WorldWideScience

Sample records for space communications photo

  1. Space Tweetup - from a participant to a Mars Tweetup organizer and a new format of space communication

    Science.gov (United States)

    Haider, O.; Groemer, G.

    2014-01-01

    In September 2011, the European Space Agency (ESA) and the German Space Agency (DLR) organized the first European SpaceTweetup during the German Aerospace day. One of the authors was one of 60 participants at this SpaceTweetup in Cologne and experienced the concept of a Tweetup and the engagement of the participants from the inside view. Building upon this experience, the Austrian Space Forum (OeWF) organized the first Austrian MarsTweetup during the “Dachstein Mars analog simulation”. Between 27 Apr,2001 and May,2012, a five day Mars simulation was conducted by the Austrian Space Forum and international research partners at the Giant Ice caves at the Dachstein region in Austria. During this field test, the Aouda.X spacesuit simulator and selected geophysical and life-science related experiments were conducted. In this paper we outline the potential and limitations of social media and how to engage the general public to participate and communicate about space projects through their own experience. We show examples of material SpaceTweetup participants produced e.g. hundreds of tweets during the actual event, blog entries, photo galleries and how space communication can benefit from it. Our considerations on organizing a SpaceTweetup are complemented with a section on lessons learned.

  2. Infrared Free Space Communication - The Autonomous Testing of Free Space Infrared Communication

    Science.gov (United States)

    Heldman, Christopher

    2017-01-01

    Fiber optics has been a winning player in the game of high-speed communication and data transfer in cable connections. Yet, in free space RF has been the repeated choice of communication medium of the space industry. Investigating the benefits of free space optical communication over radio frequency is worthwhile. An increase in science data rate return capabilities could occur if optical communication is implemented. Optical communication systems also provide efficiencies in power, mass, and volume over RF systems1. Optical communication systems have been demonstrated from a satellite in orbit with the moon to earth, and resulted in the highest data rates ever seen through space (622Mbps)2. Because of these benefits, optical communication is far superior to RF. The HiDRA (High Data Rate Architecture) project is researching Passive Misalignment Mitigation of Dynamic Free Apace Optical Communication Links. The goal of this effort is to enable gigabit per second transmission of data in short range dynamic links (less than 100 meters). In practice this would enhance data rates between sites on the International Space Station with minimal size, weight, and power requirements. This paper will focus on an autonomous code and a hardware setup that will be used to fulfill the next step in the research being conducted. The free space optical communications pointing downfalls will be investigated. This was achieved by creating 5 python programs and a top-level code to automate this test.

  3. OAS :: Photos

    Science.gov (United States)

    subscriptions Videos Photos Live Webcast Social Media Facebook @oasofficial Facebook Twitter @oas_official Photos and Symbols Authorities Social Media Facebook Twitter Newsletters Press and Communications Rights Actions against Corruption C Children Civil Registry Civil Society Contact Us Culture Cyber

  4. Perovskite photodetectors with both visible-infrared dual-mode response and super-narrowband characteristics towards photo-communication encryption application.

    Science.gov (United States)

    Wu, Ye; Li, Xiaoming; Wei, Yi; Gu, Yu; Zeng, Haibo

    2017-12-21

    Photo-communication has attracted great attention because of the rapid development of wireless information transmission technology. However, it is still a great challenge in cryptography communications, where it is greatly weakened by the openness of the light channels. Here, visible-infrared dual-mode narrowband perovskite photodetectors were fabricated and a new photo-communication encryption technique was proposed. For the first time, highly narrowband and two-photon absorption (TPA) resultant photoresponses within a single photodetector are demonstrated. The full width at half maximum (FWHM) of the photoresponse is as narrow as 13.6 nm in the visible range, which is superior to state-of-the-art narrowband photodetectors. Furthermore, these two merits of narrowband and TPA characteristics are utilized to encrypt the photo-communication based on the above photodetectors. When sending information and noise signals with 532 and 442 nm laser light simultaneously, the perovskite photodetectors only receive the main information, while the commercial Si photodetector responds to both lights, losing the main information completely. The final data are determined by the secret key through the TPA process as preset. Such narrowband and TPA detection abilities endow the perovskite photodetectors with great potential in future security communication and also provide new opportunities and platforms for encryption techniques.

  5. NASA's current activities in free space optical communications

    Science.gov (United States)

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  6. Dember effect photodetectors and the effects of turbulence on free-space optical communication systems

    Science.gov (United States)

    Dikmelik, Yamac

    High-speed free-space optical communication systems have recently utilized components that have been developed for fiber-optic communication systems. The received laser beam in such a system must be coupled into a single-mode fiber at the input of a commercially available receiver module or a wavelength division demultiplexer. However, one effect of propagation through atmospheric turbulence is that the spatial coherence of a laser beam is degraded and the percentage of the available power that can be coupled into the single-mode fiber is limited. This dissertation presents a numerical evaluation of fiber coupling efficiency for laser light distorted by atmospheric turbulence. The results for weak fluctuation conditions provide the level of coupling efficiency that can be expected for a given turbulence strength. In addition, the results show that the link distance must be limited to 400 m under moderate turbulence conditions if the link budget requires a coupling efficiency of 0.1. We also investigate the use of a coherent fiber array as a receiver structure to improve the fiber coupling efficiency of a free-space optical communication system. Our numerical results show that a coherent fiber array that consists of seven subapertures would increase fiber coupling efficiency by a significant amount for representative turbulence conditions and link distances. The use of photo-emf detectors as elements of a wavefront sensor for an adaptive optics system is also considered as an alternative method of reducing the effects of turbulence on a free-space optical communication system. Dember and photo-emf currents are investigated in silicon photoconductive detectors both theoretically and experimentally. Our results show that Dember photocurrents dominate the response of high-purity silicon samples with top surface electrodes to a moving interference pattern. The use of surface electrodes leads to shadowed regions beneath the electrodes and Dember photocurrents appear

  7. Space industrialization - Education. [via communication satellites

    Science.gov (United States)

    Joels, K. M.

    1978-01-01

    The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.

  8. Religion and Communication Spaces. A Semio-pragmatic Approach

    Directory of Open Access Journals (Sweden)

    Roger Odin

    2015-11-01

    Full Text Available Following the reflection initiated in his book The Spaces of Communication, Roger Odin suggests a new distinction between physical communication spaces and mental communication spaces (spaces that we have inside us. The suggestion is exemplified by three film analyses dedicated to the relationships between religion and communication.

  9. Transition From NASA Space Communication Systems to Commerical Communication Products

    Science.gov (United States)

    Ghazvinian, Farzad; Lindsey, William C.

    1994-01-01

    Transitioning from twenty-five years of space communication system architecting, engineering and development to creating and marketing of commercial communication system hardware and software products is no simple task for small, high-tech system engineering companies whose major source of revenue has been the U.S. Government. Yet, many small businesses are faced with this onerous and perplexing task. The purpose of this talk/paper is to present one small business (LinCom) approach to taking advantage of the systems engineering expertise and knowledge captured in physical neural networks and simulation software by supporting numerous National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) projects, e.g., Space Shuttle, TDRSS, Space Station, DCSC, Milstar, etc. The innovative ingredients needed for a systems house to transition to a wireless communication system products house that supports personal communication services and networks (PCS and PCN) development in a global economy will be discussed. Efficient methods for using past government sponsored space system research and development to transition to VLSI communication chip set products will be presented along with notions of how synergy between government and industry can be maintained to benefit both parties.

  10. Optical space communication: An overview

    International Nuclear Information System (INIS)

    Jain, V.K.

    1994-01-01

    In this paper, importance of the optical space communication has been highlighted. Its merits and demerits over the conventional microwave system has been presented. In contrast to coherent systems, use of an optical preamplifier in direct detection system has been emphasized. Status of some of the ongoing/future space communication projects has been given. (author). 9 refs, 5 figs

  11. The human communication space towards I-centric communications

    CERN Document Server

    Arbanowski, S; Steglich, S; Popescu-Zeletin, R

    2001-01-01

    A variety of concepts for service integration and corresponding systems have been developed. On one hand, they aim for the interworking and integration of classical telecommunications and data communications services. On the other, they are focusing on universal service access from a variety of end-user systems. Many of the technical problems, resulting from service integration and service personalisation, have been solved. However, all these systems are driven by the concept of providing several technologies to users by keeping the peculiarity of each service. Looking at human communication behaviour and communication space, it is obvious that human beings interact habitually in a set of contexts with their environment. The individual information preferences and needs, persons to interact with, and the set of devices controlled by each individual define their personal communication space. Following this view, a new approach is to build communication systems not on the basis of specific technologies, but on t...

  12. Communication spaces.

    Science.gov (United States)

    Coiera, Enrico

    2014-01-01

    Annotations to physical workspaces such as signs and notes are ubiquitous. When densely annotated, work areas become communication spaces. This study aims to characterize the types and purpose of such annotations. A qualitative observational study was undertaken in two wards and the radiology department of a 440-bed metropolitan teaching hospital. Images were purposefully sampled; 39 were analyzed after excluding inferior images. Annotation functions included signaling identity, location, capability, status, availability, and operation. They encoded data, rules or procedural descriptions. Most aggregated into groups that either created a workflow by referencing each other, supported a common workflow without reference to each other, or were heterogeneous, referring to many workflows. Higher-level assemblies of such groupings were also observed. Annotations make visible the gap between work done and the capability of a space to support work. Annotations are repairs of an environment, improving fitness for purpose, fixing inadequacy in design, or meeting emergent needs. Annotations thus record the missing information needed to undertake tasks, typically added post-implemented. Measuring annotation levels post-implementation could help assess the fit of technology to task. Physical and digital spaces could meet broader user needs by formally supporting user customization, 'programming through annotation'. Augmented reality systems could also directly support annotation, addressing existing information gaps, and enhancing work with context sensitive annotation. Communication spaces offer a model of how work unfolds. Annotations make visible local adaptation that makes technology fit for purpose post-implementation and suggest an important role for annotatable information systems and digital augmentation of the physical environment.

  13. Silicon Photonics for Space Communications

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is aimed to address level two "Optical Communication and Navigation" needs within the "5.0 Communications, Navigation, and Orbital Debris Tracking and...

  14. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  15. Beaconless Pointing for Deep-Space Optical Communication

    Science.gov (United States)

    Swank, Aaron J.; Aretskin-Hariton, Eliot; Le, Dzu K.; Sands, Obed S.; Wroblewski, Adam

    2016-01-01

    Free space optical communication is of interest to NASA as a complement to existing radio frequency communication methods. The potential for an increase in science data return capability over current radio-frequency communications is the primary objective. Deep space optical communication requires laser beam pointing accuracy on the order of a few microradians. The laser beam pointing approach discussed here operates without the aid of a terrestrial uplink beacon. Precision pointing is obtained from an on-board star tracker in combination with inertial rate sensors and an outgoing beam reference vector. The beaconless optical pointing system presented in this work is the current approach for the Integrated Radio and Optical Communication (iROC) project.

  16. Communicating space weather to policymakers and the wider public

    Science.gov (United States)

    Ferreira, Bárbara

    2014-05-01

    As a natural hazard, space weather has the potential to affect space- and ground-based technological systems and cause harm to human health. As such, it is important to properly communicate this topic to policymakers and the general public alike, informing them (without being unnecessarily alarmist) about the potential impact of space-weather phenomena and how these can be monitored and mitigated. On the other hand, space weather is related to interesting phenomena on the Sun such as coronal-mass ejections, and incorporates one of the most beautiful displays in the Earth and its nearby space environment: aurora. These exciting and fascinating aspects of space weather should be cultivated when communicating this topic to the wider public, particularly to younger audiences. Researchers have a key role to play in communicating space weather to both policymakers and the wider public. Space scientists should have an active role in informing policy decisions on space-weather monitoring and forecasting, for example. And they can exercise their communication skills by talking about space weather to school children and the public in general. This presentation will focus on ways to communicate space weather to wider audiences, particularly policymakers. It will also address the role researchers can play in this activity to help bridge the gap between the space science community and the public.

  17. Space weather effects on communications

    Science.gov (United States)

    Lanzerotti, Louis J.

    In the 150 years since the advent of the first electrical communication system - the electrical telegraph - the diversity of communications technologies that are embedded within space-affected environments have vastly increased. The increasing sophistication of these communications technologies, and how their installation and operations may relate to the environments in which they are embedded, requires ever more sophisticated understanding of natural physical phenomena. At the same time, the business environment for most present-day communications technologies that are affected by space phenomena is very dynamic. The commercial and national security deployment and use of these technologies do not wait for optimum knowledge of possible environmental effects to be acquired before new technological embodiments are created, implemented, and marketed. Indeed, those companies that might foolishly seek perfectionist understanding of natural effects can be left behind by the marketplace. A well-considered balance is needed between seeking ever deeper understanding of physical phenomena and implementing `engineering' solutions to current crises. The research community must try to understand, and operate in, this dynamic environment.

  18. 47 CFR 25.273 - Duties regarding space communications transmissions.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Duties regarding space communications transmissions. 25.273 Section 25.273 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.273 Duties regarding space...

  19. Free-space communication with over 100 spatial modes

    CSIR Research Space (South Africa)

    Rosales-Guzmán, C

    2016-10-01

    Full Text Available Congress 2016: Advanced Solid State Lasers (ASSL); Applications of Lasers for Sensing and Free Space Communications (LS&C), 30 October - 3 November 2016, Boston, Massachusetts, United States Free-space communication with over 100 spatial modes...

  20. Research on Retro-reflecting Modulation in Space Optical Communication System

    Science.gov (United States)

    Zhu, Yifeng; Wang, Guannan

    2018-01-01

    Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.

  1. Space Shuttle Underside Astronaut Communications Performance Evaluation

    Science.gov (United States)

    Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2005-01-01

    The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

  2. Communications among elements of a space construction ensemble

    Science.gov (United States)

    Davis, Randal L.; Grasso, Christopher A.

    1989-01-01

    Space construction projects will require careful coordination between managers, designers, manufacturers, operators, astronauts, and robots with large volumes of information of varying resolution, timeliness, and accuracy flowing between the distributed participants over computer communications networks. Within the CSC Operations Branch, we are researching the requirements and options for such communications. Based on our work to date, we feel that communications standards being developed by the International Standards Organization, the CCITT, and other groups can be applied to space construction. We are currently studying in depth how such standards can be used to communicate with robots and automated construction equipment used in a space project. Specifically, we are looking at how the Manufacturing Automation Protocol (MAP) and the Manufacturing Message Specification (MMS), which tie together computers and machines in automated factories, might be applied to space construction projects. Together with our CSC industrial partner Computer Technology Associates, we are developing a MAP/MMS companion standard for space construction and we will produce software to allow the MAP/MMS protocol to be used in our CSC operations testbed.

  3. Three-dimensional image capturing and representation for multimedia ambiance communication

    Science.gov (United States)

    Ichikawa, Tadashi; Iwasawa, Shoichiro; Yamada, Kunio; Kanamaru, Toshifumi; Naemura, Takeshi; Aizawa, Kiyoharu; Morishima, Shigeo; Saito, Takahiro

    2001-02-01

    Multimedia Ambiance Communication is as a means of achieving shared-space communication in an immersive environment consisting of an arch-type stereoscopic projection display. Our goal is to enable shared-space communication by creating a photo-realistic three-dimensional (3D) image space that users can feel a part of. The concept of a layered structure defined for painting, such as long-range, mid-range, and short-range views, can be applied to a 3D image space. New techniques, such as two-plane expression, high quality panorama image generation and setting representation for image processing, 3D image representation and generation for photo- realistic 3D image space have been developed. Also, we propose a life-like avatar within the 3D image space. To obtain the characteristics of user's body, a human subject is scanned using a CyberwareTM whole body scanner. The output from the scanner, a range image, is a good start for modeling the avatar's geometric shape. A generic human surface model is fitted to the range image. The obtained model is topologically equivalent even if our method is applied to another subject. If a generic model with motion definitions is employed, and common motion rules can be applied to all models made from the generic model.

  4. Challenges of Integrating NASA's Space Communications Networks

    Science.gov (United States)

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  5. Challenges of Integrating NASAs Space Communication Networks

    Science.gov (United States)

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  6. Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection

    Science.gov (United States)

    Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.

    2009-01-01

    The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.

  7. Downlink Fiber Laser Transmitter for Deep Space Communication, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Space Communications and Navigation (SCaN) roadmap, calls for an integrated network approach to communication and navigation needs for robotic and human space...

  8. User Needs and Advances in Space Wireless Sensing and Communications

    Science.gov (United States)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions

  9. The museum foyer as a transformative space of communication

    DEFF Research Database (Denmark)

    Laursen, Ditte; Kristiansen, Erik; Drotner, Kirsten

    2016-01-01

    has four transformative functions, and we ask the following question: How do people entering the museum practise these transformative functions so as to become visitors – and become non-visitors again on leaving? Answers are provided through an empirical analysis of the foyer as a transformative...... communicative space. Based on qualitative studies of four divergent Danish museums and a science centre, we demonstrate that the foyer’s communicative space supports transformative functions consisting of multiple phases before and after the visit itself, namely arrival–orientation–service–preparation (before......This article explores how we may study physical museum foyers as multilayered spaces of communication. Based on a critical examination of ways in which the museum foyer is conceptualised in the research literature, we define the foyer as a transformative space of communication for visitors which...

  10. Characterization of the transverse phase space at the photo-injector test facility in DESY, Zeuthen site

    International Nuclear Information System (INIS)

    Staykov, Lazar

    2012-10-01

    High brightness electron beams with charge of 1 nC and low transverse emittance are necessary for the functioning of advanced light sources such as the Free-electron Laser in Hamburg (FLASH) and the European X-ray FEL (XFEL). The photo-injector test facility at DESY, Zeuthen site (PITZ) is dedicated to the optimization of such electron beams. At PITZ the electrons are produced using an RF gun cavity operated at accelerating gradients of up to 60 MV/m. The gun is equipped with a pair of solenoids for the compensation of the emittance growth due to linear space charge forces. This solenoid compensation scheme is enhanced with a properly matched TESLA type normal conducting booster cavity. The main tool for the characterization of the transverse phase space of the electron beam at PITZ is the emittance measurement system (EMSY). It employs the single slit method for the measurement of the transverse phase space distribution of the electron beam. In this thesis, the performance of the EMSY was optimized for measurement of low emittances in a wide range of photo-injector parameters including such that result in electron beams close to the XFEL specifications. First results on the characterization of the PITZ photo-injector with a gun operated at maximum accelerating gradient of 60 MV/m are presented. This includes scans of the solenoid focusing strength, the initial beam size and the booster gradient. A comparison between results obtained at lower accelerating gradients is made with emphasize on the benefit of higher accelerating gradient.

  11. Characterization of the transverse phase space at the photo-injector test facility in DESY, Zeuthen site

    Energy Technology Data Exchange (ETDEWEB)

    Staykov, Lazar

    2012-10-15

    High brightness electron beams with charge of 1 nC and low transverse emittance are necessary for the functioning of advanced light sources such as the Free-electron Laser in Hamburg (FLASH) and the European X-ray FEL (XFEL). The photo-injector test facility at DESY, Zeuthen site (PITZ) is dedicated to the optimization of such electron beams. At PITZ the electrons are produced using an RF gun cavity operated at accelerating gradients of up to 60 MV/m. The gun is equipped with a pair of solenoids for the compensation of the emittance growth due to linear space charge forces. This solenoid compensation scheme is enhanced with a properly matched TESLA type normal conducting booster cavity. The main tool for the characterization of the transverse phase space of the electron beam at PITZ is the emittance measurement system (EMSY). It employs the single slit method for the measurement of the transverse phase space distribution of the electron beam. In this thesis, the performance of the EMSY was optimized for measurement of low emittances in a wide range of photo-injector parameters including such that result in electron beams close to the XFEL specifications. First results on the characterization of the PITZ photo-injector with a gun operated at maximum accelerating gradient of 60 MV/m are presented. This includes scans of the solenoid focusing strength, the initial beam size and the booster gradient. A comparison between results obtained at lower accelerating gradients is made with emphasize on the benefit of higher accelerating gradient.

  12. Correlation-Preserving Photo Collage.

    Science.gov (United States)

    Liu, Lingjie; Zhang, Hongjie; Jing, Guangmei; Guo, Yanwen; Chen, Zhonggui; Wang, Wenping

    2017-05-12

    A new method is presented for producing photo collages that preserve content correlation of photos. We use deep learning techniques to find correlation among given photos to facilitate their embedding on the canvas, and develop an efficient combinatorial optimization technique to make correlated photos stay close to each other. To make efficient use of canvas space, our method first extracts salient regions of photos and packs only these salient regions. We allow the salient regions to have arbitrary shapes, therefore yielding informative, yet more compact collages than by other similar collage methods based on salient regions. We present extensive experimental results, user study results, and comparisons against the state-of-the-art methods to show the superiority of our method.

  13. ATLAS HEC PHOTOS TRIUMF

    CERN Multimedia

    1997-01-01

    Photo 1 - Removal of a glued foil from the glue press. The foils still need to be cut with a steel rule die and the HV pins soldered on. Photo 2 - Inspection of EST foil. Photo 3 - Placing the first plate of the front Module 0 on the stacking table with the tie-rods in place. Photo 4 - As each gap is stacked, it is tested by applying 3kV across each honeycomb sheet and ensuring that the current draw is low (a few tens of nA). Photo 5 - HV testing on a stacked front module. Photo 6 - Detail of a gap in a module. Four sheets of honeycomb spacing mats separate the centre PAD foil from the two EST foils on either side, and hold the EST foils away from the copper absorber structure. Photo 7 - Last plate of rear module being stacked. Photo 8 - Stacked rear module 0. Photo 9 - Four Module 0's, one front and one rear from TRIUMF, one from Germany, and one from and one from Russia, are "married" into one structure. In this picture, two front modules are married together. Photo 10 - After two modules are married, they ...

  14. Free-space communication based on quantum cascade laser

    International Nuclear Information System (INIS)

    Liu Chuanwei; Zhai Shenqiang; Zhang Jinchuan; Zhou Yuhong; Jia Zhiwei; Liu Fengqi; Wang Zhanguo

    2015-01-01

    A free-space communication based on a mid-infrared quantum cascade laser (QCL) is presented. A room-temperature continuous-wave distributed-feedback (DFB) QCL combined with a mid-infrared detector comprise the basic unit of the communication system. Sinusoidal signals at a highest frequency of 40 MHz and modulated video signals with a carrier frequency of 30 MHz were successfully transmitted with this experimental setup. Our research has provided a proof-of-concept demonstration of space optical communication application with QCL. The highest operation frequency of our setup was determined by the circuit-limited modulation bandwidth. A high performance communication system can be obtained with improved modulation circuit system. (paper)

  15. Partnering with Families through Photo Collages

    Science.gov (United States)

    Bacigalupa, Chiara

    2016-01-01

    This article describes the implementation and benefits of a photo-based family communication method called Daily Explorations. Daily Explorations are one- to two-page photo collages that are annotated with meaningful explanations of children's play and e-mailed to parents every day. The process, described in more detail in this article, is a…

  16. Software Defined Radio Architecture Contributions to Next Generation Space Communications

    Science.gov (United States)

    Kacpura, Thomas J.; Eddy, Wesley M.; Smith, Carl R.; Liebetreu, John

    2015-01-01

    Space communications architecture concepts, comprising the elements of the system, the interactions among them, and the principles that govern their development, are essential factors in developing National Aeronautics and Space Administration (NASA) future exploration and science missions. Accordingly, vital architectural attributes encompass flexibility, the extensibility to insert future capabilities, and to enable evolution to provide interoperability with other current and future systems. Space communications architectures and technologies for this century must satisfy a growing set of requirements, including those for Earth sensing, collaborative observation missions, robotic scientific missions, human missions for exploration of the Moon and Mars where surface activities require supporting communications, and in-space observatories for observing the earth, as well as other star systems and the universe. An advanced, integrated, communications infrastructure will enable the reliable, multipoint, high-data-rate capabilities needed on demand to provide continuous, maximum coverage for areas of concentrated activity. Importantly, the cost/value proposition of the future architecture must be an integral part of its design; an affordable and sustainable architecture is indispensable within anticipated future budget environments. Effective architecture design informs decision makers with insight into the capabilities needed to efficiently satisfy the demanding space-communication requirements of future missions and formulate appropriate requirements. A driving requirement for the architecture is the extensibility to address new requirements and provide low-cost on-ramps for new capabilities insertion, ensuring graceful growth as new functionality and new technologies are infused into the network infrastructure. In addition to extensibility, another key architectural attribute of the space communication equipment's interoperability with other NASA communications

  17. FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION

    International Nuclear Information System (INIS)

    SZALEWSKI, B.

    2005-01-01

    The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering

  18. Fibercore AstroGain fiber: multichannel erbium doped fibers for optical space communications

    Science.gov (United States)

    Hill, Mark; Gray, Rebecca; Hankey, Judith; Gillooly, Andy

    2014-03-01

    Fibercore have developed AstroGainTM fiber optimized for multichannel amplifiers used in optical satellite communications and control. The fiber has been designed to take full advantage of the photo-annealing effect that results from pumping in the 980nm region. The proprietary trivalent structure of the core matrix allows optimum recovery following radiation damage to the fiber, whilst also providing a market leading Erbium Doped Fiber Amplifier (EDFA) efficiency. Direct measurements have been taken of amplifier efficiency in a multichannel assembly, which show an effective photo-annealing recovery of up to 100% of the radiation induced attenuation through excitation of point defects.

  19. Using Participatory Photo Novels to Teach Marketing

    Science.gov (United States)

    Das, Kallol

    2012-01-01

    Teaching the restless young generation business students of today is not easy. Furthermore, the traditional lecture method has failed miserably to engage the business students and deliver significant learning. The author presents a discussion on the photo novel as an attractive communication medium and the participatory photo novel as an…

  20. Digital communication constraints in prior space missions

    Science.gov (United States)

    Yassine, Nathan K.

    2004-01-01

    Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this

  1. SPACE COMMUNICATION AND THE MASS MEDIA. A UNESCO REPORT ON THE OCCASION OF THE 1963 SPACE COMMUNICATIONS CONFERENCE. REPORTS AND PAPERS ON MASS COMMUNICATION.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    THIS REPORT DEFINES AND ANALYZES POTENTIAL ASPECTS OF WORLDWIDE COMMUNICATION BY SATELLITE, LISTS TECHNICAL PROBLEMS, AND SUGGESTS USES OF SPACE COMMUNICATION TO PROMOTE EDUCATION, CULTURAL EXCHANGE, AND INFORMATION FLOW. IT IS AVAILABLE FOR $0.50 FROM NATIONAL DISTRIBUTORS OF UNESCO PUBLICATIONS, OR FROM UNESCO, PLACE DE FONTENDOY, PARIS-7E,…

  2. Research in space commercialization, technology transfer and communications, vol. 2

    Science.gov (United States)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined.

  3. Exotic Optical Beam Classes for Free-Space Communication

    Science.gov (United States)

    2016-03-24

    wandering of an optical vortex is one of the significant problems with the application of vortex beams to FSO applications. From a geometrical optics ...AFRL-AFOSR-VA-TR-2016-0131 Exotic optical beam classes for free-space communication Greg Gbur UNIVERSITY OF NOTH CAROLINA AT CHARLOTTE Final Report...12-2015 4. TITLE AND SUBTITLE Exotic optical beam classes for free-space communication 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0009 5c

  4. Atmospheric free-space coherent optical communications with adaptive optics

    Science.gov (United States)

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  5. Diamond Electron-Spin Clocks For Space Navigation and Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision clocks are needed in a broad range of applications, including satellite communication, high-bandwidth wireless communication, computing systems, and...

  6. Research progress of free space coherent optical communication

    Science.gov (United States)

    Tan, Zhenkun; Ke, Xizheng

    2018-02-01

    This paper mainly introduces the research progress of free space coherent optical communication in Xi'an University of Technology. In recent years, the research on the outer modulation technology of the laser, free-space-to-fiber coupling technique, the design of transmitting and receiving optical antenna, adaptive optical technology with or without wave-front sensor, automatic polarization control technology, frequency stabilization technology, heterodyne detection technology and high speed signal processing technology. Based on the above related research, the digital signal modulation, transmission, detection and data recovery are realized by the heterodyne detection technology in the free space optical communication system, and finally the function of smooth viewing high-definition video is realized.

  7. Investigations on the transverse phase space at a photo injector for minimized emittance

    Energy Technology Data Exchange (ETDEWEB)

    Miltchev, V.

    2006-08-15

    Radio frequency photoinjectors are electron sources able to generate beams of extremely high brightness, which are applicable to linac driven Free Electron Lasers (FEL). Because of the high phase space density, the dynamics of the electron beam is dominated by space charge interactions between the particles. This thesis studies the transverse phase space of space charge dominated electron beams produced by the Photo Injector Test Facility in Zeuthen (PITZ). The operation conditions for minimizing the transverse emittance are studied experimentally, theoretically and in simulations. The influence of the longitudinal profile of the driving UV laser pulse on the transverse emittance is investigated. Emphasis is placed on the experimental study of the emittance as a function of different machine parameters like the laser beam spot size, the amplitude of the focusing magnetic field, the rf phase and the electron bunch charge. First investigations on the thermal emittance for Cs{sub 2}Te photocathodes under rf operating conditions are presented. Measurements of the thermal emittance scaling with the photocathode laser spot size are analyzed. The significance of the applied rf field in the emittance formation process is discussed. (orig.)

  8. Investigations on the transverse phase space at a photo injector for minimized emittance

    International Nuclear Information System (INIS)

    Miltchev, V.

    2006-08-01

    Radio frequency photoinjectors are electron sources able to generate beams of extremely high brightness, which are applicable to linac driven Free Electron Lasers (FEL). Because of the high phase space density, the dynamics of the electron beam is dominated by space charge interactions between the particles. This thesis studies the transverse phase space of space charge dominated electron beams produced by the Photo Injector Test Facility in Zeuthen (PITZ). The operation conditions for minimizing the transverse emittance are studied experimentally, theoretically and in simulations. The influence of the longitudinal profile of the driving UV laser pulse on the transverse emittance is investigated. Emphasis is placed on the experimental study of the emittance as a function of different machine parameters like the laser beam spot size, the amplitude of the focusing magnetic field, the rf phase and the electron bunch charge. First investigations on the thermal emittance for Cs 2 Te photocathodes under rf operating conditions are presented. Measurements of the thermal emittance scaling with the photocathode laser spot size are analyzed. The significance of the applied rf field in the emittance formation process is discussed. (orig.)

  9. Facility for the evaluation of space communications and related systems

    Science.gov (United States)

    Kerczewski, Robert J.; Svoboda, James S.; Kachmar, Brian A.

    1995-01-01

    NASA Lewis Research Center's Communications Projects Branch has developed a facility for the evaluation of space communications systems and related types of systems, called the Advanced Space Communications (ASC) Laboratory. The ASC Lab includes instrumentation, testbed hardware, and experiment control and monitor software for the evaluation of components, subsystems, systems, and networks. The ASC lab has capabilities to perform radiofrequency (RF), microwave, and millimeter-wave characterizations as well as measurements using low, medium, or high data rate digital signals. In addition to laboratory measurements, the ASC Lab also includes integrated satellite ground terminals allowing experimentation and measurements accessing operational satellites through real space links.

  10. Laser guide stars for optical free-space communications

    Science.gov (United States)

    Mata-Calvo, Ramon; Bonaccini Calia, Domenico; Barrios, Ricardo; Centrone, Mauro; Giggenbach, Dirk; Lombardi, Gianluca; Becker, Peter; Zayer, Igor

    2017-02-01

    The German Aerospace Center (DLR) and the European Southern Observatory (ESO) performed a measurement campaign together in April and July 2016 at Teide-Observatory (Tenerife), with the support of the European Space Agency (ESA), to investigate the use of laser guide stars (LGS) in ground to space optical communications. Atmospheric turbulence causes strong signal fluctuations in the uplink, due to scintillation and beam wander. In space communications, the use of the downlink channel as reference for pointing and for pre-distortion adaptive optics is limited by the size of the isokinetic and isoplanatic angle in relation to the required point-ahead angle. Pointing and phase errors due to the decorrelation between downward and upward beam due to the point-ahead angle may have a severe impact on the required transmit power and the stability of the communications link. LGSs provide a self-tailored reference to any optical ground-to-space link, independently of turbulence conditions and required point-ahead angle. In photon-starved links, typically in deep-space scenarios, LGSs allow dedicating all downlink received signal to communications purposes, increasing the available link margin. The scope of the joint DLR-ESO measurement campaign was, first, to measure the absolute value of the beam wander (uplink-tilt) using a LGS, taking a natural star as a reference, and, second, to characterize the decrease of correlation between uplink-tilt and downlink-tilt with respect to the angular separation between both sources. This paper describes the experiments performed during the measurement campaigns, providing an overview of the measured data and the first outcomes of the data post-processing.

  11. Radio-wave propagation for space communications systems

    Science.gov (United States)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  12. Participatory Surveillance and Photo Sharing Practices

    DEFF Research Database (Denmark)

    Albrechtslund, Anders; Damkjaer, Maja Sonne; Bøge, Ask Risom

    2019-01-01

    -material perspective on photo-sharing practices. Information, Communication & Society, 19(4), 475–488. Sontag, S. (1977). On Photography. Picador. Steeves, V., & Jones, O. (2010). Editorial: Surveillance, Children and Childhood. Surveillance & Society, 7(3/4), 187–191....... that parents do not generally plan to store or organize their photos, and even less their children’s photos. This seems to indicate a shift from a pre-digital perception of photos as objects to be packaged, accumulated, framed etc. which can age and disappear (see Sontag, 1977) to something perceived less....... References: Albrechtslund, A. (2008). Online Social Networking as Participatory Surveillance. First Monday, 13(3). Fotel, T., & Thomsen, T. U. (2002). The Surveillance of Children’s Mobility. Surveillance & Society, 1(4), 535-554. Lobinger, K. (2016). Photographs as things–photographs of things. A texto...

  13. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    Science.gov (United States)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  14. Development of the Free-space Optical Communications Analysis Software (FOCAS)

    Science.gov (United States)

    Jeganathan, M.; Mecherle, G.; Lesh, J.

    1998-01-01

    The Free-space Optical Communications Analysis Software (FOCAS) was developed at the Jet Propulsion Laboratory (JPL) to provide mission planners, systems engineers and communications engineers with an easy to use tool to analyze optical communications link.

  15. Research into command, control, and communications in space construction

    Science.gov (United States)

    Davis, Randal

    1990-01-01

    Coordinating and controlling large numbers of autonomous or semi-autonomous robot elements in a space construction activity will present problems that are very different from most command and control problems encountered in the space business. As part of our research into the feasibility of robot constructors in space, the CSC Operations Group is examining a variety of command, control, and communications (C3) issues. Two major questions being asked are: can we apply C3 techniques and technologies already developed for use in space; and are there suitable terrestrial solutions for extraterrestrial C3 problems? An overview of the control architectures, command strategies, and communications technologies that we are examining is provided and plans for simulations and demonstrations of our concepts are described.

  16. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    Science.gov (United States)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  17. Security Policy for a Generic Space Exploration Communication Network Architecture

    Science.gov (United States)

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  18. Free-space laser communication technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 11, 12, 1988

    Science.gov (United States)

    Koepf, Gerhard A.; Begley, David L.

    1988-01-01

    The present conference discusses topics in free-space laser communications, laser link characteristics, satellite laser communication systems, optoelectronic components for laser communications, and space laser subsystem technologies. Attention is given to Space Station-based deep-space communication experiments, the application of intersatellite links to operational satellite systems, high-power 0.87 micron channel substrate planar lasers for spaceborne communications, a ground experiment using a CO2 laser transceiver for free-space communications, studies of laser ranging to the TOPEX satellite, diffraction-limited tracking for space communications, and the compact implementation of a real-time, acoustooptic SAR processor.

  19. Free Space Optical Communication for Tactical Operations

    Science.gov (United States)

    2016-09-01

    higher energy level to a lower energy level. The photons are focused to optical lenses before transmission into the air medium. The primary purpose...Security of a free space optical transmission . (n.d.). SONA Optical Wireless , [Online]. Available: http://htcbn.com/HTC_Profile_CD/fSONA/APPNOTE...almost always require on-the-move wireless communications. Radio frequency (RF) communication is used to fill the gap, but RF systems are hard pressed to

  20. Taking the Politics Out of Satellite and Space-Based Communications Protocols

    Science.gov (United States)

    Ivancic, William D.

    2006-01-01

    After many years of studies, experimentation, and deployment, large amounts of misinformation and misconceptions remain regarding applicability of various communications protocols for use in satellite and space-based networks. This paper attempts to remove much of the politics, misconceptions, and misinformation that have plagued spacebased communications protocol development and deployment. This paper provides a common vocabulary for communications; a general discussion of the requirements for various communication environments; an evaluation of tradeoffs between circuit and packet-switching technologies, and the pros and cons of various link, network, transport, application, and security protocols. Included is the applicability of protocol enhancing proxies to NASA, Department of Defense (DOD), and commercial space communication systems.

  1. Vessel noise cuts down communication space for vocalizing fish and marine mammals.

    Science.gov (United States)

    Putland, Rosalyn L; Merchant, Nathan D; Farcas, Adrian; Radford, Craig A

    2018-04-01

    Anthropogenic noise across the world's oceans threatens the ability of vocalizing marine species to communicate. Some species vocalize at key life stages or whilst foraging, and disruption to the acoustic habitat at these times could lead to adverse consequences at the population level. To investigate the risk of these impacts, we investigated the effect of vessel noise on the communication space of the Bryde's whale Balaenoptera edeni, an endangered species which vocalizes at low frequencies, and bigeye Pempheris adspersa, a nocturnal fish species which uses contact calls to maintain group cohesion while foraging. By combining long-term acoustic monitoring data with AIS vessel-tracking data and acoustic propagation modelling, the impact of vessel noise on their communication space was determined. Routine vessel passages cut down communication space by up to 61.5% for bigeyes and 87.4% for Bryde's whales. This influence of vessel noise on communication space exceeded natural variability for between 3.9 and 18.9% of the monitoring period. Additionally, during the closest point of approach of a large commercial vessel, communication space of both species was reduced by a maximum of 99% compared to the ambient soundscape. These results suggest that vessel noise reduces communication space beyond the evolutionary context of these species and may have chronic effects on these populations. To combat this risk, we propose the application or extension of ship speed restrictions in ecologically significant areas, since our results indicate a reduction in sound source levels for vessels transiting at lower speeds. © 2017 John Wiley & Sons Ltd.

  2. Application of spinal code for performance improvement in free-space optical communications

    Science.gov (United States)

    Saiki, Naoya; Okamoto, Eiji; Takenaka, Hideki; Toyoshima, Morio

    2017-09-01

    In recent years, the demand for high-capacity communication has grown, and fiber-optic transmission is being used in wired communications to meet this demand. Similarly, free-space optics (FSO), which is an optical wireless communication technology that uses laser light, has attracted much attention and has been considered as a suitable alternative to satisfy this demand in wireless communications. Free-space optical communication uses a hundred THz frequency band and allows for high-speed and radio-regulation free transmission, which may provide a solution for the current shortage of radio frequency bands.

  3. Systems and methods for free space optical communication

    Science.gov (United States)

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  4. National Aeronautics and Space Administration plans for space communication technology

    Science.gov (United States)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  5. High-capacity Free-space Optical Communications with Orbital Angular Momentum

    Data.gov (United States)

    National Aeronautics and Space Administration — As the demand for high data returns from space science missions continues, significant improvements over the current radiofrequency (RF) communications architectures...

  6. Robust free-space optical communication for indoor information environment

    Science.gov (United States)

    Nakada, Toyohisa; Itoh, Hideo; Kunifuji, Susumu; Nakashima, Hideyuki

    2003-10-01

    The purpose of our study is to establish a robust communication, while keeping security and privacy, between a handheld communicator and the surrounding information environment. From the viewpoint of low power consumption, we have been developing a reflectivity modulating communication module composed of a liquid crystal light modulator and a corner-reflecting mirror sheet. We installed a corner-reflecting sheet instead of light scattering sheet in a handheld videogame machine with a display screen with a reflection-type liquid crystal. Infrared (IR) LED illuminator attached next to the IR camera of a base station illuminates all the room, and the terminal send their data to the base station by switching ON and OFF of the reflected IR beam. Intensity of reflected light differs with the position and the direction of the terminal, and sometimes the intensity of OFF signal at a certain condition is brighter than that of ON signal at another condition. To improve the communication quality, use of machine learning technique is a possibility of the solution. In this paper, we compare various machine learning techniques for the purpose of free space optical communication, and propose a new algorithm that improves the robustness of the data link. Evaluation using an actual free-space communication system is also described.

  7. An Introduction to Free-space Optical Communications

    Directory of Open Access Journals (Sweden)

    H. Henniger

    2010-06-01

    Full Text Available Over the last two decades free-space optical communication (FSO has become more and more interesting as an adjunct or alternative to radio frequency communication. This article gives an overview of the challenges a system designer has to consider while implementing an FSO system. Typical gains and losses along the path from the transmitter through the medium to the receiver are introduced in this article. Detailed discussions of these topics can be found in this special issue of the Radioengineering Journal.

  8. High Power Uplink Amplifier for Deep Space Communications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...

  9. High Power Uplink Amplifier for Deep Space Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...

  10. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these

  11. Research on optic antenna of space laser communication networking

    Science.gov (United States)

    Meng, Li-Xin; Li, Long; Zhang, Li-zhong; Zhao, Shan-shan; Jiang, Hui-lin

    2013-08-01

    With the highlights of the high transmission rate, large capacity, strong anti-interference and anti-capture ability, good security and small light, space laser communication becomes an important hotspot. At present, the focus of research of the laser communication system is point to point communication structure. However, from the application point of view, both the realization of space laser communication among multiple points and the establishment of the information transmission network can really have the practical value. Aiming at the problem of space laser communication network, this article puts forward the general idea about optical antenna to achieve multiple tracking goals at the same time. Through the analysis of the optical antenna, and the comparing of the current commonly used mirror driving mechanism, a new mirror driving mechanism is designed. The azimuth motion, containing circular grating feedback, is driven by torque motor,voice coil motor of fan produces pitch motion that has fan-shaped grating feedback, so that compression of the structure size to improve the efficiency of the reflector assembly. Through the establishment of the driving mechanism and the kinematic model of 3D entity, the relationship between the single drive azimuth and pitch angle following the angle of incident light is explained. The biggest ideal view area affecting the optical antenna is obtained by the simulation analysis of the kinematics model using MATLAB. The several factors of field overlap area and blind area offers a theoretical basis for structure optimization and control system for the subsequent optical antenna design.

  12. Asynchronous communication in real space process algebra

    NARCIS (Netherlands)

    Baeten, J.C.M.; Bergstra, J.A.

    1991-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a

  13. Asynchronous communication in real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1992-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a

  14. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    Science.gov (United States)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati

  15. Zika-Virus-Related Photo Sharing on Pinterest and Instagram.

    Science.gov (United States)

    Fung, Isaac Chun-Hai; Blankenship, Elizabeth B; Goff, M Elizabeth; Mullican, Lindsay A; Chan, Kwun Cheung; Saroha, Nitin; Duke, Carmen H; Eremeeva, Marina E; Fu, King-Wa; Tse, Zion Tsz Ho

    2017-12-01

    Pinterest (San Francisco, CA) and Instagram (Menlo Park, CA) are 2 popular photo-sharing social media platforms among young individuals. We assessed differences between Instagram and Pinterest in relaying photographic information regarding Zika virus. Specifically, we investigated whether the percentage of Zika-virus-related photos with Spanish or Portuguese texts embedded therein was higher for Instagram than for Pinterest and whether the contents of Zika-virus-related photos shared on Pinterest were different from those shared on Instagram. We retrieved and manually coded 616 Pinterest (key words: "zika" AND "virus") and 616 Instagram (hashtag: #zikavirus) photos. Among the manually coded samples, 47% (290/616) of Pinterest photos and 23% (144/616) of Instagram photos were relevant to Zika virus. Words were embedded in 57% (164/290) of relevant Pinterest photos and all 144 relevant Instagram photos. Among the photos with embedded words, photos in Spanish or Portuguese were more prevalent on Instagram (77/144, 53%) than on Pinterest (14/164, 9%). There were more Zika-virus-related photos on Instagram than on Pinterest pertinent to Zika virus prevention (59/144, 41%, versus 41/290, 14%; PInstagram are similar platforms for Zika virus prevention communication. (Disaster Med Public Health Preparedness. 2017;11:656-659).

  16. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  17. Free space optical communication

    CERN Document Server

    Kaushal, Hemani; Kar, Subrat

    2017-01-01

    This book provides an in-depth understanding of free space optical (FSO) communication with a particular emphasis on optical beam propagation through atmospheric turbulence. The book is structured in such a way that it provides a basic framework for the beginners and also gives a concise description from a designer’s perspective. The book provides an exposure to FSO technology, fundamental limitations, design methodologies, system trade-offs, acquisition, tracking and pointing (ATP) techniques and link-feasibility analysis. The contents of this book will be of interest to professionals and researchers alike. The book may also be used as a textbook for engineering coursework and professional training.

  18. Diaspora: Multilingual and Intercultural Communication across Time and Space

    Science.gov (United States)

    Wei, Li; Hua, Zhu

    2013-01-01

    The nature of diaspora is changing in the 21st century. Yet many of the communication issues remain the same. At the heart of it is multilingual and intercultural communication across time and space. There is much that applied linguists can contribute to the understanding of diaspora in the era of globalization. This article discusses some of the…

  19. Near Earth Architectural Options for a Future Deep Space Optical Communications Network

    Science.gov (United States)

    Edwards, B. L.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    In the near future the National Aeronautics and Space Administration anticipates a significant increase in demand for long-haul communications services from deep space to Earth. Distances will range from 0.1 to 40 AU, with data rate requirements in the 1's to 1000's of Mbits/second. The near term demand is driven by NASA's Space Science Enterprise which wishes to deploy more capable instruments onboard spacecraft and increase the number of deep space missions. The long term demand is driven by missions with extreme communications challenges such as very high data rates from the outer planets, supporting sub-surface exploration, or supporting NASA's Human Exploration and Development of Space Enterprise beyond Earth orbit. Laser communications is a revolutionary communications technology that will dramatically increase NASA's ability to transmit information across the solar system. Lasercom sends information using beams of light and optical elements, such as telescopes and optical amplifiers, rather than RF signals, amplifiers, and antennas. This paper provides an overview of different network options at Earth to meet NASA's deep space lasercom requirements. It is based mainly on work done for the Mars Laser Communications Demonstration Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It reports preliminary conclusions from the Mars Lasercom Study conducted at MIT/LL and on additional work done for the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telesat Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  20. Architectural Options for a Future Deep Space Optical Communications Network

    Science.gov (United States)

    Edwards, B. L.; Benjamin, T.; Scozzafava, J.; Khatri, F.; Sharma, J.; Parvin, B.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    This paper provides an overview of different options at Earth to provide Deep Space optical communication services. It is based mainly on work done for the Mars Laser Communications Demonstration (MLCD) Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It also reports preliminary conclusions from the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telecommunications Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  1. Economic benefits of the Space Station to commercial communication satellite operators

    Science.gov (United States)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  2. Preface to the special issue on ;Optical Communications Exploiting the Space Domain;

    Science.gov (United States)

    Wang, Jian; Yu, Siyuan; Li, Guifang

    2018-02-01

    The demand for high capacity optical communications will continue to be driven by the exponential growth of global internet traffic. Optical communications are about the exploitation of different physical dimensions of light waves, including complex amplitude, frequency (or wavelength), time, polarization, etc. Conventional techniques such as wavelength-division multiplexing (WDM), time-division multiplexing (TDM) and polarization-division multiplexing (PDM) have almost reached their scalability limits. Space domain is the only known physical dimension left and space-division multiplexing (SDM) seems the only option to further scale the transmission capacity and spectral efficiency of optical communications. In recent years, few-mode fiber (FMF), multi-mode fiber (MMF), multi-core fiber (MCF) and few-mode multi-core fiber (FM-MCF) have been widely explored as promising candidates for fiber-based SDM. The challenges for SDM include efficient (de)multiplexer, amplifiers, and multiple-input multiple-output (MIMO) digital signal processing (DSP) techniques. Photonic integration will also be a key technology to SDM. Meanwhile, free-space and underwater optical communications have also exploited the space domain to increase the transmission capacity and spectral efficiency. The challenges include long-distance transmission limited by propagation loss, divergence, scattering and turbulence. Very recently, helically phased light beams carrying orbital angular momentum (OAM) have also seen potential applications both in free-space, underwater and fiber-based optical communications. Actually, different mode bases such as linearly polarized (LP) modes and OAM modes can be employed for SDM. Additionally, SDM could be used in chip-scale photonic interconnects and data center optical interconnects. Quantum processing exploiting the space domain is of great interest. The information capacity limit and physical layer security in SDM optical communications systems are important

  3. Looking at the Family Photo Album

    DEFF Research Database (Denmark)

    Sandbye, Mette

    2014-01-01

    Having been the most widespread practice of photography since the late 19th century, it is only in the recent few decades that family photography has come into focus of academic attention. Scholars working with family albums have mainly come from anthropology, whereas scholars from the aesthetical......, and affective qualities that reach further than the individual owner and that should be put forward, also within the fields of aesthetics and humanities. Family photo albums are about social and emotional communication, they can be interpreted as ways of understanding and coming to terms with life...... fields, art history, photography studies, and cultural studies have been more hesitant about how to approach such a material. Using three family photo albums from the late 1960s and onwards as examples, the goal of this paper is to underline that family photos contain emotional, psychological...

  4. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    Science.gov (United States)

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  5. Space Link Extension (SLE) Emulation for High-Throughput Network Communication

    Science.gov (United States)

    Murawski, Robert W.; Tchorowski, Nicole; Golden, Bert

    2014-01-01

    As the data rate requirements for space communications increases, significant stress is placed not only on the wireless satellite communication links, but also on the ground networks which forward data from end-users to remote ground stations. These wide area network (WAN) connections add delay and jitter to the end-to-end satellite communication link, effects which can have significant impacts on the wireless communication link. It is imperative that any ground communication protocol can react to these effects such that the ground network does not become a bottleneck in the communication path to the satellite. In this paper, we present our SCENIC Emulation Lab testbed which was developed to test the CCSDS SLE protocol implementations proposed for use on future NASA communication networks. Our results show that in the presence of realistic levels of network delay, high-throughput SLE communication links can experience significant data rate throttling. Based on our observations, we present some insight into why this data throttling happens, and trace the probable issue back to non-optimal blocking communication which is sup-ported by the CCSDS SLE API recommended practices. These issues were presented as well to the SLE implementation developers which, based on our reports, developed a new release for SLE which we show fixes the SLE blocking issue and greatly improves the protocol throughput. In this paper, we also discuss future developments for our end-to-end emulation lab and how these improvements can be used to develop and test future space communication technologies.

  6. Free-space laser communication technologies II; Proceedings of the Meeting, Los Angeles, CA, Jan. 15-17, 1990

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1990-01-01

    Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.

  7. Programmable High-Rate Multi-Mission Receiver for Space Communications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current and upcoming NASA space links require both highly reliable low-rate communications links supporting critical TT&C, ranging and voice services and highly...

  8. Programmable High-Rate Multi-Mission Receiver for Space Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current and upcoming NASA space links require both highly reliable low-rate communications links supporting critical TT&C, ranging and voice services and highly...

  9. A review on channel models in free space optical communication systems

    Science.gov (United States)

    Anbarasi, K.; Hemanth, C.; Sangeetha, R. G.

    2017-12-01

    Free Space Optical communication (FSO) is a wireless communication technology which uses light to transmit the data in free space. FSO has advantages like unlicensed spectrum and higher bandwidth. In this paper FSO system merits and demerits, challenges in FSO, and various channel models are discussed. To mitigate the turbulence in FSO the mitigation techniques like relaying, diversity schemes and adopting different modulation techniques used in different channels are discussed and its performance comparison is given.

  10. Animation of Mapped Photo Collections for Storytelling

    Science.gov (United States)

    Fujita, Hideyuki; Arikawa, Masatoshi

    Our research goal is to facilitate the sharing of stories with digital photographs. Some map websites now collect stories associated with peoples' relationships to places. Users map collections of places and include their intangible emotional associations with each location along with photographs, videos, etc. Though this framework of mapping stories is important, it is not sufficiently expressive to communicate stories in a narrative fashion. For example, when the number of the mapped collections of places is particularly large, it is neither easy for viewers to interpret the map nor is it easy for the creator to express a story as a series of events in the real world. This is because each narrative, in the form of a sequence of textual narratives, a sequence of photographs, a movie, or audio is mapped to just one point. As a result, it is up to the viewer to decide which points on the map must be read, and in what order. The conventional framework is fairly suitable for mapping and expressing fragments or snapshots of a whole story and not for conveying the whole story as a narrative using the entire map as the setting. We therefore propose a new framework, Spatial Slideshow, for mapping personal photo collections and representing them as stories such as route guidances, sightseeing guidances, historical topics, fieldwork records, personal diaries, and so on. It is a fusion of personal photo mapping and photo storytelling. Each story is conveyed through a sequence of mapped photographs, presented as a synchronized animation of a map and an enhanced photo slideshow. The main technical novelty of this paper is a method for creating three-dimensional animations of photographs that induce the visual effect of motion from photo to photo. We believe that the proposed framework may have considerable significance in facilitating the grassroots development of spatial content driven by visual communication concerning real-world locations or events.

  11. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    Science.gov (United States)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  12. Deep space optical communication via relay satellite

    Science.gov (United States)

    Dolinar, S.; Vilnrotter, V.; Gagliardi, R.

    1981-01-01

    The application of optical communications for a deep space link via an earth-orbiting relay satellite is discussed. The system uses optical frequencies for the free-space channel and RF links for atmospheric transmission. The relay satellite is in geostationary orbit and contains the optics necessary for data processing and formatting. It returns the data to earth through the RF terrestrial link and also transmits an optical beacon to the satellite for spacecraft return pointing and for the alignment of the transmitting optics. Future work will turn to modulation and coding, pointing and tracking, and optical-RF interfacing.

  13. Complex networks in the Euclidean space of communicability distances

    Science.gov (United States)

    Estrada, Ernesto

    2012-06-01

    We study the properties of complex networks embedded in a Euclidean space of communicability distances. The communicability distance between two nodes is defined as the difference between the weighted sum of walks self-returning to the nodes and the weighted sum of walks going from one node to the other. We give some indications that the communicability distance identifies the least crowded routes in networks where simultaneous submission of packages is taking place. We define an index Q based on communicability and shortest path distances, which allows reinterpreting the “small-world” phenomenon as the region of minimum Q in the Watts-Strogatz model. It also allows the classification and analysis of networks with different efficiency of spatial uses. Consequently, the communicability distance displays unique features for the analysis of complex networks in different scenarios.

  14. Variable Coding and Modulation Experiment Using NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Tollis, Nicholas S.

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques in an operational system. The experimental nature of the Testbed allows for rapid demonstrations while using flight hardware in a deployed system within NASA's networks. One example is variable coding and modulation, which is a method to increase data-throughput in a communication link. This paper describes recent flight testing with variable coding and modulation over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Performance of the variable coding and modulation system is evaluated and compared to the capacity of the link, as well as standard NASA waveforms.

  15. The effect of jitter on the performance of space coherent optical communication system with Costas loop

    Science.gov (United States)

    Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi

    2018-01-01

    Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.

  16. LEO-to-ground optical communications using SOTA (Small Optical TrAnsponder) - Payload verification results and experiments on space quantum communications

    Science.gov (United States)

    Carrasco-Casado, Alberto; Takenaka, Hideki; Kolev, Dimitar; Munemasa, Yasushi; Kunimori, Hiroo; Suzuki, Kenji; Fuse, Tetsuharu; Kubo-Oka, Toshihiro; Akioka, Maki; Koyama, Yoshisada; Toyoshima, Morio

    2017-10-01

    Free-space optical communications have held the promise of revolutionizing space communications for a long time. The benefits of increasing the bitrate while reducing the volume, mass and energy of the space terminals have attracted the attention of many researchers for a long time. In the last few years, more and more technology demonstrations have been taking place with participants from both the public and the private sector. The National Institute of Information and Communications Technology (NICT) in Japan has a long experience in this field. SOTA (Small Optical TrAnsponder) was the last NICT space lasercom mission, designed to demonstrate the potential of this technology applied to microsatellites. Since the beginning of SOTA mission in 2014, NICT regularly established communication using the Optical Ground Stations (OGS) located in the Headquarters at Koganei (Tokyo) to receive the SOTA signals, with over one hundred successful links. All the goals of the SOTA mission were fulfilled, including up to 10-Mbit/s downlinks using two different wavelengths and apertures, coarse and fine tracking of the OGS beacon, space-to-ground transmission of the on-board-camera images, experiments with different error correcting codes, interoperability with other international OGS, and experiments on quantum communications. The SOTA mission ended on November 2016, more than doubling the designed lifetime of 1-year. In this paper, the SOTA characteristics and basic operation are explained, along with the most relevant technological demonstrations.

  17. Status of High Data Rate Intersatellite Laser Communication as an Enabler for Earth and Space Science

    Science.gov (United States)

    Heine, F.; Zech, H.; Motzigemba, M.

    2017-12-01

    Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.

  18. Space Weather effects on airline communications in the high latitude regions

    Science.gov (United States)

    Honary, Farideh

    2014-05-01

    Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres at all times. At high latitudes, and especially on polar routing, VHF ground infrastructure does not exist and the aircraft have to rely on HF radio for communications. HF relies on reflections from the ionosphere to achieve long distance communications. Unfortunately the high latitude ionosphere is affected by space weather events. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. This presentation describes a new research programme at the University of Lancaster in collaboration with the University of Leicester, Solar Metrics Ltd and Natural Resources Canada for the development of a nowcasting and forecasting HF communications tool designed for the particular needs of civilian airlines. This project funded by EPSRC will access a wide variety of solar and interplanetary measurements to derive a complete picture of space weather disturbances affecting radio absorption and reflection

  19. ATLAS TileCal Sub-Module Production at UIUC - Production Submodule Photos (current)

    CERN Document Server

    Errede, Steve

    2000-01-01

    Step 7 - Painting Photo 14 - The paint we use is toxic and also settles very quickly, so it must be stirred before every use. Another great product from the Czech Republic. Photo 15 - We even use a motor to stir up the paint. Photo 16 - This is where we paint our Submodules with the "rust proof" paint. Photo 17 - This is a Submodule waiting to be painted in the tank. Photo 18 - Here Dave grinds off excess paint from the end of the Submodule. Photo 19 - Heres what happens to the steel after being painted. Photo 20 - The paint appears to be chaotic in the confined space of .004 inches.

  20. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    Science.gov (United States)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  1. Superconducting Nanowire Single Photon Detectors for High-Data-Rate Deep-Space Optical Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — High data rate deep space optical communication (DSOC) links for manned and unmanned space exploration have been identified by NASA as a critical future capability,...

  2. Space Communications and Data Systems Technologies for Next Generation Earth Science Measurements

    Science.gov (United States)

    Bauer, Robert A.; Reinhart, Richard C.; Hilderman, Don R.; Paulsen, Phillip E.

    2003-01-01

    The next generation of Earth observing satellites and sensor networks will face challenges in supporting robust high rate communications links from the increasingly sophisticated onboard instruments. Emerging applications will need data rates forecast to be in the 100's to 1000's of Mbps. As mission designers seek smaller spacecraft, challenges exist in reducing the size and power requirements while increasing the capacity of the spacecraft's communications technologies. To meet these challenges, this work looks at three areas of selected space communications and data services technologies, specifically in the development of reflectarray antennas, demonstration of space Internet concepts, and measurement of atmospheric propagation effects on Ka-band signal transmitted from LEO.

  3. Free-Space Quantum Communication with a Portable Quantum Memory

    Science.gov (United States)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-12-01

    The realization of an elementary quantum network that is intrinsically secure and operates over long distances requires the interconnection of several quantum modules performing different tasks. In this work, we report the realization of a communication network functioning in a quantum regime, consisting of four different quantum modules: (i) a random polarization qubit generator, (ii) a free-space quantum-communication channel, (iii) an ultralow-noise portable quantum memory, and (iv) a qubit decoder, in a functional elementary quantum network possessing all capabilities needed for quantum-information distribution protocols. We create weak coherent pulses at the single-photon level encoding polarization states |H ⟩ , |V ⟩, |D ⟩, and |A ⟩ in a randomized sequence. The random qubits are sent over a free-space link and coupled into a dual-rail room-temperature quantum memory and after storage and retrieval are analyzed in a four-detector polarization analysis akin to the requirements of the BB84 protocol. We also show ultralow noise and fully portable operation, paving the way towards memory-assisted all-environment free-space quantum cryptographic networks.

  4. Exploring the Roles in a Photo Elicitation Dialogue

    DEFF Research Database (Denmark)

    Fleron, Benedicte Frederikke Rex; Pedersen, Camilla

    2010-01-01

    a communication bridge between participants and researchers. Based upon a concluded case, we illustrate how the photographs encourage and contribute to a lively dialogue among the participants. Furthermore, we describe our reflections and considerations of the roles of the photos, the participants...

  5. High-Efficiency, High-Power Laser Transmitter for Deep-Space Communication, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — There is demand for vastly improved deep space satellite communications links. As data rates dramatically increase due to new sensor technologies and the desire to...

  6. Highly Sensitive Photon Counting Detectors for Deep Space Optical Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of a photon-counting photodetector is proposed to advance the state-of the-art in deep space optical communications technology. The proposed detector...

  7. TRENDS IN THE DEVELOPMENT OF MARKETING COMMUNICATIONS IN THE GLOBAL INTERACTIVE SPACE

    Directory of Open Access Journals (Sweden)

    N. Kochkina

    2014-09-01

    Full Text Available The article identifies trends in the development of marketing communications in the global interactive space by analyzing the factors of their functioning and researching motivation of viral audience. It is revealed the prevalence of interactive technologies in today's information space and the growth dynamics of interactive advertising market. It is proved that favorable conditions for marketing communications' functioning forms the basis for the development of viral advertising as an effective communication tool for untraditional impact on potential customers. The popularity of social networks as a major source of viral messages is determined. The motivation of YouTube audience, which provides a resonant video viewing and retransmission, is investigated. Gender and age differences that stipulate communication affect on consumers are identified. Cyclic social consciousness is observed that demands further research of viral audience, including constructing scenarios of viral behavior.

  8. Free Space Optics Communication for Mobile Military Platforms

    Science.gov (United States)

    2003-12-01

    Federal Communications Commission FDA Food and Drug Administration FOV Field-of-View FSO Free Space Optics FWHM Full Width at Half Maximum Gbps...Physique et de Métrologie des Oscillateurs (LPMO) du CNRS UPR3203, associé à l’Université de Franche -Comté, 15 March 2002 [Schenk 2000] H. Schenk

  9. A Study for Optimum Space-to-Ground Communication Concept for CubeSat and SmallSat Platforms

    Data.gov (United States)

    National Aeronautics and Space Administration — This study is to explore the communication architecture for future space-to-ground CubeSat/SmallSat communication, through simulations, analyses, and identifying...

  10. Asynchronous communication in real space process algebra

    OpenAIRE

    Baeten, JCM Jos; Bergstra, JA Jan

    1990-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a priority mechanism allows to express the broadcasting mechanism. As an application, a protocol is specified in which the receiver moves with respect to the sender.

  11. Free-space laser communication technologies III; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1991

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1991-01-01

    The present volume on free-space laser communication technologies discusses system analysis, performance, and applications, pointing, acquisition, and tracking in beam control, laboratory demonstration systems, and transmitter and critical component technologies. Attention is given to a space station laser communication transceiver, meeting intersatellite links mission requirements by an adequate optical terminal design, an optical approach to proximity-operations communications for Space Station Freedom, and optical space-to-ground link availability assessment and diversity requirements. Topics addressed include nonmechanical steering of laser beams by multiple aperture antennas, a free-space simulator for laser transmission, heterodyne acquisition and tracking in a free-space diode laser link, and laser terminal attitude determination via autonomous star tracking. Also discussed are stability considerations in relay lens design for optical communications, liquid crystals for lasercom applications, and narrowband optical interference filters.

  12. Characterization of the Marine Atmosphere for Free-Space Optical Communication

    National Research Council Canada - National Science Library

    Thomas, Linda M. Wasiczko; Moore, Christopher I; Burris, Harris R; Suite, Michele; Stell, Mena; Murphy, James; Gilbreath, G. C; Rabinovich, William; Scharpf, William

    2006-01-01

    The Chesapeake Bay Detachment of the Naval Research Laboratory (NRL-CBD) provides an ideal environment for characterizing the effects of the marine atmosphere on free space optical communication links...

  13. High-dimensional free-space optical communications based on orbital angular momentum coding

    Science.gov (United States)

    Zou, Li; Gu, Xiaofan; Wang, Le

    2018-03-01

    In this paper, we propose a high-dimensional free-space optical communication scheme using orbital angular momentum (OAM) coding. In the scheme, the transmitter encodes N-bits information by using a spatial light modulator to convert a Gaussian beam to a superposition mode of N OAM modes and a Gaussian mode; The receiver decodes the information through an OAM mode analyser which consists of a MZ interferometer with a rotating Dove prism, a photoelectric detector and a computer carrying out the fast Fourier transform. The scheme could realize a high-dimensional free-space optical communication, and decodes the information much fast and accurately. We have verified the feasibility of the scheme by exploiting 8 (4) OAM modes and a Gaussian mode to implement a 256-ary (16-ary) coding free-space optical communication to transmit a 256-gray-scale (16-gray-scale) picture. The results show that a zero bit error rate performance has been achieved.

  14. Quantum cryptography for secure free-space communications

    International Nuclear Information System (INIS)

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.; Lamoreaux, S.K.; Luther, G.G.; Morgan, G.L.; Nordholt, J.E.; Peterson, C.G.

    1999-01-01

    The secure distribution of the secret random bit sequences known as key material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is a new technique for secure key distribution with single-photon transmissions: Heisenberg's uncertainty principle ensures that an adversary can neither successfully tap the key transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). The authors have developed experimental quantum cryptography systems based on the transmission of non-orthogonal photon polarization states to generate shared key material over line-of-sight optical links. Key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. The authors have developed and tested a free-space quantum key distribution (QKD) system over an outdoor optical path of ∼1 km at Los Alamos National Laboratory under nighttime conditions. Results show that free-space QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, they examine the feasibility of surface to satellite QKD

  15. Photo-Detectors Integrated with Resonant Tunneling Diodes

    Directory of Open Access Journals (Sweden)

    José M. L. Figueiredo

    2013-07-01

    Full Text Available We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD. Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR region. The resonant tunneling diode photo-detector (RTD-PD can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD’s NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems.

  16. Space Mobile Network: A Near Earth Communications and Navigation Architecture

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory W.; Menrad, Robert J.

    2016-01-01

    This paper shares key findings of NASA's Earth Regime Network Evolution Study (ERNESt) team resulting from its 18-month effort to define a wholly new architecture-level paradigm for the exploitation of space by civil space and commercial sector organizations. Since the launch of Sputnik in October 1957 spaceflight missions have remained highly scripted activities from launch through disposal. The utilization of computer technology has enabled dramatic increases in mission complexity; but, the underlying premise that the diverse actions necessary to meet mission goals requires minute-by-minute scripting, defined weeks in advance of execution, for the life of the mission has remained. This archetype was appropriate for a "new frontier" but now risks overtly constraining the potential market-based opportunities for the innovation considered necessary to efficiently address the complexities associated with meeting communications and navigation requirements projected to be characteristics of the next era of space exploration: a growing number of missions in simultaneous execution, increased variance of mission types and growth in location/orbital regime diversity. The resulting ERNESt architectural cornerstone - the Space Mobile Network (SMN) - was envisioned as critical to creating an environment essential to meeting these future challenges in political, programmatic, technological and budgetary terms. The SMN incorporates technologies such as: Disruption Tolerant Networking (DTN) and optical communications, as well as new operations concepts such as User Initiated Services (UIS) to provide user services analogous to today's terrestrial mobile network user. Results developed in collaboration with NASA's Space Communications and Navigation (SCaN) Division and field centers are reported on. Findings have been validated via briefings to external focus groups and initial ground-based demonstrations. The SMN opens new niches for exploitation by the marketplace of mission

  17. Secure space-to-space interferometric communications and its nexus to the physics of quantum entanglement

    Science.gov (United States)

    Duarte, F. J.

    2016-12-01

    The history of the probability amplitude equation | ψ > = ( | x , y > - | y , x > ) applicable to quanta pairs, propagating in different directions with entangled polarizations, is reviewed and traced back to the 1947-1949 period. The interferometric Dirac foundations common to | ψ > = ( | x , y > - | y , x > ) and the generalized N-slit interferometric equation, for indistinguishable quanta, are also described. The results from a series of experiments on N-slit laser interferometers, with intra interferometric propagation paths up to 527 m, are reviewed. Particular attention is given to explain the generation of interferometric characters, for secure space-to-space communications, which immediately collapse on attempts of interception. The design of a low divergence N-slit laser interferometer for low Earth orbit-low Earth orbit (LEO-LEO), and LEO-geostationary Earth orbit (LEO-GEO), secure interferometric communications is described and a weight assessment is provided.

  18. The Photo-Pneumatic CO2 Analyzer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We are proposing to build a new technology, the photo-pneumatic analyzer. It is small, solid-state, inexpensive, and appropriate for observations of atmospheric...

  19. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in

  20. Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph; Mortensen, Dale; Evans, Michael; Briones, Janette; Tollis, Nicholas

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round-trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.

  1. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  2. Facilitating parent-teenager communication through interactive photo cubes

    NARCIS (Netherlands)

    Golsteijn, C.; Hoven, van den E.A.W.H.

    2013-01-01

    Because most teenagers strive for freedom and try to live autonomously, communication with their parents could be improved. It appeared from a literature review and a diary study that parent-teenager communication primarily addresses teenager-oriented everyday activities. However, it also showed

  3. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    Science.gov (United States)

    1989-02-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  4. Obstacle evasion in free-space optical communications utilizing Airy beams

    Science.gov (United States)

    Zhu, Guoxuan; Wen, Yuanhui; Wu, Xiong; Chen, Yujie; Liu, Jie; Yu, Siyuan

    2018-03-01

    A high speed free-space optical communication system capable of self-bending signal transmission around line-of-sight obstacles is proposed and demonstrated. Airy beams are generated and controlled to achieve different propagating trajectories, and the signal transmission characteristics of these beams around the obstacle are investigated. Our results confirm that, by optimising their ballistic trajectories, Airy beams are able to bypass obstacles with more signal energy and thus improve the communication performance compared with normal Gaussian beams.

  5. Precoded generalized space shift keying for indoor visible light communications

    KAUST Repository

    Kadampot, Ishaque Ashar; Park, Kihong; Alouini, Mohamed-Slim

    2014-01-01

    We consider a visible light communication system with 2 transmit light emitting diodes (LED) and nr receive photodiodes. An optical generalized space shift keying modulation scheme is considered for the transmission of bits where each LED can

  6. Distress detection, location, and communications using advanced space technology

    Science.gov (United States)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  7. JINR Rapid Communications. Collection

    International Nuclear Information System (INIS)

    1994-01-01

    The present collection of rapid communications from JINR, Dubna, contains eight separate reports on Lorentz transformations with superluminal velocities, photo chromic effect in HTSC films, the investigation of hypernuclei in the Nuclotron accelerator, a new hadron jets finding algorithm in the four-dimensional velocity space, investigations of neutral particle production by relativistic nuclei on the LHE 90-channel γ-spectrometer (results and perspectives), coherent meson production in the dp → 3 HeX reaction, the relativistic projectile nuclei fragmentation and A-dependence of nucleon Fermi-momenta, energy spectra of γ-quanta from d-propane interactions at momentum P d = 1.25 GeV/c per nucleon. 86 refs., 26 figs., 4 tabs

  8. Non-Mechanical Beam Steering in Free-Space Optical Communication Transceivers

    Science.gov (United States)

    Shortt, Kevin

    Free-space optical communications systems are a rapidly growing field as they carry many of the advantages of traditional fibre-based communications systems without the added investment of installing complex infrastructure. Moreover, these systems are finding key niches in mobile platforms in order to take advantage of the increased bandwidth over traditional RF systems. Of course, the inevitable problem of tracking arises when dealing with mobile stations. To compound the problem in the case of communications to low Earth or geosynchronous orbits, FSOC systems typically operate with tightly confined beams over great distances often requiring pointing accuracies on the order of micro-radians or smaller. Mechanisms such as gimbal mounts and fine-steering mirrors are the usual candidates for platform stabilization, however, these clearly have substantial power requirements and inflate the mass of the system. Spatial light modulators (also known as optical phased arrays), on the other hand, offer a suitable alternative for beam-pointing stabilization. Some of the advantages of spatial light modulators over fine-steering mirrors include programmable multiple simultaneous beams, dynamic focus/defocus and moderate to excellent optical power handling capability. This thesis serves as an investigation into the implementation of spatial light modulators as a replacement for traditional fine-steering mirrors in the fine-pointing subsystem. In particular, pointing accuracy and scanning ability will be highlighted as performance metrics in the context of a variety of communication scenarios. Keywords: Free-space optical communications, beam steering, fine-steering mirror, spatial light modulator, optical phased array.

  9. Color-Space-Based Visual-MIMO for V2X Communication.

    Science.gov (United States)

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-04-23

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  10. Implementation of a Space Communications Cognitive Engine

    Science.gov (United States)

    Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.

    2017-01-01

    Although communications-based cognitive engines have been proposed, very few have been implemented in a full system, especially in a space communications system. In this paper, we detail the implementation of a multi-objective reinforcement-learning algorithm and deep artificial neural networks for the use as a radio-resource-allocation controller. The modular software architecture presented encourages re-use and easy modification for trying different algorithms. Various trade studies involved with the system implementation and integration are discussed. These include the choice of software libraries that provide platform flexibility and promote reusability, choices regarding the deployment of this cognitive engine within a system architecture using the DVB-S2 standard and commercial hardware, and constraints placed on the cognitive engine caused by real-world radio constraints. The implemented radio-resource allocation-management controller was then integrated with the larger spaceground system developed by NASA Glenn Research Center (GRC).

  11. Forecast of space shuttle flight requirements for launch of commercial communications satellites

    Science.gov (United States)

    1977-01-01

    The number of communication satellites required over the next 25 years to support domestic and regional communication systems for telephony, telegraphy and other low speed data; video teleconferencing, new data services, direct TV broadcasting; INTELSAT; and maritime and aeronautical services was estimated to determine the number of space shuttle flights necessary for orbital launching.

  12. User manual of the CATSS system (version 1.0) communication analysis tool for space station

    Science.gov (United States)

    Tsang, C. S.; Su, Y. T.; Lindsey, W. C.

    1983-01-01

    The Communication Analysis Tool for the Space Station (CATSS) is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system. An interactive software package was currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. CATSS is a C & T system engineering tool used to predict and analyze the system performance for different link environment. Identification of system weaknesses is achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters are made based on the performance prediction.

  13. Color-Space-Based Visual-MIMO for V2X Communication

    OpenAIRE

    Jai-Eun Kim; Ji-Won Kim; Youngil Park; Ki-Doo Kim

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and w...

  14. Modelling the competition between photo-darkening and photo-bleaching effects in high-power ytterbium-doped fibre amplifiers

    Science.gov (United States)

    Jolly, A.; Vinçont, C.; Pierre, Ch.; Boullet, J.

    2017-08-01

    We propose an innovative, fully space-time model to take into account the seed-dependent nature of ageing penalties in high-power ytterbium-doped fibre amplifiers. Ageing is shown to be based on the on-going competition between photo-darkening and photo-bleaching phenomena. Our approach is based on the natural interplay between the excited states of co-existing ytterbium pairs and colour centres in highly doped fibres, in the presence of thermal coupling between the closely spaced excited states. As initiated from IR photons, the excitation of colour centres up to the UV band is supposed to be governed by multi-photon absorption. The interactions of interest in the kinetics of photo-bleaching then take the form of highly efficient charge transfers, which imply the reduction of some fraction of the basically trivalent ions to their divalent state. Due to the activation of ytterbium pairs by means of energy transfer up-conversion, these interactions get more and more effective at elevated operating powers. Computational results using these principles actually help to fit our experimental data regarding seeding effects, as well as fully generic trends already evidenced in the literature. This gives a fine demonstration for the need to discriminate co-active pump and signal contributions. Our self-consistent, still simplified model then consists of a valuable tool to help for a deeper understanding of the ageing issues. Furthermore, considering higher-order ytterbium aggregates, this should open new routes towards more comprehensive models.

  15. Overview of some projects of SNPS for global space communication

    International Nuclear Information System (INIS)

    Ivanov, E.; Ghitaykin, V.; Ionkin, V.; Dubinin, A.; Pyshko, A.

    2001-01-01

    In this presentation we focused on three variants of prospective concepts of SNPS. They are intended to solve tasks of global space communication (GSC) as nearest future tasks in space. Modern concepts of the application of power technology in space believe in using an onboard source of energy for maintenance of self-transportation of the vehicle into geostationary orbit (GSO). There are three more prospective systems as follows: gas cooled nuclear reactor with hybrid thermal engine and machine power converter; nuclear reactor cooled by liquid metal and with a thermoelectric power generating system; nuclear reactor with Li cooling and a thermionic and thermoelectric power generator on board. The choice of a concept must fit strong requirements such as: space nuclear power unit is aimed to be used in a powerful mission; space power unit must be able to maintain the dual - mode regime of vehicle operation (self - transportation and long life in geosynchronous orbit [GEO]); nuclear rector of unit must be safety and it must be designed in such a way that it will ensure minimum size of the complete system; the elements of the considered technology can be used for the creation of NPPI and with other sources of heat (for example, radioisotope); the degree of technical and technological readiness of units of the thermal and power circuit of installation is estimated to be high and is defined by a number of technological developments in air, space and nuclear branches; nuclear reactor and heat transfer equipment should work in a normal mode, which can be very reliably confirmed for other high-temperature nuclear systems. Considering these concepts we practically consider one of possible strategy of developing of complex system of nuclear power engineering. It is the strategy of step-by-step development of space engineering with real application of them in commercial, scientific and other powerful missions in the nearest and deep space. As starting point of this activity is

  16. Modular space station, phase B extension. Information management advanced development. Volume 2: Communications terminal breadboard

    Science.gov (United States)

    Gerber, C. R.

    1972-01-01

    The design and development of the communications terminal breadboard for the modular space station are discussed. The subjects presented are: (1) history of communications terminal breadboard, (2) requirements analysis, (3) technology goals in terminal design, and (4) communications terminal board integration tests.

  17. Photos

    Science.gov (United States)

    GPS U.S. Air Force Academy Warrior Care Warrior Games Women's History Month Tag: Search Tag Sort By Squadron Ruck March Download Full Image Photo Details F-22 Demonstration Download Full Image Photo Details

  18. Color-Space-Based Visual-MIMO for V2X Communication

    Directory of Open Access Journals (Sweden)

    Jai-Eun Kim

    2016-04-01

    Full Text Available In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol, and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  19. Actively learning human gaze shifting paths for semantics-aware photo cropping.

    Science.gov (United States)

    Zhang, Luming; Gao, Yue; Ji, Rongrong; Xia, Yingjie; Dai, Qionghai; Li, Xuelong

    2014-05-01

    Photo cropping is a widely used tool in printing industry, photography, and cinematography. Conventional cropping models suffer from the following three challenges. First, the deemphasized role of semantic contents that are many times more important than low-level features in photo aesthetics. Second, the absence of a sequential ordering in the existing models. In contrast, humans look at semantically important regions sequentially when viewing a photo. Third, the difficulty of leveraging inputs from multiple users. Experience from multiple users is particularly critical in cropping as photo assessment is quite a subjective task. To address these challenges, this paper proposes semantics-aware photo cropping, which crops a photo by simulating the process of humans sequentially perceiving semantically important regions of a photo. We first project the local features (graphlets in this paper) onto the semantic space, which is constructed based on the category information of the training photos. An efficient learning algorithm is then derived to sequentially select semantically representative graphlets of a photo, and the selecting process can be interpreted by a path, which simulates humans actively perceiving semantics in a photo. Furthermore, we learn a prior distribution of such active graphlet paths from training photos that are marked as aesthetically pleasing by multiple users. The learned priors enforce the corresponding active graphlet path of a test photo to be maximally similar to those from the training photos. Experimental results show that: 1) the active graphlet path accurately predicts human gaze shifting, and thus is more indicative for photo aesthetics than conventional saliency maps and 2) the cropped photos produced by our approach outperform its competitors in both qualitative and quantitative comparisons.

  20. CERN Photo club

    CERN Multimedia

    CERN Photo club

    2016-01-01

    The CERN Photo Club organizes in collaboration with Canon Switzerland a photo contest open to all members of the CERN (Persons with a CERN access card). The only restriction is that the photos must have been taken with a CANON camera (DSLR, bridge or compact) between 1 and 31 October 2016. Send your three best pictures at  Photo.Contest@cern.ch with a short description explaining the images. Further information on the Photo club website: http://photoclub.web.cern.ch/content/photo-contest-october-2016

  1. Next to Leading Logarithms and the PHOTOS Monte Carlo

    CERN Document Server

    Golonka, P

    2007-01-01

    With the approaching start-up of the experiments at LHC, the urgency to quantify systematic uncertainties of the generators, used in the interpretation of the data, is becoming pressing. The PHOTOS Monte Carlo program is often used for the simulationof experimental, selection-sensitive, QED radiative corrections in decays of Z bosons and other heavy resonances and particles. Thanks to its complete phase-space coverage it is possible, with no approximations for any decay channel, to implement the matrix-element. The present paper will be devoted to those parts of the next-to-leading order corrections for Z decays which are normally missing in PHOTOS. The analytical form of the exact and truncated (standard) kernel used in PHOTOS will be explicitly given. The correction, being the ratio of the exact to the approximate kernel, can be activated as an optional contribution to the internal weight of PHOTOS. To calculate the weight, the information on the effective Born-level Z/gamma* couplings and even directions o...

  2. Overlapping and permeability: Research on the pattern hierarchy of communication space and design strategy based on environmental behavior

    Science.gov (United States)

    Leilei, Sun; Liang, Zhang; Bing, Chen; Hong, Xi

    2017-11-01

    This thesis is to analyze the basic pattern hierarchy of communication space by using the theory of environmental psychology and behavior combined with relevant principles in architecture, to evaluate the design and improvement of communication space in specific meaning, and to bring new observation ideas and innovation in design methods to the system of space, environment and behavior.

  3. Evaluation of the Communication Between Arachnoid Cysts and Neighboring Cerebrospinal Fluid Spaces by T2W 3D-SPACE With Variant Flip-Angle Technique at 3 T.

    Science.gov (United States)

    Algin, Oktay

    2018-05-21

    Phase-contrast cine magnetic resonance imaging (PC-MRI) is a widely used technique for determination of possible communication of arachnoid cysts (ACs). Three-dimensional (3D) sampling perfection with application-optimized contrasts using different flip-angle evolutions (3D-SPACE) technique is a relatively new method for 3D isotropic scanning of the entire cranium within a short time. In this research, the usage of the 3D-SPACE technique in differentiation of communicating or noncommunicating type ACs was evaluated. Thirty-five ACs in 34 patients were retrospectively examined. The 3D-SPACE, PC-MRI, and contrast material-enhanced cisternography (if present) images of the patients were analyzed. Each cyst was described according to cyst size/location, third ventricle diameter, Evans index, and presence of hydrocephalus. Communication was defined as absent (score 0), suspected (score 1), or present (score 2) on each sequence. Results of PC-MRI or cisternography (if available) examinations were used as criterion standard techniques to categorize all cysts as communicating or noncommunicating type. The results of 3D-SPACE were compared with criterion standard techniques. The comparisons between groups were performed using Mann-Whitney and Fisher exact tests. For demonstration of communication status of the cysts, criterion standard test results and 3D-SPACE findings were almost in perfect harmony (κ[95% confidence interval: 0.94]; P SPACE findings correlated with other final results at a rate of 97%. There is a positive correlation with third ventricular diameters and Evans index for all patients (r = 0.77, P SPACE technique is an easy, useful, and noninvasive alternative for the evaluation of morphology, topographical relationships, and communication status of ACs.

  4. Integrated source and channel encoded digital communication system design study. [for space shuttles

    Science.gov (United States)

    Huth, G. K.

    1976-01-01

    The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.

  5. A portable wireless data collection system by using optical power supply and photo-communication

    International Nuclear Information System (INIS)

    Nakajima, Toshiro; Shikai, Masahiro; Ikeda, Ikuo; Tochio, Atsushi

    1999-01-01

    For aiming at effective application to annual change management of patrolling inspection data and so forth, a portable wireless measuring and data collection device measurable to vibration, temperature and so forth automatically and for short time under patrolling of inspectors and collectable on sensor signals at many places, to collect field data as electronized data. This device was comprised of a sensor head to mount on an object apparatus to transmit sensor signals and a sensor terminal brought by an inspector and with functions to receive and memory a signal from the sensor head. It had a characteristics capable of wireless data collection using optical power supply and photo-communication where all of power supply to sensor head and transmission and receiving of data were conducted optically. As a result, some characteristics could be realized such as perfect realization of wireless data collection and reduction of maintenance burden without its need on installation of source, signal wire, and so forth, possibility to collect data for short time from distant place, and possibility to conduct high order treatment due to obtaining native waveform signal but no conventional numerical data, and possibility of development on apparatus diagnosis such as detection of abnormal sign and others. (G.K.)

  6. Free Space Optical (FSO) Communications, Towards the Speeds of Wireline Networks

    KAUST Repository

    Alouini, Mohamed-Slim

    2015-01-01

    in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. Among the many proposed solutions, optical wireless communication or free-space optical (FSO) systems have gained an increasing

  7. Astronauts Armstrong and Scott during photo session outside KSC

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (left), command pilot, and David R. Scott, pilot, the Gemini 8 prime crew, during a photo session outside the Kennedy Space Center (KSC) Mission Control Center. They are standing in front of a radar dish.

  8. Etude Experimentale du Photo-Injecteur de Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Jean-Paul [Orsay

    2001-01-01

    TESLA (TeV Superconducting Linear Accelerator) is an international collaboration which is studying the feasibility of an $e^+e^-$ collider of energy 0.8 TeV in the center of mass. One of the first goals of this collaboration was to construct a prototype linear accelerator at the DESY Laboratory in Hamburg, the TESLA Test Facility (TTF), in order to establish the technical basis for the collider. Two injectors were developed for TTF: a thermionic injector (developed by LAL-Orsay, IPN-Orsay, and CEA-Saclay) and a photo-injector (developed by Fermilab). The thermionic injector was used from February 1997 to October 1998, and then it was replaced by the photo-injector, which was first operated in December 1998. Another photo-injector, identical to the one delivered to TTF, was installed at Fermilab in the $A{\\emptyset}$ Building. The first beam from the latter was produced on 3 March 1999. The photo-injector consists of an RF gun, followed by a superconducting cavity. The RF gun is a 1.625-cell copper cavity with a resonant frequency of 1.3 GHz. The gun contains a cesium telluride ($C_{s_2}$Te) photo-cathode, which is illuminated by UV pulses from a Nd:YLF laser. The system can produce trains of 800 bunches of photo-electrons of charge 8 nC per bunch with spacing between bunches of 1$\\mu$s and 10 Hz repetition rate. Upon emerging from the RF gun, the beam energy is 4 to 5 MeV; the beam is then rapidly accelerated by the superconducting cavity to an energy of 17 to 20 MeV. Finally, a magnetic chicane, consisting of 4 dipoles, produces longitudinal compression of the electron bunches. This thesis describes the installation of the photo-injector at Fermilab and presents the experimentally-measured characteristics of the injector. The principal measurements were quantum eciency, dark current, transverse emittance, and bunch length. The conclusion from these studies is that the quality of the photo-injector beam fullls the design goals. The photo-injector at Fermilab is

  9. Challenges for deep space communications in the 1990s

    Science.gov (United States)

    Dumas, Larry N.; Hornstein, Robert M.

    1991-01-01

    The discussion of NASA's Deep Space Network (DSN) examines the evolving character of aerospace missions and the corresponding changes in the DSN architecture. Deep space missions are reviewed, and it is noted that the two 34-m and the 70-m antenna subnets of the DSN are heavily loaded and more use is expected. High operational workload and the challenge of network cross-support are the design drivers for a flexible DSN architecture configuration. Incorporated in the design are antenna arraying for aperture augmentation, beam-waveguide antennas for frequency agility, and connectivity with non-DSN sites for cross-support. Compatibility between spacecraft and ground-facility designs is important for establishing common international standards of communication and data-system specification.

  10. Quantum correlations in Newtonian space and time: arbitrarily fast communication or nonlocality

    Science.gov (United States)

    Gisin, Nicolas

    2013-03-01

    Experimental violations of Bell inequalities using space-like separated measurements precludes the explanation of quantum correlations through causal influences propagating at subluminal speed. Yet, ``everything looks as if the two parties somehow communicate behind the scene.'' We investigate the assumption that they do so at a speed faster than light, though finite. Such an assumption doesn't respect the spirit of Einstein relativity. However, it is not crystal clear that such ``communication behind the scene'' would contradict relativity. Indeed, one could imagine that this communication remains for ever hidden to humans, i.e. that it could not be controlled by humans, only Nature exploits it to produce correlations that can't be explained by usual common causes. To define faster than light hidden communication requires a universal privileged reference frame in which this faster than light speed is defined. Again, such a universal privileged frame is not in the spirit of relativity, but it is also clearly not in contradiction: for example the reference frame in which the cosmic microwave background radiation is isotropic defines such a privileged frame. Hence, a priori, a hidden communication explanation is not more surprising than nonlocality. We prove that for any finite speed, such models predict correlations that can be exploited for faster-than-light communication. This superluminal communication doesn't require access to any hidden physical quantities, but only the manipulation of measurement devices at the level of our present-day description of quantum experiments. Consequently, all possible explanations of quantum correlations that satisfy the principle of continuity, which states that everything propagates gradually and continuously through space and time, or in other words, all combination of local common causes and direct causes that reproduce quantum correlations, lead to faster than light communication. Accordingly, either there is superluminal

  11. Monolithic microwave integrated circuit technology for advanced space communication

    Science.gov (United States)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  12. Repetitive Bunches from RF-Photo Gun Radiate Coherently

    CERN Document Server

    Van der Geer, C A J; Van der Geer, S B

    2004-01-01

    We consider to feed the laser wake field accelerator of the alpha-X project by a train of low charge pancake electron bunches to reduce undesired expansion due to space-charge forces. To this purpose the photo excitation laser of the rf-injector is split into a train of sub-pulses, such that each of the produced electron bunches falls into a successive ponderomotive well of the plasma accelerator. This way the total accelerated charge is not reduced. The repetitive photo gun can be tested, at low energy, by connecting it directly to the undulator and monitoring the radiation. The assertions are based on the results of new GPT simulations.

  13. Photo annealing effect on p-doped inverted organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Lafalce, Evan; Toglia, Patrick; Lewis, Jason E.; Jiang, Xiaomei, E-mail: xjiang@usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2014-06-28

    We report the transient positive photo annealing effect in which over 600% boost of power conversion efficiency was observed in inverted organic photovoltaic devices (OPV) made from P3HT/PCBM by spray method, after 2 hrs of constant solar AM 1.5 irradiation at low temperature. This is opposite to usual photodegradation of OPV, and cannot be explained by thermal activation alone since the mere temperature effect could only account for 30% of the enhancement. We have investigated the temperature dependence, cell geometry, oxygen influence, and conclude that, for p-doped active layer at room temperature, the predominant mechanism is photo-desorption of O{sub 2}, which eliminates electron traps and reduces space charge screening. As temperature decreases, thermal activation and deep trap-state filling start to show noticeable effect on the enhancement of photocurrent at intermediate low temperature (T = 125 K). At very low temperature, the dominant mechanism for photo annealing is trap-filling, which significantly reduces recombination between free and trapped carriers. At all temperature, photo annealing effect depends on illumination direction from cathode or anode. We also explained the large fluctuation of photocurrent by the capture/reemit of trapped electrons from shallow electron traps of O{sub 2}{sup -} generated by photo-doping. Our study has demonstrated the dynamic process of photo-doping and photo-desorption, and shown that photo annealing in vacuum can be an efficient method to improve OPV device efficiency.

  14. Applications of Microwave Photonics in Radio Astronomy and Space Communication

    Science.gov (United States)

    D'Addario, Larry R.; Shillue, William P.

    2006-01-01

    An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.

  15. Essential Biodiversity Variables: A framework for communication between the biodiversity community and space agencies

    Science.gov (United States)

    Leidner, A. K.; Skidmore, A. K.; Turner, W. W.; Geller, G. N.

    2017-12-01

    The biodiversity community is working towards developing a consensus on a set of Essential Biodiversity Variables (EBVs) that can be used to measure and monitor biodiversity change over time. These EBVs will inform research, modeling, policy, and assessment efforts. The synoptic coverage provided by satellite data make remote sensing a particularly important observation tool to inform many EBVs. Biodiversity is a relatively new subject matter for space agencies, and thus the definition, description, and requirements of EBVs with a significant remote sensing component can foster ways for the biodiversity community to clearly and concisely communicate observational needs to space agencies and the Committee on Earth Observing Satellites (CEOS, the international coordinating body for civilian space agencies). Here, we present an overview of EBVs with a particular emphasis on those for which remote sensing will play a significant role and also report on the results of recent workshops to prioritize and refine EBVs. Our goal is to provide a framework for the biodiversity community to coalesce around a set of observational needs to convey to space agencies. Compared to many physical science disciplines, the biodiversity community represents a wide range of sub-disciplines and organizations (academia, non-governmental organizations, research institutes, national and local natural resource management agencies, etc.), which creates additional challenges when communicating needs to space agencies unfamiliar with the topic. EBVs thus offer a communication pathway that could increase awareness within space agencies of the uses of remote sensing for biodiversity research and applications, which in turn could foster greater use of remote sensing in the broader biodiversity community.

  16. Transforming communicative spaces: the rhythm of gender in meetings in rural Solomon Islands

    Directory of Open Access Journals (Sweden)

    Michelle Dyer

    2018-03-01

    Full Text Available Women's lack of participation in important decision making is noted as an obstacle to sustainable development in many parts of the world. An initial issue for gender equity in environmental decision making in many developing country contexts is not only women's inclusion but also their substantive participation in decision-making forums. In this article I examine the power structures embedded in the public communicative spaces in a village in the Western Province of Solomon Islands using empirical data in conjunction with ethnographic understanding of gendered meeting styles. The data reveal some reasons why women may be silenced as public political actors. It also raises the potential for development actors to create conceptual space for specific women's ways of meeting and validating women's meeting styles. These findings have implications for encouraging transformative communicative spaces and formats that allow transcendence of socially embedded power structures.

  17. Reduced-Complexity Wireless Transceiver Architectures and Techniques for Space-Time Communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki

    2012-01-01

    The dissertation sheds light on the performance gains of multi-antenna systems when the antenna aspects and the associated signal processing and coding aspects are integrated together in a multidisciplinary approach, addressing a variety of challenging tasks pertaining to the joint design of smart...... wireless transceivers and communication techniques. These tasks are at the intersection of different scientific disciplines including signal processing, communications, antennas and propagation. Specifically, the thesis deals with reduced-complexity space-time wireless transceiver architectures...... and associated communication techniques for multi-input multi-output (MIMO) and cognitive radio (CR) systems as well as wireless sensor networks (WSNs). The low-complexity architectures are obtained by equipping the wireless transceiver with passive control ports which require the minimum amount of RF hardware...

  18. Performance of Cat's Eye Modulating Retro-Reflectors for Free-Space Optical Communications

    National Research Council Canada - National Science Library

    Rabinovich, W. S; Goetz, P. G; Mahon, R; Swingen, L; Murphy, J; Gilbreath, G. C; Binari, S; Waluschka, E

    2004-01-01

    Modulating retro-reflectors (MRR) couple passive optical retro-reflectors with electro-optic modulators to allow free-space optical communication with a laser and pointing/acquisition/tracking system required on only one end of the link...

  19. Spectral space-time coding for optical communications through a multimode fiber

    NARCIS (Netherlands)

    Alonso, A.; Berghmans, F.; Thienpont, H.; Danckaert, J.; Desmet, L.

    2001-01-01

    We propose a method for coding the mode structure of a multimode optical fiber by spectral coding mixed with space-time modulation. With this system we can improve the data carrying capacity of a multimode fiber for optical communications and optical interconnects, and encode and decode the

  20. Intensity position modulation for free-space laser communication system

    Science.gov (United States)

    Jangjoo, Alireza; Faghihi, F.

    2004-12-01

    In this research a novel modulation technique for free-space laser communication system called Intensity Position Modulation (IPM) is carried out. According to TEM00 mode of a laser beam and by linear fitting on the Gaussian function as an approximation, the variation of linear part on the reverse biased pn photodiode produced alternating currents which contain the information. Here, no characteristic property of the beam as intensity or frequency is changed and only the beam position moves laterally. We demonstrated that in this method no bandwidth is required, so it is possible to reduce the background radiation noise by narrowband filtering of the carrier. The fidelity of the analog voice communication system which is made upon the IPM is satisfactory and we are able to transmit the audio signals up to 1Km.

  1. Semantic photo books: leveraging blogs and social media for photo book creation

    Science.gov (United States)

    Rabbath, Mohamad; Sandhaus, Philipp; Boll, Susanne

    2011-03-01

    Recently, we observed a substantial increase in the users' interest in sharing their photos online in travel blogs, social communities and photo sharing websites. An interesting aspect of these web platforms is their high level of user-media interaction and thus a high-quality source of semantic annotations: Users comment on the photos of each others, add external links to their travel blogs, tag each other in the social communities and add captions and descriptions to their photos. However, while those media assets are shared online, many users still highly appreciate the representation of these media in appealing physical photo books where the semantics are represented in form of descriptive text, maps, and external elements in addition to their related photos. Thus, in this paper we aim at fulfilling this need and provide an approach for creating photo books from Web 2.0 resources. We concentrate on two kinds of online shared media as resources for printable photo books: (a) Blogs especially travel blogs (b) Social community websites like Facebook which witness a rapidly growing number of shared media elements including photos. We introduce an approach to select media elements including photos, geographical maps and texts from both blogs and social networks semi-automatically, and then use these elements to create a printable photo book with an appealing layout. Because the selected media elements can be too many for the resulting book, we choose the most proper ones by exploiting content based, social based, and interactive based criteria. Additionally we add external media elements such as geographical maps, texts and externally hosted photos from linked resources. Having selected the important media, our approach uses a genetic algorithm to create an appealing layout using aesthetical rules, such as positioning the photo with the related text or map in a way that respects the golden ratio and symmetry. Distributing the media over the pages is done by

  2. Color-Space-Based Visual-MIMO for V2X Communication

    Science.gov (United States)

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603

  3. 3D exploitation of large urban photo archives

    Science.gov (United States)

    Cho, Peter; Snavely, Noah; Anderson, Ross

    2010-04-01

    Recent work in computer vision has demonstrated the potential to automatically recover camera and scene geometry from large collections of uncooperatively-collected photos. At the same time, aerial ladar and Geographic Information System (GIS) data are becoming more readily accessible. In this paper, we present a system for fusing these data sources in order to transfer 3D and GIS information into outdoor urban imagery. Applying this system to 1000+ pictures shot of the lower Manhattan skyline and the Statue of Liberty, we present two proof-of-concept examples of geometry-based photo enhancement which are difficult to perform via conventional image processing: feature annotation and image-based querying. In these examples, high-level knowledge projects from 3D world-space into georegistered 2D image planes and/or propagates between different photos. Such automatic capabilities lay the groundwork for future real-time labeling of imagery shot in complex city environments by mobile smart phones.

  4. Video semaphore decoding for free-space optical communication

    Science.gov (United States)

    Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.

    2001-04-01

    Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.

  5. Enabling Future Science and Human Exploration with NASA's Next Generation Near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  6. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  7. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.

    Science.gov (United States)

    Djordjevic, Ivan B

    2011-07-18

    In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.

  8. On the performance of free-space optical communication systems with multiuser diversity

    KAUST Repository

    Yang, Liang; Gao, Xiqi; Alouini, Mohamed-Slim

    2014-01-01

    Free space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short range applications. To address this, we propose a multiuser diversity (MD

  9. Epitomize Your Photos

    Directory of Open Access Journals (Sweden)

    Peter Vajda

    2011-01-01

    Full Text Available With the rapid growth of digital photography, sharing of photos with friends and family has become very popular. When people share their photos, they usually organize them into albums according to events or places. To tell the story of some important events in one’s life, it is desirable to have an efficient summarization tool which can help people to receive a quick overview of an album containing large number of photos. In this paper, we present and analyze an approach for photo album summarization through a novel social game “Epitome” as a Facebook application. This social game can collect research data, and, at the same time, it provides a collage or a cover photo of the user’s photo album, while the user enjoys playing the game. The proof of concept of the proposed method is demonstrated through a set of experiments on several photo albums. As a benchmark comparison to this game, we perform automatic visual analysis considering several state-of-the-art features. We also evaluate the usability of the game by making use of a questionnaire on several subjects who played the “Epitome” game. Furthermore, we address privacy issues concerning shared photos in Facebook applications.

  10. Communications Relay and Human-Assisted Sample Return from the Deep Space Gateway

    Science.gov (United States)

    Cichan, T.; Hopkins, J. B.; Bierhaus, B.; Murrow, D. W.

    2018-02-01

    The Deep Space Gateway can enable or enhance exploration of the lunar surface through two capabilities: 1. communications relay, opening up access to the lunar farside, and 2. sample return, enhancing the ability to return large sample masses.

  11. Discovery deep space optical communications (DSOC) transceiver

    Science.gov (United States)

    Roberts, W. Thomas

    2017-02-01

    NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.

  12. Multi-aperture digital coherent combining for free-space optical communication receivers.

    Science.gov (United States)

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  13. Analysis of large optical ground stations for deep-space optical communications

    Science.gov (United States)

    Garcia-Talavera, M. Reyes; Rivera, C.; Murga, G.; Montilla, I.; Alonso, A.

    2017-11-01

    Inter-satellite and ground to satellite optical communications have been successfully demonstrated over more than a decade with several experiments, the most recent being NASA's lunar mission Lunar Atmospheric Dust Environment Explorer (LADEE). The technology is in a mature stage that allows to consider optical communications as a high-capacity solution for future deep-space communications [1][2], where there is an increasing demand on downlink data rate to improve science return. To serve these deep-space missions, suitable optical ground stations (OGS) have to be developed providing large collecting areas. The design of such OGSs must face both technical and cost constraints in order to achieve an optimum implementation. To that end, different approaches have already been proposed and analyzed, namely, a large telescope based on a segmented primary mirror, telescope arrays, and even the combination of RF and optical receivers in modified versions of existing Deep-Space Network (DSN) antennas [3][4][5]. Array architectures have been proposed to relax some requirements, acting as one of the key drivers of the present study. The advantages offered by the array approach are attained at the expense of adding subsystems. Critical issues identified for each implementation include their inherent efficiency and losses, as well as its performance under high-background conditions, and the acquisition, pointing, tracking, and synchronization capabilities. It is worth noticing that, due to the photon-counting nature of detection, the system performance is not solely given by the signal-to-noise ratio parameter. To start with the analysis, first the main implications of the deep space scenarios are summarized, since they are the driving requirements to establish the technical specifications for the large OGS. Next, both the main characteristics of the OGS and the potential configuration approaches are presented, getting deeper in key subsystems with strong impact in the

  14. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions.

    Science.gov (United States)

    Du, Jing; Wang, Jian

    2015-11-01

    Bessel beams carrying orbital angular momentum (OAM) with helical phase fronts exp(ilφ)(l=0;±1;±2;…), where φ is the azimuthal angle and l corresponds to the topological number, are orthogonal with each other. This feature of Bessel beams provides a new dimension to code/decode data information on the OAM state of light, and the theoretical infinity of topological number enables possible high-dimensional structured light coding/decoding for free-space optical communications. Moreover, Bessel beams are nondiffracting beams having the ability to recover by themselves in the face of obstructions, which is important for free-space optical communications relying on line-of-sight operation. By utilizing the OAM and nondiffracting characteristics of Bessel beams, we experimentally demonstrate 12 m distance obstruction-free optical m-ary coding/decoding using visible Bessel beams in a free-space optical communication system. We also study the bit error rate (BER) performance of hexadecimal and 32-ary coding/decoding based on Bessel beams with different topological numbers. After receiving 500 symbols at the receiver side, a zero BER of hexadecimal coding/decoding is observed when the obstruction is placed along the propagation path of light.

  15. Influenza Photos

    Science.gov (United States)

    ... Polio Whooping cough Influenza (flu) Rabies Yellow fever Influenza Photos Photographs accompanied by text that reads "Courtesy ... of these photos are quite graphic. Shows how influenza germs spread through the air when someone coughs ...

  16. Interfacing Space Communications and Navigation Network Simulation with Distributed System Integration Laboratories (DSIL)

    Science.gov (United States)

    Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.

    2008-01-01

    NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In

  17. Space The New Medical Frontier / NASA Spinoffs Milestones in Space Research

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Space The New Medical Frontier Past Issues / Fall 2007 ... the occasion. Photo courtesy of NIH Long-Term Space Research Until the advent of the ISS, research ...

  18. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    Science.gov (United States)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  19. Space station communications and tracking equipment management/control system

    Science.gov (United States)

    Kapell, M. H.; Seyl, J. W.

    1982-01-01

    Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.

  20. Online Communication and Adolescent Relationships

    Science.gov (United States)

    Subrahmanyam, Kaveri; Greenfield, Patricia

    2008-01-01

    Over the past decade, technology has become increasingly important in the lives of adolescents. As a group, adolescents are heavy users of newer electronic communication forms such as instant messaging, e-mail, and text messaging, as well as communication-oriented Internet sites such as blogs, social networking, and sites for sharing photos and…

  1. Influence of wind speed on free space optical communication performance for Gaussian beam propagation through non Kolmogorov strong turbulence

    International Nuclear Information System (INIS)

    Deng Peng; Yuan Xiuhua; Zeng Yanan; Zhao Ming; Luo Hanjun

    2011-01-01

    In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, affecting link performance. Most theoretical treatments have been described by Kolmogorov's power spectral density model through weak turbulence with constant wind speed. However, several experiments showed that Kolmogorov theory is sometimes incomplete to describe atmospheric turbulence properly, especially through the strong turbulence with variable wind speed, which is known to contribute significantly to the turbulence in the atmosphere. We present an optical turbulence model that incorporates into variable wind speed instead of constant value, a non-Kolmogorov power spectrum that uses a generalized exponent instead of constant standard exponent value 11/3, and a generalized amplitude factor instead of constant value 0.033. The free space optical communication performance for a Gaussian beam wave of scintillation index, mean signal-to-noise ratio , and mean bit error rate , have been derived by extended Rytov theory in non-Kolmogorov strong turbulence. And then the influence of wind speed variations on free space optical communication performance has been analyzed under different atmospheric turbulence intensities. The results suggest that the effects of wind speed variation through non-Kolmogorov turbulence on communication performance are more severe in many situations and need to be taken into account in free space optical communication. It is anticipated that this work is helpful to the investigations of free space optical communication performance considering wind speed under severe weather condition in the strong atmospheric turbulence.

  2. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    Science.gov (United States)

    Rash, James

    2014-01-01

    NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial

  3. Space-bounded communication complexity

    DEFF Research Database (Denmark)

    Brody, Joshua Eric; Chen, Shiteng; Papakonstantinou, Periklis A.

    2013-01-01

    communicate his entire input. However, what if the players are limited in their ability to recall parts of their interaction? We introduce memory models for 2-party communication complexity. Our general model is as follows: two computationally unrestricted players, Alice and Bob, each have s(n) bits of memory....... When a player receives a bit of communication, he "compresses" his state. This compression may be an arbitrary function of his current memory contents, his input, and the bit of communication just received; the only restriction is that the compression must return at most s(n) bits. We obtain memory...... controls two types of memory: (i) a large, oblivious memory, where updates are only a function of the received bit and the current memory content, and (ii) a smaller, non-oblivious/general memory, where updates can be a function of the input given to Bob. We exhibit natural protocols where this semi...

  4. What is the public's role in 'space' policymaking? Images of the public by practitioners of 'space' communication in the United Kingdom.

    Science.gov (United States)

    Entradas, Marta

    2016-07-01

    Studies on experts' understanding of the public have mainly focused on the views of scientists. We add to the literature on constructions of the public by analyzing the views of decision-makers, professional science communicators and scientists involved in 'space' communication on the public and public participation in policy. Findings show that contextual situations and roles determine the way the public is conceptualised: the public is sophisticated and knowledgeable to participate in space activities/citizen science, but in matters of policy, a gullible image of the public is brought up. Despite the democratic talk on participation, practitioners delimited public involvement in policy in some way or other to protect their own power and decision-making capabilities. This conception of the public competes with the stated aims of scientific and political institutions for public engagement and the substantive value of public participation, leaving a limited role for the public in space policymaking. © The Author(s) 2015.

  5. Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications

    Science.gov (United States)

    Ferreria, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.

    2017-01-01

    Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.

  6. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-30

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  7. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-01

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  8. COTS low-cost 622-Mb/s free-space laser communications link for short-distance commercial applications

    Science.gov (United States)

    Morrison, Kenneth A.

    2000-05-01

    The results from a low cost 622 Mb/s, free-space laser communication link operating at 850 nm for short distance commercial applications is presented. The test results demonstrate the use of a free-space laser communications transceiver for building to building applications such as LAN, WAN and ATM operations, etc. This illustrates the potential for wide-use commercial computer network applications. The transceiver is constructed of commercial off-the-shelf materials for the development of a low-cost laser communications data link. The test system configuration utilizes standard Personal Computers with network cards and signal conversion cards for the copper to optical medical conversion. These tests precede the development of an increased data rate device operating at 2.5 Gb/s.

  9. The role of space communication in promoting national development with specific reference to experiments conducted in India

    Science.gov (United States)

    Chitnis, E. V.

    The paper describes the role of space communication in promoting national development with special reference to experiments conducted in India, namely SITE (1975-1976), STEP (1977-1979) and APPLE (1981 onwards). The impact of these experiments in economic, cultural and educational terms are discussed, pointing out social implications involved in using advance space communication technology for instruction and information in the areas of education, national integration and development. The paper covers special requirements which arise when a communication system covers backward and remote rural areas in a developing country. The impact on the population measured by conducting social surveys has been discussed - especially the gains of predominently illiterate new media - participants have been highlighted. Possibilities of improving skills of teachers, the quality of the primary and higher education have been covered. The preparation required both on ground as well as space to derive benefits of space technology are considered. A profile of INSAT which marks the culmination of the experimental phase and the beginning of operational domestic satellite system is sketched.

  10. Bank of Standardized Stimuli (BOSS phase II: 930 new normative photos.

    Directory of Open Access Journals (Sweden)

    Mathieu B Brodeur

    Full Text Available Researchers have only recently started to take advantage of the developments in technology and communication for sharing data and documents. However, the exchange of experimental material has not taken advantage of this progress yet. In order to facilitate access to experimental material, the Bank of Standardized Stimuli (BOSS project was created as a free standardized set of visual stimuli accessible to all researchers, through a normative database. The BOSS is currently the largest existing photo bank providing norms for more than 15 dimensions (e.g. familiarity, visual complexity, manipulability, etc., making the BOSS an extremely useful research tool and a mean to homogenize scientific data worldwide. The first phase of the BOSS was completed in 2010, and contained 538 normative photos. The second phase of the BOSS project presented in this article, builds on the previous phase by adding 930 new normative photo stimuli. New categories of concepts were introduced, including animals, building infrastructures, body parts, and vehicles and the number of photos in other categories was increased. All new photos of the BOSS were normalized relative to their name, familiarity, visual complexity, object agreement, viewpoint agreement, and manipulability. The availability of these norms is a precious asset that should be considered for characterizing the stimuli as a function of the requirements of research and for controlling for potential confounding effects.

  11. Social networks and landscape of tourist destination: photos online in city image building

    Directory of Open Access Journals (Sweden)

    Luciana Noronha Pereira

    2017-12-01

    Full Text Available Tourist activity has the landscapes among its main attractions. Photographic records as fragments of reality are products of a look to aspects of the landscape and mediate the process of signification. New ways to record and share the tourist experience through produced digital photos and shared on-line has meant the expansion of this effect, and moreover has enabled new types of appropriation, interaction and so new forms of creation the space. This study aims to investigate possible influences of your online photos at image of tourist destinations, as from Balneário Camboriú (SC. The methodology includes a quantitative stage – quantity and location of the photos – and a qualitative – photos and comments submitted to the semiotic approach of content analysis. The concentration of on-line photos in seashore areas and the predominance of natural elements as central arguments, associated with positive emotions, stand out among the results.

  12. Tangible Cooperative Gestures: Improving Control and Initiative in Digital Photo Sharing

    Directory of Open Access Journals (Sweden)

    Elise van den Hoven

    2015-09-01

    Full Text Available This paper focuses on co-present digital photo sharing on a notebook and investigates how this could be supported. While analyzing the current digital photo sharing situation we noticed that there was a high threshold for visitors to take control of the personal computer of the photo owner, resulting in inequity of participation. It was assumed that visitors would have the opportunity to interact with the notebook more freely if this threshold was lowered by distributing the user interface and creating a more public, instead of personal, interaction space. This, in turn, could make them feel more involved and in control during a session, creating a more enjoyable experience. To test these assumptions a design prototype was created that stimulates participants to use tangible artifacts for cooperative gestures, a promising direction for the future of HCI. The situation with the cooperative gestures was compared with the regular digital photo sharing situation, which makes use of a keyboard. In dyads, visitors felt more involved and in control in the design prototype cooperative gestures condition (especially during storytelling, resulting in a more enjoyable digital photo sharing experience.

  13. Differential phase-shift keying and channel equalization in free space optical communication system

    Science.gov (United States)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Wan, Xiongfeng; Xu, Chenlu

    2018-01-01

    We present the performance benefits of differential phase-shift keying (DPSK) modulation in eliminating influence from atmospheric turbulence, especially for coherent free space optical (FSO) communication with a high communication rate. Analytic expression of detected signal is derived, based on which, homodyne detection efficiency is calculated to indicate the performance of wavefront compensation. Considered laser pulses always suffer from atmospheric scattering effect by clouds, intersymbol interference (ISI) in high-speed FSO communication link is analyzed. Correspondingly, the channel equalization method of a binormalized modified constant modulus algorithm based on set-membership filtering (SM-BNMCMA) is proposed to solve the ISI problem. Finally, through the comparison with existing channel equalization methods, its performance benefits of both ISI elimination and convergence speed are verified. The research findings have theoretical significance in a high-speed FSO communication system.

  14. Making media work in space: an interdisciplinary perspective on media and communication requirements for current and future space communities

    Science.gov (United States)

    Babidge, S.; Cokley, J.; Gordon, F.; Louw, E.

    2005-10-01

    As humans expand into space communities will form. These have already begun to form in small ways, such as long-duration missions on the International Space Station and the space shuttle, and small-scale tourist excursions into space. Social, behavioural and communications data emerging from such existing communities in space suggest that the physically-bounded, work-oriented and traditionally male-dominated nature of these extremely remote groups present specific problems for the resident astronauts, groups of them viewed as ‘communities’, and their associated groups who remain on Earth, including mission controllers, management and astronauts’ families. Notionally feminine group attributes such as adaptive competence, social adaptation skills and social sensitivity will be crucial to the viability of space communities and in the absence of gender equity, ‘staying in touch’ by means of ‘news from home’ becomes more important than ever. A template of news and media forms and technologies is suggested to service those needs and enhance the social viability of future terraforming activities.

  15. A multi-rate DPSK modem for free-space laser communications

    Science.gov (United States)

    Spellmeyer, N. W.; Browne, C. A.; Caplan, D. O.; Carney, J. J.; Chavez, M. L.; Fletcher, A. S.; Fitzgerald, J. J.; Kaminsky, R. D.; Lund, G.; Hamilton, S. A.; Magliocco, R. J.; Mikulina, O. V.; Murphy, R. J.; Rao, H. G.; Scheinbart, M. S.; Seaver, M. M.; Wang, J. P.

    2014-03-01

    The multi-rate DPSK format, which enables efficient free-space laser communications over a wide range of data rates, is finding applications in NASA's Laser Communications Relay Demonstration. We discuss the design and testing of an efficient and robust multi-rate DPSK modem, including aspects of the electrical, mechanical, thermal, and optical design. The modem includes an optically preamplified receiver, an 0.5-W average power transmitter, a LEON3 rad-hard microcontroller that provides the command and telemetry interface and supervisory control, and a Xilinx Virtex-5 radhard reprogrammable FPGA that both supports the high-speed data flow to and from the modem and controls the modem's analog and digital subsystems. For additional flexibility, the transmitter and receiver can be configured to support operation with multi-rate PPM waveforms.

  16. Space to Space Communication Subsystem Manned Spaceflight and Its Key Technology%载人航天空空通信子系统及其关键技术

    Institute of Scientific and Technical Information of China (English)

    石云墀

    2011-01-01

    The composition of the space to space communication subsystem which would realize the transmit the data between Shenzhou spaceship and Tiangong target spacecraft and the functiofi and main performances of the space to space communicator were introduced in this paper. The DS/SS technology which could provide very good performance in anti-jamming and secret communication was applied in the space to space communication subsystem. And the key technologies of sequence synchronization and carrier synchronization in the demodulation of IF DS/SS signal which was the core in DS/SS were analyzed. Using the digital demodulation scheme would reduce the complexity of debugging and increase the reliability of the system.%介绍了实现神舟运输飞船与天宫目标飞行器间数据通信和传输的空空通信子系统的构成,以及空空通信机的功能及其主要性能指标。空空通信子系统采用抗干扰能力强、保密性优的直接序列扩频通信技术。分析了其中的核心中频解扩解调中的伪码同步和载波同步等关键技术,应用数字解调方案降低了子系统调试难度,提高了可靠性。

  17. Management System of content in an organization of photo archive in Escambray Journal.

    Directory of Open Access Journals (Sweden)

    Mirelys Rodríguez Hernández

    2012-06-01

    Full Text Available This investigation is about resources management in photography and corrects environments to increase knowledge of them in the journal office. The study was carried out in the entity mentioned before in the period from January to December 2010, this was made in two steps. In the first was made an observational study to identify the requirements of management system to support the service of photography and the second one was the local design as a space management for publishing, share and access to information. In the initial diagnosis was found the need of a system capable to manage the sources of photos in the Center. For the development of platform was considered the interactive models multidirectional in communication. It was analyzed the possibilities that bring the Management System of Content for Cuban journals. The Site was implementing with Zope/Plone, a server of application oriented towards objects, as free instruments for the generation of web portals.

  18. Novel Photon-Counting Detectors for Free-Space Communication

    Science.gov (United States)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  19. Internet Technologies for Space-based Communications: State of the Art and Challenges

    Science.gov (United States)

    Bhasin, K.; DePaula, R.; Edwards, C.

    2000-01-01

    The Internet is rapidly changing the ways we communicate information around the globe today. The desire to provide Internet-based services to anyone, anywhere, anytime has brought satellite communications to the forefront to become an integral part of the Internet. In spite of the distances involved, satellite links are proving to be capable of providing Internet services based on Internet protocol (TCP/IP) stack. This development has led to the question particularly at NASA; can satellites and other space platforms become an Internet-node in space? This will allow the direct transfer of information directly from space to the users on Earth and even be able to control the spacecraft and its instruments. NASA even wants to extend the near earth space Internet to deep space applications where scientists and the public here on Earth may view space exploration in real time via the Internet. NASA's future solar system exploration will involve intensive in situ investigations of planets, moons, asteroids, and comets. While past missions typically involved a single fly-by or orbiting science spacecraft, future missions will begin to use fleets of small, highly intelligent robotic vehicles to carry out collaborative investigations. The resulting multi-spacecraft topologies will effectively create a wide area network spanning the solar system. However, this will require significant development in Internet technologies for space use. This paper provides the status'of the Internet for near earth applications and the potential extension of the Internet for use in deep space planetary exploration. The paper will discuss the overall challenges of implementing the space Internet and how the space Internet will integrate into the complex terrestrial systems those forms the Internet of today in a hybrid set of networks. Internet. We envision extending to the deep space environment such Internet concepts as a well-designed layered architecture. This effort will require an ability to

  20. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    Science.gov (United States)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  1. I-centric Communications

    CERN Document Server

    Arbanowski, S; Steglich, S; Popescu-Zeletin, R

    2001-01-01

    During the last years, a variety of concepts for service integration and corresponding systems have gained momentum. On the one hand, they aim for the interworking and integration of classical telecommunications and data communications services. On the other hand, they are focusing on universal service access from a variety of end user systems. Looking at humans' communication behavior and communication space, it is obvious that human beings interact frequently in a set of contexts in their environment (communication space). Following this view, we want to build communication systems on the analysis of the individual communication spaces. The results are communication systems adapted to the specific demands of each individual. The authors introduce I-centric Communication Systems, an approach to design communication systems which adapt to the individual communication space and individual environment and situation. In this context "I" means I, or individual, "Centric" means adaptable to I requirements and a ce...

  2. Small-Scale Design Experiments as Working Space for Larger Mobile Communication Challenges

    Science.gov (United States)

    Lowe, Sarah; Stuedahl, Dagny

    2014-01-01

    In this paper, a design experiment using Instagram as a cultural probe is submitted as a method for analyzing the challenges that arise when considering the implementation of social media within a distributed communication space. It outlines how small, iterative investigations can reveal deeper research questions relevant to the education of…

  3. ATLAS TileCal Submodule Production Photos (2001)

    CERN Multimedia

    Errede, S.

    2001-01-01

    Photo 1 - Dirty Spacers Photo 2 - Washing Plates Photo 3 - Throw Photo 4 - Catch Photo 5 - Mascot Photo 6 - Glue Machine Photo 7 - Gluing Photo 8 - Finished submodule Photo 9 - Submodule being final welded Photo 10 - Paint tank Photo 11 - Submodule is wrapped Photo 12 - Exhaustion

  4. USRCRN Photo Information

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos of USRCRN stations and their immediate surroundings. Taken by engineering techs from NOAA's Atmospheric Turbulence and Diffusion Division (ATDD). Photos are...

  5. The Synthesis Method of Automated System of Operational Planning in Low-Space Communication System Messaging

    Directory of Open Access Journals (Sweden)

    Serhii Kovbasiuk

    2017-04-01

    Full Text Available One of the reasons for the decrease of efficiency in low-speed communication systems, satellite communication, which are based on nanoplatform is a high degree of operational planning centralisation. To overcome this problem the method which carries out the distribution of tasks of communications operational planning minimizing the exchange of information between spatially remote sites, and takes into account the computing performance of software and hardware was developed. The technique is based on the use of methods of structural and parametric synthesis, simulation and statistical analysis of the results. Its use allows to obtain the optimal structure of the automated system of operational planning in low-space communication system messaging evaluation of efficiency in terms of fixed communication of information load.

  6. Kodak's Photo CD and Proposed Photo YCC Color Standard.

    Science.gov (United States)

    Urrows, Henry; Urrows, Elizabeth

    1991-01-01

    Describes new technology being developed by Eastman Kodak for storing 35mm color photos on compact disk (CD) and discusses its applications for desktop publishing. Benefits of photo CD and costs are examined, a proposed universal color standard that is an improved way to represent color digitally is explained, and software is discussed. (LRW)

  7. Satellite photo of CERN

    CERN Multimedia

    1991-01-01

    This photo from the Landsat5 orbital telescope shows the locations of CERN's Meyrin and Prevessin sites near Geneva on the Swiss-France border. The tunnels housing the LHC and SPS accelerators are also illustrated. Photo credit: US Geological Survey/photo by Jane Doe.

  8. Free Space Optical (FSO) Communications, Towards the Speeds of Wireline Networks

    KAUST Repository

    Alouini, Mohamed-Slim

    2015-01-07

    Rapid increase in the use of wireless services over the last two decades has lead the problem of the radio-frequency (RF) spectrum exhaustion. More specifically, due to this RF spectrum scarcity, additional RF bandwidth allocation, as utilized in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. Among the many proposed solutions, optical wireless communication or free-space optical (FSO) systems have gained an increasing interest due to their advantages including higher bandwidth and higher capacity compared to the traditional RF communication systems. This promising technology offers full-duplex Gigabit throughput in certain applications and environment while benefiting from a huge license-free spectrum, immunity to interference, and high security. These features of FSO communication systems potentially enable solving the issues that the RF communication systems face due to the expensive and scarce RF spectrum. The first part of the talk will give an overview of FSO communication systems by offering examples of advantages and application areas of this emerging technology. In the second part of talk, we will focus on some recent results and on-going research directions in the accurate characterization of the performance of FSO systems in the presence of inevitable impairments due to atmospheric turbulence and misalignment between transmitter and receiver.

  9. Acousto-optic pointing and tracking systems for free-space laser communications

    Science.gov (United States)

    Nikulin, V.; Khandekar, R.; Sofka, J.; Tartakovsky, G.

    2005-08-01

    Implementation of long-range laser communication systems holds great promise for high-bandwidth applications. They are viewed as a technology that in the nearest future will handle most of the "last mile" communication traffic for the individual subscribers, corporate offices, military, and possibly deep space probes. Indeed, lasers allow for concentration of energy within tightly focused beams and narrow spectral interval, thus offering high throughput, information security, weight and size of components and power requirements that could not be matched by RF systems. However, the advantages of optical communication systems come in the same package with several major challenges. In particular, high data rates should be complemented by high-precision wide-bandwidth position control of a laser beam. In many applications the ability to maintain a link is affected by the complex maneuvers performed by mobile communication platforms, resident vibrations, and atmospheric effects. The search for the most effective and reliable way to shape and steer the laser beam is an on-going effort. This paper is focused on the application of acousto-optic technology as an alternative to electro-mechanical devices. With realization that an acousto-optic Bragg cell is only a component of the entire communication system, which should perform complex tasks of acquisition, pointing, and tracking of the remote terminal, we present an attempt to consider this problem from the "systems" point of view.

  10. CRN Photo Information

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos of CRN stations and their immediate surroundings. Taken by engineering techs from NOAA's Atmospheric Turbulence and Diffusion Division (ATDD). Photos are used...

  11. ATLAS TileCal Sub-Module Production at UIUC - Production Submodule Photos (current).

    CERN Multimedia

    Errede, Steve

    2000-01-01

    Step 3 - Stickers and Hog Rings Photo 1 - These are the spacers after we have put the hog rings and stickers on them, the stickers are for extra spacing because the spacers were cut too thin during production.

  12. Online communication and adolescent relationships.

    Science.gov (United States)

    Subrahmanyam, Kaveri; Greenfield, Patricia

    2008-01-01

    Over the past decade, technology has become increasingly important in the lives of adolescents. As a group, adolescents are heavy users of newer electronic communication forms such as instant messaging, e-mail, and text messaging, as well as communication-oriented Internet sites such as blogs, social networking, and sites for sharing photos and videos. Kaveri Subrahmanyam and Patricia Greenfield examine adolescents' relationships with friends, romantic partners, strangers, and their families in the context of their online communication activities. The authors show that adolescents are using these communication tools primarily to reinforce existing relationships, both with friends and romantic partners. More and more they are integrating these tools into their "offline" worlds, using, for example, social networking sites to get more information about new entrants into their offline world. Subrahmanyam and Greenfield note that adolescents' online interactions with strangers, while not as common now as during the early years of the Internet, may have benefits, such as relieving social anxiety, as well as costs, such as sexual predation. Likewise, the authors demonstrate that online content itself can be both positive and negative. Although teens find valuable support and information on websites, they can also encounter racism and hate messages. Electronic communication may also be reinforcing peer communication at the expense of communication with parents, who may not be knowledgeable enough about their children's online activities on sites such as the enormously popular MySpace. Although the Internet was once hailed as the savior of education, the authors say that schools today are trying to control the harmful and distracting uses of electronic media while children are at school. The challenge for schools is to eliminate the negative uses of the Internet and cell phones in educational settings while preserving their significant contributions to education and social

  13. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng

    2015-01-01

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO...... communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM...... modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by M turbulence is coupled...

  14. Photo-electron spectroscopy using synchrotron radiation of molecular radicals and fragments produced by laser photo-dissociation

    International Nuclear Information System (INIS)

    Nahon, Laurent

    1991-01-01

    This research thesis reports the combined use of a laser and of a synchrotron radiation in order to respectively photo-dissociate a molecule and to photo-ionize fragments which are analysed by photo-electron spectroscopy. This association allows, on the one hand, radical photo-ionization to be studied, and, on the other hand, polyatomic molecule photo-dissociation to be studied. The author studied the photo-excitation and/or photo-ionization in layer 4d (resp. 3d) of atomic iodine (resp. bromine) produced almost complete laser photo-dissociation of I_2 (resp. Br_2). He discuses the processes of relaxation of transitions from valence 4d to 5p (resp. 3d to 4p) which occur either by direct self-ionization or by resonant Auger effect, and reports the study of photo-dissociation of s-tetrazine (C_2N_4H_2) [fr

  15. Communication-Oriented Design Space Exploration for Reconfigurable Architectures

    Directory of Open Access Journals (Sweden)

    Gogniat Guy

    2007-01-01

    Full Text Available Many academic works in computer engineering focus on reconfigurable architectures and associated tools. Fine-grain architectures, field programmable gate arrays (FPGAs, are the most well-known structures of reconfigurable hardware. Dedicated tools (generic or specific allow for the exploration of their design space to choose the best architecture characteristics and/or to explore the application characteristics. The aim is to increase the synergy between the application and the architecture in order to get the best performance. However, there is no generic tool to perform such an exploration for coarse-grain or heterogeneous-grain architectures, just a small number of very specific tools are able to explore a limited set of architectures. To address this major lack, in this paper we propose a new design space exploration approach adapted to fine- and coarse-grain granularities. Our approach combines algorithmic and architecture explorations. It relies on an automatic estimation tool which computes the communication hierarchical distribution and the architectural processing resources use rate for the architecture under exploration. Such an approach forwards the rapid definition of efficient reconfigurable architectures dedicated to one or several applications.

  16. In-tank photo analysis

    International Nuclear Information System (INIS)

    Vorvick, C.A.; Baird, D.B.; Heasler, P.G.

    1995-09-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) of photographs showing the interior of a single shell tank (SST) at the Hanford site. This report shows that in-tank photos can be used to create a plan-view map of the waste surface inside a tank, and that measuring the elevation of the waste surface from the photos is possible, but not accurate enough to be useful at this time. In-tank photos were acquired for Tanks BX111 and T111. The BX111 photos were used to create the waste surface map and to measure the waste surface elevation. T111 photos were used to measure the waste surface elevation. Uncertainty analyses of the mapping and surface elevation are included to show the accuracy of the calculations for both methods

  17. Planets as background noise sources in free space optical communications

    Science.gov (United States)

    Katz, J.

    1986-01-01

    Background noise generated by planets is the dominant noise source in most deep space direct detection optical communications systems. Earlier approximate analyses of this problem are based on simplified blackbody calculations and can yield results that may be inaccurate by up to an order of magnitude. Various other factors that need to be taken into consideration, such as the phase angle and the actual spectral dependence of the planet albedo, in order to obtain a more accurate estimate of the noise magnitude are examined.

  18. Arms applied to the communications system at the Kourou space centre

    International Nuclear Information System (INIS)

    Gerez Martin, L.; Garcia de la Sen, R.

    1993-01-01

    The REMUS (Roseau d'Entreprise MUltiService) has been designed to cover present and future communications needs which are associated with daily operation of the Guyanese Space Centre (GSC). This communications network will facilitate data exchange, contain the data (RSD) and voice network, and paging (RRP), convoy (RCV) and telephony (RSV) systems. The main objectives of the study were: 1. To assess system availability. 2. To dimension spare parts of the renewal equipment and define the logistic delays to be observed in order to achieve an availability target of: - 99.9% for the RRP, RCV and RSV networks. - 99.9% for the RSD network. The RAMSES program developed by Empresarios Agrupados was used in these calculations, to evaluate system behaviour by means of a Monte Carlo simulation. (author)

  19. The Association of Schools of Journalism and mass communication journalist-in-space project

    Science.gov (United States)

    1986-01-01

    During the summer of 1985, NASA asked the Association of Schools of Journalism and Mass Communication (ASJMC) to select a U. S. journalist who could ride aboard the space shuttle and report the experience to the American public. Eligibility critieria and selection procedures are discussed. The forty semifinalists are listed.

  20. The impact of emotional intelligence, self-esteem, and self-image on romantic communication over MySpace.

    Science.gov (United States)

    Dong, Qingwen; Urista, Mark A; Gundrum, Duane

    2008-10-01

    A study based on a survey of 240 individual MySpace users found that low self-esteem encourages young adults to engage in romantic communication (such as having intimate communication with the opposite sex and looking for romantic partners) while higher emotional intelligence discourages such activity. The results also suggested that those who have higher self-image, such as thinking themselves attractive and happy with their appearance, tend to engage in romantic communication. Limitations of the study and suggestion for future study are discussed.

  1. Advances in Home Photo Printing

    Institute of Scientific and Technical Information of China (English)

    Qian Lin; Brian Atkins; Huitao Luo

    2004-01-01

    With digital camera adoptions going main stream, consumers capture a record number of photos.Currently, the majority of the digital photos are printed at home. One of the key enablers of this transformation is the advancement of home photo printing technologies. In the past few years, inkjet printing technologies have continued to deliver smaller drop size, larger number of inks, and longer-lasting prints. In the mean time, advanced image processing automatically enhances captured digital photos while being printed. The combination of the above two forces has closed the gap between the home photo prints and AgX prints. It will give an overview of the home photo printing market and technology trends, and discuss major advancements in automatic image processing.

  2. State-Of High Brightness RF Photo-Injector Design

    Science.gov (United States)

    Ferrario, Massimo; Clendenin, Jym; Palmer, Dennis; Rosenzweig, James; Serafini, Luca

    2000-04-01

    The art of designing optimized high brightness electron RF Photo-Injectors has moved in the last decade from a cut and try procedure, guided by experimental experience and time consuming particle tracking simulations, up to a fast parameter space scanning, guided by recent analytical results and a fast running semi-analytical code, so to reach the optimum operating point which corresponds to maximum beam brightness. Scaling laws and the theory of invariant envelope provide to the designers excellent tools for a first parameters choice and the code HOMDYN, based on a multi-slice envelope description of the beam dynamics, is tailored to describe the space charge dominated dynamics of laminar beams in presence of time dependent space charge forces, giving rise to a very fast modeling capability for photo-injectors design. We report in this talk the results of a recent beam dynamics study, motivated by the need to redesign the LCLS photoinjector. During this work a new effective working point for a split RF photoinjector has been discovered by means of the previous mentioned approach. By a proper choice of rf gun and solenoid parameters, the emittance evolution shows a double minimum behavior in the drifting region. If the booster is located where the relative emittance maximum and the envelope waist occur, the second emittance minimum can be shifted at the booster exit and frozen at a very low level (0.3 mm-mrad for a 1 nC flat top bunch), to the extent that the invariant envelope matching conditions are satisfied.

  3. Mobile free-space optical communications: a feasibility study of various battlefield scenarios

    Science.gov (United States)

    Harris, Alan; Al-Akkoumi, Mouhammad K.; Sluss, James J., Jr.

    2012-06-01

    Free Space Optics (FSO) technology was originally envisioned to be a viable solution for the provision of high bandwidth optical connectivity in the last mile of today's telecommunications infrastructure. Due to atmospheric limitations inherent to FSO technology, FSO is now widely envisioned as a solution for the provision of high bandwidth, temporary mobile communications links. The need for FSO communications links will increase as mobility is introduced to this technology. In this paper, a theoretical solution for adding mobility to FSO communication links is introduced. Three-dimensional power estimation studies are presented to represent mobile FSO transmission under various weather conditions. Three wavelengths, 0.85, 1.55 and 10 um, are tested and compared to illustrate the pros and cons of each source wavelength used for transmission, depending on prevalent weather conditions and atmospheric turbulence conditions. A simulation analysis of the transmission properties of the source wavelengths used in the study is shown.

  4. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Science.gov (United States)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  5. GPS and Galileo Developments on Board the International Space Station With the Space Communications and Navigation (SCaN) Testbed

    Science.gov (United States)

    Pozzobon, Oscar; Fantinato, Samuele; Dalla Chiara, Andrea; Gamba, Giovanni; Crisci, Massimo; Giordana, Pietro; Enderle, Werner; Chelmins, David; Sands, Obed S.; Clapper, Carolyn J.; hide

    2016-01-01

    The Space Communications and Navigation (SCaN) is a facility developed by NASA and hosted on board the International Space Station (ISS) on an external truss since 2013.It has the objective of testing navigation and communication experimentations with a Software Defined Radio (SDR) approach, which permits software updates for testing new experimentations.NASA has developed the Space Telecommunications Radio System (STRS) architecture standard for SDRs used in space and ground-based platforms to provide commonality among radio developments to provide enhanced capability. The hardware is equipped with both L band front-end radios and the NASA space network communicates with it using S-band, Ku-band and Ka-band links.In May 2016 Qascom started GARISS (GPS and Galileo Receiver for the ISS), an activity of experimentation in collaboration with ESA and NASA that has the objective to develop and validate the acquisition and processing of combined GPS and Galileo signals on board the ISS SCaN testbed. This paper has the objective to present the mission, and provide preliminary details about the challenges in the design, development and verification of the waveform that will be installed on equipment with limited resources. GARISS is also the first attempt to develop a waveform for the ISS as part of an international collaboration between US and Europe. Although the final mission objective is to target dual frequency processing, initial operations will foresee a single frequency processing. Initial results and trade-off between the two options, as well as the final decision will be presented and discussed. The limited resources on board the SCaN with respect to the challenging requirements to acquire and track contemporaneously two satellite navigation systems, with different modulations and data structure, led to the need to assess the possibility of aiding from ground through the S-band. This option would allow assistance to the space receiver in order to provide

  6. Performance Analysis of Free-Space Optical Communication Systems With Multiuser Diversity Over Atmospheric Turbulence Channels

    KAUST Repository

    Yang, Liang; Gao, Xiqi; Alouini, Mohamed-Slim

    2014-01-01

    Free-space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short-range applications. To address this, we propose a multiuser diversity (MD

  7. An Array of Optical Receivers for Deep-Space Communications

    Science.gov (United States)

    Vilnrotter, Chi-Wung; Srinivasan, Meera; Andrews, Kenneth

    2007-01-01

    An array of small optical receivers is proposed as an alternative to a single large optical receiver for high-data-rate communications in NASA s Deep Space Network (DSN). Because the telescope for a single receiver capable of satisfying DSN requirements must be greater than 10 m in diameter, the design, building, and testing of the telescope would be very difficult and expensive. The proposed array would utilize commercially available telescopes of 1-m or smaller diameter and, therefore, could be developed and verified with considerably less difficulty and expense. The essential difference between a single-aperture optical-communications receiver and an optical-array receiver is that a single-aperture receiver focuses all of the light energy it collects onto the surface of an optical detector, whereas an array receiver focuses portions of the total collected energy onto separate detectors, optically detects each fractional energy component, then combines the electrical signal from the array of detector outputs to form the observable, or "decision statistic," used to decode the transmitted data. A conceptual block diagram identifying the key components of the optical-array receiver suitable for deep-space telemetry reception is shown in the figure. The most conspicuous feature of the receiver is the large number of small- to medium-size telescopes, with individual apertures and number of telescopes selected to make up the desired total collecting area. This array of telescopes is envisioned to be fully computer- controlled via the user interface and prediction-driven to achieve rough pointing and tracking of the desired spacecraft. Fine-pointing and tracking functions then take over to keep each telescope pointed toward the source, despite imperfect pointing predictions, telescope-drive errors, and vibration caused by wind.

  8. Fast QC-LDPC code for free space optical communication

    Science.gov (United States)

    Wang, Jin; Zhang, Qi; Udeh, Chinonso Paschal; Wu, Rangzhong

    2017-02-01

    Free Space Optical (FSO) Communication systems use the atmosphere as a propagation medium. Hence the atmospheric turbulence effects lead to multiplicative noise related with signal intensity. In order to suppress the signal fading induced by multiplicative noise, we propose a fast Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) code for FSO Communication systems. As a linear block code based on sparse matrix, the performances of QC-LDPC is extremely near to the Shannon limit. Currently, the studies on LDPC code in FSO Communications is mainly focused on Gauss-channel and Rayleigh-channel, respectively. In this study, the LDPC code design over atmospheric turbulence channel which is nether Gauss-channel nor Rayleigh-channel is closer to the practical situation. Based on the characteristics of atmospheric channel, which is modeled as logarithmic-normal distribution and K-distribution, we designed a special QC-LDPC code, and deduced the log-likelihood ratio (LLR). An irregular QC-LDPC code for fast coding, of which the rates are variable, is proposed in this paper. The proposed code achieves excellent performance of LDPC codes and can present the characteristics of high efficiency in low rate, stable in high rate and less number of iteration. The result of belief propagation (BP) decoding shows that the bit error rate (BER) obviously reduced as the Signal-to-Noise Ratio (SNR) increased. Therefore, the LDPC channel coding technology can effectively improve the performance of FSO. At the same time, the BER, after decoding reduces with the increase of SNR arbitrarily, and not having error limitation platform phenomenon with error rate slowing down.

  9. Photo-electret effects in homogenous semiconductors

    International Nuclear Information System (INIS)

    Nabiev, G.A.

    2004-01-01

    In the given work is shown the opportunity and created the theory of photo-electret condition in semiconductors with Dember mechanism of photo-voltage generation. Photo-electret of such type can be created, instead of traditional and without an external field as a result of only one illumination. Polar factor, in this case, is the distinction of electrons and holes mobility. Considered the multilayered structure with homogeneous photoactive micro areas shared by the layers, which are interfering to alignment of carriers concentration. We consider, that the homogeneous photoactive areas contain deep levels of stick. Because of addition of elementary photo voltage in separate micro photo cells it is formed the abnormal-large photo voltage (APV-effect). Let's notice, that Dember photo-voltage in a separate micro photo-cell ≤kT/q. From the received expressions, in practically important, special case, when quasi- balance between valent zone and stick levels established in much more smaller time, than free hole lifetime, and we received, that photo-voltage is relaxing. Comparing of the received expressions with the laws of photo voltage attenuation in p-n- junction structures shows their identity; the difference is only in absolute meanings of photo voltage. During the illumination in the semiconductor are created the superfluous concentration of charge carriers and part from them stays at deep levels. At de-energizing light there is a gradual generation of carriers located at these levels

  10. Development of a Communication Intervention for Older Adults With Limited Health Literacy : Photo Stories to Support Doctor-Patient Communication

    NARCIS (Netherlands)

    Koops van 't Jagt, Ruth; de Winter, Andrea F; Reijneveld, Sijmen A; Hoeks, John C J; Jansen, Carel J M

    2016-01-01

    Successful doctor-patient communication relies on appropriate levels of communicative health literacy, the ability to deal with and communicate about health information. This article aims to describe the development of a narrative- and picture-based health literacy intervention intended to support

  11. Astronaut Ross Approaches Assembly Concept for Construction of Erectable Space Structure (ACCESS)

    Science.gov (United States)

    1999-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross, perched on the Manipulator Foot Restraint (MFR) approaches the erected ACCESS. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  12. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    Science.gov (United States)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  13. 2017 International Conference on Space Science and Communication

    Science.gov (United States)

    2017-05-01

    Table of Content Preface 2017 International Conference on Space Science and CommunicationSpace Science for Sustainability” The present volume of the Journal of Physics: Conference Series represents contributions from participants of the 2017 International Conference on Space Science and Communication (IconSpace2017) held in Kuala Lumpur, Malaysia from May 3-5, 2017. The conference was organized by Space Science Centre (ANGKASA), Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM) with a theme on “Space Science for Sustainability”. IconSpace2017 is the fifth series of conferences devoted to bringing researchers from around the world together to present and discuss their recent research results related to space science and communication, and also to provide an international platform for future research collaborations. This biennial international conference is an open forum where members in the field and others can meet in one place to discuss their current research findings. The technical program of this conference includes four keynote speakers, invited speakers, and the presentation of papers and poster. The track of the session includes Astrophysics and Astronomy, Atmospheric and Magnetospheric Sciences, Geoscience and Remote Sensing, Satellite and Communication Technology, and Interdisciplinary Space Science. Apart from the main conference, there will be a special talk on “Space Exploration & Updates” on 5 May 2017. More than 100 scientists and engineers from various academic, government, and industrial institutions in Europe, Asia, Australia, Africa, and the Americas attended the conference. The papers for this conference were selected after a rigorous review process. The papers were all evaluated by international and local reviewers and at least two reviewers were required to evaluate each paper. We should like to offer our thanks for the professionalism of the organizing committee, authors, reviewers, and volunteers deserve much

  14. 2017 International Conference on Space Science and Communication

    International Nuclear Information System (INIS)

    2017-01-01

    Table of Content Preface 2017 International Conference on Space Science and CommunicationSpace Science for Sustainability” The present volume of the Journal of Physics: Conference Series represents contributions from participants of the 2017 International Conference on Space Science and Communication (IconSpace2017) held in Kuala Lumpur, Malaysia from May 3-5, 2017. The conference was organized by Space Science Centre (ANGKASA), Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM) with a theme on “Space Science for Sustainability”. IconSpace2017 is the fifth series of conferences devoted to bringing researchers from around the world together to present and discuss their recent research results related to space science and communication, and also to provide an international platform for future research collaborations. This biennial international conference is an open forum where members in the field and others can meet in one place to discuss their current research findings. The technical program of this conference includes four keynote speakers, invited speakers, and the presentation of papers and poster. The track of the session includes Astrophysics and Astronomy, Atmospheric and Magnetospheric Sciences, Geoscience and Remote Sensing, Satellite and Communication Technology, and Interdisciplinary Space Science. Apart from the main conference, there will be a special talk on “Space Exploration and Updates” on 5 May 2017. More than 100 scientists and engineers from various academic, government, and industrial institutions in Europe, Asia, Australia, Africa, and the Americas attended the conference. The papers for this conference were selected after a rigorous review process. The papers were all evaluated by international and local reviewers and at least two reviewers were required to evaluate each paper. We should like to offer our thanks for the professionalism of the organizing committee, authors, reviewers, and volunteers deserve much

  15. Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    Science.gov (United States)

    Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  16. A Summary of - An Earth-to-Deep Space Communications System with Adaptive Tilt and Scintillation Correction Using Near-Earth Relay Mirrors

    Science.gov (United States)

    Armstrong, J. W.; Yeh, C.; Wilson, K. E.

    1998-01-01

    Optical telecommunication will be the next technology for wide-band Earth/space communication. Uncompensated propagation through the Earth's atmosphere (e.g., scintillation and wavefront tilt) fundamentally degrade communication to distant spcaecraft.

  17. Photos from the CMS Photo Book

    CERN Multimedia

    Boreham, S

    2008-01-01

    Photos from the CMS Photo Book. Activities at Point 5 in Cessy, France, between 1998 - 2008. Images of assembly and Installation of the CMS detector: - Civil Engineering - Assembly in the Surface Building - Lowering of the Heavy Elements - Installing and connecting the CMS detector in the underground experiment These images illustrate the assembly, installation and commissioning of the CMS detector. They cover the activities at Point 5 in Cessy, France, between 1998 and 2008. CMS is one of the most complex scientific instruments ever built. It has taken about 20 years to go from conceptual design to the completion of construction of the CMS detector for the LHC start-up in September 2008. Accomplishing this has required the talents, efforts and resources of over 2500 scientists and engineers from about 180 institutions in 38 countries. caverns Compiled by: S. Cittolin, F. Marcastel and T.S. Virdee

  18. Advent of The New Media: The influence of intrinsic and extrinsic motivation in online photo sharing behaviours on Facebook among young Malaysian adults

    Directory of Open Access Journals (Sweden)

    Ching Lee Wan

    2017-01-01

    Full Text Available Social networking sites have become an important channel of communication in people’s daily lives. Online photo sharing, a type of artefact sharing on Facebook has also grown in popularity. Thus, the purpose of this research is to study the relationship of intrinsic and extrinsic motivations in online photo sharing behaviours on Facebook. The study will also examine privacy concerns regarding online photo sharing. A non-random purposive sampling approach gathered a total of 422 Malaysian young adults aged between 18 and 34. Data was collected via a web based questionnaire distributed on Facebook. The results show that intrinsic and extrinsic motivations have positive correlations with online photo sharing behaviours on Facebook. Intrinsic motivations showed a stronger connection to online photo sharing behaviours. There was no significance found between privacy concerns and online photo sharing behaviours on Facebook. There was also no difference between genders in their online photo sharing behaviours. However, males showed higher privacy concerns in regards to online photo sharing on Facebook.

  19. Effective use of multibeam antenna and space-time multiple access technology in modern mobile communication systems

    OpenAIRE

    Moskalets, N. V.

    2015-01-01

    A possibility for efficient use of radio-frequency spectrum and of corresponding increase in productivity of mobile communication system with space-time multiple access obtained by use of multibeam antenna of base station is considered.

  20. Photo catalytic degradation of nitrobenzene using nanocrystalline TiO2 photo catalyst doped with Zn ions

    International Nuclear Information System (INIS)

    Reynoso S, E. A.; Perez S, S.; Reyes C, A. P.; Castro R, C. L.; Felix N, R. M.; Lin H, S. W.; Paraguay D, F.; Alonso N, G.

    2013-01-01

    Photo catalysis is a method widely used in the degradation of organic pollutants of the environment. The development of new materials is very important to improve the photo catalytic properties and to find new applications for TiO 2 as a photo catalyst. In this article we reported the synthesis of a photo catalyst based on TiO 2 doped with Zn 2+ ions highly efficient in the degradation of nitrobenzene. The results of photo catalytic activity experiments showed that the Zn 2+ doped TiO 2 is more active that un-doped TiO 2 catalyst with an efficiency of 99% for the nitrobenzene degradation at 120 min with an apparent rate constant of 35 x 10 -3 min -1 . For the characterization of photo catalyst X-ray diffraction, transmission electron microscopy and Raman spectroscopy were used. (Author)

  1. Trap Generation Dynamics in Photo-Oxidised DEH Doped Polymers

    Directory of Open Access Journals (Sweden)

    David M. Goldie

    2015-07-01

    Full Text Available A series of polyester films doped with a hole transport molecule, p-diethylaminobenzaldehyde-1,1'-diphenylhydrazone (DEH, have been systematically exposed to ultraviolet radiation with a peak wavelength of about 375 nm. The electronic performance of the films, evaluated using time-of-flight and space-charge current injection methods, is observed to continuously degrade with increasing ultraviolet exposure. The degradation is attributed to photo cyclic oxidation of DEH that results in the creation of indazole (IND molecules which function as bulk hole traps. A proposed model for the generation dynamics of the IND traps is capable of describing both the reduction in current injection and the associated time-of-flight hole mobility provided around 1% of the DEH population produce highly reactive photo-excited states which are completely converted to indazole during the UV exposure period. The rapid reaction of these states is incompatible with bulk oxygen diffusion-reaction kinetics within the films and is attributed to the creation of excited states within the reaction radius of soluble oxygen. It is suggested that encapsulation strategies to preserve the electronic integrity of the films should accordingly focus upon limiting the critical supply of oxygen for photo cyclic reaction.

  2. ATLAS Pixel Group - Photo Gallery from Irradiation

    CERN Multimedia

    2001-01-01

    Photos 1,2,3,4,5,6,7 - Photos taken before irradiation of Pixel Test Analog Chip and Pmbars (April 2000) Photos 8,9,10,11 - Irradiation of VDC chips (May 2000) Photos 12, 13 - Irradiation of Passive Components (June 2000) Photos 14,15, 16 - Irradiation of Marebo Chip (November 1999)

  3. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    Science.gov (United States)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  4. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  5. Single layered flexible photo-detector based on perylene/graphene composite through printed technology

    Science.gov (United States)

    Ali, Shawkat; Bae, Jinho; Lee, Chong Hyun

    2015-07-01

    In this paper, a single layered passive photo sensor based on perylene/graphene composite is proposed, which is deposited in comb type silver electrodes separated as 50 μm spacing. To increase an electrical conductivity of the proposed sensor, perylene and graphene are blended. Photo sensing layer (120nm thick) and Silver electrodes (50 μm width, 350 nm thick) are deposited on poly(ethylene terephthalate) (PET) substrate through electro-hydrodynamic (EHD) system. The proposed photo sensor detects a terminal resistance inversely varied by an incident light in the range between 78 GΩ in dark and 25 GΩ at light intensity of 400lux. The device response is maximum at 465 nm ~ 535 nm wavelength range at blue light. The device exhibited bendability up to 4mm diameter for 1000 endurance cycles. The surface morphology analysis is carried out with FE-SEM and microscope.

  6. Taking Your iPhoto '11 to the Max

    CERN Document Server

    Grothaus, Michael

    2011-01-01

    Taking Your iPhoto '11 to the Max walks users through Apple's most popular software application in the iLife suite - iPhoto. This book helps readers use iPhoto to its fullest to organize and create digital memories and keepsakes. * Learn all about Apple's newest version of iPhoto - iPhoto '11 * Explore iPhoto, one menu button at a time * Walk-through tutorials guide you step-by-step What you'll learn * How to import existing photo libraries from popular Windows applications * How to organize and edit your photos * How to tag your photos using iPhoto's Faces and Places features * How to create

  7. Impact of communication delays to and from the International Space Station on self-reported individual and team behavior and performance: A mixed-methods study

    Science.gov (United States)

    Kintz, Natalie M.; Chou, Chih-Ping; Vessey, William B.; Leveton, Lauren B.; Palinkas, Lawrence A.

    2016-12-01

    Deep space explorations will involve significant delays in communication to and from Earth that will likely impact individual and team outcomes. However, the extent of these impacts and the appropriate countermeasures for their mitigation remain largely unknown. This study utilized the International Space Station (ISS), a high-fidelity analog for deep space, as a research platform to assess the impact of communication delays on individual and team performance, mood, and behavior. Three astronauts on the ISS and 18 mission support personnel performed tasks with and without communication delays (50-s one-way) during a mission lasting 166 days. Self-reported assessments of individual and team performance and mood were obtained after each task. Secondary outcomes included communication quality and task autonomy. Qualitative data from post-mission interviews with astronauts were used to validate and expand on quantitative data, and to elicit recommendations for countermeasures. Crew well-being and communication quality were significantly reduced in communication delay tasks compared to control. Communication delays were also significantly associated with increased individual stress/frustration. Qualitative data suggest communication delays impacted operational outcomes (i.e. task efficiency), teamwork processes (i.e. team/task coordination) and mood (i.e. stress/frustration), particularly when tasks involved high task-related communication demands, either because of poor communication strategies or low crew autonomy. Training, teamwork, and technology-focused countermeasures were identified to mitigate or prevent adverse impacts.

  8. Photo-induced antiferromagnetic interlayer coupling in Fe superlattices with iron silicide spacers

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, J.E.; Fullerton, E.E.; Kumar, S.; Lee, S.R.; Sowers, C.H.; Grimsditch, M.; Bader, S.D. [Argonne National Lab., IL (United States); Parker, F.T. [California Univ., San Diego, La Jolla, CA (United States). Center for Magnetic Recording Research

    1993-09-01

    Sputtered Fe/FeSi films possessing antiferromagnetic (AF) interlayer coupling at room temperature develop ferromagnetic remanence when cooled below 100K, but the AF coupling can be restored at low temperature by exposure to visible light of sufficient intensity (>10 mW/mm{sup 2}). We attribute these effects to charge carriers in the FeSi spacer layer which, when thermally or photo-generated, are capable of communicating spin information between the Fe layers.

  9. Examination of Communication Delays on Team Performance: Utilizing the International Space Station (ISS) as a Test Bed for Analog Research

    Science.gov (United States)

    Keeton, K. E.; Slack, K, J.; Schmidt, L. L.; Ploutz-Snyder, R.; Baskin, P.; Leveton, L. B.

    2011-01-01

    Operational conjectures about space exploration missions of the future indicate that space crews will need to be more autonomous from mission control and operate independently. This is in part due to the expectation that communication quality between the ground and exploration crews will be more limited and delayed. Because of potential adverse effects on communication quality, both researchers and operational training and engineering experts have suggested that communication delays and the impact these delays have on the quality of communications to the crew will create performance decrements if crews are not given adequate training and tools to support more autonomous operations. This presentation will provide an overview of a research study led by the Behavioral Health and Performance Element (BHP) of the NASA Human Research Program that examines the impact of implementing a communication delay on ISS on individual and team factors and outcomes, including performance and related perceptions of autonomy. The methodological design, data collection efforts, and initial results of this study to date will be discussed . The results will focus on completed missions, DRATS and NEEMO15. Lessons learned from implementing this study within analog environments will also be discussed. One lesson learned is that the complexities of garnishing a successful data collection campaign from these high fidelity analogs requires perseverance and a strong relationship with operational experts. Results of this study will provide a preliminary understanding of the impact of communication delays on individual and team performance as well as an insight into how teams perform and interact in a space-like environment . This will help prepare for implementation of communication delay tests on the ISS, targeted for Increment 35/36.

  10. On the excess photon noise in single-beam measurements with photo-emissive and photo-conductive cells

    NARCIS (Netherlands)

    Alkemade, C.T.J.

    In this paper the so-called excess photon noise is theoretically considered with regard to noise power measurements with a single, illumined photo-emissive or photo-conductive cell. Starting from a modification of Mandel's stochastic association of the emission of photo-electrons with wave

  11. Creating "communicative spaces": a case of NGO community organizing for HIV/AIDS prevention.

    Science.gov (United States)

    de Souza, Rebecca

    2009-12-01

    This study uses the case study method to investigate the processes used by a local nongovernmental organization called the Society for People's Action for Development to organize sex workers in the slums of Bangalore, India, for HIV/AIDS prevention. The nongovernmental organization-facilitated HIV/AIDS program is based on the new paradigm of community organizing that encourages community participation and capacity building. Grounded in the culture-centered approach, this study documents the processes used to organize the women, while highlighting the role of communication in these processes. The study identifies 4 primary processes used to mobilize the community, namely collectivization, community awareness and sensitization, capacity building, and providing legal education and support. Each of these processes highlights the importance of attending to the economic, social, and political realities that shape the health of women. The common thread linking these processes together is the notion of "voice." More specifically, each process serves as a catalyst to produce discursive practices that enable women to provide support to each other, increase awareness in the community about the problems that they face, build self-reliance through financial skills training and communication training, and defend their legal rights. In addition, the study suggests that the primary role of nongovernmental organizations should be the creation of "communicative spaces," which are discursive and material spaces within marginalized communities and mainstream society where cultural participants can identify problems (oftentimes beyond the realm of health), manage solutions to those problems, and advocate for health and social change.

  12. Radioanatomy of the retroperitoneal space.

    Science.gov (United States)

    Coffin, A; Boulay-Coletta, I; Sebbag-Sfez, D; Zins, M

    2015-02-01

    The retroperitoneum is a space situated behind the parietal peritoneum and in front of the transversalis fascia. It contains further spaces that are separated by the fasciae, between which communication is possible with both the peritoneal cavity and the pelvis, according to the theory of interfascial spread. The perirenal space has the shape of an inverted cone and contains the kidneys, adrenal glands, and related vasculature. It is delineated by the anterior and posterior renal fasciae, which surround the ureter and allow communication towards the pelvis. At the upper right pole, the perirenal space connects to the retrohepatic space at the bare area of the liver. There is communication between these two spaces through the Kneeland channel. The anterior pararenal space contains the duodenum, pancreas, and the ascending and descending colon. There is free communication within this space, and towards the mesenteries along the vessels. The posterior pararenal space, which contains fat, communicates with the preperitoneal space at the anterior surface of the abdomen between the peritoneum and the transversalis fascia, and allows communication with the contralateral posterior pararenal space. This space follows the length of the ureter to the pelvis, which explains the communication between these areas and the length of the pelvic fasciae. Copyright © 2014 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  13. Detecting binary non-return-to-zero data in free-space optical communication systems using FPGAs

    Science.gov (United States)

    Bui, Vy; Tran, Lan; El-Araby, Esam; Namazi, Nader M.

    2014-06-01

    High bandwidth, fast deployment with relatively low cost implementation are some of the important advantages of free space optical (FSO) communications. However, the atmospheric turbulence has a substantial impact on the quality of a laser beam propagating through the atmosphere. A new method was presented in [1] and [2] to perform bit synchronization and detection of binary Non-Return-to-Zero (NRZ) data from a free-space optical (FSO) communication link. It was shown that, when the data is binary NRZ with no modulation, the Haar wavelet transformation can effectively reduce the scintillation noise. In this paper, we leverage and modify the work presented in [1] in order to provide a real-time streaming hardware prototype. The applicability of these concepts will be demonstrated through providing the hardware prototype using one of the state-of-the-art reconfigurable hardware, namely Field Programmable Gate Arrays, and highly productive high-level design tools such as System Generator for DSP from Xilinx.

  14. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    Science.gov (United States)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  15. Architecture for Cognitive Networking within NASA's Future Space Communications Infrastructure

    Science.gov (United States)

    Clark, Gilbert; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, GEO, MEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes an architecture enabling the development and deployment of cognitive networking capabilities into the envisioned future NASA space communications infrastructure. We begin by discussing the need for increased automation, including inter-system discovery and collaboration. This discussion frames the requirements for an architecture supporting cognitive networking for future missions and relays, including both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture, and results of implementation and initial testing of a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  16. Location - Global Positioning System (GPS) Photos

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — Digital photos tagged with GPS location information. The St. Paul District maintains a digital library of over 10,000 GPS photos. Photos are often associated with...

  17. Efficient photo-catalytic degradation of malachite green using nickel tungstate material as photo-catalyst.

    Science.gov (United States)

    Helaïli, N; Boudjamaa, A; Kebir, M; Bachari, K

    2017-03-01

    The present study focused on the evaluation of photo-catalytic and photo-electrochemical properties of the photo-catalyst based on nickel tungstate material prepared by a nitrate method through the degradation of malachite green (MG) dye's. The effect of catalyst loading and dye concentration was examined. Physico-chemical, optical, electrical, electrochemical, and photo-electrochemical properties of the prepared material were analyzed by X-ray diffraction (XRD), fourier transform-infrared spectroscopy (FTIR), BET analysis, optical reflectance diffuse (DR), scanning electron microscopy (SEM/EDX), electrical conductivity, cyclic voltammetry (CV), current intensity, mott-shottky, and nyquist. XRD revealed the formation of monoclinic structure with a small particle size. BET surface area of the sample was around 10 m 2 /g. The results show that the degradation of MG was more than 80%, achieved after 3 h of irradiation at pH 4.6 and with a catalyst loading of 75 mg. Also, it was found that the dye photo-degradation obeyed the pseudo-first order kinetic via Langmuir Hinshelwood model.

  18. Put a Face to a Name (Part A): The Effects of Photographic Aids on Patient Satisfaction, Clinician Communication, and Quality of Care

    Science.gov (United States)

    2014-04-04

    Effects of Photographic Aids (Photos of Faces) on Patient Recall of Their Clinical Care Team; Effects of Photographic Aids (Photos of Faces) on Clinician-patient Communication; Effects of Photographic Aids (Photos of Faces) on Overall Patient Satisfaction

  19. The new Education and Communication group

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    Since the start of the year, CERN's communication teams have been brought together under one umbrella for the sake of greater coherence and better coordination. The new Education and Communication group in Education and Technology Transfer division is led by James Gillies, former Editor of the CERN Courier. EC group comprises four sections: Events and Sponsoring, External Communication, Publications, and Visits and Educational Programmes. Its goal is to inform not only the general public but also the community of CERN staff, physicists and teachers about the research, events, innovations and major decisions of the Organization. Photo 01: The new Education and Communication group with ETT division leader Juan-Antonio Rubio (back row, centre).

  20. Visual cues for person-centered communication.

    Science.gov (United States)

    Williams, Kristine; Harris, Brynn; Lueger, Amy; Ward, Kathleen; Wassmer, Rebecca; Weber, Amy

    2011-11-01

    Nursing home communication is frequently limited and task-focused and fails to affirm resident personhood. We tested the feasibility and effects of automated digital displays of resident photographs to remind staff (N = 11) of resident (n = 6) personhood. Historical photographs were displayed in digital photo frames mounted in each resident's room. To evaluate the intervention's effects, staff-resident conversations were audio-recorded prior to displaying the frames and repeated 2 weeks and 3 months later. Conversations were transcribed and statements were topic coded (task-focused vs. interpersonal). Staff person-centered talk increased from 11% to 32% (z = 2.37, p = .02) after the intervention and task-talk decreased from 64% to 40%. Resident interpersonal topics increased from 20% to 37%. Staff statements increased from 29 at baseline, to 37 postintervention, and 41 at 3-month follow-up and resident engagement and reminiscence also increased. Effects were reduced after 3 months. Automated photo displays are an easily implemented, low-cost intervention to promote person-centered communication.

  1. Recent progress in photo-injectors

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1996-10-01

    In photoinjector electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense RF fields in a resonant cavity. Photoinjectors are very versatile tools. Normally we think of them in terms of the production of high electron density in 6-D phase space, for reasons such as injection to laser accelerators, generation of x-rays by Compton scattering and short wavelength FELs. Another example for the use of photo-injectors is the production of a high charge in a short time, for wake- field acceleration, two-beam accelerators and high-power, long-wavelength FELs. There are other potential uses, such as the generation of polarized electrons, compact accelerators for industrial applications and more. Photoinjectors are in operation in many electron accelerator facilities and a large number of new guns are under construction. The purpose of this work is to present some trend setting recent results that have been obtained in some of these laboratories. In particular the subjects of high density in 6-D phase space, new diagnostic tools, photocathode advances and high-charge production will be discussed

  2. Ross Works on the Assembly Concept for Construction of Erectable Space Structure (ACCESS) During

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross works on ACCESS high above the orbiter. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  3. A journey from particle physics to outer space

    CERN Document Server

    2006-01-01

    Particle physics can take you a long way - even into space! Astronaut Christer Fuglesang recently jetted into orbit on his first space mission, 14 years after he left CERN to join the European Space Agency. Christer Fuglesang near the launch pad area at NASA's Kennedy Space Center, Florida, in preparation for the STS-116 mission. (photo: ESA, S.Corvaja)Christer Fuglesang in space (photo: NASA). In CERN's years of efforts to explore the fundamentals of the Universe, it has not yet sent anyone beyond planet Earth. On 10 December 2006, Christer Fuglesang boldly went where no CERN scientist had ever gone before. The 49-year-old ex-CERN physicist-turned-astronaut embarked on his first mission on board space shuttle Discovery. Originally from Stockholm, he also had the honour of being the first Swedish national in space. Christer Fuglesang is an astronaut with the European Space Agency (ESA), a partner of the International Space Station (ISS) - a research facility that is being assembled in orbit around the Earth...

  4. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    Science.gov (United States)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  5. Photo catalytic degradation of nitrobenzene using nanocrystalline TiO{sub 2} photo catalyst doped with Zn ions

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso S, E. A.; Perez S, S.; Reyes C, A. P.; Castro R, C. L.; Felix N, R. M.; Lin H, S. W. [Instituto Tecnologico de Tijuana, Centro de Graduados e Investigacion, Apdo. Postal 1166, 22000 Tijuana, Baja California (Mexico); Paraguay D, F. [Centro de Investigacion en Materiales Avanzados, Apdo. Postal 311109, Chihuahua (Mexico); Alonso N, G. [UNAM, Centro de Nanociencias y Nanotecnologia, Carretera Tijuana-Ensenada Km 107, Apdo. Postal 356, 22800 Ensenada, Baja California (Mexico)

    2013-07-01

    Photo catalysis is a method widely used in the degradation of organic pollutants of the environment. The development of new materials is very important to improve the photo catalytic properties and to find new applications for TiO{sub 2} as a photo catalyst. In this article we reported the synthesis of a photo catalyst based on TiO{sub 2} doped with Zn{sup 2+} ions highly efficient in the degradation of nitrobenzene. The results of photo catalytic activity experiments showed that the Zn{sup 2+} doped TiO{sub 2} is more active that un-doped TiO{sub 2} catalyst with an efficiency of 99% for the nitrobenzene degradation at 120 min with an apparent rate constant of 35 x 10{sup -3} min{sup -1}. For the characterization of photo catalyst X-ray diffraction, transmission electron microscopy and Raman spectroscopy were used. (Author)

  6. Using PhotoVoice to Promote Land Conservation and Indigenous Well-Being in Oklahoma.

    Science.gov (United States)

    Carroll, Clint; Garroutte, Eva; Noonan, Carolyn; Buchwald, Dedra

    2018-03-26

    Indigenous ancestral teachings commonly present individual and community health as dependent upon relationships between human and nonhuman worlds. But how do persons conversant with ancestral teachings effectively convey such perspectives in contemporary contexts, and to what extent does the general tribal citizenry share them? Can media technology provide knowledge keepers with opportunities to communicate their perspectives to larger audiences? What are the implications for tribal citizens' knowledge and views about tribal land use policies? Using a PhotoVoice approach, we collaborated with a formally constituted body of Cherokee elders who supply cultural guidance to the Cherokee Nation government in Oklahoma. We compiled photographs taken by the elders and conducted interviews with them centered on the project themes of land and health. We then developed a still-image documentary highlighting these themes and surveyed 84 Cherokee citizens before and after they viewed it. Results from the pre-survey revealed areas where citizens' perspectives on tribal policy did not converge with the elders' perspectives; however, the post-survey showed statistically significant changes. We conclude that PhotoVoice is an effective method to communicate elders' perspectives, and that tribal citizens' values about tribal land use may change as they encounter these perspectives in such novel formats.

  7. Level crossing statistics for optical beam wander in a turbulent atmosphere with applications to ground-to-space laser communications.

    Science.gov (United States)

    Yura, Harold T; Fields, Renny A

    2011-06-20

    Level crossing statistics is applied to the complex problem of atmospheric turbulence-induced beam wander for laser propagation from ground to space. A comprehensive estimate of the single-axis wander angle temporal autocorrelation function and the corresponding power spectrum is used to develop, for the first time to our knowledge, analytic expressions for the mean angular level crossing rate and the mean duration of such crossings. These results are based on an extension and generalization of a previous seminal analysis of the beam wander variance by Klyatskin and Kon. In the geometrical optics limit, we obtain an expression for the beam wander variance that is valid for both an arbitrarily shaped initial beam profile and transmitting aperture. It is shown that beam wander can disrupt bidirectional ground-to-space laser communication systems whose small apertures do not require adaptive optics to deliver uniform beams at their intended target receivers in space. The magnitude and rate of beam wander is estimated for turbulence profiles enveloping some practical laser communication deployment options and suggesting what level of beam wander effects must be mitigated to demonstrate effective bidirectional laser communication systems.

  8. Practices surrounding children's photos in homes

    NARCIS (Netherlands)

    Vyas, Dhaval; van der Veer, Gerrit C.; Nijholt, Antinus; Grassel, Guido; Chi, E.H.; Höök, K,

    2012-01-01

    New parents cherish photos of their children. In their homes one can observe a varied set of arrangements of their young ones' photos. We studied eight families with young children to learn about their practices related to photos. We provide preliminary results from the field study and elaborate on

  9. Is long distance free space quantum communication with the OAM state of light feasible [Presentation

    CSIR Research Space (South Africa)

    Hamadou Ibrahim, A

    2013-06-01

    Full Text Available -space quantum communication with the OAM state of light feasible? A. HAMADOU IBRAHIM1,2, F.S. ROUX1, M. McLAREN1,3 , A. FORBES1,2,3 & T. KONRAD2 1. CSIR National Laser Centre, PO Box 395, Pretoria 0001 2. School of Physics, University of Kwazulu...

  10. Polarization tracking system for free-space optical communication, including quantum communication

    Science.gov (United States)

    Nordholt, Jane Elizabeth; Newell, Raymond Thorson; Peterson, Charles Glen; Hughes, Richard John

    2018-01-09

    Quantum communication transmitters include beacon lasers that transmit a beacon optical signal in a predetermined state of polarization such as one of the states of polarization of a quantum communication basis. Changes in the beacon polarization are detected at a receiver, and a retarder is adjusted so that the states of polarization in a received quantum communication optical signal are matched to basis polarizations. The beacon and QC signals can be at different wavelengths so that the beacon does not interfere with detection and decoding of the QC optical signal.

  11. Content-aware automatic cropping for consumer photos

    Science.gov (United States)

    Tang, Hao; Tretter, Daniel; Lin, Qian

    2013-03-01

    Consumer photos are typically authored once, but need to be retargeted for reuse in various situations. These include printing a photo on different size paper, changing the size and aspect ratio of an embedded photo to accommodate the dynamic content layout of web pages or documents, adapting a large photo for browsing on small displays such as mobile phone screens, and improving the aesthetic quality of a photo that was badly composed at the capture time. In this paper, we propose a novel, effective, and comprehensive content-aware automatic cropping (hereafter referred to as "autocrop") method for consumer photos to achieve the above purposes. Our autocrop method combines the state-of-the-art context-aware saliency detection algorithm, which aims to infer the likely intent of the photographer, and the "branch-and-bound" efficient subwindow search optimization technique, which seeks to locate the globally optimal cropping rectangle in a fast manner. Unlike most current autocrop methods, which can only crop a photo into an arbitrary rectangle, our autocrop method can automatically crop a photo into either a rectangle of arbitrary dimensions or a rectangle of the desired aspect ratio specified by the user. The aggressiveness of the cropping operation may be either automatically determined by the method or manually indicated by the user with ease. In addition, our autocrop method is extended to support the cropping of a photo into non-rectangular shapes such as polygons of any number of sides. It may also be potentially extended to return multiple cropping suggestions, which will enable the creation of new photos to enrich the original photo collections. Our experimental results show that the proposed autocrop method in this paper can generate high-quality crops for consumer photos of various types.

  12. Photo-switching element

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, Yuichi

    1987-10-31

    Photo-input MOS transistor (Photo-switching element) cannot give enough ON/OFF ratio but requires an auxiliary condenser for a certain type of application. In addition, PN junction of amorphous silicon is not practical because it gives high leak current resulting in low electromotive force. In this invention, a solar cell was constructed with a lower electrode consisting of a transparent electro-conducting film, a photosensitive part consisting of an amorphous Si layer of p-i-n layer construction, and an upper metal electrode consisting of Cr or Nichrome, and a thin film transistor was placed on the solar cell, and further the upper metal electrode was co-used as a gate electrode of the thin film transistor; this set-up of this invention enabled to attain an efficient photo-electric conversion of the incident light, high electromotive force of the solar cell, and the transistor with high ON/OFF ratio. (3 figs)

  13. Japan's telecommunications - New initiatives in space communications

    Science.gov (United States)

    Iida, T.

    1992-04-01

    Despite recent advances in optical transmission technology, intensive R&D work in the field of satellite communications is now being undertaken in Japan. It is believed that satellites offer advantages in several important areas, including wide coverage broadcasting, immediacy of service, suitability for the implementation of HDTV, and advantages in disaster communications and other social services. Here, some experimental projects in the field of satellite communications planned in Japan for the 1990s are summarized. In particular, attention is given to broadcast satellite development, intersatellite links, advanced mobile communication concepts, large antenna assembly experiment, small satellite R&D, and Pan-Pacific information network experiment.

  14. A perceptual metric for photo retouching.

    Science.gov (United States)

    Kee, Eric; Farid, Hany

    2011-12-13

    In recent years, advertisers and magazine editors have been widely criticized for taking digital photo retouching to an extreme. Impossibly thin, tall, and wrinkle- and blemish-free models are routinely splashed onto billboards, advertisements, and magazine covers. The ubiquity of these unrealistic and highly idealized images has been linked to eating disorders and body image dissatisfaction in men, women, and children. In response, several countries have considered legislating the labeling of retouched photos. We describe a quantitative and perceptually meaningful metric of photo retouching. Photographs are rated on the degree to which they have been digitally altered by explicitly modeling and estimating geometric and photometric changes. This metric correlates well with perceptual judgments of photo retouching and can be used to objectively judge by how much a retouched photo has strayed from reality.

  15. Photo oxidative degradation of azure-B by sono-photo-Fenton and photo-Fenton reagents

    Directory of Open Access Journals (Sweden)

    Prahlad Vaishnave

    2014-12-01

    Full Text Available A model for the decomposition of azure-B by photo-Fenton reagent in the presence of ultrasound in homogeneous aqueous solution has been described. The photochemical decomposition rate of azure-B is markedly increased in the presence of ultrasound. It is a rather inexpensive reagent for wastewater treatment. The effect of different variables like the concentration of ferric ion, concentration of dye, hydrogen peroxide, pH, light intensity etc. on the reaction rate has been observed. The progress of the sono-photochemical degradation was monitored spectrophotometrically. The optimum sono-photochemical degradation conditions were experimentally determined. The results showed that the dye was completely oxidized and degraded into CO2 and H2O. A suitable tentative mechanism for sono-photochemical bleaching of azure-B by sono-photo-Fenton’s reaction has been proposed.

  16. STS-61B Astronaut Ross Works on Assembly Concept for Construction of Erectable Space Structure

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo astronaut Ross, located on the Manipulator Foot Restraint (MFR) over the cargo bay, erects ACCESS. The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  17. ECR Plasma Photos

    International Nuclear Information System (INIS)

    Racz, R.; Biri, S.; Palinkas, J.

    2009-01-01

    Complete text of publication follows. In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from He, methane, N, O, Ne, Ar, Kr, Xe gases and from their mixtures. The effects of the main external setting parameters (gas pressure, gas composition, magnetic field, microwave power, microwave frequency) were studied to the shape, color and structure of the plasma. The double frequency mode (9+14 GHz) was also realized and photos of this special 'star-in-star' shape plasma were recorded. A study was performed to analyze and understand the color of the ECR plasmas. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas. To our best knowledge our work is the first systematic study of ECR plasmas in the visible light region. When looking in the plasma chamber of an ECRIS we can see an axial image of the plasma (figure 1) in conformity with experimental setup. Most of the quantitative information was obtained through the summarised values of the Analogue Digital Unit (ADU) of pixels. By decreasing the strength of the magnetic trap we clearly observed that the brightness of the central part of the plasma gradually decreases, i.e. the plasma becomes more and more 'empty'. Figure 2 shows a photo series of ECR plasma at decreasing axial magnetic field. The radial size of the plasma increased because of the ascendant resonant zone. By increasing the power of the injected microwave an optimum (or at least saturation) was found in the brightness of the plasma. We found correlation between the gas dosing rates and plasma intensities. When sweeping the frequency of the microwave in a wide region

  18. On the performance of free-space optical communication systems with multiuser diversity

    KAUST Repository

    Yang, Liang

    2014-09-01

    Free space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short range applications. To address this, we propose a multiuser diversity (MD) FSO scheme in which the Nth best user is selected and the channel fluctuations can be effectively exploited to produce a selection diversity gain. More specifically, we first present the statistics analysis for the considered system over weak atmospheric turbulence channels. Based on these statistics, the outage probability, bit-error rate performance, and coverage are analyzed.

  19. Tactile Communications

    Data.gov (United States)

    National Aeronautics and Space Administration — Communication with the crew is vital and must be maintained regardless of environmental conditions and crew activity. Current spacecraft communication systems depend...

  20. Analysis of emittance compensation and simulation results to photo-cathode RF gun

    CERN Document Server

    LiuShengGuang

    2002-01-01

    The emittance compensation technology will be used on the photo-cathode RF gun for Shanghai SDUV-FEL. The space charge force and its effect on electron beam transverse emittance in RF gun is studied, the principle of emittance compensation in phase-space is discussed. The authors have designed a compensation solenoid and calculated its magnetic field distribution. Its performance has been studied by the code PARMELA. A simulation result indicates that the normalized transverse RMS emittance for electron beam of 1.5 nC is 1.612 pi mm centre dot mrad, electron energy E = 5.71 MeV

  1. Ground-based photo monitoring

    Science.gov (United States)

    Frederick C. Hall

    2000-01-01

    Ground-based photo monitoring is repeat photography using ground-based cameras to document change in vegetation or soil. Assume those installing the photo location will not be the ones re-photographing it. This requires a protocol that includes: (1) a map to locate the monitoring area, (2) another map diagramming the photographic layout, (3) type and make of film such...

  2. Demonstration of free-space optical communication for long-range data links between balloons on Project Loon

    Science.gov (United States)

    Moision, Bruce; Erkmen, Baris; Keyes, Edward; Belt, Todd; Bowen, Oliver; Brinkley, Devin; Csonka, Paul; Eglington, Michael; Kazmierski, Andrei; Kim, Nam-hyong; Moody, John; Tu, Thanh; Vermeer, William

    2017-02-01

    Internet connectivity is limited and in some cases non-existent for a significant part of the world's population. Project Loon aims to address this with a network of high-altitude balloons traveling in the stratosphere, at an altitude of approximately 20 km. The balloons navigate by using the stratified wind layers at different altitudes, adjusting the balloon's altitude to catch winds in a desired direction. Data transfer is achieved by 1) uplinking a signal from an Internet-connected ground station to a balloon terminal, 2) crosslinking the signal through the balloon network to reach the geographic area of the users, and 3) downlinking the signal directly to the end-users' phones or other LTE-enabled devices. We describe Loon's progress on utilizing free-space optical communications (FSOC) for the inter-balloon crosslinks. FSOC, offering high data rates and long communication ranges, is well-suited for communication between high-altitude platforms. A stratospheric link is sufficiently high to be above weather events (clouds, fog, rain, etc.), and the impact of atmospheric turbulence is significantly weaker than at ground level. In addition, being in the stratosphere as opposed to space helps avoid the typical challenges faced by space-based systems, namely operation in a vacuum environment with significant radiation. Finally, the angular pointing disturbances introduced by a floating balloon-based platform are notably less than any propelled platform, which simplifies the disturbance rejection requirements on the FSOC system. We summarize results from Project Loon's early-phase experimental inter-balloon links at 20 km altitude, demonstrating full duplex 130 Mbps throughput at distances in excess of 100 km over the course of several-day flights. The terminals utilize a monostatic design, with dual wavelengths for communication and a dedicated wide-angle beacon for pointing, acquisition, and tracking. We summarize the constraints on the terminal design, and the

  3. Precoded generalized space shift keying for indoor visible light communications

    KAUST Repository

    Kadampot, Ishaque Ashar

    2014-09-01

    We consider a visible light communication system with 2 transmit light emitting diodes (LED) and nr receive photodiodes. An optical generalized space shift keying modulation scheme is considered for the transmission of bits where each LED can be either in ON state or OFF state at a given time. With this set-up, we design in this paper a precoder for this modulation scheme given the channel state information to improve the bit error rate performance of the system. As conventional precoding techniques for radio frequency at the transmitter cannot be applied to the optical intensity channel, we formulate an optimization problem with constraints for this specific channel. An analytical solution for the precoder is derived and the system performance is compared with and without precoder.

  4. Representation of Muharram Rituals in West Media; Semiotic Analysis of TotallyCoolPix Website’s Photos of Muharam and Ashura

    OpenAIRE

    Majid Movahed Majd; Zeinab Niknejat; Mohamadtaghi Abbasi shovazi

    2015-01-01

    Protecting and upholding the ideology of media authorities, photo can be considered a tool for communication and meaning-making. Also the social-artistic activities of photograpy paly a significant role in communication as any other media does. The representation theory excessively concerned with media analysis. It should be noted that semiotic method gives the ability to examine hidden layers of media contents such as picture. Based on The representation theory and semiotics techniques, this...

  5. System and method that suppresses intensity fluctuations for free space high-speed optical communication

    Science.gov (United States)

    Berman, Gennady P [Los Alamos, NM; Bishop, Alan R [Los Alamos, NM; Nguyen, Dinh C [Los Alamos, NM; Chernobrod, Boris M [Santa Fe, NM; Gorshkov, Vacheslav N [Kiev, UA

    2009-10-13

    A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.

  6. Photo-polymer for recording holograms

    International Nuclear Information System (INIS)

    Hideo Tanigawa; Taichi Ichihashi; Takashi Matsuo

    1999-01-01

    The photo-polymerizable materials for recording holograms were composed of higher-index polymers, lower-index monomers, and photo-initiators. The materials have sensitivity from UV green light (514.5 nm ). The diffraction efficiencies of the transmission holograms recorded by two beams from a laser were more than 80%. These holograms have good physical and chemical stability. The mechanisms of the formation of holograms was discussed. In this paper, experimental results for transmission holograms are reported and the mechanisms of refractive index modulation in photo-polymerization of the materials are discussed

  7. Innovating science communication

    CERN Document Server

    AUTHOR|(CDS)2051192; The ATLAS collaboration; Marcelloni De Oliveira, Claudia; Shaw, Kate

    2016-01-01

    The ATLAS Education & Outreach project has, over the years, developed a strong reputation for supporting innovation. Animated event displays, musical CDs, 3d movies, 3-storey murals, photo books, data sonifications, multi-media art installations, pub slams, masterclasses, documentaries, pop-up books, LEGO® models, and virtual visits are among the many diverse methods being exploited to communicate to the world the goals and accomplishments of the ATLAS Experiment at CERN. This variety of creativity and innovation does not pop out of a vacuum. It requires underlying motivation by the collaboration to communicate with the public; freedom and encouragement to do so in a creative manner; and a support structure for developing, implementing and promoting these activities. The ATLAS Outreach project has built this support structure on a well-defined communication plan, high-quality content, and effective delivery platforms. Most importantly, implementation of the program has been based on the effective engagem...

  8. Mitigation Technique for Receiver Performance Variation of Multi-Color Channels in Visible Light Communication

    Directory of Open Access Journals (Sweden)

    Yeong Min Jang

    2011-06-01

    Full Text Available “Green” and energy-efficient wireless communication schemes have recently experienced rapid development and garnered much interest. One such scheme is visible light communication (VLC which is being touted as one of the next generation wireless communication systems. VLC allows communication using multi-color channels that provide high data rates and illumination simultaneously. Even though VLC has many advantageous features compared with RF technologies, including visibility, ubiquitousness, high speed, high security, harmlessness for the human body and freedom of RF interference, it suffers from some problems on the receiver side, one of them being photo sensitivity dissimilarity of the receiver. The photo sensitivity characteristics of a VLC receiver such as Si photo-detector depend on the wavelength variation. The performance of the VLC receiver is not uniform towards all channel colors, but it is desirable for receivers to have the same performance on each color channel. In this paper, we propose a mitigation technique for reducing the performance variation of the receiver on multi-color channels. We show received power, SNR, BER, output current, and outage probability in our simulation for different color channels. Simulation results show that, the proposed scheme can reduce the performance variation of the VLC receiver on multi-color channels.

  9. Data transmission with twisted light through a free-space to fiber optical communication link

    International Nuclear Information System (INIS)

    Brüning, Robert; Duparré, Michael; Ndagano, Bienvenu; McLaren, Melanie; Forbes, Andrew; Schröter, Siegmund; Kobelke, Jens

    2016-01-01

    Mode division multiplexing (MDM), where information is transmitted in the spatial modes of light, is mooted as a future technology with which to transmit large bits of information. However, one of the key issues in optical communication lies in connecting free-space to optical fiber networks, otherwise known as the ‘last mile’ problem. This is particularly problematic for MDM as the eigenmodes of free-space and fibers are in general not the same. Here we demonstrate a data transmission scheme across a free-space and fiber link using twisted light in the form of Laguerre–Gaussian (LG) azimuthal modes. As a proof-of-principle we design and implement a custom fiber where the supported LG modes can be grouped into five non-degenerate sets, and successfully transmit a gray-scale image across the composite link using one mode from each group, thereby ensuring minimal crosstalk. (letter)

  10. Review of CMOS Integrated Circuit Technologies for High-Speed Photo-Detection.

    Science.gov (United States)

    Jeong, Gyu-Seob; Bae, Woorham; Jeong, Deog-Kyoon

    2017-08-25

    The bandwidth requirement of wireline communications has increased exponentially because of the ever-increasing demand for data centers and high-performance computing systems. However, it becomes difficult to satisfy the requirement with legacy electrical links which suffer from frequency-dependent losses due to skin effects, dielectric losses, channel reflections, and crosstalk, resulting in a severe bandwidth limitation. In order to overcome this challenge, it is necessary to introduce optical communication technology, which has been mainly used for long-reach communications, such as long-haul networks and metropolitan area networks, to the medium- and short-reach communication systems. However, there still remain important issues to be resolved to facilitate the adoption of the optical technologies. The most critical challenges are the energy efficiency and the cost competitiveness as compared to the legacy copper-based electrical communications. One possible solution is silicon photonics which has long been investigated by a number of research groups. Despite inherent incompatibility of silicon with the photonic world, silicon photonics is promising and is the only solution that can leverage the mature complementary metal-oxide-semiconductor (CMOS) technologies. Silicon photonics can be utilized in not only wireline communications but also countless sensor applications. This paper introduces a brief review of silicon photonics first and subsequently describes the history, overview, and categorization of the CMOS IC technology for high-speed photo-detection without enumerating the complex circuital expressions and terminologies.

  11. 12.5 Gb/s multi-channel broadcasting transmission for free-space optical communication based on the optical frequency comb module.

    Science.gov (United States)

    Tan, Jun; Zhao, Zeping; Wang, Yuehui; Zhang, Zhike; Liu, Jianguo; Zhu, Ninghua

    2018-01-22

    A wide-spectrum, ultra-stable optical frequency comb (OFC) module with 100 GHz frequency intervals based on a quantum dot mode locked (QDML) laser is fabricated by our lab, and a scheme with 12.5 Gb/s multi-channel broadcasting transmission for free-space optical (FSO) communication is proposed based on the OFC module. The output power of the OFC is very stable, with the specially designed circuit and the flatness of the frequency comb over the span of 6 nm, which can be limited to 1.5 dB. Four channel wavelengths are chosen to demonstrate one-to-many channels for FSO communication, like optical wireless broadcast. The outdoor experiment is established to test the bit error rate (BER) and eye diagrams with 12.5 Gb/s on-off keying (OOK). The indoor experiment is used to test the highest traffic rate, which is up to 21 Gb/s for one-hop FSO communication. To the best of our knowledge, this scheme is the first to propose the realization of one-to-many broadcasting transmission for FSO communication based on the OFC module. The advantages of integration, miniaturization, channelization, low power consumption, and unlimited bandwidth of one-to-many broadcasting communication scheme, shows promising results on constructing the future space-air-ground-ocean (SAGO) FSO communication networks.

  12. Nanoparticle-assisted photo-Fenton reaction for photo-decomposition of humic acid

    Science.gov (United States)

    Banik, Jhuma; Basumallick, Srijita

    2017-11-01

    We report here the synthesis of CuO-doped ZnO composite nanomaterials (NMs) by chemical route and demonstrated for the first time that these NMs are efficient catalysts for H2O2-assisted photo-decomposition (photo-Fenton type catalyst) of humic acid, a natural pollutant of surface water by solar irradiation. This has been explained by faster electron transfer to OH radical at the p-n hetero-junction of this composite catalyst. Application of this composite catalyst in decomposing humus substances of local pond water by solar energy has been demonstrated.

  13. High voltage photo switch package module

    Science.gov (United States)

    Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E

    2014-02-18

    A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.

  14. The Autobiographical Photo-textual Devices. Rhetorics and Truth

    Directory of Open Access Journals (Sweden)

    Roberta Coglitore

    2014-05-01

    Full Text Available The case of autobiographical photo-texts is to be analyzed, first of all, as an autobiographical writing that feels the need to express by other means; secondly, as a specific rhetoric practice that chooses the image, next to the word, as a further persuasive force; finally, as a very special case of icono-texts, which uses some variety of the connection between the verbal and the visual. It is not only a matter of analyzing how it works the cooperation between photographs and autobiographical writing, that is, through which connectors – frames, white space, overlays and captions –, but also of understanding what are the functions of the photographs in relation to literature. This is in order to understand what truth is affirmed in the examples chosen: Franca Valeri, Grégoire Bouillier, Roland Barthes, Winfried G. Sebald, Lalla Romano, Jovanotti, Edward Said, Azar Nafisi, Vladimir Nabokov, André Breton, Hannah Höch, Annie Ernaux. Do photographs expose, confirm, add or resist the truth expressed by the literary side? And if narrative expresses the truth and the resistance to the truth of the author himself, what does the photo resist to, while showing?

  15. Polymer Electrolyte Membranes for Water Photo-Electrolysis

    Science.gov (United States)

    Aricò, Antonino S.; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-01-01

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion® 115) and quaternary ammonium-based (Fumatech® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion®-based cell when just TiO2 anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion. PMID:28468242

  16. iPhoto '11 The Missing Manual

    CERN Document Server

    Pogue, David

    2011-01-01

    With better ways to get your photos online and new options for creating printed projects, iPhoto '11 makes it easier than ever to transfer photos from a digital camera, organize them, and publish, print, or share them in maps-but there's still no printed manual for the program. Fortunately, David Pogue and Lesa Snider team up in this witty, authoritative book that should have been in the box. Organize your collection. Discover all of the options for grouping your pictures-by events, in albums, or based on who's in the photo or where it was taken.Sharpen your editing skills. Learn how to use

  17. Precision time distribution within a deep space communications complex

    Science.gov (United States)

    Curtright, J. B.

    1972-01-01

    The Precision Time Distribution System (PTDS) at the Golstone Deep Space Communications Complex is a practical application of existing technology to the solution of a local problem. The problem was to synchronize four station timing systems to a master source with a relative accuracy consistently and significantly better than 10 microseconds. The solution involved combining a precision timing source, an automatic error detection assembly and a microwave distribution network into an operational system. Upon activation of the completed PTDS two years ago, synchronization accuracy at Goldstone (two station relative) was improved by an order of magnitude. It is felt that the validation of the PTDS mechanization is now completed. Other facilities which have site dispersion and synchronization accuracy requirements similar to Goldstone may find the PTDS mechanization useful in solving their problem. At present, the two station relative synchronization accuracy at Goldstone is better than one microsecond.

  18. Free-Space Optical Communications Link at 1550-nm using Multiple-Quantum-Well Modulating Retroreflectors in a Marine Environment

    National Research Council Canada - National Science Library

    Rabinovich, W. S; Mahon, R; Burris, H. R; Gilbreath, G. C; Goetz, P. G; Moore, C. I; Stell, M. F; Vilcheck, M. J; Witkowsky, J. L; Swingen, L

    2005-01-01

    A 1550-nm eye-safe, free-space optical communications link is demonstrated at rates up to 5 Mbits/s over a distance of 2 km in the Chesapeake Bay, using quantum-well-based modulating retroreflectors...

  19. Topological Rankings in Communication Networks

    DEFF Research Database (Denmark)

    Aabrandt, Andreas; Hansen, Vagn Lundsgaard; Træholt, Chresten

    2015-01-01

    In the theory of communication the central problem is to study how agents exchange information. This problem may be studied using the theory of connected spaces in topology, since a communication network can be modelled as a topological space such that agents can communicate if and only...... if they belong to the same path connected component of that space. In order to study combinatorial properties of such a communication network, notions from algebraic topology are applied. This makes it possible to determine the shape of a network by concrete invariants, e.g. the number of connected components...

  20. Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces

    Science.gov (United States)

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M.; Yousaf, Muhammad N.

    2014-09-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.

  1. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing

    Science.gov (United States)

    Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F.; Ashrafi, Solyman

    2017-01-01

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069770

  2. Soviet satellite communications science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  3. Person Recognition in Social Media Photos

    OpenAIRE

    Oh, Seong Joon; Benenson, Rodrigo; Fritz, Mario; Schiele, Bernt

    2017-01-01

    People nowadays share large parts of their personal lives through social media. Being able to automatically recognise people in personal photos may greatly enhance user convenience by easing photo album organisation. For human identification task, however, traditional focus of computer vision has been face recognition and pedestrian re-identification. Person recognition in social media photos sets new challenges for computer vision, including non-cooperative subjects (e.g. backward viewpoints...

  4. Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Lux, James P.

    2014-01-01

    The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among

  5. Photo-fragmentation behavior of methyl- and methoxy-substituted derivatives of hexa-peri-hexabenzocoronene (HBC) cations

    Science.gov (United States)

    Zhen, Junfeng; Castellanos, Pablo; Linnartz, Harold; Tielens, Alexander G. G. M.

    2016-11-01

    A systematic study, using ion trap time-of-flight mass spectrometry, is presented for the photo-fragmentation of methyl- and methoxy-substituted derivatives of HBC cations, (OCH3)6HBC+ and (CH3)4(OCH3)2HBC+. Both substituted HBC cations fragment through sequential loss of CH3CO units upon laser (595nm) irradiation, resulting in a PAH-like derivative C36H12+ and a methyl-substituted PAH derivative C44H24+ , respectively. Upon ongoing irradiation, these species further fragment. For lower laser energy C44H24+ dehydrogenates and photo-fragments through CH3 and CHCH2 unit losses; for higher laser energy isomerization takes place, yielding a regular PAH-like configuration, and both stepwise dehydrogenation and C2/C2H2 loss pathways are found. C36H12+ follows largely this latter fragmentation scheme upon irradiation. It is concluded that the photo-dissociation mechanism of the substituted PAH cations studied here is site selective in the substituted subunit. This work also shows experimental evidence that photo-fragmentation of substituted PAHs may contribute to the formation in space of smaller species that are normally considered to form by merging atoms and molecules.

  6. Photo-elicitation in lifelong learning of teachers of elementary education

    Directory of Open Access Journals (Sweden)

    Antonio Bautista García-Vera

    2017-07-01

    Full Text Available In this article we present and analyze a plan of teacher training. This plan is promoted and supported in the photographs taken by two teachers in their classrooms. Subsequently, through two focus groups, one for each class, we reflect and debate on the content of the photographs. This study is based on three areas of theorizing: teacher reflection on own practice, the essence of experiential image and multimodal literacy of teacher and, finally, the value of the photo- elicitation as a means of storytelling. The question generator that plan was how to materialize represent delayed or experiential image of the teacher to encourage description and, therefore, understanding the experiences of your practice? The response we obtained using photo - elicitation is helping us to further investigate with rigor in human experiences unrelated to the hegemonic visual communication methodologies. Among its benefits within the teacher training, is to recreate the action out of what happened in it and, in parallel, offering the possibility of making visible and discuss conflicts and ethical dilemmas present in it. Thus, the photo- elicitation situations are warm to analyze how and why a teacher has made a decision and no other, because when asked by a choice made is forced to explain his theories, beliefs, values, attitudes.., and only when made explicit, when subjected to public scrutiny, is aware of them. We note that the change in teachers is only possible when it is aware of his theories, beliefs ... and what they entail in teaching.

  7. Temperature behaviour of photo-emissive films. The case of photo-multipliers used in scintillation counters

    International Nuclear Information System (INIS)

    Ardalan, A.H.

    1966-01-01

    This work concerns the changes in the spectral sensitivity of 3 types of normal photo-cathodes (Cs 3 Sb, tri-alkali and bi-alkali without cesium) as a function of temperature. The photo-cathodes of cathodes of commercial photomultipliers (DARIO, E.M.I., R.C.A., A.S.C.O.F.) were used for these tests. The temperature range studied was -25 C to +55 C (except for the bi-alkali photo-cathodes which were tested up to +150 C) and the wave-length range was 3250 to 7000 angstrom. After a brief review of photo-electric effect theories, the experimental device is described and the measurement results presented. Finally, an interpretation of these results is proposed. For the normal range of scintillator emission, i.e. between 3000 and 5000 angstroms (Na I (Tl), plastics, anthracene) the temperature coefficient is always negative: -0.15 % C for Cs 3 Sb and up to -0.5 % C for the most temperature-sensitive photo-cathode. Above 5000 angstrom, the temperature coefficient of Cs 3 Sb films becomes positive: +0.5 % C on the overage. The accuracy of the spectral sensitivity measurements is ±4 % in absolute value and ±1 % in relative value. (author) [fr

  8. Automatic digital photo-book making system

    Science.gov (United States)

    Wang, Wiley; Teo, Patrick; Muzzolini, Russ

    2010-02-01

    The diversity of photo products has grown more than ever before. A group of photos are not only printed individually, but also can be arranged in specific order to tell a story, such as in a photo book, a calendar or a poster collage. Similar to making a traditional scrapbook, digital photo book tools allow the user to choose a book style/theme, layouts of pages, backgrounds and the way the pictures are arranged. This process is often time consuming to users, given the number of images and the choices of layout/background combinations. In this paper, we developed a system to automatically generate photo books with only a few initial selections required. The system utilizes time stamps, color indices, orientations and other image properties to best fit pictures into a final photo book. The common way of telling a story is to lay the pictures out in chronological order. If the pictures are proximate in time, they will coincide with each other and are often logically related. The pictures are naturally clustered along a time line. Breaks between clusters can be used as a guide to separate pages or spreads, thus, pictures that are logically related can stay close on the same page or spread. When people are making a photo book, it is helpful to start with chronologically grouped images, but time alone wont be enough to complete the process. Each page is limited by the number of layouts available. Many aesthetic rules also apply, such as, emphasis of preferred pictures, consistency of local image density throughout the whole book, matching a background to the content of the images, and the variety of adjacent page layouts. We developed an algorithm to group images onto pages under the constraints of aesthetic rules. We also apply content analysis based on the color and blurriness of each picture, to match backgrounds and to adjust page layouts. Some of our aesthetic rules are fixed and given by designers. Other aesthetic rules are statistic models trained by using

  9. How to Use SANC to Improve the PHOTOS Monte Carlo Simulation of Bremsstrahlung In Leptonic W-Boson Decays

    International Nuclear Information System (INIS)

    Nanava, G.; ); Was, Z.; )

    2003-01-01

    Using the SANC system we study the one-loop electroweak standard model predictions, including virtual and real photon emission, for the decays of the on-shell vector boson, W → lν l γ. The complete one-loop corrections and exact photon emission matrix element are taken into account. For the phase space integration, the Monte Carlo technique is used. This provides a useful element, first for the evaluation of the theoretical uncertainty of PHOTOS. Later we analyse the source of the differences between SANC and PHOTOS and we calculate the additional weight, which once installed, improves predictions of PHOTOS simulations. We can conclude that, after the correction of the weight is implemented, the theoretical uncertainty of PHOTOS simulations due to an incomplete first-order matrix element is reduced to below, for observables not tagging the photon in a direct way, and to 10% otherwise. This is interesting for applications in the phenomenology of the ongoing LEP2 and future LC and LHC experimental studies. (author)

  10. Space-Time Equalization for High-Speed Wireless Digital Communications Based on Multipath-Incorporating Matched Filtering, Zero Forcing Equalization, and MMSE

    National Research Council Canada - National Science Library

    Zoltowski, Michael D

    2003-01-01

    The project has successfully demonstrated reduced-rank, space-time equalization for high-speed wireless digital communications capable of reliably transmitting multimedia data in support of military...

  11. A library of georeferenced photos from the field

    Science.gov (United States)

    Xiao, Xiangming; Dorovskoy, Pavel; Biradar, Chandrashekhar; Bridge, Eli

    2011-12-01

    A picture is worth a thousand of words, and every day hundreds of scientists, students, and environmentally aware citizens are taking field photos to document their observations of rocks, glaciers, soils, forests, wetlands, croplands, rangelands, livestock, and birds and mammals, as well as important events such as droughts, floods, wildfires, insect emergences, and infectious disease outbreaks. Where are those field photos stored? Can they be shared in a timely fashion to support education, research, and the leisure activities of citizens across the world? What are the financial and intellectual costs if those field photos are lost or not shared? Recently, researchers at the University of Oklahoma developed and released the Global Geo-Referenced Field Photo Library (hereinafter referred to as the Field Photo Library; http://www.eomf.ou.edu/photos/), a Web-based data portal designed for researchers and educators who wish to archive and share field photos from across the world, each tagged with exact positioning data (Figure 1). The data portal has a simple user interface that allows people to upload, query, and download georeferenced field photos in the library.

  12. BVA members wow judges in photo competition.

    Science.gov (United States)

    2016-09-03

    Earlier this year, BVA ran its inaugural photo competition, giving members the opportunity to showcase the work of the veterinary profession and the animals and wildlife they encounter. Standing out from over 400 high-quality entries, judges picked the images reproduced in this month's BVA News as the winning and highly commended photos. To see all the entries and hear from the winners, visit www.bva.co.uk/vet-photos-2016/. There will be another photo competition in 2017 with more categories to be announced. British Veterinary Association.

  13. Computer-Mediated Communication Systems

    Directory of Open Access Journals (Sweden)

    Bin Yu

    2011-10-01

    Full Text Available The essence of communication is to exchange and share information. Computers provide a new medium to human communication. CMC system, composed of human and computers, absorbs and then extends the advantages of all former formats of communication, embracing the instant interaction of oral communication, the abstract logics of printing dissemination, and the vivid images of movie and television. It also creates a series of new communication formats, such as Hyper Text, Multimedia etc. which are the information organizing methods, and cross-space message delivering patterns. Benefiting from the continuous development of technique and mechanism, the computer-mediated communication makes the dream of transmitting information cross space and time become true, which will definitely have a great impact on our social lives.

  14. Photo-Induced Micellization of Block Copolymers

    Directory of Open Access Journals (Sweden)

    Satoshi Kuwayama

    2010-11-01

    Full Text Available We found novel photo-induced micellizations through photolysis, photoelectron transfer, and photo-Claisen rearrangement. The photolysis-induced micellization was attained using poly(4-tert-butoxystyrene-block-polystyrene diblock copolymer (PBSt-b-PSt. BSt-b-PSt showed no self-assembly in dichloromethane and existed as isolated copolymers. Dynamic light scattering demonstrated that the copolymer produced spherical micelles in this solvent due to irradiation with a high-pressure mercury lamp in the presence of photo-acid generators, such as bis(alkylphenyliodonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, and triphenylsulfonium triflate. The 1H NMR analysis confirmed that PBSt-b-PSt was converted into poly(4-vinylphenol-block-PSt by the irradiation, resulting in self-assembly into micelles. The irradiation in the presence of the photo-acid generator also induced the micellization of poly(4-pyridinemethoxymethylstyrene-block-polystyrene diblock copolymer (PPySt-b-PSt. Micellization occurred by electron transfer from the pyridine to the photo-acid generator in their excited states and provided monodispersed spherical micelles with cores of PPySt blocks. Further, the photo-Claisen rearrangement caused the micellization of poly(4-allyloxystyrene-block-polystyrene diblock copolymer (PASt-b-PSt. Micellization was promoted in cyclohexane at room temperature without a catalyst. During micellization, the elimination of the allyl groups competitively occurred along with the photorearrangement of the 4-allyloxystyrene units into the 3-allyl-4-hydroxystyrene units.

  15. A fast photo-counter with multi-level buffers

    International Nuclear Information System (INIS)

    Peng Hu; Zhou Peiling; Yao Kun; Guo Guangcan

    1992-01-01

    Digital Photon Correlator (DPC) is composed of a Photo-counter and a data processing unit. The performance of Photo-counter in data acquisition system has a direct influence on data processing. The Photo-counter with fast carry designed here has multi-level buffers. Photon pulses can be correctly and dynamically recorded by the Photo-counter and processed by a single chip computer

  16. Selection of a Data Acquisition and Controls System Communications and Software Architecture for Johnson Space Center's Space Environment Simulation Laboratory Thermal and Vacuum Test Facilities

    Science.gov (United States)

    Jordan, Eric A.

    2004-01-01

    Upgrade of data acquisition and controls systems software at Johnson Space Center's Space Environment Simulation Laboratory (SESL) involved the definition, evaluation and selection of a system communication architecture and software components. A brief discussion of the background of the SESL and its data acquisition and controls systems provides a context for discussion of the requirements for each selection. Further framework is provided as upgrades to these systems accomplished in the 1990s and in 2003 are compared to demonstrate the role that technological advances have had in their improvement. Both of the selections were similar in their three phases; 1) definition of requirements, 2) identification of candidate products and their evaluation and testing and 3) selection by comparison of requirement fulfillment. The candidates for the communication architecture selection embraced several different methodologies which are explained and contrasted. Requirements for this selection are presented and the selection process is described. Several candidates for the software component of the data acquisition and controls system are identified, requirements for evaluation and selection are presented, and the evaluation process is described.

  17. All new custom path photo book creation

    Science.gov (United States)

    Wang, Wiley; Muzzolini, Russ

    2012-03-01

    In this paper, we present an all new custom path to allow consumers to have full control to their photos and the format of their books, while providing them with guidance to make their creation fast and easy. The users can choose to fully automate the initial creation, and then customize every page. The system manage many design themes along with numerous design elements, such as layouts, backgrounds, embellishments and pattern bands. The users can also utilize photos from multiple sources including their computers, Shutterfly accounts, Shutterfly Share sites and Facebook. The users can also use a photo as background, add, move and resize photos and text - putting what they want where they want instead of being confined to templates. The new path allows users to add embellishments anywhere in the book, and the high-performance platform can support up to 1,000 photos per book and up to 25 pictures per page. The path offers either Smart Autofill or Storyboard features allowing customers to populate their books with photos so they can add captions and customize the pages.

  18. Influence of radiation on photo-electric characteristics of silicon photo cells with optical coverings

    International Nuclear Information System (INIS)

    Madatov, R.S.; Safarov, N.A.; Gasymova, V.G.; Abdurragimov, A.A.; Allahverdiev, A.M.

    2003-01-01

    In the given work results of measurements volt-ampere and spectral characteristics of silicon photo cells with optical coverings ZnS+Nd 2 O 3 irradiated accelerated electrons with energy 4.5 MeV are carried out. Elements have been made by diffusion of phosphorus in p-silicon with specific resistance 2 Ω·cm. Under condition of illumination from source AMI the photocurrent of short circuit made 40 mA/cm 2 , and a photo voltage of idling 0.52 V, efficiency made 15 %. To receive low reflection in wide area of spectral sensitivity and by that as much as possible to increase efficiency of elements with the help of two-layer coverings. The irradiation of samples was made on linear accelerator EL4-6 at room temperature. It is received, that with increase in a dose of an irradiation the Photocurrent and photo voltage decreases, and speed reduction of a photo-current is stronger, than photo voltage. The critical integrated stream for these elements makes 4·10 12 el/cm 2 . In all researched samples radiating reduction of a voltage of idling in an interval of 10 10 -10 14 el/cm 2 makes 8-10 %. The analysis of spectral characteristics of the irradiated samples show, that reduction of a photocurrent in long-wave areas of a spectrum is connected by creation of radiating defects in a base part of an element. The increase in a critical stream in silicon solar elements with optical a covering in comparison with elements without a covering is connected with low concentration of defects in the base, created with electron. Thus, on the basis of complex research of influence on radiating stability silicon solar elements us it is established, that two-layer coverings not only increases efficiency of photo cells, but also considerably raise value of an integrated stream electrons, that is equivalent to increase in service life of the elements working in conditions of radiation

  19. An assessment of the status and trends in satellite communications 1986-2000: An information document prepared for the Communications Subcommittee of the Space Applications Advisory Committee

    Science.gov (United States)

    Poley, W. A.; Stevens, G. H.; Stevenson, S. M.; Lekan, J.; Arth, C. H.; Hollansworth, J. E.; Miller, E. F.

    1986-01-01

    This is a response to a Space Applications Advisory Committee (SAAC) request for information about the status and trends in satellite communications, to be used to support efforts to conceive and recommend long range goals for NASA communications activities. Included in this document are assessments of: (1) the outlook for satellite communications, including current applications, potential future applications, and impact of the changing environment such as optical fiber networks, the Integrated Services Digital Network (ISDN) standard, and the rapidly growing market for Very Small Aperture Terminals (VSAT); (2) the restrictions imposed by our limited spectrum resource; and (3) technology needs indicated by future trends. Potential future systems discussed include: large powerful satellites for providing personal communications; VSAT compatible satellites with onboard switching and having voice capability; large satellites which offer a pervasive T1 network service (primarily for video-phone); and large geostationary communications facilities which support common use by several carriers. Also, discussion is included of NASA particular needs and possible future systems. Based on the mentioned system concepts, specific technology recommendations are provided for the time frames of now - 1993, 1994 - 2000, and 2000 - 2010.

  20. Quantum Limits of Space-to-Ground Optical Communications

    Science.gov (United States)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission

  1. Grannies on the Net: Grandmothers’ Experiences of Facebook in Family Communication

    Directory of Open Access Journals (Sweden)

    Loredana Ivan

    2016-06-01

    Full Text Available Despite ageist stereotypes about older people’s abilities to engage with information and communication technologies, grandparents are increasingly engaged with digital media. Grandmothers, in particular, are primarily responsible for using of web-based services to communicate with their children and grandchildren (Quadrello et al., 2005. Photos and news from children and grandchildren, especially grandbabies, act as important incentives for grandparents to go online. The purpose of the study, therefore, was to investigate how grandmothers use Facebook to facilitate family communication with children and grandchildren who move far away from home. Semi-structured interviews were conducted with grandmothers living in Romania and Canada, having a Facebook account and relevant family members (children or grandchildren far from home. Three themes emerged from the data indicating: 1 the tendency to switch between different platforms to facilitate family communication; 2 the relative passive use of Facebook, focusing on photos and quotations as content that trigger emotions; 3 that Facebook usage is influenced by social norms around decency and privacy. Findings suggest that family relationships play a central role in grandmothers’ motivations and behaviours surrounding Facebook use.

  2. Hybrid microtransmitter for free-space optical spacecraft communication: design, manufacturing, and characterization

    Science.gov (United States)

    Lotfi, Sara; Palmer, Kristoffer; Kratz, Henrik; Thornell, Greger

    2009-02-01

    Optical intra-communication links are investigated by several currently operational qualification missions. Compared with RF communication systems, the optical domain obtains a wider bandwidth, enables miniaturized spacecraft and reduced power consumption. In this project, a microtransmitter is designed and manufactured for formation flying spacecraft with transmission rates of 1 Gbit/s. Simulations in Matlab and Simulink show that a BER of 10-9 can be achieved with aperture sizes of 1 cm and a transmitter output peak power of 12 mW for a distance of 10 km. The results show that the performance of the communication link decreases due to mechanical vibrations in the spacecraft together with a narrow laser beam. A dual-axis microactuator designed as a deflectable mirror has been developed for the laser beam steering where the fabrication is based on a double-sided, bulk micromachining process. The mirror actuates by joints consisting of v-grooves filled with SU-8 polymer. The deflection is controlled by integrated resistive heaters in the joints causing the polymer to expand thermally. Results show that the mirror actuates 20-30° in the temperature interval 25-250°C. Flat Fresnel lenses made of Pyrex 7740 are used to collimate the laser beam. These lenses are simulated in the Comsol software and optimized for a 670 nm red VCSEL. The lenses are manufactured using lithography and reactive ion etching. All tests are made in a normal laboratory environment, but the effect of the space environment is discussed.

  3. Unified Photo Enhancement by Discovering Aesthetic Communities From Flickr.

    Science.gov (United States)

    Hong, Richang; Zhang, Luming; Tao, Dacheng

    2016-03-01

    Photo enhancement refers to the process of increasing the aesthetic appeal of a photo, such as changing the photo aspect ratio and spatial recomposition. It is a widely used technique in the printing industry, graphic design, and cinematography. In this paper, we propose a unified and socially aware photo enhancement framework which can leverage the experience of photographers with various aesthetic topics (e.g., portrait and landscape). We focus on photos from the image hosting site Flickr, which has 87 million users and to which more than 3.5 million photos are uploaded daily. First, a tagwise regularized topic model is proposed to describe the aesthetic topic of each Flickr user, and coherent and interpretable topics are discovered by leveraging both the visual features and tags of photos. Next, a graph is constructed to describe the similarities in aesthetic topics between the users. Noticeably, densely connected users have similar aesthetic topics, which are categorized into different communities by a dense subgraph mining algorithm. Finally, a probabilistic model is exploited to enhance the aesthetic attractiveness of a test photo by leveraging the photographic experiences of Flickr users from the corresponding communities of that photo. Paired-comparison-based user studies show that our method performs competitively on photo retargeting and recomposition. Moreover, our approach accurately detects aesthetic communities in a photo set crawled from nearly 100000 Flickr users.

  4. Analysis of fog effects on terrestrial Free Space optical communication links

    KAUST Repository

    Esmail, Maged Abdullah

    2016-07-26

    In this paper, we consider and examine fog measurement data, coming from several locations in Europe and USA, and attempt to derive a unified model for fog attenuation in free space optics (FSO) communication links. We evaluate and compare the performance of our proposed model to that of many well-known alternative models. We found that our proposed model, achieves an average RMSE that outperforms them by more than 9 dB. Furthermore, we have studied the performance of the FSO system using different performance metrics such as signal-to-noise (SNR) ratio, bit error rate (BER), and channel capacity. Our results show that FSO is a short range technology. Therefore, FSO is expected to find its place in future networks that will have small cell size, i.e., <1 km diameter. Moreover, our investigation shows that under dense fog, it is difficult to maintain a communications link because of the high signal attenuation, which requires switching the communications to RF backup. Our results show that increasing the transmitted power will improve the system performance under light fog. However, under heavy fog, the effect is minor. To enhance the system performance under low visibility range, multi-hop link is used which can enhance the power budget by using short segments links. Using 22 dBm transmitted power, we obtained BER=10-3 over 1 km link length with 600 m visibility range which corresponds to light fog. However, under lower visibility range equals 40 m that corresponds to dense fog, we obtained the same BER but over 200 m link length. © 2016 IEEE.

  5. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany); Tanwar, M.; Veetil, S.K.; Kateriya, S. [Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India); Stierl, M.; Hegemann, P. [Institut für Biologie/Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany)

    2013-09-23

    Highlights: • Lyophilizing of NgPAC2 from Naegleria gruberi caused loss of BLUF domain activity. • Photo-induced tyrosine to flavin electron transfer in lyophilized NgPAC2. • Photo-induced Tyr–Tyr cross-linking to o,o′-dityrosine in lyophilized NgPAC2. • Photo-induced partial flavin cofactor reduction in lyophilized NgPAC2. • Two NgPAC2 conformations with fast and slow photo-induced electron transfer. - Abstract: The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr–Tyr cross-linking (o,o′-ditysosine formation) and partial flavin cofactor reduction.

  6. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    International Nuclear Information System (INIS)

    Penzkofer, A.; Tanwar, M.; Veetil, S.K.; Kateriya, S.; Stierl, M.; Hegemann, P.

    2013-01-01

    Highlights: • Lyophilizing of NgPAC2 from Naegleria gruberi caused loss of BLUF domain activity. • Photo-induced tyrosine to flavin electron transfer in lyophilized NgPAC2. • Photo-induced Tyr–Tyr cross-linking to o,o′-dityrosine in lyophilized NgPAC2. • Photo-induced partial flavin cofactor reduction in lyophilized NgPAC2. • Two NgPAC2 conformations with fast and slow photo-induced electron transfer. - Abstract: The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr–Tyr cross-linking (o,o′-ditysosine formation) and partial flavin cofactor reduction

  7. Through the Students’ Lens: Photographic Methods for Research in Library Spaces

    Directory of Open Access Journals (Sweden)

    Shailoo Bedi

    2017-06-01

    Full Text Available Abstract Objective – As librarians and researchers, we are deeply curious about how our library users navigate and experience our library spaces. Although we have some data about users’ experiences and wayfinding strategies at our libraries, including anecdotal evidence, statistics, surveys, and focus group discussions, we lacked more in-depth information that reflected students’ real-time experiences as they move through our library spaces. Our objective is to address that gap by using photographic methods for studying library spaces. Methods – We present two studies conducted in two academic libraries that used participant-driven photo-elicitation (PDPE methods. Described simply, photo-elicitation methods involve the use of photographs as discussion prompts in interviews. In both studies presented here, we asked participants to take photographs that reflected their experiences using and navigating our library spaces. We then met with participants for an interview using their photos as prompts to discuss their experiences. Results – Our analysis of students’ photos and interviews provided rich descriptions of student experiences in library spaces. This analysis resulted in new insights into the ways that students navigate the library as well as the ways that signage, furniture, technology, and artwork in the library can shape student experiences in library spaces. The results have proven productive in generating answers to our research questions and supporting practical improvements to our libraries. Additionally, when comparing the results from our two studies we identified the importance of detailed spatial references for understanding student experiences in library spaces, which has implications beyond our institutions. Conclusion – We found that photographic methods were very productive in helping us to understand library users’ experiences and supporting decision-making related to library spaces. In addition, engaging with

  8. Electron cyclotron resonance plasma photos

    Energy Technology Data Exchange (ETDEWEB)

    Racz, R.; Palinkas, J. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary); University of Debrecen, H-4010 Debrecen, Egyetem ter 1 (Hungary); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary)

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  9. Electron cyclotron resonance plasma photos

    International Nuclear Information System (INIS)

    Racz, R.; Palinkas, J.; Biri, S.

    2010-01-01

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  10. Problems of photo-radiative action

    International Nuclear Information System (INIS)

    Milinchuk, V.K.

    1985-01-01

    The most interesting photo-radiation effects observed in the last few years are discussed, in particular, considerable reduction ip material radiation resistance under the combined effect of ionizing and visible radiation. Intermediate active particles are shown to absorb the light according to the mechanism of ''direct'' absorption and as a result of photo-sensibilization reactions as well. Channels of absorbed light energy dissipation depend on the nature and structure of the intermediate active particles, temperature, light radiation frequency and other parameters. Problems are considered which solution promotes further development of photo-radiation chemistry and that are important for such branches of modern physical chemistry as kinetics and mechanism of elementary processes in organic solids, radiation resistance and ageing of organic polymers

  11. NEFSC Photo Gallery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos of fish, marine mammals, turtles, ships, and other related subjects for use by students, educators, scientists, media, etc.

  12. Content-aware photo collage using circle packing.

    Science.gov (United States)

    Yu, Zongqiao; Lu, Lin; Guo, Yanwen; Fan, Rongfei; Liu, Mingming; Wang, Wenping

    2014-02-01

    In this paper, we present a novel approach for automatically creating the photo collage that assembles the interest regions of a given group of images naturally. Previous methods on photo collage are generally built upon a well-defined optimization framework, which computes all the geometric parameters and layer indices for input photos on the given canvas by optimizing a unified objective function. The complex nonlinear form of optimization function limits their scalability and efficiency. From the geometric point of view, we recast the generation of collage as a region partition problem such that each image is displayed in its corresponding region partitioned from the canvas. The core of this is an efficient power-diagram-based circle packing algorithm that arranges a series of circles assigned to input photos compactly in the given canvas. To favor important photos, the circles are associated with image importances determined by an image ranking process. A heuristic search process is developed to ensure that salient information of each photo is displayed in the polygonal area resulting from circle packing. With our new formulation, each factor influencing the state of a photo is optimized in an independent stage, and computation of the optimal states for neighboring photos are completely decoupled. This improves the scalability of collage results and ensures their diversity. We also devise a saliency-based image fusion scheme to generate seamless compositive collage. Our approach can generate the collages on nonrectangular canvases and supports interactive collage that allows the user to refine collage results according to his/her personal preferences. We conduct extensive experiments and show the superiority of our algorithm by comparing against previous methods.

  13. Electrochemical impedance spectroscopy to study photo - induced effects on self-organized TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Pu, P.; Cachet, H.; Sutter, E.M.M.

    2010-01-01

    Two different morphologies of nano-structured titanium dioxide-a nanotubular layer and a compact layer - were obtained by anodization of titanium in fluoride-based baths, and the photo-induced effects of these layers were investigated by electrochemical impedance spectroscopy (EIS). The first layer showed long-lasting photo-induced modifications after UV illumination, whereas, in the case of the compact layer, no long-lasting UV-induced modifications were observed. Before light exposure, in the nanotubular layer, only the bottom of the tubes were electro-active and contributed to the conduction of the layer. Moreover an exponential distribution of surface states could be evidenced. After UV exposure, the surface states were filled by the photo-generated electrons, leading to activation of the walls of the tubes by inserted hydrogen, and to a hundred fold increase in the space charge layer capacitance. This capacitance increase was attributed to an increase in the active surface of the layer, but also to an increase in the charge carrier density.

  14. Kinetic study of photo-grafting and photo-cross-linking of a cis-poly butadiene onto cellulose from asymmetric membranes

    International Nuclear Information System (INIS)

    Zeni, M.; Riveros, R.; Schildt, R.

    1991-01-01

    Photochemical grafting onto cellulose and successive photo cross-linking of 2,00-12,00 mg.cm -2 of a cys-poly butadiene, containing 80% cis groups, were investigated kinetically at 30 0 C in the presence of 1,2-diphenyl-2,2-dimethoxy ethanone as a photo initiator to polymer varied between 0,070 and 1,115. Irradiations were carried out poly chromatically, in air or under a stream of nitrogen, with incident radiation of flux I of 2,1.10 -8 einstein.s -1 .cm -2 . In light of this information, the mechanism of photo-grafting and photo-cross linking of cis-poly-butadiene on cellulose surface is discussed. (author)

  15. Deuteron photo-disintegration at large energies

    International Nuclear Information System (INIS)

    Potterveld, D.H.

    1994-01-01

    Current proposals at CEBAF include the measurement of cross sections and polarization observables of exclusive photo-reactions such as deuteron photo-disintegration and pion photo-production from nucleons. At issue is the applicability of traditional meson-exchange models versus quark models of these reactions at photon energies of several GeV. Beam energies above 4 GeV at CEBAF could make possible the measurement of these reactions over a kinematic range sufficiently broad to distinguish between the models. Estimates of counting rates for a Hall-C experiment to measure the γd → pn cross section are presented

  16. Development of Operational Free-Space-Optical (FSO) Laser Communication Systems Final Report CRADA No. TC02093.0

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Orgren, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This project was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and LGS Innovations, LLC (formerly Lucent Technologies, Inc.), to develop long-range and mobile operational free-space optical (FSO) laser communication systems for specialized government applications. LLNL and LGS Innovations formerly Lucent Bell Laboratories Government Communications Systems performed this work for a United States Government (USG) Intelligence Work for Others (I-WFO) customer, also referred to as "Government Customer", or "Customer" and "Government Sponsor." The CRADA was a critical and required part of the LLNL technology transfer plan for the customer.

  17. Communication Research in Aviation and Space Operations: Symptoms and Strategies of Crew Coordination

    Science.gov (United States)

    Kanki, Barbara G.; Hart, Sandra G. (Technical Monitor)

    1994-01-01

    implicated in accidents and incidents. NASA/Ames Crew Factors researchers have been developing a model of effective crew coordination in order to understand the sources of performance breakdowns, and to develop effective solutions and interventions. Because communication is a primary mechanism by which information is received and transmitted, and because it is observable behavior, we focus on these group processes in order to identify patterns of communication that distinguish effective from less effective crew performance. Since a prime objective is to develop training recommendations for enhancing communication skills, we interpret our findings in the context of relevant task and environmental conditions, role and procedural constraints, and the normal real-time parameters of flight operations. Another research objective is to consider how communication and coordination can be enhanced through design. For example, flight deck and hardware design as well as procedural and software design may greatly influence the efficiency with which crews communicate and coordinate their work. In addition, teams and tasks may be designed, organized, and trained so that team interactions with each other are based upon appropriately shared knowledge, procedures and situation awareness. In short, we are interested in enhancing communication practices through (1) the training of specific communication skills, and (2) the design of equipment, tasks, procedures, and teams that optimize smooth, unambiguous communication processes. Two examples of communication research will be described; one in aviation and one in space operations. The first example is a high-fidelity full mission simulation study which investigates the affect of flightdeck automation on crew coordination and communication (contrasting crew performance in the DC-9 vs. MD88). Additional information is contained in the original extended abstract.

  18. Elongational viscosity of photo-oxidated LDPE

    Science.gov (United States)

    Rolón-Garrido, Víctor H.; Wagner, Manfred H.

    2014-05-01

    Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, timedeformation separability is confirmed for all samples, independent of the degree of photo-oxidation.

  19. The performance of orthogonal frequency division multiplexing in the weak turbulence regime of free space optics communication systems

    International Nuclear Information System (INIS)

    Selvi, M; Murugesan, K

    2012-01-01

    Radio on free space optics—RoFSO—has gained momentum in research because of its cost effectiveness and efficiency in transferring data at a high rate that is comparable to that for optical fiber media. While the transmission data rate is limited in fiber due to dispersion and nonlinearity, such effects do not prevail in FSO communication links. The data rate depends mainly on the switching speed of the optoelectronic devices. With the characteristics of free space being random in nature, the performance of RoFSO is primarily governed by atmospheric conditions. In this paper, we evaluate the performance of the orthogonal frequency division multiplexing (OFDM) signal in free space and compare against its counterpart radio frequency (RF) wireless communication systems. Simulations have been done on the atmospheric conditions by means of modeling the scintillation effect using log-normal distribution. The performance of the proposed system under two different base-band modulations, namely OFDM–PSK (phase shift keying) and QAM (quadrature amplitude modulation) in weak turbulence conditions is studied. It is found that PSK performs better than QAM. Also the M-ary performance analysis shows that 3–5 dB improvement in the signal to noise ratio is obtained for OFDM based FSO transmission compared to RF based wireless transmission. (paper)

  20. Transceiver for Space Station Freedom

    Science.gov (United States)

    Fitzmaurice, M.; Bruno, R.

    1990-07-01

    This paper describes the design of the Laser Communication Transceiver (LCT) system which was planned to be flight tested as an attached payload on Space Station Freedom. The objective in building and flight-testing the LCT is to perform a broad class of tests addressing the critical aspects of space-based optical communications systems, providing a base of experience for applying laser communications technology toward future communications needs. The LCT's functional and performance requirements and capabilities with respect to acquisition, spatial tracking and pointing, communications, and attitude determination are discussed.

  1. Photometric Evaluation of Photo-luminescent Materials for Multi-Egress Guidance Placards: Lighting Environment Test Facility

    Science.gov (United States)

    Maida, James C.

    2005-01-01

    The purpose of this investigation was to evaluate several photo luminescent (PL) materials being considered for construction of emergency egress placards in the International Space Station (ISS). The use of PL material is intended to allow the placards to be read by ISS crew members in the event of an extensive power failure resulting in the loss of interior illumination.

  2. Prediction of rain effects on earth-space communication links operating in the 10 to 35 GHz frequency range

    Science.gov (United States)

    Stutzman, Warren L.

    1989-01-01

    This paper reviews the effects of precipitation on earth-space communication links operating the 10 to 35 GHz frequency range. Emphasis is on the quantitative prediction of rain attenuation and depolarization. Discussions center on the models developed at Virginia Tech. Comments on other models are included as well as literature references to key works. Also included is the system level modeling for dual polarized communication systems with techniques for calculating antenna and propagation medium effects. Simple models for the calculation of average annual attenuation and cross-polarization discrimination (XPD) are presented. Calculation of worst month statistics are also presented.

  3. Securing Data for Space Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's vision of data exchange between space and ground nodes would involve the space network accessing public infrastructure such as the internet. Hence, advanced...

  4. Mini Review - Phenolics for skin photo-aging.

    Science.gov (United States)

    Ali, Atif

    2017-07-01

    Photo-aging is one of the foremost problems caused by generation of reactive oxygen species when skin is exposed on UV irradiation. In view of that, generation of reactive oxygen species intermingle with proteins, DNA, saccharides and fatty acids triggering oxidative mutilation and effects are in the appearance of distressed cell metabolism, morphological and ultra-structural changes, mistreat on the routes and revisions in the demarcation, propagation and skin apoptosis living cells which leads to photo-aging. Plant phenolics are universally found in both edible and inedible plants and have extended substantial interest as photo-protective for human skin due to their antioxidant activities. The objective of this review is to highlight the use of plant phenolics for their antioxidant activities against photo-aging.

  5. Space Solar Power Technology for Lunar Polar Applications

    Science.gov (United States)

    Henley, Mark W.; Howell, Joe T.

    2004-01-01

    The technology for Laser-Photo-Voltaic Wireless Power Transistor (Laser-PV WPT) is being developed for lunar polar applications by Boeing and NASA Marshall Space Center. A lunar polar mission could demonstrate and validate Laser-PV WPT and other SSP technologies, while enabling access to cold, permanently shadowed craters that are believed to contain ice. Crater may hold frozen water and other volatiles deposited over billion of years, recording prior impact event on the moon (and Earth). A photo-voltaic-powered rover could use sunlight, when available, and laser light, when required, to explore a wide range of lunar terrain. The National Research Council recently found that a mission to the moon's south pole-Aitkir basin has priority for space science

  6. Distracted: Academic Performance Differences between Teen Users and Non-Users of MySpace and other Communication Technology

    Directory of Open Access Journals (Sweden)

    Tamyra A. Pierce

    2008-06-01

    Full Text Available This study examined the differences in academic performance between teen users and non-users of various communication technologies. Participants included 517 high school students who completed a self-report survey. The results revealed that approximately 3/4 of the teens had a MySpace account and a cell phone and more than 1/2 had an IM account. Results also showed that those who had a MySpace account, cell phone and IM had signifi cantly lower grades than those who did not. Results also revealed that teens who used their MySpace, cell phone and IM while doing their homework reported having lower grades than those who did not use the technology while doing their homework. In addition, those who put off doing their homework to spend time on MySpace also reported lower grades than those who did not put off doing their homework to spend time with MySpace. Finally, results showed that 28% text messaged during class from always to frequently, and 5% reported text messaging during an exam from always to frequently.

  7. Photo-induced reduction of flavin mononucleotide in aqueous solutions

    International Nuclear Information System (INIS)

    Song, S.-H.; Dick, B.; Penzkofer, A.

    2007-01-01

    The photo-induced reduction of flavin mononucleotide (FMN) in aqueous solutions is studied by absorption spectra measurement under aerobic and anaerobic conditions. Samples without exogenous reducing agent and with the exogenous reducing agents ethylene-diamine-tetraacetic acid (EDTA) and dithiothreitol (DTT) are investigated. Under anaerobic conditions the photo-induced reduction with and without reducing agents is irreversible. Under aerobic conditions the photo-reduction without added reducing agent is small compared to the photo-degradation, and the photo-reduction of FMN by the reducing agents is reversible (re-oxidation in the dark). During photo-excitation of FMN the dissolved oxygen is consumed by singlet oxygen formation and subsequent chemical reaction. After light switch-off slow re-oxidation (slow absorption recovery) occurs due to air in-diffusion from surface. EDTA degradation by FMN excitation leads to oxygen scavenging. The quantum efficiencies of photo-reduction under aerobic and anaerobic conditions are determined. The re-oxidation of reduced FMN under aerobic conditions and due to air injection is investigated

  8. What Makes You Tick? An Empirical Study of Space Science Related Social Media Communications Using Machine Learning

    Science.gov (United States)

    Hwong, Y. L.; Oliver, C.; Van Kranendonk, M. J.

    2016-12-01

    The rise of social media has transformed the way the public engages with scientists and science organisations. `Retweet', `Like', `Share' and `Comment' are a few ways users engage with messages on Twitter and Facebook, two of the most popular social media platforms. Despite the availability of big data from these digital footprints, research into social media science communication is scant. This paper presents the results of an empirical study into the processes and outcomes of space science related social media communications using machine learning. The study is divided into two main parts. The first part is dedicated to the use of supervised learning methods to investigate the features of highly engaging messages., e.g. highly retweeted tweets and shared Facebook posts. It is hypothesised that these messages contain certain psycholinguistic features that are unique to the field of space science. We built a predictive model to forecast the engagement levels of social media posts. By using four feature sets (n-grams, psycholinguistics, grammar and social media), we were able to achieve prediction accuracies in the vicinity of 90% using three supervised learning algorithms (Naive Bayes, linear classifier and decision tree). We conducted the same experiments on social media messages from three other fields (politics, business and non-profit) and discovered several features that are exclusive to space science communications: anger, authenticity, hashtags, visual descriptions and a tentative tone. The second part of the study focuses on the extraction of topics from a corpus of texts using topic modelling. This part of the study is exploratory in nature and uses an unsupervised method called Latent Dirichlet Allocation (LDA) to uncover previously unknown topics within a large body of documents. Preliminary results indicate a strong potential of topic model algorithms to automatically uncover themes hidden within social media chatters on space related issues, with

  9. Photos and Videos

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observers are required to take photos and/or videos of all incidentally caught sea turtles, marine mammals, seabirds and unusual or rare fish. On the first 3...

  10. Free space optical networks for ultra-broad band services

    CERN Document Server

    Kartalopoulos, Stamatios V

    2011-01-01

    "Free Space Optical Network is a next generation communication network which uses optical waves instead of microwaves, potentially offering faster communication with ultra band width, meaning more complex communication services can be simultaneously offered. This book describes the network concepts in simple language starting with point-to-point free space optics basics and discusses networking, interoperability with existing communication network, and security. An ideal resource for communication professionals just entering the free space optical communication field and graduate students majoring in optical communications"--Provided by publisher.

  11. Looking at the family photo album: a resumed theoretical discussion of why and how

    Directory of Open Access Journals (Sweden)

    Mette Sandbye

    2014-12-01

    Full Text Available Having been the most widespread practice of photography since the late 19th century, it is only in the recent few decades that family photography has come into focus of academic attention. Scholars working with family albums have mainly come from anthropology, whereas scholars from the aesthetical fields, art history, photography studies, and cultural studies have been more hesitant about how to approach such a material. Using three family photo albums from the late 1960s and onwards as examples, the goal of this paper is to underline that family photos contain emotional, psychological, and affective qualities that reach further than the individual owner and that should be put forward, also within the fields of aesthetics and humanities. Family photo albums are about social and emotional communication, they can be interpreted as ways of understanding and coming to terms with life, and at the same time they document more sociological aspects of daily lives, that we do not have access to from other historical sources. The paper suggests a theoretical framing as a combination of now “classical” photography theory and more recent cultural theory in order to highlight the possible interpretative findings in an analysis of family photography drawing on cultural theory, social-cultural anthropology, material culture studies, affect theory, and phenomenology.

  12. Free-space laser communication technologies IV; Proceedings of the 4th Conference, Los Angeles, CA, Jan. 23, 24, 1992

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1992-01-01

    Papers included in this volume are grouped under topics of receivers; laser transmitters; components; system analysis, performance, and applications; and beam control (pointing, acquisition, and tracking). Papers are presented on an experimental determination of power penalty contributions in an optical Costas-type phase-locked loop receiver, a resonant laser receiver for free-space laser communications, a simple low-loss technique for frequency-locking lasers, direct phase modulation of laser diodes, and a silex beacon. Particular attention is given to experimental results on an optical array antenna for nonmechanical beam steering, a potassium Faraday anomalous dispersion optical filter, a 100-Mbps resonant cavity phase modulator for coherent optical communications, a numerical simulation of a 325-Mbit/s QPPM optical communication system, design options for an optical multiple-access data relay terminal, CCD-based optical tracking loop design trades, and an analysis of a spatial-tracking subsystem for optical communications.

  13. Strategies for the photo-control of endogenous protein activity.

    Science.gov (United States)

    Brechun, Katherine E; Arndt, Katja M; Woolley, G Andrew

    2017-08-01

    Photo-controlled or 'optogenetic' effectors interfacing with endogenous protein machinery allow the roles of endogenous proteins to be probed. There are two main approaches being used to develop optogenetic effectors: (i) caging strategies using photo-controlled conformational changes, and (ii) protein relocalization strategies using photo-controlled protein-protein interactions. Numerous specific examples of these approaches have been reported and efforts to develop general methods for photo-control of endogenous proteins are a current focus. The development of improved screening and selection methods for photo-switchable proteins would advance the field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A way to the Photo Master Expert

    Science.gov (United States)

    Inagaki, Toshihiko

    After the author presided over the photographer's group for 15 years or more, the author met with the Photo Master certificate examination. And the author took the certificate examination, and was authorized as a Photo Master Expert in 2005. In this report, the outline how photographic technology has been mastered in order to adapt the photographer's group to the great change of photography from film to digital and how the contents of the activity of a photographer's group have changed is described. And the progress which took the Photo Master certificate examination as a good opportunity to prove the achievement level of those activities is described. And as a photographic activity after Photo Master Expert authorization, the shooting method of mural painting in the royal tomb of Amenophis III is described.

  15. Free Space Optical Communication in the Military Environment

    Science.gov (United States)

    2014-09-01

    Charles River [6]. Even much earlier than Paul Revere’s ride, optical communication had developed into the semaphore or optical telegraph. The...forms of basic optical communication that are still commonplace today include semaphore flags and signal lamps utilized by navies around the world

  16. NASA's Evolution to K(sub a)- Band Space Communications for Near-Earth Spacecraft

    Science.gov (United States)

    McCarthy, Kevin P.; Stocklin, Frank J.; Geldzahler, Barry J.; Friedman, Daniel E.; Celeste, Peter B.

    2010-01-01

    Over the next several years, NASA plans to launch multiple earth-science missions which will send data from low-Earth orbits to ground stations at 1-3 Gbps, to achieve data throughputs of 5-40 terabits per day. These transmission rates exceed the capabilities of S-band and X-band frequency allocations used for science probe downlinks in the past. Accordingly, NASA is exploring enhancements to its space communication capabilities to provide the Agency's first Ka-band architecture solution for next generation missions in the near-earth regime. This paper describes the proposed Ka-band solution's drivers and concept, constraints and analyses which shaped that concept, and expansibility for future needs

  17. Today’s Mumbai as Photo-Textuality

    Directory of Open Access Journals (Sweden)

    Carmen Concilio

    2015-06-01

    Full Text Available The aim of this essay is to enquire into representations of the city of Mumbai whose urban development has produced images of heaven and hell, sometimes within enclosed boundaries. What is interesting to tackle here is its aestheticisation in a photo-book which presents itself as ‘image-text’ (Mitchel, Stafford, Bombay/Mumbai. Immersions (2013. Not differently from what happens in other cities, such as Cape Town, for instance, here considered only very briefly as counterpoint, the Indian megalopolis’s development has produced disconnected images of urban heaven and hell. The photo-text here discussed presents itself as a composite narrative of words and photos, as the product of the cooperation between an Indian woman poet, Priya Sarukkai Chabria, and an English photographer now based in France, Christopher Taylor. Last but certainly not least in a long sequence of urban photo-texts, this new project requires the reader’s attention in order to try and clarify its role, its meaning, its function, its ethical/aesthetic responsibilities.

  18. Decoding mobile-phone image sensor rolling shutter effect for visible light communications

    Science.gov (United States)

    Liu, Yang

    2016-01-01

    Optical wireless communication (OWC) using visible lights, also known as visible light communication (VLC), has attracted significant attention recently. As the traditional OWC and VLC receivers (Rxs) are based on PIN photo-diode or avalanche photo-diode, deploying the complementary metal-oxide-semiconductor (CMOS) image sensor as the VLC Rx is attractive since nowadays nearly every person has a smart phone with embedded CMOS image sensor. However, deploying the CMOS image sensor as the VLC Rx is challenging. In this work, we propose and demonstrate two simple contrast ratio (CR) enhancement schemes to improve the contrast of the rolling shutter pattern. Then we describe their processing algorithms one by one. The experimental results show that both the proposed CR enhancement schemes can significantly mitigate the high-intensity fluctuations of the rolling shutter pattern and improve the bit-error-rate performance.

  19. Effect of mobile technology featuring visual scene displays and just-in-time programming on communication turns by preadolescent and adolescent beginning communicators.

    Science.gov (United States)

    Holyfield, Christine; Caron, Jessica Gosnell; Drager, Kathryn; Light, Janice

    2018-03-05

    Visual scene displays (VSDs) and just-in-time programming supports are augmentative and alternative communication (AAC) technology features with theoretical benefits for beginning communicators of all ages. The goal of the current study was to evaluate the effects of a communication application (app) on mobile technology that supported the just-in-time programming of VSDs on the communication of preadolescents and adolescents who were beginning communicators. A single-subject multiple-baseline across participant design was employed to evaluate the effect of the AAC app with VSDs programmed just-in-time by the researcher on the communication turns expressed by five preadolescents and adolescents (9-18 years old) who were beginning communicators. All five participants demonstrated marked increases in the frequency of their communication turns after the onset intervention. Just-in-time programming support and VSDs are two features that may positively impact communication for beginning communicators in preadolescence and adolescence. Apps with these features allow partners to quickly and easily capture photos of meaningful and motivating events and provide them immediately as VSDs with relevant vocabulary to support communication in response to beginning communicators' interests.

  20. Photo-medical valley. 'Photo medical research center'

    International Nuclear Information System (INIS)

    Kawanishi, Shunichi; Daido, Hiroyuki; Tajima, Toshiki

    2008-01-01

    To develop a much more compact cancer diagnosis and therapeutic instrument using high intensity laser technology, Japan Atomic Energy Agency (JAEA) has successfully proposed this novel effort to the Ministry of Education, Culture, Sports, Science and Technology (MEXT) program as the creation of a 'photo-medical industrial valley' base in 2007 fiscal year. In this report, a new laser techniques to drive controlled ion beams is described. It is very important approach to realize a laser-driven ion accelerator. (author)

  1. Architecture and communication

    Directory of Open Access Journals (Sweden)

    Špela Hudnik

    2003-01-01

    Full Text Available The article presents effects of technology, science and capital strategies on changes in traditional forms and definitions of space, architecture and bodies. It confronts us with new processes of thinking and living that are constantly being transformed into new dynamic time and spatial contexts. Space is becoming the information filter, communication network. A cross-section of three landscapes: landscape of megastructures, nomadic landscapes and psychedelic landscapes, theory contributes to understanding of media and space-age technology, information technology and electronical language. It offers designs of various megastructures, media surfaces and envelopes of contemporary information society: the anthropological module, hyper- and infra-bodies, bio-electronical bodies and population genetics bodies. It presents the architecture of communication.

  2. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Science.gov (United States)

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  3. Communicative competences in Experimental Sciences degrees within the framework of the new European Space for Higher Education

    Directory of Open Access Journals (Sweden)

    Joseba Ezeiza Ramos

    2009-10-01

    Full Text Available The scenario for developing communicative competences in the Experimental Sciences degrees and within the new European Space for Higher Education is highly complex. This is confirmed by research reported in the White Papers on the new degrees in this subject area. Therefore, to smoothly integrate communicative and linguistic competences into future syllabi, I should first make a careful analysis of the main factors at work in the new situation. This paper seeks to provide a preliminary approach to the problem. First, I describe the academic and professional tasks that constitute the objectives of future European science degrees. This is followed by an analysis of the communicative and linguistic parameters considered essential for satisfactory attainment of these objectives. Finally, the specific skills that students must master in order to meet the demands imposed by the new framework are outlined. The results of this analysis will enable us to see how much the new situation differs from traditional university teaching. Under this new model, the development of communicative and linguistic competences will no longer be a mere adjunct to a science curriculum, but instead will become of prime importance to the academic and professional training of future scientists.

  4. Unified Communications for Space Inventory Management

    Science.gov (United States)

    Gifford, Kevin K.; Fink, Patrick W.; Barton, Richard; Ngo, Phong H.

    2009-01-01

    To help assure mission success for long-duration exploration activities, NASA is actively pursuing wireless technologies that promote situational awareness and autonomy. Wireless technologies are typically extensible, offer freedom from wire tethers, readily support redundancy, offer potential for decreased wire weight, and can represent dissimilar implementation for increased reliability. In addition, wireless technologies can enable additional situational awareness that otherwise would be infeasible. For example, addition of wired sensors, the need for which might not have been apparent at the outset of a program, night be extremely costly due in part to the necessary routing of cables through the vehicle. RFID, or radio frequency identification, is a wireless technology with the potential for significant savings and increased reliability and safety in space operations. Perhaps the most obvious savings relate to the application of inventory management. A fully automated inventory management system is highly desirable for long-term sustaining operations in space environments. This assertion is evidenced by inventory activities on the International Space Station, which represents the most extensive inventory tracking experience base in the history of space operations. In the short tern, handheld RFID readers offer substantial savings owing to reduced crew time for inventory audits. Over the long term, a combination of improved RFID technology and operational concepts modified to fully utilize the technology should result in space based inventory management that is highly reliable and requires very little crew time. In addition to inventory management, RFID is likely to find space applications in real-time location and tracking systems. These could vary from coarse-resolution RFID portals to the high resolution afforded by ultra-wideband (UWB) RFID. Longer range RFID technologies that leverage passive surface acoustic wave (SAW) devices are being investigated to

  5. An instant photo-excited electrons relaxation on the photo-degradation properties of TiO2-x films

    CSIR Research Space (South Africa)

    Nkosi, SS

    2014-11-01

    Full Text Available of Photochemistry and Photobiology A: Chemistry 293 (2014) 72–80 An instant photo-excited electrons relaxation on the photo- degradation properties of TiO2−x films S.S. Nkosi a,b,∗, I. Kortidis d, D.E. Motaungc,∗, P.R. Makgwanec, O.M. Ndwandwe b, S.S. Rayc, G...

  6. The Space Mobile Network

    Science.gov (United States)

    Israel, David

    2017-01-01

    The definition and development of the next generation space communications and navigation architecture is underway. The primary goals are to remove communications and navigations constraints from missions and to enable increased autonomy. The Space Mobile Network (SMN) is an architectural concept that includes new technology and operations that will provide flight systems with an similar user experience to terrestrial wireless mobile networks. This talk will describe the SMN and its proposed new features, such as Disruption Tolerant Networking (DTN), optical communications, and User Initiated Services (UIS).

  7. Benthic Photo Survey: Software for Geotagging, Depth-tagging, and Classifying Photos from Survey Data and Producing Shapefiles for Habitat Mapping in GIS

    Directory of Open Access Journals (Sweden)

    Jared Kibele

    2016-03-01

    Full Text Available Photo survey techniques are common for resource management, ecological research, and ground truthing for remote sensing but current data processing methods are cumbersome and inefficient. The Benthic Photo Survey (BPS software described here was created to simplify the data processing and management tasks associated with photo surveys of underwater habitats. BPS is free and open source software written in Python with a QT graphical user interface. BPS takes a GPS log and jpeg images acquired by a diver or drop camera and assigns the GPS position to each photo based on time-stamps (i.e. geotagging. Depth and temperature can be assigned in a similar fashion (i.e. depth-tagging using log files from an inexpensive consumer grade depth / temperature logger that can be attached to the camera. BPS provides the user with a simple interface to assign quantitative habitat and substrate classifications to each photo. Location, depth, temperature, habitat, and substrate data are all stored with the jpeg metadata in Exchangeable image file format (Exif. BPS can then export all of these data in a spatially explicit point shapefile format for use in GIS. BPS greatly reduces the time and skill required to turn photos into usable data thereby making photo survey methods more efficient and cost effective. BPS can also be used, as is, for other photo sampling techniques in terrestrial and aquatic environments and the open source code base offers numerous opportunities for expansion and customization.

  8. Ground Radar Polarimetric Observations of High-Frequency Earth-Space Communication Links

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.; Benjamin, Andrew

    2002-01-01

    Strategic roadmaps for NASA's Human Exploration and Development of Space (REDS) enterprise support near-term high-frequency communication systems that provide moderate to high data rates with dependable service. Near-earth and human planetary exploration will baseline Ka-Band, but may ultimately require the use of even higher frequencies. Increased commercial demand on low-frequency earth-space bands has also led to increased interest in the use of higher frequencies in regions like K u - and K,- band. Data is taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), which operates at 13.8 GHz, and the true radar reflectivity profile is determined along the PR beam via low-frequency ground based polarimetric observations. The specific differential phase (Kdp) is measured along the beam and a theoretical model is used to determine the expected specific attenuation (k). This technique, called the k-Kdp method, uses a Fuzzy-Logic model to determine the hydrometeor type along the PR beam from which the appropriate k-Kdp relationship is used to determine k and, ultimately, the total path-integrated attenuation (PIA) on PR measurements. Measurements from PR and the NCAR S-POL radar were made during the TEFLUN-B experiment that took place near Melbourne, FL in 1998, and the TRMM-LBA campaign near Ji-Parana, Brazil in 1999.

  9. Space communication and radar with lasers

    NARCIS (Netherlands)

    Witteman, W.J.

    2005-01-01

    Sensitive heterodyne detection with lasers applied .to radar and satellite communication is seriously hampered by the large electronic bandwidth due to random Doppler shift and frequency instability. These drawbacks can be circumvented by dual signal heterodyne detection. The system consists of

  10. Photo-lability of deep ocean dissolved black carbon

    Directory of Open Access Journals (Sweden)

    A. Stubbins

    2012-05-01

    Full Text Available Dissolved black carbon (DBC, defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their

  11. Preparation for the HEC 1999 Test Beam (photos obtained from TRIUMF)

    CERN Multimedia

    1999-01-01

    Photo1 - Three mated modules after rotation are ready to go in the cryostat. Photo2 - The mated modules on the rotator (at 45 degrees). Photo3 - The HEC-2 modules with all the outer connecting bars in place. Photo4 - The HEC-2 modules with two connecting bars still missing. Photo5 - the happy assembly team with three mated HEC - 1 modules. Photo6 - the inner tie-bars assembled on the HEC2 modules.

  12. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  13. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission

    Science.gov (United States)

    Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.

    2008-09-01

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plants- or algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stresstolerant strains. Photosystem II D1 protein sitedirected and random mutants of the unicellular green alga Chlamydomonas reinhardtii [1] were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. For this purpose some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls were included in the study [2]. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton- M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence detector, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for several different algae strains (Fig.1). Twelve different C. reinhardti strains were analytically selected and two replications for each strain were brought to space

  14. Research of the key technology in satellite communication networks

    Science.gov (United States)

    Zeng, Yuan

    2018-02-01

    According to the prediction, in the next 10 years the wireless data traffic will be increased by 500-1000 times. Not only the wireless data traffic will be increased exponentially, and the demand for diversified traffic will be increased. Higher requirements for future mobile wireless communication system had brought huge market space for satellite communication system. At the same time, the space information networks had been greatly developed with the depth of human exploration of space activities, the development of space application, the expansion of military and civilian application. The core of spatial information networks is the satellite communication. The dissertation presented the communication system architecture, the communication protocol, the routing strategy, switch scheduling algorithm and the handoff strategy based on the satellite communication system. We built the simulation platform of the LEO satellites networks and simulated the key technology using OPNET.

  15. Nature and numbers a mathematical photo shooting

    CERN Document Server

    Glaeser, Georg

    2014-01-01

    The book offers 180 pages of spectacular photos and unusual views and insights. Learn to see the world with different eyes and be prepared for many surprises and new facts. The photos give rise to questions that are carefully explained with mathematics.

  16. Quantifying loss of acoustic communication space for right whales in and around a U.S. National Marine Sanctuary.

    Science.gov (United States)

    Hatch, Leila T; Clark, Christopher W; Van Parijs, Sofie M; Frankel, Adam S; Ponirakis, Dimitri W

    2012-12-01

    The effects of chronic exposure to increasing levels of human-induced underwater noise on marine animal populations reliant on sound for communication are poorly understood. We sought to further develop methods of quantifying the effects of communication masking associated with human-induced sound on contact-calling North Atlantic right whales (Eubalaena glacialis) in an ecologically relevant area (~10,000 km(2) ) and time period (peak feeding time). We used an array of temporary, bottom-mounted, autonomous acoustic recorders in the Stellwagen Bank National Marine Sanctuary to monitor ambient noise levels, measure levels of sound associated with vessels, and detect and locate calling whales. We related wind speed, as recorded by regional oceanographic buoys, to ambient noise levels. We used vessel-tracking data from the Automatic Identification System to quantify acoustic signatures of large commercial vessels. On the basis of these integrated sound fields, median signal excess (the difference between the signal-to-noise ratio and the assumed recognition differential) for contact-calling right whales was negative (-1 dB) under current ambient noise levels and was further reduced (-2 dB) by the addition of noise from ships. Compared with potential communication space available under historically lower noise conditions, calling right whales may have lost, on average, 63-67% of their communication space. One or more of the 89 calling whales in the study area was exposed to noise levels ≥120 dB re 1 μPa by ships for 20% of the month, and a maximum of 11 whales were exposed to noise at or above this level during a single 10-min period. These results highlight the limitations of exposure-threshold (i.e., dose-response) metrics for assessing chronic anthropogenic noise effects on communication opportunities. Our methods can be used to integrate chronic and wide-ranging noise effects in emerging ocean-planning forums that seek to improve management of cumulative effects

  17. Sulphonated hypocrellin B sensitized photo damage to ascetic hepatoma cells

    International Nuclear Information System (INIS)

    Yue Jiachang; Wang Tiandun; Pang Suzhen; An Jingyi; Jiang Lijing

    1994-01-01

    The cellular uptake of sulphonated hypocrellin (S-HB), as well as photo damage on cellular viability, lipid peroxidation and intrinsic fluorescence quenching of membrane protein was studied. It was found that S-HB suitable dissolved in aqueous solution, its cellular uptake is slower than HB. The photo damage on cellular viability both photo sensitizers was close to each other, however the photo sensitizers were different in physical and chemical properties. The HB photo damage target of cells was membrane, but the sulphonated HB photo damage target of cells may be part of organelles, besides the membrane. the experiments showed the sulphonated HB would be suggested as a potential advantage for photodynamic therapy of tumor in clinical application

  18. Performance improvement of coherent free-space optical communication with quadrature phase-shift keying modulation using digital phase estimation.

    Science.gov (United States)

    Li, Xueliang; Geng, Tianwen; Ma, Shuang; Li, Yatian; Gao, Shijie; Wu, Zhiyong

    2017-06-01

    The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.

  19. Laser Communications Relay Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — LCRD is a minimum two year flight demonstration in geosynchronous Earth orbit to advance optical communications technology toward infusion into Deep Space and Near...

  20. SILVER RECYCLING FROM PHOTO-PROCESSING WASTE USING ELECTRODEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Mochammad Feri Hadiyanto

    2010-06-01

    Full Text Available Silver electrodeposition of photo-processing waste and without addition of KCN 1,0 M has been studied for silver recycling. Photo procesing waste containing silver in form of [Ag(S2O32]3- was electrolysed at constant potential and faradic efficiency was determined at various of electrolysis times. Electrolysis of 100 mL photo processing waste without addition of KCN 1,0 M was carried out at constant potential 1.20 Volt, while electrolysis 100 mL photo procesing waste with addition of 10 mL KCN 1,0 M electrolysis was done at 1.30 Volt.The results showed that for silver electrodeposition from photo processing waste with addition of KCN 1,0 M was more favorable with faradic efficiency respectively were 93,16; 87,02; 74,74 and 78,35% for 30; 60; 90 and 120 minutes of electrolysis.   Keywords: Silver extraction, electrodeposition, photo-processing waste

  1. METHOD OF IMAGE QUALITY ENHANCEMENT FOR SPACE OBJECTS

    Directory of Open Access Journals (Sweden)

    D. S. Korshunov

    2014-07-01

    Full Text Available The paper deals with an approach for image quality improvement of the space objects in the visible range of electromagnetic wave spectrum. The proposed method is based on the joint taking into account of both the motion velocity of the space supervisory apparatus and a space object observed in the near-earth space when the time of photo-detector exposure is chosen. The timing of exposure is carried out by light-signal characteristics, which determines the optimal value of the charge package formed in the charge-coupled device being irradiated. Thus, the parameters of onboard observation equipment can be selected, which provides space images suitable for interpretation. The linear resolving capacity is used as quality indicator for space images, giving a complete picture for the image contrast and geometric properties of the object on the photo. Observation scenario modeling of the space object, done by sputnik-inspector, has shown the possibility of increasing the linear resolution up to10% - 20% or up to 40% - 50% depending on the non-complanarity angle at the movement along orbits. The proposed approach to the increase of photographs quality provides getting sharp and highcontrast images of space objects by the optical-electronic equipment of the space-based remote sensing. The usage of these images makes it possible to detect in time the space technology failures, which are the result of its exploitation in the nearearth space. The proposed method can be also applied at the stage of space systems design for optical-electronic surveillance in computer models used for facilities assessment of the shooting equipment information tract.

  2. Detection of Tampering Inconsistencies on Mobile Photos

    Science.gov (United States)

    Cao, Hong; Kot, Alex C.

    Fast proliferation of mobile cameras and the deteriorating trust on digital images have created needs in determining the integrity of photos captured by mobile devices. As tampering often creates some inconsistencies, we propose in this paper a novel framework to statistically detect the image tampering inconsistency using accurately detected demosaicing weights features. By first cropping four non-overlapping blocks, each from one of the four quadrants in the mobile photo, we extract a set of demosaicing weights features from each block based on a partial derivative correlation model. Through regularizing the eigenspectrum of the within-photo covariance matrix and performing eigenfeature transformation, we further derive a compact set of eigen demosaicing weights features, which are sensitive to image signal mixing from different photo sources. A metric is then proposed to quantify the inconsistency based on the eigen weights features among the blocks cropped from different regions of the mobile photo. Through comparison, we show our eigen weights features perform better than the eigen features extracted from several other conventional sets of statistical forensics features in detecting the presence of tampering. Experimentally, our method shows a good confidence in tampering detection especially when one of the four cropped blocks is from a different camera model or brand with different demosaicing process.

  3. Photos from MPI: Module installation at CERN for 1999 Test Beam

    CERN Multimedia

    1999-01-01

    Photo1 - Three HEC-1 modules after mating in the clean room. Photo2 - Close-up of three HEC-1 modules in the clean room when mounting the PSB boards. Photo3 - Three HEC-2 modules being inserted into the test-beam cryostat. Photo4 - Three HEC-2 modules in the test-beam cryostat. Photo5 - Three HEC-1 and three HEC-2 modules in the test-beam cryostat. Photo6 - Three HEC-1 and three HEC-2 modules in the test-beam cryostat.

  4. Annual view (1999) - aeronautic relation/space relation. Space relation - communication/broadcasting/engineering test satellite; Nenkan tenbo (1999) koku kankei uchu kankei. Tsushin, hoso, gijutsu shiken eisei kanren

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-05

    To cope with the increasing communication demand, the R and D of engineering test satellite V III are being conducted being aimed at developing a technology of the world's largest class geostationary satellite. As to the large developing rectenna, a model for development was manufactured and is now in test. In August and September 1999, the system combustion test of complete two-liquid chemical propulsion system was carried out at Ishikawajima-Harima Heavy Industries. The R and D of the data relay technology satellite are being conducted for the purpose of conducting orbital demonstrative tests to improve the data relay functional performance of satellite and to spread the data relay range. The engineering test satellite VII was developed to study the space rendezvous/docking technology and the basic technology of space use robot. It was launched in November 1997 and got a lot of valuable data. The operation of satellite has been continued for the acquisition of data such as secular changes of satellite equipment. About the communication broadcasting satellite, experiments and functional tests were finished, and the operation was stopped in August 1999. (NEDO)

  5. Performances of Free-Space Optical Communication System Over Strong Turbulence

    Directory of Open Access Journals (Sweden)

    Ucuk Darusalam

    2014-08-01

    Full Text Available We report an experimental of free-space optical communication (FSOC system that use tube propagation simulator (TPS as the turbulence medium. The FSOC system usewavelength of 1550 nm at the rate transmission of 1000 Mbps and amplified with EDFA at the output of +23 dBm. Index structure of 10-15–10-13 as the representation of atmosphere index turbulences are used for simulation of intensity distribution model or scintillation. The simulation use gammagamma and K model as well. The beam wave propagation models used in simulation are plane wave, spherical wave and Gaussian wave. Spherical wave achieves highest performance via gamma-gamma in strong turbulence. While Gaussian wave achieves highest performance also via K model. We also found, characteristical FSOC system performance is calculated more accurately with gamma-gamma method for strong turbulence than K model. The performances from gamma-gamma for strong turbulenceare at 22.55 dB, at 5.33×10-4, and at 9.41 ×10-6. 

  6. Short distance line of sight laser communication

    International Nuclear Information System (INIS)

    Mudassar, A.A.; Hussain, H.; Jamil-ur-Rehman

    1998-01-01

    Communication methods based on lasers as carrier are well known. In our work we have made a two way laser based communication system for short range (<2 Km) line of sight communication. A small piece of plane mirror (100% reflector) was mounted on the centre of a speaker cone. The speaker was positioned close to the opening of laser such that He-Ne laser beam (10 mW) after reflection from the mirror is directed towards the receiver. There is a pre-amplifier and an amplifier between a microphone and the speaker. When the diagram of the speaker vibrates, it positionally modulates the laser beam. On the receiving end, there is a photo diode, a pre-amplifier, an amplifier and a head phone. So the man on the receiving end can decode the sound signal. On each stage there is a transmitter and a receiver assembled close to each other. So the two way communication is possible in the range 20 to 20 Khz. (author)

  7. The hybrid methylene blue-zeolite system: a higher efficient photo catalyst for photo inactivation of pathogenic microorganisms

    International Nuclear Information System (INIS)

    Smolinska, M.; Cik, G.; Sersen, F.; Caplovicova, M.; Takacova, A.; Kopani, M.

    2015-01-01

    The composite system can be prepared by incorporation of methylene blue into the channels of zeolite and by adsorption on the surface of the crystals. The composite photo sensitizer effectively absorbs the red light (kmax = 648 nm) and upon illumination with light-emitting diode at a fluence rate of 1.02 mW cm-2 generates effectively reactive singlet oxygen in aqueous solution, which was proved by EPR spectroscopy. To test efficiency for inactivation of pathogenic microorganisms, we measured photo killing of bacteria Escherichia coli and Staphylococcus aureus and yeasts Candida albicans. We found out that after the microorganisms have been adsorbed at the surface of such modified zeolite, the photo generated singlet oxygen quickly penetrates their cell walls, bringing about their effective photo inactivation. The growth inhibition reached almost 50 % at 200 and 400 mg modified zeolite in 1 ml of medium in E. coli and C. albicans, respectively. On the other hand, the growth inhibition of S. aureus reached 50 % at far smaller amount of photo catalyst (30 lg per 1 ml of medium). These results demonstrate differences in sensitivities of bacteria and yeast growth. The comparison revealed that concentration required for IC50 was in case of C. albicans several orders of magnitude lower for a zeolite-immobilized dye than it was for a freely dissolved dye. In S. aureus, this concentration was even lower by four orders of magnitude. Thus, our work suggested a new possibility to exploitation of zeolite and methylene blue in the protection of biologically contaminated environment, and in photodynamic therapy.

  8. Commercialization and Standardization Progress Towards an Optical Communications Earth Relay

    Science.gov (United States)

    Edwards, Bernard L.; Israel, David J.

    2015-01-01

    NASA is planning to launch the next generation of a space based Earth relay in 2025 to join the current Space Network, consisting of Tracking and Data Relay Satellites in space and the corresponding infrastructure on Earth. While the requirements and architecture for that relay satellite are unknown at this time, NASA is investing in communications technologies that could be deployed to provide new communications services. One of those new technologies is optical communications. The Laser Communications Relay Demonstration (LCRD) project, scheduled for launch in 2018 as a hosted payload on a commercial communications satellite, is a critical pathfinder towards NASA providing optical communications services on the next generation space based relay. This paper will describe NASA efforts in the on-going commercialization of optical communications and the development of inter-operability standards. Both are seen as critical to making optical communications a reality on future NASA science and exploration missions. Commercialization is important because NASA would like to eventually be able to simply purchase an entire optical communications terminal from a commercial provider. Inter-operability standards are needed to ensure that optical communications terminals developed by one vendor are compatible with the terminals of another. International standards in optical communications would also allow the space missions of one nation to use the infrastructure of another.

  9. Photo-dissociation of hydrogen passivated dopants in gallium arsenide

    International Nuclear Information System (INIS)

    Tong, L.; Larsson, J.A.; Nolan, M.; Murtagh, M.; Greer, J.C.; Barbe, M.; Bailly, F.; Chevallier, J.; Silvestre, F.S.; Loridant-Bernard, D.; Constant, E.; Constant, F.M.

    2002-01-01

    A theoretical and experimental study of the photo-dissociation mechanisms of hydrogen passivated n- and p-type dopants in gallium arsenide is presented. The photo-induced dissociation of the Si Ga -H complex has been observed for relatively low photon energies (3.48 eV), whereas the photo-dissociation of C As -H is not observed for photon energies up to 5.58 eV. This fundamental difference in the photo-dissociation behavior between the two dopants is explained in terms of the localized excitation energies about the Si-H and C-H bonds

  10. Management of outer space

    Science.gov (United States)

    Perek, Lubos

    1993-10-01

    Various aspects of space-environment management are discussed. Attention is called to the fact that, while space radio communications are already under an adequate management by the International Communications Union, the use of nuclear power sources is regulated by the recently adopted set of principles, and space debris will be discussed in the near future at the UN COPUOS, other aspects of management of outer space received little or no attention of the international community. These include the competency of crews and technical equipment of spacecraft launched by newcomers to space exploration; monitoring of locations and motions of space objects (now in national hands), with relevant data made accessible through a computer network; and the requirement to use space only for beneficial purposes and not for promoting narrow and debatable interests damaging the outer space environment and impeding on astronomical observations. It is suggested that some of these tasks would be best performed by an international space agency within the UN system of organizations.

  11. Photo-reactive charge trapping memory based on lanthanide complex

    Science.gov (United States)

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V. A. L.

    2015-10-01

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 104 s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

  12. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  13. AL-USRCRN Photo Information

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos of Alabama USRCRN stations and their immediate surroundings. Taken by engineering techs from NOAA's Atmospheric Turbulence and Diffusion Division (ATDD)....

  14. Developing Tools and Techniques to Increase Communication Effectiveness

    Science.gov (United States)

    Hayes, Linda A.; Peterson, Doug

    1997-01-01

    The Public Affairs Office (PAO) of the Johnson Space Center (JSC) is responsible for communicating current JSC Space Program activities as well as goals and objectives to the American Public. As part of the 1996 Strategic Communications Plan, a review of PAO' s current communication procedures was conducted. The 1996 Summer Faculty Fellow performed research activities to support this effort by reviewing current research concerning NASA/JSC's customers' perceptions and interests, developing communications tools which enable PAO to more effectively inform JSC customers about the Space Program, and proposing a process for developing and using consistent messages throughout PAO. Note that this research does not attempt to change or influence customer perceptions or interests but, instead, incorporates current customer interests into PAO's communication process.

  15. High Efficiency Traveling-Wave Tube Power Amplifier for Ka-Band Software Defined Radio on International Space Station-A Platform for Communications Technology Development

    Science.gov (United States)

    Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.

    2013-01-01

    The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.

  16. ISS EarthKam: Taking Photos of the Earth from Space

    Science.gov (United States)

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  17. Underground spaces/cybernetic spaces

    Directory of Open Access Journals (Sweden)

    Tomaž Novljan

    2000-01-01

    Full Text Available A modern city space is a space where in the vertical and horizontal direction dynamic, non-linear processes exist, similar as in nature. Alongside the “common” city surface, cities have underground spaces as well that are increasingly affecting the functioning of the former. It is the space of material and cybernetic communication/transport. The psychophysical specifics of using underground places have an important role in their conceptualisation. The most evident facts being their limited volume and often limited connections to the surface and increased level of potential dangers of all kinds. An efficient mode for alleviating the effects of these specific features are artistic interventions, such as: shape, colour, lighting, all applications of the basic principles of fractal theory.

  18. Design, Development and Pre-Flight Testing of the Communications, Navigation, and Networking Reconfigurable Testbed (Connect) to Investigate Software Defined Radio Architecture on the International Space Station

    Science.gov (United States)

    Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.

  19. Reconfigurable/Reprogrammable Communications Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's latest effort in developing a common platform for space communication and navigation systems is the Space Telecommunications Radio System (STRS) standard. It...

  20. Space Internet Architectures and Technologies for NASA Enterprises

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2001-01-01

    NASA's future communications services will be supplied through a space communications network that mirrors the terrestrial Internet in its capabilities and flexibility. The notional requirements for future data gathering and distribution by this Space Internet have been gathered from NASA's Earth Science Enterprise (ESE), the Human Exploration and Development in Space (HEDS), and the Space Science Enterprise (SSE). This paper describes a communications infrastructure for the Space Internet, the architectures within the infrastructure, and the elements that make up the architectures. The architectures meet the requirements of the enterprises beyond 2010 with Internet 'compatible technologies and functionality. The elements of an architecture include the backbone, access, inter-spacecraft and proximity communication parts. From the architectures, technologies have been identified which have the most impact and are critical for the implementation of the architectures.

  1. Performance analysis of stationary Hadamard matrix diffusers in free-space optical communication links

    Science.gov (United States)

    Burrell, Derek J.; Middlebrook, Christopher T.

    2017-08-01

    Wireless communication systems that employ free-space optical links in place of radio/microwave technologies carry substantial benefits in terms of data throughput, network security and design efficiency. Along with these advantages comes the challenge of counteracting signal degradation caused by atmospheric turbulence in free-space environments. A fully coherent laser source experiences random phase delays along its traversing path in turbulent conditions forming a speckle pattern and lowering the received signal-to-noise ratio upon detection. Preliminary research has shown that receiver-side speckle contrast may be significantly reduced and signal-to-noise ratio increased accordingly through the use of a partially coherent light source. While dynamic diffusers and adaptive optics solutions have been proven effective, they also add expense and complexity to a system that relies on accessibility and robustness for successful implementation. A custom Hadamard diffractive matrix design is used to statically induce partial coherence in a transmitted beam to increase signal-to-noise ratio for experimental turbulence scenarios. Atmospheric phase screens are generated using an open-source software package and subsequently loaded into a spatial light modulator using nematic liquid crystals to modulate the phase.

  2. Use of the 37-38 GHz and 40-40.5 GHz Ka-bands for Deep Space Communications

    Science.gov (United States)

    Morabito, David; Hastrup, Rolf

    2004-01-01

    This paper covers a wide variety of issues associated with the implementation and use of these frequency bands for deep space communications. Performance issues, such as ground station pointing stability, ground antenna gain, antenna pattern, and propagation effects such as due to atmospheric, charged-particle and space loss at 37 GHz, will be addressed in comparison to the 32 GHz Ka-band deep space allocation. Issues with the use of and competition for this spectrum also will be covered. The state of the hardware developed (or proposed) for operating in this frequency band will be covered from the standpoint of the prospects for achieving higher data rates that could be accommodated in the available bandwidth. Hardware areas to be explored include modulators, digital-to-analog converters, filters, power amplifiers, receivers, and antennas. The potential users of the frequency band will be explored as well as their anticipated methods to achieve the potential high data rates and the implications of the competition for bandwidth.

  3. Photo-induced-heat localization on nanostructured metallic glasses

    Science.gov (United States)

    Uzun, Ceren; Kahler, Niloofar; Grave de Peralta, Luis; Kumar, Golden; Bernussi, Ayrton A.

    2017-09-01

    Materials with large photo-thermal energy conversion efficiency are essential for renewable energy applications. Photo-excitation is an effective approach to generate controlled and localized heat at relatively low excitation optical powers. However, lateral heat diffusion to the surrounding illuminated areas accompanied by low photo-thermal energy conversion efficiency remains a challenge for metallic surfaces. Surface nanoengineering has proven to be a successful approach to further absorption and heat generation. Here, we show that pronounced spatial heat localization and high temperatures can be achieved with arrays of amorphous metallic glass nanorods under infrared optical illumination. Thermography measurements revealed marked temperature contrast between illuminated and non-illuminated areas even under low optical power excitation conditions. This attribute allowed for generating legible photo-induced thermal patterns on textured metallic glass surfaces.

  4. Degradation alternatives for a commercial fungicide in water: biological, photo-Fenton, and coupled biological photo-Fenton processes.

    Science.gov (United States)

    López-Loveira, Elsa; Ariganello, Federico; Medina, María Sara; Centrón, Daniela; Candal, Roberto; Curutchet, Gustavo

    2017-11-01

    Imazalil (IMZ) is a widely used fungicide for the post-harvest treatment of citrus, classified as "likely to be carcinogenic in humans" for EPA, that can be only partially removed by conventional biological treatment. Consequently, specific or combined processes should be applied to prevent its release to the environment. Biological treatment with adapted microorganism consortium, photo-Fenton, and coupled biological photo-Fenton processes were tested as alternatives for the purification of water containing high concentration of the fungicide and the coadjutants present in the commercial formulation. IMZ-resistant consortium with the capacity to degrade IMZ in the presence of a C-rich co-substrate was isolated from sludge coming from a fruit packaging company wastewater treatment plant. This consortium was adapted to resist and degrade the organics present in photo-Fenton-oxidized IMZ water solution. Bacteria colonies from the consortia were isolated and identified. The effect of H 2 O 2 initial concentration and dosage on IMZ degradation rate, average oxidation state (AOS), organic acid concentration, oxidation, and mineralization percentage after photo-Fenton process was determined. The application of biological treatment to the oxidized solutions notably decreased the total organic carbon (TOC) in solution. The effect of the oxidation degree, limited by H 2 O 2 concentration and dosage, on the percentage of mineralization obtained after the biological treatment was determined and explained in terms of changes in AOS. The concentration of H 2 O 2 necessary to eliminate IMZ by photo-Fenton and to reduce TOC and chemical oxygen demand (COD) by biological treatment, in order to allow the release of the effluents to rivers with different flows, was estimated.

  5. Photo catalyst; Ko shokubai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    While titanium oxide is excited by the light, electrons of titanium oxide are taken away by the light energy to form positive holes. Water will be decomposed into hydrogen ion and hydroxy radical (OH) by these positive holes. This hydroxy radical is a strong reactive substance called active oxygen, it decomposes organisms. Besides this photo- catalyst function, the titanium oxide can also make surface of a substance superhydrophilic. The super hydrophilicity results in not forming water drops on the glass surface but spreading all over the surface to prevent a covering of fog on the glass surface. The published patents concerning the photo catalysts were 593 from Jan. 1998 to Jan. 1999. The applicant order is the first TOTO 143, the second Daikin Industry 19, the third Toshiba Raitech, Nitto Denko, Hitachi 17 respectively. (NEDO)

  6. A functional analysis of photo-object matching skills of severely retarded adolescents.

    Science.gov (United States)

    Dixon, L S

    1981-01-01

    Matching-to-sample procedures were used to assess picture representation skills of severely retarded, nonverbal adolescents. Identity matching within the classes of objects and life-size, full-color photos of the objects was first used to assess visual discrimination, a necessary condition for picture representation. Picture representation was then assessed through photo-object matching tasks. Five students demonstrated visual discrimination (identity matching) within the two classes of photos and the objects. Only one student demonstrated photo-object matching. The results of the four students who failed to demonstrate photo-object matching suggested that physical properties of photos (flat, rectangular) and depth dimensions of objects may exert more control over matching than the similarities of the objects and images within the photos. An analysis of figure-ground variables was conducted to provide an empirical basis for program development in the use of pictures. In one series of tests, rectangular shape and background were removed by cutting out the figures in the photos. The edge shape of the photo and the edge shape of the image were then identical. The results suggest that photo-object matching may be facilitated by using cut-out figures rather than the complete rectangular photo.

  7. CubeSat quantum communications mission

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Daniel K.L. [University of Strathclyde, SUPA Department of Physics, Glasgow (United Kingdom); University of Strathclyde, Strathclyde Space Institute, Glasgow (United Kingdom); Ling, Alex [National University of Singapore, Centre for Quantum Technologies, Singapore (Singapore); National University of Singapore, Dept. of Physics, Singapore (Singapore); Vallone, Giuseppe; Villoresi, Paolo [Universita degli Studi di Padova, Dipartimento di Ingegneria dell' Informazione, Padova (Italy); Greenland, Steve; Kerr, Emma [University of Strathclyde, Advanced Space Concepts Laboratory, Mechanical and Aerospace Engineering, Glasgow (United Kingdom); Macdonald, Malcolm [Technology and Innovation Centre, Scottish Centre of Excellence in Satellite Applications, Glasgow (United Kingdom); Weinfurter, Harald [Ludwig-Maximilians-Universitaet, Department fuer Physik, Munich (Germany); Kuiper, Hans [Delft University of Technology, Space Systems Engineering, Aerospace Engineering, Delft (Netherlands); Charbon, Edoardo [AQUA, EPFL, Lausanne (Switzerland); Delft University of Technology, Delft (Netherlands); Ursin, Rupert [Vienna Austrian Academy of Sciences, Institute for Quantum Optics and Quantum Information, Vienna (Austria)

    2017-12-15

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  8. CubeSat quantum communications mission

    International Nuclear Information System (INIS)

    Oi, Daniel K.L.; Ling, Alex; Vallone, Giuseppe; Villoresi, Paolo; Greenland, Steve; Kerr, Emma; Macdonald, Malcolm; Weinfurter, Harald; Kuiper, Hans; Charbon, Edoardo; Ursin, Rupert

    2017-01-01

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  9. Space Communications Capability Roadmap Interim Review

    Science.gov (United States)

    Spearing, Robert; Regan, Michael

    2005-01-01

    Contents include the following: Identify the need for a robust communications and navigation architecture for the success of exploration and science missions. Describe an approach for specifying architecture alternatives and analyzing them. Establish a top level architecture based on a network of networks. Identify key enabling technologies. Synthesize capability, architecture and technology into an initial capability roadmap.

  10. Photos of the conference

    Directory of Open Access Journals (Sweden)

    Birgitta Åhman

    1984-05-01

    Full Text Available Birgitta  Åhman is the photographer of the series of pictures from the conference, also for the cover photo of the full paper edition showing Kongsvold Mountain Hut and Biological Station.

  11. An introduction to photo-injector design

    International Nuclear Information System (INIS)

    Travier, C.

    1993-07-01

    A quick overview is given of the RF gun basic theory for photo-injectors and of the presently achievable technical parameters thus providing some guidelines to help the designer in his choices. Simple scaling laws and formulas for both beam dynamics and technical parameters are proposed and compared to corresponding values for existing photo-injectors. Various sophisticated schemes used to improve the performances beyond those given by a straightforward approach are reviewed. (author) 65 refs., 11 figs., 3 tabs

  12. Involving, Sharing, Analysing—Potential of the Participatory Photo Interview

    Directory of Open Access Journals (Sweden)

    Bettina Kolb

    2008-09-01

    Full Text Available This article discusses the photo interview method used in a participatory inter- and transdisciplinary research setting. The photo interview has proven particularly useful for sustainability and environmental studies in which eliciting community points of view is crucial to the research effort. Based on experiences in several countries, the author describes and analyses the photo interview process and its three phases—involving, sharing and analysing—and explores potential influences on data quality. In the first phase, researchers use the photo interview method to involve community residents from different levels of society in the research process. In the second phase, the photo interview method encourages community residents and scientists to share insights and perspectives and to partner in developing a common understanding of local structures, processes, and possible solutions. In the third phase, the photo interview method allows researchers to analyse visual and textual data as a representation of a local societal context. In decoding images, researchers ground the analysis in subjective perspectives, use residents' visual codes along with other methods to further analyse community data, and explore the wider societal context in which the study is embedded. URN: urn:nbn:de:0114-fqs0803127

  13. Fundamentals of Grid Connected Photo-Voltaic Power Electronic Converter Design

    OpenAIRE

    Evju, Svein Erik

    2007-01-01

    In this master thesis the basic theory of grid connected photo-voltaic systems is explained, giving an introduction to the different aspects of system design. Starting with a look at the standards concerning grid connection of distributed resources, and working its way through how the photo-voltaic cells work, to how photo-voltaic modules with electrical converters can be arranged. Some different converter topologies suitable for use with photo-voltaics are found, and based on these topologie...

  14. Iris Transponder-Communications and Navigation for Deep Space

    Science.gov (United States)

    Duncan, Courtney B.; Smith, Amy E.; Aguirre, Fernando H.

    2014-01-01

    The Jet Propulsion Laboratory has developed the Iris CubeSat compatible deep space transponder for INSPIRE, the first CubeSat to deep space. Iris is 0.4 U, 0.4 kg, consumes 12.8 W, and interoperates with NASA's Deep Space Network (DSN) on X-Band frequencies (7.2 GHz uplink, 8.4 GHz downlink) for command, telemetry, and navigation. This talk discusses the Iris for INSPIRE, it's features and requirements; future developments and improvements underway; deep space and proximity operations applications for Iris; high rate earth orbit variants; and ground requirements, such as are implemented in the DSN, for deep space operations.

  15. Space Nuclear Power Public and Stakeholder Risk Communication

    Science.gov (United States)

    Dawson, Sandra M.; Sklar, Maria

    2005-01-01

    The 1986 Challenger accident coupled with the Chernobyl nuclear reactor accident increased public concern about the safety of spacecraft using nuclear technology. While three nuclear powered spacecraft had been launched before 1986 with little public interest, future nuclear powered missions would see significantly more public concern and require NASA to increase its efforts to communicate mission risks to the public. In 1987 a separate risk communication area within the Launch Approval Planning Group of the Jet Propulsion Laboratory was created to address public concern about the health, environmental, and safety risks of NASA missions. The lessons learned from the risk communication strategies developed for the nuclear powered Galileo, Ulysses, and Cassini missions are reviewed in this paper and recommendations are given as to how these lessons can be applied to future NASA missions that may use nuclear power systems and other potentially controversial NASA missions.

  16. Health in my community: conducting and evaluating PhotoVoice as a tool to promote environmental health and leadership among Latino/a youth.

    Science.gov (United States)

    Madrigal, Daniel Santiago; Salvatore, Alicia; Casillas, Gardenia; Casillas, Crystal; Vera, Irene; Eskenazi, Brenda; Minkler, Meredith

    2014-01-01

    The PhotoVoice method has shown substantial promise for work with youth in metropolitan areas, yet its potential for use with Latino youth from agricultural areas has not been well documented. This project was designed to teach environmental health to 15 high school youth while building their individual and community capacity for studying and addressing shared environmental concerns. The project also aimed to test the utility of PhotoVoice with Latino agricultural youth. Fifteen members of the Youth Community Council (YCC), part of a 15-year project with farmworker families in Salinas, CA, took part in a 12-week PhotoVoice project. Their pictures captured the assets and strengths of their community related to environmental health, and were then analyzed by participants. A multi-pronged evaluation was conducted. YCC members identified concerns such as poor access to affordable, healthy foods and lack of safe physical spaces in which to play, as well as assets, including caring adults and organizations, and open spaces in surrounding areas. Participants presented their findings on radio, television, at local community events, and to key policy makers. The youth also developed two action plans, a successful 5K run/walk and a school recycling project, still in progress. Evaluation results included significant changes in such areas as perceived ability to make presentations, leadership, and self-confidence, as well as challenges including transportation, group dynamics, and gaining access to people in power. The PhotoVoice method shows promise for environmental health education and youth development in farmworker communities.

  17. Aspects of scintillation modelling in LEO-ground free-space optical communications

    Science.gov (United States)

    Moll, Florian

    2017-10-01

    Free-space optical communications can be used to transmit data from low Earth orbit satellites to ground with very high data rate. In the last section of the downlink, the electro-magnetic wave propagates through the turbulent atmosphere which is characterized by random index of refraction fluctuations. The propagating wave experiences phase distortions that lead to intensity scintillation in the aperture plane of the receiving telescope. For quantification, an appropriate scintillation model is needed. Approaches to analytically model the scintillation exist. Parameterization of the underlying turbulence profile (Cn2 profile) is however difficult. The Cn2 profiles are often site-specific and thus inappropriate or generic and thus too complex for a feasible deployment. An approach that directly models the scintillation effect based on measurements without claiming to be generic is therefore more feasible. Since measurements are sparse, a combination with existing theoretical framework is feasible to develop a new scintillation model that focuses on low earth orbit to ground free-space optical communications link design with direct detection. The paper addresses several questions one has to answer while analyzing the measurements data and selection of the theoretical models for the LEO downlink scenario. The first is the question of a suitable yet ease to use simple Cn2 profile. The HAP model is analyzed for its feasibility in this scenario since it includes a more realistic boundary layer profile decay than the HV model. It is found that the HAP model needs to be modified for a feasible deployment in the LEO downlink scenario for night time. The validity of the plane wave assumption in the downlink is discussed by model calculations of the scintillation index for a plane and Gaussian beam wave. Inaccuracies when using the plane earth model instead of the spherical earth model are investigated by analyzing the Rytov index. Impact of beam wander and non

  18. Amphiphilic Imbalance and Stabilization of Block Copolymer Micelles on-Demand through Combinational Photo-Cleavage and Photo-Crosslinking.

    Science.gov (United States)

    Zhang, Xuan; Wang, Youpeng; Li, Guo; Liu, Zhaotie; Liu, Zhongwen; Jiang, Jinqiang

    2017-01-01

    An amphiphilic block copolymer of poly(ethylene oxide)-b-poly((N-methacryloxy phthalimide)-co-(7-(4-vinyl-benzyloxyl)-4-methylcoumarin)) (PEO 45 -b-P(MAPI 36 -co-VBC 4 )) is designed to improve the micellar stability during the photo-triggered release of hydrophobic cargoes. Analysis of absorption and emission spectra, solution transmittance, dynamic light scattering, and transmission electron microscopy supports that polymer micelles of PEO 45 -b-P(MAPI 36 -co-VBC 4 ) upon the combinational irradiation of 365 and 254 nm light can be solubilized through the photolysis of phthalimide esters and simultaneously crosslinked via the partially reversible photo-dimerization of coumarins. The photo-triggered release experiment shows that the leakage of doxorubicin molecules from crosslinked micelles can be predictably regulated by controlling the irradiation time of 365 and 254 nm light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Information transfer among widely spaced individuals: latrines as a basis for communication networks in the swift fox

    DEFF Research Database (Denmark)

    Darden, Safi-Kirstine; Steffensen, Lise K.; Dabelsteen, Torben

    2008-01-01

    In species where individuals are widely spaced instantaneous signals cannot readily form the basis of communication networks, that is several individuals within signalling range of each other. However, markings, signals that remain in the environment after the signaller has left, may fulfil...... this role. In this study, we have investigated the possible function of swift fox, Vulpes velox, latrines, collections of scat, urine and possibly other secretions, in a communication network context. We found that latrines had higher frequencies of occurrence inside the core (defined as the 50% kernel...... contour) of a pair's home-range when compared with outside the core and in areas of a pair's home-range that overlapped with neighbouring individuals when compared with those areas that did not overlap with neighbours. These were also the two areas where latrines were most likely to reoccur in the next...

  20. Lasers in space.

    CSIR Research Space (South Africa)

    Michaelis, MM

    2008-04-01

    Full Text Available cube, laser beam reflectors, placed on the Moon half a century ago. These early achievements will soon be followed by a plethora of experiments involving lasers in low earth orbit (LEO) or at Lagrange points. And not much later, laser communications... will stretch out as far as Mars and beyond. One important low Earth orbit (LEO) application is the removal of space debris by Earth based or LEO relayed lasers as promoted by Phipps et al.3. Another is military communication. The prominent L1 laser space...

  1. Design and implementation of a nanosecond time-stamping readout system-on-chip for photo-detectors

    International Nuclear Information System (INIS)

    Anvar, Shebli; Château, Frédéric; Le Provost, Hervé; Louis, Frédéric; Manolopoulos, Konstantinos; Moudden, Yassir; Vallage, Bertrand; Zonca, Eric

    2014-01-01

    A readout system suitable for a large number of synchronized photo-detection units has been designed. Each unit embeds a specifically designed fully integrated communicating system based on Xilinx FPGA SoC technology. It runs the VxWorks real-time OS and a custom data acquisition software designed within the Ice middleware framework, resulting in a highly flexible, controllable and scalable distributed application. Clock distribution and delay calibration over customized fixed latency gigabit Ethernet links enable synchronous time-stamping of events with nanosecond precision. The implementation of this readout system on several data-collecting units as well as its performances are described

  2. The role of family communication and parents' feeding practices in children's food preferences

    OpenAIRE

    Alm, Siril; Olsen, Svein Ottar; Honkanen, Pirjo

    2015-01-01

    This is the accepted manuscript version. Published version at http://doi.org/10.1016/j.appet.2015.02.002 This study used Family Communication Patterns Theory (FCPT) to explore how familydinner-related communication takes place and how parents’ feeding practices may be associated with children’s preferences for dinner meals. The sample consisted of 12 dyads with seven- and eight-year-old Norwegian children and their parents. In-depth photo interviews were used for collecting dat...

  3. ATLAS Physicist in Space

    CERN Multimedia

    Bengt Lund-Jensen

    2007-01-01

    On December 9, the former ATLAS physicist Christer Fuglesang was launched into space onboard the STS-116 Space Shuttle flight from Kennedy Space Center in Florida. Christer worked on the development of the accordion-type liquid argon calorimeter and SUSY simulations in what eventually became ATLAS until summer 1992 when he became one out of six astronaut trainees with the European Space Agency (ESA). His selection out of a very large number of applicants from all over the ESA member states involved a number of tests in order to choose the most suitable candidates. As ESA astronaut Christer trained with the Russian Soyuz programme in Star City outside of Moscow from 1993 until 1996, when he moved to Houston to train for space shuttle missions with NASA. Christer belonged to the backup crew for the Euromir95 mission. After additional training in Russia, Christer qualified as ‘Soyuz return commander’ in 1998. Christer rerouting cables during his second space walk. (Photo: courtesy NASA) During...

  4. Space communication system for compressed data with a concatenated Reed-Solomon-Viterbi coding channel

    Science.gov (United States)

    Rice, R. F.; Hilbert, E. E. (Inventor)

    1976-01-01

    A space communication system incorporating a concatenated Reed Solomon Viterbi coding channel is discussed for transmitting compressed and uncompressed data from a spacecraft to a data processing center on Earth. Imaging (and other) data are first compressed into source blocks which are then coded by a Reed Solomon coder and interleaver, followed by a convolutional encoder. The received data is first decoded by a Viterbi decoder, followed by a Reed Solomon decoder and deinterleaver. The output of the latter is then decompressed, based on the compression criteria used in compressing the data in the spacecraft. The decompressed data is processed to reconstruct an approximation of the original data-producing condition or images.

  5. Representation of Muharram Rituals in West Media; Semiotic Analysis of TotallyCoolPix Website’s Photos of Muharam and Ashura

    Directory of Open Access Journals (Sweden)

    Majid Movahed Majd

    2015-12-01

    Full Text Available Protecting and upholding the ideology of media authorities, photo can be considered a tool for communication and meaning-making. Also the social-artistic activities of photograpy paly a significant role in communication as any other media does. The representation theory excessively concerned with media analysis. It should be noted that semiotic method gives the ability to examine hidden layers of media contents such as picture. Based on The representation theory and semiotics techniques, this paper involves in analyzing photography which represented in TotallyCoolPix Website with Theme of Muharam and Ashura (the 10th day of Muharram in the Islamic calendar.  The outcomes of this analysis reveal that these photos represent Islam and Muslims as “other”, and also including a kind of deviation from the true Muharram rituals among Muslims. This set of pictures can be characterized by some features such as violence, masculinity, passive role of women in religious customs, cohesiveness and collective strength, which are become prevalent in Muslim communities. What is more, traditional Shiite symbols hinged upon these features and themes in these pictures. Overall, the concepts obtained from these pictures analysis illustrate that they are brimmed with violence which pave the way for more Islam- phobia in countries in the Occident.

  6. Spectrum Scarcity and Free Space Optical Communications

    KAUST Repository

    Alouini, Mohamed-Slim

    2014-01-01

    Exact and asymptotic studies of the average error probability of wireless communication systems over generalized fading channels have been extensively pursued over the last two decades. In contrast, studies and results dealing with the channel

  7. Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station

    Science.gov (United States)

    Britcliffe, M. J.; Hoppe, D. J.

    2001-01-01

    The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.

  8. Police Communications

    Science.gov (United States)

    1981-01-01

    Oklahoma City Police Department developed a computerized communications system, based on Johnson Space Center's (JSC's) 1960-mission control knowledge. JSC furnished information on lighting and other fatigue reducing measures, and provided specifications for equipment and design layouts. JSC also advised OCPD how to avoid communications bottlenecks associated with simultaneous handling of telephone, radio and inner-office transmissions. Oklahoma City saved money in reduced design and engineering costs by utilizing the already developed NASA technology.

  9. A Day in the Life of the Laser Communications Relay Demonstration Project

    Science.gov (United States)

    Edwards, Bernard; Israel, David; Caroglanian, Armen; Spero, James; Roberts, Tom; Moores, John

    2016-01-01

    This paper provides an overview of the planned concept of operations for the Laser Communications Relay Demonstration Project (LCRD), a joint project among NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). LCRD will provide at least two years of bi-directional optical communications at user data rates of up to 1.244 Gbps in an operational environment. The project lays the groundwork for establishing communications architecture and protocols, and developing the communications hardware and support infrastructure, concluding in a demonstration of optical communications' potential to meet NASA's growing need for higher data rates for future science and exploration missions. A pair of flight optical communications terminals will reside on a single commercial communications satellite in geostationary orbit; the two ground optical communications terminals will be located in Southern California and Hawaii. This paper summarizes the current LCRD architecture and key systems for the demonstration, focusing on what it will take to operate an optical communications relay that can support space-to-space, space-to-air, and space-to-ground optical links.

  10. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    International Nuclear Information System (INIS)

    Elmolla, Emad S.; Chaudhuri, Malay

    2011-01-01

    Highlights: · The work focused on hazardous wastewater (antibiotic wastewater) treatment. · Complete degradation of the antibiotics achieved by the treatment process. · The SBR performance was found to be very sensitive to BOD 5 /COD ratio below 0.40. · Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio). The SBR performance was found to be very sensitive to BOD 5 /COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe 2+ dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H 2 O 2 /COD molar ratio 2, H 2 O 2 /Fe 2+ molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  11. ATLAS TileCal Sub-Module Production at UIUC - Photos of Prototype PMT Test Setup

    CERN Multimedia

    Errede, Steve

    2001-01-01

    Photo 1 - Entrance to the lab. Photo 2 - A shot of the center of the lab. Photo 3 - The back of the lab. The Dark Box: Photo 4 - A view of the outside of the Dark Box along with its dry nitrogen system. Photo 5 - A view of the inside of the Dark Box. Photo 6 - The LED holder, beam splitter (removed in this shot), and a pulsing circuit. Photo 7 - The PMT holder. Photo 8 - A possible design for a Stepper Motor controlled filter wheel. Photo 9 - Polishing area for the optical fibers. R&D Work on Stepper Motor/Motion Control: Photo 10 - The complete prototype of the Stepper Motor setup. Photo 11 - The prototype of the Main Stepper Motor Driver Board. Photo 12 - The prototype of the Stepper Motor Power Amplifer. Photo 13 - The prototype of the Stepper Motor LabPC + Interface Board.

  12. Leading effect of visual plant characteristics for functional uses of green spaces

    Directory of Open Access Journals (Sweden)

    Beyza Şat Güngör

    2016-07-01

    Full Text Available Plant materials have the ability to lead the people’s functional use purposes with their visual characteristics. In this study, we examined whether the functional use follows the plant materials’ visual characteristics like a big size tree’s shade use. As visual characteristics of the plants; size, texture, color, and planting design basics are considered. Six urban green spaces determined for this experimental field study in the center of Kırklareli Province, and then a site survey implemented to determine apparent visual characteristics of the plants and matched functional uses with their visual characteristics. Five functional use types determined according to the visual plant characteristics (sitting and resting, pedestrian transition, meeting point, walking and recreational uses. Best representing four photos of each green space’s plant materials are used in photo questionnaires. 89 photo questionnaires were conducted. Five functional use type options indicated in the questionnaire for each green space and one of the options were coinciding with the visual plant characteristics of that green space according to the site survey results. For the analyses of questionnaires; SPSS 17 statistical packages were used. As result; the hypothesis was confirmed by coinciding statistical analyses results with the site survey results.

  13. High-Rate Communications Outage Recorder Operations for Optimal Payload and Science Telemetry Management Onboard the International Space Station

    Science.gov (United States)

    Shell, Michael T.; McElyea, Richard M. (Technical Monitor)

    2002-01-01

    All International Space Station (ISS) Ku-band telemetry transmits through the High-Rate Communications Outage Recorder (HCOR). The HCOR provides the recording and playback capability for all payload, science, and International Partner data streams transmitting through NASA's Ku-band antenna system. The HCOR is a solid-state memory recorder that provides recording capability to record all eight ISS high-rate data during ISS Loss-of-Signal periods. NASA payloads in the Destiny module are prime users of the HCOR; however, NASDA and ESA will also utilize the HCOR for data capture and playback of their high data rate links from the Kibo and Columbus modules. Marshall Space Flight Center's Payload Operations Integration Center manages the HCOR for nominal functions, including system configurations and playback operations. The purpose of this paper is to present the nominal operations plan for the HCOR and the plans for handling contingency operations affecting payload operations. In addition, the paper will address HCOR operation limitations and the expected effects on payload operations. The HCOR is manifested for ISS delivery on flight 9A with the HCOR backup manifested on flight 11A. The HCOR replaces the Medium-Rate Communications Outage Recorder (MCOR), which has supported payloads since flight 5A.1.

  14. A Strategy for Thailand's Space Technology Development: National Space Program (NSP)

    Science.gov (United States)

    Pimnoo, Ammarin; Purivigraipong, Somphop

    2016-07-01

    The Royal Thai Government has established the National Space Policy Committee (NSPC) with mandates for setting policy and strategy. The NSPC is considering plans and budget allocation for Thai space development. NSPC's goal is to promote the utilization of space technology in a manner that is congruent with the current situation and useful for the economy, society, science, technology, educational development and national security. The first proposed initiative of the National Space Program (NSP) is co-development of THEOS-2, a next-generation satellite system that includes Thailand's second and third earth observation satellite (THAICHOTE-2 and THAICHOTE-3). THEOS-1 or THAICHOTE-1 was the first Earth Observation Satellite of Thailand launched in 2008. At present, the THAICHOTE-1 is over the lifetime, therefore the THEOS-2 project has been established. THEOS-2 is a complete Earth Observation System comprising THAICHOTE-2&3 as well as ground control segment and capacity building. Thus, NSPC has considered that Thailand should manage the space system. Geo-Informatics and Space Technology Development Agency (GISTDA) has been assigned to propose the initiative National Space Program (NSP). This paper describes the strategy of Thailand's National Space Program (NSP) which will be driven by GISTDA. First, NSP focuses on different aspects of the utilization of space on the basis of technology, innovation, knowledge and manpower. It contains driving mechanisms related to policy, implementation and use in order to promote further development. The Program aims to increase economic competitiveness, reduce social disparity, and improve social security, natural resource management and environmental sustainability. The NSP conceptual framework includes five aspects: communications satellites, earth observation satellite systems, space economy, space exploration and research, and NSP administration. THEOS-2 is considered a part of NSP with relevance to the earth observation

  15. CERN Photo Club (CPC) / Canon Contest - My View of CERN

    CERN Multimedia

    Steyaert, Didier

    2016-01-01

    The CERN Photo Club has organized in collaboration with Canon Switzerland a photo contest open to all members of the CERN (Persons with a CERN access card). The only restriction is that the photos must have been taken with a CANON camera (DSLR, bridge or compact) between 1 and 31 October 2016.

  16. ATLAS TileCal Sub-Module Production at UIUC - Production Submodule Photos (current)

    CERN Multimedia

    Errede, Steve

    2000-01-01

    Step 1 - Washing Plates Photo 1 - Spacers in their original box straight from the Czech Republic.. notice the large amounts of grease. Photo 2 - Spacers on the table ready to be washed. Photo 3 - Photo 3 - Scrubbing the grease off with Alconox

  17. Photos vs silhouettes for evaluation of African American profile esthetics.

    Science.gov (United States)

    Hockley, Andrew; Weinstein, Martin; Borislow, Alan J; Braitman, Leonard E

    2012-02-01

    Patient photos and silhouettes are commonly used in clinical evaluations and orthodontic research to evaluate profile esthetics. The purpose of this study was to determine whether the use of photos or silhouettes is a more appropriate method of evaluating African American profile esthetics and whether there are different profile esthetic preferences among clinicians when using photos compared with silhouettes. Pretreatment records of 20 adolescent African American patients were selected (10 male, 10 female) from the orthodontic clinic at the Albert Einstein Medical Center in Philadelphia. Each patient's profile photo was digitally changed with imaging software (Dolphin Imaging and Management Solutions, Chatsworth, Calif) to fabricate a series of 7 photos and 7 silhouettes with lip positions at uniform distances relative to Ricketts' E-line standard. Fifteen raters consisting of orthodontic faculty and residents were asked to select the most esthetically pleasing profile from each patient's photo series and silhouette series. More rater preferences for the photographs (86%) were within the acceptable esthetic range (within 2 mm of the E-line in either direction) than were their preferences for silhouettes (66%) (P esthetic norm were more often preferred in the silhouettes than in the photos. Thirty-one percent of the silhouettes preferred by the raters were flatter than the norm compared with 9% of the photos (P = 0.003). Fuller profiles were preferred in only 3% of the silhouettes and 5% of the photos (P = 0.6). Esthetic attractiveness of faces of African American orthodontic patients is rated differently in photos and silhouettes. When evaluating soft-tissue esthetic profile preferences, rater preferences in the photographs were closer to the established esthetic norm than were their preferences in the silhouettes. Using silhouettes to evaluate patient esthetics could influence clinicians or researchers to select profiles that are flatter than the established

  18. Cognitive Communications Protocols for SATCOM

    Science.gov (United States)

    2017-10-20

    communications protocols for satellite and space communications with possible broad applications in defense, homeland-security as well as consumer ...communications with possible broad applications in defense, homeland-security, and civilian as well as consumer telecommunications. Such cognitive...vulnerable against smart jammers that may attempt to learn the cognitive radios own behavior . In response, our second class of proposed algorithms

  19. 14 CFR 1221.108 - Establishment of the NASA Unified Visual Communications System.

    Science.gov (United States)

    2010-01-01

    ... Visual Communications System. The NASA Graphics Coordinator will develop and issue changes and additions... Communications System. 1221.108 Section 1221.108 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE... Communications System § 1221.108 Establishment of the NASA Unified Visual Communications System. (a) The NASA...

  20. Effect of tip geometry on photo-electron-emission from nanostructures.

    Science.gov (United States)

    Teki, Ranganath; Lu, Toh-Ming; Koratkar, Nikhil

    2009-03-01

    We show in this paper the strong effect of tip geometry on the photo-electron-emission behavior of nanostructured surfaces. To study the effect of tip geometry we compared the photo-emissivity of Ru and Pt nanorods with pyramidal shaped tips to that of carbon nanorods that display flat top (planar) tips. Flat top architectures gave no significant increase in the emission current, while nanostructures with pyramidal shaped tips showed 3-4 fold increase in photo-emission compared to a thin film of the same material. Pyramidal tip geometries increase the effective surface area that is exposed to the incident photon-flux thereby enhancing the photon-collection probability of the system. Such nano-structured surfaces show promise in a variety of device applications such as photo-detectors, photon counters and photo-multiplier tubes.

  1. Photo-oxidation of LDPE: Effects on elongational viscosity

    Science.gov (United States)

    Rolón-Garrido, Víctor H.; Wagner, Manfred H.

    2013-04-01

    Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, time-deformation separability is confirmed for all samples, independent of the degree of photo-oxidation.

  2. Radiation hardening commercial off-the-shelf erbium doped fibers by optimal photo-annealing source

    Science.gov (United States)

    Peng, Tz-Shiuan; Liu, Ren-Young; Lin, Yen-Chih; Mao, Ming-Hua; Wang, Lon A.

    2017-09-01

    Erbium doped fibers (EDFs) based devices are widely employed in space for optical communication [1], remote sensing [2], and navigation applications, e.g. interferometric fiber optic gyroscope (IFOG). However, the EDF suffers severely radiation induced attenuation (RIA) in radiation environments, e.g. space applications and nuclear reactors [3].

  3. Return from space: from the International Space Station to CERN

    CERN Multimedia

    2012-01-01

    On 16 May 2011, the space shuttle Endeavour took off for the last time from Cape Canaveral in Florida with six astronauts on board. Their mission (code-named STS-134) was to install the Alpha Magnetic Spectrometer (AMS), the dark matter and antimatter detector designed at CERN, on the International Space Station. Since then, AMS has been sending data to CERN from space.   On Wednesday 25 July do not miss a rare opportunity to meet the mission’s six astronauts at CERN: Mark E. Kelly, commander (NASA) Greg H. Johnson, pilot (NASA) and the mission’s specialists: Michael Fincke (NASA) Roberto Vittori (ESA and ASI) Andrew J. Feustel (NASA) Greg Chamitoff (NASA) 4:20 pm: the event will kick off with a photo and autograph session at the Globe of Science and Innovation. 5 pm: lecture given by the astronauts for CERN personnel and summer students in the Main Auditorium. (Seats reserved for the summer students - contact: summer.student.info@cern.ch). ...

  4. Effects of multiple viewings of an ultraviolet photo on sun protection behaviors.

    Science.gov (United States)

    Mahler, H I M

    2018-05-02

    To determine whether multiple viewings of one's ultraviolet (UV) facial photo differentially affects subsequent sun protection behaviors relative to a single viewing. Pretest-posttest control group. Southern California college students (N = 151) were randomly assigned to be shown their UV facial photo one time, multiple times over the course of 2 weeks, or not at all. Emotional reactions, perceived susceptibility to skin damage, and sun protection intentions were assessed immediately, and sun protection behaviors were assessed during a surprise telephonic follow-up 1 month later. Immediately after viewing a UV photo of their face, participants reported significantly greater perceived susceptibility to skin damage, greater intentions to engage in future sun protection, and more negative emotions than those who had not seen a UV photo. Moreover, 1 month later, those who had viewed their UV photo were less likely to report having sunbathed and reported significantly greater sun protection than did controls. There were no differences in sun protection behaviors between those who had been shown their UV photo only once during the initial intervention session and those who had been sent their UV photo several times thereafter. However, among those who had been sent their UV photo several times, those who reported having viewed their photo on additional occasions reported significantly greater sun protection behaviors than those who had not. Being randomly assigned to view a UV facial photo multiple times generally neither strengthened nor weakened effects on subsequent sun protection behaviors relative to being shown the photo just once. However, among those who were sent their photo and thus had the option of viewing it more often than they had been assigned to, those who chose to view their photo more frequently also engaged in more sun protection behaviors. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  5. High-energy communication

    CERN Multimedia

    CERN Communication Group

    2015-01-01

    On Wednesday at 10.40 a.m., the LHC operators declared “stable beams” after two years of technical stop and a few months of commissioning. It was an exciting day for all the teams involved, including those who worked on communicating the news to the public and the media on multiple platforms.   CERN’s most successful tweet on 3 June featured collision images from ALICE, ATLAS, CMS and LHCb and was shared 800 times by the Twitter audience. Live blogging, social media posts, a live webcast, and a constant outpouring of photos and videos: Wednesday morning was a crazy time for the communication teams from CERN, the experiments and various institutes around the world. Even though the event started very early in the morning (the live CCC blog started at 7 a.m. and the live webcast at 8.20 a.m.), the public and the media tuned in to follow and generously cover the start of the LHC’s physics run at an unprecedented energy of 13 TeV. The statistics showed th...

  6. Study of silicon tip photocathodes in DC and RF photo-injectors

    International Nuclear Information System (INIS)

    Jaber, Zakaria

    1999-01-01

    Nowadays the electron beams with a high intensity are particularly interesting in research and the applied physics. Producing such beams for which high intensity and low emittance are synonyms with efficiency, means developing new high luminosity electron sources, i.e. the photocathodes. This thesis, essentially experimental, is oriented in this way. After an introduction of Clermont-Ferrand and the LAL of Orsay experimental apparatus where the experiments took place, the chapter one presents the field emission and the photo-field emission. Then, we prove that the quantum efficiency of the photocathodes with silicon tips is higher for wavelengths near 800 nm. This fact is essential because it allows the use of lasers in the fundamental wavelength - Titan-Saphir for instance. In the chapter 2, we remind how the silicon tips are realized and how to improve surface conditions. Procedures and the surface analysis with the SEM and XPS are described. With a Nd-Yag laser, pumped with laser diode setting up with the participation of IRCOM Opticians of Limoges, the photocathode supplied 1 Ampere per pulse at a quantum efficiency of 0.25%. The description of this experiment and the results are the object of the chapter 3. The space charge outside the photocathode space prevents the electrons to go through. The Child-Langmuir formula limits the current with the DC gun at about 30 Ampere. To improve this result we have to use a photo-injector. In chapter 4 we prove that the silicon tip photocathode are compatible with RF gun requirements by PRIAM modeling and low level measure in a cold model of CANDELA RF gun. Technical department of CERN helped us to prepare this very sensitive experiment. (author)

  7. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  8. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning-based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium.

  9. Photo and pH dual-responsive polydiacetylene smart nanocontainer

    International Nuclear Information System (INIS)

    Li, Jingguo; Yu, Zhiqiang; Jiang, Hao; Zou, Gang; Zhang, Qijin

    2012-01-01

    Herein, a novel smart nanocontainer was developed by incorporating photo-responsive azobenzene derivative/cyclodextrin (Azo–CD) supramolecular complex into pH-responsive polydiacetylene (PDA) vesicles matrix. The designed nanocontainer exhibited excellent cell-toxicity, and the controlled release property response to external photo and pH stimuli. The photo-controlled inclusion and exclusion reaction between α-cyclodextrin (α-CD) and azobenzene moiety were used to act as the driving force to induce photo-triggered controlled release behavior of the designed nanocontainer. Moreover, the pH-responsive PDA vesicle matrix endowed the designed system with a controlled release property upon pH variation. The facile preparation procedures and their efficiency of response to the external stimuli render the novel smart nanocontainer potential candidate for future applications in remote controlled drug release. -- Graphical abstract: Herein, we developed a novel smart nanocontainer comprising the azobenzene derivative/cyclodextrin supramolecular complex and polydiacetylene vesicles, which exhibited excellent biocompatibility, and controlled release property response to external photo and pH stimuli. Highlights: ► We developed a novel dual-responsive smart polydiacetylene nanocontainer. ► The azobenzene/cyclodextrin complex was introduced into polydiacetylene vesicles. ► The designed nanocontainer exhibited excellent biocompatibility and stability. ► 365 and 435 nm light irradiations are used to realize photo controlled release. ► The smart nanocontainer exhibited controlled release property upon pH variation.

  10. Pd-MnO2 nanoparticles/TiO2 nanotube arrays (NTAs) photo-electrodes photo-catalytic properties and their ability of degrading Rhodamine B under visible light.

    Science.gov (United States)

    Thabit, Mohamed; Liu, Huiling; Zhang, Jian; Wang, Bing

    2017-10-01

    Pd-MnO 2 /TiO 2 nanotube arrays (NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO 2 /TiO 2 NTAs photo electrodes were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet-visible diffuse reflectance spectrum (DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination (xenon light). The performed analyses illustrated that Pd-MnO 2 codoped particles were successfully deposited onto the surface of the TiO 2 nanotube arrays; DRS results showed significant improvement in visible light absorption which was between 400 and 700nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant (Rhodamine B) illustrated a superior photocatalytic (PC) efficiency of approximately 95% compared to the bare TiO 2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of OH radicals. Copyright © 2017. Published by Elsevier B.V.

  11. Recent Korean R&D in Satellite Communications

    Science.gov (United States)

    Lee, Ho-Jin; Kim, Jae Moung; Lee, Byung-Seub; Lee, Han; Ryoo, Jang-Soo

    The R&D in satellite communications in Korea has been driven mainly by KCC (Korea Communications Commission) but in a small scale compared to Korea space development program organized by MEST (Ministry of Education, Science and Technology). Public and civilian satcom sector R&D has been led mainly by ETRI with small/medium companies contrary to rare investment in private sector while military sector R&D has been orchestrated by ADD with defense industry. By the COMS (Communication, Ocean and Meteorological Satellite) experimental Ka-band payload, Korea pursues a space qualification of own technology for national infrastructure evolution as well as industrialization of space R&D results. Once COMS launched and space qualified in 2009, subsequent application experiments and new technology R&D like UHDTV will entail service and industry promotion. The payload technology is expected for the next Korean commercial satellites or for new OBP satellites. The COMS ground control system and GNSS ground station technologies are under development for COMS operation and enhanced GNSS services along with advent of Galileo respectively. Satellite broadband mobile VSAT based on DVB-S2/RCS (+M) and low profile tracking antennas have been developed for trains, ships, and planes. While APSI is developing GMR-1 based Thuraya handset functions, ETRI is designing IMT-Advanced satellite radio interface for satellite and terrestrial dual-mode handheld communication system like Japanese STICS, with universities' satellite OFDM researches. A 21GHz Ka-band higher-availability scalable HD broadcasting technology and SkyLife's hybrid satellite IPTV technology are being developed. In near term Korea will extend R&D programs to upgrade the space communication infrastructure for universal access to digital opportunity and safer daily life from disaster, and to promote space green IT industrialization, national security, and space resources sovereign. Japanese stakeholders are invited to establish

  12. 14 CFR 431.41 - Communications plan.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Communications plan. 431.41 Section 431.41... Launch and Reentry of a Reusable Launch Vehicle § 431.41 Communications plan. (a) An applicant shall submit a plan providing vehicle safety operations personnel communications procedures during the mission...

  13. 46 CFR 130.440 - Communications system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Communications system. 130.440 Section 130.440 Shipping... MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.440 Communications system. (a) Each OSV must have a communications system to immediately summon a crew member to the machinery...

  14. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elmolla, Emad S., E-mail: em_civil@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo (Egypt); Chaudhuri, Malay [Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2011-09-15

    Highlights: {center_dot} The work focused on hazardous wastewater (antibiotic wastewater) treatment. {center_dot} Complete degradation of the antibiotics achieved by the treatment process. {center_dot} The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio below 0.40. {center_dot} Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio). The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe{sup 2+} dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H{sub 2}O{sub 2}/COD molar ratio 2, H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  15. Visit to the Russian Production and Assembly Sites in March 2000 (photos obtained from MPI)

    CERN Multimedia

    2000-01-01

    Photo1 - EST electrode production at LPI. Photo2 - EST electrode production at LPI. Photo3 - EST electrode production at LPI. Photo4 - Cold test of EST electrodes at LPI. Photo5 - Cold test of EST electrodes at LPI. Photo6 - The device for cleaning honeycomb mats at JINR. Photo7 - Module assembly at IHEP. Photo8 - Module assembly at IHEP. Photo9 - Module assembly at IHEP. Photo10 - Transport cases for "Molniya" modules (former bomb cases)

  16. Photo-isomerization induced rapid photo-degradation of optical nonlinearity in cyano substituted stilbene derivative doped poled polymer

    International Nuclear Information System (INIS)

    Yan Jieyun; Liu Liying; Ji Liyong; Ye Mingxin; Xu Lei; Wang Wencheng

    2004-01-01

    We found that, although alpha'-cyano-4'-nitro-4-N, N-dimethylaminostilbene has larger hyperpolarizability than that of conventional 4'-N, N-dimethylamino-nitrostilbene, the addition of the cyano group makes it much more easy to photo-isomerize, thus destroying the molecular ordering in poled chromophore doped polymers. Experimental evidence was obtained by monitoring the second-harmonic generation intensity, UV-Vis absorption spectrum, and FTIR spectrum. The photo-isomerization reaction process was monitored by optical pump induced absorption anisotropy measurement. Comparisons with the behaviour of a azobenzene dye are also made

  17. Advances in MMIC technology for communications satellites

    Science.gov (United States)

    Leonard, Regis F.

    1992-01-01

    This paper discusses NASA Lewis Research Center's program for development of monolithic microwave integrated circuits (MMIC) for application in space communications. Emphasis will be on the improved performance in power amplifiers and low noise receivers which has been made possible by the development of new semiconductor materials and devices. Possible applications of high temperature superconductivity for space communications will also be presented.

  18. Cosmetic wastewater treatment using the Fenton, Photo-Fenton and H2O2/UV processes.

    Science.gov (United States)

    Marcinowski, Piotr P; Bogacki, Jan P; Naumczyk, Jeremi H

    2014-01-01

    Advanced Oxidation Processes (AOPs), such as the Fenton, photo-Fenton and H2O2/UV processes, have been investigated for the treatment of cosmetic wastewaters that were previously coagulated by FeCl3. The Photo-Fenton process at pH 3.0 with 1000/100 mg L(-1) H2O2/Fe(2+) was the most effective (74.0% Chemical Oxygen Demand (COD) removal). The Fenton process with 1200/500 mg L(-1) H2O2/Fe(2+) achieved a COD removal of 72.0%, and the H2O2/UV process achieved a COD removal of 47.0%. Spreading the H2O2 doses over time to obtain optimal conditions did not improve COD removal. The kinetics of the Fenton and photo-Fenton processes may be described by the following equation: d[COD]/dt = -a[COD] t(m) (t represents time and a and m are constants). The rate of COD removal by the H2O2/UV process may be described by a second-order reaction equation. Head Space, Solid-Phase MicroExtraction, Gas Chromatography and Mass Spectrometry (HS-SPME-GC-MS) were used to identify 48 substances in precoagulated wastewater. Among these substances, 26 were fragrances. Under optimal AOP conditions, over 99% of the identified substances were removed in 120 min.

  19. A guide to hubble space telescope objects their selection, location, and significance

    CERN Document Server

    Chen, James L

    2015-01-01

    From the authors of "How to Find the Apollo Landing Sites," this is a guide to connecting the view above with the history of recent scientific discoveries from the Hubble Space Telescope. Each selected HST photo is shown with a sky map and a photograph or drawing to illustrate where to find it and how it should appear from a backyard telescope. Here is the casual observer's chance to locate the deep space objects visually, and appreciate the historic Hubble photos in comparison to what is visible from a backyard telescope. HST objects of all types are addressed, from Messier objects, Caldwell objects, and NGC objects, and are arranged in terms of what can be seen during the seasons. Additionally, the reader is given an historical perspective on the work of Edwin Hubble, while locating and viewing the deep space objects that changed astronomy forever.  Countless people have seen the amazing photographs taken by the Hubble Space Telescope. But how many people can actually point out where in the sky ...

  20. Channel correlation of free space optical communication systems with receiver diversity in non-Kolmogorov atmospheric turbulence

    Science.gov (United States)

    Ma, Jing; Fu, Yulong; Tan, Liying; Yu, Siyuan; Xie, Xiaolong

    2018-05-01

    Spatial diversity as an effective technique to mitigate the turbulence fading has been widely utilized in free space optical (FSO) communication systems. The received signals, however, will suffer from channel correlation due to insufficient spacing between component antennas. In this paper, the new expressions of the channel correlation coefficient and specifically its components (the large- and small-scale channel correlation coefficients) for a plane wave with aperture effects are derived for horizontal link in moderate-to-strong turbulence, using a non-Kolmogorov spectrum that has a generalized power law in the range of 3-4 instead of the fixed classical Kolmogorov power law of 11/3. And then the influence of power law variations on the channel correlation coefficient and its components are analysed. The numerical results indicated that various value of the power law lead to varying effects on the channel correlation coefficient and its components. This work will help with the further investigation on the fading correlation in spatial diversity systems.

  1. Stress of Rescue Team Members Working in Confined Spaces During a Disaster : Effectiveness of Individual Wireless Communication Devices

    OpenAIRE

    Kitabayashi, Tsukasa; Kudo, Seiko; Kitajima, Maiko; Takamaki, Shizuka; Chiba, Tomohiro; Tachioka, Nobuaki; Kudo, Shungetsu; Kudo, Hiromi

    2016-01-01

    This study evaluated stress experienced by rescue team members during a simulated search and rescue operation in a confined space and determine if wireless communication reduces stress. A total of 57 rescue team members of X prefecture participated. The stress visualization indices were ptyalin (i.e., salivary amylase), salivary cortisol, autonomic nervous system response, visual analog scale, and a short version of the profile of mood states. The subjects were randomized to perform a simulat...

  2. A Day in the Life of the Laser Communications Relay Demonstration (LCRD) Project.

    Science.gov (United States)

    Israel, David; Caroglanian, Armen; Edwards, Bernard; Spero, James; Roberts, Tom; Moores, John

    2016-01-01

    This presentation provides an overview of the planned concept of operations for the Laser Communications Relay Demonstration Project (LCRD), a joint project among NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MITLL). LCRD will provide at least two years of bi-directional optical communications at user data rates of up to 1.244 Gbps in an operational environment. The project lays the ground work for establishing communications architecture and protocols, and developing the communications hardware and support infrastructure, concluding in a demonstration of optical communications potential to meet NASAs growing need for higher data rates for future science and exploration missions. A pair of flight optical communications terminals will reside on a single commercial communications satellite in geostationary orbit; the two ground optical communications terminals will be located in Southern California and Hawaii. This paper summarizes the current LCRD architecture and key systems for the demonstration, focusing on what it will take to operate an optical communications relay that can support space-to-space, space-to-air, and space-to-ground optical links.

  3. Mystery photos: Christmas edition

    CERN Multimedia

    Alex Brown, Jens Vigen, Rosaria Marraffino

    2014-01-01

    Paraphrasing George R.R. Martin's novel Game of Thrones’ most famous quote: “Christmas is coming”. According to tradition, we’ve themed our last issue of the year to share the spirit of the festivities with our readers. We’ve collected some pictures of snowy scenes and Christmas parties at CERN from our archives.   Identifying pictures and albums in the CERN photo archive continues apace and we still need your help. However, in keeping with the holiday spirit, we’ve set you some Christmassy challenges. Were you at any of the events shown below, or do you recognise anyone in the pictures? Get in touch by email: photo.archive@cern.ch or use the “suggest a caption” link on each picture’s page. So far, more than 33,000 pictures have been uploaded, with nearly 1,000 old album records inspected and about 150 new ones created. We’ve had contact from an ever-increasing number of reti...

  4. Multiuser Communication Through Power Talk in DC MicroGrids

    DEFF Research Database (Denmark)

    Angjelichinoski, Marko; Stefanovic, Cedomir; Popovski, Petar

    2016-01-01

    Power talk is a novel ultra narrow-band powerline communication (UNB-PLC) technique for communication among control units in MicroGrids (MGs). Unlike the existing UNB-PLC solutions, power talk does not require installation of additional dedicated communication hardware and, instead, uses only...... transmits at a time, and full duplex, where all units transmit and receive simultaneously. We apply the concepts of signaling space, where the power talk symbol constellations are constructed, and detection space, where the demodulation of the symbols is performed. The proposed communication technique...

  5. The photo-dielectric effect in bio-systems and models

    International Nuclear Information System (INIS)

    Anitoff, Oleg Eric

    1983-01-01

    The first part of this thesis describes the photo-dielectric spectrometer, an original measurement set-up designed in order to enable the kinetic study of dielectric (or magnetic) relaxation in laser excited systems. In the second part, this new technique is applied to three systems: 1) thylakoid (the photo-electrochemically active part of the chloroplasts of green plants) and protochlorophyllide-protein complex: synchronous photo-dielectric effect, measure of the mean polarizability of laser excited states and of their degree of photonicity. 2) phases with electron traps: vitrified thylakoid (77K); chloro-aluminium chlorophthalocyanine: delayed photo-dielectric effect (RITDC) with memory effect in the former case. This effect results from the L-Fault stabilization of inverted hydrogenoid states e - L n H + , this hypothesis being further confirmed by the observation of the chemical activity of γ irradiated phosphate glasses (phosphorylative activity). These later systems can also be phonon activated at pH 8, thus opening the way to the quantitative analysis of the electro-vibronic interaction in chromophore-protein complexes. 3) Inverted micelles of Aerosol O.T.: thermodynamical and kinetic analysis of the structure of bounded water aggregates through photo-thermo-dielectric effect. (author) [fr

  6. CSR communication through online social media

    Directory of Open Access Journals (Sweden)

    Araceli Castelló-Martínez, Ph.D.

    2012-01-01

    Full Text Available Online social networks such as Facebook and Twitter have become essential channels in business strategies. Corporate Social Responsibility communication faces new challenges in these spaces of the Web 2.0, where companies can interact with users, generate a brand community, increase their visibility, and strengthen their position in the market. This research study aims to analyse the way companies use the major online social media to communicate their Corporate Social Responsibility programmes. The methodology involves the examination of the presence in online social platforms and the online corporate reputation of ten companies/brands. The results show that companies use these spaces as channels for business and advertising communication, but not so much for Corporate Social Responsibility communication, despite these social media offer many possibilities for interaction and dialogue.

  7. Photo-degradation behaviour of roseoflavin in some aqueous solutions

    International Nuclear Information System (INIS)

    Tyagi, A.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2010-01-01

    An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.

  8. Photo-degradation behaviour of roseoflavin in some aqueous solutions

    Science.gov (United States)

    Tyagi, A.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2010-03-01

    An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.

  9. Photo-degradation behaviour of roseoflavin in some aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, A. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Mathes, T.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany)

    2010-03-24

    An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.

  10. Spacecraft Multiple Array Communication System Performance Analysis

    Science.gov (United States)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  11. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    International Nuclear Information System (INIS)

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-01

    Highlights: ► Some photo-excited carotenoids have photosensitizing ability. ► They are able to produce ROS. ► Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  12. Design of a Combined Beacon Receiver and Digital Radiometer for 40 GHz Propagation Measurements at the Madrid Deep Space Communications Complex

    Science.gov (United States)

    Zemba, Michael; Nessel, James; Morabito, David

    2017-01-01

    NASA Glenn Research Center (GRC) and the Jet Propulsion Laboratory (JPL) have jointly developed an atmospheric propagation terminal to measure and characterize propagation phenomena at 40 GHz at the Madrid Deep Space Communications Complex (MDSCC) in Robledo de Chavela, Spain. The hybrid Q-band system utilizes a novel design which combines a 40 GHz beacon receiver and digital radiometer into the same RF front-end and observes the 39.402 GHz beacon of the European Space Agencys Alphasat Aldo Paraboni TDP5 experiment. Atmospheric measurements include gaseous absorption, rain fade, and scintillation. The radiometric measurement is calibrated by means of an included noise diode as well as tipping calibration. The goals of these measurements are to assist MDSCC mission operations as the facility increasingly supports Ka-band missions, as well as to contribute to the development and improvement of International Telecommunications Union (ITU) models for prediction of communications systems performance within the Q-band through the Aldo Paraboni Experiment. Herein, we provide an overview of the system design, characterization, and plan of operations which commenced at the MDSCC beginning in March 2017.

  13. Orbiter Interface Unit and Early Communication System

    Science.gov (United States)

    Cobbs, Ronald M.; Cooke, Michael P.; Cox, Gary L.; Ellenberger, Richard; Fink, Patrick W.; Haynes, Dena S.; Hyams, Buddy; Ling, Robert Y.; Neighbors, Helen M.; Phan, Chau T.; hide

    2004-01-01

    This report describes the Orbiter Interface Unit (OIU) and the Early Communication System (ECOMM), which are systems of electronic hardware and software that serve as the primary communication links for the International Space Station (ISS). When a space shuttle is at or near the ISS during assembly and resupply missions, the OIU sends groundor crew-initiated commands from the space shuttle to the ISS and relays telemetry from the ISS to the space shuttle s payload data systems. The shuttle then forwards the telemetry to the ground. In the absence of a space shuttle, the ECOMM handles communications between the ISS and Johnson Space Center via the Tracking and Data Relay Satellite System (TDRSS). Innovative features described in the report include (1) a "smart data-buffering algorithm that helps to preserve synchronization (and thereby minimize loss) of telemetric data between the OIU and the space-shuttle payload data interleaver; (2) an ECOMM antenna-autotracking algorithm that selects whichever of two phased-array antennas gives the best TDRSS signal and electronically steers that antenna to track the TDRSS source; and (3) an ECOMM radiation-latchup controller, which detects an abrupt increase in current indicative of radiation-induced latchup and temporarily turns off power to clear the latchup, restoring power after the charge dissipates.

  14. Diffractive optical elements for space communication terminals

    OpenAIRE

    Herzig, Hans-Peter; Ehbets, Peter; Teijido, Juan M.; Weible, Kenneth J.; Heimbeck, Hans-Joerg

    2007-01-01

    The potential of diffractive optical elements for advanced laser communication terminals has been investigated. Applications include beam shaping of high- power laser diode arrays, optical filter elements for position detection and hybrid (refractive/diffractive) elements. In addition, we present a design example of a miniaturized terminal including diffractive optics.

  15. EOS Inoovation Photo's

    International Nuclear Information System (INIS)

    2011-01-01

    What did four years of energy innovation bring the Netherlands? Which are the main lessons learned and what are the best opportunities for the market? The Energy Research Strategy programme (EOS) gave the answers to these questions for various topics in the form of images by means of so-called I nnovation Photos' on Biomass, Built Environment, Industrial Energy Efficiency, Smart Grids, Heat, Offshore Wind, and Solar PV. [nl

  16. Method for improved selectivity in photo-activation of molecular agents

    Science.gov (United States)

    Fisher, Walter G.; Wachter, Eric A.; Dees, H. Craig

    1998-01-01

    A method for the treatment of a particular volume of plant or animal tissue comprising the steps of treating the plant or animal tissue with at least one photo-active molecular agent, wherein the particular volume of the plant or animal tissue retains at least a portion of the at least one photo-active molecular agent, and then treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of at least one of the at least one photo-active molecular agent retained in the particular volume of the plant or animal tissue, wherein the at least one photo-active molecular agent becomes active in the particular volume of the plant or animal tissue. There is also disclosed a method for the treatment of cancer in plant or animal tissue and a method for producing at least one photo-activated molecular agent in a particular volume of a material.

  17. Tertiary treatment of pulp mill wastewater by solar photo-Fenton

    International Nuclear Information System (INIS)

    Lucas, Marco S.; Peres, José A.; Amor, Carlos; Prieto-Rodríguez, Lucía; Maldonado, Manuel I.; Malato, Sixto

    2012-01-01

    Highlights: ► We firstly report a real pulp mill wastewater treatment by solar photo-Fenton in a CPC reactor. Fenton reagent experiments were tested firstly. ► Solar photo-Fenton presents excellent ability to treat the pulp mill wastewater. ► Experimental conditions were optimised. ► Biodegradability and toxicity tests (respirometry assays and BOD 5 /COD ratio) were performed during the wastewater treatment. ► A way to reduce the economic and environmental impact was evaluated. - Abstract: This work reports on pulp mill wastewater (PMW) tertiary treatment by Fenton (Fe 2+ /H 2 O 2 ) and solar photo-Fenton (Fe 2+ /H 2 O 2 /UV) processes in a pilot plant based on compound parabolic collectors (CPCs). Solar photo-Fenton reaction is much more efficient than the respective dark reaction under identical experimental conditions. It leads to DOC mineralisation, COD and total polyphenols (TP) removal higher than 90%. The solar photo-Fenton experiment with 5 mg Fe L −1 reaches 90% of DOC mineralisation with 31 kJ L −1 of UV energy and 50 mM of H 2 O 2 . The initial non-biodegradability of PMW, as shown by respirometry assays and BOD 5 /COD ratio, can be changed after a solar photo-Fenton treatment. Experiments with 20 and 50 mg Fe L −1 revealed that solar photo-Fenton can reach the same DOC degradation (90%), however, consuming less H 2 O 2 and time. Diluting the initial organic load to 50% also diminishes the dosage of H 2 O 2 and the necessary reaction time to achieve high DOC removals. Accordingly, solar photo-Fenton can be considered an alternative or complementary process to improve the performance of a biologic treatment and, subsequently, achieve legal limits on discharge into natural waters.

  18. Photo-patch and patch tests in patients with dermatitis over the photo-exposed areas: A study of 101 cases from a tertiary care centre in India.

    Science.gov (United States)

    Sharma, Vinod Kumar; Bhari, Neetu; Wadhwani, Ashok Roopchand; Bhatia, Riti

    2018-02-01

    Many patients with dermatitis over photo-exposed body areas are positive to many contact allergens and have a pre-existing allergic contact dermatitis. This study included patients who presented to a tertiary centre in India with dermatitis on photo-exposed body areas suspected of chronic actinic dermatitis. Their detailed histories were recorded and cutaneous and systemic examinations were performed. Patch testing was done in all the patients and photo-patch testing was carried out in 86 patients. Altogether 101 patients were included (69 males, 32 females). The most common presentation was lichenified hyperpigmented plaques on the photo-exposed sites. Photosensitivity was recorded in 64 (63%) patients and summer exacerbation in 52 (52%). Exposure to the Parthenium hysterophorus weed was recorded in 70 (69%) patients, 27 (26.7%) had a history of hair dye application and 20 (20%) had a history of atopy. Photo-patch test was positive in 11 (12.8%) patients and patch testing was positive in 71 (70%). Parthenium hysterophorus was the most common allergen implicated and was positive in three (4%) photo-patch and 52 (52%) patch tests. Other positive photo-patch test allergens were perfume mix, balsam of Peru, thiuram mix, Compositae mix and promethazine hydrochloride. Other common patch test allergens were parthenolide, colophony, fragrance mix and p-phenylenediamine (PPD) base. In the Indian population parthenium and perfume mix are the most common photoallergens in patients with dermatitis over photo-exposed areas, while parthenium, colophony, fragrance mix and PPD are the common positive allergens. © 2016 The Australasian College of Dermatologists.

  19. Cooperative photo-induced effects: from photo-magnetism under continuous irradiation to ultra-fast phenomena - study through optical spectroscopy and X-ray diffraction

    International Nuclear Information System (INIS)

    Glijer, D.

    2006-12-01

    The control with ultra-short laser pulses of the collective and concerted transformation of molecules driving a macroscopic state switching on an ultra-fast time scale in solid state opens new prospects in materials science. The goal is to realize at the material level what happens at the molecular level in femto-chemistry. These processes are highly cooperative and highly non-linear, leading to self-amplification and self-organization within the material, a so-called photo-induced phase transition with a new long range order (structural, magnetic, ferroelectric,...). Two families of molecular compounds have been studied here: first of all, spin transition materials changing from a diamagnetic state over to a paramagnetic state under the effect of temperature or under continuous laser excitation. It concerns photo-active molecular bi-stability prototype materials in solid state, whose switching has been studied during X-ray diffraction, optical reflectivity and magnetism experiments. Then we have studied charge-transfer molecular systems, prototype compounds for ultrafast photo-induced phase transitions: insulator-metal, neutral-ionic....As well as ultrafast optical experiments, time-resolved X ray crystallography is a key technique in order to follow at the atomic level the different steps of the photo-induced transformation and thus to observe the involved mechanisms. We have underlined a process of photo-formation of one-dimensional nano-domains of lattice-relaxed charge-transfer excitations, governing the photo-induced phase transition of the molecular charge-transfer complex TTF-CA by the first time-resolved diffuse scattering measurements. Moreover, a new femtosecond laser-plasma source and a optical pump-probe spectroscopy set-up with a highly sensitive detecting system have been developed in this work. The results presented here will be an illustration of the present scientific challenges existing on the one hand with the development of projects of major

  20. SRIM Scheme: An Impression-Management Scheme for Privacy-Aware Photo-Sharing Users

    Directory of Open Access Journals (Sweden)

    Fenghua Li

    2018-02-01

    Full Text Available With the development of online social networks (OSNs and modern smartphones, sharing photos with friends has become one of the most popular social activities. Since people usually prefer to give others a positive impression, impression management during photo sharing is becoming increasingly important. However, most of the existing privacy-aware solutions have two main drawbacks: ① Users must decide manually whether to share each photo with others or not, in order to build the desired impression; and ② users run a high risk of leaking sensitive relational information in group photos during photo sharing, such as their position as part of a couple, or their sexual identity. In this paper, we propose a social relation impression-management (SRIM scheme to protect relational privacy and to automatically recommend an appropriate photo-sharing policy to users. To be more specific, we have designed a lightweight face-distance measurement that calculates the distances between users’ faces within group photos by relying on photo metadata and face-detection results. These distances are then transformed into relations using proxemics. Furthermore, we propose a relation impression evaluation algorithm to evaluate and manage relational impressions. We developed a prototype and employed 21 volunteers to verify the functionalities of the SRIM scheme. The evaluation results show the effectiveness and efficiency of our proposed scheme. Keywords: Impression management, Relational privacy, Photo sharing, Policy recommendation, Proxemics

  1. Aerial view of the Kennedy Space Center Visitor Center

    Science.gov (United States)

    1998-01-01

    The Kennedy Space Center Visitor Center, shown in this aerial view looking south, sprawls across 70 acres on Florida's Space Coast , and is located off State Road 405, NASA Parkway, six miles inside the Space Center entrance. SR 405 can be seen at the bottom of the photo. Just above the roadway, from left can be seen the Shuttle/Gantry mockup; the Post Show Dome; the Astronaut Memorial; and to the far right, the Center for Space Education. Behind the Memorial are a cluster of buildings that include the Theater Complex, Cafeteria, Space Flight Exhibit Building, Souvenir Sales Building, Spaceport Central, and Ticket Pavilion. At the upper right are various rockets that have played a significant role in the growth of the space program.

  2. Intercultural Communication: A Key Element in Global Strategies.

    Science.gov (United States)

    Spinks, Nelda; Wells, Barron

    1997-01-01

    Cultural factors in global communication include differences in customs, space, dress, religion, class, work ethic, privacy, and other areas. Language differences in oral, written, and nonverbal communication as well as semantics also complicate intercultural communication. (SK)

  3. Alkydic resin wastewaters treatment by fenton and photo-Fenton processes

    International Nuclear Information System (INIS)

    Schwingel de Oliveira, Isadora; Viana, Lilian; Verona, Cenira; Fallavena, Vera Lucia Vargas; Azevedo, Carla Maria Nunes; Pires, Marcal

    2007-01-01

    Advanced oxidation processes are an emerging option to treatment of the painting industry effluents. The aim of this study was to compare the effectiveness of the Fenton and photo-Fenton processes in chemical oxygen demand (COD), total organic carbon (TOC) and phenolic compounds removal from wastewaters generated during alkydic resins manufacture. The optimized treatment conditions are the following: pH 3.0, 15.15 x 10 -3 mol L -1 FeSO 4 and 0.30 mol L -1 H 2 O 2 for a reaction time of 6 h. photo-Fenton experiments were carried out in the presence of sunlight or artificial radiation and complementary additions of H 2 O 2 were made for all experiments. The best results were obtained with photo-Fenton process assisted with solar radiation, with reductions of 99.5 and 99.1% of COD and TOC levels, respectively. Fenton and photo-Fenton (with artificial irradiation) processes presented lower but not insignificant removals, within 60-80% reduction for both COD and TOC. In addition, an excellent removal (95%) of total phenols was obtained using photo-Fenton process assisted with artificial irradiation. This study demonstrated that the use of photo-Fenton process on alkydic resins wastewater treatment is very promising especially when solar light is used

  4. Modelling of 10 Gbps Free Space Optics Communication Link Using Array of Receivers in Moderate and Harsh Weather Conditions

    Science.gov (United States)

    Gupta, Amit; Shaina, Nagpal

    2017-08-01

    Intersymbol interference and attenuation of signal are two major parameters affecting the quality of transmission in Free Space Optical (FSO) Communication link. In this paper, the impact of these parameters on FSO communication link is analysed for delivering high-quality data transmission. The performance of the link is investigated under the influence of amplifier in the link. The performance parameters of the link like minimum bit error rate, received signal power and Quality factor are examined by employing erbium-doped fibre amplifier in the link. The effects of amplifier are visualized with the amount of received power. Further, the link is simulated for moderate weather conditions at various attenuation levels on transmitted signal. Finally, the designed link is analysed in adverse weather conditions by using high-power laser source for optimum performance.

  5. Morula-like cells in photo-symbiotic clams harboring zooxanthellae.

    Science.gov (United States)

    Nakayama, K; Nishijima, M; Maruyama, T

    1998-06-01

    Symbiosis is observed between zooxanthellae, symbiotic dinoflagellates, and giant clams and related clams which belong to the families Tridacnidae and Cardiidae. We have previously shown that a photo-symbiotic clam Tridacna crocea has three types of hemocytes, the eosinophilic granular hemocyte with phagocytic activity, the agranular cell with electron lucent granules, and the morula-like cell with large (ca. 2 mum in diameter) colorless granules. The function of the morula-like cell is not clear, but it has not been reported in any other bivalves except photo-symbiotic clams T. crocea and Tridacna maxima. In order to clarify whether it is specific to photo-symbiotic clams or not, we studied hemocytes in the photo-symbiotic clams Tridacna derasa (Tridacnidae), Hippopus hippopus (Tridacnidae) and Corculum cardissa (Cardiidae), and a closely related non-symbiotic clam Fulvia mutica (Cardiidae). The eosinophilic granular hemocytes and the agranular cells were found in all of the clams examined. However, the morula-like cells which were packed with many large electron dense granules (ca. 2 mum in diameter), were observed only in the photo-symbiotic clams. In F. mutica, a closely related non-symbiotic clam, this type of hemocyte was not found. Instead a hemocyte with vacuoles and a few large granules containing peroxidase activity was observed. The large granules of F. mutica varied in size from ca. 1-9 mum in diameter. Present data suggests that the presence of morula-like cells is restricted to photo-symbiotic clams and that the hemocytes associated with the morula-like cells may have some functional relationship to symbiosis with zooxanthellae.

  6. Professional perceptions of the effectiveness of visual communication systems and their applications for functional communication interventions for individuals with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Elizabeth Alexander

    2018-01-01

    Full Text Available Background & aims This study investigated the perceptions of educational professionals in regard to the effectiveness of visual communication systems and their applications as a functional communication intervention for individuals with Autism Spectrum Disorder (ASD. Methods One hundred and one individuals from diverse educational backgrounds, school districts, educational services, and various states were surveyed for this study. All participants in this study served individuals with Autism Spectrum Disorder in a clinical and/or school setting. Results The study found that aided augmentative and alternative communication (AAC systems were widely utilized, and participants perceived these systems as the most effective for individuals with Autism Spectrum Disorder. It also found that the use of low level tech aided augmentative communication systems such as Picture Exchange System and high level tech systems such as voice output systems that were strictly computer based, were dependent on the individual's abilities and needs. Finally, the study found that the use of photography and photo journaling techniques had positive outcomes for individuals diagnosed with Autism Spectrum Disorder and other students in the learning environment. Conclusions The results revealed that the overall consensus of educational professionals that serve individuals with ASD agreed that aided AAC systems were more effective methods to foster and enhance functional communication. In terms of effectiveness of the level of technology utilized within the system, it depends on the needs and abilities of the individual with ASD. Participants, however, did agree that photography and photo journaling techniques may provide positive attributes to all students and not only those diagnosed with ASD. Implications The ability to modify or alter the ways in which AAC systems are created and implemented may address the need to individualize the systems in terms of the needs and

  7. Space-Time Code Designs for Broadband Wireless Communications

    National Research Council Canada - National Science Library

    Xia, Xiang-Gen

    2005-01-01

    The goal of this research is to design new space AND time codes, such as complex orthogonal space AND time block codes with rate above 1/2 from complex orthogonal designs for QAM, PSK, and CPM signals...

  8. A Survey of Satellite Communications System Vulnerabilities

    National Research Council Canada - National Science Library

    Steinberger, Jessica A

    2008-01-01

    The U.S. military's increasing reliance on commercial and military communications satellites to enable widely-dispersed, mobile forces to communicate makes these space assets increasingly vulnerable to attack by adversaries...

  9. MMIC technology for advanced space communications systems

    Science.gov (United States)

    Downey, A. N.; Connolly, D. J.; Anzic, G.

    The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.

  10. MMIC technology for advanced space communications systems

    Science.gov (United States)

    Downey, A. N.; Connolly, D. J.; Anzic, G.

    1984-01-01

    The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.

  11. A 2 x 2 imaging MIMO system based on LED Visible Light Communications employing space balanced coding and integrated PIN array reception

    DEFF Research Database (Denmark)

    Li, Jiehui; Xu, Yinfan; Shi, Jianyang

    2016-01-01

    In this paper, we proposed a 2 x 2 imaging Multi-Input Multi-Output (MIMO)-Visible Light Communication (VLC) system by employing Space Balanced Coding (SBC) based on two RGB LEDs and integrated PIN array reception. We experimentally demonstrated 1.4-Gbit/s VLC transmission at a distance of 2.5 m...

  12. Communication Optimizations for Fine-Grained UPCApplications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Yu; Iancu, Costin; Yelick, Katherine

    2005-07-08

    Global address space languages like UPC exhibit high performance and portability on a broad class of shared and distributed memory parallel architectures. The most scalable applications use bulk memory copies rather than individual reads and writes to the shared space, but finer-grained sharing can be useful for scenarios such as dynamic load balancing, event signaling, and distributed hash tables. In this paper we present three optimization techniques for global address space programs with fine-grained communication: redundancy elimination, use of split-phase communication, and communication coalescing. Parallel UPC programs are analyzed using static single assignment form and a data flow graph, which are extended to handle the various shared and private pointer types that are available in UPC. The optimizations also take advantage of UPC's relaxed memory consistency model, which reduces the need for cross thread analysis. We demonstrate the effectiveness of the analysis and optimizations using several benchmarks, which were chosen to reflect the kinds of fine-grained, communication-intensive phases that exist in some larger applications. The optimizations show speedups of up to 70 percent on three parallel systems, which represent three different types of cluster network technologies.

  13. The application of visual communication design in display design

    Institute of Scientific and Technical Information of China (English)

    仪晓华

    2015-01-01

    Visual communication design is a kind of visual language and the art of communication behavior, it condenses complex and chaos and obscure information can in the shortest possible time to be understanding of the functional information, at the same time, make the design work itself sound art, philosophy and culture, cause the audience’s perception experience and emotional resonance, and eventually approved. Display of visual communication don’t like people use language to convey, but in all kinds of display environment by graphics, text, color elements such as passing information to people, visual communication design as a medium between designer and audience, communicate through planar graphic elements, format design, the combination of the text elements, color elements make exhibition has rhythm beauty so as to build a display space, the space information accurate, vivid and clear function division, comfortable, and the outline of rich imagination space to the person and strong visual impression.

  14. The role of space in the security and defence policy of Turkey. A change in outlook: Security in space versus security from space

    OpenAIRE

    Ercan, C.; Kale, I.

    2017-01-01

    Space and security domains are strongly related with each other. Nowadays, space is an indispensable part of security and defence policy, and it is increasingly becoming a critical infrastructure for strategic Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) systems. However, space is vulnerable itself to the new space threats. This study reviews the current and near future space role in Turkey's security and defence policy and aims to address...

  15. Soft photo structuring of porous silicon in water

    Energy Technology Data Exchange (ETDEWEB)

    Juan, M.; Bouillard, J.S.; Plain, J.; Bachelot, R.; Adam, P.M.; Lerondel, G.; Royer, P. [ICD - Laboratoire de Nanotechnologie et d' Instrumentation Optique, CNRS FRE 2848, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes (France)

    2007-05-15

    We report on local photo-induced patterning of porous silicon in water. Scanning probe microscopy images of the sample surface after illumination show that the emission properties as well as the topography are modified according to the interferometric illumination pattern. Local photo-oxidation is believed to be at the origin of these modifications. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Networked Constellation Communications Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop communications architectures and enabling technologies for mission concepts relying on multiple spatially distributed spacecraft to perform coordinated...

  17. Conceptualizing and communicating organizational risk dynamics in the thoroughness-efficiency space

    International Nuclear Information System (INIS)

    Marais, K.B.; Saleh, J.H.

    2008-01-01

    Organizations that design and/or operate complex systems have to make trade-offs between multiple, interacting, and sometimes conflicting goals at both the individual and organizational levels. Identifying, communicating, and resolving the conflict or tension between multiple organizational goals is challenging. Furthermore, maintaining an appropriate level of safety in such complex environments is difficult for a number of reasons discussed in this paper. The objective of this paper is to propose a set of related concepts that can help conceptualize organizational risk and help managers to understand the implications of various performance and resource pressures and make appropriate trade-offs between efficiency and thoroughness that maintain system safety. The concepts here introduced include (1) the thoroughness-efficiency space for classifying organizational behavior, and the various resource/performance and regulatory pressures that can displace organizations from one quadrant to another within this space, (2) the thoroughness-efficiency barrier and safety threshold, and (3) the efficiency penalty that organizations should accept, and not trade against organizational thoroughness, in order to maintain safety. Unfortunately, many accidents share a conceptual sameness in the way they occur. That sameness can be related to the dynamics conceptualized in this paper and the violation of the safety threshold. This sameness is the sad story of the Bhopal accident, the Piper Alpha accident, and score of others. Finally, we highlight the importance of a positive safety culture as an essential complement to regulatory pressure in maintaining safety. We illustrate the 'slippery slope of thoroughness' along which organizational behavior slides under the influence of performance pressure, and suggest that a positive safety culture can be conceived of as 'pulling this slippery slope' up and preventing the violation of the safety threshold

  18. Introducing New Library Services: Nuclear Malaysia Gallery Photos and Videos

    International Nuclear Information System (INIS)

    Mohd Hafizal Yusof; Nasaruddin Ahmad; Habibah Adnan

    2015-01-01

    The main purpose of the existing of library is to preserve books and journals for the organizations main business. The role of library itself is to organize the books such as borrowing and renewal services as consulting their customers on getting the best references for the customers need and demand. Nowadays, the role of library also expands and the need for storing and preserving non-monograph resources such as photo and video also increase. Follow that current situation, Nuclear Malaysia's Library also take a step forwards by introducing new services so called Photo and Video Gallery. Realizing that Nuclear Malaysia also have their valuable photo and video that contains so called memorable moment and must be preserve for future reference, the management of Nuclear Malaysia's Library have decided to buy the system so called P-Canvas. The main purpose of this paper is to explain the library new services, Photo and Video Gallery, development and advantage of this system in storing and preserving Nuclear Malaysia's photo and video. (author)

  19. Discourses of space

    CERN Document Server

    Ajtony, Zsuzsanna

    2013-01-01

    Ever since the emergence of the spatial turn in several scientific discourses, special attention has been paid to the surrounding space conceived as a construct created by the dynamics of human activity. The notion of space assists us in describing the most varied spheres of human existence. We can speak of various physical, metaphysical, social and cultural, and communicative spaces, as structuring components providing access to various literary, linguistic, social and cultural phenomena, th...

  20. Electronic Subsystems For Laser Communication System

    Science.gov (United States)

    Long, Catherine; Maruschak, John; Patschke, Robert; Powers, Michael

    1992-01-01

    Electronic subsystems of free-space laser communication system carry digital signals at 650 Mb/s over long distances. Applicable to general optical communications involving transfer of great quantities of data, and transmission and reception of video images of high definition.