC services and interfaces with the RF communication chaino General communication services with the Avionics and payload equipments through on- board communication buso Time synchronization and distributiono Failure tolerant architecture based on the use of redounded reconfiguration units and redundancy implementationIn order to reach an ultimate level of integration, Astrium has designed an ASIC gathering on a single chip all these required digital functions: the SCOC3 ASIC.This paper presents in a first part the major innovations introduced by Astrium for SCOC3, in a second part the development tools associated to SCOC3, and in a third part the status concerning its commercialization.

  9. Earth scientists list top priorities for space missions

    Science.gov (United States)

    Voosen, Paul

    2018-01-01

    Earth scientists hope a new priority setting effort will help them make the most of NASA's limited budget for satellite missions that watch over the planet. The so-called decadal survey, issued in January by the National Academies of Sciences, Engineering, and Medicine, laid out the community's consensus wish list, ranging from cloud monitoring to multiwavelength imaging—and recommends a strong dose of competition to keep costs down. The report prioritizes five observations for launch, including hyperspectral imaging, clouds, atmospheric particles, and missions to chart gravity variations and tiny crustal movements. It also advocates creating a new line of $350 million missions targeting seven observations, with competitions to choose three for flight in the next 10 years.

  10. Cognitive demand of human sensorimotor performance during an extended space mission: a dual-task study.

    Science.gov (United States)

    Bock, Otmar; Weigelt, Cornelia; Bloomberg, Jacob J

    2010-09-01

    Two previous single-case studies found that the dual-task costs of manual tracking plus memory search increased during a space mission, and concluded that sensorimotor deficits during spaceflight may be related to cognitive overload. Since dual-task costs were insensitive to the difficulty of memory search, the authors argued that the overload may reflect stress-related problems of multitasking, rather than a scarcity of specific cognitive resources. Here we expand the available database and compare different types of concurrent task. Three subjects were repeatedly tested before, during, and after an extended mission on the International Space Station (ISS). They performed an unstable tracking task and four reaction-time tasks, both separately and concurrently. Inflight data could only be obtained during later parts of the mission. The tracking error increased from pre- to in flight by a factor of about 2, both under single- and dual-task conditions. The dual-task costs with a reaction-time task requiring rhythm production was 2.4 times higher than with a reaction-time task requiring visuo-spatial transformations, and 8 times higher than with a regular choice reaction-time task. Long-term sensorimotor deficits during spaceflight may reflect not only stress, but also a scarcity of resources related to complex motor programming; possibly those resources are tied up by sensorimotor adaptation to the space environment.

  11. The James Webb Space Telescope Mission

    Science.gov (United States)

    Sonneborn, George

    2010-01-01

    The James Webb Space Telescope (JWST) is a large aperture, cryogenic, infrared-optimized space observatory under development by NASA for launch in 2014. The European and Canadian Space Agencies are mission partners. JWST will find and study the first galaxies that formed in the early universe, peer through dusty clouds to see AGN environments and stars forming planetary systems at high spatial resolution. The breakthrough capabilities of JWST will enable new studies of star formation and evolution in the Milky Way, including the Galactic Center, nearby galaxies, and the early universe. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible. JWST will have a segmented primary mirror, approximately 6.5 meters in diameter, and will be diffraction-limited at wavelength of 2 microns (0.1 arcsec resolution). The JWST observatory will be placed in a L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5-year prime science mission, with propellant for 10 years of science operations. The instruments will provide broad- and narrow-band imaging, coronography, and multi-object and integral-field spectroscopy (spectral resolution of 100 to 3,000) across the 1 - 28 micron wavelength range. Science and mission operations will be conducted from the Space Telescope Science Institute in Baltimore, Maryland.

  12. Inventing a space mission the story of the Herschel space observatory

    CERN Document Server

    Minier, Vincent; Bontems, Vincent; de Graauw, Thijs; Griffin, Matt; Helmich, Frank; Pilbratt, Göran; Volonte, Sergio

    2017-01-01

    This book describes prominent technological achievements within a very successful space science mission: the Herschel space observatory. Focusing on the various processes of innovation it offers an analysis and discussion of the social, technological and scientific context of the mission that paved the way to its development. It addresses the key question raised by these processes in our modern society, i.e.: how knowledge management of innovation set the conditions for inventing the future? In that respect the book is based on a transdisciplinary analysis of the programmatic complexity of Herschel, with inputs from space scientists, managers, philosophers, and engineers. This book is addressed to decision makers, not only in space science, but also in other industries and sciences using or building large machines. It is also addressed to space engineers and scientists as well as students in science and management.

  13. LISA Pathfinder: hardware tests and their input to the mission

    Science.gov (United States)

    Audley, Heather

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission for the first space-borne gravitational wave detector. LISA aims to detect sources in the 0.1mHz to 1Hz range, which include supermassive black holes and galactic binary stars. Core technologies required for the LISA mission, including drag-free test mass control, picometre interferometry and micro-Newton thrusters, cannot be tested on-ground. Therefore, a precursor satellite, LISA Pathfinder, has been developed as a technology demonstration mission. The preparations for the LISA Pathfinder mission have reached an exciting stage. Tests of the engineering model of the optical metrology system have recently been completed at the Albert Einstein Institute, Hannover, and flight model tests are now underway. Significantly, they represent the first complete integration and testing of the space-qualified hardware and are the first tests on system level. The results and test procedures of these campaigns will be utilised directly in the ground-based flight hardware tests, and subsequently within in-flight operations. In addition, they allow valuable testing of the data analysis methods using the MatLab based LTP data analysis toolbox. This contribution presents an overview of the test campaigns calibration, control and perfor-mance results, focusing on the implications for the Experimental Master Plan which provides the basis for the in-flight operations and procedures.

  14. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  15. An evaluation of the Goddard Space Flight Center Library

    Science.gov (United States)

    Herner, S.; Lancaster, F. W.; Wright, N.; Ockerman, L.; Shearer, B.; Greenspan, S.; Mccartney, J.; Vellucci, M.

    1979-01-01

    The character and degree of coincidence between the current and future missions, programs, and projects of the Goddard Space Flight Center and the current and future collection, services, and facilities of its library were determined from structured interviews and discussions with various classes of facility personnel. In addition to the tabulation and interpretation of the data from the structured interview survey, five types of statistical analyses were performed to corroborate (or contradict) the survey results and to produce useful information not readily attainable through survey material. Conclusions reached regarding compatability between needs and holdings, services and buildings, library hours of operation, methods of early detection and anticipation of changing holdings requirements, and the impact of near future programs are presented along with a list of statistics needing collection, organization, and interpretation on a continuing or longitudinal basis.

  16. Atmosphere composition monitor for space station and advanced missions application

    International Nuclear Information System (INIS)

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions

  17. Galaxy Mission Completes Four Star-Studded Years in Space

    Science.gov (United States)

    2007-01-01

    's launch, the spacecraft is performing magnificently. The mission results have been simply amazing as it helps us to unlock the secrets of galaxies, the building blocks of our universe,' says Kerry Erickson, GALEX project manager. M81 and Holberg IX are located approximately 12 million light-years away in the northern constellation Ursa Major. In addition to leading the GALEX observations of M81, Huchra and his team also took observations of the region with NASA's Spitzer and Hubble space telescopes. By combining all these views of M81, Huchra hopes to gain a better understanding about how M81 has developed into the spiral galaxy we see today. The California Institute of Technology in Pasadena, Calif., leads the Galaxy Evolution Explorer mission and is responsible for science operations and data analysis. NASA's Jet Propulsion Laboratory, also in Pasadena, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. Researchers from South Korea and France collaborated on this mission.

  18. Enhancements and Evolution of the Real Time Mission Monitor

    Science.gov (United States)

    Goodman, M.; Blakeslee, R.; Hardin, D.; Hall, J.; He, Y.; Regner, K.

    2008-12-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual earth application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. RTMM has received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  19. Salmonella Typhimurium transcription profiles in space flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Salmonella transcription profiles were obtained from samples flown on space shuttle mission STS-115 and compared to profiles from Salmonella grown under identical...

  20. Benefits of Delay Tolerant Networking for Earth Science Missions

    Science.gov (United States)

    Davis, Faith; Marquart, Jane; Menke, Greg

    2012-01-01

    To date there has been much discussion about the value of Delay Tolerant Networking (DTN) for space missions. Claims of various benefits, based on paper analysis, are good; however a benefits statement with empirical evidence to support is even better. This paper presents potential and actual advantages of using DTN for Earth science missions based on results from multiple demonstrations, conducted by the Communications, Standards, and Technology Laboratory (CSTL) at NASA Goddard Space Flight Center (GSFC). Demonstrations included two flight demonstrations using the Earth Observing Mission 1 (EO-1) and the Near Earth Network (NEN), a ground based demonstration over satellite links to the Internet Router in Space (IRIS) payload on Intelsat-14, and others using the NASA Tracking Data Relay Satellite System (TDRSS). Real and potential findings include increased flexibility and efficiency in science campaigns, reduced latency in a collaborative science scenario, and improved scientist-instrument communication and control.

  1. Immune resistance of man in space flights

    Science.gov (United States)

    Irina, V.; Konstantinova, M. D.

    The immune system of 72 cosmonauts was studied after their flights on board Salyut 6, 7 and Mir orbital stations. PHA lymphocyte reactivity, T helper activity and NK capacity to recognize and kill the target were decreased on 1-7 days after prolonged (3-11 months) space flights. Certain alterations were found in the ultrastructure of the NK secretory and locomotor apparatuses. Decrement of IL 2 production was shown using the biological test. However immunoenzymatic analysis did not reveal a decrease in IL 2 synthesis. Production of α-interferon remained unchanged while that of γ-interferon either rose or was diminished. Several cosmonanauts displayed a trend towards increased OAF production. The observed decrease in immune system functioning may increase the risk of various diseases during prolonged space flights.

  2. STS-40 Mission Insignia

    Science.gov (United States)

    1990-01-01

    The STS-40 patch makes a contemporary statement focusing on human beings living and working in space. Against a background of the universe, seven silver stars, interspersed about the orbital path of Columbia, represent the seven crew members. The orbiter's flight path forms a double-helix, designed to represent the DNA molecule common to all living creatures. In the words of a crew spokesman, ...(the helix) affirms the ceaseless expansion of human life and American involvement in space while simultaneously emphasizing the medical and biological studies to which this flight is dedicated. Above Columbia, the phrase Spacelab Life Sciences 1 defines both the Shuttle mission and its payload. Leonardo Da Vinci's Vitruvian man, silhouetted against the blue darkness of the heavens, is in the upper center portion of the patch. With one foot on Earth and arms extended to touch Shuttle's orbit, the crew feels, he serves as a powerful embodiment of the extension of human inquiry from the boundaries of Earth to the limitless laboratory of space. Sturdily poised amid the stars, he serves to link scentists on Earth to the scientists in space asserting the harmony of efforts which produce meaningful scientific spaceflight missions. A brilliant red and yellow Earth limb (center) links Earth to space as it radiates from a native American symbol for the sun. At the frontier of space, the traditional symbol for the sun vividly links America's past to America's future, the crew states. Beneath the orbiting Shuttle, darkness of night rests peacefully over the United States. Drawn by artist Sean Collins, the STS 40 Space Shuttle patch was designed by the crewmembers for the flight.

  3. Psychosocial issues in long-term space flight: overview

    Science.gov (United States)

    Palinkas, L. A.

    2001-01-01

    Anecdotal evidence of the individual and interpersonal problems that occurred during the Shuttle-Mir Space Program (SMSP) and other long-duration Russian/Soviet missions, and studies of personnel in other isolated and confined extreme (ICE) environments suggest that psychosocial elements of behavior and performance are likely to have a significant impact on the outcome of long-duration missions in space. This impact may range from individual decrements in performance, health and well being, to catastrophic mission failure. This paper reviews our current understanding of the psychosocial issues related to long duration space missions according to three different domains of behavior: the individual domain, the interpersonal domain and the organizational domain. Individual issues include: personality characteristics that predict successful performance, stress due to isolation and confinement and its effect on emotions and cognitive performance, adaptive and maladaptive coping styles and strategies, and requirements for the psychological support of astronauts and their families during the mission. Interpersonal issues include: impact of crew diversity and leadership styles on small group dynamics, adaptive and maladaptive features of ground-crew interactions, and processes of crew cohesion, tension and conflict. Organizational issues include: the influence of organizational culture and mission duration on individual and group performance, and managerial requirements for long duration missions. Improved screening and selection of astronaut candidates, leadership, coping and interpersonal skills training of personnel, and organizational change are key elements in the prevention of performance decrements on long-duration missions.

  4. Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases

    Science.gov (United States)

    Moton, Tryshanda

    2016-01-01

    Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.

  5. Potential Large Decadal Missions Enabled by Nasas Space Launch System

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-01-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  6. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Redirect Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.; Shultz, Eric; Mattfeld, Bryan; Stromgren, Chel; Goodliff, Kandyce

    2015-01-01

    The Asteroid Redirect Mission (ARM) is currently being explored as the next step towards deep space human exploration, with the ultimate goal of reaching Mars. NASA is currently investigating a number of potential human exploration missions, which will progressively increase the distance and duration that humans spend away from Earth. Missions include extended human exploration in cis-lunar space which, as conceived, would involve durations of around 60 days, and human missions to Mars, which are anticipated to be as long as 1000 days. The amount of logistics required to keep the crew alive and healthy for these missions is significant. It is therefore important that the design and planning for these missions include accurate estimates of logistics requirements. This paper provides a description of a process and calculations used to estimate mass and volume requirements for crew logistics, including consumables, such as food, personal items, gasses, and liquids. Determination of logistics requirements is based on crew size, mission duration, and the degree of closure of the environmental control life support system (ECLSS). Details are provided on the consumption rates for different types of logistics and how those rates were established. Results for potential mission scenarios are presented, including a breakdown of mass and volume drivers. Opportunities for mass and volume reduction are identified, along with potential threats that could possibly increase requirements.

  7. Operational computer graphics in the flight dynamics environment

    Science.gov (United States)

    Jeletic, James F.

    1989-01-01

    Over the past five years, the Flight Dynamics Division of the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center has incorporated computer graphics technology into its operational environment. In an attempt to increase the effectiveness and productivity of the Division, computer graphics software systems have been developed that display spacecraft tracking and telemetry data in 2-d and 3-d graphic formats that are more comprehensible than the alphanumeric tables of the past. These systems vary in functionality from real-time mission monitoring system, to mission planning utilities, to system development tools. Here, the capabilities and architecture of these systems are discussed.

  8. Magnetoshell Aerocapture for Manned Missions and Planetary Deep Space Orbiters

    Data.gov (United States)

    National Aeronautics and Space Administration — It is clear from past mission studies that a manned Mars mission, as well as deep space planetary orbiters will require aerobraking and aerocapture which use...

  9. Deep Space Gateway "Recycler" Mission

    Science.gov (United States)

    Graham, L.; Fries, M.; Hamilton, J.; Landis, R.; John, K.; O'Hara, W.

    2018-02-01

    Use of the Deep Space Gateway provides a hub for a reusable planetary sample return vehicle for missions to gather star dust as well as samples from various parts of the solar system including main belt asteroids, near-Earth asteroids, and Mars moon.

  10. Discovery prepares to land after successful mission STS-95

    Science.gov (United States)

    1998-01-01

    Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  11. Data Management Coordinators Monitor STS-78 Mission at the Huntsville Operations Support Center

    Science.gov (United States)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents Data Management Coordinators monitoring the progress of the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC. Pictured are assistant mission scientist Dr. Dalle Kornfeld, Rick McConnel, and Ann Bathew.

  12. Digital communication constraints in prior space missions

    Science.gov (United States)

    Yassine, Nathan K.

    2004-01-01

    Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this

  13. Looking Up: Multimedia about Space and Flight.

    Science.gov (United States)

    Walter, Virginia A.

    1998-01-01

    The best CD-ROMs for young people about space and flight exploit the promise of hypermedia to create informative simulations. This article provides an annotated bibliography of CD-ROMs on astronomy and flight for K-12 students; suggests book and Internet connections; and highlights poetry for astronomers, science fiction, a biography of Charles…

  14. HUMAN SPACE FLIGHTS: FACTS AND DREAMS

    OpenAIRE

    Mariano Bizzarri; Enrico Saggese

    2011-01-01

    Manned space flight has been the great human and technological adventure of the past half-century. By putting people into places and situations unprecedented in history, it has stirred the imagination while expanding and redefining the human experience. However, space exploration obliges men to confront a hostile environment of cosmic radiation, microgravity, isolation and changes in the magnetic field. Any space traveler is therefore submitted to relevant health threats. In the twenty-first ...

  15. Why Not Space Tethers?

    Science.gov (United States)

    Stone, Noble H.

    2007-01-01

    The Tethered Satellite System Space Shuttle missions, TSS-1 in 1993 and TSS-1R in 1996, were the height of space tether technology development. Since NASA's investment of some $200M and two Shuttle missions in those two pioneering missions, there have been several smaller tether flight experiments, but interest in this promising technology has waned within NASA as well as the DOD agencies. This is curious in view of the unique capabilities of space tether systems and the fact that they have been flight validated and shown to perform as, or better than, expected in earth orbit. While it is true that the TSS-1, TSS-1R and SEDS-2 missions experienced technical difficulties, the causes of these early developmental problems are now known to be design or materials flaws that are (1) unrelated to the basic viability of space tether technology, and (2) they are readily corrected. The purpose of this paper is to review the dynamic and electrodynamic fundamentals of space tethers and the unique capabilities they afford (that are enabling to certain types of space missions); to elucidate the nature, cause, and solution of the early developmental problems; and to provide an update on progress made in development of the technology. Finally, it is shown that (1) all problems experienced during early development of the technology now have solutions; and (2) the technology has been matured by advances made in strength and robustness of tether materials, high voltage engineering in the space environment, tether health and status monitoring, and the elimination of the broken tether hazard. In view of this, it is inexplicable why this flight-validated technology has not been utilized in the past decade, considering the powerful and unique capabilities that space tethers can afford that are, not only required to carryout, otherwise, unobtainable missions, but can also greatly reduce the cost of certain on-going space operations.

  16. Fusion energy for space missions in the 21st Century

    International Nuclear Information System (INIS)

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified

  17. [Doctor, may I travel in space? Aeromedical considerations regarding commercial suborbital space flights].

    Science.gov (United States)

    Haerkens, Marck H T M; Simons, Ries; Kuipers, André

    2011-01-01

    Within a few years, the first commercial operators will start flying passengers on suborbital flights to the verge of space. Medical data on the effects of space journeys on humans have mainly been provided by professional astronauts. There is very little research into the aeromedical consequences of suborbital flights for the health of untrained passengers. Low air pressure and oxygen tension can be compensated for by pressurising the spacecraft or pressure suit. Rapid changes in gravitational (G-)force pose ultimate challenges to cardiovascular adaptation mechanisms. Zero-gravity and G-force may cause motion sickness. Vibrations and noise during the flight may disturb communication between passengers and crew. In addition, the psychological impact of a suborbital flight should not be underestimated. There are currently no legal requirements available for medical examinations for commercial suborbital flights, but it seems justifiable to establish conditions for potential passengers' states of health.

  18. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    Science.gov (United States)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  19. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    Science.gov (United States)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.

  20. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    Science.gov (United States)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  1. Aurora 7 the Mercury space flight of M. Scott Carpenter

    CERN Document Server

    Burgess, Colin

    2016-01-01

    TO A NATION enthralled by the heroic exploits of the Mercury astronauts, the launch of Lt. Cmdr. Scott Carpenter on NASA’s second orbital space flight was a renewed cause for pride, jubilation and celebration. Within hours, that excitement had given way to stunned disbelief and anxiety as shaken broadcasters began preparing the American public for the very real possibility that an American astronaut and his spacecraft may have been lost at sea. In fact, it had been a very close call. Completely out of fuel and forced to manually guide Aurora 7 through the frightening inferno of re-entry, Carpenter brought the Mercury spacecraft down to a safe splashdown in the ocean. In doing so, he controversially overshot the intended landing zone. Despite his efforts, Carpenter’s performance on the MA-7 mission was later derided by powerful figures within NASA. He would never fly into space again. Taking temporary leave of NASA, Carpenter participated in the U.S. Navy’s pioneering Sealab program. For a record 30 days...

  2. Motion Perception and Manual Control Performance During Passive Tilt and Translation Following Space Flight

    Science.gov (United States)

    Clement, Gilles; Wood, Scott J.

    2010-01-01

    This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.

  3. ESPA for Lunar and Science Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA mission planning in the next decade includes small spacecraft and secondary flight opportunities on Evolved Expendable Launch Vehicles (EELVs), specifically...

  4. A Maneuvering Flight Noise Model for Helicopter Mission Planning

    Science.gov (United States)

    Greenwood, Eric; Rau, Robert; May, Benjamin; Hobbs, Christopher

    2015-01-01

    A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the Quasi-Static Acoustic Mapping (Q-SAM) method to a database of acoustic spheres generated using the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission-planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch up and roll maneuvers, with good agreement between the measured data and the FRAME-QS model.

  5. INSPACE CHEMICAL PROPULSION SYSTEMS AT NASA's MARSHALL SPACE FLIGHT CENTER: HERITAGE AND CAPABILITIES

    Science.gov (United States)

    McRight, P. S.; Sheehy, J. A.; Blevins, J. A.

    2005-01-01

    NASA s Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V rocket and the Space Shuttle external tank, solid rocket boosters, and main engines. This paper highlights a lesser known but very rich side of MSFC-its heritage in the development of in-space chemical propulsion systems and its current capabilities for spacecraft propulsion system development and chemical propulsion research. The historical narrative describes the flight development activities associated with upper stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology (DART), X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and multiple technology development activities. This paper also highlights MSFC s advanced chemical propulsion research capabilities, including an overview of the center s Propulsion Systems Department and ongoing activities. The authors highlight near-term and long-term technology challenges to which MSFC research and system development competencies are relevant. This paper concludes by assessing the value of the full range of aforementioned activities, strengths, and capabilities in light of NASA s exploration missions.

  6. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission

    Science.gov (United States)

    Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.

    2008-09-01

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plants- or algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stresstolerant strains. Photosystem II D1 protein sitedirected and random mutants of the unicellular green alga Chlamydomonas reinhardtii [1] were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. For this purpose some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls were included in the study [2]. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton- M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence detector, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for several different algae strains (Fig.1). Twelve different C. reinhardti strains were analytically selected and two replications for each strain were brought to space

  7. STS-87 Mission Specialist Winston E. Scott suits up

    Science.gov (United States)

    1997-01-01

    STS-87 Mission Specialist Winston Scott dons his launch and entry suit with the assistance of a suit technician in the Operations and Checkout Building. This is Scotts second space flight. He and the five other crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Scott is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, during STS-87. He also performed a spacewalk on STS-72.

  8. Crew roles and interactions in scientific space exploration

    Science.gov (United States)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-10-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.

  9. Ultra Long-Life Spacecraft for Long Duration Space Exploration Missions

    Science.gov (United States)

    Chau, Savio

    2002-01-01

    After decades of Solar System exploration, NASA has almost completed the initial reconnaissance, and has been planning for landing and sample return missions on many planets, satellites, comets, and asteroids. The next logical step of space exploration is to expand the frontier into other missions within and outside the solar system. These missions can easily last for more than 30 to 50 years. Most of the current technologies and spacecraft design techniques are not adequate to support such long life missions. Many breakthrough technologies and non-conventional system architecture have to develop in order to sustain such long life missions.Some of these technologies are being developed by the NASA Exploration Team (neXt). Based on the projected requirements for ultra long life missions, the costs and benefits of the required technologies can be quantified. The ultra long-life space system should have four attributes: long-term survivability, administration of consumable resources, evolvability and adaptability, and low-cost long-term operations of the spacecraft. The discussion of survivability is the focus of this paper. Conventional fault tolerant system design has to tolerate only random failures, which can be handled effectively by dual or triple redundancy for a relatively short time. In contrast, the predominant failure mode in an ultra long-life system is the wear-out of components. All active components in the system are destined to fail before the end of the mission. Therefore, an ultra long-life system would require a large number of redundant components. This would be impractical in conventional fault tolerant systems because their fault tolerance techniques are very inefficient. For instance, a conventional dual-string avionics system duplicates the all the components including the processor, memory, and I/O controllers on a spacecraft. However, when the same component in both strings fail (e.g., the processor), the system will fail although all other

  10. Efficient Neural Network Modeling for Flight and Space Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Ayman Hamdy Kassem

    2011-01-01

    Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.

  11. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Mission Critical Space... CONTRACT CLAUSES Texts of Provisions and Clauses 1852.246-70 Mission Critical Space System Personnel Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System...

  12. The Iodine Satellite (iSAT) Hall Thruster Demonstration Mission Concept and Development

    Science.gov (United States)

    Dankanich, John W.; Polzin, Kurt A.; Calvert, Derek; Kamhawi, Hani

    2014-01-01

    The use of iodine propellant for Hall thrusters has been studied and proposed by multiple organizations due to the potential mission benefits over xenon. In 2013, NASA Marshall Space Flight Center competitively selected a project for the maturation of an iodine flight operational feed system through the Technology Investment Program. Multiple partnerships and collaborations have allowed the team to expand the scope to include additional mission concept development and risk reduction to support a flight system demonstration, the iodine Satellite (iSAT). The iSAT project was initiated and is progressing towards a technology demonstration mission preliminary design review. The current status of the mission concept development and risk reduction efforts in support of this project is presented.

  13. Overview of the U. S. flight safety process for space nuclear power

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1981-01-01

    The two current types of nuclear power sources used in U. S. spacecraft are described along with the flight safety philosophies governing their use. In the case of radioisotope thermoelectric generators, the design philosophy consists of containment, immobilization, and recovery of the nuclear materials. For reactors, the emphasis is on maintaining a subcritical configuration in all credible accident environments. To document the safety activities, a safety analysis report is prepared for each mission. These reports, which are based on the probabilistic risk assessment methodology pioneered by the space nuclear safety community, are subjected to an interagency safety review before a recommendation is made to approve the launch of a nuclear-powered spacecraft

  14. The NASA Human Space Flight Supply Chain, Current and Future

    Science.gov (United States)

    Zapata, Edgar

    2007-01-01

    The current NASA Human Space Flight transportation system, the Space Shuttle, is scheduled for final flight in 2010. The Exploration initiative will create a new capability with a combination of existing systems and new flight and ground elements. To fully understand and act on the implications of such change it is necessary to understand what, how, when and where such changes occur and more importantly, how all these interact. This paper presents Human Space Flight, with an emphasis on KSC Launch and Landing, as a Supply Chain of both information and materials. A supply chain methodology for understanding the flow of information and materials is presented. Further, modeling and simulation projects funded by the Exploration initiative to understand the NASA Exploration Supply Chain are explained. Key concepts and their purpose, including the Enterprise, Locations, Physical and Organizational Functional Units, Products, and Resources, are explained. It is shown that the art, science and perspective of Supply Chain Management is not only applicable to such a government & contractor operation, it is also an invaluable approach for understanding, focusing improvement and growth. It is shown that such commercial practice applies to Human Space Flight and is invaluable towards one day creating routine, affordable access to and from space.

  15. Future NASA mission applications of space nuclear power

    International Nuclear Information System (INIS)

    Bennett, G.L.; Mankins, J.; McConnell, D.G.; Reck, G.M.

    1990-01-01

    Recent studies sponsored by NASA show a continuing need for space nuclear power. A recently completed study considered missions such as a Jovian grand tour, a Uranus or Neptune orbiter and probe, and a Pluto flyby that can only be done with nuclear power. There are studies for missions beyond the outer boundaries of the solar system at distances of 100 to 1000 astronomical units. The NASA 90-day study on the space exploration initiative identified a need for nuclear reactors to power lunar surface bases and radioisotope power sources for use in lunar or Martian rovers, as well as considering options for advanced, nuclear propulsion systems for human missions to Mars

  16. Cross support overview and operations concept for future space missions

    Science.gov (United States)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  17. Soviet Robots in the Solar System Mission Technologies and Discoveries

    CERN Document Server

    Huntress, JR , Wesley T

    2011-01-01

    The Soviet robotic space exploration program began in a spirit of bold adventure and technical genius. It ended after the fall of the Soviet Union and the failure of its last mission to Mars in 1996. Soviet Robots in the Solar System chronicles the scientific and engineering accomplishments of this enterprise from its infancy to its demise. Each flight campaign is set into context of national politics and international competition with the United States. Together with its many detailed illustrations and images, Soviet Robots in the Solar System presents the most detailed technical description of Soviet robotic space flights provides a unique insight into programmatic, engineering, and scientific issues covers mission objectives, spacecraft engineering, flight details, scientific payload and results describes in technical depth Soviet lunar and planetary probes

  18. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    Science.gov (United States)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  19. Artificial intelligence techniques for scheduling Space Shuttle missions

    Science.gov (United States)

    Henke, Andrea L.; Stottler, Richard H.

    1994-01-01

    Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.

  20. Biochemical and hematologic changes after short-term space flight

    Science.gov (United States)

    Leach, C. S.

    1992-01-01

    Clinical laboratory data from blood samples obtained from astronauts before and after 28 flights (average duration = 6 days) of the Space Shuttle were analyzed by the paired t-test and the Wilcoxon signed-rank test and compared with data from the Skylab flights (duration approximately 28, 59, and 84 days). Angiotensin I and aldosterone were elevated immediately after short-term space flights, but the response of angiotensin I was delayed after Skylab flights. Serum calcium was not elevated after Shuttle flights, but magnesium and uric acid decreased after both Shuttle and Skylab. Creatine phosphokinase in serum was reduced after Shuttle but not Skylab flights, probably because exercises to prevent deconditioning were not performed on the Shuttle. Total cholesterol was unchanged after Shuttle flights, but low density lipoprotein cholesterol increased and high density lipoprotein cholesterol decreased. The concentration of red blood cells was elevated after Shuttle flights and reduced after Skylab flights. Reticulocyte count was decreased after both short- and long-term flights, indicating that a reduction in red blood cell mass is probably more closely related to suppression of red cell production than to an increase in destruction of erythrocytes. Serum ferritin and number of platelets were also elevated after Shuttle flights. In determining the reasons for postflight differences between the shorter and longer flights, it is important to consider not only duration but also countermeasures, differences between spacecraft, and procedures for landing and egress.

  1. Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center

    Science.gov (United States)

    Clinton, R. G., Jr.

    2018-01-01

    NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.

  2. Spacelab operations planning. [ground handling, launch, flight and experiments

    Science.gov (United States)

    Lee, T. J.

    1976-01-01

    The paper reviews NASA planning in the fields of ground, launch and flight operations and experiment integration to effectively operate Spacelab. Payload mission planning is discussed taking consideration of orbital analysis and the mission of a multiuser payload which may be either single or multidiscipline. Payload analytical integration - as active process of analyses to ensure that the experiment payload is compatible to the mission objectives and profile ground and flight operations and that the resource demands upon Spacelab can be satisfied - is considered. Software integration is touched upon and the major integration levels in ground operational processing of Spacelab and its experimental payloads are examined. Flight operations, encompassing the operation of the Space Transportation System and the payload, are discussed as are the initial Spacelab missions. Charts and diagrams are presented illustrating the various planning areas.

  3. Sensory-Motor Adaptation to Space Flight: Human Balance Control and Artificial Gravity

    Science.gov (United States)

    Paloski, William H.

    2004-01-01

    Gravity, which is sensed directly by the otolith organs and indirectly by proprioceptors and exteroceptors, provides the CNS a fundamental reference for estimating spatial orientation and coordinating movements in the terrestrial environment. The sustained absence of gravity during orbital space flight creates a unique environment that cannot be reproduced on Earth. Loss of this fundamental CNS reference upon insertion into orbit triggers neuro-adaptive processes that optimize performance for the microgravity environment, while its reintroduction upon return to Earth triggers neuro-adaptive processes that return performance to terrestrial norms. Five pioneering symposia on The Role of the Vestibular Organs in the Exploration of Space were convened between 1965 and 1970. These innovative meetings brought together the top physicians, physiologists, and engineers in the vestibular field to discuss and debate the challenges associated with human vestibular system adaptation to the then novel environment of space flight. These highly successful symposia addressed the perplexing problem of how to understand and ameliorate the adverse physiological effects on humans resulting from the reduction of gravitational stimulation of the vestibular receptors in space. The series resumed in 2002 with the Sixth Symposium, which focused on the microgravity environment as an essential tool for the study of fundamental vestibular functions. The three day meeting included presentations on historical perspectives, vestibular neurobiology, neurophysiology, neuroanatomy, neurotransmitter systems, theoretical considerations, spatial orientation, psychophysics, motor integration, adaptation, autonomic function, space motion sickness, clinical issues, countermeasures, and rehabilitation. Scientists and clinicians entered into lively exchanges on how to design and perform mutually productive research and countermeasure development projects in the future. The problems posed by long duration

  4. The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G

    Science.gov (United States)

    Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe

    2016-12-01

    Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ' Centre National d'Etudes Spatiales' (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ` Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.

  5. Research progress on the space-flight mutation breeding of woodyplant

    International Nuclear Information System (INIS)

    Cui Binbin; Sun Yuhan; Li Yun

    2013-01-01

    The space-flight mutation breeding conception, characteristics, mutagenic effects, research progress at home and abroad in woody plant were reviewed in this paper. Compared with crops, although the research of the woody plants space-flight mutation breeding in China started later, but it has developed rapidly and has gotten certain achievement. Now the satellite and high-altitude balloon experiment were conducted with over 20 tree species such as Populus ussuriensis and 50 flower species such as Paeonia suffruticosa. The above work will has profound significance for space-flight breeding technology application on woody plants. In the end, this thesis analyzes the prospect in the future from four aspects such as using woody plants asexual reproduction characteristic, strengthening the space mutation mechanism study, enhancing new space mutation varieties screen and strengthening ornamental specific types selection. This thesis also thinks that the space mutation breeding is expected to become an effective way in woody plant genetic breeding. (authors)

  6. Mission control team structure and operational lessons learned from the 2009 and 2010 NASA desert RATS simulated lunar exploration field tests

    Science.gov (United States)

    Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall

    2013-10-01

    The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations

  7. Training Concept for Long Duration Space Mission

    Science.gov (United States)

    O'Keefe, William

    2008-01-01

    There has been papers about maintenance and psychological training for Long Duration Space Mission (LDSM). There are papers on the technology needed for LDSMs. Few are looking at how groundbased pre-mission training and on-board in-transit training must be melded into one training concept that leverages this technology. Even more importantly, fewer are looking at how we can certify crews pre-mission. This certification must ensure, before the crew launches, that they can handle any problem using on-board assets without a large ground support team.

  8. Space Interferometry Mission Instrument Mechanical Layout

    Science.gov (United States)

    Aaron, K.; Stubbs, D.; Kroening, K.

    2000-01-01

    The Space Interferometry Mission, planned for launch in 2006, will measure the positions of celestial objects to an unprecedented accuracy of 4x10 to the power of negative six arc (about 1 billionth of a degree).

  9. Jump-Down Performance Alterations after Space Flight

    Science.gov (United States)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  10. IceBridge Sigma Space Lidar L0 Raw Time-of-Flight Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge Sigma Space Lidar L0 Raw Time-of-Flight Data (ILSIG0) contain raw time-of-flight values for Antarctica and Greenland using the Sigma Space Lidar....

  11. Genomic and proteomic analysis of soybean heritable variations induced by space flight

    Institute of Scientific and Technical Information of China (English)

    HE Jie; GAO Yong; SUN Ye-qing

    2009-01-01

    To analyze the biological effects of space environment, the diversity of genomic DNA between the space flight soybean 194(4126) with phenotype of good yield and good fruit quality induced by space flight and the soybean with ground control was studied by amplified fragment length polymorphism (AFLP) method, and the polymorphism of space flight soybean 194(4126) was 3.56%. The differences of protein expression of seeds and leaves between the two kinds of soybeans were analysed by two-dimensional electrophoresis, PDQuest software and MALDI-TOF mass spectrometry. Results show that the loss and decrease of protein expression in 194(4126) soybean are subjected to the space fight of seeds, and three special proteins including Dehydrin, MAT1 and ceQORH are identified. It is concluded that the space environment changes the phenotype and geno-type of soybeans due to the space flight of seeds.

  12. Flight telerobotic servicer legacy

    Science.gov (United States)

    Shattuck, Paul L.; Lowrie, James W.

    1992-11-01

    The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include

  13. The Orion GN and C Data-Driven Flight Software Architecture for Automated Sequencing and Fault Recovery

    Science.gov (United States)

    King, Ellis; Hart, Jeremy; Odegard, Ryan

    2010-01-01

    The Orion Crew Exploration Vehicle (CET) is being designed to include significantly more automation capability than either the Space Shuttle or the International Space Station (ISS). In particular, the vehicle flight software has requirements to accommodate increasingly automated missions throughout all phases of flight. A data-driven flight software architecture will provide an evolvable automation capability to sequence through Guidance, Navigation & Control (GN&C) flight software modes and configurations while maintaining the required flexibility and human control over the automation. This flexibility is a key aspect needed to address the maturation of operational concepts, to permit ground and crew operators to gain trust in the system and mitigate unpredictability in human spaceflight. To allow for mission flexibility and reconfrgurability, a data driven approach is being taken to load the mission event plan as well cis the flight software artifacts associated with the GN&C subsystem. A database of GN&C level sequencing data is presented which manages and tracks the mission specific and algorithm parameters to provide a capability to schedule GN&C events within mission segments. The flight software data schema for performing automated mission sequencing is presented with a concept of operations for interactions with ground and onboard crew members. A prototype architecture for fault identification, isolation and recovery interactions with the automation software is presented and discussed as a forward work item.

  14. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    Science.gov (United States)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-06-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  15. Motion perception during tilt and translation after space flight

    Science.gov (United States)

    Clément, Gilles; Wood, Scott J.

    2013-11-01

    Preliminary results of an ongoing study examining the effects of space flight on astronauts' motion perception induced by independent tilt and translation motions are presented. This experiment used a sled and a variable radius centrifuge that translated the subjects forward-backward or laterally, and simultaneously tilted them in pitch or roll, respectively. Tests were performed on the ground prior to and immediately after landing. The astronauts were asked to report about their perceived motion in response to different combinations of body tilt and translation in darkness. Their ability to manually control their own orientation was also evaluated using a joystick with which they nulled out the perceived tilt while the sled and centrifuge were in motion. Preliminary results confirm that the magnitude of perceived tilt increased during static tilt in roll after space flight. A deterioration in the crewmember to control tilt using non-visual inertial cues was also observed post-flight. However, the use of a tactile prosthesis indicating the direction of down on the subject's trunk improved manual control performance both before and after space flight.

  16. Shuttle operations era planning for flight operations

    Science.gov (United States)

    Holt, J. D.; Beckman, D. A.

    1984-01-01

    The Space Transportation System (STS) provides routine access to space for a wide range of customers in which cargos vary from single payloads on dedicated flights to multiple payloads that share Shuttle resources. This paper describes the flight operations planning process from payload introduction through flight assignment to execution of the payload objectives and the changes that have been introduced to improve that process. Particular attention is given to the factors that influence the amount of preflight preparation necessary to satisfy customer requirements. The partnership between the STS operations team and the customer is described in terms of their functions and responsibilities in the development of a flight plan. A description of the Mission Control Center (MCC) and payload support capabilities completes the overview of Shuttle flight operations.

  17. Space shuttle orbiter guidance, naviagation and control software functional requirements: Horizontal flight operations

    Science.gov (United States)

    1972-01-01

    The shuttle GN&C software functions for horizontal flight operations are defined. Software functional requirements are grouped into two categories: first horizontal flight requirements and full mission horizontal flight requirements. The document privides the intial step in the shuttle GN&C software design process. It also serves as a management tool to identify analyses which are required to define requirements.

  18. Applied Virtual Reality Research and Applications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Hale, Joseph P.

    1995-01-01

    A Virtual Reality (VR) applications program has been under development at NASA/Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before this technology can be utilized with confidence in these applications, it must be validated for each particular class of application. That is, the precision and reliability with which it maps onto real settings and scenarios, representative of a class, must be calculated and assessed. The approach of the MSFC VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems. Specific validation studies for selected classes of applications have been completed or are currently underway. These include macro-ergonomic "control-room class" design analysis, Spacelab stowage reconfiguration training, a full-body micro-gravity functional reach simulator, and a gross anatomy teaching simulator. This paper describes the MSFC VR Applications Program and the validation studies.

  19. Radioisotope electric propulsion for robotic science missions to near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1994-10-01

    The use of radioisotope electric propulsion for sending small robotic probes on fast science missions several hundred astronomical units (AU) from the Sun is investigated. Such missions would address a large variety of solar, interstellar, galactic and cosmological science themes from unique vantage points at 100 to 600 AU, including parallax distance measurements for the entire Milky Way Galaxy, sampling of the interstellar medium and imaging of cosmological objects at the gravitational lens foci of the Sun (≥ 550 AU). Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on multi-hundred watt, radioisotope electric generators and ion thrusters. In a previous work, the flight times for rendezvous missions to the outer planets (< 30 AU) using REP were found to be less than fifteen years. However fast prestellar missions to several hundred AU are not possible unless the probe's energy can be substantially increased in the inner Solar System so as to boost the final hyperbolic excess velocity. In this paper an economical hybrid propulsion scheme combining chemical propulsion and gravity assist in the inner Solar System and radioisotope electric propulsion in the outer Solar System is studied which enables fast prestellar missions. Total hyperbolic excess velocities of 15 AU/year and flight times to 550 AU of about 40 years are possible using REP technology that may be available in the next decade

  20. Radiations and space flight; Quand les radiations font partie du voyage

    Energy Technology Data Exchange (ETDEWEB)

    Maalouf, M.; Vogin, G.; Foray, N. [Groupe de Radiobiologie, Inserm U836, Institut des Neurosciences, 38 - Grenoble (France); Maalouf [CNES, Dept. des Sciences de la Vie, 75 - Paris (France); Vogin, G. [Laboratoire de Radiobiologie, EA3738, Faculte de Medecine de Lyon Sud, 69- Oullins (France)

    2011-02-15

    A space flight is submitted to 3 main sources of radiation: cosmic radiation (4 protons/cm{sup 2}/s and 10000 times less for the heaviest particles), solar radiation (10{sup 8} protons/cm{sup 2}/s in the solar wind), the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm{sup 2}/s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 {mu}Gray per day with an average dose rate of 0.28 {mu}Gray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  1. Ambiguous Tilt and Translation Motion Cues after Space Flight and Otolith Assessment during Post-Flight Re-Adaptation

    Science.gov (United States)

    Wood, Scott J.; Clarke, A. H.; Harm, D. L.; Rupert, A. H.; Clement, G. R.

    2009-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation and perceptual illusions following Gtransitions. These studies are designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short duration space flights.

  2. Effect of space flight on the frequency of micronuclei and expression of stress-responsive proteins in cultured mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Ikenaga, Mituo; Hirayama, Jun; Kato, Tomohisa [Kyoto Univ. (Japan). Radiation Biology Center] [and others

    2002-12-01

    Results of past space experiments suggest that the biological effect of space radiation could been hanced under microgravity in some cases, especially ininsects. To examine if such a synergistic effect of radiation and microgravity also exists in human cells, frequencies of chromosome instability and cellular levels of several stress-responsive proteins were analyzed incultured human and rodent cells afterspace flight. Human (MCF7 and ataxia telangiectasia(AT)2KY), mouse (m5S) and hamster (Syrian hamster embryo (SHE)) cell lines were loaded on the Space Shuttle Discovery (STS-95 mission) and grown during a 9-daymission. After landing, the micronuclei resulting from abnormal nuclear division and accumulationof stress-responsive proteins such as p53 and mitogen-activated protein kinases (MAPKs), which are involved in radiation-induced signal transduction cascades, were analyzed. The frequencies of micronucleiin all the four mammalian cell strains tested were not significantly different between flight and ground control samples. Also, the cellular amounts of p53, p21 (WAF1/SDI1/CIP1) and activated (phosphorylated) forms of three distinct MAPKs in MCF7 and m5S cells of flight samples were similar to those of ground control samples. These results indicated that anyeffect of space radiation, microgravity, or combination of both were not detectable, at least under thepresent experimental conditions. (author)

  3. STS-95 Mission Specialist Pedro Duque in white room

    Science.gov (United States)

    1998-01-01

    In the environmental chamber known as the white room, STS-95 Mission Specialist Pedro Duque of Spain, with the European Space Agency, is prepared by white room crew members Danny Wyatt (left) and Travis Thompson (right) for entry into the Space Shuttle Discovery for his first flight into space. The STS-95 mission, targeted for launch at 2 p.m. EST on Oct. 29, is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7.

  4. Real-Time Analytics Test System for Distributed Spacecraft Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Upcoming DSM missions will produce unprecedented amounts of data during both I&T and flight, overwhelming current command/telemetry systems. The amount of data,...

  5. A Framework for Orbital Performance Evaluation in Distributed Space Missions for Earth Observation

    Science.gov (United States)

    Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Miller, David W.; de Weck, Olivier

    2015-01-01

    Distributed Space Missions (DSMs) are gaining momentum in their application to earth science missions owing to their unique ability to increase observation sampling in spatial, spectral and temporal dimensions simultaneously. DSM architectures have a large number of design variables and since they are expected to increase mission flexibility, scalability, evolvability and robustness, their design is a complex problem with many variables and objectives affecting performance. There are very few open-access tools available to explore the tradespace of variables which allow performance assessment and are easy to plug into science goals, and therefore select the most optimal design. This paper presents a software tool developed on the MATLAB engine interfacing with STK, for DSM orbit design and selection. It is capable of generating thousands of homogeneous constellation or formation flight architectures based on pre-defined design variable ranges and sizing those architectures in terms of predefined performance metrics. The metrics can be input into observing system simulation experiments, as available from the science teams, allowing dynamic coupling of science and engineering designs. Design variables include but are not restricted to constellation type, formation flight type, FOV of instrument, altitude and inclination of chief orbits, differential orbital elements, leader satellites, latitudes or regions of interest, planes and satellite numbers. Intermediate performance metrics include angular coverage, number of accesses, revisit coverage, access deterioration over time at every point of the Earth's grid. The orbit design process can be streamlined and variables more bounded along the way, owing to the availability of low fidelity and low complexity models such as corrected HCW equations up to high precision STK models with J2 and drag. The tool can thus help any scientist or program manager select pre-Phase A, Pareto optimal DSM designs for a variety of science

  6. Space Station flight telerobotic servicer functional requirements development

    Science.gov (United States)

    Oberright, John; Mccain, Harry; Whitman, Ruth I.

    1987-01-01

    The Space Station flight telerobotic servicer (FTS), a flight robotic system for use on the first Space Station launch, is described. The objectives of the FTS program include: (1) the provision of an alternative crew EVA by supporting the crew in assembly, maintenance, and servicing activities, and (2) the improvement of crew safety by performing hazardous tasks such as spacecraft refueling or thermal and power system maintenance. The NASA/NBS Standard Reference Model provides the generic, hierarchical, structured functional control definition for the system. It is capable of accommodating additional degrees of machine intelligence in the future.

  7. The Legacy of Space Shuttle Flight Software

    Science.gov (United States)

    Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.

    2011-01-01

    The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.

  8. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  9. Cytological changes of root tip cells of alfalfa seeds after space flight

    International Nuclear Information System (INIS)

    Ren Weibo; Xu Zhu; Chen Libo; Guo Huiqin; Wang Mi; Zhao Liang

    2008-01-01

    To understand the cytological effects of space flight on alfalfa seeds, dry seeds of three lines (Line 1, Line 2 and Line 4) were selected and loaded onto 'Shijian No.8' satellite for space flight. After returning to the ground, root tips of alfalfa were clipped and chromosome aberrations were observed by microscope. Data showed that space flight had two types of effect on cell mitotic: one was positive (Line 2, Line 4) and the other was negative (Line 1). Such chromosome aberrations were observed as micronucleus, chromosome bridge, fragments, lagging and so on. The frequency of aberration varied with the different materials. Conclusion was that space flight had significant effect on root tip cells, which mainly showed as the chromosome aberrations. (authors)

  10. STS-111 Flight Day 7 Highlights

    Science.gov (United States)

    2002-06-01

    On Flight Day 7 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), this video opens with answers to questions asked by the public via e-mail about the altitude of the space station, the length of its orbit, how astronauts differentiate between up and down in the microgravity environment, and whether they hear wind noise during the shuttle's reentry. In video footage shot from inside the Quest airlock, Perrin is shown exiting the station to perform an extravehicular activity (EVA) with Chang-Diaz. Chang-Diaz is shown, in helmet mounted camera footage, attaching cable protection booties to a fish-stringer device with multiple hooks, and Perrin is seen loosening bolts that hold the replacement unit accomodation in launch position atop the Mobile Base System (MBS). Perrin then mounts a camera atop the mast of the MBS. During this EVA, the astronauts installed the MBS on the Mobile Transporter (MT) to support the Canadarm 2 robotic arm. A camera in the Endeavour's payload bay provides footage of the Pacific Ocean, the Baja Peninsula, and Midwestern United States. Plumes from wildfires in Nevada, Idaho, Yellowstone National Park, Wyoming, and Montana are visible. The station continues over the Great Lakes and the Eastern Provinces of Canada.

  11. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F. (Compiler)

    2015-01-01

    The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm

  12. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission and ground irradiation experiment

    Science.gov (United States)

    Lambreva, Maya; Rea, Giuseppina; Antonacci, Amina; Serafini, Agnese; Damasso, Mario; Margonelli, Andrea; Johanningmeier, Udo; Bertalan, Ivo; Pezzotti, Gianni; Giardi, Maria Teresa

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plantsor algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stress-tolerant strains. Site-directed and random mutants of the unicellular green alga Chlamydomonas reinhardtii of Photosystem II D1 protein were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. Metabolite profiling by quantitative HPLC methods revealed the organisms and the stress conditions capable to accumulate the highest pigment levels. In order to develop a project for a rationale metabolic engineering of algal secondary metabolites overproduction, we are performing expression analyses on the carotenoid biosynthetic pathway under physiological and mimicked space conditions. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton-M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence biosensor, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device

  13. ESA unveils Spanish antenna for unique space mission

    Science.gov (United States)

    2000-05-01

    The newly refurbished antenna, which is located at the Villafranca del Castillo Satellite Tracking Station site (VILSPA) near Madrid, has been selected as the prime communication link with the Cluster II spacecraft. The VIL-1 antenna will play a vital role in ESA's Cluster mission by monitoring and controlling the four spacecraft and by receiving the vast amounts of data that will be returned to Earth during two years of operations. Scheduled for launch in summer 2000, the Cluster quartet will complete the most detailed investigation ever made into the interaction between our pl0anet's magnetosphere - the region of space dominated by Earth's magnetic field - and the continuous stream of charged particles emitted by the Sun - the solar wind. This exciting venture is now well under way, following completion of the satellite assembly and test programme and two successful verification flights by the newly developed Soyuz-Fregat launch vehicle. The ESA Flight Acceptance Review Board has accordingly given the go-ahead for final launch preparations at the Baikonur Cosmodrome in Kazakhstan. VILSPA, ESA and Cluster II Built in 1975, after an international agreement between the European Space Agency and the Spanish government, VILSPA is part of the European Space Operations Centre (ESOC) Tracking Station Network (ESTRACK). In the last 25 years, VILSPA has supported many ESA and international satellite programmes, including the International Ultraviolet Explorer (IUE), EXOSAT and the Infrared Space Observatory (ISO). In addition to supporting the Cluster II mission, it has been designated as the Science Operations Centre for ESA's XMM Newton mission and for the Far-Infrared Space Telescope (FIRST), which is due to launch in 2007. There are now more than half a dozen large dish antennae installed at VILSPA. One of these is the VIL-1 antenna, a 15 metre diameter dish which operates in the S-band radio frequency (1.8 - 2.7 GHz). This antenna has been modernised recently in order

  14. Integrated Systems Health Management for Space Exploration

    Science.gov (United States)

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  15. Assured Mission Support Space Architecture (AMSSA) study

    Science.gov (United States)

    Hamon, Rob

    1993-01-01

    The assured mission support space architecture (AMSSA) study was conducted with the overall goal of developing a long-term requirements-driven integrated space architecture to provide responsive and sustained space support to the combatant commands. Although derivation of an architecture was the focus of the study, there are three significant products from the effort. The first is a philosophy that defines the necessary attributes for the development and operation of space systems to ensure an integrated, interoperable architecture that, by design, provides a high degree of combat utility. The second is the architecture itself; based on an interoperable system-of-systems strategy, it reflects a long-range goal for space that will evolve as user requirements adapt to a changing world environment. The third product is the framework of a process that, when fully developed, will provide essential information to key decision makers for space systems acquisition in order to achieve the AMSSA goal. It is a categorical imperative that military space planners develop space systems that will act as true force multipliers. AMSSA provides the philosophy, process, and architecture that, when integrated with the DOD requirements and acquisition procedures, can yield an assured mission support capability from space to the combatant commanders. An important feature of the AMSSA initiative is the participation by every organization that has a role or interest in space systems development and operation. With continued community involvement, the concept of the AMSSA will become a reality. In summary, AMSSA offers a better way to think about space (philosophy) that can lead to the effective utilization of limited resources (process) with an infrastructure designed to meet the future space needs (architecture) of our combat forces.

  16. On-Orbit Prospective Echocardiography on International Space Station Crew

    Science.gov (United States)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David S.; Garcia, Kathleen M.; Melton, Shannon L.; Feiveson, Alan; Dulchavsky, Scott A.

    2010-01-01

    Introduction A prospective trial of echocardiography was conducted on of six crewmembers onboard the International Space Station. The main objective was to determine the efficacy of remotely guided tele-echocardiography, including just-in-time e-training methods and determine what "space normal" echocardiographic data is. Methods Each crewmember operator (n=6) had 2-hour preflight training. Baseline echocardiographic data were collected 55 to 167days preflight. Similar equipment was used in each 60-minute in-flight session (mean microgravity exposure - 114 days (34 -- 190)). On Orbit ultrasound operators used an e-learning system within 24h of these sessions. Expert assistance was provided using ultrasound video downlink and two-way voice. Testing was repeated 5 to 16 days after landing. Separate ANOVA was used on each echocardiographic variable (n=33). Within each ANOVA, three tests were made: a) effect of mission phase (preflight, in-flight, post flight); b) effect of echo technician (two technicians independently analyzed the data); c) interaction between mission phase and technician. Results Nine rejections of the null hypothesis (mission phase or technician or both had no effect) were discovered and considered for follow up. Of these, six rejections were for significant technician effects, not as a result of space flight. Three rejections of the null hypothesis (Aortic Valve time velocity integral, Mitral E wave Velocity and heart rate) were attributable to space flight, however determined not to be clinically significant. No rejections were due to the interaction between technician and space flight. Conclusion No consistent clinically significant effects of long-duration space flight were seen in echocardiographic variables of the given group of subjects.

  17. Modification of Otolith Reflex Asymmetries Following Space Flight

    Science.gov (United States)

    Clarke, Andrew H.; Schoenfeld, Uwe; Wood, Scott J.

    2011-01-01

    We hypothesize that changes in otolith-mediated reflexes adapted for microgravity contribute to perceptual, gaze and postural disturbances upon return to Earth s gravity. Our goal was to determine pre- versus post-fight differences in unilateral otolith reflexes that reflect these adaptive changes. This study represents the first comprehensive examination of unilateral otolith function following space flight. Ten astronauts participated in unilateral otolith function tests three times pre-flight and up to four times after Shuttle flights from landing day through the subsequent 10 days. During unilateral centrifugation (UC, +/- 3.5cm at 400deg/s), utricular function was examined by the perceptual changes reflected by the subjective visual vertical (SVV) and by video-oculographic measurement of the otolith-mediated ocular counter-roll (OOR). Unilateral saccular reflexes were recorded by measurement of collic Vestibular Evoked Myogenic Potential (cVEMP). Although data from a few subjects were not obtained early post-flight, a general increase in asymmetry of otolith responses was observed on landing day relative to pre-flight baseline, with a subsequent reversal in asymmetry within 2-3 days. Recovery to baseline levels was achieved within 10 days. This fluctuation in the asymmetry measures appeared strongest for SVV, in a consistent direction for OOR, and in an opposite direction for cVEMP. These results are consistent with our hypothesis that space flight results in adaptive changes in central nervous system processing of otolith input. Adaptation to microgravity may reveal asymmetries in otolith function upon to return to Earth that were not detected prior to the flight due to compensatory mechanisms.

  18. Fusion energy for space missions in the 21st century: Executive summary

    International Nuclear Information System (INIS)

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority

  19. Fusion energy for space missions in the 21st century: Executive summary

    Science.gov (United States)

    Schulze, Norman R.

    1991-08-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority.

  20. The International Space Station: A Low-Earth Orbit (LEO) Test Bed for Advancements in Space and Environmental Medicine

    Science.gov (United States)

    Ruttley, Tara M.; Robinson, Julie A.

    2010-01-01

    Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.

  1. Haploid deletion strains of Saccharomyces cerevisiae that determine survival during space flight

    Science.gov (United States)

    Johanson, Kelly; Allen, Patricia L.; Gonzalez-Villalobos, Romer A.; Nesbit, Jacqueline; Nickerson, Cheryl A.; Höner zu Bentrup, Kerstin; Wilson, James W.; Ramamurthy, Rajee; D'Elia, Riccardo; Muse, Kenneth E.; Hammond, Jeffrey; Freeman, Jake; Stodieck, Louis S.; Hammond, Timothy G.

    2007-02-01

    This study identifies genes that determine survival during a space flight, using the model eukaryotic organism, Saccharomyces cerevisiae. Select strains of a haploid yeast deletion series grew during storage in distilled water in space, but not in ground based static or clinorotation controls. The survival advantages in space in distilled water include a 133-fold advantage for the deletion of PEX19, a chaperone and import receptor for newly- synthesized class I peroxisomal membrane proteins, to 77-40 fold for deletion strains lacking elements of aerobic respiration, isocitrate metabolism, and mitochondrial electron transport. Following automated addition of rich growth media, the space flight was associated with a marked survival advantage of strains with deletions in catalytically active genes including hydrolases, oxidoreductases and transferases. When compared to static controls, space flight was associated with a marked survival disadvantage of deletion strains lacking transporter, antioxidant and catalytic activity. This study identifies yeast deletion strains with a survival advantage during storage in distilled water and space flight, and amplifies our understanding of the genes critical for survival in space.

  2. Experiences in Interagency and International Interfaces for Mission Support

    Science.gov (United States)

    Dell, G. T.; Mitchell, W. J.; Thompson, T. W.; Cappellari, J. O., Jr.; Flores-Amaya, F.

    1996-01-01

    The Flight Dynamics Division (FDD) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GFSC) provides extensive support and products for Space Shuttle missions, expendable launch vehicle launches, and routine on-orbit operations for a variety of spacecraft. A major challenge in providing support for these missions is defining and generating the products required for mission support and developing the method by which these products are exchanged between supporting agencies. As interagency and international cooperation has increased in the space community, the FDD customer base has grown and with it the number and variety of external interfaces and product definitions. Currently, the FDD has working interfaces with the NASA Space and Ground Networks, the Johnson Space Center, the White Sands Complex, the Jet propulsion Laboratory (including the Deep Space Network), the United States Air Force, the Centre National d'Etudes Spatiales, the German Spaceflight Operations Center, the European Space Agency, and the National Space Development Agency of Japan. With the increasing spectrum of possible data product definitions and delivery methods, the FDD is using its extensive interagency experience to improve its support of established customers and to provide leadership in adapting/developing new interfaces. This paper describes the evolution of the interfaces between the FDD and its customers, discusses many of the joint activities ith these customers, and summarizes key lessons learned that can be applied to current and future support.

  3. SpaceCube v2.0 Space Flight Hybrid Reconfigurable Data Processing System

    Science.gov (United States)

    Petrick, Dave

    2014-01-01

    This paper details the design architecture, design methodology, and the advantages of the SpaceCube v2.0 high performance data processing system for space applications. The purpose in building the SpaceCube v2.0 system is to create a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. The SpaceCube v2.0 system leverages seven years of board design, avionics systems design, and space flight application experiences. This paper shows how SpaceCube v2.0 solves the increasing computing demands of space data processing applications that cannot be attained with a standalone processor approach.The main objective during the design stage is to find a good system balance between power, size, reliability, cost, and data processing capability. These design variables directly impact each other, and it is important to understand how to achieve a suitable balance. This paper will detail how these critical design factors were managed including the construction of an Engineering Model for an experiment on the International Space Station to test out design concepts. We will describe the designs for the processor card, power card, backplane, and a mission unique interface card. The mechanical design for the box will also be detailed since it is critical in meeting the stringent thermal and structural requirements imposed by the processing system. In addition, the mechanical design uses advanced thermal conduction techniques to solve the internal thermal challenges.The SpaceCube v2.0 processing system is based on an extended version of the 3U cPCI standard form factor where each card is 190mm x 100mm in size The typical power draw of the processor card is 8 to 10W and scales with application complexity. The SpaceCube v2.0 data processing card features two Xilinx Virtex-5 QV Field Programmable Gate Arrays (FPGA), eight memory modules, a monitor

  4. STS-112 Flight Day 7 Highlights

    Science.gov (United States)

    2002-10-01

    On this seventh day of STS-112 mission members of the crew (Commander Jeff Ashby; Pilot Pam Melroy; Mission Specialist Sandy Magnus, Piers Sellers, Dave Wolf, and Fyodor Yurchikhin) along with the Expedition Five crew (Commander Valery Korzun; Flight Engineer Peggy Whitson, and Sergei Treschev) are seen answering questions during the mission's press interview and photo opportunity. They answered various questions regarding the mission's objectives, the onboard science experiments, the extravehicular activities (EVAs) and the effects of living in space. Shots of the test deployment of the S1 truss radiator and Canadarm rotor joint are also shown.

  5. Cost Analysis In A Multi-Mission Operations Environment

    Science.gov (United States)

    Newhouse, M.; Felton, L.; Bornas, N.; Botts, D.; Roth, K.; Ijames, G.; Montgomery, P.

    2014-01-01

    Spacecraft control centers have evolved from dedicated, single-mission or single missiontype support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multimission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the

  6. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    Science.gov (United States)

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  7. NASA's OCA Mirroring System: An Application of Multiagent Systems in Mission Control

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron J. J.; Seah, Chin H.; Scott, Michael S.; Nado, Robert A.; Blumenberg, Susan F.; Shafto, Michael G.; Anderson, Brian L.; Bruins, Anthony C.; hide

    2009-01-01

    Orbital Communications Adaptor (OCA) Flight Controllers, in NASA's International Space Station Mission Control Center, use different computer systems to uplink, downlink, mirror, archive, and deliver files to and from the International Space Station (ISS) in real time. The OCA Mirroring System (OCAMS) is a multiagent software system (MAS) that is operational in NASA's Mission Control Center. This paper presents OCAMS and its workings in an operational setting where flight controllers rely on the system 24x7. We also discuss the return on investment, based on a simulation baseline, six months of 24x7 operations at NASA Johnson Space Center in Houston, Texas, and a projection of future capabilities. This paper ends with a discussion of the value of MAS and future planned functionality and capabilities.

  8. Short rendezvous missions for advanced Russian human spacecraft

    Science.gov (United States)

    Murtazin, Rafail F.; Budylov, Sergey G.

    2010-10-01

    The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.

  9. STS-95 Mission Highlights Resources Tape

    Science.gov (United States)

    1999-01-01

    The STS-95 flight crew, Commander Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn present a video overview of their space flight. They are seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. Once on-orbit the primary objectives include conducting a variety of science experiments in the pressurized SPACEHAB module, the deployment and retrieval of the Spartan free-flyer payload, and operations with the Hubble Space Telescope (HST) Orbiting Systems Test (HOST) and the International Extreme Ultraviolet Hitchhiker (IEH) payloads being carried in the payload bay. Throughout the presentation, the astronauts take turns narrating particular aspects of the mission with which they were involved.

  10. Telescopes in Near Space: Balloon Exoplanet Nulling Interferometer (BigBENI)

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Mauk, Robin

    2012-01-01

    A significant and often overlooked path to advancing both science and technology for direct imaging and spectroscopic characterization of exosolar planets is to fly "near space" missions, i.e. balloon borne exosolar missions. A near space balloon mission with two or more telescopes, coherently combined, is capable of achieving a subset of the mission science goals of a single large space telescope at a small fraction of the cost. Additionally such an approach advances technologies toward flight readiness for space flight. Herein we discuss the feasibility of flying two 1.2 meter telescopes, with a baseline separation of 3.6 meters, operating in visible light, on a composite boom structure coupled to a modified visible nulling coronagraph operating to achieve an inner working angle of 60 milli-arcseconds. We discuss the potential science return, atmospheric residuals at 135,000 feet, pointing control and visible nulling and evaluate the state-or-art of these technologies with regards to balloon missions.

  11. A Breakthrough Propulsion Architecture for Interstellar Precursor Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a new power/propulsion architecture to enable missions such as a 12-yr flight time to 500 AU—the distance at which solar gravity lensing can be used to...

  12. Changing the Safety and Mission Assurance (S and MA) Paradigm

    Science.gov (United States)

    Malone, Roy W.; Safie, Fayssal M.

    2010-01-01

    This slide presentation reviews the change in the work and impact of the Safety and Mission Assurance directorate at Marshall Space Flight Center. It reviews the background and the reasons given for a strong Safety & Mission Assurance presence in all planning for space flight. This was pointed out by the Rogers Commission Report after the Space Challenger accident, by the Columbia Accident Investigation Board (CAIB) and by a 2006 NASA Exploration Safety Study (NESS) Team. The overall objective of the work in this area was to improve and maintain S&MA expertise and skills. Training for this work was improved and the S&MA organization was reorganized. This has resulted in a paradigm shift for NASA's safety efforts, which is described. The presentation then reviews the impact of the new S&MA work in the Ares I design and development.

  13. Business Plan: The Virginia Space Flight Center

    Science.gov (United States)

    Reed, Billie M.

    1997-01-01

    The Virginia Commercial Space Flight Authority (VCSFA) was established on July 1, 1995 and codified at Sections 9-266.1 et seq., Code of Virginia. It is governed by an eleven person Board of Directors representing industry, state and local government and academia. VCSFA has designated the Center for Commercial Space Infrastructure as its Executive Directorate and Operating Agent. This Business Plan has been developed to provide information to prospective customers, prospective investors, state and federal government agencies, the VCSFA Board and other interested parties regarding development and operation of the Virginia Space Flight Center (VSFC) at Wallops Island. The VSFC is an initiative sponsored by VCSFA to achieve its stated objectives in the areas of economic development and education. Further, development of the VSFC is in keeping with the state's economic goals set forth in Opportunity Virginia, the strategic plan for jobs and prosperity, which are to: (1) Strengthen the rapidly growing aerospace industry in space based services including launch services, remote sensing, satellite manufacturing and telecommunications; and (2) Capitalize on intellectual and technical resources throughout the state and become a leader in the development of advanced technology businesses.

  14. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    Science.gov (United States)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; hide

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  15. Discovery: Under the Microscope at Kennedy Space Center

    Science.gov (United States)

    Howard, Philip M.

    2013-01-01

    The National Aeronautics & Space Administration (NASA) is known for discovery, exploration, and advancement of knowledge. Since the days of Leeuwenhoek, microscopy has been at the forefront of discovery and knowledge. No truer is that statement than today at Kennedy Space Center (KSC), where microscopy plays a major role in contamination identification and is an integral part of failure analysis. Space exploration involves flight hardware undergoing rigorous "visually clean" inspections at every step of processing. The unknown contaminants that are discovered on these inspections can directly impact the mission by decreasing performance of sensors and scientific detectors on spacecraft and satellites, acting as micrometeorites, damaging critical sealing surfaces, and causing hazards to the crew of manned missions. This talk will discuss how microscopy has played a major role in all aspects of space port operations at KSC. Case studies will highlight years of analysis at the Materials Science Division including facility and payload contamination for the Navigation Signal Timing and Ranging Global Positioning Satellites (NA VST AR GPS) missions, quality control monitoring of monomethyl hydrazine fuel procurement for launch vehicle operations, Shuttle Solids Rocket Booster (SRB) foam processing failure analysis, and Space Shuttle Main Engine Cut-off (ECO) flight sensor anomaly analysis. What I hope to share with my fellow microscopists is some of the excitement of microscopy and how its discoveries has led to hardware processing, that has helped enable the successful launch of vehicles and space flight missions here at Kennedy Space Center.

  16. The pre-flight calibration setup of the instrument SIMBIO-SYS onboard the mission BepiColombo

    Science.gov (United States)

    Poulet, F.; Rodriguez-Ferreira, J.; Arondel, A.; Dassas, K.; Eng, P.; Lami, P.; Langevin, Y.; Longval, Y.; Pradel, P.; Dami, M.

    2015-11-01

    BepiColombo, an European Space Agency (ESA) mission being conducted in cooperation with the Japan space agency, will explore Mercury with a set of eleven instruments onboard the spacecraft Mercury Planetary Orbiter (MPO). Among them, SIMBIO-SYS (Spectrometers and Imagers for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument that will provide images and spectra in the 400-2000 nm wavelength range of the entire surface of Mercury. Pre-flight calibration of the SYMBIO-SYS instrument is mandatory for reliable scientific interpretation of images and spectra returned from the planet Mercury. This paper presents the calibration device designed and implemented for the specific requirements of this instrument. It mainly consists of a thermal vacuum chamber simulating the space environment, an optical bench collecting calibration sources and optical elements that simulate the conditions of Mercury observations, mechanical interfaces used for positioning the three channels inside the vacuum chamber, thermal interfaces to explore the operating temperatures, computer interfaces that allow to communicate with both the instrument and the calibration elements and synchronize the calibrations sequences with the status of the calibration device. As the major goal is the characterization of the radiometric performances of the three channels of SIMBIO-SYS, radiometric performances of the test setup evaluated by simulations and measurements are emphasized.

  17. ONAV - An Expert System for the Space Shuttle Mission Control Center

    Science.gov (United States)

    Mills, Malise; Wang, Lui

    1992-01-01

    The ONAV (Onboard Navigation) Expert System is being developed as a real-time console assistant to the ONAV flight controller for use in the Mission Control Center at the Johnson Space Center. Currently, Oct. 1991, the entry and ascent systems have been certified for use on console as support tools, and were used for STS-48. The rendezvous system is in verification with the goal to have the system certified for STS-49, Intelsat retrieval. To arrive at this stage, from a prototype to real-world application, the ONAV project has had to deal with not only Al issues but operating environment issues. The Al issues included the maturity of Al languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.

  18. STS-72 Flight Day 7

    Science.gov (United States)

    1996-01-01

    On this seventh day of the STS-72 mission, the flight crew, Cmdr. Brian Duffy, Pilot Brent W. Jett, and Mission Specialists Leroy Chiao, Daniel T. Barry, Winston E. Scott, and Koichi Wakata (NASDA), awakened to music from the Walt Disney movie, 'Snow White and the Seven Dwarfs.' Chiao and Scott performed the second spacewalk of the mission where they tested equipment and work platforms that will be used in building the planned International Space Station. This spacewalk was almost seven hours long. Wakata conducted an interview with and answered questions from six graders from a Japanese school in Houston, Texas.

  19. Thrust imbalance of solid rocket motor pairs on Space Shuttle flights

    Science.gov (United States)

    Foster, W. A., Jr.; Shu, P. H.; Sforzini, R. H.

    1986-01-01

    This analysis extends the investigation presented at the 17th Joint Propulsion Conference in 1981 to include fifteen sets of Space Shuttle flight data. The previous report dealt only with static test data and the first flight pair. The objective is to compare the authors' previous theoretical analysis of thrust imbalance with actual Space Shuttle performance. The theoretical prediction method, which involves a Monte Carlo technique, is reviewed briefly as are salient features of the flight instrumentation system and the statistical analysis. A scheme for smoothing flight data is discussed. The effects of changes in design parameters are discussed with special emphasis on the filament wound motor case being developed to replace the steel case. Good agreement between the predictions and the flight data is demonstrated.

  20. Space Radiation Measurement on the Polar Route onboard the Korean Commercial Flights

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2010-03-01

    Full Text Available This study was performed by the policy research project of Ministry of Land, Transport and Maritime Affairs, which title is “Developing safety standards and management of space radiation on the polar route”. In this research, total six experiments were performed using Korean commercial flights (B747. Three of those are on the polar route and the other three are on the north pacific route. Space radiation exposure measured on the polar route is the average 84.7 uSv. The simulation result using CARI-6M program gives 84.9 uSv, which is very similar to measured value. For the departure flight using the north pacific route, the measured space radiation is the average 74.4 uSv. It seems that is not so different to use the polar route or not for the return flight because the higher latitude effect causing the increase of space radiation is compensated by the shortened flight time effect causing decreasing space radiation exposure.

  1. Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission

    Science.gov (United States)

    Bilen, Sven G.; Johnson, C. Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael; Stone, Nobie

    2014-01-01

    The PROPEL ("Propulsion using Electrodynamics") flight demonstration mission concept will demonstrate the use of an electrodynamic tether (EDT) for generating thrust, which will allow the propulsion system to overcome the limitations of the rocket equation. The mission concept has been developed by a team of government, industry, and academia partners led by NASA Marshall Space Flight Center (MSFC). PROPEL is being designed for versatility of the EDT system with multiple end users in mind and to be flexible with respect to platform. Previously, we reported on a comprehensive mission design for PROPEL with a mission duration of six months or longer with multiple mission goals including demonstration of significant boost, deboost, inclination change, and drag make-up activities. To explore a range of possible configurations, primarily driven by cost considerations, other mission concept designs have been pursued. In partnership with the NASA's Office of Chief Technologist (OCT) Game Changing Program, NASA MSFC Leadership, and the MSFC Advanced Concepts Office, a mission concept design was developed for a near-term EDT propulsion flight validation mission. The Electrodynamic Tether Propulsion Study (ETPS) defined an EDT propulsion system capable of very large delta-V for use on future missions developed by NASA, DoD, and commercial customers. To demonstrate the feasibility of an ETPS, the study focused on a space demonstration mission concept design with configuration of a pair of tethered satellite busses, one of which is the Japanese H-II Transfer Vehicle (HTV). The HTV would fly its standard ISS resupply mission. When resupply mission is complete, the ISS reconfigures and releases the HTV to perform the EDT experiment at safe orbital altitudes below the ISS. Though the focus of this particular mission concept design addresses a scenario involving the HTV or a similar vehicle, the propulsion system's capability is relevant to a number of applications, as noted above

  2. Habitability in long-term space missions

    Science.gov (United States)

    Mount, Frances E.

    1987-01-01

    The research (both in progress and completed) conducted for the U.S. Space Station in relation to the crew habitability and crew productivity is discussed. Methods and tasks designed to increase the data base of the man/system information are described. The particular research areas discussed in this paper include human productivity, on-orbit maintenance, vewing requirements, fastener types, and crew quarters. This information (along with data obtained on human interaction with command/control work station, anthropometic factors, crew equipment, galley/wardroom, restraint systems, etc) will be integrated into the common data base for the purpose of assisting the design of the Space Station and other future manned space missions.

  3. Duque and Parazynski in slidewire exercise from Space Shuttle Discovery

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain (left), representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski (right) signal they are ready to leave Launch Pad 39B in the slidewire basket during an emergency egress exercise. Duque and Parazynski, along with other crew members, are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. Not shown are Mission Commander Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, Payload Specialists John H. Glenn Jr., senator from Ohio, and Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA). The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  4. The Space Medicine Exploration Medical Condition List

    Science.gov (United States)

    Watkins, Sharmi; Barr, Yael; Kerstman, Eric

    2011-01-01

    Exploration Medical Capability (ExMC) is an element of NASA s Human Research Program (HRP). ExMC's goal is to address the risk of the "Inability to Adequately Recognize or Treat an Ill or Injured Crewmember." This poster highlights the approach ExMC has taken to address this risk. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to define the set of medical conditions that are most likely to occur during exploration space flight missions. The list was derived from the International Space Station Medical Checklist, the Shuttle Medical Checklist, in-flight occurrence data from the Lifetime Surveillance of Astronaut Health, and NASA subject matter experts. The list of conditions was further prioritized for eight specific design reference missions with the assistance of the ExMC Advisory Group. The purpose of the SMEMCL is to serve as an evidence-based foundation for the conditions that could affect a crewmember during flight. This information is used to ensure that the appropriate medical capabilities are available for exploration missions.

  5. In-flight Assessment of Lower Body Negative Pressure as a Countermeasure for Post-flight Orthostatic Intolerance

    Science.gov (United States)

    Charles, J. B.; Stenger, M. B.; Phillips, T. R.; Arzeno, N. M.; Lee, S. M. C.

    2009-01-01

    Introduction. We investigated the efficacy of combining fluid loading with sustained lower body negative pressure (LBNP) to reverse orthostatic intolerance associated with weightlessness during and immediately after Space Shuttle missions. Methods. Shuttle astronauts (n=13) underwent 4 hours of LBNP at -30 mm(Hg) and ingested water and salt ( soak treatment) during flight in two complementary studies. In the first study (n=8), pre-flight heart rate (HR) and blood pressure (BP) responses to an LBNP ramp (5-min stages of -10 mm(Hg) steps to -50 mm(Hg) were compared to responses in-flight one and two days after LBNP soak treatment. In the second study (n=5), the soak was performed 24 hr before landing, and post-flight stand test results of soak subjects were compared with those of an untreated cohort (n=7). In both studies, the soak was scheduled late in the mission and was preceded by LBNP ramp tests at approximately 3-day intervals to document the in-flight loss of orthostatic tolerance. Results. Increased HR and decreased BP responses to LBNP were evident early in-flight. In-flight, one day after LBNP soak, HR and BP responses to LBNP were not different from pre-flight, but the effect was absent the second day after treatment. Post-flight there were no between-group differences in HR and BP responses to standing, but all 5 treatment subjects completed the 5-minute stand test whereas 2 of 7 untreated cohort subjects did not. Discussion. Exaggerated HR and BP responses to LBNP were evident within the first few days of space flight, extending results from Skylab. The combined LBNP and fluid ingestion countermeasure restored in-flight LBNP HR and BP responses to pre-flight levels and provided protection of post-landing orthostatic function. Unfortunately, any benefits of the combined countermeasure were offset by the complexity of its implementation, making it inappropriate for routine application during Shuttle flights.

  6. Radiation doses at high altitudes and during space flights

    International Nuclear Information System (INIS)

    Spurny, F.

    2001-01-01

    There are three main sources of radiation exposure during space flights and at high altitudes--galactic cosmic radiation, solar cosmic radiation and radiation of the earth's radiation belt. Their basic characteristics are presented in the first part of this paper.Man's exposure during space flights is discussed in the second part of the paper. Particular attention is devoted to the quantitative and qualitative characteristics of the radiation exposure on near-earth orbits: both theoretical estimation as well as experimental data are presented. Some remarks on radiation protection rules on-board space vehicles are also given.The problems connected with the radiation protection of air crew and passengers of subsonic and supersonic air transport are discussed in the last part of the paper. General characteristics of on-board radiation fields and their variations with flight altitude, geomagnetic parameters of a flight and the solar activity are presented, both based on theoretical estimates and experimental studies. The questions concerning air crew and passenger radiation protection arising after the publication of ICRP 60 recommendation are also discussed. Activities of different institutions relevant to the topic are mentioned; strategies to manage and check this type of radiation exposure are presented and discussed. Examples of results based on the author's personal experience are given, analyzed and discussed. (author)

  7. An Updated Look at the Pro K Experiment: Urinary Acid Excretion Can Predict Changes in Bone Metabolism During Space Flight

    Science.gov (United States)

    Zwart, Sara R.; Heer, Martina; Shackelford, Linda; Smith, Scott M.

    2015-01-01

    Mitigating space flight-induced bone loss is critical for space exploration, and diet can play a major role in this effort (1). Previous ground-based studies provide evidence that dietary composition can influence bone resorption during bed rest (2). In this study we examined the role of dietary intake patterns as one factor that can influence bone mineral loss in astronauts during space flight. Crew members were asked to consume, for 4 days at a time, prescribed menus with either a low (0.3-0.6 g/mEq) or high (1.0-1.3 g/mEq) ratio of animal protein to potassium (APro:K). Menus were developed for each crewmember, and were designed to meet both crew preferences and study constraints. Intakes of energy, total protein, calcium, and sodium were held relatively constant between the two diets. The order of the menus was randomized, and crews completed each set (low and high) once before and twice during space flight, for a total of 6 controlled diet sessions. One inflight session and three postflight sessions (R+30, R+180, R+365) monitored typical dietary intake. As of this writing, data are available from 14 crew members. Two subject's samples are awaiting return from ISS via Space-X, and the final subject has one more collection session planned in November 2014. On the last day of each of the 4-d controlled diet sessions, 24-h urine samples were collected, along with a fasting blood sample on the morning of the 5th day. Preliminary analyses will show the relationships between diet and flight on markers of bone metabolism. The results from this study, which represent healthy individuals in a unique environment, will be important to better understand diet and bone interrelationships during space flight as well as on Earth. These data will be important as nutritional requirements and food systems are developed for future exploration-class missions. This study was funded by the Human Health Countermeasures Element of NASA Human Research Program.

  8. Planetary and Space Simulation Facilities (PSI) at DLR

    Science.gov (United States)

    Panitz, Corinna; Rabbow, E.; Rettberg, P.; Kloss, M.; Reitz, G.; Horneck, G.

    2010-05-01

    The Planetary and Space Simulation facilities at DLR offer the possibility to expose biological and physical samples individually or integrated into space hardware to defined and controlled space conditions like ultra high vacuum, low temperature and extraterrestrial UV radiation. An x-ray facility stands for the simulation of the ionizing component at the disposal. All of the simulation facilities are required for the preparation of space experiments: - for testing of the newly developed space hardware - for investigating the effect of different space parameters on biological systems as a preparation for the flight experiment - for performing the 'Experiment Verification Tests' (EVT) for the specification of the test parameters - and 'Experiment Sequence Tests' (EST) by simulating sample assemblies, exposure to selected space parameters, and sample disassembly. To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed among many others for the ESA facilities of the ongoing missions EXPOSE-R and EXPOSE-E on board of the International Space Station ISS . Several experiment verification tests EVTs and an experiment sequence test EST have been conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allowed the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. EXPOSE-E had been attached to the outer balcony of the European Columbus module of the ISS in February 2008 and stayed for 1,5 years in space; EXPOSE-R has been attached to the Russian Svezda module of the ISS in spring 2009 and mission duration will be approx. 1,5 years. The missions will give new insights into the survivability of terrestrial

  9. Astronaut training for STS 41-D mission

    Science.gov (United States)

    1984-01-01

    Astronauts David C. Leestma and Kathryn D. Sullivan, two of three 41-D mission specialists, rehearse some of the duties they will be performing on their flight. Dr. Sullivan holds the Krimsky rule against her cheekbones as part of an ongoing Shuttle study on near vision acuity. Astronaut Leestma reviews a flight data file flipbook. They are seated on the floor of the Space Shuttle Simulator, in front of the forward middeck lockers.

  10. Space Environmental Effects (SEE) Testing Capability: NASA/Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Crave, Paul; Finckenor, Miria; Finchum, Charles; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the space environment can lead to materials degradation, reduction of functional lifetime, and system failure. Ground based testing is critical in predicting performance NASA/MSFC's expertise and capabilities make up the most complete SEE testing capability available.

  11. Potential renovascular hypertension, space missions, and the role of magnesium

    Directory of Open Access Journals (Sweden)

    William J Rowe

    2009-11-01

    Full Text Available William J RoweFormer Assistant Clinical Professor of Medicine, Medical University of Ohio at Toledo, Keswick, VA, USAAbstract: Space flight (SF and dust inhalation in habitats cause hypertension whereas in SF (alone there is no consistent hypertension but reduced diurnal blood pressure (BP variation instead. Current pharmaceutical subcutaneous delivery systems are inadequate and there is impairment in the absorption, metabolism, excretion, and deterioration of some pharmaceuticals. Data obtained from the National Aeronautics and Space Administration through the Freedom of Information Act shows that Irwin returned from his 12-day Apollo 15 mission in 1971 and was administered a bicycle stress test. With just three minutes of exercise, his BP was >275/125 mm Hg (heart rate of only 130 beats per minute. There was no acute renal insult. Irwin’s apparent spontaneous remission is suggested to be related to the increase of a protective vasodilator, and his atrial natriuretic peptide (ANP reduced with SF because of reduced plasma volume. With invariable malabsorption and loss of bone/muscle storage sites, there are significant (P < 0.0001 reductions of magnesium (Mg required for ANP synthesis and release. Reductions of Mg and ANP can trigger pronounced angiotensin (200%, endothelin, and catecholamine elevations (clearly shown in recent years and vicious cycles between the latter and Mg deficits. There is proteinuria, elevated creatinine, and reduced renal concentrating ability with the potential for progressive inflammatory and oxidative stress-induced renal disease and hypertension with vicious cycles. After SF, animals show myocardial endothelial injuries and increased vascular resistance of extremities in humans. Even without dust, hypertension might eventually develop from renovascular hypertension during very long missions. Without sufficient endothelial protection from pharmaceuticals, a comprehensive gene research program should begin now

  12. Open source IPSEC software in manned and unmanned space missions

    Science.gov (United States)

    Edwards, Jacob

    Network security is a major topic of research because cyber attackers pose a threat to national security. Securing ground-space communications for NASA missions is important because attackers could endanger mission success and human lives. This thesis describes how an open source IPsec software package was used to create a secure and reliable channel for ground-space communications. A cost efficient, reproducible hardware testbed was also created to simulate ground-space communications. The testbed enables simulation of low-bandwidth and high latency communications links to experiment how the open source IPsec software reacts to these network constraints. Test cases were built that allowed for validation of the testbed and the open source IPsec software. The test cases also simulate using an IPsec connection from mission control ground routers to points of interest in outer space. Tested open source IPsec software did not meet all the requirements. Software changes were suggested to meet requirements.

  13. Manned Mission Space Exploration Utilizing a Flexible Universal Module

    Science.gov (United States)

    Humphries, P.; Barez, F.; Gowda, A.

    2018-02-01

    The proposed ASMS, Inc. "Flexible Universal Module" is in support of NASA's Deep Space Gateway project. The Flexible Universal Module provides a possible habitation or manufacturing environment in support of Manned Mission for Space Exploration.

  14. Anaesthesia in austere environments: literature review and considerations for future space exploration missions.

    Science.gov (United States)

    Komorowski, Matthieu; Fleming, Sarah; Mawkin, Mala; Hinkelbein, Jochen

    2018-01-01

    Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions. We have conducted a literature review on anaesthesia in austere environments relevant to distant space missions. In each setting, we assessed how the problems related to the provision of anaesthesia (e.g., medical kit and skills) are dealt with or prepared for. We analysed how these factors could be applied to the unique environment of a space exploration mission. The delivery of anaesthesia will be complicated by many factors including space-induced physiological changes and limitations in skills and equipment. The basic principles of a safe anaesthesia in an austere environment (appropriate training, presence of minimal safety and monitoring equipment, etc.) can be extended to the context of a space exploration mission. Skills redundancy is an important safety factor, and basic competency in anaesthesia should be part of the skillset of several crewmembers. The literature suggests that safe and effective anaesthesia could be achieved by a physician during future space exploration missions. In a life-or-limb situation, non-physicians may be able to conduct anaesthetic procedures, including simplified general anaesthesia.

  15. Conceptual design of a crewed reusable space transportation system aimed at parabolic flights: stakeholder analysis, mission concept selection, and spacecraft architecture definition

    Science.gov (United States)

    Fusaro, Roberta; Viola, Nicole; Fenoglio, Franco; Santoro, Francesco

    2017-03-01

    This paper proposes a methodology to derive architectures and operational concepts for future earth-to-orbit and sub-orbital transportation systems. In particular, at first, it describes the activity flow, methods, and tools leading to the generation of a wide range of alternative solutions to meet the established goal. Subsequently, the methodology allows selecting a small number of feasible options among which the optimal solution can be found. For the sake of clarity, the first part of the paper describes the methodology from a theoretical point of view, while the second part proposes the selection of mission concepts and of a proper transportation system aimed at sub-orbital parabolic flights. Starting from a detailed analysis of the stakeholders and their needs, the major objectives of the mission have been derived. Then, following a system engineering approach, functional analysis tools as well as concept of operations techniques allowed generating a very high number of possible ways to accomplish the envisaged goals. After a preliminary pruning activity, aimed at defining the feasibility of these concepts, more detailed analyses have been carried out. Going on through the procedure, the designer should move from qualitative to quantitative evaluations, and for this reason, to support the trade-off analysis, an ad-hoc built-in mission simulation software has been exploited. This support tool aims at estimating major mission drivers (mass, heat loads, manoeuverability, earth visibility, and volumetric efficiency) as well as proving the feasibility of the concepts. Other crucial and multi-domain mission drivers, such as complexity, innovation level, and safety have been evaluated through the other appropriate analyses. Eventually, one single mission concept has been selected and detailed in terms of layout, systems, and sub-systems, highlighting also logistic, safety, and maintainability aspects.

  16. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    Science.gov (United States)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  17. Continuity and Change in Family's Role in Long-Duration Space Missions

    Science.gov (United States)

    Johnson, Phyllis

    As long-duration missions become commonplace, it will be important to consider the effect of the astronaut's career on his/her family, and the role of family in supporting that career. In the short history of the space program, archival information about three long-duration programs- Skylab, Shuttle-Mir, and the International Space Station—-provides valuable information about the astronauts' adjustment to increasingly longer times in space. These sources potentially include the astronaut's views about the role of family in that adjustment. The purpose of this paper is to present a qualitative analysis of the astronauts' views about the role family played in his/her career, as well as the effect of the astronaut career on his/her family. Specifically, what roles did family play, e.g., being there at important events, accepting the importance of the astronaut career? How did astronauts view the effects of separation, risks, and publicity on their family? How much did astronauts emphasize dealing with separation through communication with family? How consistent have astronauts' views remained over the three types of missions which have spanned from 1973 to today? The data base for this qualitative study is the Johnson Space Center oral histories for astronauts who participated in Skylab or Shuttle-Mir, and the Johnson Space Center archives of ISS mission journals and logs, and pre-flight interviews with ISS astronauts. Male astronauts are the main focus of the change-over-time information as only one woman participated in Shuttle- Mir and no women were in the Skylab program. However, qualitative data will be presented about female astronauts on ISS and on Shuttle-Mir for some comparative information by sex for those programs. Skylab preliminary findings: Having a wife and parents who were supportive made all of the difference in the astronaut career. It would not have been possible to maintain some semblance of family life without the wife's managing it. Private

  18. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    Science.gov (United States)

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  19. Assessment of Nutrient Stability in Space Foods

    Science.gov (United States)

    Zwart, S. R.; Perchonok, M.; Braby, L. A.; Kloeris, V. A.; Smith, S. M.

    2009-01-01

    Maintaining an intact nutrient supply in the food system flown on spacecraft is a critical issue for mission success and crew health and safety. Early polar expeditions and exploration expeditions by sailing vessels have taught us that a deficiency, or excess, of even a single vitamin in the food supply can be catastrophic. Evidence from ground-based research indicates that some vitamins are destroyed and fatty acids are oxidized (and therefore rendered dangerous or useless) by different types of radiation and by conditions of long-term storage. We hypothesize that radiation and long-term storage in the space-flight environment will affect the stability of vitamins, amino acids, and fatty acids in the space food system. The research objectives of our ongoing stability studies are to determine the stability of water- and fat-soluble vitamins, fatty acids, and amino acids in the space food supply before and after space flight on the International Space Station (ISS). Foods were analyzed after 2 weeks (a flight control), 11, 19, and 28 months of flight. Along with the space-flown foods, ground-based controls matched for time, light, and temperature are analyzed. The flight studies complement planned ground-based studies of the effects of radiation on vitamins, amino acids, and fatty acids. Flight studies are needed because a model based on ground-based data cannot predict all of the effects of the space-flight environment. Flight studies provide a more accurate test system to determine the effects on these nutrients of the temperature, and radiation conditions in the space-flight environment. Ground studies are required to evaluate longer missions and higher radiation levels expected outside low-Earth orbit. In addition to providing information about nutrient stability in space, the results of these studies will help NASA determine if a need exists to develop special packaging that can ensure stability of foods and nutrients in space, or if further studies of nutrient

  20. Classical variables in the era of space photometric missions

    Directory of Open Access Journals (Sweden)

    Molnár L.

    2015-01-01

    Full Text Available The space photometric missions like CoRoT and Kepler transformed our view of pulsating stars, including the well-known RR Lyrae and Cepheid classes. The K2, TESS and PLATO missions will expand these investigations to larger sample sizes and to specific stellar populations.

  1. Tracking and data system support for the Mariner Mars 1971 mission. Volume 3: Orbit insertion through end of primary mission

    Science.gov (United States)

    Barnum, P. W.; Renzetti, N. A.; Textor, G. P.; Kelly, L. B.

    1973-01-01

    The Tracking and Data System (TDS) Support for the Mariner Mars 1971 Mission final report contains the deep space tracking and data acquisition activities in support of orbital operations. During this period a major NASA objective was accomplished: completion of the 180th revolution and 90th day of data gathering with the spacecraft about the planet Mars. Included are presentations of the TDS flight support pass chronology data for each of the Deep Space Stations used, and performance evaluation for the Deep Space Network Telemetry, Tracking, Command, and Monitor Systems. With the loss of Mariner 8 at launch, Mariner 9 assumed the mission plan of Mariner 8, which included the TV mapping cycles and a 12-hr orbital period. The mission plan was modified as a result of a severe dust storm on the surface of Mars, which delayed the start of the TV mapping cycles. Thus, the end of primary mission date was extended to complete the TV mapping cycles.

  2. Cloud Computing Techniques for Space Mission Design

    Science.gov (United States)

    Arrieta, Juan; Senent, Juan

    2014-01-01

    The overarching objective of space mission design is to tackle complex problems producing better results, and faster. In developing the methods and tools to fulfill this objective, the user interacts with the different layers of a computing system.

  3. The Mini Space Farm—A Food Regenerative System in the Long-term Manned Space Mission.

    Science.gov (United States)

    Zhang, Mao

    In this invention we propose rearing six types of small animals which are mainly insects, all the biological wastes (bio-waste) in the space human life environment, including the human and animal feces, inedible parts of the plants and animals, food bits and other bio-wastes,can be feedstuff for rearing these six small animals, each one can recycle and digest the specific wastes to be their nourishing biomass. The biomass of these six animals, combine with the inedible parts of the space plants, will further be used as feedstuff for feeding edible animals of poultry, aquatics, amphibians, even the livestock. The meat, egg and milk from these edible animals are taken as human's animal food. Here we name these animals are as Edible Animal (EA), these six small animals are as Recycling Animals (RA). The water and nutrition left in the residues after rearing the RA can be recycled again by other RA or used to fertilize the space plants. The appropriate space plants include both terrestrial and aquatic species, such as vegetable,grain,feeding plant,edible algae and germs,also be cultivated as vegetarian food which have already successfully developed by NASA and other countries. These RA have strong reproduction ability, short life cycle, rich of nutrition, and can be easily reared in high densities with high efficiency in microgravity. Like the RA, the EA and space plants, they can be continuously reared in cages,boxes and water tanks as the solid manner, their optimal growth temperature and the humidity are same with RA, so they can be fed in the same cabin. Rearing RA, EA and plants together can provide a self-sustaining food system with minimum volume, weight, energy, labor and cost, which is the basis for realizing mini space farm in long term manned space missions. In this way, two kinds of mini space farm models have been designed: A cabin model to be used on ISS and flight craft functioning within a microgravity environment, and a greenhouse model to be used on

  4. Space station needs, attributes and architectural options study. Volume 3: Mission requirements

    Science.gov (United States)

    1983-04-01

    User missions that are enabled or enhanced by a manned space station are identified. The mission capability requirements imposed on the space station by these users are delineated. The accommodation facilities, equipment, and functional requirements necessary to achieve these capabilities are identified, and the economic, performance, and social benefits which accrue from the space station are defined.

  5. Automation of Commanding at NASA: Reducing Human Error in Space Flight

    Science.gov (United States)

    Dorn, Sarah J.

    2010-01-01

    Automation has been implemented in many different industries to improve efficiency and reduce human error. Reducing or eliminating the human interaction in tasks has been proven to increase productivity in manufacturing and lessen the risk of mistakes by humans in the airline industry. Human space flight requires the flight controllers to monitor multiple systems and react quickly when failures occur so NASA is interested in implementing techniques that can assist in these tasks. Using automation to control some of these responsibilities could reduce the number of errors the flight controllers encounter due to standard human error characteristics. This paper will investigate the possibility of reducing human error in the critical area of manned space flight at NASA.

  6. Space Launch System (SLS) Mission Planner's Guide

    Science.gov (United States)

    Smith, David Alan

    2017-01-01

    The purpose of this Space Launch System (SLS) Mission Planner's Guide (MPG) is to provide future payload developers/users with sufficient insight to support preliminary SLS mission planning. Consequently, this SLS MPG is not intended to be a payload requirements document; rather, it organizes and details SLS interfaces/accommodations in a manner similar to that of current Expendable Launch Vehicle (ELV) user guides to support early feasibility assessment. Like ELV Programs, once approved to fly on SLS, specific payload requirements will be defined in unique documentation.

  7. Carrington-L5: The UK/US Space Weather Operational Mission.

    Science.gov (United States)

    Bisi, M. M.; Trichas, M.

    2015-12-01

    Airbus Defence and Space (UK) have carried out a study for an operational L5 space weather mission, in collaboration with RAL, the UK Met Office, UCL and Imperial College London. The study looked at the user requirements for an operational mission, a model instrument payload, and a mission/spacecraft concept. A particular focus is cost effectiveness and timelineness of the data, suitable for operational forecasting needs. The study focussed on a mission at L5 assuming that a US mission to L1 will already occur, on the basis that L5 offers the greatest benefit for SWE predictions. The baseline payload has been selected to address all MOSWOC/SWPC priorities using UK/US instruments, consisting of: a heliospheric imager, coronagraph, EUV imager, magnetograph, magnetometer, solar wind analyser and radiation monitor. The platform is based on extensive re-use from Airbus' past missions to minimize the cost and a Falcon-9 launcher has been selected on the same basis. A schedule analysis shows that the earliest launch could occur in 2020, assuming Phase A KO in 2015. The study team have selected the name "Carrington" for the mission, reflecting the UK's proud history in this domain.

  8. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    Science.gov (United States)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  9. Microbial biodiversity assessment of the European Space Agency's ExoMars 2016 mission.

    Science.gov (United States)

    Koskinen, Kaisa; Rettberg, Petra; Pukall, Rüdiger; Auerbach, Anna; Wink, Lisa; Barczyk, Simon; Perras, Alexandra; Mahnert, Alexander; Margheritis, Diana; Kminek, Gerhard; Moissl-Eichinger, Christine

    2017-10-25

    The ExoMars 2016 mission, consisting of the Trace Gas Orbiter and the Schiaparelli lander, was launched on March 14 2016 from Baikonur, Kazakhstan and reached its destination in October 2016. The Schiaparelli lander was subject to strict requirements for microbial cleanliness according to the obligatory planetary protection policy. To reach the required cleanliness, the ExoMars 2016 flight hardware was assembled in a newly built, biocontrolled cleanroom complex at Thales Alenia Space in Turin, Italy. In this study, we performed microbiological surveys of the cleanroom facilities and the spacecraft hardware before and during the assembly, integration and testing (AIT) activities. Besides the European Space Agency (ESA) standard bioburden assay, that served as a proxy for the microbiological contamination in general, we performed various alternative cultivation assays and utilised molecular techniques, including quantitative PCR and next generation sequencing, to assess the absolute and relative abundance and broadest diversity of microorganisms and their signatures in the cleanroom and on the spacecraft hardware. Our results show that the bioburden, detected microbial contamination and microbial diversity decreased continuously after the cleanroom was decontaminated with more effective cleaning agents and during the ongoing AIT. The studied cleanrooms and change room were occupied by very distinct microbial communities: Overall, the change room harboured a higher number and diversity of microorganisms, including Propionibacterium, which was found to be significantly increased in the change room. In particular, the so called alternative cultivation assays proved important in detecting a broader cultivable diversity than covered by the standard bioburden assay and thus completed the picture on the cleanroom microbiota. During the whole project, the bioburden stayed at acceptable level and did not raise any concern for the ExoMars 2016 mission. The cleanroom complex at

  10. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    replaced by COSTAR. During the second Servicing Mission instruments and other equipment were repaired and updated. The Space Telescope Imaging Spectrograph (STIS) replaced the Goddard High Resolution Spectrograph (GHRS) and the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) replaced the Faint Object Spectrograph (FOS). Servicing mission 3A The original Servicing Mission 3 (initially planned for June 2000) has been split into two missions - SM3A and SM3B - due in part to its complexity, and in part to the urgent need to replace the failed gyroscopes on board. Three gyroscopes must function to meet the telescope's very precise pointing requirements. With only two new operational, observations have had to be suspended, but the telescope will remain safely in orbit until the servicing crew arrives. During this servicing mission * all six gyroscopes will be replaced, * a Fine Guidance Sensor will be replaced, * the spacecraft's computer will be replaced by a new one which will reduce the burden of flight software maintenance and significantly lower costs, * six voltage/temperature kits will be installed to protect spacecraft batteries from overcharging and overheating if the spacecraft enters safe mode, * a new S-Band Single Access Transmitter will replace a failed spare currently aboard the spacecraft, * a solid-state recorder will be installed to replace the tape recorder, * degraded telescope thermal insulation will be replaced if time allows; this insulation is necessary to control the internal temperature on HST. For the mission to be fully successful the gyroscopes, the Fine Guidance Sensor, the computer and the voltage/temperature kits must be installed. The minimum mission success criterion is that HST will have 5 operational gyros after the mission, 4 of them newly installed. The Future During SM3B (presently scheduled for 2001) the astronauts will replace the Faint Object Camera with the Advanced Camera for Surveys (ACS), install a cooling system for

  11. The Role of Space Medicine in Management of Risk in Spaceflight

    Science.gov (United States)

    Clark, Jonathan B.

    2001-01-01

    The purpose of Space Medicine is to ensure mission success by providing quality and comprehensive health care throughout all mission phases to optimize crew health and performance and to prevent negative long-term health consequences. Space flight presents additional hazards and associated risks to crew health, performance, and safety. With an extended human presence in space it is expected that illness and injury will occur on orbit, which may present a significant threat to crew health and performance and to mission success. Maintaining crew health, safety and performance and preventing illness and injury are high priorities necessary for mission success and agency goals. Space flight health care should meet the standards of practice of evidence based clinical medicine. The function of Space Medicine is expected to meet the agency goals as stated in the 1998 NASA Strategic Plan and the priorities established by the Critical Path Roadmap Project. The Critical Path Roadmap Project is an integrated NASA cross-disciplinary strategy to assess, understand, mitigate, and manage the risks associated with long-term exposure to the space flight environment. The evidence based approach to space medicine should be standardized, objective process yielding expected results and establishing clinical practice standards while balancing individual risk with mission (programmatic) risk. The ability to methodically apply available knowledge and expertise to individual and mission health issues will ensure appropriate priorities are assigned and resources are allocated. NASA Space Medicine risk management process is a combined clinical and engineering approach. Competition for weight, power, volume, cost, and crew time must be balanced in making decisions about the care of individual crew with competing agency resources.

  12. Development of an Integrated Countermeasure Device for Long Duration Space Flight and Exploration Missions

    Science.gov (United States)

    Lee, S. M. C.; Streeper, T.; Spiering, B. A.; Loehr, J. A.; Guilliams, M. E.; Bloomberg, J. J.; Mulavara, A. P.; Cavanagh, P. R.; Lang, T.

    2010-01-01

    Musculoskeletal, cardiovascular, and sensorimotor deconditioning have been observed consistently in astronauts and cosmonauts following long-duration spaceflight. Studies in bed rest, a spaceflight analog, have shown that high intensity resistive or aerobic exercise attenuates or prevents musculoskeletal and cardiovascular deconditioning, respectively, but complete protection has not been achieved during spaceflight. Exercise countermeasure hardware used during earlier International Space Station (ISS) missions included a cycle ergometer, a treadmill, and the interim resistive exercise device (iRED). Effectiveness of the countermeasures may have been diminished by limited loading characteristics of the iRED as well as speed restrictions and subject harness discomfort during treadmill exercise. The Advanced Resistive Exercise Device (ARED) and the second generation treadmill were designed to address many of the limitations of their predecessors, and anecdotal reports from ISS crews suggest that their conditioning is better preserved since the new hardware was delivered in 2009. However, several countermeasure devices to protect different physiologic systems will not be practical during exploration missions when the available volume and mass will be severely restricted. The combined countermeasure device (CCD) integrates a suite of hardware into one device intended to prevent spaceflight-induced musculoskeletal, cardiovascular, and sensorimotor deconditioning. The CCD includes pneumatic loading devices with attached cables for resistive exercise, a cycle for aerobic exercise, and a 6 degree of freedom motion platform for balance training. In a proof of concept test, ambulatory untrained subjects increased muscle strength (58%) as well as aerobic capacity (26%) after 12-weeks of exercise training with the CCD (without balance training), improvements comparable to those observed with traditional exercise training. These preliminary results suggest that this CCD can

  13. Multiple spacecraft configuration designs for coordinated flight missions

    Science.gov (United States)

    Fumenti, Federico; Theil, Stephan

    2018-06-01

    Coordinated flight allows the replacement of a single monolithic spacecraft with multiple smaller ones, based on the principle of distributed systems. According to the mission objectives and to ensure a safe relative motion, constraints on the relative distances need to be satisfied. Initially, differential perturbations are limited by proper orbit design. Then, the induced differential drifts can be properly handled through corrective maneuvers. In this work, several designs are surveyed, defining the initial configuration of a group of spacecraft while counteracting the differential perturbations. For each of the investigated designs, focus is placed upon the number of deployable spacecraft and on the possibility to ensure safe relative motion through station keeping of the initial configuration, with particular attention to the required Δ V budget and the constraints violations.

  14. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    Science.gov (United States)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  15. Space medicine considerations: Skeletal and calcium homeostasis

    Science.gov (United States)

    Schneider, Victor B.

    1989-01-01

    Based on the information obtained from space missions, particularly Skylab and the longer Salyut missions, it is clear that bone and mineral metabolism is substantially altered during space flight. Calcium balance becomes increasingly more negative throughout the flight, and the bone mineral content of the os calcis declines. The major health hazards associated with skeletal changes include the signs and symptoms of hypercalcemia with rapid bone turnover, the risk of kidney stones because of hypercalciuria, the lengthy recovery of lost bone mass after flight, the possibility of irreversible bone loss (particularly the trabecular bone), the possible effects of metastated calcification in the soft tissues, and the possible increase in fracture potential. For these reasons, major efforts need to be directed toward elucidating the fundamental mechanisms by which bone is lost in space and developing more effective countermeasures to prevent both short-term and long-term complications.

  16. Advanced Chemical Propulsion for Science Missions

    Science.gov (United States)

    Liou, Larry

    2008-01-01

    The advanced chemical propulsion technology area of NASA's In-Space Technology Project is investing in systems and components for increased performance and reduced cost of chemical propulsion technologies applicable to near-term science missions. Presently the primary investment in the advanced chemical propulsion technology area is in the AMBR high temperature storable bipropellant rocket engine. Scheduled to be available for flight development starting in year 2008, AMBR engine shows a 60 kg payload gain in an analysis for the Titan-Enceladus orbiter mission and a 33 percent manufacturing cost reduction over its baseline, state-of-the-art counterpart. Other technologies invested include the reliable lightweight tanks for propellant and the precision propellant management and mixture ratio control. Both technologies show significant mission benefit, can be applied to any liquid propulsion system, and upon completion of the efforts described in this paper, are at least in parts ready for flight infusion. Details of the technologies are discussed.

  17. End-to-End Trade-space Analysis for Designing Constellation Missions

    Science.gov (United States)

    LeMoigne, J.; Dabney, P.; Foreman, V.; Grogan, P.; Hache, S.; Holland, M. P.; Hughes, S. P.; Nag, S.; Siddiqi, A.

    2017-12-01

    Multipoint measurement missions can provide a significant advancement in science return and this science interest coupled with many recent technological advances are driving a growing trend in exploring distributed architectures for future NASA missions. Distributed Spacecraft Missions (DSMs) leverage multiple spacecraft to achieve one or more common goals. In particular, a constellation is the most general form of DSM with two or more spacecraft placed into specific orbit(s) for the purpose of serving a common objective (e.g., CYGNSS). Because a DSM architectural trade-space includes both monolithic and distributed design variables, DSM optimization is a large and complex problem with multiple conflicting objectives. Over the last two years, our team has been developing a Trade-space Analysis Tool for Constellations (TAT-C), implemented in common programming languages for pre-Phase A constellation mission analysis. By evaluating alternative mission architectures, TAT-C seeks to minimize cost and maximize performance for pre-defined science goals. This presentation will describe the overall architecture of TAT-C including: a User Interface (UI) at several levels of details and user expertise; Trade-space Search Requests that are created from the Science requirements gathered by the UI and validated by a Knowledge Base; a Knowledge Base to compare the current requests to prior mission concepts to potentially prune the trade-space; a Trade-space Search Iterator which, with inputs from the Knowledge Base, and, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generates multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, modeling orbits to balance accuracy and performance. The current version includes uniform and non-uniform Walker constellations as well as Ad-Hoc and precessing constellations, and its

  18. Marshall Space Flight Center - Launching the Future of Science and Exploration

    Science.gov (United States)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  19. Habitability and Human Factors: Lessons Learned in Long Duration Space Flight

    Science.gov (United States)

    Baggerman, Susan D.; Rando, Cynthia M.; Duvall, Laura E.

    2006-01-01

    This study documents the investigation of qualitative habitability and human factors feedback provided by scientists, engineers, and crewmembers on lessons learned from the ISS Program. A thorough review and understanding of this data is critical in charting NASA's future path in space exploration. NASA has been involved in ensuring that the needs of crewmembers to live and work safely and effectively in space have been met throughout the ISS Program. Human factors and habitability data has been collected from every U.S. crewmember that has resided on the ISS. The knowledge gained from both the developers and inhabitants of the ISS have provided a significant resource of information for NASA and will be used in future space exploration. The recurring issues have been tracked and documented; the top 5 most critical issues have been identified from this data. The top 5 identified problems were: excessive onsrbit stowage; environment; communication; procedures; and inadequate design of systems and equipment. Lessons learned from these issues will be used to aid in future improvements and developments to the space program. Full analysis of the habitability and human factors data has led to the following recommendations. It is critical for human factors to be involved early in the design of space vehicles and hardware. Human factors requirements need to be readdressed and redefined given the knowledge gained during previous ISS and long-duration space flight programs. These requirements must be integrated into vehicle and hardware technical documentation and consistently enforced. Lastly, space vehicles and hardware must be designed with primary focus on the user/operator to successfully complete missions and maintain a safe working environment. Implementation of these lessons learned will significantly improve NASA's likelihood of success in future space endeavors.

  20. Implementation and Qualifications Lessons Learned for Space Flight Photonic Components

    Science.gov (United States)

    Ott, Melanie N.

    2010-01-01

    This slide presentation reviews the process for implementation and qualification of space flight photonic components. It discusses the causes for most common anomalies for the space flight components, design compatibility, a specific failure analysis of optical fiber that occurred in a cable in 1999-2000, and another ExPCA connector anomaly involving pins that broke off. It reviews issues around material selection, quality processes and documentation, and current projects that the Photonics group is involved in. The importance of good documentation is stressed.

  1. Evaluating the feasibility of biological waste processing for long term space missions

    Science.gov (United States)

    Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  2. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  3. Near-Earth Object Human Space Flight Accessible Targets Study (NHATS)

    Data.gov (United States)

    National Aeronautics and Space Administration — This list of potential mission targets should not be interpreted as a complete list of viable NEAs for an actual human exploration mission. As the NEA orbits are...

  4. In-flight dose estimates for aircraft crew and pregnant female crew members in military transport missions

    International Nuclear Information System (INIS)

    Alves, J. G.; Mairos, J. C.

    2007-01-01

    Aircraft fighter pilots may experience risks other than the exposure to cosmic radiation due to the characteristics of a typical fighter flight. The combined risks for fighter pilots due to the G-forces, hypobaric hypoxia, cosmic radiation exposure, etc. have determined that pregnant female pilots should remain on ground. However, several military transport missions can be considered an ordinary civil aircraft flight and the question arises whether a pregnant female crew member could still be part of the aircraft crew. The cosmic radiation dose received was estimated for transport missions carried out on the Hercules C-130 type of aircraft by a single air squad in 1 month. The flights departed from Lisboa to areas such as: the Azores, several countries in central and southern Africa, the eastern coast of the USA and the Balkans, and an estimate of the cosmic radiation dose received on each flight was carried out. A monthly average cosmic radiation dose to the aircraft crew was determined and the dose values obtained were discussed in relation to the limits established by the European Union Council Directive 96/29/Euratom. The cosmic radiation dose estimates were performed using the EPCARD v3.2 and the CARI-6 computing codes. EPCARD v3.2 was kindly made available by GSF-National Research Centre for Environment and Health, Inst. of Radiation Protection (Neuherberg (Germany)). CARI-6 (version July 7, 2004) was downloaded from the web site of the Civil Aerospace Medical Inst., Federal Aviation Administration (USA). In this study an estimate of the cosmic radiation dose received by military aircraft crew on typical transport missions is made. (authors)

  5. Nuclear reactor power as applied to a space-based radar mission

    Science.gov (United States)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

  6. Space-DRUMS trade mark sign experimental development using parabolic reduced gravity flights

    International Nuclear Information System (INIS)

    Guigne, J.Y.; Millan, D.; Davidson, R.

    2000-01-01

    Space-DRUMS trade mark sign is a microgravity containerless-processing facility that uses acoustic beams to position large diameter liquid or solid samples within a gas-filled chamber. Its capacity to control the position of large diameter (6 cm) low density solid materials was successfully demonstrated on NASA's DC-9 parabolic aircraft in July 1996; two subsequent flights occurred in 1998 using the KC-135 and A-300 aircraft to further refine the technology used in the system. The working environment for the Space-DRUMS trade mark sign facility is the Space Shuttle/Space Station where long duration microgravity experimentation can take place. Since the reduced gravity environment of an A-300 or a KC-135 parabolic flight is much harsher than that of the Space Shuttle in terms of residual acceleration magnitudes experienced by the samples to be held in position; this more extreme environment allows for most Space-DRUMS trade mark sign technical payload functionality tests to be conducted. In addition to flight hardware shakedowns, parabolic flights continue to be extensively used to study and evaluate the behavior of candidate-advanced materials proposed for ISS Space-DRUMS trade mark sign campaigns. The first samples to be processed in 2001 involve combustion synthesis (also known as SHS - Self-propagating High Temperature Synthesis) of large glass-ceramic and of porous ceramic spheres. Upmassing Space-DRUMS trade mark sign for the International Space Station is scheduled for early 2001

  7. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  8. Tether dynamics and control results for tethered satellite system's initial flight

    Science.gov (United States)

    Chapel, Jim D.; Flanders, Howard

    The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.

  9. Mission Specialist Scott Parazynski arrives at KSC

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski notes the time on his watch upon his late arrival aboard a T-38 jet at the Shuttle Landing Facility. Parazynski's first plane experienced problems at the stop at Tyndall AFB and he had to wait for another jet and pilot to finish the flight to KSC. He joined other crewmembers Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), for final pre-launch preparations. STS-95 is expected to launch at 2 p.m. EST on Oct. 29, last 8 days, 21 hours and 49 minutes, and land at 11:49 a.m. EST on Nov. 7.

  10. Hubble Space Telescope: Should NASA Proceed with a Servicing Mission?

    National Research Council Canada - National Science Library

    Morgan, Daniel

    2006-01-01

    The National Aeronautics and Space Administration (NASA) estimates that without a servicing mission to replace key components, the Hubble Space Telescope will cease scientific operations in 2008 instead of 2010...

  11. The Evolution of Spacelab Ultraviolet Astronomy Missions from OSS-3 through -7 to Astro-1

    Science.gov (United States)

    Gull, Theodore

    2018-01-01

    In the 1960s and 1970s, NASA was building towards a robust program in space astronomy. An evolutionary step from ground-based astronomy to space astronomy was human operation of space telescopes as astronomy in general evolved from astronomers directly at the telescope to application of computers and long distance communications to control to operate remote telescopes. Today ground-based telescopes and space observatories from cubesats to the Hubble Space Telescope and soon the James Webb Space Telescope are routinely operated remotely.In response to the Spacelab Announcement of Opportunity in the early 1980s, three ultraviolet experiments – the Hopkins Ultraviolet Telescope, the Ultraviolet Imaging Telescope and the Wisconsin Ultraviolet PhotoPolarimetry Experiment -- all instruments derived from multiple sounding rocket flights--were selected to fly as an integrated payload attached to a space shuttle. The justification for professional astronomers, both as Mission Specialists from the astronaut cadre and Payload Specialists from the instrument teams, was built to ensure key technical skills both of the science and the instruments. Bundled together as OSS-3 through -7 flights focused on Comet Halley, the experiments went through many changes and delays as a pathfinder for an anticipated series of attached astronomy payloads.By 1986, the five-flight mission had evolved into two missions, Astro-1 dedicated primarily to observe Halley’s Comet in early March 1986 and Astro-2 to fly about one year later. Due to the Challenger disaster 35 days before scheduled launch of Astro-1, the mission went through an initial cancellation and then re-scheduling once the instrument complement of Astro-1 was expanded to include Broad Band X-ray Telescope with emphasis on studying SN1987A. Ultimately Astro-1 flew in December 1990 partnered with an X-ray experiment focused on SN1987A.The nine-day mission was mostly successful despite multiple technical issues overcome by the NASA

  12. Effect of space flight on physiological indexes and antioxidant enzymes of Acer mono

    International Nuclear Information System (INIS)

    Li Yunfei; Yang Fan; Ren Yunhui

    2012-01-01

    To investigate the effects of space flight on physiological indexes and antioxidant enzymes of Acer mono, seeds were divided into two groups, one was treated by carrying on Shijian No.8 breeding satellite for 15 d, and the other was kept on the ground as controls. 5 years old seedlings that derived from the seeds of space flight and the seeds of ground control were chosen as materials, then the growth characteristics, photosynthetic characteristics, soluble protein content and antioxidant enzymes activities were analyzed. The results showed that the plant growth, net photosynthetic rate (Pn), chlorophyll content, superoxide dismutase (SOD) activity and soluble protein content of seedlings after space flight were much higher than those of ground control. However, the changes of malondialdehyde (MDA) content, peroxidase (POD), transpiration rate (Tr), intercellular carbon dioxide concentration (Ci) and stomatal conductance (Gs) were not significantly changed. The net photosynthetic rate (Pn), as well as the plant growth of seedlings after space flight were higher than those of the control. The improved ability of photosynthesis may be one of the reasons that seedlings from seeds of space flight have higher speed of growth. (authors)

  13. Qualification and issues with space flight laser systems and components

    Science.gov (United States)

    Ott, Melanie N.; Coyle, D. B.; Canham, John S.; Leidecker, Henning W., Jr.

    2006-02-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  14. Flight Planning Branch NASA Co-op Tour

    Science.gov (United States)

    Marr, Aja M.

    2013-01-01

    This semester I worked with the Flight Planning Branch at the NASA Johnson Space Center. I learned about the different aspects of flight planning for the International Space Station as well as the software that is used internally and ISSLive! which is used to help educate the public on the space program. I had the opportunity to do on the job training in the Mission Control Center with the planning team. I transferred old timeline records from the planning team's old software to the new software in order to preserve the data for the future when the software is retired. I learned about the operations of the International Space Station, the importance of good communication between the different parts of the planning team, and enrolled in professional development classes as well as technical classes to learn about the space station.

  15. The Generalized Support Software (GSS) Domain Engineering Process: An Object-Oriented Implementation and Reuse Success at Goddard Space Flight Center

    Science.gov (United States)

    Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren

    1997-01-01

    The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions

  16. Parameterized Flight Mission for Secondary Power Requirement Estimations of Commercial Transport Aircraft

    OpenAIRE

    Lampl, Thomas; Muschkorgel, Sandra; Hornung, Mirko;

    2018-01-01

    The trend towards More-Electric Aircraft (MEA) and the introduction of new system technologies lead to considerable changes at the system level of commercial transport aircraft. Because the number of systems and power requirements are increasing, the consideration and integration of aircraft systems in early aircraft design phases is important. The objective of this contribution is to develop a characteristic flight mission with modelled aircraft systems to estimate the secondary power requir...

  17. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  18. Voice loops as coordination aids in space shuttle mission control.

    Science.gov (United States)

    Patterson, E S; Watts-Perotti, J; Woods, D D

    1999-01-01

    Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.

  19. Ground Reaction Forces During Reduced Gravity Running in Parabolic Flight.

    Science.gov (United States)

    Cavanagh, Peter; Rice, Andrea; Glauberman, Molly; Sudduth, Amanda; Cherones, Arien; Davis, Shane; Lewis, Michael; Hanson, Andrea; Wilt, Grier

    2017-08-01

    Treadmills have been employed as both a form of exercise and a countermeasure to prevent changes in the musculoskeletal system on almost all NASA missions and many Russian missions since the early Space Shuttle flights. It is possible that treadmills may also be part of exercise programs on future Mars missions and that they may be a component of exercise facilities in lunar or Martian habitats. In order to determine if the ambient gravity on these destinations will provide osteogenic effects while performing exercise on a treadmill, ground reactions forces (GRFs) were measured on eight subjects (six women and two men) running at 6 mph during parabolic flight in Martian and lunar gravity conditions. On average, stride length increased as gravity decreased. The first and second peaks of the GRFs decreased by 0.156 and 0.196 bodyweights, respectively, per 1/10 g change in ambient gravity. Based on comparisons with previously measured GRF during loaded treadmill running on the International Space Station, we conclude that unloaded treadmill running under lunar and Martian conditions during exploration missions is not likely to be an osteo-protective exercise.Cavanagh P, Rice A, Glauberman M, Sudduth A, Cherones A, Davis S, Lewis M, Hanson A, Wilt G. Ground reaction forces during reduced gravity running in parabolic flight. Aerosp Med Hum Perform. 2017; 88(8):730-736.

  20. Long-range planning cost model for support of future space missions by the deep space network

    Science.gov (United States)

    Sherif, J. S.; Remer, D. S.; Buchanan, H. R.

    1990-01-01

    A simple model is suggested to do long-range planning cost estimates for Deep Space Network (DSP) support of future space missions. The model estimates total DSN preparation costs and the annual distribution of these costs for long-range budgetary planning. The cost model is based on actual DSN preparation costs from four space missions: Galileo, Voyager (Uranus), Voyager (Neptune), and Magellan. The model was tested against the four projects and gave cost estimates that range from 18 percent above the actual total preparation costs of the projects to 25 percent below. The model was also compared to two other independent projects: Viking and Mariner Jupiter/Saturn (MJS later became Voyager). The model gave cost estimates that range from 2 percent (for Viking) to 10 percent (for MJS) below the actual total preparation costs of these missions.

  1. Bone Loss in Space: Shuttle/MIR Experience and Bed Rest Countermeasure Program

    Science.gov (United States)

    Shackelford, L. C.; LeBlanc, A.; Feiveson, A.; Oganov, V.

    1999-01-01

    Loss of bone mineral during space flight was documented in the 1970's Skylab missions. The USSR space program made similar observations in the 1980's. The Institute of Biomedical Problems in Moscow and NASA JSC in 1989 began to collect pre- and post-flight bone mineral density (BMD) using Hologic QDR 1000 DEXA scanners transferred from JSC to Moscow and Star City. DEXA whole body, hip, and lumbar spine scans were performed prior to and during the first week after return from 4- to 6-month missions (plus one 8-month mission and one 14- month mission) on the Mir space station. These data documented the extent and regional nature of bone loss during long duration space flight. Of the 18 cosmonauts participating in this study between 1990 and 1995, seven flew two missions. BMD scans prior to the second flight compared to the first mission preflight scans indicated that recovery was possibly delayed or incomplete. Because of these findings, NASA and IBMP initiated the study "Bone Mineral Loss and Recovery After Shuttle/Mir Flights" in 1995 to evaluate bone recovery during a 3-year post-flight period. All of the 14 participants thus far evaluated lost bone in at least one region of the spine and lower extremities during flight. Of the 14, only one to date has exhibited full return to baseline BNM values in all regions. The current study will continue until the last participant has reached full bone recovery in all regions, has reached a plateau, or until three years after the flight (2001 for the last mission of the program). Bone mineral density losses in space and difficulty in returning to baseline indicate a need for countermeasure development. In late 1996 NASA JSC and Baylor College of Medicine were approved to conduct two countermeasure studies during 17 weeks of bed rest. In 1997 the studies were begun in the bed rest facility established by NASA, Baylor College of Medicine, and The Methodist Hospital in Houston. To date, three bed rest controls, five resistive

  2. UAS Flight Planning Tool for Atmospheric Energy Extraction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft have been flying point to point missions for the past 100 years. Each flight, the fuel energy is burned based upon an assumed time requirement to transport...

  3. Use of phytochrome-dependent reaction in evaluating the effect of space flight factors on the plant organism

    Science.gov (United States)

    Shteyne, B. A.; Nevzgodina, L. V.; Miller, A. T.

    1982-01-01

    The effects of space flight factors on lettuce seeds aboard the Kosmos-936 and Kosmos-1129 satellites for 20 days were studied. The phytochrome dependent (PD) reaction of light sensitive seeds was a sensitive criterion for evaluating the biological effects of space flight factors. The PD reaction of air dry lettuce seeds was suppressed after space flight, especially if the seeds were exposed to open space during the flight. Space flight affects the physiological activity of both phytochrome forms, and both the phi sub 730 dependent reactions of lettuce seeds were suppressed.

  4. Risk evaluation of cosmic-ray exposure in long-term manned space mission

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu; Majima, Hideyuki; Ando, Koichi; Yasuda, Hiroshi; Suzuki, Masao

    1999-03-01

    Long-term manned space missions are planned to be implemented within the first two decades of the 21st century. The International Space Station (ISS) will be ready to run, and a plan to visit Mars is also under way. Humans will live in space for long periods of time and we are planning to do experiments in space to examine various aspects of space science. The main risk in long-term manned space missions is large exposure to space radiation. Human safety must be ensured in space where exposure to cosmic rays is almost 1 mSv a day. As such missions will inevitably result in significant exposure for astronauts, there is increasing need to protect them adequately based on both physical and biological knowledge. A good method to evaluate realistic risk associated with space missions will be in urgent demand. At the National Institute of Radiological Sciences (NIRS), Chiba, Japan, a research institutes of the Science Technology Agency of Japan, high energy cosmic radiation can be simulated only with heavy ion irradiation accelerated by the particle accelerator, Heavy Ion Medical Accelerator (HIMAC). Research to evaluate risk of space radiation, including physical measurement techniques, protective effects, biological effects and risk adjustment, aging, neuronal cell damage and cancer risk are undergoing. We organized a workshop of the latest topics and experimental results of physics and biology related to space radiation supported by Japan Science and Technology Corporation (JST). This workshop was held as a satellite meeting associated with the 32nd Committee on Space Research (COSPAR) Scientific Assembly (Nagoya, July 12-19th, 1998). This volume is an extended proceedings of the workshop. The proceedings contain six main subjects covering the latest information on Risk Evaluation of Cosmic-Ray Exposure in Long-Term Manned Space Mission'. 1. Risk Estimation of Heavy Ion Exposure in Space. 2. Low Dose-Rate Effects and Microbeam-Related Heavy Ions. 3. Chromosome and

  5. Multi-mission space science data processing systems - Past, present, and future

    Science.gov (United States)

    Stallings, William H.

    1990-01-01

    Packetized telemetry that is consistent with the international Consultative Committee for Space Data Systems (CCSDS) has been baselined for future NASA missions such as Space Station Freedom. Some experiences from past and present multimission systems are examined, including current experiences in implementing a CCSDS standard packetized data processing system, relative to the effectiveness of the multimission approach in lowering life cycle cost and the complexity of meeting new mission needs. It is shown that the continued effort toward standardization of telemetry and processing support will permit the development of multimission systems needed to meet the increased requirements of future NASA missions.

  6. Global astrometry with the space interferometry mission

    Science.gov (United States)

    Boden, A.; Unwin, S.; Shao, M.

    1997-01-01

    The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.

  7. Status and Mission Applicability of NASA's In-Space Propulsion Technology Project

    Science.gov (United States)

    Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed

  8. Micropropulsion Systems for Precision Controlled Space Flight

    DEFF Research Database (Denmark)

    Larsen, Jack

    . This project is thus concentrating on developing a method by which an entire, ecient, control system compensating for the disturbances from the space environment and thereby enabling precision formation flight can be realized. The space environment is initially studied and the knowledge gained is used......Space science is subject to a constantly increasing demand for larger coherence lengths or apertures of the space observation systems, which in turn translates into a demand for increased dimensions and subsequently cost and complexity of the systems. When this increasing demand reaches...... the pratical limitations of increasing the physical dimensions of the spacecrafts, the observation platforms will have to be distributed on more spacecrafts flying in very accurate formations. Consequently, the observation platform becomes much more sensitive to disturbances from the space environment...

  9. National Aeronautics and Space Administration Biological Specimen Repository

    Science.gov (United States)

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  10. Carrington-L5: The UK/US Operational Space Weather Monitoring Mission

    Science.gov (United States)

    Trichas, Markos; Gibbs, Mark; Harrison, Richard; Green, Lucie; Eastwood, Jonathan; Bentley, Bob; Bisi, Mario; Bogdanova, Yulia; Davies, Jackie; D'Arrigo, Paolo; Eyles, Chris; Fazakerley, Andrew; Hapgood, Mike; Jackson, David; Kataria, Dhiren; Monchieri, Emanuele; Windred, Phil

    2015-06-01

    Airbus Defence and Space (UK) has carried out a study to investigate the possibilities for an operational space weather mission, in collaboration with the Met Office, RAL, MSSL and Imperial College London. The study looked at the user requirements for an operational mission, a model instrument payload, and a mission/spacecraft concept. A particular focus is cost effectiveness and timelineness of the data, suitable for 24/7 operational forecasting needs. We have focussed on a mission at L5 assuming that a mission to L1 will already occur, on the basis that L5 (Earth trailing) offers the greatest benefit for the earliest possible warning on hazardous SWE events and the most accurate SWE predictions. The baseline payload has been selected to cover all UK Met Office/NOAA's users priorities for L5 using instruments with extensive UK/US heritage, consisting of: heliospheric imager, coronograph, magnetograph, magnetometer, solar wind analyser and radiation monitor. The platform and subsystems are based on extensive re-use from past Airbus Defence and Space spacecraft to minimize the development cost and a Falcon-9 launcher has been selected on the same basis. A schedule analysis shows that the earliest launch could be achieved by 2020, assuming Phase A kick-off in 2015-2016. The study team have selected the name "Carrington" for the mission, reflecting the UK's proud history in this domain.

  11. Mission planning for space based satellite surveillance experiments with the MSX

    Science.gov (United States)

    Sridharan, R.; Fishman, T.; Robinson, E.; Viggh, H.; Wiseman, A.

    1994-01-01

    The Midcourse Space Experiment is a BMDO-sponsored scientific satellite set for launch within the year. The satellite will collect phenomenology data on missile targets, plumes, earth limb backgrounds and deep space backgrounds in the LWIR, visible and ultra-violet spectral bands. It will also conduct functional demonstrations for space-based space surveillance. The Space-Based Visible sensor, built by Lincoln Laboratory, Massachusetts Institute of Technology, is the primary sensor on board the MSX for demonstration of space surveillance. The SBV Processing, Operations and Control Center (SPOCC) is the mission planning and commanding center for all space surveillance experiments using the SBV and other MSX instruments. The guiding principle in the SPOCC Mission Planning System was that all routine functions be automated. Manual analyst input should be minimal. Major concepts are: (I) A high level language, called SLED, for user interface to the system; (2) A group of independent software processes which would generally be run in a pipe-line mode for experiment commanding but can be run independently for analyst assessment; (3) An integrated experiment cost computation function that permits assessment of the feasibility of the experiment. This paper will report on the design, implementation and testing of the Mission Planning System.

  12. Life Science Research in Outer Space: New Platform Technologies for Low-Cost, Autonomous Small Satellite Missions

    Science.gov (United States)

    Ricco, Antonio J.; Parra, Macarena P.; Niesel, David; McGinnis, Michael; Ehrenfreund, Pascale; Nicholson, Wayne; Mancinelli, Rocco; Piccini, Matthew E.; Beasley, Christopher C.; Timucin, Linda R.; hide

    2009-01-01

    We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites ( 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture

  13. Advanced software development workstation: Object-oriented methodologies and applications for flight planning and mission operations

    Science.gov (United States)

    Izygon, Michel

    1993-01-01

    The work accomplished during the past nine months in order to help three different organizations involved in Flight Planning and in Mission Operations systems, to transition to Object-Oriented Technology, by adopting one of the currently most widely used Object-Oriented analysis and Design Methodology is summarized.

  14. Dose limits for cosmic radiation during space flights

    International Nuclear Information System (INIS)

    Draaisma, F.S.

    1991-01-01

    Astronauts are exposed to raised levels of ionizing radiation, which may cause biologic effects during space flights. Insights in these effects should lead to doselimits for astronauts during their full career. (author). 4 refs.; 4 tabs

  15. Tropical Rainfall Measuring Mission (TRMM) and the Future of Rainfall Estimation from Space

    Science.gov (United States)

    Kakar, Ramesh; Adler, Robert; Smith, Eric; Starr, David OC. (Technical Monitor)

    2001-01-01

    Tropical rainfall is important in the hydrological cycle and to the lives and welfare of humans. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. Recognizing the importance of rain in the tropics, NASA for the U.S.A. and NASDA for Japan have partnered in the design, construction and flight of a satellite mission to measure tropical rainfall and calculate the associated latent heat release. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms and applications of these results to areas such as Data Assimilation and model initialization. TRMM has reduced the uncertainty of climatological rainfall in tropics by over a factor of two, therefore establishing a standard for comparison with previous data sets and climatologies. It has documented the diurnal variation of precipitation over the oceans, showing a distinct early morning peak and this satellite mission has shown the utility of precipitation information for the improvement of numerical weather forecasts and climate modeling. This paper discusses some promising applications using TRMM data and introduces a measurement concept being discussed by NASA/NASDA and ESA for the future of rainfall estimation from space.

  16. Innovative approach for low-cost quick-access small payload missions

    Science.gov (United States)

    Friis, Jan W., Jr.

    2000-11-01

    A significant part of the burgeoning commercial space industry is placing an unprecedented number of satellites into low earth orbit for a variety of new applications and services. By some estimates the commercial space industry now exceeds that of government space activities. Yet the two markets remain largely separate, with each deploying dedicated satellites and infrastructure for their respective missions. One commercial space firm, Final Analysis, has created a new program wherein either government, scientific or new technology payloads can be integrated on a commercial spacecraft on commercial satellites for a variety of mission scenarios at a fraction of the cost of a dedicated mission. NASA has recognized the advantage of this approach, and has awarded the Quick Ride program to provide frequent, low cost flight opportunities for small independent payloads aboard the Final Analysis constellation, and investigators are rapidly developing science programs that conform to the proposed payload accommodations envelope. Missions that were not feasible using dedicated launches are now receiving approval under the lower cost Quick Ride approach. Final Analysis has dedicated ten out of its thirty-eight satellites in support of the Quick Ride efforts. The benefit of this type of space access extend beyond NASA science programs. Commercial space firms can now gain valuable flight heritage for new technology and satellite product offerings. Further, emerging international space programs can now place a payload in orbit enabling the country to allocate its resources against the payload and mission requirements rather htan increased launch costs of a dedicated spacecraft. Finally, the low cost nature provides University-based research educational opportunities previously out of the reach of most space-related budgets. This paper will describe the motivation, benefits, technical features, and program costs of the Final Analysis secondary payload program. Payloads can be

  17. Observational Model for Precision Astrometry with the Space Interferometry Mission

    National Research Council Canada - National Science Library

    Turyshev, Slava G; Milman, Mark H

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10-m baseline Michelson optical interferometer operating in the visible waveband that is designed to achieve astrometric accuracy in the single digits of the microarcsecond domain...

  18. HyPlane for Space Tourism and Business Transportation

    Science.gov (United States)

    Savino, R.

    In the present work a preliminary study on a small hypersonic airplane for a long duration space tourism mission is presented. It is also consistent with a point-to-point medium range (5000-6000 km) hypersonic trip, in the frame of the "urgent business travel" market segment. The main ideas is to transfer technological solutions developed for aeronautical and space atmospheric re-entry systems to the design of such a hypersonic airplane. A winged vehicle characterized by high aerodynamic efficiency and able to manoeuvre along the flight path, in all aerodynamic regimes encountered, is taken into consideration. Rocket-Based Combined Cycle and Turbine-Based Combined Cycle engines are investigated to ensure higher performances in terms of flight duration and range. Different flight-paths are also considered, including sub-orbital parabolic trajectories and steady state hypersonic cruise. The former, in particular, takes advantage of the high aerodynamic efficiency during the unpowered phase, in combination with a periodic engine actuation, to guarantee a long duration oscillating flight path. These trajectories offer Space tourists the opportunity of extended missions, characterized by repeated periods of low-gravity at altitudes high enough to ensure a wide view of the Earth from Space.

  19. Irreducible Tests for Space Mission Sequencing Software

    Science.gov (United States)

    Ferguson, Lisa

    2012-01-01

    As missions extend further into space, the modeling and simulation of their every action and instruction becomes critical. The greater the distance between Earth and the spacecraft, the smaller the window for communication becomes. Therefore, through modeling and simulating the planned operations, the most efficient sequence of commands can be sent to the spacecraft. The Space Mission Sequencing Software is being developed as the next generation of sequencing software to ensure the most efficient communication to interplanetary and deep space mission spacecraft. Aside from efficiency, the software also checks to make sure that communication during a specified time is even possible, meaning that there is not a planet or moon preventing reception of a signal from Earth or that two opposing commands are being given simultaneously. In this way, the software not only models the proposed instructions to the spacecraft, but also validates the commands as well.To ensure that all spacecraft communications are sequenced properly, a timeline is used to structure the data. The created timelines are immutable and once data is as-signed to a timeline, it shall never be deleted nor renamed. This is to prevent the need for storing and filing the timelines for use by other programs. Several types of timelines can be created to accommodate different types of communications (activities, measurements, commands, states, events). Each of these timeline types requires specific parameters and all have options for additional parameters if needed. With so many combinations of parameters available, the robustness and stability of the software is a necessity. Therefore a baseline must be established to ensure the full functionality of the software and it is here where the irreducible tests come into use.

  20. Space Launch System Ascent Flight Control Design

    Science.gov (United States)

    Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  1. Development of a Space Station Operations Management System

    Science.gov (United States)

    Brandli, A. E.; McCandless, W. T.

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  2. Development of a Space Station Operations Management System

    Science.gov (United States)

    Brandli, A. E.; Mccandless, W. T.

    1988-01-01

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  3. Command and Data Handling Flight Software test framework: A Radiation Belt Storm Probes practice

    Science.gov (United States)

    Hill, T. A.; Reid, W. M.; Wortman, K. A.

    During the Radiation Belt Storm Probes (RBSP) mission, a test framework was developed by the Embedded Applications Group in the Space Department at the Johns Hopkins Applied Physics Laboratory (APL). The test framework is implemented for verification of the Command and Data Handling (C& DH) Flight Software. The RBSP C& DH Flight Software consists of applications developed for use with Goddard Space Flight Center's core Flight Executive (cFE) architecture. The test framework's initial concept originated with tests developed for verification of the Autonomy rules that execute with the Autonomy Engine application of the RBSP C& DH Flight Software. The test framework was adopted and expanded for system and requirements verification of the RBSP C& DH Flight Software. During the evolution of the RBSP C& DH Flight Software test framework design, a set of script conventions and a script library were developed. The script conventions and library eased integration of system and requirements verification tests into a comprehensive automated test suite. The comprehensive test suite is currently being used to verify releases of the RBSP C& DH Flight Software. In addition to providing the details and benefits of the test framework, the discussion will include several lessons learned throughout the verification process of RBSP C& DH Flight Software. Our next mission, Solar Probe Plus (SPP), will use the cFE architecture for the C& DH Flight Software. SPP also plans to use the same ground system as RBSP. Many of the RBSP C& DH Flight Software applications are reusable on the SPP mission, therefore there is potential for test design and test framework reuse for system and requirements verification.

  4. Science Outreach at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Lebo, George

    2002-07-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  5. Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing

    Science.gov (United States)

    Pitone, D. S.; Klein, J. R.; Twambly, B. J.

    1990-01-01

    Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.

  6. Evolution of the 'Trick' Dynamic Software Executive and Model Libraries for Reusable Flight Software, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to a need for cost-effective small satellite missions, Odyssey Space Research is proposing the development of a common flight software executive and a...

  7. STS-114 Flight Day 6 Highlights

    Science.gov (United States)

    2005-01-01

    Day 6 is a relatively quiet day for the STS-114 crew. The main responsibility for crew members of Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew of the International Space Station (ISS) (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) is to unload supplies from the shuttle payload bay and from the Raffaello Multipurpose Logistics Module onto the ISS. Several of the astronauts answer interview questions from the news media, with an emphasis on the significance of their mission for the Return to Flight, shuttle damage and repair, and the future of the shuttle program. Thomas announces the winners of an essay contest for Australian students about the importance of science and mathematics education. The video includes the installation of a stowage rack for the Human Research Facility onboard the ISS, a brief description of the ISS modules, and an inverted view of the Nile Delta.

  8. Next Generation Simulation Framework for Robotic and Human Space Missions

    Science.gov (United States)

    Cameron, Jonathan M.; Balaram, J.; Jain, Abhinandan; Kuo, Calvin; Lim, Christopher; Myint, Steven

    2012-01-01

    The Dartslab team at NASA's Jet Propulsion Laboratory (JPL) has a long history of developing physics-based simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars. Recent collaboration efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space Center (JSC) have led to significant enhancements to the Dartslab DSENDS (Dynamics Simulator for Entry, Descent and Surface landing) software framework. The new version of DSENDS is now being used for new planetary mission simulations at JPL. JSC is using DSENDS as the foundation for a suite of software known as COMPASS (Core Operations, Mission Planning, and Analysis Spacecraft Simulation) that is the basis for their new human space mission simulations and analysis. In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC MOD team that resulted in the redesign and enhancement of the DSENDS software. We will outline the improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations. We will illustrate how DSENDS simulations are assembled and show results from several mission simulations.

  9. Problems of microbial ecology in man space mission

    Science.gov (United States)

    Lizko, N. N.

    The state of microflora should be considered as one of the important links in chain of the specific functional disorders involving the spaceflight factors effects. At the same time, there occurs an astablishment of nonspecific disbiotic response of the human microflora in the space flights of various duration characterized by a decrease up to a reduction of the "defence" group of microorganisms; by an appearence of unusual microorganisms in various biotypes, by accummulatoin of the potential of pathogenic species of automicroflora with their succeeding colonization and longterm persistence. In experimental animal models to simulate dysbacteriosis and with the use of SPF-rats and primates flow aboard Cosmos biosatellites, the significance of indigenous microflora for preserving microecological homeostasis. Theoretically based and experimentally proven need for increasing the colonization resistence is cofirmed dy the practical use of the measures to stabilize microflora of the cosmonauts during space flights.

  10. STS-95 Post Flight Presentation

    Science.gov (United States)

    1998-01-01

    The STS-95 flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn present a video mission over-view of their space flight. Images include prelaunch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew can be seen being readied in the "whiteroom" for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. The primary objectives, which include the conducting of a variety of science experiments in the pressurized SPACEHAB module, the deployment and retrieval of the Spartan free-flyer payload, and operations with the HST Orbiting Systems Test (HOST) and the International Extreme Ultraviolet Hitchhiker (IEH) payloads are discussed in both the video and still photo presentation.

  11. Development of a Tethered Formation Flight Testbed for ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an innovative, cost-effective flight experiment that will not only reduce the technology risk for future NASA missions but also take full advantage of the...

  12. Formulation of consumables management models: Mission planning processor payload interface definition

    Science.gov (United States)

    Torian, J. G.

    1977-01-01

    Consumables models required for the mission planning and scheduling function are formulated. The relation of the models to prelaunch, onboard, ground support, and postmission functions for the space transportation systems is established. Analytical models consisting of an orbiter planning processor with consumables data base is developed. A method of recognizing potential constraint violations in both the planning and flight operations functions, and a flight data file storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights is presented.

  13. Duque and Parazynski in an emergency egress exercise from Space Shuttle Discovery

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialists Pedro Duque of Spain (left), representing the European Space Agency (ESA), and Scott E. Parazynski (behind him) hurry toward the basket at the 195-foot level of Launch Pad 39B during an emergency egress exercise. Duque and Parazynski, along with other crew members, are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialists John H. Glenn Jr., senator from Ohio, and Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  14. Evolution of telemedicine in the space program and earth applications

    Science.gov (United States)

    Nicogossian, A. E.; Pober, D. F.; Roy, S. A.

    2001-01-01

    Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.

  15. Mission Specialist Scott Parazynski arrives late at KSC

    Science.gov (United States)

    1998-01-01

    The T-38 jet aircraft arrives at the Shuttle Landing Facility carrying STS-95 Mission Specialist Scott E. Parazynski (second seat). The pilot is astronaut Kent Rominger. Parazynski's first plane experienced problems at the stop at Tyndall AFB and he had to wait for another jet and pilot to finish the flight to KSC. He joined other crewmembers Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), for final pre-launch preparations. STS-95 is expected to launch at 2 p.m. EST on Oct. 29, last 8 days, 21 hours and 49 minutes, and land at 11:49 a.m. EST on Nov. 7.

  16. Psychosocial issues affecting crews during long-duration international space missions

    Science.gov (United States)

    Kanas, N.

    1998-01-01

    Psychosocial issues can negatively impact on crew performance and morale during long-duration international space missions. Major psychosocial factors that have been described in anecdotal reports from space and in studies from analog situations on Earth include: 1) crew heterogeneity due to gender differences, cultural issues, and work experiences and motivations; 2) language and dialect variations; and 3) task versus supportive leadership roles. All of these factors can lead to negative sequelae, such as intra-crew tension and cohesion disruptions. Specific sequelae that can result from single factors include subgrouping and scapegoating due to crew heterogeneity; miscommunication due to major or subtle language differences; and role confusion, competition, and status leveling due to inappropriate leadership role definition. It is time to conduct research exploring the impact of these psychosocial factors and their sequelae on space crews during actual long-duration international space missions.

  17. Analytic concepts for assessing risk as applied to human space flight

    International Nuclear Information System (INIS)

    Garrick, B.J.

    1997-01-01

    Quantitative risk assessment (QRA) principles provide an effective framework for quantifying individual elements of risk, including the risk to astronauts and spacecraft of the radiation environment of space flight. The concept of QRA is based on a structured set of scenarios that could lead to different damage states initiated by either hardware failure, human error, or external events. In the context of a spacecraft risk assessment, radiation may be considered as an external event and analyzed in the same basic way as any other contributor to risk. It is possible to turn up the microscope on any particular contributor to risk and ask more detailed questions than might be necessary to simply assess safety. The methods of QRA allow for as much fine structure in the analysis as is desired. For the purpose of developing a basis for comprehensive risk management and considering the tendency to open-quotes fear anything nuclear,close quotes radiation risk is a prime candidate for examination beyond that necessary to answer the basic question of risk. Thus, rather than considering only the customary damage states of fatalities or loss of a spacecraft, it is suggested that the full range of damage be analyzed to quantify radiation risk. Radiation dose levels in the form of a risk curve accomplish such a result. If the risk curve is the complementary cumulative distribution function, then it answers the extended question of what is the likelihood of receiving a specific dose of radiation or greater. Such results can be converted to specific health effects as desired. Knowing the full range of the radiation risk of a space mission and the contributors to that risk provides the information necessary to take risk management actions [operational, design, scheduling of missions around solar particle events (SPE), etc.] that clearly control radiation exposure

  18. Cognitive Neuroscience in Space

    Directory of Open Access Journals (Sweden)

    Gabriel G. De la Torre

    2014-07-01

    Full Text Available Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.

  19. Accompanied by the Shuttle Training Aircraft, Discovery touches down after successful mission STS-95

    Science.gov (United States)

    1998-01-01

    The Shuttle Training Aircraft (top) seems to chase orbiter Discovery as it touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  20. A Reusable and Adaptable Software Architecture for Embedded Space Flight System: The Core Flight Software System (CFS)

    Science.gov (United States)

    Wilmot, Jonathan

    2005-01-01

    The contents include the following: High availability. Hardware is in harsh environment. Flight processor (constraints) very widely due to power and weight constraints. Software must be remotely modifiable and still operate while changes are being made. Many custom one of kind interfaces for one of a kind missions. Sustaining engineering. Price of failure is high, tens to hundreds of millions of dollars.