WorldWideScience

Sample records for space center wheat-yield

  1. Wheat yield dynamics: a structural econometric analysis.

    Science.gov (United States)

    Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin

    2007-10-15

    In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.

  2. Super Dwarf Wheat for Growth in Confined Spaces

    Science.gov (United States)

    Bugbee, Bruce

    2011-01-01

    USU-Perigee is a dwarf red spring wheat that is a hybrid of a high-yield early tall wheat (USU-Apogee) and a low-yield, extremely short wheat that has poor agronomic characteristics. USU-Perigee was selected for its extremely short height (.0.3 m) and high yield . characteristics that make it suitable for growth in confined spaces in controlled environments. Other desirable characteristics include rapid development and resistance to a leaf-tip necrosis, associated with calcium deficiency, that occurs in other wheat cultivars under rapid-growth conditions (particularly, continuous light). Heads emerge after only 21 days of growth in continuous light at a constant temperature of 25 C. In tests, USU-Perigee was found to outyield other full dwarf (defined as wheat cultivars: The yield advantage at a constant temperature of 23 C was found to be about 30 percent. Originally intended as a candidate food crop to be grown aboard spacecraft on long missions, this cultivar could also be grown in terrestrial growth chambers and could be useful for plant-physiology and -pathology studies.

  3. Hot spots of wheat yield decline with rising temperatures.

    Science.gov (United States)

    Asseng, Senthold; Cammarano, Davide; Basso, Bruno; Chung, Uran; Alderman, Phillip D; Sonder, Kai; Reynolds, Matthew; Lobell, David B

    2017-06-01

    Many of the irrigated spring wheat regions in the world are also regions with high poverty. The impacts of temperature increase on wheat yield in regions of high poverty are uncertain. A grain yield-temperature response function combined with a quantification of model uncertainty was constructed using a multimodel ensemble from two key irrigated spring wheat areas (India and Sudan) and applied to all irrigated spring wheat regions in the world. Southern Indian and southern Pakistani wheat-growing regions with large yield reductions from increasing temperatures coincided with high poverty headcounts, indicating these areas as future food security 'hot spots'. The multimodel simulations produced a linear absolute decline of yields with increasing temperature, with uncertainty varying with reference temperature at a location. As a consequence of the linear absolute yield decline, the relative yield reductions are larger in low-yielding environments (e.g., high reference temperature areas in southern India, southern Pakistan and all Sudan wheat-growing regions) and farmers in these regions will be hit hardest by increasing temperatures. However, as absolute yield declines are about the same in low- and high-yielding regions, the contributed deficit to national production caused by increasing temperatures is higher in high-yielding environments (e.g., northern India) because these environments contribute more to national wheat production. Although Sudan could potentially grow more wheat if irrigation is available, grain yields would be low due to high reference temperatures, with future increases in temperature further limiting production. © 2016 John Wiley & Sons Ltd.

  4. Evaluation of the Effect of Crop Rotations on Yield and Yield Components of Bread Wheat (Triticum aestivum L. cv. Darya)

    OpenAIRE

    H. A. Fallahi; U. Mahmadyarov; H. Sabouri; M. Ezat-Ahmadi4

    2013-01-01

    Grain yield in wheat is influenced directly and indirectly by other plant characteristics. One of the main goals in wheat breeding programs is increase of grain yield. Considering the role of crop rotation in increasing grain yield, and in order to study the difference between crop rotations for wheat yield and yield components (Darya cultivar), an experiment was conducted with six rotation treatments (wheat-chickpea-wheat, wheat-cotton-wheat, wheat-watermelon-wheat, wheat-wheat-wheat, wheat-...

  5. Wheat yield vulnerability: relation to rainfall and suggestions for adaptation

    Directory of Open Access Journals (Sweden)

    Khalid Tafoughalti

    2018-04-01

    Full Text Available Wheat production is of paramount importance in the region of Meknes, which is mainly produced under rainfed conditions. It is the dominant cereal, the greater proportion being the soft type. During the past few decades, rainfall flaws have caused a number of cases of droughts. These flaws have seriously affecting wheat production. The main objective of this study is the assessment of rainfall variability at monthly, seasonal and annual scales and to determine their impact on wheat yields. To reduce this impact we suggested some mechanisms of adaptation. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model to evaluate the impact of rainfall on wheat yields. Data analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that soft wheat and hard wheat are strongly correlated with the period of January to March than with the whole growing-season. While they are adversely correlated with the mid-spring. This investigation concluded that synchronizing appropriate adaptation with the period of January to March was crucial to achieving success yield of wheat.

  6. Climate Change Impact on Rainfall: How will Threaten Wheat Yield?

    Science.gov (United States)

    Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.

    2018-05-01

    Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.

  7. Effect of planting date on yield of wheat genotypes in Sindh

    International Nuclear Information System (INIS)

    Khokhar, Z.; Hussain, I.

    2010-01-01

    Due to reduction in tillering period and increased risk of hot weather during grain filling, late planting results in linear reduction in wheat grain yield. A study was undertaken to determine the effects of planting dates on growth and yield of different wheat genotypes in Sindh. The trial was laid out in RCBD with split plot arrangement having four replications during 2000-01 and 2001-02 at Sakrand, Sindh. Four sowing dates i.e. November 1 and 15, December 1 and 15 were in main plots, whereas six wheat genotypes (V-7001, V-7002, V-7004, MPT-6, Abadgar-93, and Anmol-91) were in sub plots. Because of better tillering, plant growth, growth period, number of grain per unit area and grain weight, November 15 planted wheat had maximum grain yield of 5904 kg ha/sup -1/, followed by November 1 and December 1 which gave 5302 and 4948 kg ha/sup -1 /respectively. Wheat planted on December 15 resulted in minimum grain yield of 4756 kg ha/sup -1/. Wheat genotype, V-7002 had significantly (P<0.05) higher grain yield of 5578 kg ha/sup -1/ in comparison with other genotypes. Whereas genotype MPT-6 had grain yield of 5366 kg ha-1 that was also significantly higher than other genotypes. However, V-7004 had minimum grain yield of 4716 kg ha/sup -1/ in comparison with other genotypes. While evaluating performance of different genotypes on different sowing dates, V-7002 resulted in maximum yield on November 15 and late planting. On the other hand, V-7004 had lower yield on all planting dates. Results from the study revealed that maximum grain yield could be achieved with wheat planted in first fortnight of November and any delay in wheat planting might reduce wheat yield. (author)

  8. Wheat Yield Trend and Soil Fertility Status in Long Term Rice-Rice-Wheat Cropping System

    Directory of Open Access Journals (Sweden)

    Nabin Rawal

    2015-12-01

    Full Text Available A long-term soil fertility experiment under rice-rice-wheat system was performed to evaluate the long term effects of inorganic fertilizer and manure applications on soil properties and grain yield of wheat. The experiment began since 1978 was laid out in randomized complete block design with 9 treatments replicated 3 times. From 1990 onwards, periodic modifications have been made in all the treatments splitting the plots in two equal halves of 4 x 3 m2 leaving one half as original. In the original treatments, recent data revealed that the use of Farm Yard Manure (FYM @10 t ha-1 gave significantly (P≤0.05 higher yield of 2.3 t ha-1 in wheat, whereas control plot gave the lowest grain yield of 277 kg ha-1. Similarly, in the modified treatments, the use of FYM @10 t ha-1 along with inorganic Nitrogen (N and Potassium oxide (K2O @ 50 kg ha-1 produced significantly (P≤0.05 the highest yield of 2.4 t/ha in wheat. The control plot with an indigenous nutrient supply only produced wheat yield of 277 kg ha-1 after 35th year completion of rice-rice-wheat system. A sharp decline in wheat yields was noted in minus N, phosphorus (P, Potassium (K treatments during recent years. Yields were consistently higher in the N:P2O5:K2O and FYM treatments than in treatments, where one or more nutrients were lacking. The application of P2O5 and K2O caused a partial recovery of yield in P and K deficient plots. There was significant (P≤0.05 effect of use of chemical fertilizers and manure on soil properties. The soil analysis data showed an improvement in soil pH (7.8, soil organic matter (4.1%, total N content (0.16%, available P (503.5 kg P2O5 ha-1 and exchangeable K (137.5 kg K2O ha-1 in FYM applied treatments over all other treatments. The findings showed that the productivity of the wheat can be increased and sustained by improving nutrient through the integrated use of organic and inorganic manures in long term.

  9. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    Science.gov (United States)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  10. Effects of photoperiod on wheat growth, development and yield in CELSS

    Science.gov (United States)

    Yunze, Shen; Shuangsheng, Guo

    2014-12-01

    A Controlled Ecological Life Support System (CELSS) is a sealed system used in spaceflight in order to provide astronauts with food and O2 by plants. It is of great significance to increase the energy-using efficiency because energy is extremely deficient in the space. Therefore, the objective of this research was to increase the energy-using efficiency of wheat by regulating the photoperiod. Sixteen treatments were set in total: four photoperiods before flowering (PBF) combined with four photoperiods after flowering (PAF) of 12 h, 16 h, 20 h and 24 h. The light source was red-blue LED (90% red+10% blue). As a result, the growth period of wheat was largely extended by shorter PBF, particularly the number of days from tillering to jointing and from jointing to heading. The period from flowering to maturity was extended by shorter PAF. Shorter PBF and longer PAF could increase not only the yield but also the energy-using efficiency of wheat. As for the nutritional quality, longer photoperiod (both PBF and PAF) increased starch concentration as well as decreased protein concentration of seeds. The effects of PBF and PAF were interactional. The lighting strategy with PBF of 12 h and PAF of 24 h was proved to be the optimum photoperiod for wheat cultivation in CELSS. The mechanisms of photoperiod effect contain two aspects. Firstly, photoperiod is a signal for many processes in plant growth, particularly the process of ear differentiation. Shorter PBF promoted the ear differentiation of wheat, increasing the spikelet number, floret number and seed number and thus enhancing the yield. Secondly, longer photoperiod leads to more light energy input and longer time of photosynthesis, so that longer PAF provided more photosynthate and increased seed yield.

  11. Effects of diurnal temperature range and drought on wheat yield in Spain

    Science.gov (United States)

    Hernandez-Barrera, S.; Rodriguez-Puebla, C.; Challinor, A. J.

    2017-07-01

    This study aims to provide new insight on the wheat yield historical response to climate processes throughout Spain by using statistical methods. Our data includes observed wheat yield, pseudo-observations E-OBS for the period 1979 to 2014, and outputs of general circulation models in phase 5 of the Coupled Models Inter-comparison Project (CMIP5) for the period 1901 to 2099. In investigating the relationship between climate and wheat variability, we have applied the approach known as the partial least-square regression, which captures the relevant climate drivers accounting for variations in wheat yield. We found that drought occurring in autumn and spring and the diurnal range of temperature experienced during the winter are major processes to characterize the wheat yield variability in Spain. These observable climate processes are used for an empirical model that is utilized in assessing the wheat yield trends in Spain under different climate conditions. To isolate the trend within the wheat time series, we implemented the adaptive approach known as Ensemble Empirical Mode Decomposition. Wheat yields in the twenty-first century are experiencing a downward trend that we claim is a consequence of widespread drought over the Iberian Peninsula and an increase in the diurnal range of temperature. These results are important to inform about the wheat vulnerability in this region to coming changes and to develop adaptation strategies.

  12. Grain filling parameters and yield components in wheat

    OpenAIRE

    Brdar Milka; Kobiljski Borislav; Balalić-Kraljević Marija

    2006-01-01

    Grain yield of wheat (Triticum aestivum L.) is influenced by number of grains per unit area and grain weight, which is result of grain filling duration and rate. The aim of the study was to investigate the relationships between grain filling parameters in 4 wheat genotypes of different earliness and yield components. Nonlinear regression estimated and observed parameters were analyzed. Rang of estimated parameters corresponds to rang of observed parameters. Stepwise MANOVA indicated that the ...

  13. Effect of different tillage intensity on yields and yield-forming factors in winter wheat

    Directory of Open Access Journals (Sweden)

    Martin Houšť

    2012-01-01

    Full Text Available The paper presents results of a study on application of minimum tillage technologies when growing winter wheat. Experiments were performed in the sugar-beet-growing region with loamy chernozem within the period of 2005–2009. Aanalysed and evaluated were effects of different methods of soil processing on yield-forming factors in stands of winter wheat grown after three different preceding crops (i.e. alfalfa, maize for silage and pea. Evaluated were the following four variants of tillage: (1 conventional ploughing to the depth of 0.22 m (Variant 1; (2 ploughing to the depth of 0.15 m (Variant 2; (3 direct sowing into the untilled soil (Variant 3, and (4 shallow tillage to the depth of 0.10 m (Variant 4.The effect of different tillage intensity on winter wheat yields was statistically non-significant after all forecrops. After alfalfa, the highest and the lowest average yields were recorded in Variant 2 (i.e. with ploughing to the depth of 0.15 m and Variant 3 (direct sowing into the untilled soil, respectively. After maize grown for silage, higher yields were obtained in Variant 2 and Variant 1 (conventional ploughing while in Variants 4 and 3 the obtained yields were lower. When growing winter wheat after pea as a preceding crop, the highest and the lowest average yields were recorded after direct sowing (Variant 3 and in Variant 1 (i.e. ploughing to the depth of 0.22 m, respectively. Results of studies on effect of different tillage technologies on yields of winter wheat crops indicate that under the given pedological and climatic conditions it is possible to apply methods of reduced tillage intensity. However, the choice of the corresponding technology must be performed with regard to the type of preceding crop.

  14. Irrigation offsets wheat yield reductions from warming temperatures

    Science.gov (United States)

    Tack, Jesse; Barkley, Andrew; Hendricks, Nathan

    2017-11-01

    Temperature increases due to climate change are expected to cause substantial reductions in global wheat yields. However, uncertainty remains regarding the potential role for irrigation as an adaptation strategy to offset heat impacts. Here we utilize over 7000 observations spanning eleven Kansas field-trial locations, 180 varieties, and 29 years to show that irrigation significantly reduces the negative impact of warming temperatures on winter wheat yields. Dryland wheat yields are estimated to decrease about eight percent for every one-degree Celsius increase in temperature, yet irrigation completely offsets this negative impact in our sample. As in previous studies, we find that important interactions exist between heat stress and precipitation for dryland production. Here, uniquely, we observe both dryland and irrigated trials side-by-side at the same locations and find that precipitation does not provide the same reduction in heat stress as irrigation. This is likely to be because the timing, intensity, and volume of water applications influence wheat yields, so the ability to irrigate—rather than relying on rainfall alone—has a stronger influence on heat stress. We find evidence of extensive differences of water-deficit stress impacts across varieties. This provides some evidence of the potential for adapting to hotter and drier climate conditions using optimal variety selection. Overall, our results highlight the critical role of water management for future global food security. Water scarcity not only reduces crop yields through water-deficit stress, but also amplifies the negative effects of warming temperatures.

  15. Wheat-yield response to irrigation and nitrogen

    International Nuclear Information System (INIS)

    Kirda, C.; Derici, R.; Kanber, R.; Yazar, A.; Koc, M.; Barutcular, C.

    2000-01-01

    Wheat-yield responses to the application of different rates of N fertilizer, under irrigated and rainfed conditions, were evaluated over four growing seasons. Nitrogen applied at tillering was utilized more effectively with proportionately less residual in the soil compared to that applied at planting. Subsequent crops of maize or cotton were positively affected by residual fertilizer N. Volatilization and leaching losses of applied N were small. Crop-water consumption showed strong positive associations with N rate. No wheat-grain-yield benefits accrued from irrigation, although straw yields were increased. Tiller production increased with N-fertilizer usage, however, tiller survival decreased at high N and was highest at 160 kg N ha -1 . Higher N rates produced higher stomatal conductance, increased rates of CO 2 assimilation and higher water-use efficiency. The CERES-Wheat growth-simulation model predicted rather closely the progress of dry-matter production, leaf area index, seasonal evapotranspiration, phenological development and of many other plant-growth attributes. The data indicated that the rate of 160 kg N ha -1 , which is commonly used by the farmers of the region, is acceptable, not only for optimum grain yields but also to minimize the risks of leaching NO 3 - to groundwater. (author)

  16. Effect of nitrogen and water deficit type on the yield gap between the potential and attainable wheat yield

    Directory of Open Access Journals (Sweden)

    Jiangang Liu

    2015-12-01

    Full Text Available Water deficit and N fertilizer are the two primary limiting factors for wheat yield in the North China plain, the most important winter wheat (Triticum aestivum L. production area in China. Analyzing the yield gap between the potential yield and the attainable yield can quantify the potential for increasing wheat production and exploring the limiting factors to yield gap in the high-yielding farming region of North China Plain. The Decision Support System for Agrotechnology Transfer (DSSAT model was used to identify methods to increase the grain yield and decrease the gap. In order to explore the impact of N and cultivars on wheat yield in the different drought types, the climate conditions during 1981 to 2011 growing seasons was categorized into low, moderate, and severe water deficit classes according to the anomaly percentage of the water deficit rate during the entire wheat growing season. There are differences (P < 0.0001 in the variations of the potential yields among three cultivars over 30 yr. For all three water deficit types, the more recent cultivars Jimai22 and Shijiazhuang8 had higher yields compared to the older 'Jinan17'. As the N fertilizer rate increased, the yield gap decreased more substantially during the low water deficit years because of the significant increase in attainable yield. Overall, the yield gaps were smaller with less water stress. Replacement of cultivars and appropriate N fertilizer application based on the forecasted drought types can narrow the yield gap effectively.

  17. Ethiopian Wheat Yield and Yield Gap Estimation: A Spatial Small Area Integrated Data Approach

    Science.gov (United States)

    Mann, M.; Warner, J.

    2015-12-01

    Despite the collection of routine annual agricultural surveys and significant advances in GIS and remote sensing products, little econometric research has been undertaken in predicting developing nation's agricultural yields. In this paper, we explore the determinants of wheat output per hectare in Ethiopia during the 2011-2013 Meher crop seasons aggregated to the woreda administrative area. Using a panel data approach, combining national agricultural field surveys with relevant GIS and remote sensing products, the model explains nearly 40% of the total variation in wheat output per hectare across the country. The model also identifies specific contributors to wheat yields that include farm management techniques (eg. area planted, improved seed, fertilizer, irrigation), weather (eg. rainfall), water availability (vegetation and moisture deficit indexes) and policy intervention. Our findings suggest that woredas produce between 9.8 and 86.5% of their potential wheat output per hectare given their altitude, weather conditions, terrain, and plant health. At the median, Amhara, Oromiya, SNNP, and Tigray produce 48.6, 51.5, 49.7, and 61.3% of their local attainable yields, respectively. This research has a broad range of applications, especially from a public policy perspective: identifying causes of yield fluctuations, remotely evaluating larger agricultural intervention packages, and analyzing relative yield potential. Overall, the combination of field surveys with spatial data can be used to identify management priorities for improving production at a variety of administrative levels.

  18. Path Analysis of Grain Yield and Yield Components and Some Agronomic Traits in Bread Wheat

    Directory of Open Access Journals (Sweden)

    Mohsen Janmohammadi

    2014-01-01

    Full Text Available Development of new bread wheat cultivars needs efficient tools to monitor trait association in a breeding program. This investigation was aimed to characterize grain yield components and some agronomic traits related to bread wheat grain yield. The efficiency of a breeding program depends mainly on the direction of the correlation between different traits and the relative importance of each component involved in contributing to grain yield. Correlation and path analysis were carried out in 56 bread wheat genotypes grown under field conditions of Maragheh, Iran. Observations were recorded on 18 wheat traits and correlation coefficient analysis revealed grain yield was positively correlated with stem diameter, spike length, floret number, spikelet number, grain diameter, grain length and 1000 seed weight traits. According to the variance inflation factor (VIF and tolerance as multicollinearity statistics, there are inconsistent relationships among the variables and all traits could be considered as first-order variables (Model I with grain yield as the response variable due to low multicollinearity of all measured traits. In the path coefficient analysis, grain yield represented the dependent variable and the spikelet number and 1000 seed weight traits were the independent ones. Our results indicated that the number of spikelets per spikes and leaf width and 1000 seed weight traits followed by the grain length, grain diameter and grain number per spike were the traits related to higher grain yield. The above mentioned traits along with their indirect causal factors should be considered simultaneously as an effective selection criteria evolving high yielding genotype because of their direct positive contribution to grain yield.

  19. Influence of Previous Crop on Durum Wheat Yield and Yield Stability in a Long-term Experiment

    Directory of Open Access Journals (Sweden)

    Anna Maria Stellacci

    2011-02-01

    Full Text Available Long-term experiments are leading indicators of sustainability and serve as an early warning system to detect problems that may compromise future productivity. So the stability of yield is an important parameter to be considered when judging the value of a cropping system relative to others. In a long-term rotation experiment set up in 1972 the influence of different crop sequences on the yields and on yield stability of durum wheat (Triticum durum Desf. was studied. The complete field experiment is a split-split plot in a randomized complete block design with two replications; the whole experiment considers three crop sequences: 1 three-year crop rotation: sugar-beet, wheat + catch crop, wheat; 2 one-year crop rotation: wheat + catch crop; 3 wheat continuous crop; the split treatments are two different crop residue managements; the split-split plot treatments are 18 different fertilization formulas. Each phase of every crop rotation occurred every year. In this paper only one crop residue management and only one fertilization treatment have been analized. Wheat crops in different rotations are coded as follows: F1: wheat after sugar-beet in three-year crop rotation; F2: wheat after wheat in three-year crop rotation; Fc+i: wheat in wheat + catch crop rotation; Fc: continuous wheat. The following two variables were analysed: grain yield and hectolitre weight. Repeated measures analyses of variance and stability analyses have been perfomed for the two variables. The stability analysis was conducted using: three variance methods, namely the coefficient of variability of Francis and Kannenberg, the ecovalence index of Wricke and the stability variance index of Shukla; the regression method of Eberhart and Russell; a method, proposed by Piepho, that computes the probability of one system outperforming another system. It has turned out that each of the stability methods used has enriched of information the simple variance analysis. The Piepho

  20. Mining centuries old in-situ conserved Turkish wheat landraces for grain yield and stripe rust resistance genes

    Directory of Open Access Journals (Sweden)

    Deepmala Sehgal

    2016-11-01

    Full Text Available Wheat landraces in Turkey are an important genetic resource for wheat improvement. An exhaustive five-year (2009-2014 effort made by the International Winter Wheat Improvement Programme (IWWIP a cooperative program between the Ministry of Food, Agriculture and Livestock of Turkey, the International Center for Maize and Wheat Improvement (CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA, led to the collection and documentation of around 2,000 landrace populations from 55 provinces throughout Turkey. This study reports the genetic characterization of a subset of bread wheat landraces collected in 2010 from 11 diverse provinces using genotyping-by-sequencing (GBS technology. The potential of this collection to identify loci determining grain yield and stripe rust resistance via genome-wide association (GWA analysis was explored. A high genetic diversity (diversity index = 0.260 and a moderate population structure based on highly inherited spike traits was revealed in the panel. The linkage disequilibrium decayed at 10 cM across the whole genome and was slower as compared to other landrace collections. In addition to previously reported QTL, GWA analysis also identified new candidate genomic regions for stripe rust resistance, grain yield and spike productivity components. New candidate genomic regions reflect the potential of this landrace collection to further increase genetic diversity in elite germplasm.

  1. Effect of Different Tillage Methods and Cover Crop Types on Yield and Yield Components of Wheat

    Directory of Open Access Journals (Sweden)

    Z Sharefee

    2018-05-01

    Full Text Available Introduction Conservation agriculture is an appropriate strategy for maintaining and improving agricultural resources which increases crop production and stability and also provides environmental protection. This attitude contributes to the conservation of natural resources (soil, water, and air and is one of the most effective ways to overcome the drought crisis, water management and compensation of soil organic matter in arid and semi-arid regions. The practice of zero-tillage decreases the mineralization of organic matter and contributes to the sequestration of organic carbon in the soil. Higher amounts of organic matter in the soil improve soil structure and root growth, water infiltration and retention, and cation exchange capacity. In addition, zero-tillage reduces soil compaction and crop production costs. Cover crops are cultivated to protect the soil from erosion and elements loss by leaching or runoff and also improve the soil moisture and temperature. Given that South Khorasan farmers still use traditional methods of cultivation of wheat, and cover crops have no place in their farming systems, the aim of this study was to investigate the effect of cover crops types and tillage systems on yield and yield components of wheat in Birjand region. Materials and Methods A split plot field experiment was conducted based on randomized complete block design with three replications at the Research Farm of the University of Birjand over the growing season of 2014-2015. The main factor was the type of tillage (no-till, reduced tillage and conventional tillage and cover crop type (chickling pea (Lathyrus sativus, rocket salad (Eruca sativa, triticale (X Triticosecale witmack, barley (Hordeum vulgaris and control (no cover crop was considered as sub plots. Cover crops were planted on July 2014. Before planting wheat, cover crops were dried through spraying paraquat herbicide using a backpack sprayer at a rate of 3 L ha-1. Then the three tillage

  2. Breeding value of primary synthetic wheat genotypes for grain yield

    Science.gov (United States)

    To introduce new genetic diversity into the bread wheat gene pool from its progenitor, Aegilops tauschii (Coss.) Schmalh, 33 primary synthetic hexaploid wheat genotypes (SYN) were crossed to 20 spring bread wheat (BW) cultivars at the International Wheat and Maize Improvement Center. Modified single...

  3. The Effect of Crop Residue and Different NPK Fertilizer Rates on yield Components and Yield of Wheat

    Directory of Open Access Journals (Sweden)

    fatemeh khamadi

    2017-08-01

    Full Text Available Introduction Integrated nutrient management involving crop residue/green manures and chemical fertilizer is potential alternative to provide a balanced supply of nutrients, enhance soil quality and thereby sustain higher productivity. The present experiment was undertaken to evaluate the effect of different crop residue management practices and NPK levels on yield components and yield of wheat. Materials and methods Field experiments were conducted during 2012-2014 at department of agronomy, Chamran University. Experiment was laid out in a randomized block designs in split plot arrangement. With three replications. Crop residues were assigned to main plot consistent CR1: wheat residue; CR2: rape residue; CR3: barley residue; CR4: barley residue + vetch; CR5: wheat straw + mungbean; CR6: vetch residue; CR7: mungbean residue; CR8: No residue incorporation as main plot and three NPK fertilizer rates: F1: (180N-120P-100K kg.ha-1; F2: (140N-90P-80K kg.ha-1; F3: (90N-60P-40K kg.ha-1 as sub plots. Twelve hills were collected at physiological maturity for measuring yield components from surrounding area of grain yield harvest area. Yield components, viz. number of spike per m2, seed per spike, 1000- grain weight, plant height were measured. Grain and straw yields were recorded from the central 5 m2 grain yield harvest area of each treatment and harvest index was calculated. Data were subjected to analysis by SAS and mean companions were performed using the Duncan multiple range test producer. Also, graphs were drawn in Excel software. Results and discussion The result of analysis variance showed significant difference between crop residues for evaluated traits. The result indicated that the highest biological and grain yield was obtained when wheat treated with CR5: wheat straw + mungbean (green manure and CR4: barley straw + vetch (green manure. Biological and grain yield increased 31 and 26% respectively by CR5 comparing with control. The highest

  4. Grain yield and agronomic characteristics of Romanian bread wheat ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... Wheat is adapted to diverse environments, between the ... international collaborative studies many new varieties ... Stability of grain yield and quality characteristics over locations ... grain yield capacity and yield components of twelve .... Analysis of variance for grain yield and yield-related traits over two ...

  5. FOLIAR APPLICATION OF SILICON ON YIELD COMPONENTS OF WHEAT CROP

    Directory of Open Access Journals (Sweden)

    THOMAS NEWTON MARTIN

    2017-01-01

    Full Text Available Wheat is a major winter crop in southern Brazil. To maximize its productivity, there should be no biotic or abiotic restrictions that can affect the yield components. Thus, the objective was to evaluate the changes caused in the wheat crop yield components by silicon foliar application. The experiment was conducted in two growing seasons. In the first year, five wheat cultivars (Quartzo, Campo Real, Onix and Fundacep Lineage were assessed and in the second year four were assessed (Mirante, Campo Real, Horizonte and Quartzo. In both years the crops were subjected to three doses of silicon (0, 3 and 6 L of silicon ha -1. The silicon was applied during the tillering, booting and anthesis stages. The yield components assessed were the number of plants, number of ears, number of fertile tillers, dry matter per plant, hectoliter weight, number of spikelets, number of grains per spike, weight of hundred grains, grain yield and harvest index. Most yield components did not respond to the silicon foliar application. The harvest index (first year and the number of tillers (second year however presented a quadratic relationship with the supply of silicon. The remaining differences were attributed to variations among the wheat cultivars.

  6. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    Science.gov (United States)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  7. Residual, direct and cumulative effect of zinc application on wheat and rice yield under rice-wheat syst

    Directory of Open Access Journals (Sweden)

    R. Khan

    2009-05-01

    Full Text Available Zinc (Zn deficiency is prevalent particularly on calcareous soils of arid and semiarid region. A field experiment was conducted to investigate the direct, residual and cumulative effect of zinc on the yield of wheat and rice in permanent layout for two consecutive years, 2004-05 and 2005-06 at Arid Zone Research Institute D.I. Khan. Soil under study was deficient in Zn (0.8 mg kg-1. Effect of Zn on yield, Zn concentrations in leaf and soils were assessed using wheat variety Naseer-2000 and rice variety IRRI-6. Three rates of Zn, ranging from 0 to 10 kg ha-1 in soil, were applied as zinc sulphate (ZnSO4. 7H2O along with basal dose fertilization of nitrogen, phosphorus and potassium. Mature leaf and soil samples were collected at panicle initiation stage. The results showed that grain yield of wheat and rice was significantly increased by the direct application of 5 and 10 kg Zn ha-1. Highest grain yield of wheat (5467 kg ha-1 was recorded with the direct application of 10 kg Zn ha-1 while 4994 kg ha-1 was recorded with the cumulative application of 10 kg Zn ha-1 but the yield increase due to residual effect of Zn was statistically lower than the cumulative effect of Zn. Maximum paddy yield was recorded with the cumulative application ofZn followed by residual and direct applied 10 and 5 kg Zn kg ha-1, respectively. Zn concentration in soils ranged from 0.3 to 1.5 mg kg-1 in wheat and 0.24 to 2.40 mg kg-1 in rice, while in leaves it ranged from 18-48 mg kg-1 in wheat and 15-52 mg kg-1 in rice. The concentration of Zn in soil and leaves increased due to the treatments in the order; cumulative > residual > direct effect > control (without Zn. The yield attributes like 1000- grain weight, number of spikes, spike length and plant height were increased by the residual, direct and cumulative effect of Zn levels; however, the magnitude of increase was higher in cumulative effect than residual and direct effect of Zn, respectively. Under Zn-deficient soil

  8. Yield gap determinants for wheat production in major irrigated cropping zones of punjab, pakistan

    International Nuclear Information System (INIS)

    Hussain, A.; Aujla, K.M.; Badar, N.

    2014-01-01

    Yield gap is useful measurement for crop productivity and the extent to which crop productivity falls below some potential level. The study was carried out to analyze the yield gap and determinants of wheat production in the Punjab province of Pakistan. It is based on cross sectional data from 210 farmers for the crop year 2009-10. Results suggest that farm level wheat yields are less than the potential yield level by 33.0%, 43.0% and 50.6% in the mixed-cropping, cotton-wheat and rice-wheat zones of the province, respectively. Ordinary least square regression analysis of wheat production by assuming Cobb-Douglas specification reveals that the number of irrigations, usage of farm yard manure and fertilizers contribute positively and significantly to wheat crop production. Coefficients of dummy variables for cropping zones indicate that farmers in the mixed cropping zone are obtaining better yield of the wheat crop as compared to their counterparts in other selected cropping zones. These results suggested that farmers can increase wheat productivity by increasing the use of factor inputs; however, poverty may be a constraint on realizing these gains. Thus, wheat production can be increased in the country by helping resource poor farmers through suitable support mechanisms. (author)

  9. Post-heading heat stress and yield impact in winter wheat of China.

    Science.gov (United States)

    Liu, Bing; Liu, Leilei; Tian, Liying; Cao, Weixing; Zhu, Yan; Asseng, Senthold

    2014-02-01

    Wheat is sensitive to high temperatures, but the spatial and temporal variability of high temperature and its impact on yield are often not known. An analysis of historical climate and yield data was undertaken to characterize the spatial and temporal variability of heat stress between heading and maturity and its impact on wheat grain yield in China. Several heat stress indices were developed to quantify heat intensity, frequency, and duration between heading and maturity based on measured maximum temperature records of the last 50 years from 166 stations in the main wheat-growing region of China. Surprisingly, heat stress between heading and maturity was more severe in the generally cooler northern wheat-growing regions than the generally warmer southern regions of China, because of the delayed time of heading with low temperatures during the earlier growing season and the exposure of the post-heading phase into the warmer part of the year. Heat stress between heading and maturity has increased in the last decades in most of the main winter wheat production areas of China, but the rate was higher in the south than in the north. The correlation between measured grain yields and post-heading heat stress and average temperature were statistically significant in the entire wheat-producing region, and explained about 29% of the observed spatial and temporal yield variability. A heat stress index considering the duration and intensity of heat between heading and maturity was required to describe the correlation of heat stress and yield variability. Because heat stress is a major cause of yield loss and the number of heat events is projected to increase in the future, quantifying the future impact of heat stress on wheat production and developing appropriate adaptation and mitigation strategies are critical for developing food security policies in China and elsewhere. © 2013 John Wiley & Sons Ltd.

  10. Grain yield and baking quality of wheat under different sowing dates

    Directory of Open Access Journals (Sweden)

    Raphael Rossi Silva

    2014-04-01

    Full Text Available Choosing the right sowing dates can maximize the outcomes of the interaction between genotype and environment, thus increasing grain yield and baking quality of wheat (Triticum aestivum L.. The present study aimed at determining the most appropriate sowing dates that maximize grain yield and baking quality of wheat cultivars. Seven wheat cultivars (BRS 179, BRS Guamirim, BRS Guabiju, BRS Umbu, Safira, CD 105 and CD 115 were evaluated at four sowing dates (the 1st and the 15th of June and July in two harvesting seasons (2007 and 2008. The study was setup in a completely randomized block design with four repetitions. The effects of the year and sowing date when combined explained 93% of the grain yield variance. In 2007, the CD 105 and Safira cultivars had the highest grain yield (GY for all sowing dates. Only the BRS Guabiju and Safira cultivars possessed high baking quality for all sowing dates assessed. In 2008, the environmental conditions were favorable for superior GY, but the baking quality was inferior. Considering adapted cultivars and sowing dates, it is possible to maximize grain yield and baking quality of wheat.

  11. Using Satellite Data to Unpack Causes of Yield Gaps in India's Wheat Belt

    Science.gov (United States)

    Jain, M.; Singh, B.; Srivastava, A.; Malik, R. K.; McDonald, A.; Lobell, D. B.

    2016-12-01

    India will face significant food security challenges in the coming decades due to climate change, natural resource degradation, and population growth. Yields of wheat, one of India's staple crops, are already stagnating and will be significantly impacted by warming temperatures. Despite these challenges, wheat yields can be enhanced by implementing improved management in regions with existing yield gaps. To identify the magnitude and causes of current yield gaps, we produced 30 m resolution yield maps across India's main wheat belt, the Indo-Gangetic Plains (IGP), from 2000 to 2015. Yield maps were derived using a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data that rarely exist in smallholder systems. We find that yields can be increased by 5% on average and up to 16% in the eastern IGP by improving management to current best practices within a given district. However, if policies and technologies are put in place to improve management to current best practices in Punjab, the highest yielding state, yields can be increased by 29% in the eastern IGP. Considering which factors most influence wheat yields, we find that later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies that reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to India's current and future food security.

  12. Effects of Sowing Date and Limited Irrigation on Yield and Yield Components of Five Rainfed Wheat Varieties in Maragheh Region

    Directory of Open Access Journals (Sweden)

    A. R. Tavakkoli

    2013-03-01

    Full Text Available In order to investigate the effects of sowing date (SD and single irrigation (SI amounts on yield and yield components of rainfed wheat varieties, a field experiment was conducted as split-split plots arranged in a randomized complete blocks design with three replications during 2002-2004 at main station of Dryland Agricultural Research Institute in Maragheh, Iran. Treatments included three sowing dates (early, normal and late, three levels of single irrigation (rainfed, 50 mm and 100 mm only at planting time and five wheat varieties (three numbered lines, Azar2 and double-cross Shahi. Results revealed that interactions of SD, SI and wheat varieties were significant for grain yield, number of kernels per spike and water productivity (P≤0.01. Single irrigation at normal planting time increased grain yield, straw, biomass, harvest index, and water productivity. Grain yield and water productivity were increased by 131% and 84.8%, respectively. Single irrigation at late planting time was not significant on agronomic traits and produced low water productivity. Regarding the reaction of wheat to planting date and single irrigation, results showed that normal single irrigation can improve yield, yield components and water productivity index. The effectiveness of single irrigation under dryland conditions can be observed in all wheat cultivars. Although this effectiveness on yield and yield components is observable, but it is necessary to select the time of irrigation properly.

  13. Weed biomass and economic yield of wheat (Triticum aestivum) as ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... INTRODUCTION ... to control weeds in conjunction with cultural practices. Jarwar et al. (1999) .... Wheat grain yield is an interplay of yield components especially ... The biological yield expresses the overall growth of crop.

  14. Yield Stability in Winter Wheat Production: A Survey on German Farmers’ and Advisors’ Views

    Directory of Open Access Journals (Sweden)

    Janna Macholdt

    2017-06-01

    Full Text Available Most of the available research studies have focused on the production of high grain yields of wheat and have neglected yield stability. However, yield stability is a relevant factor in agronomic practice and, therefore, is the focus of this comprehensive survey. The aim was to first describe the importance of yield stability as well as currently used practical management strategies that ensure yield stability in wheat production and secondly, to obtain potential research areas supporting yield stability in the complex system of agronomy. The target groups were German farmers with experience in wheat production and advisors with expertise in the field of wheat cultivation or research. A sample size of 615 completed questionnaires formed the data basis of this study. The study itself provides evidence that the yield stability of winter wheat is even more important than the amount of yield for a large proportion of farmers (48% and advisors (47%. Furthermore, in the view of the majority of the surveyed farmers and advisors, yield stability is gaining importance in climate change. Data analysis showed that site adapted cultivar choice, favorable crop rotations and integrated plant protection are ranked as three of the most important agronomic management practices to achieve high yield stability of wheat. Soil tillage and fertilization occupied a middle position, whereas sowing date and sowing density were estimated with lower importance. However, yield stability is affected by many environmental, genetic and agronomic factors, which subsequently makes it a complex matter. Hence, yield stability in farming practice must be analyzed and improved in a systems approach.

  15. Evaluation of the Effect of Rotation and Application Rate of Nitrogen on Yield, Yield Components and Nitrogen Efficiency Indexes in wheat

    Directory of Open Access Journals (Sweden)

    R Nasri

    2016-02-01

    Full Text Available Introduction There are about 160 species in Brassica genus, which are mostly annuals and biennials. The plants in this genus have potential for fodder uses. The progress in plant breeding science has produced new crop varieties for oil and forage usages. Perko varieties are derived from crosses between tetraploid plants of winter rapeseed (Brassica napus L.Var. napus and Chinese cabbage (Brassica campestris L. var. sensulato. The new plants are superior to their parents from various aspects. Buko varieties are new amphiploid plants obtained by crossing between tetraploid winter rapeseed, Chinese cabbage and turnips (Brassica campestris L. var. Rapa. Oilseed radish with scientific name (Raphanus sativus L. is a genus of the Brassica and consumption, oil, green manure, feed and fodder (24. This plant in many countries, including Canada, is cultivated in gardens as cover crop. Oilseed radish grows fast in the cool seasons. Ramtil (Guizotia abyssinica belongs to the Compositae family, Phasilia (Phaceli atanacetifolia L. belongs to Boraginaceae family and clover is from Fabaceae family that is grown for feeding purposes. Materials and Methods A field experiment was conducted from 2011 to 2012 in the Karezan region of Ilam, Iran (42º33′N, 33º46′E on a silty-clay with low organic carbon (1.26% and slightly alkaline soil (pH=7.9. This site is characterized as temperate climate with 370 mm annual precipitation. The experiment was arranged in a split plot based on randomized complete block design with four replications. The main plots consisted of 6 pre-sowing plant treatments (control, Perko PVH, Buko, Clover and Oilseed radish and combination of three plants Ramtil, Phaselia andclover, and sub plots covered four N fertilizer rates including no fertilizer N (Control, 50% lower than recommended N rate, recommended N rate and 50% more than recommended N rate. Winter wheat (cv. Pishtaz was sown on mid-November with the row spacing of 15 cm and a

  16. Effect of soil water stress on yield and proline content of four wheat ...

    African Journals Online (AJOL)

    Effect of soil water stress on yield and proline content of four wheat lines. ... This field study was conducted to evaluate the effect of drought stress after anthesis on proline accumulation and wheat yield during 2008 at ... from 32 Countries:.

  17. Wheat Yield Forecasting for Punjab Province from Vegetation Index Time Series and Historic Crop Statistics

    Directory of Open Access Journals (Sweden)

    Jan Dempewolf

    2014-10-01

    Full Text Available Policy makers, government planners and agricultural market participants in Pakistan require accurate and timely information about wheat yield and production. Punjab Province is by far the most important wheat producing region in the country. The manual collection of field data and data processing for crop forecasting by the provincial government requires significant amounts of time before official reports can be released. Several studies have shown that wheat yield can be effectively forecast using satellite remote sensing data. In this study, we developed a methodology for estimating wheat yield and area for Punjab Province from freely available Landsat and MODIS satellite imagery approximately six weeks before harvest. Wheat yield was derived by regressing reported yield values against time series of four different peak-season MODIS-derived vegetation indices. We also tested deriving wheat area from the same MODIS time series using a regression-tree approach. Among the four evaluated indices, WDRVI provided more consistent and accurate yield forecasts compared to NDVI, EVI2 and saturation-adjusted normalized difference vegetation index (SANDVI. The lowest RMSE values at the district level for forecast versus reported yield were found when using six or more years of training data. Forecast yield for the 2007/2008 to 2012/2013 growing seasons were within 0.2% and 11.5% of final reported values. Absolute deviations of wheat area and production forecasts from reported values were slightly greater compared to using the previous year's or the three- or six-year moving average values, implying that 250-m MODIS data does not provide sufficient spatial resolution for providing improved wheat area and production forecasts.

  18. Responses of Winter Wheat Yields to Warming-Mediated Vernalization Variations Across Temperate Europe

    Directory of Open Access Journals (Sweden)

    Xiuchen Wu

    2017-10-01

    Full Text Available Rapid climate warming, with much higher warming rates in winter and spring, could affect the vernalization fulfillment, a critical process for induction of crop reproductive growth and consequent grain filling in temperate winter crops. However, regional observational evidence of the effects of historical warming-mediated vernalization variations on temperate winter crop yields is lacking. Here, we statistically quantified the interannual sensitivity of winter wheat yields to vernalization degree days (VDD during 1975–2009 and its spatial relationship with multi-year mean VDD over temperate Europe (TE, using EUROSTAT crop yield statistics, observed and simulated crop phenology data and gridded daily climate data. Our results revealed a pervasively positive interannual sensitivity of winter wheat yields to variations in VDD (γVDD over TE, with a mean γVDD of 2.8 ± 1.5 kg ha−1 VDD−1. We revealed a significant (p < 0.05 negative exponential relationship between γVDD and multi-year mean VDD for winter wheat across TE, with higher γVDD in winter wheat planting areas with lower multi-year mean VDD. Our findings shed light on potential vulnerability of winter wheat yields to warming-mediated vernalization variations over TE, particularly considering a likely future warmer climate.

  19. Investigation of The Relationship Between Grain Yield with Physiological Parameters in Some Bread Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Mehmet KARAMAN

    2015-08-01

    Full Text Available This study was conducted to analyze the relationships between grain yield with physiological parameters in some bread wheat varieties. For this purpose, ten bread wheat genotypes were grown in randomized complete block design with 3 replications under rainfall conditions in the experimental field of GAP International Agricultural Research and Training Center during the 2012-2013 growing season. The most high yielding varieties in this study, Pehlivan, Kate A-1, Cemre and Anapo, were observed as standing out in terms of flag leaf chlorophyll content (SPAD value, flag leaf ash ratio, leaf area index and grain filling period . The correlation analyses of the study showed positive and significant correlations between chlorophyll content of flag leaf at heading stage with chlorophyll content at flowering stage, between chlorophyll content of flag leaf at flowering and heading stages with chlorophyll content of flag leaf at milk stage and between grain filling rate with leaf area index, In addition, positive and significant correlations were identified between flag leaf ash ratio and NDVI reading prior to heading time with grain yield

  20. HIGH YIELD GENETICALLY MODIFIED WHEAT IN GERMANY: SOCIO ECONOMIC ASSESSMENT OF ITS POTENTIAL

    OpenAIRE

    Wree, Philipp; Sauer, Johannes

    2015-01-01

    High Yield Genetically Modified Wheat (HOSUT) HOSUT lines are an innovation in wheat breeding based on biotechnology with an incremental yield potential of ca. 28% compared to conventional wheat varieties. We apply the real option concept of Maximum Incremental Social Tolerable Irreversible Costs (MISTICs) to do an ex-ante assessment of the socioeconomic potential of HOSUT lines for Germany. We analyze the cost and benefits to farmer and society within two scenarios. Our results of our scenar...

  1. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.

    Science.gov (United States)

    Driever, Steven M; Simkin, Andrew J; Alotaibi, Saqer; Fisk, Stuart J; Madgwick, Pippa J; Sparks, Caroline A; Jones, Huw D; Lawson, Tracy; Parry, Martin A J; Raines, Christine A

    2017-09-26

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  2. Effect of different irrigation frequencies on growth and yield of different wheat genotypes in Sindh

    International Nuclear Information System (INIS)

    Khokhar, B.; Hussain, I.

    2010-01-01

    Irrigation at critical growth stages could improve wheat yield significantly. A study was conducted during 2000-2002 to determine effect of different irrigation levels on growth and yield of different wheat genotypes in the province of Sindh. The trial was laid out in split block design at Wheat Research Institute, Sindh, Sakrand, in which four irrigation treatments I3 (irrigation at crown root, booting and soft dough stage), I4 (irrigation at crown root, tillering, booting and soft dough stage), I5 (irrigation at crown root, tillering, booting, anthesis and soft dough stage) and I6 (irrigation at crown root, tillering, booting, anthesis, soft dough and hard dough stage) were in blocks and six wheat genotypes; V-7001, V-7002, V-7004, NARC-9 and CO-9043 and Abadgar-93 were planted. Number of irrigation did not have any significant effect on plant height, whereas plant height was affected significantly in different cultivars. Application of five irrigations at different wheat growth stages resulted in higher spike length, higher number of grains and wheat grain yield. Wheat variety Abadgar-93 and V-7004, had taller plants in comparison with cultivars NARC-9 and V-7004 however, wheat grain yield was not affected significantly among different cultivars. (author)

  3. Effect of fungicide on the development of wheat stem rust and yield ...

    African Journals Online (AJOL)

    Stem rust caused by Puccinia graminis f.sp tritici Erik. & E. Henn. is a highly destructive disease of wheat (Triticum aestivum L.). The effects of fungicide application on stem rust (Puccinia graminis tritici) epidemics and yield of three bread wheat varieties varying in reaction to the disease were studied in two major wheat ...

  4. Effect of wheat gluten proteins on bioethanol yield from grain

    Energy Technology Data Exchange (ETDEWEB)

    Buresova, Iva [Agrotest Fyto, Ltd., Havlickova 2787/121, 767 01 Kromeriz (Czech Republic); Hrivna, Ludek [Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2011-04-15

    Bioethanol can be used as motor fuel and/or as a gasoline enhancer. A high yield feedstock for bioethanol production is cereal grain. Cereal grains containing less gluten proteins (glutenin and gliadin), but high starch, are favoured by distillers because they increase the bioethanol conversion. The direct effect of wheat gluten proteins on bioethanol yield was studied on triticale grain. Examined triticale Presto 1R.1D{sub 5+10}-2 and Presto Valdy were developed by introducing selected segments of wheat chromosome 1D into triticale chromosome 1R. Even if the samples analysed in this study do not afford to make definitive assumptions, it can be noticed that in analysed cases the presence of gliadin had more significant effect on investigated parameters than the presence of glutenin. Despite the presence of glutenin subunits did not significantly decrease the investigated parameters - specific weight, Hagberg falling number and starch content in grain met the requirements for grain for bioethanol production - protein content was higher than is optimal. The fermentation experiments demonstrated good bioethanol yields but depression in grain yields caused by the presence of wheat gliadin and glutenin decreased the energy balance of Presto Valdy and Presto 1R.1D{sub 5+10}-2. (author)

  5. Yield response of mushroom ( Agaricus bisporus ) on wheat straw ...

    African Journals Online (AJOL)

    Yield response of mushroom ( Agaricus bisporus ) on wheat straw and waste tea leaves based composts using supplements of some locally available peats and their mixture with some secondary casing materials.

  6. Radiation use efficiency and yield of winter wheat under deficit irrigation in North China

    International Nuclear Information System (INIS)

    Han, H.; Li, Z.; Ning, T.; Bai, M.; Zhang, X.; Shan, Y.

    2008-01-01

    An experiment was conducted in North China to investigate the effects of deficit irrigation and winter wheat varieties on the photosynthetic active radiation (PAR) capture ration, PAR utilization and grain yield. Field experiments involved Jimai 20 (J; high yield variety) and Lainong 0153 (L; dryland variety) with non-irrigation and irrigated at the jointing stage. The results showed that whether irrigated at jointing stage or not, there was no significant difference between J and L with respect to the amount of PAR intercepted by the winter wheat canopies. However, significant differences were observed between the varieties with respect to the amount of PAR intercepted by plants that were 60-80 cm above the ground surface. This result was mainly caused by the changes in the vertical distributions of leaf area index. As a result, the effects of the varieties and deficit irrigation on the radiation use efficiency (RUE) and grain yield of winter wheat were due to the vertical distribution of PAR in the winter wheat canopies. During the late growing season of winter wheat, irrespective of the irrigation regime, the RUE and grain yield of J were significantly higher than those of L. These results suggest that a combination of deficit irrigation and a suitable winter wheat variety should be applied in North China

  7. Comparison of Grain Yield and Some Characteristics of Hulled, Durum and Bread Wheat Genotypes Varieties

    Directory of Open Access Journals (Sweden)

    Bekir Atar

    2017-02-01

    Full Text Available In spite of the low grain yield they produce, the hulled wheat have become even more important in recent years because of their resistance to negative environmental conditions and healthy nutritional content. The research was carry out in order to comparison the yield and yield characteristics of durum (Kiziltan-91 and C-1252, hulled (Einkorn and Emmer and bread wheat (Tir varieties in Isparta ecological conditions in 2013-14 and 2014-15 vegetation periods. In both years, the highest grain yield was obtained in Kiziltan-91 variety (3992 and 3758 kg ha-1 respectively. The grain yield of hulled wheats in the first year (Einkorn 1269 kg ha-1, Emmer 2125 kg ha-1 was around Turkey averages. However, grain yield decreased of commercial wheat varieties due to the negative effect of high amount of rainfall in June in the second year, but considerably increased in (Einkorn 2150 kg ha-1, Emmer 2533 kg ha-1. N uptake was found to be lower in the than durum wheats. In terms of grain protein content, the highest values were obtained in Emmer variety (16.4%-15.3%.

  8. On yield gains and yield gaps in wheat-maize intercropping

    OpenAIRE

    Gou, Fang

    2017-01-01

    Intercropping is the cultivation of two or more crop species simultaneously in the same field, while relay intercropping means that the growing periods of the crop species are only partially overlapping. Intercropping has advantages with respect to productivity, resource capture, build-up of soil organic matter, and pest and disease suppression. This thesis aims to quantify and explain the yield advantages in wheat-maize relay intercropping and to assess the importance of intercropping for fo...

  9. Performance evaluation of selected crop yield-water use models for wheat crop

    Directory of Open Access Journals (Sweden)

    H. E. Igbadun

    2001-10-01

    Full Text Available Crop yield-water use models that provide useful information about the exact form of crop response to different amounts of water used by the crop throughout its growth stages and those that provide adequate information for decisions on optimal use of water in the farm were evaluated. Three crop yield models: Jensen (1968, Minhas et al., (1974 and Bras and Cordova (1981 additive type models were studied. Wheat (Triticum aestivum was planted at the Institute for Agricultural Research Farm during the 1995/96 and 1996/97 irrigation seasons of November to March. The data collected from the field experiments during the 1995/96 planting season were used to calibrate the models and their stress sensitivity factors estimated for four selected growth stages of the wheat crop. The ability of the model to predict grain yield of wheat with the estimated stress sensitivity factors was evaluated by comparing predicted grain yields by each model with those obtained in the field during the 1996/97 season. The three models performed fairly well in predicting grain yields, as the predicted results were not significantly different from the field measured grain yield at 5% level of significance.

  10. Effect of salinity on grain yield and grain quality of wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Abbas, G.; Saqib, M.; Rafique, Q.; Rahman, A.U.; Akhtar, J.; Haq, M.A.U.

    2013-01-01

    Salinity is one of the important stresses resulting in the reduction of growth and yield of different crops including wheat. In saline soils the concentration of Na/sup +/ and Cl/sup -/ is higher accompanied with the decreased K/sup +/: Na/sup +/ ratio thus severely affecting the growth and yield of crops. The effect of salinity on the growth and yield of wheat is well documented, whereas there is very little information about salinity tolerance and grain quality of wheat. Present study was conducted to assess the effect of salinity on yield components, ionic relations and grain quality and to understand the relationship among these parameters. A pot experiment was conducted using wheat genotype Pasban-90. There were two treatments i.e. non-saline (0.33 dS m/sup -1/) and saline (15 dS m/sup -1/) with five replications. Salinity resulted in a significant reduction of the grain protein, fat and fiber contents. Similarly yield components were significantly reduced. Maximum reduction was noted in case of number of tillers plant/sup -1/, followed by grain weight plant/sup -1/. High Na/sup +/ and low K/sup +/, P concentration and K/sup +/: Na/sup +/ ratio was observed in the shoot, root and grain. This disturbed ionic composition seems to be apparent cause of yield reduction and deterioration of wheat quality under salinity. (author)

  11. Effect of zinc sources on yield and utilization of zinc in rice-wheat sequence

    International Nuclear Information System (INIS)

    Deb, D.L.

    1990-01-01

    A field experiment was conducted on an inceptisol of Delhi to evaluate three sources of zinc, namely, zinc sulphate, zincated urea and zinc oxide on yield and utilization of zinc in rice-wheat sequence. Results indicated that, amongst the three zinc sources, zinc sulphate and zincated urea gave the best performance in increasing the grain yield of rice whereas zinc oxide depressed the grain yield of wheat significantly when compared to other treatments. The highest Zn derived from fertilizer and its utilization was obtained with zinc sulphate for both rice and wheat crops. (author). 9 refs., 4 tabs

  12. Allelopathic Effect of Wheat and Barley Residues on Yield and Yield Components of Cowpea (Vigna sinensis L. and Weeds Control

    Directory of Open Access Journals (Sweden)

    M Shahbyki

    2018-02-01

    Full Text Available Introduction Weeds are a major constraint limiting crop yield in agricultural systems and in organic systems in particular. Although herbicides are efficient for weed control, continuous use has caused the development of resistance in weeds against several herbicides. Furthermore, herbicides also pollute the soil, water and aerial environments and herbicide residues in food have deteriorated food quality and enhanced the risk of diseases. Allelopathy is defined as the direct or indirect harmful or beneficial effects of one plant on another through the release of chemical compounds into the environment. Wheat (Triticum aestivum L. is known to be allelopathic against crops and weeds. The objective of this study was to investigate the allelopathic effect of wheat and barley residues on weeds control and cowpea yield. Materials and Methods An experiment was conducted as randomized complete block design with three replications at the research field (36° 25’E, 54° 58’N, 1349 m a.s.l. of Agricultural Faculty, Shahrood University of Technology in 2015. Treatments were included; weeding all season, no weeding, trifluralin according to the recommended dose (2 ton ha-1, foliar application of wheat straw extract (concentration of 50%, foliar application of wheat straw extract (concentration of 100%, the application of wheat residue mixed with the soil at a rate of 2 ton ha-1, the application of wheat residue mixed with the soil at a rate of 4 ton ha-1, the application of wheat residue mixed with the soil at a rate of 8 ton ha-1, foliar application of barley straw extract (concentration of 50%, foliar application of barley straw extract (concentration of 100%. Statistical analysis of data was performed with MSTAT-C software and means were compared with LSD test at the 5% level of probability. Results and Discussion The results showed that the effect of treatments was significant (P 0.01 on weed density and dry weight. Soil incorporation with wheat

  13. Impact of integrated nutrient management on growth and grain yield of wheat under irrigated cropping system

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah, A.; Shah, P.; Arif, M.; Khan, A.M.

    2011-01-01

    Field study was conducted during 2001-02 and 2002-03 to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on the grain yield of wheat. Trials were conducted at Agricultural Research Farm, KPK Agricultural University Peshawar, Pakistan. Two factors cropping patterns and manures/fertilizers were studied in the experiment. Randomized complete block design was used with split plot arrangements and four replications having net plot size of 12 m/sup 2/. Wheat variety Ghaznavi-98 was sown in November soon after ploughing the soil at proper moisture level suitable for wheat seed germination. Five cropping patterns were allotted to main plots and the eight combinations of FYM, K and Zn to the sub-plots. Same plots were used for next year sowing. Effects of five cropping patterns i.e., rice-wheat, maize-wheat, sunflower-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers (Farmyard Manure, Potassium and Zinc) on subsequent wheat crop were observed. Highest grain yield was obtained when wheat was planted after pigeon pea. Manures/fertilizer application (Farmyard Manure, Potassium and Zinc) produced significantly higher grain yield than the control plots. The findings of the present study revealed that leguminous crops can significantly increase the yield of succeeding crops. Thus use of Farmyard Manure, Potassium and Zinc should be included in integrated crop management approaches for sustainable agriculture. (author)

  14. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.

    Science.gov (United States)

    Zhao, Junfang; Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981-2014 and detailed observed data of spring wheat from 1981-2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological

  15. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Junfang Zhao

    Full Text Available Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981-2014 and detailed observed data of spring wheat from 1981-2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major

  16. The role of drought on wheat yield interannual variability in the Iberian Peninsula from 1929 to 2012.

    Science.gov (United States)

    Páscoa, P; Gouveia, C M; Russo, A; Trigo, R M

    2017-03-01

    The production of wheat in the Iberian Peninsula is strongly affected by climate conditions being particularly vulnerable to interannual changes in precipitation and long-term trends of both rainfall and evapotranspiration. Recent trends in precipitation and temperature point to an increase in dryness in this territory, thus highlighting the need to understand the dependence of wheat yield on climate conditions. The present work aims at studying the relation between wheat yields and drought events in the Iberian Peninsula, using a multiscalar drought index, the standardized precipitation evapotranspiration index (SPEI), at various timescales. The effects of the occurrence of dry episodes on wheat yields were analyzed, on regional spatial scale for two subperiods (1929-1985 and 1986-2012). The results show that in western areas, wheat yield is positively affected by dryer conditions, whereas the opposite happens in eastern areas. The winter months have a bigger influence in the west while the east is more dependent on the spring and summer months. Moreover, in the period of 1986-2012, the simultaneous occurrence of low-yield anomalies and dry events reaches values close to 100 % over many provinces. Results suggest that May and June have a strong control on wheat yield, namely, for longer timescales (9 to 12 months). A shift in the dependence of wheat yields on climatic droughts is evidenced by the increase in the area with positive correlation and the decrease in area with negative correlation between wheat yields and SPEI, probably due to the increase of dry events.

  17. Dryland Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Biosolids Applications

    Directory of Open Access Journals (Sweden)

    Richard T. Koenig

    2011-01-01

    Full Text Available Applications of biosolids were compared to inorganic nitrogen (N fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L. cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Biosolids produced 0 to 1400 kg ha−1 (0 to 47% higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the biosolids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dryland production systems. Grain protein content with biosolids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with biosolids. Results indicate the potential to improve dryland winter wheat yields with biosolids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when biosolids are applied immediately before planting.

  18. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    Science.gov (United States)

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright

  19. Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps

    Science.gov (United States)

    Bryan, B. A.; King, D.; Zhao, G.

    2014-04-01

    In the future, agriculture will need to produce more, from less land, more sustainably. But currently, in many places, actual crop yields are below those attainable. We quantified the ability for agricultural management to increase wheat yields across 179 Mha of potentially arable land in Australia. Using the Agricultural Production Systems Simulator (APSIM), we simulated the impact on wheat yield of 225 fertilization and residue management scenarios at a high spatial, temporal, and agronomic resolution from 1900 to 2010. The influence of management and environmental variables on wheat yield was then assessed using Spearman’s non-parametric correlation test with bootstrapping. While residue management showed little correlation, fertilization strongly increased wheat yield up to around 100 kg N ha-1 yr-1. However, this effect was highly dependent on the key environment variables of rainfall, temperature, and soil water holding capacity. The influence of fertilization on yield was stronger in cooler, wetter climates, and in soils with greater water holding capacity. We conclude that the effectiveness of management intensification to increase wheat yield is highly dependent upon local climate and soil conditions. We provide context-specific information on the yield benefits of fertilization to support adaptive agronomic decision-making and contribute to the closure of yield gaps. We also suggest that future assessments consider the economic and environmental sustainability of management intensification for closing yield gaps.

  20. Evaluation of Yield and Yield Components of Oilseed Rape in the Wheat-Oilseed Rape Strip Intercropping Influenced by Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    R Amirmardfar

    2015-01-01

    Full Text Available To evaluate the effects of wheat (Triticum aestivum and oilseed rape (Brassica napus strip intercropping on yield components, seed and biological yields of oilseed rape, field experiments were carried out as factorial based on randomized complete block design with three replications at Research Farm of Tabriz University, Tabriz, Iran during 2010-2012 cropping seasons. The first factor consisted of four types of wheat and oilseed rape cropping system, sole crop of oilseed rape (A1,: strip intercropping with 8:3 (A2, 12:4 (A3 and 16:5 (A4 of wheat and oilseed rape rows, respectively and the other factor consisted of two fertilizer levels, B1: 100% chemical fertilizers (urea and triple superphosphate and B2: 50% chemical fertilizers + biofertilizers (Nitrazhin and Barvar2. The results showed that strip intercropping of wheat- oilseed rape resulted in significant increase in yield components, seed yield per occupied unit area and biological yield per occupied unit area of oilseed rape as compared with mono-cropping. The number of silique per plant in intercropping systems was significantly higher than that of mono-cropping. The highest seed yield was obtained in the 16:5 rows of wheat-oilseed rape with 343.76 g.m-2 and the lowest mean was observed in mono-cropping of oilseed rape with 260.21 g.m-2. Biological yield per occupied unit area and seed yield per intercropped unit area in B1 were significantly greater than that of B2, but this treatment had no significant effect on the other traits. Because, B1 and B2 had no significant difference in seed yield per occupied unit area and due to the importance of reduction in chemical fertilizers consumption and food and environmental health care, strip intercropping of wheat-oilseed rape under 50% chemical fertilizers + biofertilizers can be recommended as a suitable cultural method.

  1. Effect of FYM, potassium and zinc on phenology and grain yield of wheat in rain fed cropping systems

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah; Arif, M.; Shah, P.; Khan, M.A.; Khan, K.

    2011-01-01

    Little work has been done on potassium (K) and zinc (Zn) in combination with farm yard manure (FYM) under rain fed conditions of NWFP. This study was designed to examine the effects of un-irrigated cropping patterns and organic and in-organic fertilizers on wheat crop. Field experiments were conducted to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on phenology and grain yield of wheat under rain fed (barani or un-irrigated) conditions at Agricultural Research Station, Serai Naurang Bannu for two years during 2001-02 and 2002-03. The experiment was designed in RCB design with split arrangements. Two factors were studied in the experiment. Effects of five cropping patterns i.e., fallow-wheat, groundnut-wheat, mungbean-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers on subsequent wheat crop were observed. Data revealed that both the cropping patterns and manures/fertilizers had non-significant effect on days to anthesis, seed fill duration and days to maturity of wheat. Highest grain yield (3194 kg ha/sup -1/ wheat following mungbean produced more yield and wheat following groundnut produced less yield under dry land conditions. The present findings revealed that pigeon pea-wheat cropping pattern seems to be more sustainable in terms of yield under rain fed conditions and use of FYM, K and Zn should be included in integrated crop management approaches for sustainable crop production. (Author)

  2. Effects of kernel weight and source-limitation on wheat grain yield ...

    African Journals Online (AJOL)

    DRmohammadi

    2012-02-09

    Feb 9, 2012 ... Many regions need wheat cultivars that are capable of high yields when the weather is beneficial but produce stable yields when conditions are adverse. These geno- types should have high yield potential in both favorable and high temperature environments (Yang et al., 2002a;. Ahmed et al., 2011a, b).

  3. Similar estimates of temperature impacts on global wheat yield by three independent methods

    DEFF Research Database (Denmark)

    Liu, Bing; Asseng, Senthold; Müller, Christoph

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produ......-method ensemble, it was possible to quantify ‘method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.......The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce...... similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries...

  4. Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods

    Science.gov (United States)

    Liu, Bing; Asseng, Senthold; Muller, Christoph; Ewart, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; hide

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  5. Similar estimates of temperature impacts on global wheat yield by three independent methods

    Science.gov (United States)

    Liu, Bing; Asseng, Senthold; Müller, Christoph; Ewert, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; Rosenzweig, Cynthia; Aggarwal, Pramod K.; Alderman, Phillip D.; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andy; Deryng, Delphine; Sanctis, Giacomo De; Doltra, Jordi; Fereres, Elias; Folberth, Christian; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A.; Izaurralde, Roberto C.; Jabloun, Mohamed; Jones, Curtis D.; Kersebaum, Kurt C.; Kimball, Bruce A.; Koehler, Ann-Kristin; Kumar, Soora Naresh; Nendel, Claas; O'Leary, Garry J.; Olesen, Jørgen E.; Ottman, Michael J.; Palosuo, Taru; Prasad, P. V. Vara; Priesack, Eckart; Pugh, Thomas A. M.; Reynolds, Matthew; Rezaei, Ehsan E.; Rötter, Reimund P.; Schmid, Erwin; Semenov, Mikhail A.; Shcherbak, Iurii; Stehfest, Elke; Stöckle, Claudio O.; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wall, Gerard W.; Wang, Enli; White, Jeffrey W.; Wolf, Joost; Zhao, Zhigan; Zhu, Yan

    2016-12-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify `method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  6. Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps

    International Nuclear Information System (INIS)

    Bryan, B A; King, D; Zhao, G

    2014-01-01

    In the future, agriculture will need to produce more, from less land, more sustainably. But currently, in many places, actual crop yields are below those attainable. We quantified the ability for agricultural management to increase wheat yields across 179 Mha of potentially arable land in Australia. Using the Agricultural Production Systems Simulator (APSIM), we simulated the impact on wheat yield of 225 fertilization and residue management scenarios at a high spatial, temporal, and agronomic resolution from 1900 to 2010. The influence of management and environmental variables on wheat yield was then assessed using Spearman’s non-parametric correlation test with bootstrapping. While residue management showed little correlation, fertilization strongly increased wheat yield up to around 100 kg N ha −1  yr −1 . However, this effect was highly dependent on the key environment variables of rainfall, temperature, and soil water holding capacity. The influence of fertilization on yield was stronger in cooler, wetter climates, and in soils with greater water holding capacity. We conclude that the effectiveness of management intensification to increase wheat yield is highly dependent upon local climate and soil conditions. We provide context-specific information on the yield benefits of fertilization to support adaptive agronomic decision-making and contribute to the closure of yield gaps. We also suggest that future assessments consider the economic and environmental sustainability of management intensification for closing yield gaps. (paper)

  7. Assessing wheat yield, Biomass, and water productivity responses to growth stage based irrigation water allocation

    Science.gov (United States)

    Increasing irrigated wheat yields is important to the overall profitability of limited-irrigation cropping systems in western Kansas. A simulation study was conducted to (1) validate APSIM's (Agricultural Production Systems sIMulator) ability to simulate wheat growth and yield in Kansas, and (2) app...

  8. IMPACT OF LIME, BIOMASS ASH AND COMPOST AS WELL AS PREPARATION OF EM APPLICATIONS ON GRAIN YIELD AND YIELD COMPONENTS OF WHEAT

    Directory of Open Access Journals (Sweden)

    Sławomir Stankowski

    2014-10-01

    Full Text Available Field experiment was conducted in 2013 in Duninowo (54o539’ N, 16o830’ E. The experimental factors were: I. factor - 6 variants of fertilization, and II. - two level of EM preparations. The aim of this study was to evaluate the impact of ash from biomass by comparing its effect with the calcium fertilizer and compost BIOTOPE in conjunction with the preparation of microbiological Effective Microorganisms (EM. The impact of ash from biomass introduced into the soil on yield and yield structure and physiological parameters of spring wheat was analyzed No significant impact of the various variants of fertilizer application on the yielding of spring wheat cv.Bombona was confirmed. As a result of the form of compost fertilizer BIOTOPE, an increase in the content of chlorophyll in leaves of wheat cv Bombona (SPAD and the size of canopy assimilation area per unit area of the field (LAI. The application of EM did not affect the physiological parameters (yield, the number of ears per area unit, SPAD, LAI characterizing the spring wheat cv. Bombona.

  9. Sensitivity of Earth Wheat Markets to Space Weather: Comparative Analysis based on data from Medieval European Markets

    Science.gov (United States)

    Pustil'Nik, Lev

    We consider a problem of the possible influence of unfavorable states of the space weather on agriculture markets through the chain of connections: "space weather"-"earth weather"- "agriculture crops"-"price reaction". We show that new manifestations of "space weather"- "earth weather" relations discovered in the recent time allow revising a wide range of the expected solar-terrestrial connections. In the previous works we proposed possible mechanisms of wheat market reaction on the specific unfavorable states of space weather in the form of price bursts and price asymmetry. We point out that implementation of considered "price reaction scenarios" is possible only for the case of simultaneous realization of several necessary conditions: high sensitivity of local earth weather in the selected region to space weather; the state of "high risk agriculture" in the selected agriculture zone; high sensitivity of agricultural market to a possible deficit of yield. Results of our previous works (I, II), including application of this approach to the Medieval England wheat market (1250-1700) and to the modern USA durum market (1910-1992), showed that connection between wheat price bursts and space weather state in these cases was absolutely real. The aim of the present work is to answer the question why wheat markets in one selected region may be sensitive to a space weather factor, while in other regions wheat markets demonstrate absolutely indifferent reaction on the space weather. For this aim, we consider dependence of sensitivity of wheat markets to space weather as a function of their location in different climatic zones of Europe. We analyze a database of 95 European wheat markets from 14 countries for the 600-year period (1260-1912). We show that the observed sensitivity of wheat markets to space weather effects is controlled, first of all, by a type of predominant climate in different zones of agricultural production. Wheat markets in the Northern and, partly, in

  10. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.

    Science.gov (United States)

    Zhai, Shiyan; Song, Genxin; Qin, Yaochen; Ye, Xinyue; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.

  11. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.

    Directory of Open Access Journals (Sweden)

    Shiyan Zhai

    Full Text Available This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.

  12. Investigation of Tolerance, Yield and Yield Components of Wheat Cultivars to Salinity of Irrigation Water at Sensitive Stages of Growth

    Directory of Open Access Journals (Sweden)

    B Saadatian

    2013-04-01

    Full Text Available This research in order to study of tolerance ability of wheat cultivates yield and yield components to salinity of irrigation water at sensitive stages of growth, was carried out as a factorial based on a randomized complete block design with 3 replications at greenhouse of Agricultural Faculty of Bu-Ali Sina University, in 2009. Treatments were included wheat cultivars of Alvand, Tous, Sayson and Navid and salinity of irrigation water induced by sodium chloride at five levels of 0, 4, 8, 12 and 16 dS m-1. The results showed that percentage and rate of emergence, plant height, 1000-grain weight, number of seed per spike, number of spike per pot, biological and grain yield reduced by increasing salinity level. At all stress levels Navid cv. had highest emergence percentage. In non-stress and 4 dS m-1, Alvand cv. and at higher levels of stress, Tous cv. had high height in reproductive phase. At control and 4 dS m-1, Sayson cv. and at 8, 12 and 16 dS m-1, Tous cv. in majority of yield and yield components traits had significant superior than other cultivars. Tolerance index of Sayson cv. at 4 and 8 dS m-1 was more than other cultivars but at 12 and 16 dS m-1, maximum value of this index was belonged to Tous cv. At all salinity levels, Alvand cv. had least tolerance index to stress. Number of spike per pot had maximum direct effect on grain yield of wheat cultivars in stress condition. Also indirect effect of biological yield via number of spike per pot than other its indirect effects, had maximum share in wheat seed yield.

  13. A comparative ideotype, yield component and cultivation value analysis for spring wheat adaptation in Finland

    Directory of Open Access Journals (Sweden)

    Heikki Laurila

    2012-12-01

    Full Text Available In this study Mixed structural covariance, Path and Cultivation Value analyses and the CERES-Wheat crop model were used to evaluate vegetation and yield component variation affecting yield potential between different high-latitude (> 60° N lat. and mid-European (< 60° N lat. spring wheat (Triticum aestivum L. genotypes currently cultivated in southern Finland. Path modeling results from this study suggest that especially grains/ear, harvest index (HI and maximum 1000 kernel weight were significant factors defining the highest yield potential. Mixed and Cultivation value modeling results suggest that when compared with genotypes introduced for cultivation before 1990s, modern spring wheat genotypes have a significantly higher yielding capacity, current high yielding mid-European genotypes even exceeding the 5 t ha-1 non-potential baseline yield level (yb. Because of a forthcoming climate change, the new high yielding wheat genotypes have to adapt for elevated temperatures and atmospheric CO2 growing conditions in northern latitudes. The optimized ideotype profiles derived from the generic high-latitude and mid-European genotypes are presented in the results. High-latitude and mid-European ideotype profiles with factors estimating the effects of concurrent elevated CO2 and temperature levels with photoperiodical daylength effects can be utilized when designing future high yielding ideotypes adapted to future growing conditions. The CERES-Wheat ideotype modeling results imply, that with new high yielding mid-European ideotypes, the non-potential baseline yield (yb would be on average 5150 kg ha-1 level (+ 108 % vs. new high-latitude ideotypes (yb 4770 kg ha-1, 100% grown under the elevated CO2(700ppm×temperature(+3ºC growing conditions projected by the year 2100 climate change scenario in southern Finland.

  14. Yield and grain quality of winter wheat under Southern Steppe of Ukraine growing conditions

    Directory of Open Access Journals (Sweden)

    М. М. Корхова

    2014-12-01

    Full Text Available The results of three years study of the effect of sowing time and seed application rates on yield and grain quality of different varieties of winter wheat under the conditions of South Steppe of Ukraine were presented. It was found that winter wheat provides optimal combination of high yield and grain quality in case of sowing in October 10 with seed application rate of 5,0 million seeds/ha. The highest yield – 4,59 t/ha on average in 2011–2013 was obtained for the variety of Natalka when sowing in October 10 with seed application rate  of 5 million germinable seeds. With increasing seed application rate from 3 to 5 million seeds/ha, protein content in winter wheat was decreased by 0,3%, gluten – by 0,6%. The variety Natalka  formed the highest quality grains when sowing in October 20 with seed application rate of 3 million seeds/ha, in this case protein content was 15,8%, gluten – 32,9%. It is proved that early sowing time  – September 10 leads to yields reduction and grain   quality deterioration for all winter wheat varieties.

  15. Influence of sowing dates on phenological development and yield of dual purpose wheat cultivars

    International Nuclear Information System (INIS)

    Munsif, F.; Arif, M.; Ali, K.

    2015-01-01

    Dual-purpose wheat is getting recognition among community in diverse farming systems. Success of the system depends on management decisions regarding appropriate sowing dates, choice of cultivars, harvesting time and stage. A comprehensive understanding of how these factors influence the growth and phenology of dual purpose wheat is needed for comparison of grain only wheat to dual purpose system to feed the ever increasing population under this system. The existing higher yielding varieties (Saleem-2000, Bathoor-2007, Fakhre Sarhad-99, Uqab-2000, Siran-2008, and Ghaznavi-98) of wheat were sown on various planting dates from early to normal (15th, 30th October and 14th November) and were given cut after 70 days of sowing. The experiment was arranged in randomized complete block design having split plot arrangement with three replications. Results of the study indicated that booting, heading and physiological maturity were significantly influenced by planting dates, among the cultivars and cutting imposed 70 days after sowing. Mid October sowing prolonged booting, heading, anthesis, maturity and had long stature plants and higher grain yield than sowing in mid November. Uqab-2000 booted, headed and reached to anthesis and maturity earlier followed by Ghaznavi-98, Bathoor-2007 and Saleem-2000. Uqab-2000 and Siran-2008 had higher grain yield than other cultivars. Booting, heading, anthesis and maturity were significantly delayed in cutting as compared to no cut plots. Wheat varieties Bathoor-2007, Uqab-2000 and Fakhre Sarhad-99 produced taller plants compared to Saleem-2000. It is concluded that early sowing on mid October had prolonged phenological traits and higher yield of wheat with long stature plants than later sowing (15th November) and variety Fakhre Sarhad-99 unlike Uqab-2000 was late with respect to phenological development. Cutting prior to stem elongation had not delayed the maturity from three days without substantial yield reduction which revealed that

  16. Effect of Climate and Management Factors on Potential and Gap of Wheat Yield in Iran with Using WOFOST Model

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2017-10-01

    Full Text Available Introduction Human diets strongly rely on wheat (Triticum aestivum L.. Its production has increased dramatically during the past 50 years, partly due to area extension and new varieties but mainly as a consequence of intensified land management and introduction of new technologies. For the future, a continuous strong increase in the demand for agricultural products is expected. It is highly unlikely that this increasing demand will be satisfied by area expansion because productive land is scarce and also increasingly demanded by non-agricultural uses. The role of agricultural intensification as key to increasing actual crop yields and food supply has been discussed in several studies. However, in many regions, increases in grain yields have been declining Inefficient management of agricultural land may cause deviations of actual from potential crop yields: the yield gap. At the global scale little information is available on the spatial distribution of agricultural yield gaps and the potential for agricultural intensification. Actual yield is mostly lower than potential yield due to inefficient management and technological that difference between these yields is considered as yield gap. Understanding of relative share of every management factors in yield gap could be as one of the important keys to reduce gap and close actual yield to potential yield. Materials and Methods In order to evaluate the amount of wheat yield gap and also relative share of management and technological variables in yield gap, frontier production function was used which is a multi-variable regression. The frontier production function to be estimated is a Cobb-Douglas function as proposed by Coelli et al. (2005. Cobb-Douglas functions are extensively used in agricultural production studies to explain returns to scale. We propose a methodology to explain the spatial variation of the potential for intensification and identifying the nature of the constraints for further

  17. Nitrogen Fertilizer Sources and Application Timing Affects Wheat and Inter-Seeded Red Clover Yields on Claypan Soils

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2014-11-01

    Full Text Available Controlled-release N fertilizer, such as polymer-coated urea (PCU, may be a fall N management option for wheat (Triticum aestivum L. grown in poorly-drained claypan soils. Field research evaluated (1 urea release from fall-applied PCU in 2006 and 2007; (2 broadcast fall-spring split (25%:75% of N sources; and (3 a single fall (100% application of PCU, urea, urea plus NBPT (N-(n-butyl thiophosphoric triamide] (U + NBPT, ammonium nitrate (AN, or urea ammonium nitrate (UAN at 0, 56, 84, and 112 kg·N·ha−1 on wheat yield, wheat biomass, N uptake by wheat, and frost-seeded red clover (FSC (Trifolium pratense L. forage yield (2004–2007. PCU applied in fall released less than 30% urea by February. Urea released from PCU by harvest was 60% and 85% in 2006 and 2007, respectively. In poorly-drained soils, wheat yields ranked PCU > AN > U + NBPT > urea ≥ UAN over the rates evaluated for fall-only application. PCU was a viable fall-applied N source, with yields similar to or greater than urea or U + NBPT split-applied. Split-N applications of AN, urea, UAN, and U + NBPT generally resulted in greater wheat yields than a fall application. Enhanced efficiency fertilizers provide farmers with flexible options for maintaining high yielding production systems.

  18. The Effect of Zinc Fertilizer Application on Grain Yield of Different Zinc-Efficient Spring and Winter Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    M. Malian

    2014-08-01

    Full Text Available These field trials were carried out to investigate the effect of various zinc (Zn fertilizer application treatments on grain yield of some spring (Isfahan and Neishabour and winter wheat cultivars (Mashhad and Jolge-e-Rokh with different Zn efficiency during 2009-2010 growth seasons. Five Zn fertilizer treatments were applied including: no added Zn (control, soil application of Zn-sulfate, and foliar spray of Zn-sulfate, Omex1, and Omex2. Omex1 and Omex2 contained 4 and 17% Zn, respectively. Foliar spray was performed at the anthesis stage. Both spring and winter wheat genotypes significantly differed in grain yield. The results showed that wheat genotypes largely varied in their grain yield response to different Zn application treatments. Some spring (Sholeh in Isfahan and winter (Sabalan in Jolg-e-Rokh wheat genotypes had greater response to Zn fertilization so that Zn addition increased grain yield of Sholeh by 48% and Sabalan by 17% as compared with no added Zn control. In contrast, Zn addition had no effect on grain yield of some other genotypes. Yield response of wheat genotypes to Zn application treatments significantly varied upon location. According to the results obtained from this study, the efficacy of Zn fertilizer treatments on grain yield of wheat is dependent on the genotype and location. Therefore, this concern should be considered in fertilizer recommendation programs that a specific Zn fertilizer treatment may not be recommended for all wheat cultivars and locations.

  19. High-yielding Wheat Varieties Harbour Superior Plant Growth Promoting-Bacterial Endophytes

    Directory of Open Access Journals (Sweden)

    Mehwish Yousaf

    2017-06-01

    Full Text Available Background and Objective: The purpose of this study was to compare the endophytic microbial flora of different wheat varieties to check whether a better yielding variety also harbours superior plant growth promoting bacteria. Such bacteria are helpful in food biotechnology as their application can enhance the yield of the crop.Material and Methods: Three wheat varieties (Seher, Faisalabad and Lasani were selected, Seher being the most superior variety. endophytic bacteria were isolated from the histosphere of the leaves and roots at different growth phases of the plants. The isolates were analyzed for plant growth promoting activities. Isolates giving best results were identified through 16S rRNA gene sequencing. Statistical analysis was done using Microsoft Excel 2013. All the experiments were conducted in triplicates.Results and Conclusion: The endophytes of Seher variety showed maximum plant growth promoting abilities. Among the shoot endophytes, the highest auxin production was shown by Seher isolate SHHP1-3 up to 51.9μg ml-1, whereas in the case of root endophytes, the highest auxin was produced by SHHR1-5 up to 36 μg ml-1. The bacteria showing significant plant growth promoting abilities were identified by 16S rRNA sequencing. Bacillus, Proteobacteria and Actinobacteria species were the dominant bacteria showing all the traits of plant growth promotion. It can be concluded that Seher variety harbours superior plant growth promoting endophytes that must be one of the reasons for its better growth and yield as compared to the other two varieties. The investigated results support possible utilization of the selected isolates in wheat growth promotion with respect to increase in agro-productivity. The application of such bacteria could be useful to enhance wheat yield and can help in food biotechnology.Conflict of interest: The authors declare no conflict of interest.

  20. Effects of Cd2+ on chlorophyll content in flag and grain yield of wheats

    International Nuclear Information System (INIS)

    Zhu Zhiyong; Li Youjun; Liu Yingjie; Duan Youqiang; Li Qiang; Hao Yufen; Guo Jia

    2011-01-01

    A field experiment was conducted with wheat cultivars Luohan 6 and Yumai 18 to investigate the effects of Cd 2+ stress on chlorophyll contents in flag leaves, flag leave area, thousand kernel weight, kernel filling velocity and yield of wheat. Results indicated that, under low Cd 2+ stress (10 mg/kg), the average contents of chlorophyll a + b of Luohan 6 reduced by 1.6%, however, its average area of flag leave and yield increased by 3.8% and 1.6%, respectively. At the same time, the average content of chlorophyll a + b, area of flag leave yield of Yumai 18 reduced 8.0%, 9.6% and 5.4%. Under high Cd 2+ stress (100 mg/kg), the average contents of chlorophyll a + b, areas of flag leaves and yields of Luohan 6 and Yumai 18 reduced by 29.2% and 30.5%, 6.3% and 17.4%, 16.7% and 36.7%, respectively. The results demonstrated that Cd 2+ restrained synthesis and accumulation of chlorophyll and its components. This study even showed that within a range of Cd 2+ concentration could promote the growth of flag leaves, and it also had an equal positive effect on yield of wheat if the Cd 2+ concentration in grains were not out of limit. The growth of flag leave and yield of wheat would be limited when Cd 2+ concentration exceed that range. Overall, Yumai 18 bore more poison from Cd 2+ than Luohan 6. (authors)

  1. Effects of elevated O3 concentration on winter wheat and rice yields in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Wang Xiaoke; Zhang Qianqian; Zheng Feixiang; Zheng Qiwei; Yao Fangfang; Chen Zhan; Zhang Weiwei; Hou Peiqiang; Feng Zhaozhong; Song Wenzhi; Feng Zongwei; Lu Fei

    2012-01-01

    The effects of a continuing rise of ambient ozone on crop yield will seriously threaten food security in China. In the Yangtze River Delta, a rapidly developing and seriously air polluted region in China, innovative open-top chambers have been established to fumigate winter wheat and rice in situ with elevated O 3 . Five years of study have shown that the yields of wheat and rice decreased with increasing O 3 concentration. There were significant relationships between the relative yield and AOT40 (accumulated hourly O 3 concentration over 40 ppb) for both winter wheat and rice. Winter wheat was more sensitive to O 3 than rice. O 3 -induced yield declines were attributed primarily to 1000-grain weight and harvest index for winter wheat, and attributed primarily to grain number per panicle and harvest index for rice. Control of ambient O 3 pollution and breeding of O 3 tolerant crops are urgent to guarantee food security in China. - Highlights: ► The wheat and rice response to ozone had been investigated for five years in China. ► There were significant relationships between relative crop yields and AOT40 dose. ► O 3 -induced wheat yield loss was primarily due to 1000-grain weight and harvest index. ► O 3 -induced rice yield loss was primarily due to grains per panicle and harvest index. ► Wheat and rice in this study are more sensitive to O 3 than previous investigations. - The dose–response relationships derived from field fumigation experiments over 5 years can be used to accurately estimate crop losses in China.

  2. Effects of drought stress condition on the yield of spring wheat ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... spikelets to booting stage affected the yield and yield components. Water deficit at this stage considerably decreased the number of spikelets per spike. The spike length reportedly showed stability under different conditions. However, the findings of Iqbal et al. (1999) on durum wheat indicated that the ...

  3. Simulating future wheat yield under climate change, carbon dioxide enrichment and technology improvement in Iran. Case study: Azarbaijan region

    Energy Technology Data Exchange (ETDEWEB)

    Mansouri, H.; Raei, Y.; Zaeim, A.N.

    2015-07-01

    Climate change and technology development can affect crop productivity in future conditions. Precise estimation of crops yield change as affected by climate and technology in the future is an effective approach for management strategies. The aim of this study was to estimate the impacts of climate change, technology improvement, CO2 enrichment, and overall impacts on wheat yield under future conditions. Wheat yield was projected for three future time periods (2020, 2050 and 2080) compared to baseline year (2011) under two scenarios of IPCC Special Report on Emission Scenarios (SRES) including SRES-A2 as regional economic scenario and SRES-B1 as global environmental scenario in Azarbaijan region (NW of Iran). A linear regression model, describing the relationship between wheat yield and historical year, was developed to investigate technology development effect. The decision support system for agro-technology transfer (DSSAT4.5) was used to evaluate the influence of climate change on wheat yield. The most positive effects were found for wheat yield as affected by technology in all studied regions. Under future climate change, the SRES projected a decrease in yield, especially in West Azarbaijan region. When the effects of elevated CO2 were considered, all regions resulted to increase in wheat yield. Considering all components effect in comparison with baseline (2011), yield increase would range from 5% to 38% across all times, scenarios and regions. According to our findings, it seems that we may expect a higher yield of wheat in NW Iran in the future if technology development continues as well as past years. (Author)

  4. Biological efficiency of component crops in different geometrical patterns of wheat-linseed intercropping

    International Nuclear Information System (INIS)

    Nazir, M. S.; Saeed, M.; Khan, I.; Ghaffar, A.

    2005-01-01

    An experiment to determine the biological efficiency and agro-economic relationships of component crops in wheat-linseed intercropping under different geometrical patterns, was conducted on sandy-clay loam soil at Faisalabad (Pakistan). Wheat was sown in 100-cm spaced 4, 6, 8, and 10 row strips and was intercropped with three rows of linseed. The component crops were also grown alone in 30-cm spaced single row. Wheat grain yield was reduced by 25.6%, 19.2%, 14.7% and 11.9% by intercropping linseed in wheat grown in the pattern of 4, 6 and 10-row strips, respectively. However, at the cost of this much reduction in wheat yield, linseed gave an additional yields of 516, 412, 335 kg/ha in the respective patterns which resulted in yield advantages of 41%, 31%, 29% and 27%, respectively over sole cropping of wheat. Intercropping also generated higher net monetary gain/ha (Rs. 12378-12826) than monocropped wheat (Rs. 11034) and linseed (Rs. 4249). (author)

  5. ``From seed-to-seed'' experiment with wheat plants under space-flight conditions

    Science.gov (United States)

    Mashinsky, A.; Ivanova, I.; Derendyaeva, T.; Nechitailo, G.; Salisbury, F.

    1994-11-01

    An important goal with plant experiments in microgravity is to achieve a complete life cycle, the ``seed-to-seed experiment''. Some Soviet attempts to reach this goal are described, notably an experiment with the tiny mustard, Arabidopsis thaliana, in the Phyton 3 device on Salyut 7. Normal seeds were produced although yields were reduced and development was delayed. Several other experiments have shown abnormalities in plants grown in space. In recent work, plants of wheat (Triticum aestivum) were studied on the ground and then in a preliminary experiment in space. Biometric indices of vegetative space plants were 2 to 2.5 times lower than those of controls, levels of chlorophyll a and b were reduced (no change in the ratio of the two pigments), carotenoids were reduced, there was a serious imbalance in major minerals, and membrane lipids were reduced (no obvious change in lipid patterns). Following the preliminary studies, an attempt was made with the Svetoblock-M growth unit to grow a super-dwarf wheat cultivar through a life cycle. The experiment lasted 167 d on Mir. Growth halted from about day 40 to day 100, when new shoots appeared. Three heads had appeared in the boot (surrounded by leaves) when plants were returned to earth. One head was sterile, but 28 seeds matured on earth, and most of these have since produced normal plants and seeds. In principle, a seed-to-seed experiment with wheat should be successful in microgravity.

  6. Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield.

    Science.gov (United States)

    Grünhage, Ludger; Pleijel, Håkan; Mills, Gina; Bender, Jürgen; Danielsson, Helena; Lehmann, Yvonne; Castell, Jean-Francois; Bethenod, Olivier

    2012-06-01

    Field measurements and open-top chamber experiments using nine current European winter wheat cultivars provided a data set that was used to revise and improve the parameterisation of a stomatal conductance model for wheat, including a revised value for maximum stomatal conductance and new functions for phenology and soil moisture. For the calculation of stomatal conductance for ozone a diffusivity ratio between O(3) and H(2)O in air of 0.663 was applied, based on a critical review of the literature. By applying the improved parameterisation for stomatal conductance, new flux-effect relationships for grain yield, grain mass and protein yield were developed for use in ozone risk assessments including effects on food security. An example of application of the flux model at the local scale in Germany shows that negative effects of ozone on wheat grain yield were likely each year and on protein yield in most years since the mid 1980s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat.

    Science.gov (United States)

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J; Carmo-Silva, Elizabete; Parry, Martin A J; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (Ptranspiration rate (Ptranspiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate that TaER could be exploitable for manipulating important agronomical traits in wheat improvement.

  8. Dry land Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Bio solids Applications

    International Nuclear Information System (INIS)

    Koenig, R.T.; Cogger, C.G.; Bary, A.I.

    2011-01-01

    Applications of bio solids were compared to inorganic nitrogen (N) fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L.) cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Bio solids produced 0 to 1400 kg ha -1 (0 to 47%) higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the bio solids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dry land production systems. Grain protein content with bio solids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with bio solids. Results indicate the potential to improve dry land winter wheat yields with bio solids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when bio solids are applied immediately before planting.

  9. Using satellite data to identify the causes of and potential solutions for yield gaps in India’s Wheat Belt

    Science.gov (United States)

    Jain, M.; Singh, Balwinder; Srivastava, A. A. K.; Malik, R. K.; McDonald, A. J.; Lobell, D. B.

    2017-09-01

    Food security will be increasingly challenged by climate change, natural resource degradation, and population growth. Wheat yields, in particular, have already stagnated in many regions and will be further affected by warming temperatures. Despite these challenges, wheat yields can be increased by improving management practices in regions with existing yield gaps. To identify the magnitude and causes of current yield gaps in India, one of the largest wheat producers globally, we produced 30 meter resolution yield maps from 2001 to 2015 across the Indo-Gangetic Plains (IGP), the nation’s main wheat belt. Yield maps were derived using a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data. This is one of the first attempts to apply this method to a smallholder agriculture system, where ground calibration data are rarely available. We find that yields can be increased by 11% on average and up to 32% in the eastern IGP by improving management to current best practices within a given district. Additionally, if current best practices from the highest-yielding state of Punjab are implemented in the eastern IGP, yields could increase by almost 110%. Considering the factors that most influence yields, later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies to reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to increasing wheat yields in this globally-important agricultural region.

  10. Antibiosis resistance in national uniform wheat yield trials against rhopalosiphum padi (L.)

    International Nuclear Information System (INIS)

    Akhtar, N.; Ashfaque, M.; Gillani, W.A.; Ata-ul-Mohsin; Tahfeen, A.; Begum, I.

    2010-01-01

    The germplasm of National Uniform Wheat Yield Trials (Normal) (2003-04) were screened against Rhopalosiphum padi L., bird cherry oat aphid at National Agricultural Research Centre, Islamabad. Twenty National Uniform Wheat Yield Trials (NUWYT) , Normal and 12 (NUWYT) rain fed varieties/ lines were evaluated for seedling bulk test to know the resistant, moderately resistant and susceptible wheat varieties/ lines. These results revealed that varieties Diamond and Margalla-99 and lines V-99022, 99B2278 and 7-03 were partially resistant, two lines V-00125 and SD-66 were susceptible and three varieties and ten lines were moderately resistant in seedling bulk test. For antibiosis studies, 10 varieties/ lines out of 20 were selected to know the effect of host plants on the fecundity of R. padi. Two varieties Wafaq-2007 and Diamond were the least preferred for fecundity and one line VOO125 was highly preferred for fecundity. (author)

  11. Partial resistance to stripe rust and its effect on sustainability of wheat yield

    International Nuclear Information System (INIS)

    Qamar, M.; Din, R.U.; Gardazi, D.A.

    2014-01-01

    Stripe rust (Puccinia striiformis Westend. f. sp. tritici) poses a serious threat to wheat production in cooler areas of Pakistan. The 70% area of wheat in Pakistan is prone to stripe rust disease. It can cause 10-17% yield losses if susceptible cultivars are planted under favorable conditions. Level of partial plant resistance in bread wheat and its impact on sustainable wheat production was studied at the National Agricultural Research Centre, Islamabad under natural conditions in the field. Eleven Pakistani commercial wheat cultivars/advance lines including check (Inqalab 91) were assessed for the level of partial resistance against stripe rust using Area Under the Disease Progress Curve (AUDPC), disease severity (DS) and epidemic growth rate in comparison with wheat cultivar, Inqalab 91. During 2007 cropping season, natural epidemic was developed and relative AUDPC was recorded from 0 to 100% whereas the 2008 cropping season was dry and no stripe rust appeared. Two advanced lines (NR 268 and NR 285) showed the infection type (IT) less than 7 (incompatible reaction) to the mixture of prevailing stripe rust inoculums. Very low level of DS and AUDPC were recorded in the remaining cultivars/lines indicating a high level of partial resistance to stripe rust compared to the susceptible check cultivar, Inqalab 91. Among eight cultivars/lines that showed compatible type of reaction (IT greater then equal to 7), one was resistant (relative AUDPC = 20% of Inqalab 91) and six showed very high resistance levels (relative AUDPC greater then equal to 5%). Maximum level of resistance (relative AUDPC = 0.1%) was observed in advanced line, NR 271. The wheat cultivars/lines that showed a slow disease development (low DS and AUDPC), could be considered as -1 partially resistant for stripe rust infection. The yield (2178 kg ha) of susceptible check cultivar Inqalab-91 during 2007 was reduced to 45% as -1 compared to its yield (3945 kg ha) in epidemic free year (2008). Thus the use

  12. Study of Winter Wheat Yield Quality Analysis at ARDS Turda

    Directory of Open Access Journals (Sweden)

    Ovidiu Adrian Ceclan

    2016-11-01

    Full Text Available The purpose of this research is to study the potential for yield and quality indicators for winter wheat genotypes in terms of pedological and climate condition and applied technology, at ARDS Turda during 2014 – 2015. Depending on the climatic conditions that are associated with applied technology is a decisive factor in successful wheat crop for all genotypes that were studied at Ards Turda during the 2014 – 2016. That’s wy each genotype responded differently to the conditions of the ARDS Turda also through the two levels of fertilisations applied in the winter with fertilizers 20:20:0, 250 kg/ha assuring 50 kg/ha N and P active substance and second level of fertilisations with 150 kg/ha ammonium nitrate assuring 50 kg/ha N active substance. All genotype that were studied in terms of yield and quality indicators were influenced by the fertilization level. The influence of pedo-climatic conditions, applied technologies and fertilizers level at ARDS Turda showed that all genotypes with small yield had higher protein and gluten content respectively Zeleny index.

  13. Rice and wheat yield improvement by the application of boron in salt affected soils

    International Nuclear Information System (INIS)

    Mehdi, S.M.; Sarfraz, M.; Hassan, N.M.; Hassan, W.

    2007-01-01

    In recent past studies on wheat, rice and fruit plant showed that fairly large percentage of soils and crops are deficient in boron. Several times a question rose to study the boron responses in a cropping system to see the residual effect of boron. With the objective in mind, a field experiment was conducted at two sites in saline sodic soils to see the rice and wheat crops response to boron. Boron was applied to rice at the rate of 0.25, 0.50, 1.0, 1.5, and 2.0 Kg ha/sub -1/ as sodium tetra borate. The results showed that both paddy and straw yields increased with the increasing rates of boron and highest yield was obtained from 2 Kg ha/sub -l/. After harvesting of rice crop wheat was sown in the same layout. The treatments were divided into two equal portions. Boron was applied to one portion at the same rates as to rice while remaining half remained as such to study the residual effect of B on wheat. The results showed that grain anti straw yields increased with increasing rates of boron. In case of untreated plots to see the residual effect grain and straw yield increased with increasing rates of boron applied to rice. It was concluded that B applied to rice did show residual effect to the following wheat crop. Therefore, there is no need to apply B to following crop when B is applied to the previous crop. (author)

  14. Grain yield and agronomic characteristics of Romanian bread wheat ...

    African Journals Online (AJOL)

    In this study, fourteen bread wheat varieties, twelve of which were introduced into Turkey from Romania, were evaluated for grain yield and seven agronomic properties in Biga, Çanakkale in northwest part of Turkey in 2005 - 2006 and 2006 - 2007 growing seasons. The objectives of the research, carried out in a completely ...

  15. Disease Impact on Wheat Yield Potential and Prospects of Genetic Control

    DEFF Research Database (Denmark)

    Singh, Ravi P.; Singh, Pawan K.; Rutkoski, Jessica

    2016-01-01

    Wheat is grown worldwide in diverse geographical regions, environments, and production systems. Although many diseases and pests are known to reduce grain yield potential and quality, the three rusts and powdery mildew fungi have historically caused major crop losses and continue to remain...... economically important despite the widespread use of host resistance and fungicides. The evolution and fast spread of virulent and more aggressive race lineages of rust fungi have only worsened the situation. Fusarium head blight, leaf spotting diseases, and, more recently, wheat blast (in South America...... for most diseases; their selection through phenotyping reinforced with molecular strategies offers great promise in achieving more durable resistance and enhancing global wheat productivity....

  16. Space Weather Influence on the Earth wheat markets: past, present, and future.

    Science.gov (United States)

    Pustil'Nik, Lev

    We consider problem of a possible influence of unfavorable states of the space weather on agriculture market through chain of connections: "space weather"-"earth weather"-"agriculture crops"-"price reaction". We show that new manifestations of "space weather"-"earth weather" relations discovered in the last time allow to revise wide field of expected solar-terrestrial connections. In the previous works we proposed possible mechanisms of wheat market reaction in the form of price bursts on the specific unfavorable states of space weather. We show that implementation of considered "price reaction scenarios" is possible only for condition of simultaneous realization of several necessary conditions: high sensitivity of local earth weather in selected region to space weather; state of "high risk agriculture" in selected agriculture zone; high sensitivity of agricultural market to possible deficit of supply. Results of previous works (I, II) included application of this approach to wheat market in Medieval England and to modern USA durum market showed that real connection between wheat price bursts and space weather state is observed with high confidence level. The aim of present work is answer on the question, why wheat markets in one region are sensitive to space weather factor, while another regional wheat markets demonstrate absolute indifferent reaction on this factor. For this aim we consider distribution of sensitivity of wheat markets in Europe to space weather as function of localization in different climatic zones. We analyze giant database of 95 European wheat markets from 14 countries during about 600-year period (1260-1912). We show that observed sensitivity of wheat market to space weather effects controlled, first of all, by type of predominant climate in different zones of agriculture. Wheat markets in the North and part of Central Europe (England, Iceland, Holland) shows reliable sensitivity to space weather in minimum states of solar activity with low

  17. Biotechnology in wheat improvement in Kenya

    International Nuclear Information System (INIS)

    Karanja, L.; Kinyua, M.G.; Njau, P.N.; Maling'a, J.

    2001-01-01

    Use of double haploid (DH) and mutation techniques in breeding wheat lines and varieties tolerant to drought, acid soils and resistant to Russian Wheat Aphid (RWA) at the National Plant Breeding Research Center in the last 4 years, is reported. The wheat variety, ''Pasa'' irradiated in 1996 is reported to have undergone selection process through yield trials in 1999-2000. Work done in the year 2000 is mainly described

  18. Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.

    Science.gov (United States)

    Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng

    2017-08-01

    Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha -1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha -1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Long-term Low Radiation Decreases Leaf Photosynthesis, Photochemical Efficiency and Grain Yield in Winter Wheat

    DEFF Research Database (Denmark)

    Mu, H; Jiang, D; Wollenweber, Bernd

    2010-01-01

    the impact of low radiation on crop growth, photosynthesis and yield. Grain yield losses and leaf area index (LAI) reduction were less than the reduction in solar radiation under both shading treatment in both cultivars. Compared with the control (S0), grain yield only reduced 6.4 % and 9.9 % under 22.......0-22.9 % (S1) and 29.5-49.6 % (S2), which was consistent with the reduction in radiation. The reduction in LAI was partially compensated by increases in the fraction of the top and bottom leaf area to the total leaf area, which facilitated to intercept more solar radiation by the canopy. The decrease......Low radiation reduces wheat grain yield in tree-crop intercropping systems in the major wheat planting area of China. Here, two winter wheat (Triticum aestivum L) cultivars, Yangmai 158 (shading tolerant) and Yangmai 11 (shading sensitive), were shaded from jointing to maturity to evaluate...

  20. [Effects of nitrogen application level on soil nitrate accumulation and ammonia volatilization in high-yielding wheat field].

    Science.gov (United States)

    Wang, Dong; Yu, Zhenwen; Yu, Wenming; Shi, Yu; Zhou, Zhongxin

    2006-09-01

    The study showed that during the period from sowing to pre-wintering, the soil nitrate in high-yielding wheat field moved down to deeper layers, and accumulated in the layers below 140 cm. An application rate of 96-168 kg N x hm(-2) increased the nitrate content in 0-60 cm soil layer and the wheat grain yield and its protein content, and decreased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen. Applying 240 kg N x hm(-2) promoted the downward movement of soil nitrate and its accumulation in deeper layers, increased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen, had no significant effect on the protein content of wheat grain, but decreased the grain yield. The appropriate application rate of nitrogen on high-yielding wheat field was 132-204 kg N x hm(-2).

  1. Photosynthesis and yield reductions from wheat stem sawfly (Hymenoptera: Cephidae): interactions with wheat solidness, water stress, and phosphorus deficiency.

    Science.gov (United States)

    Delaney, Kevin J; Weaver, David K; Peterson, Robert K D

    2010-04-01

    The impact of herbivory on plants is variable and influenced by several factors. The current study examined causes of variation in the impact of larval stem mining by the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), on spring wheat, Triticum aestivum L. We performed greenhouse experiments over 2 yr to (1) study whether biotic (hollow versus solid stemmed host wheat) and abiotic (water, phosphorus stress) factors interact with C. cinctus stem mining to influence degree of mined stem physiological (photosynthesis) and yield (grain weight) reductions; and (2) determine whether whole plant yield compensatory responses occur to offset stem-mining reductions. Flag leaf photosynthetic reduction was not detected 16-20 d after infestation, but were detected at 40-42 d and doubled from water or phosphorus stresses. Main stem grain weight decreased from 10 to 25% from stem mining, largely due to reductions in grain size, with greater reductions under low phosphorus and/or water levels. Phosphorus-deficient plants without water stress were most susceptible to C. cinctus, more than doubling the grain weight reduction due to larval feeding relative to other water and phosphorus treatments. Two solid stemmed varieties with stem mining had less grain weight loss than a hollow stemmed variety, so greater internal mechanical resistance may reduce larval stem mining and plant yield reductions. Our results emphasize the importance of sufficient water and macronutrients for plants grown in regions impacted by C. cinctus. Also, solid stemmed varieties not only reduce wheat lodging from C. cinctus, they may reduce harvested grain losses from infested stems.

  2. Evaluation of the Effect of Agroforestry and Conventional System on Yield and Yield Components of Barley Hordeum vulgare L. (and Wheat Triticum

    Directory of Open Access Journals (Sweden)

    monir nazari

    2017-09-01

    Full Text Available Introduction: Low sustainability, soil erosion and loss of soil fertility in conventional systems are the major threats to the agricultural production systems. These threats leads researchers towards more attention to different agroforestry systems including alley cropping as a solution in different regions of the world. Agroforestry has attracted considerable attentions because of its potential to maintain or increase productivity in areas with high energy input in which large scale agricultural systems are impractical. It is often assumed that appropriate agroforestry systems can provide the essential ecological functions needed to ensure sustainability and maintain microclimatic and other favorable influences, and that such benefits may outweigh their enhanced use of water in areas of limited water availability. Evidences suggest that diversity in agroecosystems, in particular the integration of different perennial crops or trees (agroforestry, augments nutrient capture and cycling processes; processes that in turn lead to reduced reliance on nutrient or water inputs, abatement of air and water pollution, and enhancement of other ecosystem services across multiple spatial and temporal scales. Agroforestry is viewed as providing ecosystem services, has many environmental benefits and economic advantages as part of a multifunctional agroecosystem. Conventional cultivation of barley and wheat systems in Saman Region has many problems about sustainability of production, erosion of soil, yield stability and soil nutrient properties. On the other hand, planting of Almond is a good option for farmers to make orchards, in compare to Nut. Although some farmers do Agroforestry as an innovative practice, but studying the advantages of these systems and finding their rewards, because of its unique benefits in dry, poor and endangered areas, could help farmers to increase their cultivation area as they wish, particularly in Saman region. Materials and

  3. Relationships between early spring wheat streak mosaic severity levels and grain yield: Implications for management decisions

    Science.gov (United States)

    Wheat streak mosaic (WSM) caused by Wheat streak mosaic virus, which is transmitted by the wheat curl mite (Aceria tosichella), is a major yield-limiting disease in the Texas High Plains. In addition to its impact on grain production, the disease reduces water-use efficiency by affecting root develo...

  4. The effects of 15N-fertilizer on the yields of wheat

    International Nuclear Information System (INIS)

    Zhou Dechao

    1985-01-01

    By using 15 N-fertilizer, the effects of increasing yield and the utilization of nitrogen of N-fertilizer applied at different periods and by different methods on wheat were studied. The results were as follows: The utilization of N-fertilizer by winter wheat is dependent on the fertilizer of soil before or after winter. Strong seedlings were obtained in the high fertility soils and the application of N-fertilizer in spring is recommended. In soils of low fertility, however, application of a part of N-fertilizer before winter is recommded in order to get strong seedlings. Application of a part of N-fertilizer as base manure for spring wheat is more advantageous. Deep application of N-fertilizer losses less NH 3 than surface broadcast does

  5. Studies on the Effects of Climatic Factors on Dryland Wheat Grain Yield in Maragheh Region

    Directory of Open Access Journals (Sweden)

    V. Feiziasl

    2011-01-01

    Full Text Available Abstract In order to study the effects of climate variables on rainfed wheat grain yield, climate data and wheat yield for 10 years (1995-2005 collected from Dryland Agricultural Research Institute (DARI in Maragheh as the main station in cold and semi-cold areas. Collected data were analyzed by correlation coefficient, simple regression, stepwise regression and path analysis. The results showed that relationships between grain yield with average relative humidity and total rainfall of growing season was positive and significant at 5% and 1% probabilities, respectively. However, evaluation between grain yield with sunny hours and class A pan evaporation was negative and significant (p

  6. Crop insurance demand in wheat production: focusing on yield gaps and asymmetric information

    International Nuclear Information System (INIS)

    Castañeda-Vera, A.; Saa-Requejo, A.; Mínguez, I.; Garrido, A.

    2017-01-01

    Analysis of yield gaps were conducted in the context of crop insurance and used to build an indicator of asymmetric information. The possible influence of asymmetric information in the decision of Spanish wheat producers to contract insurance was additionally evaluated. The analysis includes simulated yield using a validated crop model, CERES-Wheat previously selected among others, whose suitability to estimate actual risk when no historical data are available was assessed. Results suggest that the accuracy in setting the insured yield is decisive in farmers’ willingness to contract crop insurance under the wider coverage. Historical insurance data, when available, provide a more robust technical basis to evaluate and calibrate insurance parameters than simulated data, using crop models. Nevertheless, the use of crop models might be useful in designing new insurance packages when no historical data is available or to evaluate scenarios of expected changes. In that case, it is suggested that yield gaps be estimated and considered when using simulated attainable yields.

  7. Crop insurance demand in wheat production: focusing on yield gaps and asymmetric information

    Energy Technology Data Exchange (ETDEWEB)

    Castañeda-Vera, A.; Saa-Requejo, A.; Mínguez, I.; Garrido, A.

    2017-07-01

    Analysis of yield gaps were conducted in the context of crop insurance and used to build an indicator of asymmetric information. The possible influence of asymmetric information in the decision of Spanish wheat producers to contract insurance was additionally evaluated. The analysis includes simulated yield using a validated crop model, CERES-Wheat previously selected among others, whose suitability to estimate actual risk when no historical data are available was assessed. Results suggest that the accuracy in setting the insured yield is decisive in farmers’ willingness to contract crop insurance under the wider coverage. Historical insurance data, when available, provide a more robust technical basis to evaluate and calibrate insurance parameters than simulated data, using crop models. Nevertheless, the use of crop models might be useful in designing new insurance packages when no historical data is available or to evaluate scenarios of expected changes. In that case, it is suggested that yield gaps be estimated and considered when using simulated attainable yields.

  8. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain.

    Science.gov (United States)

    Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William

    2015-10-01

    Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Using Satellite Data to Identify the Causes of and Potential Solutions for Yield Gaps in India's Wheat Belt

    Science.gov (United States)

    Jain, M.; Singh, B.; Srivastava, A.; Malik, R. K.; McDonald, A.; Lobell, D. B.

    2017-12-01

    Food security will be increasingly challenged by climate change, natural resource degradation, and population growth. Wheat yields, in particular, have already stagnated in many regions and will be further affected by warming temperatures. Despite these challenges, wheat yields can be increased by improving management practices in regions with existing yield gaps. We present two studies that are using satellite data to better understand the factors contributing to yield gaps and potential interventions to close yield gaps in India's main wheat belt, the Indo-Gangetic Plains (IGP). To identify the magnitude and causes of current yield gaps, we produced 30 meter resolution yield maps from 2001 to 2015 using Landsat sallite data and a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data. This is one of the first attempts to apply this method to a smallholder agriculture system, where ground calibration data are rarely available. We find that yields can be increased by 11% on average and up to 32% in the eastern IGP by improving management to current best practices within a given district. Additionally, if current best practices from the highest-yielding state of Punjab are implemented in the eastern IGP, yields could increase by almost 110%. Considering the factors that most influence yields, later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies to reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to increasing wheat yields in this globally-important agricultural region. We also apply this method to high-resolution micro-satellite data (impacts of a new fertilizer spreader technology and identify whether satellite data can be used to appropriately target this intervention.

  10. Increased sbpase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions

    NARCIS (Netherlands)

    Driever, Steven M.; Simkin, Andrew J.; Alotaibi, Saqer; Fisk, Stuart J.; Madgwick, Pippa J.; Sparks, Caroline A.; Jones, Huw D.; Lawson, Tracy; Parry, Martin A.J.; Raines, Christine A.

    2017-01-01

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf

  11. Effects of drought stress condition on the yield of spring wheat ...

    African Journals Online (AJOL)

    Effects of drought stress condition on the yield of spring wheat ( Triticum aestivum ) lines. ... Drought stress tolerance is seen in almost all plants but its extent varies from species to species and even within species. ... from 32 Countries:.

  12. Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages

    Directory of Open Access Journals (Sweden)

    F.M.F. Abdel-Motagally

    2018-04-01

    Full Text Available Two field experiments were conducted to determine the effect of boron foliar application and water stress on yield of wheat plant grown in calcareous soil during 2013/2014 and 2014/2015 seasons. The highest mean values obtained against boron application time were potential contributor to total grains mass by improving the plant height (99.42 and 98.32 cm, spike length (11.86 and 11.72 cm, number of spikelets m−2 (332.65 and 324.35, grain yield plant−1 (21.56 and 20.26 g, 1000-grain weight (35.2 and 37.4 g and grain yield (1.87 and 1.85 ton fed.−1, which were recorded at normal irrigation level (100% from the amount of water consumption for wheat with boron spraying at booting stage (B1 in the first and second seasons, respectively. Furthermore, boron application significantly enhanced all studied growth traits under water stress levels (50% from the amount of water consumption for wheat compared to B-untreated plants. Boron spraying at booting stage enhances also plant pigments contents recording its highest mean values under normal water level (100% from the amount of water consumption for wheat. The reduction in stress markers (proline and H2O2 and the enhancement of plant pigments content under water stress levels (50% from the amount of water consumption for wheat by B spraying suggests an alleviating effect of boron foliar application to water stress in the test plant. This alleviating effect was more pronounced when B applied at booting stage. Therefore, booting stage was found to be the best time for boron application to get higher grains production and consequently, better economic returns of wheat. Keywords: Wheat, Growth stages, Boron application time, Water stress, Crop yield, Plant pigments, Proline, H2O2

  13. Efficiency of wheat brassica mixtures with different seed rates in rainfed areas of potohar-pakistan

    International Nuclear Information System (INIS)

    Khan, S.; Khan, M.A.; Akmal, M.; Jabeen, A.

    2014-01-01

    Mixed over sole cropping is advantageous under the rainfed conditions in Pakistan. This avoids risk of complete crop failure and may returns higher income. The study aimed to investigate appropriate seed-rates combination for wheat-Brassica as mixed- or intercropped in rainfed conditions. Experiments were conducted at National Agricultural Research Center (NARC), Islamabad Pakistan during winter 2004-05 and 2005-06 using 10 treatments for wheat and Brassica as sole and mixed- or intercropped with 100 and 5 kg ha/sup -1/ for sole crop and 100 kg ha/sup -1/ for wheat with 40, 50, 60, and 70% lower than the recommended for Brassica. Sowing was done in 3rd week of October each year, in lines spaced 30cm. Fertilizer was applied N 48, P/sub 2/O/sub 5/ 34 and K/sub 2/O 18 (kg ha/sup -1/). Brassica was manually removed for fodder at flowering. Seed rate (SR) significantly (p<0.05) affected wheat grain yield. Cropping system (CS) significantly (p<0.05) affected grain yield of Brassica. Interactions of CS and SR were also significant (p<0.05) for both species. Planned mean comparison for grain yield was found significant (p<0.05) for wheat and brassica. Grain yield for sole wheat was 4.28t ha/sup -1/ but reported higher in mixed than intercropped. Grain yield of wheat decreased with increase in seed rate of Brassica as intercropped. Higher grain yield (4.39 t ha/sup -1/) of wheat was recorded for seed rates combinations 100:50 (%) as wheat: Brassica intercropped. The land equivalent ratio (LER) for mixed or intercropped system was higher than the sole crop and it increased with increase in the seed rate of Brassica as mixed crop but decreased as intercropped. The high LER was associated to treatment 100:50 (%) seed rates combination for wheat:Brassica as intercropped. Intercropped resulted the greater LER (1.78) than the mixed crop (1.66) and was found most effective for sustainable production in the rainfed areas for a higher net return. (author)

  14. Prediction of winter wheat high yield from remote sensing based model: application in United States and Ukraine

    Science.gov (United States)

    Franch, B.; Vermote, E.; Roger, J. C.; Skakun, S.; Becker-Reshef, I.; Justice, C. O.

    2017-12-01

    Accurate and timely crop yield forecasts are critical for making informed agricultural policies and investments, as well as increasing market efficiency and stability. In Becker-Reshef et al. (2010) and Franch et al. (2015) we developed an empirical generalized model for forecasting winter wheat yield. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season and the Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data. These methods were applied to MODIS CMG data in Ukraine, the US and China with errors around 10%. However, the NDVI is saturated for yield values higher than 4 MT/ha. As a consequence, the model had to be re-calibrated in each country and the validation of the national yields showed low correlation coefficients. In this study we present a new model based on the extrapolation of the pure wheat signal (100% of wheat within the pixel) from MODIS data at 1km resolution and using the Difference Vegetation Index (DVI). The model has been applied to monitor the national yield of winter wheat in the United States and Ukraine from 2001 to 2016.

  15. Space Weather Influence on the Earth Climate: Possible Manifestations in Wheat Markets Reaction

    Science.gov (United States)

    Pustilnik, Lev; Yom Din, Gregory; Zagnetko, Alexander

    We consider problem of a possible influence of unfavorable states of the space weather on agri-culture market through chain of connections: "space weather"-"earth weather"-"agriculture crops"-"price reaction". We show that new manifestations of "space weather"-"earth weather" relations discovered in the last time allow to revise wide field of expected solar-terrestrial con-nections. In the previous works we proposed possible mechanisms of wheat market reaction in the form of price bursts on the specific unfavorable states of space weather. We show that implementation of considered "price reaction scenarios" is possible only for condition of simul-taneous realization of several necessary conditions: high sensitivity of local earth weather in selected region to space weather; state of "high risk agriculture" in selected agriculture zone; high sensitivity of agricultural market to possible deficit of supply. Results of previous works included application of this approach to wheat market in Medieval England and to modern USA durum market showed that real connection between wheat price bursts and space weather state is observed with high confidence level. The aim of present work is answer on the ques-tion, why wheat markets in one region are sensitive to space weather factor, while another regional wheat markets demonstrate absolute indifferent reaction on this factor. For this aim we consider distribution of sensitivity of wheat markets in Europe to space weather as function of localization in different climatic zones. We analyze giant database of 95 European wheat markets from 14 countries during about 600-year period (1260-1912). We show that observed sensitivity of wheat market to space weather effects controlled, first of all, by type of predomi-nant climate in different zones of agriculture. Wheat markets in the North and part of Central Europe (England, Iceland, Holland) shows reliable sensitivity to space weather in minimum states of solar activity with low

  16. Yield Interactions of Wheat Genotypes to Dates of Seeding in Eastern Mid Hills of Nepal

    Directory of Open Access Journals (Sweden)

    Rudra Bhattarai

    2015-12-01

    Full Text Available Wheat (Triticum aestivum L. is one of the major cereal crops and staple food sources in Nepal. Wheat varieties being popular in mid hill regions are still in the early stages of adoption. Identification of appropriate date of seeding plays important role in enhancing the adoption rate ensuring the sustainable production. Therefore, three dates viz 15th November, 1st and 15th December for seeding and twenty eight wheat genotypes were evaluated in a split plot design with two replications for two consecutive seasons in 2011/12 and 2012/13 at an altitude of 2200 masl of eastern Nepal. The results showed genetic differences and interaction effect of genotypes with the dates of sowing on grain yield, panicle length and effective tillers per square meter. The wheat sown on 1st December showed the highest yield as compared to other sown dates. Similarly, WK1907, WK1911, WK1803, WK1915, WK1909, WK1714 and WK1803 produced highest yield among the tested genotypes with retaining maximum number of effective tillers and posed suitable maturity across all sowing date.

  17. The impact of tropospheric ozone pollution on trial plot winter wheat yields in Great Britain - An econometric approach

    International Nuclear Information System (INIS)

    Kaliakatsou, Evridiki; Bell, J. Nigel B.; Thirtle, Colin; Rose, Daniel; Power, Sally A.

    2010-01-01

    Numerous experiments have demonstrated reductions in the yields of cereal crops due to tropospheric O 3 , with losses of up to 25%. However, the only British econometric study on O 3 impacts on winter wheat yields, found that a 10% increase in AOT40 would decrease yields by only 0.23%. An attempt is made here to reconcile these observations by developing AOT40 maps for Great Britain and matching levels with a large number of standardised trial plot wheat yields from many sites over a 13-year period. Panel estimates (repeated measures on the same plots with time) show a 0.54% decrease in yields and it is hypothesised that plant breeders may have inadvertently selected for O 3 tolerance in wheat. Some support for this is provided by fumigations of cultivars of differing introduction dates. A case is made for the use of econometric as well as experimental studies in prediction of air pollution induced crop loss. - Econometric study of British winter wheat trial plot data suggests lower economic loss than predicted from experiments.

  18. Effect of irrigation water salinity and zinc application on yield, yield components and zinc accumulation of wheat

    Directory of Open Access Journals (Sweden)

    mohamad ahmadi

    2009-06-01

    Full Text Available Salinity stress is one of the most important problems of agriculture in crop production in arid and semi arid regions. Under these conditions, in addition to management strategies, proper and adequate nutrition also has an important role in crop improvement. A greenhouse experiment was conducted to study the effect of 4 different irrigation water salinities (blank, 4, 8 and 12 dS m-1, prepared with 1:1 molar ratio of chlorides of calcium and sodium and magnesium sulphate salts. and 5 different zinc applications (0, 10, 20, 30 mg Kg-1 soil and foliar application of salt of zinc sulphate on yield, yield components and zinc concentration of wheat, using a completely randomized design, factorial with three replications. Plant height, spike length, 1000 grain weight, number of grain per spike, grain and straw yield was decreased by Irrigation water salinity. And all of these parameters were improved by zinc application except 1000 grain weight. Zinc absorption and concentration in straw and grain was decreased by Saline water compared to blank. And concentration of zinc significantly was increased in straw and grain by increase zinc application. The results indicated that, zinc application under low to medium salinity conditions improved growth and yield of wheat due to decreasing the impacts salinity.

  19. Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources

    Directory of Open Access Journals (Sweden)

    Waugh Robbie

    2010-12-01

    Full Text Available Abstract Background Because of its size, allohexaploid nature and high repeat content, the wheat genome has always been perceived as too complex for efficient molecular studies. We recently constructed the first physical map of a wheat chromosome (3B. However gene mapping is still laborious in wheat because of high redundancy between the three homoeologous genomes. In contrast, in the closely related diploid species, barley, numerous gene-based markers have been developed. This study aims at combining the unique genomic resources developed in wheat and barley to decipher the organisation of gene space on wheat chromosome 3B. Results Three dimensional pools of the minimal tiling path of wheat chromosome 3B physical map were hybridised to a barley Agilent 15K expression microarray. This led to the fine mapping of 738 barley orthologous genes on wheat chromosome 3B. In addition, comparative analyses revealed that 68% of the genes identified were syntenic between the wheat chromosome 3B and barley chromosome 3 H and 59% between wheat chromosome 3B and rice chromosome 1, together with some wheat-specific rearrangements. Finally, it indicated an increasing gradient of gene density from the centromere to the telomeres positively correlated with the number of genes clustered in islands on wheat chromosome 3B. Conclusion Our study shows that novel structural genomics resources now available in wheat and barley can be combined efficiently to overcome specific problems of genetic anchoring of physical contigs in wheat and to perform high-resolution comparative analyses with rice for deciphering the organisation of the wheat gene space.

  20. Estimating the responses of winter wheat yields to moisture variations in the past 35 years in Jiangsu Province of China.

    Science.gov (United States)

    Xu, Xiangying; Gao, Ping; Zhu, Xinkai; Guo, Wenshan; Ding, Jinfeng; Li, Chunyan

    2018-01-01

    Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI). The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen's Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June) had a closer linkage to the yields than in the seedling stage (October-November) and the over-wintering stage (December-February). Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu.

  1. Estimating the responses of winter wheat yields to moisture variations in the past 35 years in Jiangsu Province of China.

    Directory of Open Access Journals (Sweden)

    Xiangying Xu

    Full Text Available Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI. The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen's Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June had a closer linkage to the yields than in the seedling stage (October-November and the over-wintering stage (December-February. Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu.

  2. Rising Temperatures Reduce Global Wheat Production

    Science.gov (United States)

    Asseng, S.; Ewert, F.; Martre, P.; Rötter, R. P.; Lobell, D. B.; Cammarano, D.; Kimball, B. A.; Ottman, M. J.; Wall, G. W.; White, J. W.; hide

    2015-01-01

    Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32? degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degree C of further temperature increase and become more variable over space and time.

  3. Modelling predicts that tolerance to drought during reproductive development will be required for high yield potential and stability of wheat in Europe

    Science.gov (United States)

    Semenov, Mikhail A.; Stratonovitch, Pierre; Paul, Matthew J.

    2017-04-01

    Short periods of extreme weather, such as a spell of high temperature or drought during a sensitive stage of development, could result in substantial yield losses due to reduction in grain number and grain size. In a modelling study (Stratonovitch & Semenov 2015), heat tolerance around flowering in wheat was identified as a key trait for increased yield potential in Europe under climate change. Ji et all (Ji et al. 2010) demonstrated cultivar specific responses of yield to drought stress around flowering in wheat. They hypothesised that carbohydrate supply to anthers may be the key in maintaining pollen fertility and grain number in wheat. It was shown in (Nuccio et al. 2015) that genetically modified varieties of maize that increase the concentration of sucrose in ear spikelets, performed better under non-drought and drought conditions in field experiments. The objective of this modelling study was to assess potential benefits of tolerance to drought during reproductive development for wheat yield potential and yield stability across Europe. We used the Sirius wheat model to optimise wheat ideotypes for 2050 (HadGEM2, RCP8.5) climate scenarios at selected European sites. Eight cultivar parameters were optimised to maximise mean yields, including parameters controlling phenology, canopy growth and water limitation. At those sites where water could be limited, ideotypes sensitive to drought produced substantially lower mean yields and higher yield variability compare with tolerant ideotypes. Therefore, tolerance to drought during reproductive development is likely to be required for wheat cultivars optimised for the future climate in Europe in order to achieve high yield potential and yield stability.

  4. Calibration of Soil Available Nitrogen and Water Content with Grain Yield of Dry land Wheat

    Directory of Open Access Journals (Sweden)

    V. Feiziasl

    2017-01-01

    Full Text Available Introduction: Nitrogen (N is one of the most important growth-limiting nutrients for dryland wheat. Mineral nitrogen or ammonium (NH4+ and nitrate (NO3− are two common forms of inorganic nitrogen that can serve as limiting factors for plant growth. Nitrogen fertilization in dryland area can increase the use of soil moisture, and improve wheat yields to some extent. Many researchers have been confirmed interactions between water stress and nitrogen fertilizers on wheat, especially under field conditions. Because of water stress affects forms of nitrogen uptake that leads to disorder in plant metabolism, reduction in grain yield and crop quality in dryland condition. On the other hand, use of suitable methods for determining nitrogen requirement can increase dryland wheat production. However, nitrogen recommendations should be based on soil profile content or precipitation. An efficient method for nitrogen fertilizer recommendation involves choosing an effective soil extractant and calibrating soil nitrogen (Total N, NO3− andNH4+ tests against yield responses to applied nitrogen in field experiments. Soil testing enables initial N supply to be measured and N supply throughout the season due to mineralization to be estimated. This study was carried out to establish relationship between nitrogen forms (Total N, NO3− andNH4+ in soil and soil profile water content with plant response for recommendation of nitrogen fertilizer. Materials and Methods: This study was carried out in split-split plot in a RCBD in Dryland Agricultural Research Institute (DARI, Maragheh, Iranwhere N application times (fall, 2/3 in fall and 1/3 in spring were assigned to the main plots, N rates to sub plot (0, 30, 60 and 90 kg/ha, and 7 dryland wheat genotypes to sub-sub plots (Azar2, Ohadi, Rasad and 1-4 other genotypes in three replications in 2010-2011. Soil samples were collected from 0-20, 20-40, 40-60 and 60-80 cm in sub-sub plots in shooting stage (ZGS32. Ammonium

  5. Simulation of Wild oat (Avena ludoviciana L. Competition on Winter Wheat (Triticum astivum Growth and Yield. I: Model Description and Validation

    Directory of Open Access Journals (Sweden)

    F Mondani

    2015-09-01

    Full Text Available Crop growth models could stimulate growth and development based on science principles and mathematical equations. They also able to evaluate effects of climate, soil, water and agronomic management practices on crop yield. In the present study, an eco-physiological simulation model developed to assess wild oat damage to winter wheat growth and yield. The general structure of this model is derived from LINTUL1 model which modified to wild oat competition against winter wheat. LINTUL1 model was developed for simulation of spring wheat potential production level. In this study, first, we added development stage (DVS and vernalization to LINTUL1 for simulation of winter wheat growth and development and then the model calibrated for potential production level. Finally, we incorporate harmful effects of wild oat to winter wheat growth and yield. Weather data used as input were average daily minimum and maximum temperature (°C and daily global radiation (MJ m-2 in Mashhad, Iran. Parameter values were derived from the literature. The model is written in Fortran Simulation Translator (FST programming language and then validated based on an experiment data. For these purposes different wild oat plant densities were arranged. The data of this experiment does not use for calibration. The results showed that this model was in general able to simulate the temporal changes in DVS of winter wheat and wild oat, total dry matter (TDM of winter wheat and wild oat and yield loss of wheat due to wild oat competition in all treatments, satisfactorily. Root mean square error (RMSE for winter wheat DVS, wild oat DVS, average winter wheat TDM, average wild oat TDM, and yield loss of winter wheat was 10.4, 14.5, 5.8, 7.6 and 7.5, respectively.

  6. Estimating grain yield losses caused by septoria leaf blotch on durum wheat in Tunisia

    Directory of Open Access Journals (Sweden)

    Samia Berraies

    2014-12-01

    Full Text Available Septoria leaf blotch (SLB, caused by Zymoseptoria tritici (Desm. Quaedvlieg & Crous, 2011 (teleomorph: Mycosphaerella graminicola (Fuckel J. Schrot., is an important wheat disease in the Mediterranean region. In Tunisia, SLB has become a major disease of durum wheat (Triticum turgidum L. subsp. durum [Desf.] Husn. particularly during favorable growing seasons where significant yield losses and increase of fungicides use were recorded over the last three decades. The objectives of this study were to evaluate the effect of SLB severity on grain yield of new elite durum wheat breeding lines and to measure the relative effect of fungicide control on grain yield. Experiments were conducted during 2007-2008 and 2008-2009 cropping seasons. A set of 800 breeding lines were screened for reaction to SLB under natural infection at Beja research station. To estimate the disease effect, correlation between disease severity at early grain filling stage and grain yield was performed. Results showed that susceptible varieties yield was significantly reduced by SLB. Average yield reduction was as high as 384 and 325 kg ha-1 for every increment in disease severity on a 0-9 scale in both seasons, respectively. A negative correlation coefficient varied between -0.61 and -0.66 in both seasons. Treated and untreated trials conducted during 2008-2009 and 2009-2010 showed that yield of treated plots increased by 50% on the commonly cultivated susceptible varieties. The results of this investigation suggested that septoria incidence is related to large grain yield losses particularly on susceptible high yielding cultivars. However, appropriate fungicide application at booting growth stage could be beneficial for farmers. The development and use of more effective fungicide could be sought to alleviate the disease effects and therefore could be considered as a part of the integrated pest management and responsible use strategy on septoria leaf blotch in Tunisia.

  7. Remote sensing and gis based wheat crop acreage and yield estimation of district hyderabad, pakistan

    International Nuclear Information System (INIS)

    Siyal, A.

    2015-01-01

    Pre-harvest reliable and timely yield forecast and area estimates of cropped area is vital to planners and policy makers for making important and timely decisions with respect to food security in a country. The present study was conducted to estimate the wheat cropped area and crop yield in Hyderabad District, Pakistan from the Landsat 8 satellite imagery for Rabi 2013-14 and ground trothing. The required imagery of district Hyderabad was acquired from GLOVIS and was classified with maximum likelihood algorithm using ArcGIS 10.1. The classified image revealed that in district Hyderabad wheat covered 10,210 hectares (9.74% of total area) during Rabi season 2013-14 against 15,000 hectares (14.3% of total area) reported by Crop reporting Services (CRS), Sindh which is 30% less than that of reported by CRS. A positive linear relation between the wheat crop yield and the peak NDVI with coefficient of determination R2 = 0.91 was observed. Crop area and yield forecast through remote sensing is easy, cost effective, quick and reliable hence this technology needs to be introduced and propagated in the concerned government departments of Pakistan. (author)

  8. Effect of Sowing Date on Some Agronomic Characteristics and Seed Yield of Winter Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    A. Ganbari

    2012-08-01

    Full Text Available To evaluate the effect of sowing dates on yield, yield components and some agronomic characteristics of four winter wheat cultivars and also their phenological changes, a factorial experiment based on randomized complete block design with three replications was carried out at the Agriculture Research Station of Ardabil (Iran during 2009 growing season. First factor consisted of four wheat cultivars (Azar2, Sabalan, Sardari and Zagros and second factor consisted of four sowing dates (1st, 10th, 20th and 30th of September. The results showed that sowing date had significant effect on the number of spikes, the number of seed per spike, 1000-seed weight, germination percentage, days to spike appearance, days to ripening, growing degree days, biological yield, seed yield and harvest index. The highest and lowest seed yields of wheat were obtained from sowing date of the September the first (4616 kg/ha and sowing date of September 30th (2197 kg/ha respectively. Delaying planting decreased the number of spikes per m2 and 1000-seed weight. Cultivars had significant effect on all of the traits measured, except leaf number, fertile and non-fertilie tillers. The highest and the lowest seed yields were obtained from Sabalan (4750 kg/ha and Zagros (2757 kg/ha cultivars respectively. Interaction of sowing date and cultivar were significant on all of traits measured, except stem height, the leaf number, the number of spikes, 1000-seed weight and seed yield (P

  9. Quantifying yield gaps in wheat production in Russia

    International Nuclear Information System (INIS)

    Schierhorn, Florian; Prishchepov, Alexander V; Koch, Friedrich J; Müller, Daniel; Faramarzi, Monireh

    2014-01-01

    Crop yields must increase substantially to meet the increasing demands for agricultural products. Crop yield increases are particularly important for Russia because low crop yields prevail across Russia’s widespread and fertile land resources. However, reliable data are lacking regarding the spatial distribution of potential yields in Russia, which can be used to determine yield gaps. We used a crop growth model to determine the yield potentials and yield gaps of winter and spring wheat at the provincial level across European Russia. We modeled the annual yield potentials from 1995 to 2006 with optimal nitrogen supplies for both rainfed and irrigated conditions. Overall, the results suggest yield gaps of 1.51–2.10 t ha −1 , or 44–52% of the yield potential under rainfed conditions. Under irrigated conditions, yield gaps of 3.14–3.30 t ha −1 , or 62–63% of the yield potential, were observed. However, recurring droughts cause large fluctuations in yield potentials under rainfed conditions, even when the nitrogen supply is optimal, particularly in the highly fertile black soil areas of southern European Russia. The highest yield gaps (up to 4 t ha −1 ) under irrigated conditions were detected in the steppe areas in southeastern European Russia along the border of Kazakhstan. Improving the nutrient and water supply and using crop breeds that are adapted to the frequent drought conditions are important for reducing yield gaps in European Russia. Our regional assessment helps inform policy and agricultural investors and prioritize research that aims to increase crop production in this important region for global agricultural markets. (letter)

  10. Evaluation of the Agronomic Impacts on Yield-Scaled N2O Emission from Wheat and Maize Fields in China

    Directory of Open Access Journals (Sweden)

    Wenling Gao

    2017-07-01

    Full Text Available Contemporary crop production faces dual challenges of increasing crop yield while simultaneously reducing greenhouse gas emission. An integrated evaluation of the mitigation potential of yield-scaled nitrous oxide (N2O emission by adjusting cropping practices can benefit the innovation of climate smart cropping. This study conducted a meta-analysis to assess the impact of cropping systems and soil management practices on area- and yield-scaled N2O emissions during wheat and maize growing seasons in China. Results showed that the yield-scaled N2O emissions of winter wheat-upland crops rotation and single spring maize systems were respectively 64.6% and 40.2% lower than that of winter wheat-rice and summer maize-upland crops rotation systems. Compared to conventional N fertilizer, application of nitrification inhibitors and controlled-release fertilizers significantly decreased yield-scaled N2O emission by 41.7% and 22.0%, respectively. Crop straw returning showed no significant impacts on area- and yield-scaled N2O emissions. The effect of manure on yield-scaled N2O emission highly depended on its application mode. No tillage significantly increased the yield-scaled N2O emission as compared to conventional tillage. The above findings demonstrate that there is great potential to increase wheat and maize yields with lower N2O emissions through innovative cropping technique in China.

  11. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales

    Science.gov (United States)

    Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A.

    2017-06-01

    Heat waves and drought are often considered the most damaging climatic stressors for wheat. In this study, we characterize and attribute the effects of these climate extremes on wheat yield anomalies (at global and national scales) from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (the latter capturing both excessively dry and wet conditions), we have developed a composite indicator that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains a significant portion (more than 40%) of the inter-annual production variability. By quantifying the contribution of national yield anomalies to global fluctuations, we have found that just two concurrent yield anomalies affecting the larger producers of the world could be responsible for more than half of the global annual fluctuations. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Moreover, in contrast to common perception, water excess affects wheat production more than drought in several countries. We have also performed the same analysis at the subnational level for France, which is the largest wheat producer of the European Union, and home to a range of climatic zones. Large subnational variability of inter-annual wheat yield is mostly captured by the heat and water stress indicators, consistently with the country-level result.

  12. Effect of environmental and genetic factors on the correlation and stability of grain yield components in wheat

    Directory of Open Access Journals (Sweden)

    Hristov Nikola

    2011-01-01

    Full Text Available More effective breeding and development of new wheat genotypes depend on an intricate analysis of the complex relationships among many different traits. The objective of this paper was to determine the interrelationship, direct and indirect effects, and stability of different yield components in wheat. Forty divergent genotypes were analyzed in a three- year study (2005-2007. Highly significant correlations were found between grain yield per plant and all the other traits analyzed except spike length, with the only negative correlation being that with plant height. Path analysis revealed highly significant direct effects of grain number per spike, grain mass per spike and 1000 grain weight on grain yield per plant. Analysis of stability parameters showed that the stability of grain yield per plant depended for the most part on the stability of grain number per spike, grain mass per spike and harvest index. Cluster analysis identified genotypes with a high performance for grain yield per plant and good stability parameters, indicating the possibility of developing wheat varieties with a high potential and high stability for a particular trait.

  13. Wheat yield and physical properties of a brown latosol under no-tillage in south-central Paraná

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Machado Kramer

    2013-10-01

    Full Text Available Soil management influences the chemical and physical properties of soil. Chemical conditions have been thoroughly studied, while the role of soil physical conditions regarding crop yield has been neglected. This study aimed to analyze the wheat yield and its relationship with physical properties of an Oxisol under no-tillage (NT. The study was carried out between 2010 and 2011, in Reserva do Iguaçu, State of Paraná, Brazil, on the Campo Bonito farm, after 25 years of NT management. Based on harvest maps of barley (2006, wheat (2007 and maize (2009 of a plot (150 ha, zones with higher and lower yield potential (Z1 and Z2, respectively were identified. Sampling grids with 16 units (50 x 50 m and three sampling points per unit were established. The wheat grain yield (GY and water infiltration capacity (WIC were evaluated in 2010. Soil samples with disturbed and undisturbed structure were collected from the 0.00-0.10 and 0.10-0.20 m layers. The former were used to determine soil organic carbon (Corg levels and the latter to determine soil bulk density (BD, total porosity (TP, macroporosity (Mac, and microporosity (Mic. Soil penetration resistance (PR and water content (SWC were also evaluated. The wheat GY of the whole plot was close to the regional average and the yield between the zones differed significantly, i.e. 22 % higher in Z1 than in Z2. No significant variation in Mic was observed between zones, but Z1 had higher Corg levels, SWC, TP and Mac and lower BD than Z2 in both soil layers, as well as a lower PR than Z2 in the 0.00-0.10 m layer. Therefore, soil physical conditions were more restrictive in Z2, in agreement with wheat yield and zone yield potential defined a priori, based on the harvest maps. Soil WIC in Z1 was significantly higher (30 % than in Z2, in agreement with the results of TP and Mac which were also higher in Z1 in both soil layers. The correlation analysis of data of the two layers showed a positive relationship between

  14. Growth and yield response of wheat varieties to water stress at booting and anthesis stages of development

    International Nuclear Information System (INIS)

    Khakwani, A.A.; Abid, M.

    2012-01-01

    Plants of 6 bread wheat varieties (Damani, Hashim-8, Gomal-8, DN-73, Zam-04 and Dera-98) were subjected to 2 treatments i.e., control treatment (100% field capacity) and stressed treatment (20 days water stress was given during booting stage and 20 days water stress after anthesis). The findings revealed highly significant differences among means of wheat varieties in all physiological and yield traits. Almost all varieties showed their best adaptation under stressed environment however Hashim-8 and Zam-04 behaved exclusively and indicated higher relative water content (RWC), mean productivity (MP), geometric mean productivity (GMP) and stress tolerance index (STI) whereas stress susceptibility index (SSI) and tolerance (TOL) was estimated at its lowest, as these traits are recognised beneficial drought tolerance indicators for selection of a stress tolerant variety. Similarly, total grain yield per plant, biological yield per plant and harvest index was also higher in the same wheat varieties that put them as good candidates for selection criteria in wheat breeding program for drought resistant. (author)

  15. The impact of tropospheric ozone pollution on trial plot winter wheat yields in Great Britain - an econometric approach.

    Science.gov (United States)

    Kaliakatsou, Evridiki; Bell, J Nigel B; Thirtle, Colin; Rose, Daniel; Power, Sally A

    2010-05-01

    Numerous experiments have demonstrated reductions in the yields of cereal crops due to tropospheric O(3), with losses of up to 25%. However, the only British econometric study on O(3) impacts on winter wheat yields, found that a 10% increase in AOT40 would decrease yields by only 0.23%. An attempt is made here to reconcile these observations by developing AOT40 maps for Great Britain and matching levels with a large number of standardised trial plot wheat yields from many sites over a 13-year period. Panel estimates (repeated measures on the same plots with time) show a 0.54% decrease in yields and it is hypothesised that plant breeders may have inadvertently selected for O(3) tolerance in wheat. Some support for this is provided by fumigations of cultivars of differing introduction dates. A case is made for the use of econometric as well as experimental studies in prediction of air pollution induced crop loss. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Temperature and precipitation effects on wheat yield across a European transect

    DEFF Research Database (Denmark)

    Pirttioja, N; Carter, T.; Fronzek, S

    2015-01-01

    his study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop s...... additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development....

  17. Study on Yield and Yield Components of Wheat Genotypes under Different Moisture Regimes

    Directory of Open Access Journals (Sweden)

    E. Mogtader

    2012-10-01

    Full Text Available In order to study grain yield and yield components of 16 advanced wheat lines under rainfed and supplementary irrigation conditions, this research was conducted in randomized block design with 3 replications at Maragheh Research Station during 2008-09 seasons. Analysis of variance revealed significant differences for date to heading, plant height, 1000 kernel weight, tiller number, spike length, seed number per spike, spikelet number per spike, peduncle length, harvest index, leaf, sheath length and grain yield. Results also showed that the lines No. 4 (91-142 a 61/3/F35.70/MO73//1D13.1/MLT and 16 (Azar2 with 1895 and 1878 Kg/ha, lines No. 4 and 7 (YUMAI13/5/NAI60/3/14.53/ODIN//CI13441 with 2132 and 2285 Kg/ha had highest grain yield under rainfed and supplementary irrigated conditions respectively. Based on results these 16 lines and cultivars were grouped in 4 and 3 distinct classes using Ward’s Method of cluster analysis under rainfed and irrigated conditions. Path analysis indicated that vigor at shooting stage, seed number per spike and HI were positive important traits to select lines for high yielding potential in this study. HI and TKW had also positive effects on grain under supplementary irrigation.

  18. Future wheat yields in Western Australia under a warmer and drier climate

    International Nuclear Information System (INIS)

    Farre, Imma; Foster, Ian; Charles, Steve

    2007-01-01

    Full text: Full text: Climate change projections for the mid 21st century for southern Western Australia indicate an increase in temperatures, a decrease in rainfall and higher C02 concentrations. These changes could have adverse impacts on some agricultural systems, but they may also offer new opportunities (i.e. in areas where the risk of waterlogging may be reduced). In this paper we studied the potential impacts of climate change on wheat production by combining three modelling systems. Daily climate data for current and future conditions from the CCAM climate model was statistically downscaled to individual locations in the Western Australia wheatbelt. This climate data was then input to the APSIM-Wheat simulation model to evaluate yields and phenology under current and future climate for several soil types. The aim was to investigate the usefulness of such a modelling cascade in defining key risks to wheat cropping from projected climate change. In an earlier stage of the project, we compared climate simulation from several climate models (CSIRO Mk3, CCAM, ECHAM and HADCM), and selected the CCAM model as best representing the climate of southern Western Australia. This was used for a more detailed study of the impacts on wheat cropping. The APSIM model simulates crop development, yield, water uptake and nitrogen accumulation in response to temperature, radiation, C02 level, water and nitrogen supply. It offers a framework for investigating interactions and testing some simple adaptation options. The CCAM model simulated total annual rainfall reductions of 5-11% for 2050 across the locations studied (consistent with other model projections). Total annual rainfall reductions tended to be higher in the high-rainfall locations than in the low- or medium-rainfall locations. The highest seasonal rainfall reduction was predicted for April-June, resulting in later sowing opportunities and decreasing expected yields. The impacts of climate change varied depending on

  19. Sensory, yield and quality differences between organically and conventionally grown winter wheat.

    Science.gov (United States)

    Arncken, Christine M; Mäder, Paul; Mayer, Jochen; Weibel, Franco P

    2012-11-01

    Consumers expect organic produce to have higher environmental, health and sensory related qualities than conventional produce. In order to test sensory differences between bio-dynamically, bio-organically and conventionally grown winter wheat (Triticum aestivum L., cv. Runal), we performed double-blinded triangle tests with two panels on dry wholemeal flour from the harvest years 2006, 2007 and 2009 and from two field replicates of the 'DOK' long-term farming system comparison field trial near Basel, Switzerland. Yield and quality parameters were also assessed. Significant farming system effects were found for yield (up to 42% reduction in the organic system), thousand kernel weight, hectolitre weight and crude protein content across the three years. In the triangle tests one out of 12 pair-wise farming system comparisons (PFSCs) on wholemeal flour made from the different wheat samples showed significant sensory differentiation (between bio-dynamically and conventionally grown wheat). When all data from the three harvest years and two panels were aggregated, a statistically significant effect (P = 0.045) of PFSCs on the number of correct answers became evident. Although testing of dry wholemeal flour was very challenging for panellists, we were able to show that sensory differences between farming systems can occur. Copyright © 2012 Society of Chemical Industry.

  20. Effect of sowing dates on yield and yield components on mutant-cum-hybrid lines of bread wheat

    International Nuclear Information System (INIS)

    Sial, M.A.; Arain, M.A.; Dahot, M.U.; Laghari, K.A.; Naqvi, M.H.; Markhand, G.S.; Mangrio, S.M.; Mirbahar, A.A.

    2010-01-01

    Twenty-one stable wheat mutant lines along with four check varieties viz., Sarsabz, Kiran-95, T.J.83 and Khirman were evaluated under normal and late sowing dates. The observations were recorded on phenological, morphological and meteorological parameters. Higher yield and improvement in various yield components were recorded at normal sowing as compared to late sowing. Six mutant lines showed superiority in yield than check varieties at normal sowings while three mutants produced more yield than check varieties except Sarsabz at late sowings. At normal sowing eleven mutant lines matured earlier than all check varieties including short duration variety T.J-83 whereas two mutant lines were earlier than Sarsabz and Kiran-95 and thirteen than T.J-83 and Khirman. (author)

  1. Factors affecting the population density of weeds and yield loss of them in wheat: a case study in Golestan province – Bandargaz

    Directory of Open Access Journals (Sweden)

    Mohamad Zaman Nekahi

    2016-05-01

    Full Text Available To investigate the factors affecting the population density of weeds and yield loss of them in wheat, a non systematic survey experiment was conducted in 45 fields in the township of Bandar-gaz (Sarmahaleh village in 2012. Sampling of wheat and weeds were taken in two stages (Heading and Harvest maturity by randomized to the five points of each field using quadrate size 1m*1m. In this study all information about crop management including Land area , farmers experience , the seed bed preparation, sowing date , cultivar and site preparation of them, sowing ways , seed rate , weeds control ways , kind , amount and time of herbicide , fungicide use and wheat harvest time were collected during a growing season by preparing questionnaire and complete them with farmers. At the end of the growing season, the actual yield harvested by farmers’ ‬ recorded. Among the various parameters, Wheat plant and raceme density, farmer experience, Kind of variety and use of Tapic+Geranestar herbicide had significant effects on weed population. With increased wheat plant density, weed density decreased. Also there was less weed density in field of high experience farmer. Weed density was lesser in N8118 variety than N8019 variety and not use Tapic+granestar herbicide due to increased of weeds density. Among weed different species, Avena sp, Phalaris minor and Sinapis arvense had highest negative effect on wheat yield. Model study showed if wheat plant density was optimum and there were weeds, yield will be 2713kg/ha and if weeds remove yield will increase to 2877kg/ha (yield gap equal164kg/ha. Amaong weed, Phalaris minor (12 plant per m-2, Sinapis arvensis (3plant per m-2 and Avena sp (2 plant per m-2 with 65, 18 and 17% yield loss respectively, were the strongest competitor with wheat.

  2. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    Science.gov (United States)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  3. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis.

    Science.gov (United States)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-20

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  4. Impact of thermal time shift on wheat phenology and yield under warming climate in the Huang-Huai-Hai Plain, China

    Science.gov (United States)

    Xiao, Dengpan; Qi, Yongqing; Li, Zhiqiang; Wang, Rende; Moiwo, Juana P.; Liu, Fengshan

    2017-03-01

    Given climate change can potentially influence crop phenology and subsequent yield, an investigation of relevant adaptation measures could increase the understanding and mitigation of these responses in the future. In this study, field observations at 10 stations in the Huang-Huai-Hai Plain of China (HHHP) are used in combination with the Agricultural Production Systems Simulator (APSIM)-Wheat model to determine the effect of thermal time shift on the phenology and potential yield of wheat from 1981-2009. Warming climate speeds up winter wheat development and thereby decreases the duration of the wheat growth period. However, APSIM-Wheat model simulation suggests prolongation of the period from flowering to maturity (Gr) of winter wheat by 0.2-0.8 d•10yr-1 as the number of days by which maturity advances, which is less than that by which flowering advances. Based on computed thermal time of the two critical growth phases of wheat, total thermal time from floral initiation to flowering (TT_floral_initiation) increasesd in seven out of the 10 investigated stations. Alternatively, total thermal time from the start of grainfilling to maturity (TT_start_ grain_fill) increased in all investigated stations, except Laiyang. It is thus concluded that thermal time shift during the past three decades (1981-2009) prolongs Gr by 0.2-3.0 d•10yr-1 in the study area. This suggests that an increase in thermal time (TT) of the wheat growth period is critical for mitigating the effect of growth period reduction due to warming climatic condition. Furthermore, climate change reduces potential yield of winter wheat in 80% of the stations by 2.3-58.8 kg•yr-1. However, thermal time shift (TTS) increases potential yield of winter wheat in most of the stations by 3.0-51.0 kg•yr-1. It is concluded that wheat cultivars with longer growth periods and higher thermal requirements could mitigate the negative effects of warming climate on crop production in the study area.

  5. Root length densities of UK wheat and oilseed rape crops with implications for water capture and yield

    Science.gov (United States)

    White, Charlotte A.; Sylvester-Bradley, Roger; Berry, Peter M.

    2015-01-01

    Root length density (RLD) was measured to 1 m depth for 17 commercial crops of winter wheat (Triticum aestivum) and 40 crops of winter oilseed rape [Brassica napus; oilseed rape (OSR)] grown in the UK between 2004 and 2013. Taking the critical RLD (cRLD) for water capture as 1cm cm–3, RLDs appeared inadequate for full water capture on average below a depth of 0.32 m for winter wheat and below 0.45 m for OSR. These depths compare unfavourably (for wheat) with average depths of ‘full capture’ of 0.86 m and 0.48 m, respectively, determined for three wheat crops and one OSR crop studied in the 1970s and 1980s, and treated as references here. A simple model of water uptake and yield indicated that these shortfalls in wheat and OSR rooting compared with the reference data might be associated with shortfalls of up to 3.5 t ha–1 and 1.2 t ha–1, respectively, in grain yields under water-limited conditions, as increasingly occur through climate change. Coupled with decreased summer rainfall, poor rooting of modern arable crops could explain much of the yield stagnation that has been observed on UK farms since the 1990s. Methods of monitoring and improving rooting under commercial conditions are reviewed and discussed. PMID:25750427

  6. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain.

    Science.gov (United States)

    Zhang, Yitao; Wang, Hongyuan; Lei, Qiuliang; Luo, Jiafa; Lindsey, Stuart; Zhang, Jizong; Zhai, Limei; Wu, Shuxia; Zhang, Jingsuo; Liu, Xiaoxia; Ren, Tianzhi; Liu, Hongbin

    2018-03-15

    Optimizing the nitrogen (N) application rate can increase crop yield while reducing the environmental risks. However, the optimal N rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. Taking the wheat-maize rotation cropping system on the North China Plain as a case study, we quantified the variation of N application rates when targeting constraints on yield, economic performance, N uptake and N utilization, by conducting field experiments between 2011 and 2013. Results showed that the optimal N application rate was highest when targeting N uptake (240kgha -1 for maize, and 326kgha -1 for wheat), followed by crop yield (208kgha -1 for maize, and 277kgha -1 for wheat) and economic income (191kgha -1 for maize, and 253kgha -1 for wheat). If environmental costs were considered, the optimal N application rates were further reduced by 20-30% compared to those when targeting maximum economic income. However, the optimal N rate, with environmental cost included, may result in soil nutrient mining under maize, and an extra input of 43kgNha -1 was needed to make the soil N balanced and maintain soil fertility in the long term. To obtain a win-win situation for both yield and environment, the optimal N rate should be controlled at 179kgha -1 for maize, which could achieve above 99.5% of maximum yield and have a favorable N balance, and at 202kgha -1 for wheat to achieve 97.4% of maximum yield, which was about 20kgNha -1 higher than that when N surplus was nil. Although these optimal N rates vary on spatial and temporal scales, they are still effective for the North China Plain where 32% of China's total maize and 45% of China's total wheat are produced. More experiments are still needed to determine the optimal N application rates in other regions. Use of these different optimal N rates would contribute to improving the sustainability of agricultural development in China. Copyright © 2017 Elsevier B.V. All rights

  7. Path coefficient and correlation of yield and yield associated traits in candidate bread wheat (triticum aestivum l)lines

    International Nuclear Information System (INIS)

    Muhammad, T.; Haider, S.; Qureshi, M. J.; Shah, G. S.; Zamir, R.

    2005-01-01

    Yield and yield contributing traits were studied in candidate bread wheat lines to find out the genetic contribution of the different characters towards grain yield at NIFA, Peshawar during 2001-02. All the characteristics studied differed significantly from each other. Days to heading showed negative and significant correlation with harvest index and grain yield but was negative and non-significant with the biological yield. Days to maturity were negatively correlated at both genotypic and phenotypic levels with biological yield; harvest index and grain yield and level of correlations were significant with harvest index and grain yield. Plant height showed negative genotypic and phenotypic correlation with harvest index and grain yield. Biological yield had positive and significant genotypic and phenotypic correlations with harvest index and grain yield. Harvest index had positive and highly significant genotypic and phenotypic correlation with grain yield. Genotypic and phenotypic correlation coefficients revealed that important characters influencing grain yield are harvest index and biological yield. Path analysis showed the importance in order of harvest index, biological yield, plant height, days to maturity and days to heading with grain yield. (author)

  8. Mathematical and statistical analysis of the effect of boron on yield parameters of wheat

    Energy Technology Data Exchange (ETDEWEB)

    Rawashdeh, Hamzeh [Water Management and Environment Research Department, National Center for Agricultural Research and Extension, P.O. Box 639, Baqa 19381 (Jordan); Sala, Florin [Soil Science and Plant Nutrition, Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine “Regele Mihai I al României” from Timişoara, Timişoara, 300645 (Romania); Boldea, Marius [Mathematics and Statistics, Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine “Regele Mihai I al României” from Timisoara, Timişoara, 300645 (Romania)

    2015-03-10

    The main objective of this research is to investigate the effect of foliar applications of boron at different growth stages on yield and yield parameters of wheat. The contribution of boron in achieving yield parameters is described by second degree polynomial equations, with high statistical confidence (p<0.01; F theoretical < F calculated, according to ANOVA test, for Alfa = 0.05). Regression analysis, based on R{sup 2} values obtained, made it possible to evaluate the particular contribution of boron to the realization of yield parameters. This was lower for spike length (R{sup 2} = 0.812), thousand seeds weight (R{sup 2} = 0.850) and higher in the case of the number of spikelets (R{sup 2} = 0.936) and the number of seeds on a spike (R{sup 2} = 0.960). These results confirm that boron plays an important part in achieving the number of seeds on a spike in the case of wheat, as the contribution of this element to the process of flower fertilization is well-known. In regards to productivity elements, the contribution of macroelements to yield quantity is clear, the contribution of B alone being R{sup 2} = 0.868.

  9. Yield response of cotton, maize, soybean, sugar beet, sunflower and wheat to deficit irrigation

    International Nuclear Information System (INIS)

    Kirda, C.; Kanber, R.; Tulucu, K.

    1995-01-01

    Results of several field experiments on deficit irrigation programmes in Turkey are discussed. Deficit irrigation of sugar beet with water stress imposed (i e.,irrigation omitted)during ripening,stage saved nearly 22 % water, yet with no significant yield decrease. An experiment, conducted in Turkey Region, the European part of Turkey,and aimed at studying water production functions of sunflower(i e,yield vs water consumption), revealed that water stress imposed at either head forming or seed filling stags influence yield the least , and 40 % savings of irrigation water supply , compared with traditional practices in the region, can be achieved without significant yield reduction. Water stress imposed at vegetative and flowering stages of maize hindered the yield most significantly. The results showed that deficit irrigation can be a feasible option under limited supply of irrigation if stress occurs during yield formation stage. A four year field experiments aiming at developing deficit irrigation strategies for soybean showed that soybean was at the most sensitive to water stress during flowering and pod filling stages, and irrigation during these stages would ensure high yields. Results of experiments on cotton showed that irrigations omitted during yield formation stage did not significantly hinder the yield. Similarly wheat give good yield response if irrigated at booting,heading and milking stages, depending on w heather conditions. In areas where rainfall at planting is limited, supplementary irrigation during this period can ensure good establishment of wheat crop. 1 tab; 9 figs; 59 refs (Author)

  10. Predicting the yield and quality of winter wheat grown on calcareous chernozem in the lower Don Region

    Directory of Open Access Journals (Sweden)

    Olga Biryukova

    2015-07-01

    Full Text Available Long-term studies have revealed a system of indicators for predicting the yield of winter wheat grown on a calcareous chernozem. It has been established that the prediction and integrated assessment of the yield and quality of grain should be performed with consideration for the balance of macro- and micronutrients in the grain and the above-ground biomass of plants. It has been shown that the contents of protein and gluten in winter wheat grain are mainly determined by the supply of plants with nitrogen and its balance with Mn, Р, Fe, Zn, and K. Possibility of predicting the contents of macro- and micronutrients in wheat grain from the chemical composition of plants at the shooting stage has been revealed.

  11. Simultaneous improvement of grain yield and protein content in durum wheat by different phenotypic indices and genomic selection.

    Science.gov (United States)

    Rapp, M; Lein, V; Lacoudre, F; Lafferty, J; Müller, E; Vida, G; Bozhanova, V; Ibraliu, A; Thorwarth, P; Piepho, H P; Leiser, W L; Würschum, T; Longin, C F H

    2018-06-01

    Simultaneous improvement of protein content and grain yield by index selection is possible but its efficiency largely depends on the weighting of the single traits. The genetic architecture of these indices is similar to that of the primary traits. Grain yield and protein content are of major importance in durum wheat breeding, but their negative correlation has hampered their simultaneous improvement. To account for this in wheat breeding, the grain protein deviation (GPD) and the protein yield were proposed as targets for selection. The aim of this work was to investigate the potential of different indices to simultaneously improve grain yield and protein content in durum wheat and to evaluate their genetic architecture towards genomics-assisted breeding. To this end, we investigated two different durum wheat panels comprising 159 and 189 genotypes, which were tested in multiple field locations across Europe and genotyped by a genotyping-by-sequencing approach. The phenotypic analyses revealed significant genetic variances for all traits and heritabilities of the phenotypic indices that were in a similar range as those of grain yield and protein content. The GPD showed a high and positive correlation with protein content, whereas protein yield was highly and positively correlated with grain yield. Thus, selecting for a high GPD would mainly increase the protein content whereas a selection based on protein yield would mainly improve grain yield, but a combination of both indices allows to balance this selection. The genome-wide association mapping revealed a complex genetic architecture for all traits with most QTL having small effects and being detected only in one germplasm set, thus limiting the potential of marker-assisted selection for trait improvement. By contrast, genome-wide prediction appeared promising but its performance strongly depends on the relatedness between training and prediction sets.

  12. Early sowing increases nitrogen uptake and yields of winter wheat grown with cattle slurry or mineral fertilizers

    DEFF Research Database (Denmark)

    Suarez, Alfonso; Rasmussen, Jim; Thomsen, Ingrid Kaag

    2018-01-01

    of the two cultivars did not differ consistently with respect to the effect of early sowing on crop yield, N concentration and offtake, or ANR. Within the north-west European climatic region, moving the sowing time of winter wheat from mid-September to mid-August provides a significant yield and N offtake......The current study evaluated the effect of sowing date (early, mid-August or timely, mid-September) on two winter wheat (Triticum aestivum L.) cultivars (Hereford, Mariboss) with different rates of nitrogen (N) (0–225 kg total N/ha) applied as animal manure (AM; cattle slurry) or mineral fertilizers...... (N: phosphorus: potassium; NPK). Overwinter plant N uptake and soil mineral N content were determined during 2014/15, while harvest yields (grain, straw, N content) were determined during 2014/15 and 2015/16. Overwinter uptake of N was 14 kg N/ha higher in early than in timely-sown wheat. Despite...

  13. Optimizing rate of nitrogen application for higher growth and yield of wheat (triticum aestivum l.) cultivars

    International Nuclear Information System (INIS)

    Maqsood, M.; Shehzad, M.A.; Asim, A.; Ahmad, W.

    2012-01-01

    In order to optimize the nitrogen rates in three wheat (Triticum aestivum L.) cultivars for obtaining higher grain yield, a split plot experiment based on Randomized Complete Block Design with three replicates was conducted in the research field of University of Agriculture, Faisalabad during Rabi season 2006-07. Among treatments nitrogen levels (N0= 0, N/sub 1/= 50, N2= 100, N3= 150 kg ha/sup -1/) in main while wheat cultivars (V1= Punjnad-I, V/sub 2/= Fareed-2006, V3=Uqab-2000) were allocated in sub plots during the course of growing season. Traits as plant height, fertile tillers, spike length, spikelets spike-1, grains spike-1, 1000-grain weight, straw yield, grain yield and harvest index (HI) were significantly (P=0.05) affected by treatment combinations. Maximum grain yield was obtained by V3 (Uqab-2000) cultivar when treated with N3 (150 kg ha/sup -1/) fertilizer level. Also, results showed that with increasing nitrogen rates, wheat yield increases significantly up to a level of significance (P=0.05). Increasing nitrogen levels led to significantly increase in plant height (101.81 cm), spike bearing tillers (495.77), grains spike/sup -1/ (61.45), straw yield (8.60 t ha/sup -1/) and harvest index (36.17%) of V3 (Uqab-2000). In all traits except germination count, V3 (Uqab-2000) was found to be superior. (author)

  14. Effect of Foliar Application of Phosphorus and Water Deficit on Yield and Yield Components of Winter Wheat (Cultivar Alvand

    Directory of Open Access Journals (Sweden)

    M. Vafapour

    2011-04-01

    Full Text Available In order to study the effects of foliar application of phosphorus (P and water deficit on yield and yield components of winter wheat (Triticum aestivum L., cv. Alvand, a split-plot experiment, with completely randomized blocks design and three replications, was carried out at the Research Farm of Boyer Ahmad Agricultural and Natural Resources Research Station, 13 km west of Yasouj, in 2008-2009. The main plots were irrigation at three levels (1- full irrigation (control, 2- deficit irrigation from the stem elongation to booting stage, and 3- deficit irrigation from booting stage to the end of growth period and the subplots were five levels of foliar application of P fertilizer (0, 3, 6, 9 and 12 kg/ha KH2PO4. The results showed that the effects of different irrigation regimes and foliar application of P were significant on all traits, and their interaction was significant on plant height, number of grain per spike, grain yield and biological yield. Full irrigation and foliar application of 6 kg/ha P produced the highest grain and biological yield (6000 and 14170 kg/ha, respectively and deficit irrigation from the stem elongation to booting stage without foliar application of P produced the lowest grain and biological yield (2920 and 8219 kg/ha, respectively. Foliar application of P affects significantly the evaluated traits only in drought-stress treatments and its effect was not significant in full irrigation treatment. In general, foliar application of 9 kg/ha P compensated the losses in wheat due to drought stress.

  15. Effects of sewage sludge on the yield of plants in the rotation system of wheat-white head cabbage-tomato

    Directory of Open Access Journals (Sweden)

    Mehmet Arif Özyazıcı

    2013-01-01

    Full Text Available This research was carried to determine the effects of sewage sludge applications on the yield and yield components of plants under crop rotation system. The field experiments were conducted in the Bafra Plain, located in the north region of Turkey. In this research, the “wheat-white head cabbage-tomato” crop rotation systems have been examined and the same crop rotation has been repeated in two separate years and field trials have been established. Seven treatments were compared: a control without application of sludge nor nitrogen fertilization, a treatment without sludge, but nitrogen and phosphorus fertilization, applied at before sowing of wheat and five treatments where, respectively 10, 20, 30, 40 and 50 tons sludge ha-1. The experimental design was a randomized complete block with three replications. The results showed that all the yield components of wheat and yield of white head cabbage and tomato increased significantly with increasing rates of sewage sludge as compared to control. As a result, 20 t ha-1 of sewage sludge application could be recommended the suitable dose for the rotation of wheat-white head cabbage-tomato in soil and climatic conditions of Bafra Plain.

  16. Effect of soil water stress on yield and proline content of four wheat ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-04

    Jan 4, 2010 ... Four lines of bread wheat (N-82-9, N-83-5, ... Key words: Water stress, Triticum aestivum, yield, proline, TSS. .... Numbers in the columns followed by the same letters are not significantly different at P .... constituents, Acta Bot.

  17. Effect of Mycorrhizal Fungus (Glomus spp on Wheat (Triticumaestivum Yield and Yield Components with Regard to Irrigation Water Quality

    Directory of Open Access Journals (Sweden)

    S Habibi

    2016-02-01

    Full Text Available Introduction Decrease in water quality affected by salinization of the water resources due to the drought is one of the limiting factors of plant production. Using mycorrhizal fungi is an important approach to deal with damaging effects during stress conditions. The symbiosis of arbuscular mycorrhiza (AM with the host plant and hence, the production of a very extensive network of hypha, enhances nutrient acquisition and improves water uptake in the host plant. The specialized network of hypha raises the uptake and translocation of nutrients to the plant, whereas it inhibits high uptake of Na and Cl and their transport to plant shoots compared with plant roots. Hence, AM can alleviate the stress of salinity on plant growth and increases their tolerance to the stresses. Materials and Methods In order to evaluate the influence of mycorrhizal fungi on yield and yield components of wheat, a greenhouse experiment was conducted in research farm of Shahid Chamran Ahvaz University. Experimental design was a randomized complete block design arranged in split factorial with three replications. The factors were water salinity (water quality including filtered water (EC ≥ 1 dS m-1, tap water (EC = 1/7-3 ds m-1, tap water plus NaCl and filtered water plus NaCl (EC = 8 ds m-1. Soil sterilization included sterilized and non-sterilized soil and mycorrhizal inoculation were in five levels (non-inoculated, inoculated with ‌Glomusmosseae, G. intraradices, G. geosporum and mixture of them. Yield and yield components were measured at crop maturity and colonization percentage of root was determined at flowering stage. Root colonization by AM was determined through preparing root samples at 1 g in each experimental unit, and roots were stained using the Gridline- Intersect Method. The harvest index and mycorrhizal dependency were also measured. Salinity levels determined approximate the threshold of wheat –tolerate- salinity before the results would rather

  18. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull.

    Science.gov (United States)

    Yang, Wenjie; Guo, Fengling; Wan, Zhengjie

    2013-10-01

    Oyster mushroom (Pleurotus ostreatus) was cultivated on rice straw basal substrate, wheat straw basal substrate, cotton seed hull basal substrate, and wheat straw or rice straw supplemented with different proportions (15%, 30%, and 45% in rice straw substrate, 20%, 30%, and 40% in wheat straw substrate) of cotton seed hull to find a cost effective substrate. The effect of autoclaved sterilized and non-sterilized substrate on growth and yield of oyster mushroom was also examined. Results indicated that for both sterilized substrate and non-sterilized substrate, oyster mushroom on rice straw and wheat basal substrate have faster mycelial growth rate, comparatively poor surface mycelial density, shorter total colonization period and days from bag opening to primordia formation, lower yield and biological efficiency, lower mushroom weight, longer stipe length and smaller cap diameter than that on cotton seed hull basal substrate. The addition of cotton seed hull to rice straw and wheat straw substrate slowed spawn running, primordial development and fruit body formation. However, increasing the amount of cotton seed hull can increase the uniformity and white of mycelium, yield and biological efficiency, and increase mushroom weight, enlarge cap diameter and shorten stipe length. Compared to the sterilized substrate, the non-sterilized substrate had comparatively higher mycelial growth rate, shorter total colonization period and days from bag opening to primordia formation. However, the non-sterilized substrate did not gave significantly higher mushroom yield and biological efficiency than the sterilized substrate, but some undesirable characteristics, i.e. smaller mushroom cap diameter and relatively long stipe length.

  19. Supplementary material from "Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions"

    NARCIS (Netherlands)

    Driever, S.M.; Simkin, Andrew J.; Alotaibi, Saqer; Fisk, Stuart J.; Madgwick, Pippa J.; Sparks, Caroline A.; Jones, Huw D.; Lawson, Tracy; Parry, Martin A.J.; Raines, Christine A.

    2017-01-01

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf

  20. Agronomic Characteristics Related to Grain Yield and Nutrient Use Efficiency for Wheat Production in China.

    Directory of Open Access Journals (Sweden)

    Limin Chuan

    Full Text Available In order to make clear the recent status and trend of wheat (Triticum aestivum L. production in China, datasets from multiple field experiments and published literature were collected to study the agronomic characteristics related to grain yield, fertilizer application and nutrient use efficiency from the year 2000 to 2011. The results showed that the mean grain yield of wheat in 2000-2011 was 5950 kg/ha, while the N, P2O5 and K2O application rates were 172, 102 and 91 kg/ha on average, respectively. The decrease in N and P2O5 and increase in K2O balanced the nutrient supply and was the main reason for yield increase. The partial factor productivity (PFP, kg grain yield produced per unit of N, P2O5 or K2O applied values of N (PFP-N, P (PFP-P and K (PFP-K were in the ranges of 29.5~39.6, 43.4~74.9 and 44.1~76.5 kg/kg, respectively. While PFP-N showed no significant changes from 2000 to 2010, both PFP-P and PFP-K showed an increased trend over this period. The mean agronomic efficiency (AE, kg grain yield increased per unit of N, P2O5 or K2O applied values of N (AEN, P (AEP and K (AEK were 9.4, 10.2 and 6.5 kg/kg, respectively. The AE values demonstrated marked inter-annual fluctuations, with the amplitude of fluctuation for AEN greater than those for AEP and AEK. The mean fertilizer recovery efficiency (RE, the fraction of nutrient uptake in aboveground plant dry matter to the nutrient of fertilizer application values of N, P and K in the aboveground biomass were 33.1%, 24.3% and 28.4%, respectively. It was also revealed that different wheat ecological regions differ greatly in wheat productivity, fertilizer application and nutrient use efficiency. In summary, it was suggested that best nutrient management practices, i.e. fertilizer recommendation applied based on soil testing or yield response, with strategies to match the nutrient input with realistic yield and demand, or provided with the 4R's nutrient management (right time, right rate, right

  1. Growth and yield of rain fed wheat as affected by different tillage system integrated with glyphosate herbicide

    International Nuclear Information System (INIS)

    Ali, S.; Malik, M.A.; Khan, M.A.

    2016-01-01

    In rainfed areas, tillage is primarily done for moisture conservation and weed control. However, excessive tilling not only harms the soil health but also increases the cost of production. To find out the sustainable and economical tillage combination, response of wheat was studied under different tillage systems integrated with glyphosate herbicide through field experiments conducted at University Research Farm of Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Pakistan during 2012-2014 for two consecutive seasons. Principal component analysis proved that the plant height, biological yield, grain yield and harvest index of wheat were highest in treatment where one moldboard plowing was done followed by eight cultivations without using glyphosate in fallow period, which might be due to vigorous growth of wheat in this tillage system having enhanced root proliferation and moisture conservation, thus allowing plants to extract more nutrients and water from the deeper soil layers; whereas, the number of tillers per square meter, number of spikelets per spike, 1000 grain weight and number of grains per spike of wheat were maximum where one moldboard plowing was done followed by two applications of glyphosate herbicide in fallow period, which might be due to vigorous growth of wheat in this tillage system during 1st year of experiment when unexpected high rainfall was occurred during crop growth stage. Cluster analysis also categorized these two treatments into same category on the base of all agronomic parameters studied. The highest yield (3.5132 t ha-1) and (3.1242 t ha-1) was obtained from where one moldboard plowing was done following eight cultivations without using glyphosate followed by the treatment where one moldboard plowing was done following four cultivations without using glyphosate, respectively and were statistically at par with each other. Therefore one moldboard plowing following four cultivations is recommended for taking higher and

  2. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield.

    Science.gov (United States)

    Yadav, Dinesh; Shavrukov, Yuri; Bazanova, Natalia; Chirkova, Larissa; Borisjuk, Nikolai; Kovalchuk, Nataliya; Ismagul, Ainur; Parent, Boris; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2015-11-01

    Heterotrimeric nuclear factors Y (NF-Ys) are involved in regulation of various vital functions in all eukaryotic organisms. Although a number of NF-Y subunits have been characterized in model plants, only a few have been functionally evaluated in crops. In this work, a number of genes encoding NF-YB and NF-YC subunits were isolated from drought-tolerant wheat (Triticum aestivum L. cv. RAC875), and the impact of the overexpression of TaNF-YB4 in the Australian wheat cultivar Gladius was investigated. TaNF-YB4 was isolated as a result of two consecutive yeast two-hybrid (Y2H) screens, where ZmNF-YB2a was used as a starting bait. A new NF-YC subunit, designated TaNF-YC15, was isolated in the first Y2H screen and used as bait in a second screen, which identified two wheat NF-YB subunits, TaNF-YB2 and TaNF-YB4. Three-dimensional modelling of a TaNF-YB2/TaNF-YC15 dimer revealed structural determinants that may underlie interaction selectivity. The TaNF-YB4 gene was placed under the control of the strong constitutive polyubiquitin promoter from maize and introduced into wheat by biolistic bombardment. The growth and yield components of several independent transgenic lines with up-regulated levels of TaNF-YB4 were evaluated under well-watered conditions (T1-T3 generations) and under mild drought (T2 generation). Analysis of T2 plants was performed in large deep containers in conditions close to field trials. Under optimal watering conditions, transgenic wheat plants produced significantly more spikes but other yield components did not change. This resulted in a 20-30% increased grain yield compared with untransformed control plants. Under water-limited conditions transgenic lines maintained parity in yield performance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Grain-filling duration and grain yield relationships in wheat mutants

    International Nuclear Information System (INIS)

    Larik, A.S.

    1987-01-01

    Nine stable mutants of bread wheat along with their mother cultivars were investigated for grain-filling characteristics in relation to grain yield. Significant differences among mutants for grain-filling duration and grain-filling index were observed. Inspite of the consistent differences in grain-filling duration there was no significant association between grain-filling duration and grain yield in C-591 and Nayab mutants. Failure to detect an yield advantage due to differences in grain-filling duration in these genotypes suggests that any advantage derived from alteration of grain-filling period may have been outweighed by the coincident changes in length of the vegetative period. Other factors such as synchrony of anthesis may have limited out ability to find an association between grainfilling duration and grain yield. On the contrary, significant association between grain-filling duration and grain yield displayed by indus-66 indus-66 mutants derived from gamma rays, shows the ability of gamma rays to induce functional alternations in the pattern of gene arrangements controlling these traits. Thus, the vaability observed in these physiological traits suggests that selection for these traits could be useful in improving grain yield. (author)

  4. Association of yield-related traits in founder genotypes and derivatives of common wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Jie Guo

    2018-02-01

    Full Text Available Abstract Background Yield improvement is an ever-important objective of wheat breeding. Studying and understanding the phenotypes and genotypes of yield-related traits has potential for genetic improvement of crops. Results The genotypes of 215 wheat cultivars including 11 founder parents and 106 derivatives were analyzed by the 9 K wheat SNP iSelect assay. A total of 4138 polymorphic single nucleotide polymorphism (SNP loci were detected on 21 chromosomes, of which 3792 were mapped to single chromosome locations. All genotypes were phenotyped for six yield-related traits including plant height (PH, spike length (SL, spikelet number per spike (SNPS, kernel number per spike (KNPS, kernel weight per spike (KWPS, and thousand kernel weight (TKW in six irrigated environments. Genome-wide association analysis detected 117 significant associations of 76 SNPs on 15 chromosomes with phenotypic explanation rates (R 2 ranging from 2.03 to 12.76%. In comparing allelic variation between founder parents and their derivatives (106 and other cultivars (98 using the 76 associated SNPs, we found that the region 116.0–133.2 cM on chromosome 5A in founder parents and derivatives carried alleles positively influencing kernel weight per spike (KWPS, rarely found in other cultivars. Conclusion The identified favorable alleles could mark important chromosome regions in derivatives that were inherited from founder parents. Our results unravel the genetic of yield in founder genotypes, and provide tools for marker-assisted selection for yield improvement.

  5. Study on the Future Climate Change and Its Influence on the Growth Stage and Yield of Wheat in Weifang City

    Institute of Scientific and Technical Information of China (English)

    Jing; YUAN; Jianping; XU; Lijuan; SUN; Xiuzhen; ZHANG; Xiaoli; WANG

    2015-01-01

    In order to study the trend of climate change in the future in Weifang,and analyze the impact of climate change on the local wheat production,the air temperature and precipitation in Weifang from 2021 to 2050 were simulated by using the regional climate model PRECIS.And then put the meteorological data into the crop model to simulate the growth of wheat under climate change conditions in the future.The results showed that there would be a trend of rising temperature and increasing precipitation in Weifang in the future.Climate warming would result in growth period of wheat to be ahead of schedule and yield reduction.If taking into account the effect of CO2,the yield of wheat would increase.

  6. Effect of varying levels of zinc and manganese of drymatter yield and mineral composition of wheat plant at maturity

    International Nuclear Information System (INIS)

    Sachdev, P.; Deb, D.L.

    1988-01-01

    The fertilizer zinc uptake by wheat increased with increasing zinc levels but the percentage utilisation was much lower with 10 kg Zn ha -1 application (0.65 per cent) as compared to 5 kg Zn ha -1 (1.22 per cent). The zinc derived from fertilizer was significantly affected by the levels of zinc application only in wheat straw and not in grain. The application of varying levels of manganese did not affect the per cent Zndff and fertilizer zinc uptake by wheat. The wheat crop required only 405 g of zinc per hectare with a harvest of 4.7 tonnes of grains and 6.4 tonnes of straw but under zinc deficient soil conditions even this amount could not be met and consequently zinc deficiency resulted in low drymatter production . Only about 66 g of the applied zinc was utilised by the crop but it gave an extra yield of 3.2 q ha -1 of grain and 9.8 q ha -1 of straw compared to that obtained with no zinc application. Application of manganese did not affect the total drymatter yield and straw yield, but grain yield showed significant depression at 20 kg ha -1 level as compared to 10 kg Mn ha -1 level. (author). 6 tabs., 9 refs

  7. Assessment of adaptability and stability of grain yield in bread wheat genotypes under different sowing times in Punjab

    International Nuclear Information System (INIS)

    Anwar, J.; Hussain, M.; Ali, M.A.; Subhani, G.M.; Munir, M.

    2011-01-01

    Twenty advanced lines/genotypes of wheat including two check varieties were sown under two different sowing times through out the Punjab province at 18 different locations with diverse environments to study their stability and adaptability. Normal sowing was done in second week of November 2007 while the delayed sowing was completed during second week of December 2007 during crop season 2007-08. The pooled analysis of variance showed significant differences among environments and genotypes for grain yield demonstrating the presence of considerable variations (p<0.01) among genotypes as well as diversity of growing environments at various locations for both normal and late sown wheat crops. The highest average grain yield was obtained at Jalandar Seed Farm, Arifwala and Pak. German Farm, Multan for normal and delayed sown crops, respectively. Most of the locations emerged as high yielding in normal sowing compared to late sown crop. Dendrograms of 18 locations based on the average yield of 20 wheat genotypes grown under normal and late sown crop revealed two main clusters. Under both normal and late sowing, none of the varieties exceeded the check Seher-2006, however, the check was followed by the advanced lines V-04022 and V-05066 for normal sown crop and Shafaq-2006, V-05066 and V-04022 under delayed sowing. All the genotypes revealed decline in grain yield for late sown wheat crop. The analysis of stability based on mean grain yield, regression coefficient and deviation from regression advocated that the cultivars V-05066 and V-03BT007 were most stable and adapted to diverse environmental conditions of Punjab. These cultivars revealed unit regression and non-significant deviations from regression. The check variety Seher-2006 produced maximum yield for both sowing times that suggested its consistent and stable performance across the environments. (author)

  8. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. southern high plains

    Science.gov (United States)

    Wheat breeding has improved drought tolerance over the years. However, our knowledge on drought tolerance in relation to the canopy temperature (CT) and grain yield is limited. A three-season wheat field study ending 2012, 2015, and 2016 was conducted at Bushland, Texas to investigate the relationsh...

  9. Interpreting genotype × environment interactions for grain yield of rainfed durum wheat in Iran

    Directory of Open Access Journals (Sweden)

    Reza Mohammadi

    2015-12-01

    Full Text Available Clustering genotype × environment (GE interactions and understanding the causes of GE interactions are among the most important tasks in crop breeding programs. Pattern analysis (cluster and ordination techniques was applied to analyze GE interactions for grain yield of 24 durum wheat (Triticum turgidum L. var. durum genotypes (breeding lines and old and new cultivars along with a popular bread wheat (Triticum aestivum cultivar grown in 21 different rainfed environments during the 2010–2013 cropping seasons. To investigate the causes of GE interaction, several genotypic and environmental covariables were used. In a combined ANOVA, environment was the predominant source of variation, accounting for 81.2% of the total sum of squares (TSS, and the remaining TSS due to the GE interaction effect was almost seven times that of the genetic effect. Cluster analysis separated the environments into four groups with similar discriminating ability among genotypes, and genotypes into five groups with similar patterns in yield performance. Pattern analysis confirmed two major environmental clusters (cold and warm, and allowed the discrimination and characterization of genotype adaptation. Within the cold-environment cluster, several subclusters were identified. The breeding lines were most adapted to moderate and warm environments, whereas the old varieties were adapted to cold environments. The results indicated that winter rainfall and plant height were among the environmental and genotypic covariables, respectively, that contributed most to GE interaction for grain yield in rainfed durum wheat.

  10. Projections of uncertainties in climate change scenarios into expected winter wheat yields

    Czech Academy of Sciences Publication Activity Database

    Trnka, M.; Dubrovský, Martin; Semerádová, Daniela; Žalud, Z.

    2004-01-01

    Roč. 77, - (2004), s. 229-249 ISSN 0177-798X R&D Projects: GA ČR GA521/02/0827 Grant - others:Mendel University of Agriculture and Forestry Brno(CZ) J 08/98:432100001 Institutional research plan: CEZ:AV0Z3042911 Keywords : climate change scenarios * wheat yields Subject RIV: GC - Agronomy Impact factor: 0.964, year: 2004

  11. To evaluate the efficacy of zinc sulphate mixed with phosphate and potash fertilizer on the grain yield of wheat (tritium aestivum L.)

    International Nuclear Information System (INIS)

    Abbas, G.; Abbas, Z.; Ali, M.A.; Hussain, I.

    2009-01-01

    A field experiment was conducted to evaluate yield response of wheat cv, BK-2002 at various fertilizer levels, at farmer, fields of District Mianwali during consecutive years 2006-07 and 2007-08. Six levels of ZnSo/sub 4/ mixed with NPK were evaluated in farmer's fields in Randomized Complete Block Design with three replications. All doses of znSo/sub 4/ along with Departmental recommended dose of NPK (114-84- 62 kg ha/sup-l/) revealed a linear increase in, plant height, number of tillers/m/sup 2/, number of spikelets /spike. number of grains/spike, 1000 grains weight (g) and yield (kg ha/sup-1/) of wheat variety BK-2002 were recorded. Maximum yield of wheat was recorded when it was subjected to 22.5 kg ho/sub -1/ 33% ZnSo/sub 4/ Departmental recommended dose of NPK fertilizer. The study indicated the potential role of ZnSo/sub 4/ in enhancing the growth and yield of wheat in arid climate and that 33% ZnSo/sub 4/ (22.5 kg ha/sub -1/) + Departmental recommended dose of NPK, (fertilizer might be the optimum level (T5) for the production of wheat in arid climate. (author)

  12. Effect of Trichoderma harzianum on Wheat (Triticum aestivum L. Grain Yield under Different Levels of Cadmium Nitrate

    Directory of Open Access Journals (Sweden)

    F. Taghavi Ghasemkheyli

    2014-12-01

    Full Text Available A pot experiment was designed to evaluate the effect of Trichoderma spp. on yield and yield components of wheat (cv. N81 under different levels of cadmium nitrate. Experiment was arranged in factorial based on completely randomized design with three replicates. Trichoderma harzianum at two levels (with and without inoculation and four levels of cadmium nitrate (0, 50, 100, 150 mg l-1 were the treatment. Results of ANOVA and mean comparisons showed that inoculation of Trichoderma increased biological yield (46% and straw yield (30% as compared to control. Cadmium pollution has led to significant decrease in harvest index, grain number per spike and partitioning coefficient up to 5, 20, 24 and 38 percent compared to control, respectively. Furthermore, cadmium and fungus interaction were significant in terms of spike number, grain weight per spike, grain yield and tolerance index. Maximum grain yield and tolerance index were recorded in Trichoderma inoculation under cadmium-free plots which nearly increased 65 and 53 percent, respectively. In conclusion, using Trichoderma under cadmium pollution could improve wheat growth, yield and tolerance index

  13. Impact of organic amendments on soil carbon sequestration, water use efficiency and yield of irrigated wheat

    Directory of Open Access Journals (Sweden)

    Shehzadi, S.

    2017-01-01

    Full Text Available Description of the subject. Soil organic carbon (SOC plays critical role in terrestrial carbon (C cycling and is central to preserving soil quality, food security and environmental protection in agroecosystem. The prevailing soil and climatic conditions of cultivated and irrigated soils in warm semi-arid areas favor the rapid decomposition, mineralization and loss of SOC to the atmosphere which contribute to global warming. One potential strategy to address this C loss is the addition of organic amendments. Objectives. To investigate the effect of four contrasting organic wastes with and without NPK mineral fertilizer on SOC retention, water use efficiency (WUE and wheat yield in irrigated wheat-maize cropping system. Method. A 2-year field experiment was conducted using four organic wastes included municipal solid waste (MSW, farm yard manure (FYM, sugar industry waste (filter cake and maize cropping residues. All wastes were applied at 3 t C·ha-1 alone and with a full or half dose of NPK mineral fertilizer. Results. On average, among organic wastes as sole treatment, highest SOC content in the 0-15 cm layer was recorded in filter cake (6.5 t·ha-1 and MSW (5.9 t·ha-1. Addition of NPK fertilizer along with organic wastes, improved the SOC contents with the highest SOC (7.7 t·ha-1 by filter cake + full NPK treatment followed by the MSW + NPK (6.9 t·ha-1. On average, maximum wheat grain WUE (18 kg·ha-1·mm-1 and grain yield (4.8 t·ha-1 were obtained by MSW + full NPK treatment followed by filter cake + NPK. Conclusions. These results indicate that the targeted addition of organic wastes (filter cake or MSW have the best potential for improving SOC retention, WUE and wheat yield in irrigated maize-wheat cropping system.

  14. Heritability studies of yield and yield associated traits in bread wheat

    International Nuclear Information System (INIS)

    Laghari, K.A.; Sial, M.A.; Arain, M.A.; Mirbahar, A.A.; Pirzada, A.; Mancrio, S.M.; Dahot, M.U.

    2010-01-01

    Heritability studies provide valid information about the traits that are transmitted from parents to offspring and also to the successive generations. Such studies help plant breeders to predict a successful cross with high heritability transmission to the progeny and thus are useful in the incorporation of characters into the offspring. Heritability study was conducted in F5 segregating generation of a cross between HT5 (female) and HT 37 (male) of bread wheat. The genetic parameters calculated were genetic variance (Vg,), environmental variance (Ve) and heritability percentage in broad sense (h2%), genetic advance (GA) and heritability coefficient (H). The highest heritability was observed for spike length (79.3%), number of grains per spike (54.5%) and main spike yield (69.5%) associated with high genetic advance (2.8, 22.8 and 1.5 respectively). Moderate to high heritability were recorded for peduncle length (48.75%) and number of grains per spikelet (47.2%) which associated with high genetic advance (2.3 and 0.68 respectively). However awn length and plant height had shown acceptable heritability values. The present finding suggests that most of the yield associated traits have been successfully transmitted. The information generated will be helpful for better understanding and selection of suitable, desirable material especially in advance generations. (author)

  15. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    Science.gov (United States)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  16. Effect of application approaches of ammonium bicarbonate on yield of spring wheat and nitrogen balance

    International Nuclear Information System (INIS)

    Wen Xianfang; Pan Jiarong; Zheng Xingyun

    1995-01-01

    The results from 15 N-tracing experiment showed that at the same rate of nitrogen application, the nitrogen utilization ammonium bicarbonate was 33.50%, 32.30% and 23.19% respectively and the nitrogen loss rate of ammonium bicarbonate was 22.12%, 26.93% and 45.32% respectively for fertilizer mixed thoroughly with soil before sowing, buried into soil and spread on the surface of soil at both joining stage (1/2N) and booting stage (1/2N) of spring wheat. The nitrogen utilization of ammonium bicarbonate for top-application at both joining (1/2N) and booting stage (1/2N) was significantly lower but nitrogen loss rate was significantly higher than that of either thorough incorporation with soil or deep application at joining and booting stages. Between the latter treatments there was no significantly difference observed. There was no significant difference in biomass and grain yield of spring wheat between the former treatment and either of the latter treatments, indicating that buried into soil or mixed with soil thoroughly as a basal fertilizer was an available approach to increase the nitrogen availability of ammonium bicarbonate and crop yield. It was also shown that no significant difference in biomass and grain yield of spring wheat between deep application of ammonium bicarbonate and top-application of urea at the same rate of N application

  17. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain.

    Science.gov (United States)

    Li, Kenan; Yang, Xiaoguang; Tian, Hanqin; Pan, Shufen; Liu, Zhijuan; Lu, Shuo

    2016-01-01

    Understanding how changing climate and cultivars influence crop phenology and potential yield is essential for crop adaptation to future climate change. In this study, crop and daily weather data collected from six sites across the North China Plain were used to drive a crop model to analyze the impacts of climate change and cultivar development on the phenology and production of winter wheat from 1981 to 2005. Results showed that both the growth period (GP) and the vegetative growth period (VGP) decreased during the study period, whereas changes in the reproductive growth period (RGP) either increased slightly or had no significant trend. Although new cultivars could prolong the winter wheat phenology (0.3∼3.8 days per decade for GP), climate warming impacts were more significant and mainly accounted for the changes. The harvest index and kernel number per stem weight have significantly increased. Model simulation indicated that the yield of winter wheat exhibited increases (5.0∼19.4%) if new cultivars were applied. Climate change demonstrated a negative effect on winter wheat yield as suggested by the simulation driven by climate data only (-3.3 to -54.8 kg ha(-1) year(-1), except for Lushi). Results of this study also indicated that winter wheat cultivar development can compensate for the negative effects of future climatic change.

  18. Effect of Low Doses of Gamma Radiation and Nitrogen Fertilization on Growth and Yield of Wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Moussa, H.R.; Khodary, S.E.A.

    2006-01-01

    An experiment was conducted to study the effect of gamma radiation at the rates of 0.0, 5, 10 and 20 Gy on growth characteristics and total yield of wheat fertilized with 40,80 and 100 kg ha of urea as a source of nitrogen. The application of 100 kg N ha -1 produced 8170 kg ha 1 of grain and 10477 kg ha of straw yield. The nitrogen fertilization increased significantly plant height, 1000-grain weight grain and straw yield. Nitrogen at 100 kg ha -1 produced 8170 kg ha -1 of grain and 10477 kg ha -1 of straw yield. Also, the radiation dose (20 Gy) produced 4895 kg ha -1 of grain and 9150 kg ha 1 of straw yield. The interaction of both radiation dose (20 Gy) and nitrogen fertilization (100 kg ha -1 ) increased significantly the spike length, 1000-grain weight and consequently the total grain and straw yield. It can be concluded from the present study that pretreatment of wheat grain by gamma radiation dose (20 Gy) before.planting and using nitrogen fertilization (100 kg ha -1 ) may be considered as promising useful in increasing the efficiency of wheat productivity, which is very important crop in Egypt

  19. Evaluation of wheat growth, morphological characteristics, biomass yield and quality in Lunar Palace-1, plant factory, green house and field systems

    Science.gov (United States)

    Dong, Chen; Shao, Lingzhi; Fu, Yuming; Wang, Minjuan; Xie, Beizhen; Yu, Juan; Liu, Hong

    2015-06-01

    Wheat (Triticum aestivum L.) is one of the most important agricultural crops in both space such as Bioregenerative Life Support Systems (BLSS) and urban agriculture fields, and its cultivation is affected by several environmental factors. The objective of this study was to investigate the influences of different environmental conditions (BLSS, plant factory, green house and field) on the wheat growth, thousand kernel weight (TKW), harvest index (HI), biomass yield and quality during their life cycle. The results showed that plant height partially influenced by the interaction effects with environment, and this influence decreased gradually with the plant development. It was found that there was no significant difference between the BLSS and plant factory treatments on yields per square, but the yield of green house and field treatments were both lower. TKW and HI in BLSS and plant factory were larger than those in the green house and field. However, grain protein concentration can be inversely correlated with grain yield. Grain protein concentrations decreased under elevate CO2 condition and the magnitude of the reductions depended on the prevailing environmental condition. Conditional interaction effects with environment also influenced the components of straw during the mature stage. It indicated that CO2 enriched environment to some extent was better for inedible biomass degradation and had a significant effect on "source-sink flow" at grain filling stage, which was more beneficial to recycle substances in the processes of the environment regeneration.

  20. Effects of Combined Application of Nitrogen and Potassiumon on Yield and Nutrient Accumulation of Wheat in Huaibei Lime Concretion Black Soil Area, China

    Directory of Open Access Journals (Sweden)

    LEI Zhi-meng

    2017-03-01

    Full Text Available To provide theoretical and technical basis for the scientific application of nitrogen (N and potassium (K fertilizer in wheat cropping in Huaibei lime concretion black soil area, a field experiment was performed to study the effects of different N and K treatments (N:180, 240, 300, 360 kg·hm-2;K:90, 135, 180 kg·hm-2 on wheat yields, absorption of N and K, and fertilizer benefits. The results showed that: (1The wheat yield under application of N240K180 reached 7 686 kg·hm-2, which was significantly increased by 7.24% comparing with that under N180K90, and there was no significant differences between the yields under N240K180 and N360K180; (2Compared with the contents of N and K in wheat under N180K90, those under N240K180 were significantly increased by 14.67% and 29.53%, respectively; (3There was a positive interaction between the application of N and K fertilizer, and the interaction was significantly correlated with wheat yield at a contribution rate of 14.06%, which consequently increased the partial productivities of N and K fertilizer. Considering wheat yield and fertilizer benefit, the optimum application amounts of N and K2O fertilizer were 240 kg·hm-2和180 kg·hm-2 in Huaibei lime concretion black soil area.

  1. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    Directory of Open Access Journals (Sweden)

    Yunlu Tian

    Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  2. Evaluation of soil and foliar fertilization on wheat yield and quality

    International Nuclear Information System (INIS)

    Ndiema, A.C.; Maina, M.P.D.; Kamundia, W.J.

    2001-01-01

    Traditionally wheat farmers in Kenya apply basal compound fertilizer like diammonium phosphate (DAP), Triple super phosphate (TSP). Plants require a considerable number of different elements for optimal growth. One way of supplying these micronutrients is through foliar fertilization. However there was an increase of 71.7% for 40kg N/ha plus bayfolan in Njoro over the control, 61.8% for bayfolan alone a foliar fertilizer, which contain a wide range of plant nutrients. In Molo the control out-yielded all the treatments indicating that planting the crop with DAP is sufficient. Foliar fertilizer was applied directly to the plant leaves to enhance crop yield due to their rapid absorption. The potential of improving yields comes as a result of increase in number of seeds. The objective of this study was to evaluate the effects of foliar fertilizer on wheat yield when used alone or in combination with soil-applied fertilizers. Byfolan is a fast acting fertilizer with nutrients rapidly becoming available to the plant. The composition of Bayfolan includes N (11%), P (8%), K (6%), Fe (0.019%), Mn (0.016%). Zn (0.0061% ), Co (0.00035%), Mo (0.00009%), sodium, sulphur, vitamin B 1 and growth hormones. The design was RCBD with nine (9) treatments and three (3) replications. The treatments included control, 20kg N/ha, 40kg N/ha, 80kg N/ha, Bayfolan foliar, 20kg N/ha + Baylon a foliar, 40kg N/ha + Bayfolan foliar, 20kg N/ha urea in solution form, 20kg N/ha urea in solution form + Bayfolan foliar. DAP was applied at the rate of 130kg/ha, as a blanket treatment at planting timeto provide N and P for initial growth. Significant difference in spike density and kernel weight at 5% level was observed at farms in Njoro but not at farms in Molo. (author)

  3. Classifying Multi-Model Wheat Yield Impact Response Surfaces Showing Sensitivity to Temperature and Precipitation Change

    Science.gov (United States)

    Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; hide

    2017-01-01

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the

  4. Canola-Wheat Rotation versus Continuous Wheat for the Southern Plains

    OpenAIRE

    Duke, Jason C.; Epplin, Francis M.; Vitale, Jeffrey D.; Peeper, Thomas F.

    2009-01-01

    Crop rotations are not common in the wheat belt of the Southern Plains. After years of continuous wheat, weeds have become increasingly difficult and expensive to manage. Yield data were elicited from farmers and used to determine if canola-wheat-wheat rotations are economically competitive with continuous wheat in the region.

  5. Comparing Relationships among Yield and Its Related Traits in Mycorrhizal and Nonmycorrhizal Inoculated Wheat Cultivars under Different Water Regimes Using Multivariate Statistics

    Directory of Open Access Journals (Sweden)

    Armin Saed-Moucheshi

    2013-01-01

    Full Text Available Multivariate statistical techniques were used to compare the relationship between yield and its related traits under noninoculated and inoculated cultivars with mycorrhizal fungus (Glomus intraradices; each one consisted of three wheat cultivars and four water regimes. Results showed that, under inoculation conditions, spike weight per plant and total chlorophyll content of the flag leaf were the most important variables contributing to wheat grain yield variation, while, under noninoculated condition, in addition to two mentioned traits, grain weight per spike and leaf area were also important variables accounting for wheat grain yield variation. Therefore, spike weight per plant and chlorophyll content of flag leaf can be used as selection criteria in breeding programs for both inoculated and noninoculated wheat cultivars under different water regimes, and also grain weight per spike and leaf area can be considered for noninoculated condition. Furthermore, inoculation of wheat cultivars showed higher value in the most measured traits, and the results indicated that inoculation treatment could change the relationship among morphological traits of wheat cultivars under drought stress. Also, it seems that the results of stepwise regression as a selecting method together with principal component and factor analysis are stronger methods to be applied in breeding programs for screening important traits.

  6. Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries

    NARCIS (Netherlands)

    Kowalik, W.; Dabrowska-Zielinska, K.; Meroni, M.; Raczka, T.U.; Wit, de A.J.W.

    2014-01-01

    In the period 1999-2009 ten-day SPOT-VEGETATION products of the Normalized Difference Vegetation Index (NDVI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) at 1 km spatial resolution were used in order to estimate and forecast the wheat yield over Europe. The products were

  7. Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum).

    Science.gov (United States)

    Weiner, Jacob; Du, Yan-Lei; Zhang, Cong; Qin, Xiao-Liang; Li, Feng-Min

    2017-09-01

    Although the importance of group selection in nature is highly controversial, several researchers have argued that plant breeding for agriculture should be based on group selection, because the goal in agriculture is to optimize population production, not individual fitness. A core hypothesis behind this claim is that crop genotypes with the highest individual fitness in a mixture of genotypes will not produce the highest population yield, because fitness is often increased by "selfish" behaviors, which reduce population performance. We tested this hypothesis by growing 35 cultivars of spring wheat (Triticum aestivum L.) in mixtures and monocultures, and analyzing the relationship between population yield in monoculture and individual yield in mixture. The relationship was unimodal, as predicted. The highest-yielding populations were from cultivars that had intermediate fitness, and these produced, on average, 35% higher yields than cultivars with the highest fitness. It is unlikely that plant breeding or genetic engineering can improve traits that natural selection has been optimizing for millions of years, but there is unutilized potential in traits that increase crop yield by decreasing individual fitness. © 2017 by the Ecological Society of America.

  8. Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield.

    Science.gov (United States)

    Reis, Sara; Pavia, Ivo; Carvalho, Ana; Moutinho-Pereira, José; Correia, Carlos; Lima-Brito, José

    2018-07-01

    Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L -1 to 8 mg L -1 ) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. 'Jordão' when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L -1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L -1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L -1 of Fe and/or 8 mg L -1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L -1 Fe + 2 mg L -1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.

  9. Phenotypic Correlation Between Yield and Yield components of Read wheat (Triticum Aestivum L) in Drought Simulated Conditions in Kenya

    International Nuclear Information System (INIS)

    Kimurto, P.K.

    2002-01-01

    Establishing the presence and magnitude of x watering regimes interaction and stability of yield under drought simulated conditions would allow plant breeders select the drought tolerant wheat genotypes based on their performance at different rainfall patterns in different locations, not on overall mean yield. Development of drought tolerant wheat varieties in Kenya in an easier, cheaper and more efficient way is required most of it's land area is marginal. Four moisture stress regimes which simulated terminal, early, mid and late drought were created under rain shelter by supplying 70, 82, 94, 106 mm of moisture up to seedling stage, tillering, anthesis and grain filling, respectively. control had 118 mm of moisture applied at all stages. Four test genotypes R748, R830, R831 and R833 were tested together with one check variety, Duma. Yields for each genotype in two seasons were analysed using ANOVA and genotype x watering regimes assessed. Yield stability was also analysed using regression analysis. The result showed that genotype x watering regimes interaction was highly significant, suggesting that genotypes responded differently to increases water levels in each season. This indicated that selecting of drought tolerant genotypes for marginal areas under rain shelter should be based on those rainfall regimes. Yield stability across watering regimes varied among genotypes with Duma and R830 being the most stable cultivars, indicating that they only do well in low water levels. Genotypes R748 and R831 were the most unstable among all the test cultivars. R748 was the most responsive to increasing levels, indicating that it can be grown in low and high rainfall areas. The study showed that selection of stable drought tolerant cultivars using mobile rain shelters is possible

  10. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers.

    Science.gov (United States)

    Li, Faji; Wen, Weie; He, Zhonghu; Liu, Jindong; Jin, Hui; Cao, Shuanghe; Geng, Hongwei; Yan, Jun; Zhang, Pingzhi; Wan, Yingxiu; Xia, Xianchun

    2018-06-01

    We identified 21 new and stable QTL, and 11 QTL clusters for yield-related traits in three bread wheat populations using the wheat 90 K SNP assay. Identification of quantitative trait loci (QTL) for yield-related traits and closely linked molecular markers is important in order to identify gene/QTL for marker-assisted selection (MAS) in wheat breeding. The objectives of the present study were to identify QTL for yield-related traits and dissect the relationships among different traits in three wheat recombinant inbred line (RIL) populations derived from crosses Doumai × Shi 4185 (D × S), Gaocheng 8901 × Zhoumai 16 (G × Z) and Linmai 2 × Zhong 892 (L × Z). Using the available high-density linkage maps previously constructed with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, 65, 46 and 53 QTL for 12 traits were identified in the three RIL populations, respectively. Among them, 34, 23 and 27 were likely to be new QTL. Eighteen common QTL were detected across two or three populations. Eleven QTL clusters harboring multiple QTL were detected in different populations, and the interval 15.5-32.3 cM around the Rht-B1 locus on chromosome 4BS harboring 20 QTL is an important region determining grain yield (GY). Thousand-kernel weight (TKW) is significantly affected by kernel width and plant height (PH), whereas flag leaf width can be used to select lines with large kernel number per spike. Eleven candidate genes were identified, including eight cloned genes for kernel, heading date (HD) and PH-related traits as well as predicted genes for TKW, spike length and HD. The closest SNP markers of stable QTL or QTL clusters can be used for MAS in wheat breeding using kompetitive allele-specific PCR or semi-thermal asymmetric reverse PCR assays for improvement of GY.

  11. Influence of Conservation Tillage on some Soil Physical Properties and Crop Yield in Vetch-Wheat Rotation in Dryland Cold Region

    Directory of Open Access Journals (Sweden)

    I Eskandari

    2017-10-01

    Full Text Available Introduction Winter wheat is an important, well-adapted grain crop under dryland condition of the northwest of Iran. Soil water is the most limiting resource for crop growth in dryland areas. Therefore, farmers need to use crop residues and minimum tillage to control the soil erosion and effectively store and to use the limited precipitation received for crop production. Crop rotation and tillage system could affect crop yield due to their effects on water conservation and soil chemical and physical properties. Galantini et al., (2000 studied the effect of crop rotation on wheat productivity in the Pampean semi-arid region of Argentina and found that a wheat–vetch (Vicia sativa L. rotation resulted in higher yield and protein content, and greater yield components than the other rotations.Payne et al. (2000 stated that where precipitation amount is marginal (400 mm, dry field pea offers a potential alternative to summer fallowing. The purpose of this study was to identify the optimal tillage system for increasing crop productivity in a vetch–wheat rotation in dryland farming of the northwest of Iran. Materials and Methods The field experiment was carried out from 2010 to 2014 at the Dryland Agricultural Research Station (latitude37° 12´N; longitude 46◦20´E; 1730 m a.s.l., 25 km east of Maragheh, East Azerbaijan Province, Iran. The long-term (10 years average precipitation, temperature and relative humidity of the station are 336.5 mm, 9.4 ◦C and 47.5%, respectively. The soil (Fine Mixed, Mesic, Vertic Calcixerepts, USDA system; Calcisols, FAO system at the study site had a clay loam texture in the 0–15 cm surface layer and a clay texture in the 15–80 cm depth. This study was conducted in vetch (Vicia pannonica- wheat (Triticum aestivum L. rotation. The experiment was arranged in a randomized complete block design with four replications. The tillage treatments consisted of (1 conventional tillage: moldboard plowing followed by one

  12. The Effect of Nitroxin Biofertilizer and Foliar Applicatin of Micronutrients Time Consumption on Yield and Yield Components of New Wheat Cultivars under Khorramabad Climatic Conditions

    Directory of Open Access Journals (Sweden)

    A. Vaez

    2016-02-01

    Full Text Available Introduction In order to study the effects of Nitroxin biofertilizer and foliar application of micronutrients time consumption on yield and yield components of new wheat cultivars (Triticum aestivum & T. durum under Khorramabad climatic conditions, an experiment was conducted as factorial based on a randomized complete block design with three replications at the research farm khorramabad during growing season of 2012-2013. Considering the positive effect of inoculation with bio-fertilizer and foliar Nitroxin micronutrients and reaction of cultivars to this type of fertilizer instead of chemical fertilizers and the importance of wheat as one of the main crops, this study aims to determine the most appropriate time for foliar and Nitroxin application of micronutrients at the different stages of plant growth and bio-fertilizer application on yield and yield components. Materials and Methods The first factor was considered in six levels: N0: The lack of the seed insemination with nitroxin biofertilizer and without the foliar application of micronutrients (control, N1: the seed inoculation with the nitroxin biofertilizer, N2: the foliar application of micronutrients at the jointing stage, N3: the foliar application of micronutrients at the heading stage, N4: the seed insemination with nitroxin biofertilizer and foliar application of micronutrients at the jointing stage, N5: the seed insemination with nitroxin biofertilizer and foliar application of micronutrients at the heading stage. The second factor was considered at two levels, consisting: V1: Parsi cultivar and V2: Dena cultivar. MSTATC Software was used for data analysis and means were compared by Duncan's multiple range test at the 5% level. Results and Discussion In this experiment the grain yield, biological yield, harvest index, 1000- grain weight, spike number per m-2, grain number per spike and spikelet number per spike of wheat were studied. The results of the data variance analysis has

  13. Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Akhtar, Nahid; Yamaguchi, Masahiro; Inada, Hidetoshi; Hoshino, Daiki; Kondo, Taisuke; Izuta, Takeshi

    2010-01-01

    To clarify the effects of O 3 on crop plants cultivated in Bangladesh, two Bangladeshi wheat cultivars (Sufi and Bijoy) were grown in plastic boxes filled with Andisol and exposed daily to charcoal-filtered air or O 3 at 60 and 100 nl l -1 (10:00-17:00) from 13 March to 4 June 2008. The whole-plant dry mass and grain yield per plant of the two cultivars at the final harvest were significantly reduced by the exposure to O 3 . Although there was no significant effect of O 3 on stomatal diffusive conductance to H 2 O of flag leaf, net photosynthetic rate of the leaf was significantly reduced by the exposure to O 3. The sensitivity of growth, yield, yield components and leaf gas exchange rates to O 3 was not significantly different between the two cultivars. The results obtained in the present study suggest that ambient levels of O 3 may detrimentally affect wheat production in Bangladesh. - The exposure to ambient levels of ozone decreases growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat.

  14. Warming and nitrogen fertilization effects on winter wheat yields in northern China varied between four years

    DEFF Research Database (Denmark)

    Liu, Liting; Hu, Chunsheng; Olesen, Jørgen E

    2013-01-01

    per m2. This suggests that the wheat yield loss may be related to reduction of spike number, which was affected by decreased soil water content under warming. Warming tended to give larger yield reductions at higher nitrogen fertilizer rates, and this may be related to larger water consumption...... with both higher nitrogen and temperature leading to water shortages. These effects indicate that wheat yield loss from warming was primarily associated with more severe water shortage from greater evapotranspiration under warming. The large crop canopy in the fertilized plot may further have enhanced......). The volumetric water content decreased significantly before heading by 9.3, 3.9, 2.4 and 1.2 vol% in the soil depth of 0.10, 0.20, 0.40, 0.60 m in N2 and by 5.9, 1.4, 1.3 and 1.2 vol% in N1 from heating compared with no heating. The duration of the entire growth period was shortened by on average 7 days...

  15. Combining ability studies on yield related traits in wheat under normal and water stress conditions

    International Nuclear Information System (INIS)

    Saeed, A.; Khan, A.S.; Khaliq, I.

    2010-01-01

    Six diverse wheat cultivars/lines viz; Baviacore, Nesser, 9247, 9252, 9258 and 9267 were crossed in a complete diallel fashion to develop 30 F1 crosses, which were tested along with their parents under normal and water stress conditions. Numerical analysis was made for spike density, number of grains per spike, 100-grain weight, biological yield, grain yield and harvest index. Significant differences among genotypic mean were observed in all of the traits under both conditions. GCA and SCA differences were significant for all the traits under study except spike density and 100-grain weight in both conditions. Wheat variety Nesser showed maximum general combining ability value for spike density under water stress conditions and maximum GCA value for biological yield and grain yield under irrigated condition. The variety Baviacore proved best general combiner for number of grains per spike and harvest index under both conditions while biological yield and grain yield under water stress condition. Variety 9252 found best general combiner for 100-grain weight under both condition. The cross 9252 x Nesser showed maximum specific combining ability value for spike density and biological yield under irrigated while for 100-grain weight under water stress condition. 9258 x 9252 exhibited maximum SCA for number of grains per spike under irrigated while 9258 x Nesser under water stress condition. 9267 x Nesser showed maximum SCA for 100-grain weight under irrigated condition while spike density under water stress condition. 9258 x 9247 was proved best combiner for grain yield and harvest index irrigated while 9267 x 9258 for biological yield, grain yield and harvest index under water stress condition. (author)

  16. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    Directory of Open Access Journals (Sweden)

    Lihua Lv

    2013-09-01

    Full Text Available Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP. In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L., grain yield (GY, yield components, and water use efficiency (WUE were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009. Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28, produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24 and irrigation or precipitation at the reviving stage (28 significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.

  17. Crop yield and light/energy efficiency in a closed ecological system: Laboratory Biosphere experiments with wheat and sweet potato.

    Science.gov (United States)

    Nelson, M; Dempster, W F; Silverstone, S; Alling, A; Allen, J P; van Thillo, M

    2005-01-01

    Two crop growth experiments in the soil-based closed ecological facility, Laboratory Biosphere, were conducted from 2003 to 2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted at two densities, 400 and 800 seeds m-2. The lighting regime for the wheat crop was 16 h of light-8 h dark at a total light intensity of around 840 micromoles m-2 s-1 and 48.4 mol m-2 d-1 over 84 days. Average biomass was 1395 g m-2, 16.0 g m-2 d-1 and average seed production was 689 g m-2 and 7.9 g m-2 d-1. The less densely planted side was more productive than the denser planting, with 1634 g m-2 and 18.8 g m-2 d-1 of biomass vs. 1156 g m-2 and 13.3 g m-2 d-1; and a seed harvest of 812.3 g m-2 and 9.3 g m-2 d-1 vs. 566.5 g m-2 and 6.5 g m-2 d-1. Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155 a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 18 h on/6 h dark cycle, totaled 5568 total moles of light per square meter in 126 days for the sweet potatoes, or an average of 44.2 mol m-2 d-1. Temperature regime was 28 +/- 3 degrees C day/22 +/- 4 degrees C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m-2, and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight. Average per day production was 58.7 g m-2 d-1 wet weight and 11.3 g m-2 d-1. For the wheat, average light efficiency was 0.34 g biomass per mole, and 0.17 g seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 1.33 g mol-1 and 0.34 g dry weight of tuber per mole of light. The best area of tuber production had 1.77 g mol-1 wet weight and 0.34 g mol-1 of light dry weight. The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU field results but somewhat below

  18. Analysis of Yield and Yield Related Traits Variability of Winter Wheat (Triticum aestivum L. Cv. Izolda and Double Haploid Lines

    Directory of Open Access Journals (Sweden)

    Kozdój Janusz

    2015-12-01

    Full Text Available The yield-forming potential of winter wheat is determined by several factors, namely total number of shoots per plant and total number of spikelets per spike. The field experiments were conducted during three vegetation seasons at the Plant Breeding and Acclimatization Institute – National Research Institute (PBAI–NRI, located in Radzików, Poland. The objective of this study was a comparative analysis of the structural yield-forming factor levels, which determine grain yield per spike and per plant of the DH lines and standard Izolda cultivar. Results indicate that several DH lines showed some differences in tested morphological structures of plant, yield factor levels and in grain yield per spike and per plant in comparison to standard Izolda, regardless of the year. Mean grain yield per plant of DH lines was 26.5% lower in comparison to standard Izolda only in the second year of study. It was caused by a reduction of productive tillers number. Structural yield-forming potential of DH lines was used in 38% and 59% and in case of Izolda in 47% and 61% (the second and the third year of experiment, respectively. The mean grain yield per spike of DH lines was 14.8% lower than Izolda cultivar only in third year of experiment and it was caused by about 12% lower number of grains per spike. Structural yield-forming potential of DH spikes was used in 82.4%, 85.4% and 84.9% and in case of Izolda in 83.8%, 87% and 89.5% (the first, the second and the third year of experiment, respectively. The grain yield per winter wheat plant (both DH lines and standard Izolda was significantly correlated with the number of productive tillers per plant (r = 0.80. The grain yield per winter wheat spike (both DH lines and Izolda cultivar was significantly and highly correlated with the number of grains per spike (r = 0.96, number of fertile spikelets per spike (r = 0.87 and the spike length (r = 0.80. Variation of spike and plant structural yield-forming factors

  19. Quantitative Research on the Relationship between Yield of Winter Wheat and Agroclimatological Resources—the Case Study from Yanzhou District, Shandong Province, China

    Science.gov (United States)

    Yan, Maoling; Liu, Pingzeng; Zhang, Chao; Zheng, Yong; Wang, Xizhi; Zhang, Yan; Chen, Weijie; Zhao, Rui

    2018-01-01

    Agroclimatological resources provide material and energy for agricultural production. This study is aimed to analyze the impact of selected climate factors change on wheat yield over the different growth period applied quantitatively method, by comparing two different time division modules of wheat growth cycle- monthly empirical-statistical multiple regression models ( From October to June of next year ) and growth stage empirical-statistical multiple regression models (Including sowing stage, seedling stage, tillering stage, overwintering period, regreening period, jointing stage, heading stage, maturity stage) analysis of relationship between agrometeorological data and growth stage records and winter wheat production in Yanzhou, Shandong Province of China. Correlation analysis(CA)was done for 35 years (from 1981 to 2015) between crop yield and corresponding weather parameters including daily mean temperature, sunshine duration, and average daily precipitation selected from 18 different meteorological factors. The results shows that the greatest impact on the winter wheat yield is the precipitation overwintering period in this area, each 1mm increase in daily mean rainfall was associated with 201.64 kg/hm2 lowered output. Moreover, the temperature and sunshine duration in heading period and maturity stage also exert significant influence on the output, every 1°C increase in daily mean temperature was associated with 199.85kg/hm2 adding output, every 1h increase in mean sunshine duration was associated with 130.68kg/hm2 reduced output. Comparing with the results of experiment which using months as step sizes and using farming as step sizes was in better agreement with the fluctuation in meteorological yield, offered a better explanation on the growth mechanism of wheat. Eventually the results indicated that 3 factors affects the yield during different growing periods of wheat in different extent and provided more specific reference to guide the agricultural

  20. Responses of Seed Yield, Yield Components and Some Morpho-physiological Traits of Wheat Cultivars (Triticum aestivum to the Application Methods of Fulzyme Biofertilizer

    Directory of Open Access Journals (Sweden)

    A. Eslami

    2014-10-01

    Full Text Available To study the effect of application methods of Fulzym biofertilizer (containing Bacillus subtilis on yield, yield components and some morpho-physiological characteristics of four cultivars wheat, an experiment was conducted in field of Astan Quds Razavi in 2010- 2011. The experiment performed was in split plot based on randomized complete block design with three replications. Four wheat cultivars (Falat, Pishtaz, Bahar and Toos were assigned to main plots and four biofertilizer application methods (as seed inoculation, using in irrigation water, seed inoculation and irrigation and control to sub plots. Results indicated that Falat had the lowest plant height (61.5 cm than other varieties. Plant height of Toos and Pishtaz were about 14.5 percent higher than Falat. Application methods of Fulzym increased chlorophyll content and plant height. Highest chlorophyll contents were obtained when seeds inoculated by Fulzyme and used through irrigation. At the end of growing season, it was found that chlorophyll content of Falat and Toos flag leaves were higher than Pishtaz and Bahar. It was also revealed that Bahar when Fulzyme was used showed a better response to treatments than other varieties as for as biological and seed yields were concerned. Highest seed yield produced by irrigation and combination of seed inoculation and irrigation (9063 and 8609 kg.ha-1 and lowest seed yield (5858 kg.ha-1 to Falat in the control treatment.

  1. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain

    Science.gov (United States)

    Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP. PMID:27612146

  2. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Xiuwei Liu

    Full Text Available The major wheat production region of China the North China Plain (NCP is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L. was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.

  3. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    Science.gov (United States)

    Liu, Xiuwei; Sun, Hongyong; Feike, Til; Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.

  4. Uncertainty in Simulating Wheat Yields Under Climate Change

    Science.gov (United States)

    Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.; hide

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.

  5. Influence of irrigation and nitrogen fertilization on grain yield and some baking quality characteristics of spring wheat

    Directory of Open Access Journals (Sweden)

    Paavo Elonen

    1975-05-01

    Full Text Available In the years 1967—70 twelve irrigation experiments of spring wheat were carried out in southern Finland (60-62° N, 22-26° E. Sprinkler irrigation (2 X 30 mm increased the grain yields on an average by 1240±470kg/ha (from 2740 to 3980 kg or 45±17 %. The increases in yield were significant on clay soils (9 trials and loam (1 trial but insignificant on fines and (1 trial and mould (1 trial. Additional nitrogen fertilization (from 76 to 143kg/ha N increased the grain yields on an average by 350± 200 kg/ha or 11±6 %. The ripening of wheat was significantly promoted by irrigation in one year but slightly retarded in three years. Nitrogen fertilization slightly retarded ripening every year The falling number of grains tended to be slightly improved by irrigation (from 285 to 321, on an average, but in most trials irrigation and nitrogen fertilization had no significant influence on the falling number. Irrigation decreased the crude protein content of grains in all trials, on an average by 2.2 ± 0.7 %-units (from 16.3 to 14.1%. This unfavourable effect was, however, avoided with additional nitrogen which increased the protein content by 1.9±0.4%-units (from 14,3 to 16.2 %. The effects of irrigation and nitrogen fertilization on those characteristics of wheat that are correlated with protein, were similar to the effects on the protein content. Thus, irrigation decreased the zeleny value (from 64 to 53 ml, cold viscosity (from 214 to 114 seconds, water absorption (from 66.5 to 64.9 % and the valorimeter value (from 68 to 60, while these characteristics were improved by nitrogen fertilization. Irrigation did not decrease the Pelshenke value but increased significantly the ratio of the Pelshenke value/protein content (from 5,1 to 6.1. This indicates that the quality of protein was improved by irrigation, while the effect of nitrogen fertilization was the reverse. In fact, irrigation and additional nitrogen fertilization affected the quantity and

  6. Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield

    Science.gov (United States)

    Mierzwa-Hersztek, Monika; Gondek, Krzysztof; Klimkowicz-Pawlas, Agnieszka; Baran, Agnieszka

    2017-07-01

    The variety of technological conditions and raw materials from which biochar is produced is the reason why its soil application may have different effects on soil properties and plant growth. The aim of this study was to evaluate the effect of the addition of wheat straw and Miscanthus giganteus straw (5 t DM ha-1) and biochar obtained from this materials in doses of 2.25 and 5 t DM ha-1 on soil enzymatic activity, soil ecotoxicity, and plant yield (perennial grass mixture with red clover). The research was carried out under field conditions on soil with the granulometric composition of loamy sand. No significant effect of biochar amendment on soil enzymatic activity was observed. The biochar-amended soil was toxic to Vibrio fischeri and exhibited low toxicity to Heterocypris incongruens. Application of wheat straw biochar and M. giganteus straw biochar in a dose of 5 t DM ha-1 contributed to an increase in plant biomass production by 2 and 14%, respectively, compared to the soil with mineral fertilisation. Biochars had a more adverse effect on soil enzymatic activity and soil ecotoxicity to H. incongruens and V. fischeri than non-converted wheat straw and M. giganteus straw, but significantly increased the grass crop yield.

  7. Improving Wheat Growth and Yield Using Chlormequat Chloride, Salicylic Acid and Jasmonic Acid under Water Stress

    Directory of Open Access Journals (Sweden)

    N Vahabi

    2017-06-01

    Full Text Available Introduction Drought stress is most important abiotic stress reducing growth and production of wheat worldwide. Protective role of plant growth regulators (PGRs against drought stress has been accepted in general, however, comparison of PGRs types to determine the optimum one is crucial. Many PGRs are known to alleviate the negative effects of drought stress in plants. However, limited research has been conducted to investigate the potential benefits of exogenous application of different PGRs in wheat plants grown under drought stress. Chlormequat chloride (CCC, salicylic acid (SA and jasmonic acid (JA could consider as three major PGRs using in cereals. Materials and Methods To examine the effect of three PGRs consisted of CCC, SA and JA on yield components and grain yield of wheat cv. Roshan under different water stress conditions (a range of light to severe drought levels two separated experiments were conducted at controlled and field conditions at College of Agriculture, Shiraz University during 2012-2013 growing seasons. Concentration of CCC, SA and JA were 19.0, 1.0 and 0.1 mM, respectively. Drought stress levels were 100%, 80%, 60% and 40% of field capacity in greenhouse and were 100%, 2/3 and 1/5 of field capacity in the field experiment. Field capacity was determined as 25% (g g-1 for the experimental field. Greenhouse and field researches were carried out in factorial experiment based on completely randomized design and in split plot experiment based on randomized complete block design, respectively. Four and three replications were used greenhouse and field experiments, respectively. Roshan as a bread wheat cultivar with standard height was used. Foliar application of 3 PGRs was done at double ridges stage in both experiments; however, irrigation treatments were applied at double ridges stage and early anthesis at greenhouse and field experiment, respectively. For plot irrigation a tape system was used and amount of irrigation was

  8. Responses of Wheat Yield, Macro- and Micro-Nutrients, and Heavy Metals in Soil and Wheat following the Application of Manure Compost on the North China Plain

    Science.gov (United States)

    Wang, Fan; Wang, Zhaohui; Kou, Changlin; Ma, Zhenghua; Zhao, Dong

    2016-01-01

    The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn. PMID

  9. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    Science.gov (United States)

    Skakun, Sergii; Vermote, Eric; Roger, Jean-Claude; Franch, Belen

    2017-01-01

    Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of an image every 3-5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10-30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI) from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  10. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    Directory of Open Access Journals (Sweden)

    Sergii Skakun

    2017-05-01

    Full Text Available Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of 3–5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10–30 m. This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  11. The Effect of Different Zinc Application Methods on Yield and Grain Zinc Concentration of Bread Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Hatun Barut

    2017-08-01

    Full Text Available This study was carried out to elucidate the impacts of zinc (Zn treatments on growth, development, quality and yield of commonly sown bread wheat cultivars under field conditions of Çukurova Region. Three different bread wheat cultivars (Adana-99, Ceyhan-99 and Pandas were experimented in randomized complete blocks-split plots experimental design with 3 replications. Field experiments were performed by two different Zn application methods; via soil and via soil+foliage. In the both trials, 0, 5, 10, 20, 30, and 40 kg ha-1 pure Zn doses were applied to the soil. 0.4% ZnSO4.7H2O solution was used for foliar Zn applications. Current findings revealed that Zn treatments had significant effects on grain yield, grain Zn concentration, grain phosphorus (P concentration and thousand grain weight of bread wheat cultivars, but significant effects were not observed on grain protein concentrations. Soil+foliar Zn treatments were more effective in improving grain Zn concentrations. It was concluded that 10- 20 kg ha-1 Zn treatment was quite effective on grain Zn concentrations.

  12. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP. In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike. Wheat was sown in early to mid-November at a high seeding rate of 800-850 seeds m(-2. Average yields of 7.42 t ha(-1 and WUE of 1.84 kg m(-3 were achieved with an average seasonal evapotranspiration (ET of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW and harvest index (HI. Among the 3 cultivars, JM22 had 5.9%-8.9% higher yield and 4.2%-9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.

  13. Evaluation of different gridded rainfall datasets for rainfed wheat yield prediction in an arid environment

    Science.gov (United States)

    Lashkari, A.; Salehnia, N.; Asadi, S.; Paymard, P.; Zare, H.; Bannayan, M.

    2018-05-01

    The accuracy of daily output of satellite and reanalysis data is quite crucial for crop yield prediction. This study has evaluated the performance of APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation), PERSIANN (Rainfall Estimation from Remotely Sensed Information using Artificial Neural Networks), TRMM (Tropical Rainfall Measuring Mission), and AgMERRA (The Modern-Era Retrospective Analysis for Research and Applications) precipitation products to apply as input data for CSM-CERES-Wheat crop growth simulation model to predict rainfed wheat yield. Daily precipitation output from various sources for 7 years (2000-2007) was obtained and compared with corresponding ground-observed precipitation data for 16 ground stations across the northeast of Iran. Comparisons of ground-observed daily precipitation with corresponding data recorded by different sources of datasets showed a root mean square error (RMSE) of less than 3.5 for all data. AgMERRA and APHRODITE showed the highest correlation (0.68 and 0.87) and index of agreement (d) values (0.79 and 0.89) with ground-observed data. When daily precipitation data were aggregated over periods of 10 days, the RMSE values, r, and d values increased (30, 0.8, and 0.7) for AgMERRA, APHRODITE, PERSIANN, and TRMM precipitation data sources. The simulations of rainfed wheat leaf area index (LAI) and dry matter using various precipitation data, coupled with solar radiation and temperature data from observed ones, illustrated typical LAI and dry matter shape across all stations. The average values of LAImax were 0.78, 0.77, 0.74, 0.70, and 0.69 using PERSIANN, AgMERRA, ground-observed precipitation data, APHRODITE, and TRMM. Rainfed wheat grain yield simulated by using AgMERRA and APHRODITE daily precipitation data was highly correlated (r 2 ≥ 70) with those simulated using observed precipitation data. Therefore, gridded data have high potential to be used to supply lack of data and

  14. Sequential Path Analysis for Determination of Relationship Between Yield and Yield Components in Bread Wheat (Triticum aestivum.L.

    Directory of Open Access Journals (Sweden)

    Mohtasham MOHAMMADI

    2014-03-01

    Full Text Available An experiment was conducted to evaluate 295 wheat genotypes in Alpha-Lattice design with two replications. The arithmetic mean and standard deviation of grain yield was 2706 and 950 (kg/ha,respectively. The results of correlation coefficients indicated that grain yield had significant and positive association with plant height, spike length, early growth vigor and agronomic score. Whereas there were negative correlation coefficients between grain yield and days to physiological maturity and canopy temperature before and during anthesis. Path analysis indicated agronomic score and plant height had high positive direct effects on grain yield, while canopy temperature before and during anthesis, and days to maturity, wes another trait having negative direct effect on grain yield. The results of sequential path analysis showed the traits that accounted as a criteria variable for high grain yield were agronomic score, plant height, canopy temperature, spike length, chlorophyll content and early growth vigor, which were determined as first, second and third order variables and had strong effects on grain yield via one or more paths. More important, as canopy temperature, agronomic score and early growth vigor can be evaluated quickly and easily, these traits may be used for evaluation of large populations.

  15. Influence of Inter and Intra-rows Spacing on Yield and Yield ...

    African Journals Online (AJOL)

    Abyssinia

    yield and yield components of fresh market(Bishola) and processing (Cochoro) tomato cultivars. ... row spacing had a significant effect on plan canopy width, above ground dry biomass, ... Poor varietal performance and management practices that includeinter and intra-row spacing ..... of assimilate export from the leaves.

  16. Heritability estimates for yield and related traits in bread wheat

    International Nuclear Information System (INIS)

    Din, R.; Jehan, S.; Ibraullah, A.

    2009-01-01

    A set of 22 experimental wheat lines along with four check cultivars were evaluated in in-irrigated and unirrgated environments with objectives to determine genetic and phenotypic variation and heritability estimates for yield and its traits- The two environments were statistically at par for physiological maturity, plant height, spikes m/sub -2/. spike lets spike/sup -1/ and 1000-grain weight. Highly significant genetic variability existed among wheat lines (P < 0.0 I) in the combined analysis across two test environments for traits except 1000- grain weight. Genotypes x environment interactions were non-significant for traits indicating consistent performance of lines in two test environments. However lines and check cultivars were two to five days early in maturity under unirrigated environment. Plant height, spikes m/sup -2/ and 1000-grain weight also reduced under unirrigated environments. Genetic variances were greater than Environmental variances for most of traits- Heritability estimates were of higher magnitude (0.74 to 0.96) for plant height, medium (0.31 to 0.56) for physiological maturity. spikelets spike/sup -1/ (unirrigated) and 1000-grain weight, and low for spikes m/sup -2/. (author)

  17. LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity

    Directory of Open Access Journals (Sweden)

    István Monostori

    2018-05-01

    Full Text Available The use of light-emitting diode (LED technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.

  18. Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress.

    Directory of Open Access Journals (Sweden)

    Dongqing Yang

    Full Text Available Stay-green, a key trait of wheat, can not only increase the yield of wheat but also its resistance to heat stress during active photosynthesis. Cytokinins are the most potent general coordinator between the stay-green trait and senescence. The objectives of the present study were to identify and assess the effects of cytokinins on the photosynthetic organ and heat resistance in wheat. Two winter wheat cultivars, Wennong 6 (a stay-green cultivar and Jimai 20 (a control cultivar, were subjected to heat stress treatment from 1 to 5 days after anthesis (DAA. The two cultivars were sprayed daily with 10 mg L-1 of 6-benzylaminopurine (6-BA between 1 and 3 DAA under ambient and elevated temperature conditions. We found that the heat stress significantly decreased the number of kernels per spike and the grain yield (P < 0.05. Heat stress also decreased the zeatin riboside (ZR content, but increased the gibberellin (GA3, indole-3-acetic acid (IAA, and abscisic acid (ABA contents at 3 to 15 DAA. Application of 6-BA significantly (P < 0.05 increased the grain-filling rate, endosperm cell division rate, endosperm cell number, and 1,000-grain weight under heated condition. 6-BA application increased ZR and IAA contents at 3 to 28 DAA, but decreased GA3 and ABA contents. The contents of ZR, ABA, and IAA in kernels were positively and significantly correlated with the grain-filling rate (P < 0.05, whereas GA3 was counter-productive at 3 to 15 DAA. These results suggest that the decrease in grain yield under heat stress was due to a lower ZR content and a higher GA3 content compared to that at elevated temperature during the early development of the kernels, which resulted in less kernel number and lower grain-filling rate. The results also provide essential information for further utilization of the cytokinin substances in the cultivation of heat-resistant wheat.

  19. Cumulative effect of sulfur and calcium on wheat growth and yield under saline-sodic soils

    International Nuclear Information System (INIS)

    Arshadullah, M.; Hyder, S.I.

    2013-01-01

    A field experiment was carried out to investigate the effect of three rates of gypsum on growth and ionic concentration of wheat variety (Saher) sown in saline-sodic soil (ECe=5.32 dS m , pH=8.52 and SAR=18.87) at Soil Salinity Research Institute (SSRI) Farm, Pindi Bhattian during rabi 2009-10. Treatments were arranged using randomized complete block design (RCBD) with three replications. The crop was harvested at maturity, data on tillering, plant height, spike length, number of grains spike , 1000-grain weight, straw and paddy yields were recorded. Potassium (K), Na, Ca, S and Mg concentrations in grain were estimated using atomic absorption spectroscopy. Tillering, grains spike , 1000-grain weight and paddy yield significantly (P = 0.05) enhanced by increasing the rate of gypsum (CaSO/sub 4/). The maximum 4 number of grains spike (60), 1000-grain weight (47 g) and grain yields (4.01 t ha ) were recorded with CaSO application at the rate 150 kg ha . Grain 4 yield was 43% more than control treatment. Positive correlations (r2+ + 0.96), (r=0.96) and (r=0.91) between Ca , K , S and negative correlation r+ (-0.99) between Na contents in grain and wheat grain yield, respectively. It indicates presence of significantly higher Ca , K contents in grain receiving CaSO/sub 4/ help plants to attain more Ca/sup 2+/ , K and S to avoid Na 4 uptake. (author)

  20. Continuous hydroponic wheat production using a recirculating system

    Science.gov (United States)

    Mackowiak, C. L.; Owens, L. P.; Hinkle, C. R.; Prince, R. P.

    1989-01-01

    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems.

  1. Canola versus Wheat Rotation Effects on Subsequent Wheat Yield

    Science.gov (United States)

    Winter canola (Brassica napus L.) (WC) is considered the most promising, domestically-produced oilseed feedstock for biodiesel production and for diversifying wheat (Triticum aestivum L.)-based cropping systems in the Inland Pacific Northwest, USA (PNW). A law passed in 2006 requires that at least t...

  2. The collection of a minimum dataset and the application of DSSAT (Decision Support System for Agrotechnology Transfer) for optimizing wheat yield in irrigated cropping systems

    International Nuclear Information System (INIS)

    Heng, L.K.; Baethgen, W.E.; Moutonnet, P.

    2000-01-01

    A minimum dataset for testing of the CERES-Wheat model within DSSAT was collected during the course of an IAEA Co-ordinated Research Project on 'The use of nuclear techniques for optimizing fertilizer application under irrigated wheat to increase the efficient use of nitrogen fertilizers and consequently reduce environmental pollution'. A database entitled which contained the following information was subsequently created: soil characteristics, average yield, fertilizer N recovered by crop and residual effect, grain protein content, regional average yield, relative grain yield at various fertilizer N rates, assessment of nitrate pollution, economics of irrigated wheat, water use by source, water use efficiency, atypical precipitation events, type and uniformity of irrigation, and chlorophyll meter readings. This article presents some of these overall results from the database, as well as simulated results from the CERES-Wheat model. Good agreement between observed and simulated results was obtained for most growth parameters in most of the simulations. The ability to validate the model means that it can be used to refine specific management strategies with respect to fertilizer applications, yield and other parameters. (author)

  3. GWAS for plant growth stages and yield components in spring wheat (Triticum aestivum L.) harvested in three regions of Kazakhstan.

    Science.gov (United States)

    Turuspekov, Yerlan; Baibulatova, Aida; Yermekbayev, Kanat; Tokhetova, Laura; Chudinov, Vladimir; Sereda, Grigoriy; Ganal, Martin; Griffiths, Simon; Abugalieva, Saule

    2017-11-14

    Spring wheat is the largest agricultural crop grown in Kazakhstan with an annual sowing area of 12 million hectares in 2016. Annually, the country harvests around 15 million tons of high quality grain. Despite environmental stress factors it is predicted that the use of new technologies may lead to increases in productivity from current levels of 1.5 to up to 3 tons per hectare. One way of improving wheat productivity is by the application of new genomic oriented approaches in plant breeding projects. Genome wide association studies (GWAS) are emerging as powerful tools for the understanding of the inheritance of complex traits via utilization of high throughput genotyping technologies and phenotypic assessments of plant collections. In this study, phenotyping and genotyping data on 194 spring wheat accessions from Kazakhstan, Russia, Europe, and CIMMYT were assessed for the identification of marker-trait associations (MTA) of agronomic traits by using GWAS. Field trials in Northern, Central and Southern regions of Kazakhstan using 194 spring wheat accessions revealed strong correlations of yield with booting date, plant height, biomass, number of spikes per plant, and number of kernels per spike. The accessions from Europe and CIMMYT showed high breeding potential for Southern and Central regions of the country in comparison with the performance of the local varieties. The GGE biplot method, using average yield per plant, suggested a clear separation of accessions into their three breeding origins in relationship to the three environments in which they were evaluated. The genetic variation in the three groups of accessions was further studied using 3245 polymorphic SNP (single nucleotide polymorphism) markers. The application of Principal Coordinate analysis clearly grouped the 194 accessions into three clades according to their breeding origins. GWAS on data from nine field trials allowed the identification of 114 MTAs for 12 different agronomic traits. Field

  4. An Approach to Precise Nitrogen Management Using Hand-Held Crop Sensor Measurements and Winter Wheat Yield Mapping in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Lucía Quebrajo

    2015-03-01

    Full Text Available Regardless of the crop production system, nutrients inputs must be controlled at or below a certain economic threshold to achieve an acceptable level of profitability. The use of management zones and variable-rate fertilizer applications is gaining popularity in precision agriculture. Many researchers have evaluated the application of final yield maps and geo-referenced geophysical measurements (e.g., apparent soil electrical conductivity-ECa as a method of establishing relatively homogeneous management zones within the same plot. Yield estimation models based on crop conditions at certain growth stages, soil nutrient statuses, agronomic factors, moisture statuses, and weed/pest pressures are a primary goal in precision agriculture. This study attempted to achieve the following objectives: (1 to investigate the potential for predicting winter wheat yields using vegetation measurements (the Normalized Difference Vegetation Index—NDVI at the beginning of the season, thereby allowing for a yield response to nitrogen (N fertilizer; and (2 evaluate the feasibility of using inexpensive optical sensor measurements in a Mediterranean environment. A field experiment was conducted in two commercial wheat fields near Seville, in southwestern Spain. Yield data were collected at harvest using a yield monitoring system (RDS Ceres II-volumetric meter installed on a combine. Wheat yield and NDVI values of 3498 ± 481 kg ha−1 and 0.67 ± 0.04 nm nm−1 (field 1 and 3221 ± 531 kg ha−1 and 0.68 ± 0.05 nm nm−1 (field 2 were obtained. In both fields, the yield and NDVI exhibited a strong Pearson correlation, with rxy = 0.64 and p < 10−4 in field 1 and rxy = 0.78 and p < 10−4 in field 2. The preliminary results indicate that hand-held crop sensor-based N management can be applied to wheat production in Spain and has the potential to increase agronomic N-use efficiency on a long-term basis.

  5. Mechanical weed control in organic winter wheat

    Directory of Open Access Journals (Sweden)

    Euro Pannacci

    2017-12-01

    Full Text Available Three field experiments were carried out in organic winter wheat in three consecutive years (exp. 1, 2005-06; exp. 2, 2006- 07; exp. 3, 2007-08 in central Italy (42°57’ N - 12°22’ E, 165 m a.s.l. in order to evaluate the efficacy against weeds and the effects on winter wheat of two main mechanical weed control strategies: i spring tine harrowing used at three different application times (1 passage at T1, 2 passages at the time T1, 1 passage at T1 followed by 1 passage at T1 + 14 days in the crop sowed at narrow (traditional row spacing (0.15 m; and ii split-hoeing and finger-weeder, alone and combined at T1, in the crop sowed at wider row spacing (0.30 m. At the time T1 winter wheat was at tillering and weeds were at the cotyledons-2 true leaves growth stage. The experimental design was a randomized block with four replicates. Six weeks after mechanical treatments, weed ground cover (% was rated visually using the Braun-Blanquet coverabundance scale; weeds on three squares (0.6×0.5 m each one per plot were collected, counted, weighed, dried in oven at 105°C to determine weed density and weed above-ground dry biomass. At harvest, wheat ears density, grain yield, weight of 1000 seeds and hectolitre weight were recorded. Total weed flora was quite different in the three experiments. The main weed species were: Polygonum aviculare L. (exp. 1 and 2, Fallopia convolvulus (L. Á. Löve (exp. 1 and 3, Stachys annua (L. L. (exp. 1, Anagallis arvensis L. (exp. 2, Papaver rhoeas L. (exp.3, Veronica hederifolia L. (exp. 3. In the winter wheat sowed at narrow rows, 2 passages with spring-tine harrowing at the same time seems to be the best option in order to reconcile a good efficacy with the feasibility of treatment. In wider rows spacing the best weed control was obtained by split hoeing alone or combined with finger-weeder. The grain yield, on average 10% higher in narrow rows, the lower costs and the good selectivity of spring-tine harrowing

  6. Effects of climate change on yield potential of wheat and maize crops in the European Union

    NARCIS (Netherlands)

    Wolf, J.; Diepen, van C.A.

    1995-01-01

    Yields of winter wheat, silage maize and grain maize in the main arable areas of the European Union (EU) were calculated with a simulation model, WOFOST, using historical weather data and average soil characteristics. The sensitivity of the model to individual weather variables was determined.

  7. Inheritance of grain yield and its correlation with yield components in ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... 7 × 7 incomplete diallel cross of seven wheat parents during the crop season of 2009 to 2010. Mean square of general ... Genetic background and yield traits of the seven parents. Parent. Pedigree. Released year ..... Correlation and path analysis for yield and yield contributing characters in wheat (Triticum ...

  8. Inheritance of culm height and grain yield in durum wheat

    International Nuclear Information System (INIS)

    Filev, K.

    1984-01-01

    Results from a study of GA sensitive and GA insensitive durum wheat mutants and cultivars in relation with their culm height and 1000 grain weight are presented. With increasing culm height, the GA response also increased. A positive correlation between plant height and GA response was found. Crosses were made between durum wheats and the F 1 and F 2 progenies were analysed. A different inheritance in F 1 and segregation in F 2 was obtained in crosses of a semi-dwarf, GA insensitive [1] line with GA sensitive (S) lines differing in height, medium (93.2cm) and tall (133.5cm). In a reciprocal cross, semi-dwarf - I with medium - S, the semi-dwarf type was dominant in F 1 , suggesting that their semi-dwarfing genes were not allelic. When the semi-dwarf - I and tall - S were crossed an intermediate inheritance in F 1 was observed. In the F 2 generation from crosses semi-dwarf - I with medium - S with semi-dwarf - I, a phenotypic dihybred segregation 9:3:3:1 was observed. In crosses semi-dwarf - I with tall - S different variation curves were obtained. Semi-dwarfs with high productivity were observed in F 2 , a fact indicating that lodging resistant lines with high yields could be selected. (author)

  9. Genotype x environment interaction for grain yield of wheat genotypes tested under water stress conditions

    International Nuclear Information System (INIS)

    Sail, M.A.; Dahot, M.U.; Mangrio, S.M.; Memon, S.

    2007-01-01

    Effect of water stress on grain yield in different wheat genotypes was studied under field conditions at various locations. Grain yield is a complex polygenic trait influenced by genotype, environment and genotype x environment (GxE) interaction. To understand the stability among genotypes for grain yield, twenty-one wheat genotypes developed Through hybridization and radiation-induced mutations at Nuclear Institute of Agriculture (NIA) TandoJam were evaluated with four local check varieties (Sarsabz, Thori, Margalla-99 and Chakwal-86) in multi-environmental trails (MET/sub s/). The experiments were conducted over 5 different water stress environments in Sindh. Data on grain yield were recorded from each site and statistically analyzed. Combined analysis of variance for all the environments indicated that the genotype, environment and genotype x environment (GxE) interaction were highly significant (P greater then 0.01) for grain yield. Genotypes differed in their response to various locations. The overall highest site mean yield (4031 kg/ha) recorded at Moro and the lowest (2326 kg/ha) at Thatta. Six genotypes produced significantly (P=0.01) the highest grain yield overall the environments. Stability analysis was applied to estimate stability parameters viz., regression coefficient (b), standard error of regression coefficient and variance due to deviation from regression (S/sub 2/d) genotypes 10/8, BWS-78 produced the highest mean yield over all the environments with low regression coefficient (b=0.68, 0.67 and 0.63 respectively and higher S/sup 2/ d value, showing specific adaptation to poor (un favorable) environments. Genotype 8/7 produced overall higher grain yield (3647 kg/ha) and ranked as third high yielding genotype had regression value close to unity (b=0.9) and low S/sup d/ value, indicating more stability and wide adaptation over the all environments. The knowledge of the presence and magnitude of genotype x environment (GE) interaction is important to

  10. Manthar-03: a high-yielding cultivar of wheat released for general cultivation in Southern Punjab

    International Nuclear Information System (INIS)

    Hussain, M.; Akhtar, L.H.; Nasim, M.

    2010-01-01

    We report the release of a new wheat variety Manthar-03. 'Manthar-03' is a high yielding and rust resistant variety of bread wheat with erect growth habit. It was released in the year 2003 as a general purpose variety. Manthar-03 is a selection from CIMMYT material (Entry No. 42 of 29 International Bread Wheat Screening Nursery) made at Regional Agricultural Research Institute (RARI), Bahawalpur during 1996-97. This strain has the famous CIMMYT line 'Kauz' in its parentage (KAUZ//ALTAR 84/AOS). Its pedigree is CM11163-6M-20Y-10M- 0M-0B. It is a more adapted and a high yielder. Genetically, this strain differs from existing commercial cultivars of Punjab. Resistance against leaf rust (5MRMS to 10MR), RRI value of 6.7 and 7.6 for leaf rust and ACI values of 3.4 and 0.7 for leaf rust) and high yield potential (6300 kg ha-1 ) are the major attributes of Manthar-03 that make it a superior variety for its target regions. Manthar-03 is tolerant to wheat aphid and Helicoverpa armigera. The thousand seed weight of this variety is 40-44 g. Seed is amber in color and contains 12.97% protein, 8.2% dry gluten and 1.55% ash. It has good chapati making quality. Plant type of Manthar-03 is erect with plant height 94 cm and droopy flag leaves. It is lodging resistant. It completes heading in 98 days and matures in 142 days. Manthar-03 performs better when planted from 15, November to 1, December, keeping 125 kg ha/sup -1/ seed rate and 125-85-50 kg NPK ha/sup -1/ are applied. (author)

  11. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    Science.gov (United States)

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  12. [Effects of deep plowing time during the fallow period on water storage-consumption characteristics and wheat yield in dry-land soil.

    Science.gov (United States)

    Dang, Jian You; Pei, Xue Xia; Zhang, Ding Yi; Wang, Jiao Ai; Zhang, Jing; Wu, Xue Ping

    2016-09-01

    Through a three-year field trail, effects of deep plowing time during the fallow period on water storage of 0-200 cm soil before sowing, water consumption of growth period, and growth and development of wheat were investigated. Results demonstrated that soil water storage (SWS) of the fallow period was influenced by deep plowing time, precipitation, and rainfall distribution. With postponing the time of deep plowing in the fallow period, SWS was increased firstly, and then decreased. SWS with deep plowing in early or middle of August was 23.9-45.8 mm more than that with deep plowing in mid-July. It would benefit SWS when more precipitation occurred in the fallow period or more rainfall was distributed in August and September. Deep plowing at a proper time could facilitate SWS, N and P absorption of wheat, and the number of stems before winter and the spike number. The yield of wheat with deep plowing in early or middle August was 3.67%-18.2% higher than that with deep plowing in mid-July, and it was positively correlated with water storage of 0-200 cm soil during the fallow period and SWS of each soil layer during the wheat growth period. However, this correlation coefficient would be weakened by adequate rainfall in spring, the critical growing period for wheat. The time of deep plowing mainly affected the water consumption at soil layer of 60-140 cm during wheat growth. Under current farming conditions of south Shanxi, the increased grain yield of wheat could be achieved by combining the measures of high wheat stubble and wheat straw covering for holding soil water and deep plowing between the Beginning of Autumn (August 6th) and the Limit of Heat (August 21st) for promoting soil water penetration characteristics to improve the number of stems before winter and spike.

  13. Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments.

    Directory of Open Access Journals (Sweden)

    Xianshan Wu

    Full Text Available BACKGROUND: Grain yield is a key economic driver of successful wheat production. Due to its complex nature, little is known regarding its genetic control. The goal of this study was to identify important quantitative trait loci (QTL directly and indirectly affecting grain yield using doubled haploid lines derived from a cross between Hanxuan 10 and Lumai 14. METHODOLOGY/PRINCIPAL FINDINGS: Ten yield-associated traits, including yield per plant (YP, number of spikes per plant (NSP, number of grains per spike (NGS, one-thousand grain weight (TGW, total number of spikelets per spike (TNSS, number of sterile spikelets per spike (NSSS, proportion of fertile spikelets per spike (PFSS, spike length (SL, density of spikelets per spike (DSS and plant height (PH, were assessed across 14 (for YP to 23 (for TGW year × location × water regime environments in China. Then, the genetic effects were partitioned into additive main effects (a, epistatic main effects (aa and their environment interaction effects (ae and aae by using composite interval mapping in a mixed linear model. CONCLUSIONS/SIGNIFICANCE: Twelve (YP to 33 (PH QTLs were identified on all 21 chromosomes except 6D. QTLs were more frequently observed on chromosomes 1B, 2B, 2D, 5A and 6B, and were concentrated in a few regions on individual chromosomes, exemplified by three striking yield-related QTL clusters on chromosomes 2B, 1B and 4B that explained the correlations between YP and other traits. The additive main-effect QTLs contributed more phenotypic variation than the epistasis and environmental interaction. Consistent with agronomic analyses, a group of progeny derived by selecting TGW and NGS, with higher grain yield, had an increased frequency of QTL for high YP, NGS, TGW, TNSS, PFSS, SL, PH and fewer NSSS, when compared to low yielding progeny. This indicated that it is feasible by marker-assisted selection to facilitate wheat production.

  14. Possible space weather influence on the Earth wheat prices

    Science.gov (United States)

    Pustil'Nik, L.; Yom Din, G.; Dorman, L.

    We present development of our study of possible influence of space weather modulated by cycle of solar activity on the price bursts in the Earth markets In our previous works 1 2 we showed that correspondent response may have place in the specific locations characterized by a high sensitivity of the weather cloudiness in particular to cosmic ray variation b risk zone agriculture c isolated wheat market with limited external supply of agriculture production We showed that in this situation we may wait specific price burst reaction on unfavorable phase of solar activity and space weather what lead to corresponding abnormalities in the local weather and next crop failure We showed that main types of manifestation of this connection are a Distribution of intervals between price bursts must be like to the distribution of intervals between correspondent extremes of solar activity minimums or maximums b price asymmetry between opposite states of solar activity price in the one type of activity state is systematically higher then in the opposite one We showed in our previous publications that this influence in interval distribution is detected with high reliability in Mediaeval England 1250-1700 both for wheat prices and price of consumables basket We showed that for period of Maunder Minimum price asymmetry of wheat prices observed all prices in minimum state of solar activity was higher the prices in the next maximum state We showed later that this price asymmetry had place in 20-th century in USA durum prices too In

  15. Evaluation of Technical and Yield Parameters of Wheat Seeding Methods with Different Seeding Rates in south Khuzestan

    Directory of Open Access Journals (Sweden)

    J Habibi Asl

    2012-05-01

    Full Text Available This study was conducted during two years (2007-2009 in Shawoor Agricultural Research Station on a silty-clay soil. Experiment conducted in split plots in a Randomized Complete Blocks Design in three replications. Main plots were planting methods including centrifugal broadcaster (P1, centrifugal broadcaster + furrower (P2, seed drill (P3, seed drill + furrower (P4, three lines bed drilling (P5 and four lines bed drilling (P6. Subplots were included seed rates of 120, 160, 200 and 240 kg.ha-1. The results showed that P2 method with 14.91 litter.ha-1 and P3 method with 5.02 litter.ha-1 had the highest and lowest fuel consumption respectively. P3 method with 1.462 h.ha-1 and P5 method with 0.620 h.ha-1 required maximum and minimum total operation time respectively. P2 method with 0.684 ha.h-1 had minimum field capacity. Field capacity of P5 and P6 with averagely 1.67 ha.h-1 was maximum. Field capacity of all drilling methods (P3, P4, P5 and P6 was significantly more than that of broadcasting methods (P1 and P2. The highest seed spacing uniformity (87.2% was belonged to P6 method and the lowest value (54.7% was for P1 method. By using drilling methods of P3 and P5 (or P6 instead of P1 method total cost was reduced 41% and 29% respectively. The results of variance analysis of data showed that the difference between planting methods in case of wheat grain yield and yield components was not significant. However, the seed rate had significant effect on some yield components. Suggestion for cropping of wheat Chamran variety in silty-clay soil in Khuzestan province, used P5, P6 and P3 methods are recommended respectively with seed rate of 120 - 160 kg.ha-1.

  16. Effect of kernel size and mill type on protein, milling yield, and baking quality of hard red spring wheat

    Science.gov (United States)

    Optimization of flour yield and quality is important in the milling industry. The objective of this study was to determine the effect of kernel size and mill type on flour yield and end-use quality. A hard red spring wheat composite sample was segregated, based on kernel size, into large, medium, ...

  17. Influence of Pulsed Electromagnetic Field on Plant Growth, Nutrient Absorption and Yield of Durum Wheat

    Directory of Open Access Journals (Sweden)

    Nikolaos KATSENIOS

    2015-12-01

    Full Text Available Researchers have adopted the use of magnetic field as a new pre-sowing, environmental friendly technique. Enhancements on plant characteristics with economic impact on producer’s income could be the future of a modern, organic and sustainable agriculture. A field experiment was established at Soil Science Institute of Athens, Lycovrissi, Greece, in the winter of 2014. Two durum wheat cultivars were used. It was a pot experiment with 6 treatments (2 cultivars with 3 magnetic field time exposure. The seeds were treated using a PAPIMI electromagnetic field generator for 0, 30 and 45 minutes one day before planting. The experiment followed a completely randomized design with six treatments and 30 replications. The aim of this study was to evaluate the positive effect of magnetic field pre-sowing treatment in a wide range of plant measurements, including yield. The influence of pulsed electromagnetic field on two varieties of durum wheat seeds showed some statistically significant differences at the 0.05 level in growth measurements, physiological measurements and root growth measurements. Plant tissue analysis showed that magnetic field treatments had higher values than control in total nitrogen, phosphorus, potassium, magnesium, copper (only MF-45, zinc (only MF-30 and boron content, although values showed statistically significant differences only in total nitrogen. The results indicate that this innovative technique can increase the yield of durum wheat, through enhanced absorption of nutrients. Pre-sowing treatment of the seeds leads to vigorous plant growth that are more productive.

  18. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    Science.gov (United States)

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Impacts of previous crops on Fusarium foot and root rot, and on yields of durum wheat in North West Tunisia

    Directory of Open Access Journals (Sweden)

    Samia CHEKALI

    2016-07-01

    Full Text Available The impacts of ten previous crop rotations (cereals, legumes and fallow on Fusarium foot and root rot of durum wheat were investigated for three cropping seasons in a trial established in 2004 in Northwest Tunisia. Fungi isolated from the roots and stem bases were identified using morphological and molecular methods, and were primarily Fusarium culmorum and F. pseudograminearum. Under low rainfall conditions, the previous crop affected F. pseudograminearum incidence on durum wheat roots but not F. culmorum. Compared to continuous cropping of durum wheat, barley as a previous crop increased disease incidence more than fivefold, while legumes and fallow tended to reduce incidence.  Barley as a previous crop increased wheat disease severity by 47%, compared to other rotations. Grain yield was negatively correlated with the incidence of F. culmorum infection, both in roots and stem bases, and fitted an exponential model (R2 = -0.61 for roots and -0.77 for stem bases, P<0.0001. Fusarium pseudograminearum was also negatively correlated with yield and fitted an exponential model (R2 = -0.53 on roots and -0.71 on stem bases, P < 0.0001 but was not correlated with severity.

  20. Effect of a 5-Year Multi-Crop Rotation on Mineral N and Hard Red Spring Wheat Yield, Protein, Test Weight and Economics in Western North Dakota, USA

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2016-04-01

    The objectives of this non-irrigated cropping study was to employ the principles of soil health and determine the effect of rotation on seasonal mineral N, HRSW production, protein, test weight, and economics. Prior to the initiation of this research, the cropping study area had been previously seeded to hard red spring wheat (HRSW). The cropping systems consisted of a continuous HRSW control (C) compared to HRSW grown in a multi-crop 5-year rotation (R). The 5-yr rotation consisted of HRSW, cover crop (dual crop winter triticale-hairy vetch harvested for hay in June and immediately reseeded to a 7-species cover crop mix grazed by cows after weaning from mid-November to mid-December), forage corn, field pea-forage barley, and sunflower. The cereal grains, cover crops, and pea-barley intercrop were seeded using a JD 1590 no-till drill, 19 cm row spacing, and seed depth of 2.54 cm Cereal grain plant population was 3,088,750 plants/ha. The row crops were planted using a JD 7000 no-till planter, 76.2 cm row spacing, and seed depth of 5.08 cm. Plant population for the row crops was 46,947 plants/ha. Weeds were controlled using a pre-plant burn down and post-emergence control except for cover crops and pea-barley where a pre-plant burn down was the only chemical applied. Fertilizer application was based on soil test results and recommendations from the North Dakota State University Soil Testing Laboratory. During the 1st three years of the study 31.8 kg of N was applied to the C HRSW and then none the last two years of the 5-year period. The R HRSW was fertilized with 13.6 kg of N the 1st two years of the study and none the remaining three years of the 5-year period. However, chloride was low; therefore, 40.7-56.1 kg/ha were applied each year to both the C and R treatments. Based on 2014 and 2015 seasonal mineral N values, the data suggests that N levels were adequate to meet the 2690 kg/ha yield goal. In 2015, however, the R yield goal was exceeded by 673 kg/ha whereas

  1. Effects of nitrogen and phosphorus fertilizer on crop yields in a field pea-spring wheat-potato rotation system with calcareous soil in semi-arid environments

    Directory of Open Access Journals (Sweden)

    Chang-An Liu

    2016-06-01

    Full Text Available The object of the present study was to investigate the yield-affecting mechanisms influenced by N and P applications in rainfed areas with calcareous soil. The experimental treatments were as follows: NF (no fertilizer, N (nitrogen, P (phosphorus, and NP (nitrogen plus phosphorus in a field pea-spring wheat-potato cropping system. This study was conducted over six years (2003-2008 on China’s semi-arid Loess Plateau. The fertilizer treatments were found to decrease the soil water content more than the NF treatment in each of the growing seasons. The annual average yields of the field pea crops during the entire experimental period were 635, 677, 858, and 1117 kg/ha for the NF, N, P, and NP treatments, respectively. The annual average yields were 673, 547, 966, and 1056 kg/ha for the spring wheat crops for the NF, N, P, and NP treatments, respectively. Also, the annual average yields were 1476, 2120, 1480, and 2424 kg/ha for the potato crops for the NF, N, P, and NP treatments, respectively. In the second cycle of the three-year rotation, the pea and spring wheat yields in the P treatment were 1.2 and 2.8 times higher than that in the N treatment, respectively. Meanwhile, the potato crop yield in the N treatment was 3.1 times higher than that in the P treatment. In conclusion, the P fertilizer was found to increase the yields of the field pea and wheat crops, and the N fertilizer increased the potato crop yield in rainfed areas with calcareous soil.

  2. Effects of nitrogen and phosphorus fertilizer on crop yields in a field pea-spring wheat-potato rotation system with calcareous soil in semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.A.; Zhang, S.; Hua, S.; Rao, X.

    2016-11-01

    The object of the present study was to investigate the yield-affecting mechanisms influenced by N and P applications in rainfed areas with calcareous soil. The experimental treatments were as follows: NF (no fertilizer), N (nitrogen), P (phosphorus), and NP (nitrogen plus phosphorus) in a field pea-spring wheat-potato cropping system. This study was conducted over six years (2003-2008) on China’s semi-arid Loess Plateau. The fertilizer treatments were found to decrease the soil water content more than the NF treatment in each of the growing seasons. The annual average yields of the field pea crops during the entire experimental period were 635, 677, 858, and 1117 kg/ha for the NF, N, P, and NP treatments, respectively. The annual average yields were 673, 547, 966, and 1056 kg/ha for the spring wheat crops for the NF, N, P, and NP treatments, respectively. Also, the annual average yields were 1476, 2120, 1480, and 2424 kg/ha for the potato crops for the NF, N, P, and NP treatments, respectively. In the second cycle of the three-year rotation, the pea and spring wheat yields in the P treatment were 1.2 and 2.8 times higher than that in the N treatment, respectively. Meanwhile, the potato crop yield in the N treatment was 3.1 times higher than that in the P treatment. In conclusion, the P fertilizer was found to increase the yields of the field pea and wheat crops, and the N fertilizer increased the potato crop yield in rainfed areas with calcareous soil. (Author)

  3. Effects of supplemental irrigation on water consumption characteristics and grain yield in different wheat cultivars

    Directory of Open Access Journals (Sweden)

    Meng Weiwei

    2015-06-01

    Full Text Available Shortage of water resources is a major limiting factor for wheat (Triticum aestivum L. production in the North China Plain. The objectives of this study were to evaluate the effects of supplemental irrigation (SI on water use characteristics and grain yield of the wheat cultivars 'Jimai 22'and 'Zhouyuan 9369'. Two supplemental irrigation treatment regimens were designed based on target relative soil moisture contents in 0-140 cm soil layers at jointing rising to 75% of field capacity (FC for each cultivar, and at anthesis rising to 65% and 75% (W1, and 70% and 80% (W2 in 2009-2010 and 2010-2011, respectively. Rain-fed (W0 treatment was used as control. Under W1, grain yield of 'Jimai 22' was 5.22% higher than that of W2, and water use efficiency (WUE of 'Zhouyuan 9369' was 4.0% higher than that under W2. No significant differences in WUE of 'Jimai 22' and grain yield of 'Zhouyuan 9369' were observed for the two treatment regimens in 2009-2010. Grain yield and WUE in W1 were higher than those of W2 for both cultivars in 2010-2011. W1 enhanced soil water consumption compared to W2, especially in the 100-200 cm soil layers, for both cultivars in 2009-2011. Meanwhile, 'Jimai 22' showed higher soil water consumption and ET from anthesis to mature stage, which resulted in increase in grain yield and WUE of 'Jimai 22' by 8.15-21.7% and 7.75-11.73% in 2009-2010 and 2010-2011, respectively, compared with 'Zhouyuan 9369'. Thus, our results showed that SI increased the yield and WUE of 'Jimai 22' and W1 was the better treatment regimen.

  4. The Space-Time Variation of Global Crop Yields, Detecting Simultaneous Outliers and Identifying the Teleconnections with Climatic Patterns

    Science.gov (United States)

    Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.

    2017-12-01

    An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.

  5. Study of Yield and Effective Traits in Bread Wheat Recombinant Inbred Lines (Triticum aestivum L. under Water Deficit Condition

    Directory of Open Access Journals (Sweden)

    S. Mohammad zadeh

    2013-11-01

    Full Text Available The effects some traits on seed yield of recombinant inbred lines of wheat under water deficit stress was studied. This research was done at the Agricultural Research Stations, Islamic Azad University, Tabriz Branch in 2010- 2011. 28 recombinant inbred lines of wheat bread with two parents (Norstar and Zagros in split plot experiment based on a randomized complete block design with three replications at two irrigation levels (70 and 140 mm evaporation from pan class A were studied. Analysis of variance indicated a significant genetic differences in all traits under study among the lines. Lines No. 32, 163 and 182 produced highest yield under both irrigation levels. Number of spikes, grains per spike and harvest index had the highest positive correlation with grain yield. Path analysis based on stepwise regression showed that under the normal irrigation conditions, number spike (0.556, number of grains per spike (0.278, weight of 1000 grain (0.259 and the drought stress number spike (0.430, straw yield (0.276 and peduncle length (0.323 had the most direct and positive effect on yield respectively.

  6. Effects Of Spring Herbicide Treatments On Winter Wheat Growth And Grain Yield*

    Directory of Open Access Journals (Sweden)

    Hamouz P.

    2015-03-01

    Full Text Available Herbicides provide a low-cost solution for protecting crops from significant yield losses. If weed infestations are below damage thresholds, however, then herbicide application is unnecessary and can even lead to yield loss. A small-plot field trial was conducted to examine the effect of herbicides on winter wheat yields. Weeds were removed manually from the trial area before herbicide application. Twenty-four treatments were tested in four replications. Treatment 1 consisted of an untreated weed-free control, whereas the other treatments comprised applications of the following herbicides and their combinations: metsulfuron-methyl + tribenuron-methyl (4.95 + 9.99 g ha−1, pinoxaden (30 g ha−1, fluroxypyr (175 g ha−1, and clopyralid (120 g ha−1. Water (250 l ha−1 or a urea-ammonium nitrate fertilizer solution (UAN, 120.5 l ha−1 was used as the herbicide carrier. Crop injury 30 days after treatment and yield loss were recorded. Results showed minor crop injury by herbicides and their combinations when applied without UAN and moderate injury caused by UAN in combination with herbicides. Yield losses reached 5.3% and 4.3% in those treatments where all of the tested herbicides were applied with and without UAN, respectively. The effect of all treatments on crop yield was, however, statistically insignificant (P = 0.934.

  7. Using a time-series statistical framework to quantify trends and abrupt change in US corn, soybean, and wheat yields from 1970-2016

    Science.gov (United States)

    Zhang, J.; Ives, A. R.; Turner, M. G.; Kucharik, C. J.

    2017-12-01

    Previous studies have identified global agricultural regions where "stagnation" of long-term crop yield increases has occurred. These studies have used a variety of simple statistical methods that often ignore important aspects of time series regression modeling. These methods can lead to differing and contradictory results, which creates uncertainty regarding food security given rapid global population growth. Here, we present a new statistical framework incorporating time series-based algorithms into standard regression models to quantify spatiotemporal yield trends of US maize, soybean, and winter wheat from 1970-2016. Our primary goal was to quantify spatial differences in yield trends for these three crops using USDA county level data. This information was used to identify regions experiencing the largest changes in the rate of yield increases over time, and to determine whether abrupt shifts in the rate of yield increases have occurred. Although crop yields continue to increase in most maize-, soybean-, and winter wheat-growing areas, yield increases have stagnated in some key agricultural regions during the most recent 15 to 16 years: some maize-growing areas, except for the northern Great Plains, have shown a significant trend towards smaller annual yield increases for maize; soybean has maintained an consistent long-term yield gains in the Northern Great Plains, the Midwest, and southeast US, but has experienced a shift to smaller annual increases in other regions; winter wheat maintained a moderate annual increase in eastern South Dakota and eastern US locations, but showed a decline in the magnitude of annual increases across the central Great Plains and western US regions. Our results suggest that there were abrupt shifts in the rate of annual yield increases in a variety of US regions among the three crops. The framework presented here can be broadly applied to additional yield trend analyses for different crops and regions of the Earth.

  8. Impact of climatic variability on durum wheat (Triticum durum L. yields in North Western of Algeria

    Directory of Open Access Journals (Sweden)

    Meterfi Baroudi

    2016-02-01

    Full Text Available In semi arid region of the South West of the Mediterranean basin, low rainfall, and thermal fluctuations cause water stress situations affecting at different levels, with varying intensities, the development of durum wheat yields. This work aims to study the major climatic factors that determine water environment of durum wheat in its reproductive period and assess their trend related to yields of the grain. Comparing diagrams of Bagnoul and Gaussen, established for two periods (1913-1937 and 1977-2014, highlighted an increase in the duration of the dry season due to rising temperatures, especially summer and a decrease in volume of the seasonal rainfall involving therefore water stress during the reproductive phase of cereal. The analysis of water regime in the past three decades, for the months of March, April and May, through the application of the approach of UNESCO-FAO, highlighted a very large variability in intensity of water stress during grain development period during the last years and also the tendency of the spring season months to be more drought. This reflects the complexity of the selection for yield components in this region. International Journal of Environment Vol. 5 (1 2016,  pp: 107-120

  9. Evaluation of irradiated wheat populations. Vol. 4

    International Nuclear Information System (INIS)

    Salam, T.Z.

    1996-01-01

    This study was carried out from 1992 to 1994. It aimed to study genetic behaviour for plant height, dry weight/plant, earliness, grain yield/plant, and 100-grain weight at harvest time in three wheat cultivars Mexi back, Giza 155, and Saka 69; and and their hybrids in F 3 - M 1 , and F 4 - M 2 mutagenic generations after treatment of dry seeds with gamma ray doses of 75, 100, and 125 Gy. All doses caused an increase or decrease in growth, yield, and yield attributes of the wheat cultivars. In G 1 55 Mexi back hybrid wheat the 100 Gy caused an increase in 100 - grain weight, grain yield/plant, and dry weight/plant in F 4 - M 2 generation only. But in Mexi back X G 1 55 hybrid wheat the 75 Gy increased plant height, 100 - grain weight, grain yield/plant, and dry weight/plant in both generations F 3 - M 1 and F 4 -M 2 . SK 69 X Mexi back hybrid wheat at 75 Gy caused earliness by about 13 days, and high grain yield in F 4 - M 2 generation only. however, in Mexi back x SK 69 hybrid wheat, 100 Gy caused earliness about 7 days but with low grain yield. 3 tabs

  10. Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment

    DEFF Research Database (Denmark)

    Pedersen, Mads; Viksø-Nielsen, Anders; Meyer, Anne S.

    2010-01-01

    The influence of various low temperature (140 °C) pretreatments, using different acid and alkaline catalysts and different pH values, was studied for enzymatic hydrolysis of wheat straw. The pretreated wheat straw was treated by a standard blend of Celluclast 1.5 L and Novozym 188. While pretreat......The influence of various low temperature (140 °C) pretreatments, using different acid and alkaline catalysts and different pH values, was studied for enzymatic hydrolysis of wheat straw. The pretreated wheat straw was treated by a standard blend of Celluclast 1.5 L and Novozym 188. While...... pretreatment at pH 1 gave the highest yield of saccharides in the liquid fraction, the solid fraction was more susceptible to enzymatic attack when pretreated at pH 13. The highest yields were obtained after pretreatment with hydrochloric acid at pH 1, and with sodium hydroxide at pH 13 when enzymatic...... hydrolysis was employed. A two-step pretreatment strategy at pH 1 (hydrochloric acid) and subsequently at pH 13 (sodium hydroxide) released 69 and 95% of the theoretical maximal amounts of glucose and xylose, respectively. Furthermore, this two-step pretreatment removed 68% of the lignin from the straw...

  11. Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system.

    Science.gov (United States)

    Yang, Haishui; Xu, Mingmin; Koide, Roger T; Liu, Qian; Dai, Yajun; Liu, Ling; Bian, Xinmin

    2016-03-15

    Crop residue management and nitrogen loss are two important environmental problems in the rice-wheat rotation system in China. This study investigated the effects of burial of straw on water percolation, nitrogen loss by leaching, crop growth and yield. Greenhouse mesocosm experiments were conducted over the course of three simulated cropping seasons in a rice1-wheat-rice2 rotation. Greater amounts of straw resulted in more water percolation, irrespective of crop season. Burial at 20 and 35 cm significantly reduced, but burial at 50 cm increased nitrogen leaching. Straw at 500 kg ha(-1) reduced, but at 1000 kg ha(-1) and at 1500 kg ha(-1) straw increased nitrogen leaching in three consecutive crop rotations. In addition, straw at 500 kg ha(-1) buried at 35 cm significantly increased yield and its components for both crops. This study suggests that N losses via leaching from the rice-wheat rotation may be reduced by the burial of the appropriate amount of straw at the appropriate depth. Greater amounts of buried straw, however, may promote nitrogen leaching and negatively affect crop growth and yields. Complementary field experiments must be performed to make specific agronomic recommendations. © 2015 Society of Chemical Industry.

  12. Effects legumes, Fallow and wheat on subsequent wheat production in Central Anatolia

    International Nuclear Information System (INIS)

    Halitligil, M. B.; Akin, A.; Aydin, M.

    1996-01-01

    In order to determine the Nsub 2- fixation capacities of lentil, vetch, chickpea and fodderpea in a legume-wheat rotation by using the A-value method of N 15 technique, and to assess the amount of carry-over of N to wheat from the previous legume as well as water contribution of fallow, wheat and legumes to the following wheat under rainfed Central Anatolia conditions field experiments were conducted in 1992 and 1993 at three different provinces using completely randomized block design with 5 replications. Results we obtained showed that %Ndff values among legumesdid not differ significantly neither within or between locations. Legumesvaried significantly (P<0.05) in their %Ndfa values at each location and highest values of %Ndfa were obtained at Eskisehir. In general, %Ndfa varied from59-84, and 36-85 for chickpea,lentils and vetchs. The evaluation of the yield and N data obtained in 1993 indicated that lentil (winter or summer) -wheat rotation at Ankara and Eskisehir conditions and chickpea-wheat rotation at Konya conditions should be prefered, due to the higher seed and total yields, higher N yields and higher %NUE values obtained from these rotations in comparison to the others. In order to estimate the carry-over of nitrogen from legumes to the succeeding wheat crop, % nitrogen derived from unknown (%Ndfu) were also calculated. Highest amount of carry-over from the legumesto the succeeding wheat were 31.1 kgN/ha from summer lentil at Ankara; 16.9 kgN/ha from summer lentil at Eskisehir; and 8.0 kgN/ha from chickpea at Konya. These results obtined showed that a lentil-wheat rotation at Ankara and Eskisehir and a chickpea-wheat rotation at Konya. Mean while, the evaluation of the soil and WUE data at both Eskisehir and Ankara indicated that winter lentil-wheat rotation should be prefered in these areas due to more efficient use of water by wheat crop after this rotation system

  13. Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Joshi, Anjali; Kaur, Simranjeet; Dharamvir, Keya; Nayyar, Harsh; Verma, Gaurav

    2018-06-01

    Reports of multi-walled carbon nanotubes (MWCNTs) incorporated into plants have indicated better yield and productivity, yet the phenomena need in-depth understanding especially when agricultural crops are tested. We primed wheat seeds with MWCNTs to understand the effects on germination, growth, anatomy, physiology and yield. This study, carried out in field conditions, is a step forward over the previous reports. Early germination, excessive root hair, denser stomata and larger root length result in faster growth and higher yield of wheat plants. Denser root hair facilitated the uptake of both water and essential minerals such as phosphorus (P) and potassium (K), which boosted the crop yield by significantly improving grain yield per plant from 1.53 to 2.5 g, a 63% increase. Increase in cell elongation by 80% was recorded, while xylem and phloem sizes dilated to almost 83% and 85% of control, thus enhancing their capacity to conduct water and nutrients. Augmented growth of MWCNT-primed wheat, enhancement in grain number, biomass, stomatal density, xylem-phloem size, epidermal cells, and water uptake is observed while finding no DNA damage. This opens up an entirely new aspect to using cost-effective nanomaterials (the MWCNTs were produced in-house) for enhancing the performance of crop plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Grain yield losses in yellow-rusted durum wheat estimated using digital and conventional parameters under field conditions

    Directory of Open Access Journals (Sweden)

    Omar Vergara-Diaz

    2015-06-01

    Full Text Available The biotrophic fungus Puccinia striiformis f. sp. tritici is the causal agent of the yellow rust in wheat. Between the years 2010–2013 a new strain of this pathogen (Warrior/Ambition, against which the present cultivated wheat varieties have no resistance, appeared and spread rapidly. It threatens cereal production in most of Europe. The search for sources of resistance to this strain is proposed as the most efficient and safe solution to ensure high grain production. This will be helped by the development of high performance and low cost techniques for field phenotyping. In this study we analyzed vegetation indices in the Red, Green, Blue (RGB images of crop canopies under field conditions. We evaluated their accuracy in predicting grain yield and assessing disease severity in comparison to other field measurements including the Normalized Difference Vegetation Index (NDVI, leaf chlorophyll content, stomatal conductance, and canopy temperature. We also discuss yield components and agronomic parameters in relation to grain yield and disease severity. RGB-based indices proved to be accurate predictors of grain yield and grain yield losses associated with yellow rust (R2 = 0.581 and R2 = 0.536, respectively, far surpassing the predictive ability of NDVI (R2 = 0.118 and R2 = 0.128, respectively. In comparison to potential yield, we found the presence of disease to be correlated with reductions in the number of grains per spike, grains per square meter, kernel weight and harvest index. Grain yield losses in the presence of yellow rust were also greater in later heading varieties. The combination of RGB-based indices and days to heading together explained 70.9% of the variability in grain yield and 62.7% of the yield losses.

  15. Uncertainty in Simulating Wheat Yields Under Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, Jerry; Ruane, Alex; Boote, K. J.; Thorburn, Peter; Rotter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, AJ; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, Robert; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, Roberto C.; Kersebaum, K.C.; Mueller, C.; Naresh Kumar, S.; Nendel, C.; O' Leary, G.O.; Olesen, JE; Osborne, T.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stockle, Claudio O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.

    2013-09-01

    Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments1,2. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change has been increasingly described in the literature3,4 while assessments of the uncertainty in crop responses to climate change are very rare. Systematic and objective comparisons across impact studies is difficult, and thus has not been fully realized5. Here we present the largest coordinated and standardized crop model intercomparison for climate change impacts on wheat production to date. We found that several individual crop models are able to reproduce measured grain yields under current diverse environments, particularly if sufficient details are provided to execute them. However, simulated climate change impacts can vary across models due to differences in model structures and algorithms. The crop-model component of uncertainty in climate change impact assessments was considerably larger than the climate-model component from Global Climate Models (GCMs). Model responses to high temperatures and temperature-by-CO2 interactions are identified as major sources of simulated impact uncertainties. Significant reductions in impact uncertainties through model improvements in these areas and improved quantification of uncertainty through multi-model ensembles are urgently needed for a more reliable translation of climate change scenarios into agricultural impacts in order to develop adaptation strategies and aid policymaking.

  16. Heterosis for yield and its components in bread wheat crosses among powdery mildew resistant and susceptible genotypes

    International Nuclear Information System (INIS)

    Ilker, E.; Tonk, F.A.; Tosun, M.

    2010-01-01

    The objective of this research was to investigate heterotic effects between five powdery mildew resistant wheat lines derived from CIMMYT and three susceptible commercial wheat varieties growing in Turkey and to determine mode of gene actions of the parents for yield characters in F1 generation. All 15 F1 crosses and their parents were planted in randomized complete block design in three replications. Measurements were done for plant height, pike length, spike let and kernel number per spike, grain weight per spike and 1000-kernel weight. Promising findings of the crosses 72 x Golia, 70 x Golia, 70 x Basribey, 48 x Basribey, 48 x Atilla-12 and 72 x Atilla12 were obtained to breed new varieties or pure lines having shorter plant height and taller spike length, more number of spike let and kernel per spike, besides higher grain yield than their mid or better parents to improve powdery mildew resistant varieties. (author)

  17. Use of flyash and biogas slurry for improving wheat yield and physical properties of soil.

    Science.gov (United States)

    Garg, R N; Pathak, H; Das, D K; Tomar, R K

    2005-08-01

    This study explores the potential use of by-products of energy production, i.e., (i) flyash from coal-powered electricity generation and (ii) biogas slurry from agricultural waste treatment, as nutrient sources in agriculture. These residues are available in large amounts and their disposal is a major concern for the environment. As both residues contain considerable amounts of plant nutrients, their use as soil amendment may offer a promising win-win opportunity to improve crop production and, at the same time, preventing adverse environmental impacts of waste disposal. Effect of flyash and biogas slurry on soil physical properties and growth and yield of wheat (Triticum aestivum) was studied in a field experiment. Leaf area index, root length density and grain yield of wheat were higher in plots amended with flyash or biogas slurry compared to unamended plots. Both types of amendments reduced bulk density, and increased saturated hydraulic conductivity and moisture retention capacity of soil. The study showed that flyash and biogas slurry should be used as soil amendments for obtaining short-term and long-term benefits in terms of production increments and soil amelioration.

  18. Aerial view of the Kennedy Space Center Visitor Center

    Science.gov (United States)

    1998-01-01

    The Kennedy Space Center Visitor Center, shown in this aerial view looking south, sprawls across 70 acres on Florida's Space Coast , and is located off State Road 405, NASA Parkway, six miles inside the Space Center entrance. SR 405 can be seen at the bottom of the photo. Just above the roadway, from left can be seen the Shuttle/Gantry mockup; the Post Show Dome; the Astronaut Memorial; and to the far right, the Center for Space Education. Behind the Memorial are a cluster of buildings that include the Theater Complex, Cafeteria, Space Flight Exhibit Building, Souvenir Sales Building, Spaceport Central, and Ticket Pavilion. At the upper right are various rockets that have played a significant role in the growth of the space program.

  19. Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines

    Directory of Open Access Journals (Sweden)

    Lina Maria Aguirre-Rojas

    2017-11-01

    Full Text Available The wheat curl mite, Aceria toschiella (Keifer, and a complex of viruses vectored by A. toschiella substantially reduce wheat yields in every wheat-producing continent in the world. The development of A. toschiella-resistant wheat cultivars is a proven economically and ecologically viable method of controlling this pest. This study assessed A. toschiella resistance in wheat genotypes containing the H13, H21, H25, H26, H18 and Hdic genes for resistance to the Hessian fly, Mayetiola destructor (Say and in 94M370 wheat, which contains the Dn7 gene for resistance to the Russian wheat aphid, Diuraphis noxia (Kurdjumov. A. toschiella populations produced on plants containing Dn7 and H21 were significantly lower than those on plants of the susceptible control and no different than those on the resistant control. Dn7 resistance to D. noxia and H21 resistance to M. destructor resulted from translocations of chromatin from rye into wheat (H21—2BS/2RL, Dn7—1BL/1RS. These results provide new wheat pest management information, indicating that Dn7 and H21 constitute resources that can be used to reduce yield losses caused by A. toschiella, M. destructor, D. noxia, and wheat streak mosaic virus infection by transferring multi-pest resistance to single sources of germplasm.

  20. Biofertilizer: a novel formulation for improving wheat growth, physiology and yield

    International Nuclear Information System (INIS)

    Hassan, T.; Bano, A.

    2016-01-01

    Bacillus cereus and Pseudomonas moraviensis strains were inoculated singly as well as in consortium with two different carriers i.e., maize straws and sugarcane husk in the formulation of biofertilizer. Plant growth promoting rhizobacteria (PGPR) strains used in biofertilizer were phosphate solubilizer and exhibited strong antifungal activities. Both PGPR used in formulation was maintained 15-16.5 * 10/sup 8/ cfu g-1 in carrier material after 40d. The field experiment was conducted at Quaid-e-Azam University Islamabad on wheat for two consecutive years (2011-2012) simultaneously in pots and field. Plants sampling for growth and physiological parameters was made after 57d of sowing and at maturity for yield parameters. Single inoculation of Pseudomonas moraviensis and Bacillus cereus with maize straw and sugarcane husk increased plant height and fresh weight by 18-30% and protein, proline, sugar contents and antioxidant activities by 25-40%. There were 20% increases in spike length, seeds/spike and seed weight in single inoculation. Co-inoculation of PGPR further increased plant growth, physiology and yield by 10-15% over single inoculation with carriers. PGPR consortium with sugarcane husk and maize straw (biofertilizer formulation) increased 20-30% plant growth chlorophyll, sugar, protein contents, antioxidants activities and yield parameters. It is inferred that carrier based biofertilzer effectively increased growth, maintained osmotic balance and enhanced the activities of antioxidant enzymes and yield parameters. (author)

  1. Weed Population Dynamics, Water Productivity and Grain Yield of Durum Wheat (Triticum durum L. in No-Tillage and Conventional Tillage Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Mojab

    2016-09-01

    Full Text Available Introduction: Elimination or reduction of tillage in conservation agricultural systems has led to wide variations in germination, emergence, and growth of weeds and has caused variations in the density and diversity of weeds under such systems. Maintaining crop residues on the soil surface has many potential benefits in agricultural production systems; such as reducing water and wind erosions, increasing the soil organic matter content, improving the soil structure and sowing conditions, as well as a better weed management through allelopathy or physical interference provided by the crop residues. Crop residue and tillage system cause potential changes in the soil temperature and water content, which influence soil density, structure, moisture, as well as soil temperature and nutrients. Crop residues act as mulches and can effect on weed seed germination and seedling emergence. Therefore, the objectives of current study were to evaluate the effects of no-tillage systems on: (i narrow- and broadleaved weed densities, (ii crop yield and (iii water productivity (WP. Materials and Methods: A two-year field study based on a split plot experiment in a randomized complete block design with four replications was carried out in Zahedshahr, Fars province, Iran (latitude 28˚44΄N, longitude 53˚48΄E, 1180 m altitude during 2009-10 and 2010-11 growing seasons. The planting practices including moldboard plow, disk and leveler were practiced in conventional tillage plots and crop planting was performed using a drill seeder (made by Kohorasan Co., Iran. The no-tillage plots were directly planted without any soil disturbance and removing wheat residues of the last year using a direct planter machine (model Berteni, Argentina. Furrow irrigation was used at both systems and a water counter (model WD, size DN100 was applied to measure the amount of used water based on m3 ha-1. 1 x 1 m quadrates that were installed at the center of each plot. Crop density, narrow

  2. Breeding high yielding, high protein spring wheats: Problems, progress and approaches to further advances

    International Nuclear Information System (INIS)

    Konzak, C.F.; Rubenthaler, G.L.

    1984-01-01

    Preliminary data offer promise that advances have been made in breeding hard red spring wheat selections with a yielding capacity about equal to current cultivars and with an increased capacity for producing high protein grain. The most promising new selections are derivatives of Magnif 41M1, CI17689, a semi-dwarf mutant of an Argentinian high protein cultivar. Rapid changes in disease and pest problems also required immediate attention and a reorientation of breeding materials and goals. Selection procedures suggested as promising include early generation (F 2 and F 3 ) screening for disease resistance and agronomic type, with screening for protein content delayed until F 4 or F 5 . Cultural conditions conducive for expressing the highest yield capacity are proposed as optimum for identifying those selections also able to produce high protein grain. A goal of routine production of 14.5% (or higher) protein grain is considered necessary and achievable under fertility management conditions required for maximum yield expression of agronomically competitive cultivars. Agronomically improved sources of high protein genes, an increasing number of induced high protein mutants, and numerous high protein crossbred derivatives of T. dicoccoides and Aegilops species have recently become available. These new or improved germplasm sources as well as a considerable reserve of yet untapped germplasm variability in other accessions of wild T. dicoccoides offer increased optimism that further, rapid advances in the breeding of adapted high yielding, high protein wheats are achievable. Improved breeding schemes, using induced male sterility mutants either to aid in crossing or to develop male sterile facilitated recurrent selection (MSFRS) populations, should contribute towards an earlier achievement of the desired goal while providing the basis for buffering against rapid changes in disease and pest problems

  3. Traits in Spring Wheat Cultivars Associated with Yield Loss Caused by a Heat Stress Episode after Anthesis

    DEFF Research Database (Denmark)

    Vignjevic, Marija; Wang, Xiao; Olesen, Jørgen E

    2015-01-01

    with heat tolerance. Fifteen spring wheat (Triticum aestivum L.) cultivars were grown in pots under semifield conditions, and heat stress (35/26 °C) and control treatments (20/12 °C) were applied in growth chambers for 5 days starting 14 days after flowering. The heat stress treatment reduced final yield...... in the grain-filling period was negatively correlated with grain nitrogen yield (r = −0.60). A positive correlation (r = 0.73) was found between the treatment effect on green leaf area (GLA) and the reduction in yield resulting from heat stress. The amount of stem water-soluble carbohydrates (WSC...

  4. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    DEFF Research Database (Denmark)

    Martre, Pierre; Reynolds, Matthew; Asseng, Senthold

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown...... dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season...... and end-of-season results from 30 wheat models....

  5. [Flag leaf photosynthetic characteristics, change in chlorophyll fluorescence parameters, and their relationships with yield of winter wheat sowed in spring].

    Science.gov (United States)

    Xu, Lan; Gao, Zhi-qang; An, Wei; Li, Yan-liang; Jiao, Xiong-fei; Wang, Chuang-yun

    2016-01-01

    With five good winter wheat cultivars selected from the middle and lower reaches of Yangtze River and Southwest China as test materials, a field experiment in Xinding basin area of Shanxi Province was conducted to study the photosynthetic characteristics, chlorophyll content, and chlorophyll fluorescence parameters of flag leaf at different sowing dates, as well as the correlations between these indices and yield for two years (2013-2014). The results showed that the difference in most fluorescence parameters except chlorophyll content among cultivars was significant. The correlations between these fluorescence parameters and yield were significant. The variation coefficient of chlorophyll (Chl) content was low (0.12-0.17), and that of performance index based on absorption (PIabs) was high (0.32-0.39), with the partial correlation coefficients of them with grain yield from 2013 to 2014 ranged in 0.70-0.81. Under the early sowing condition, the grain yield positively correlated with PIabs at flowering and filling stages and chlorophyll content at grain filling stage, but negatively correlated with the relative variable fluorescence at I point (Vi) at grain filling stage. About 81.1%-82.8% of grain yield were determined by the variations of PIabs, Chl, and Vi. Wheat cultivars had various performances in the treatments with different sowing dates and a consistent trend was observed in the two experimental years. Among these 5 cultivars, Yangmai 13 was suitable for early sowing, with the flag leaf photosynthetic rate (Pn), Chl, most fluorescence parame-ters, and grain yield showed obviously high levels. In conclusion, under early sowing condition chlorophyll content at grain filling stages, PIabs at flowering and filling stages, and Pn were important indices for selecting wheat cultivars with high photosynthetic efficiency.

  6. Wheat (Triticum aestivum L. Cultivar Selection Affects Double-Crop and Relay-Intercrop Soybean (Glycine max L. Response on Claypan Soils

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2010-01-01

    Full Text Available Field research (2003–2005 evaluated the effect of wheat row spacing (19 and 38 cm and cultivar on double-cropped (DC soybean response, 38-cm wheat on relay-intercrop (RI response, and wheat cultivar selection on gross margins of these cropping systems. Narrow-row wheat increased grain yield 460 kg ha−1, light interception (LI 7%, and leaf area index (LAI 0.5 compared to wide rows, but did not affect DC soybean yield. High yielding wheat (P25R37 with greater LI and LAI produced lower (330 kg ha−1 soybean yields in an RI system than a low yielding cultivar (Ernie. Gross margins were $267 ha−1 greater when P25R37 was RI with H431 Intellicoat (ITC soybean compared to Ernie. Gross margins were similar for monocrop H431 non-coated (NC or ITC soybean, P25R37 in 19- or 38-cm rows with DC H431 NC soybean, and P25R37 in 38-cm rows with RI H431 ITC soybean in the absence of an early fall frost.

  7. Evaluation of irradiated wheat populations. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Salam, T Z [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    This study was carried out from 1992 to 1994. It aimed to study genetic behaviour for plant height, dry weight/plant, earliness, grain yield/plant, and 100-grain weight at harvest time in three wheat cultivars Mexi back, Giza 155, and Saka 69; and and their hybrids in F{sub 3} - M{sub 1}, and F{sub 4} - M{sub 2} mutagenic generations after treatment of dry seeds with gamma ray doses of 75, 100, and 125 Gy. All doses caused an increase or decrease in growth, yield, and yield attributes of the wheat cultivars. In G{sub 1}55 Mexi back hybrid wheat the 100 Gy caused an increase in 100 - grain weight, grain yield/plant, and dry weight/plant in F{sub 4} - M{sub 2} generation only. But in Mexi back X G{sub 1}55 hybrid wheat the 75 Gy increased plant height, 100 - grain weight, grain yield/plant, and dry weight/plant in both generations F{sub 3} - M{sub 1} and F{sub 4} -M{sub 2}. SK{sub 69} X Mexi back hybrid wheat at 75 Gy caused earliness by about 13 days, and high grain yield in F{sub 4} - M{sub 2} generation only. however, in Mexi back x SK{sub 69} hybrid wheat, 100 Gy caused earliness about 7 days but with low grain yield. 3 tabs.

  8. Response of wheat to tillage and nitrogen fertilization in rice-wheat system

    International Nuclear Information System (INIS)

    Qamar, R.; Ehsanullah, A.; Ahmad, R.; Iqbal, M.

    2012-01-01

    In a rice-wheat system, rice stubbles remaining in the field often delay early planting of winter wheat to utilize residual soil moisture and reduce operating costs. A randomized complete block design in a split plot arrangement was conducted with four seasonal tillage methods [conventional tillage, CT; deep tillage, DT; zero tillage with zone disk tiller, ZDT; and happy seeder, HS] as main plots and five N levels [0, 75, 100, 125, and 150 kg ha/sup -1/] as subplots during 2009 to 2010 and 2010 to 2011 wheat growing seasons. Results showed that DT significantly decreased soil bulk density, penetration resistance, and volumetric moisture content compared with CT, ZDT and HS. However, wheat growth and yield parameter such as fertile tillers, plant height, root length, spike length, grain yields, and water and nutrient-use efficiency was significantly higher in DT compared with other tillage treatments. Wheat growth and yield was more increased by N fertilization at 125 kg ha/sup -1/ than other N rates. However, when the wheat plant productivity index was plotted over N rates, the non-linear relationship showed that N fertilization at 80 kg N ha-1 accounted for 85% of the variability in the plant productivity under DT and HS while ZDT had the same productivity at 120 kg N ha/sup -1/. (author)

  9. Climate Change and Rainfed Wheat Production in Iran

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2011-01-01

    Full Text Available Abstract This research was conducted to evaluate the impacts of climate change on rainfed wheat growth and yield at country level. Weather data generated by a General Circulation model based on the ICCP scenarios for the target years of 2025 and 2050. Daily weather data including minimum and maximum temperatures, precipitation and radiation were used as the inputs of a growth simulation model for rainfed after calibration and validation for predicting wheat yield under current climatic conditions. Using the model, the impacts of climate change on wheat growth and yield was predicted and compared with the current data. The simulation results indicated that leaf area index and absorbed radiation by wheat canopy was reduced under climatic conditions of the target years. Reduction of absorbed radiation resulted to a lower crop growth rate and consequently drastic reduction in dry matter production. Estimated drought stress index for the future climate conditions showed that reduction of crop growth rate was mainly resulted from water shortage due to increased evapotranspiration. Reduction of the length of growth period together with a considerable decline of harvest index resulted in a significant reduction of rainfed wheat yield despite the positive effects of increased CO2 concentration and this negative impacts on wheat yield was intensified from 2025 towards 2050. Simulation results showed that the potential impact of climate change on rainfed wheat yield was more pronounced in Eastern regions of the country compared to the Western production areas. The overall country level reduction of rainfed wheat yield was estimated in the range of 16 to 25 % and 22 to 32% for the years 2025 and 2050, respectively. Keywords: Climate change, Rainfed wheat, General Circulation models, Simulation, Yield, Iran

  10. Stability of rust resistance and yield potential of some icarda bread wheat lines in Pakistan

    International Nuclear Information System (INIS)

    Shah, S.J.A.; Khan, A.J.; Azam, F.; Mirza, J.I.; Atiq-ur-Rehman

    2003-01-01

    Thirty bread wheat lines resistant to Yellow rust (Yr) were selected after careful screening from two ICARDA nurseries during 1998 - 1999, Rabi season at Nuclear Institute for Food and Agriculture (NIFA), Tarnab, Peshawar under severe disease pressure. In the following crop cycle, these selections were again field evaluated for stability and effectiveness of Yr resistance at multilocations while their yield potential was ascertained at Tarnab in two different trials with Tatara as commercial check. Results revealed that uniformity was found in the potential behavior of 23 lines (77%) in both the cropping seasons against Yr. This included some high yielding (up to 7067 kg/ ha) and low yielding lines (up to 4333 kg / ha) when compared with the check (6089 kg / ha). Yield potential of some high yielding lines with stable Yr resistance should be further evaluated over sites and seasons for wide adaptability, under national uniform testing in order to select and deploy future varieties to combat Yr for acquiring food security in Pakistan.(author)

  11. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    Science.gov (United States)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  12. Inheritance of grain yield and its correlation with yield components in ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... average yield of wheat in China is 4.75 t ha-1, which is low compared to other .... Analysis of variance for combining ability for grain yield plant-1. Source of variation ..... Hayman BI (1954). The theory and analysis of diallel crosses. .... Analysis and prospect of China wheat market in 2011. Food and Oil.

  13. Research on Wheat Straw Pulping with Ionic Liquid 1-Ethyl-3-Methylimidazole Bromide

    Directory of Open Access Journals (Sweden)

    Wei Song

    2016-12-01

    Full Text Available In this paper, the pulping process of wheat straw using ionic liquid 1-ethyl-3-methylimidazolium bromide ([Emim]Br as the digestion liquor is presented. The influence of pulping conditions on the pulp yield are analysed by single-factor and orthogonal experiments, and optimum pulping conditions are obtained. The average pulp yield reaches 44 %, and the average recovery rate of ionic liquid is 93.5 %. The XRD pattern shows no obvious change in the crystal structure of the wheat straw cellulose. Additionally, the SEM image illustrates that there are many fine fibres in the pulp and the spaces between the fibres are large.

  14. Effects of enhanced UVB on growth and yield of two Syrian crops; wheat (Triticum durum desf. var. Horani) and broad beans field conditions

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Baydoun, S.A.; Mohammed, A.

    1998-01-01

    Wheat and broad beans were exposed, under field conditions, to a daily UVB of 20 % above the ambient UVB. The plant height, tiller number, number of flowers, spikletes, dry weight and leaf area in both species showed positive responses to UVB treatment. At harvest, the seeds weight of broad beans was virtually equal in exposed and unexposed plants. In wheat, seeds yield increased significantly by 15 %. In conclusion, broad beans can be considered as a tolerant cultivar to enhanced UVB, while wheat is more tolerant. (Author)

  15. CO2 dose–response functions for wheat grain, protein and mineral yield based on FACE and open-top chamber experiments

    International Nuclear Information System (INIS)

    Pleijel, Håkan; Högy, Petra

    2015-01-01

    Data from three Swedish open-top chamber and four German FACE experiments were combined to derive response functions for elevated CO 2 (eCO 2 ) effects on Cd, Zn, Mn, protein, grain yield, grain mass and grain number of wheat. Grain yield and grain number were increased by ∼6% and ∼7%, respectively, per 100 ppm CO 2 ; the former effect was linked to plant nitrogen status. Grain mass was not influenced by eCO 2 , whereas Cd concentration was reduced. Unlike Zn, Mn and protein, effects on Cd yield were not related to effects on grain yield. Yields of Mn, Zn and (weakly) protein were positively affected by eCO 2 . For protein, grain yield, grain mass and grain number, the results were consistent among the FACE and OTC experiments. A key conclusion was that yields of essential nutrients were enhanced (Mn > Zn > protein), although less than grain yield, which would not be expected from a simple dilution model. - Highlights: • Grain yield and grain number were positively affected by 6–7% per 100 ppm CO 2 . • Yield stimulation by CO 2 was influenced by plant nitrogen status. • Cd concentration was reduced by elevated CO 2 . • Yields of Zn, Mn and protein were stimulated by CO 2 , but less than grain yield. • A simple dilution model did not explain effects on Zn, Mn and protein. - Yields of Zn, Mn and protein were stimulated less by elevated CO 2 than grain yield, while Cd yield and grain mass were unaffected, in wheat exposed in FACE and open-top chambers

  16. Adapting wheat in Europe for climate change.

    Science.gov (United States)

    Semenov, M A; Stratonovitch, P; Alghabari, F; Gooding, M J

    2014-05-01

    Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.

  17. Analysis of meteorological variations on wheat yield and its estimation using remotely sensed data. A case study of selected districts of Punjab Province, Pakistan (2001-14

    Directory of Open Access Journals (Sweden)

    Rafia Mumtaz

    2017-10-01

    Full Text Available Land management for crop production is an essential human activity that supports life on Earth. The main challenge to be faced by the agriculture sector in coming years is to feed the rapidly growing population while maintaining the key resources such as soil fertility, efficient land use, and water. Climate change is also a critical factor that impacts agricultural production. Among others, a major effect of climate change is the potential alterations in the growth cycle of crops which would likely lead to a decline in the agricultural output. Due to the increasing demand for proper agricultural management, this study explores the effects of meteorological variation on wheat yield in Chakwal and Faisalabad districts of Punjab, Pakistan and used normalised difference vegetation index (NDVI as a predictor for yield estimates. For NDVI data (2001-14, the NDVI product of Moderate Resolution Imaging spectrometer (MODIS 16-day composites data has been used. The crop area mapping has been realised by classifying the satellite data into different land use/land covers using iterative self-organising (ISO data clustering. The land cover for the wheat crop was mapped using a crop calendar. The relation of crop yield with NDVI and the impact of meteorological parameters on wheat growth and its yield has been analysed at various development stages. A strong correlation of rainfall and temperature was found with NDVI data, which determined NDVI as a strong predictor of yield estimation. The wheat yield estimates were obtained by linearly regressing the reported crop yield against the time series of MODIS NDVI profiles. The wheat NDVI profiles have shown a parabolic pattern across the growing season, therefore parabolic least square fit (LSF has been applied prior to linear regression. The coefficients of determination (R2 between the reported and estimated yield was found to be 0.88 and 0.73, respectively, for Chakwal and Faisalabad. This indicates that the

  18. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield.

    Science.gov (United States)

    Carmo-Silva, Elizabete; Andralojc, P John; Scales, Joanna C; Driever, Steven M; Mead, Andrew; Lawson, Tracy; Raines, Christine A; Parry, Martin A J

    2017-06-15

    Improving photosynthesis is a major target for increasing crop yields and ensuring food security. Phenotyping of photosynthesis in the field is critical to understand the limits to crop performance in agricultural settings. Yet, detailed phenotyping of photosynthetic traits is relatively scarce in field-grown wheat, with previous studies focusing on narrow germplasm selections. Flag leaf photosynthetic traits, crop development, and yield traits were compared in 64 field-grown wheat cultivars in the UK. Pre-anthesis and post-anthesis photosynthetic traits correlated significantly and positively with grain yield and harvest index (HI). These traits included net CO2 assimilation measured at ambient CO2 concentrations and a range of photosynthetic photon flux densities, and traits associated with the light response of photosynthesis. In most cultivars, photosynthesis decreased post-anthesis compared with pre-anthesis, and this was associated with decreased Rubisco activity and abundance. Heritability of photosynthetic traits suggests that phenotypic variation can be used to inform breeding programmes. Specific cultivars were identified with traits relevant to breeding for increased crop yields in the UK: pre-anthesis photosynthesis, post-anthesis photosynthesis, light response of photosynthesis, and Rubisco amounts. The results indicate that flag leaf longevity and operating photosynthetic activity in the canopy can be further exploited to maximize grain filling in UK bread wheat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Evaluation of alternative planting strategies to reduce wheat stem sawfly (Hymenoptera: Cephidae) damage to spring wheat in the northern Great Plains.

    Science.gov (United States)

    Beres, B L; Cárcamo, H A; Bremer, E

    2009-12-01

    Wheat, Triticum aestivum L., producers are often reluctant to use solid-stemmed wheat cultivars resistant to wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), due to concerns regarding yield, efficacy or market opportunities. We evaluated the impact of several planting strategies on wheat yield and quality and wheat stem sawfly infestation at two locations over a three-year period. Experimental units consisted of large plots (50 by 200 m) located on commercial farms adjacent to wheat stem sawfly-infested fields. Compared with a monoculture of a hollow-stemmed cultivar ('AC Barrie'), planting a monoculture of a solid-stemmed cultivar ('AC Eatonia') increased yield by an average of 16% (0.4 mg ha(-1)) and increased the grade of wheat by one unit at the two most heavily infested site-years. Planting a 1:1 blend of AC Eatonia and AC Barrie increased yield by an average of 11%, whereas planting 20- or 40-m plot margins to AC Eatonia increased yield by an average of 8%. High wheat stem sawfly pressure limited the effectiveness of using resistant cultivars in field margins because plants were often infested beyond the plot margin, with uniform infestation down the length of the plots at the two most heavily infested site-years. The effectiveness of AC Eatonia to reduce wheat stem sawfly survivorship was modest in this study, probably due to weather-related factors influencing pith expression and to the high abundance of wheat stem sawfly. Greater benefits from planting field margins to resistant cultivars or planting a blend of resistant and susceptible cultivars might be achievable under lower wheat stem sawfly pressure.

  20. INFINITY at NASA Stennis Space Center

    Science.gov (United States)

    2010-01-01

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  1. The Effect of Nitrogen Fertilizer Application on Wild Oat (Avena ludoviciana L. Competition Ability with Winter Wheat (Triticum asetivum L. in Kermanshah Climate Condition

    Directory of Open Access Journals (Sweden)

    A Jalilian

    2017-12-01

    Full Text Available Introduction Cereals are the main agricultural production. Wheat is an annual crop, which plays an important role in human’s source of food. Wheat grains have various nutrients such as carbohydrates, proteins and various amino acids. The annual per capita consumption of wheat is about 232 in Iran, which is about double time of the world capita consumption. Weed interference decrease the quality and quantity of wheat production. Weed management in wheat farms is one of the main cost and time-consuming practices. Wheat yield decrease significantly by weed competition. Therefore, effective weed management dependents on knowledge about the effect of competition on yield and yield components. Response of the yield and yield components to weeds competition is different in crop species during the growth period. Yield components in development stages show the maximum sensitivity to weed competition. Wild Oat is the most important weed in wheat fields. Synchrony in development stages of wild oat with development stages of wheat is much more important reason in reducing of wheat yield and yield component. On the other hand, wild oat damage on wheat yield and yield components depends on several factors including species, plant density, wheat cultivars, nutrients consumption, sowing date, row spacing, and other ecological conditions. Moreover, leaf area index, plant height, leaf area density in canopy determine competitiveness of wild oat among wheat. Therefore, the objective of the present study was to evaluate the effect of wild oat competition in different plant densities and levels of Nitrogen fertilizer consumption on yield and yield components of wheat under Kermanshah climate. Materials and Methods This study was conducted to evaluate the competition of wild oat and winter wheat at the Research Farm of Campus of Agricultural and Natural Resources of Razi University during 2014-2015. The experiment was arranged in a split plots based on randomized

  2. Association and Validation of Yield-Favored Alleles in Chinese Cultivars of Common Wheat (Triticumaestivum L..

    Directory of Open Access Journals (Sweden)

    Jie Guo

    Full Text Available Common wheat is one of the most important crops in China, which is the largest producer in the world. A set of 230 cultivars was used to identify yield-related loci by association mapping. This set was tested for seven yield-related traits, viz. plant height (PH, spike length (SL, spikelet number per spike (SNPS, kernel number per spike (KNPS, thousand-kernel weight (TKW, kernel weight per spike (KWPS, and sterile spikelet number (SSN per plant in four environments. A total of 106 simple sequence repeat (SSR markers distributed on all 21 chromosomes were used to screen the set. Twenty-one and 19 of them were associated with KNPS and TKW, respectively. Association mapping detected 73 significant associations across 50 SSRs, and the phenotypic variation explained (R2 by the associations ranged from 1.54 to 23.93%. The associated loci were distributed on all chromosomes except 4A, 7A, and 7D. Significant and potentially new alleles were present on 8 chromosomes, namely 1A, 1D, 2A, 2D, 3D, 4B, 5B, and 6B. Further analysis showed that genetic effects of associated loci were greatly influenced by association panels, and the R2 of crucial loci were lower in modern cultivars than in the mini core collection, probably caused by strong selection in wheat breeding. In order to confirm the results of association analysis, yield-related favorable alleles Xgwm135-1A138, Xgwm337-1D186, Xgwm102-2D144, and Xgwm132-6B128 were evaluated in a double haploid (DH population derived from Hanxuan10 xLumai14.These favorable alleles that were validated in various populations might be valuable in breeding for high-yield.

  3. Biochar: a novel tool to enhance wheat productivity and soil fertility on sustainable basis under wheat-maize-wheat cropping pattern

    International Nuclear Information System (INIS)

    Ali, K.; Jan, M.T.; Munsif, F.

    2015-01-01

    The application of organic matter is an important element for preserving long-term soil fertility because it is the reservoir of metabolic energy, which drives soil biological processes involved in nutrient availability. Two years field experiments were conducted for the assessment of the interactive effect of biochar with synthetic fertilizer and farmyard manure. Biochar application at the rate of 25 t ha-1 increased spikes m-2 by 6.64%, grains spike-1 by 5.6%, thousand grain weight by 3.73, grain yield by 9.96%, biological yield by 15.36%, phosphorus use efficiency by 29.03% and grain phosphorus uptake by 19.67% in comparison with no biochar treated plots. Likewise, biochar application significantly increased soil carbon (C), phosphorus (P) and potassium (K) by 54.02, 61.39 and 18.41%, respectively. Similarly, farmyard manure at the rate of 10 t ha-1 resulted in significantly higher yield components, grain yield, soil C, P and K than 5 t ha-1. Likewise, mineral nitrogen application at the rate of 120 kg ha-1 improved wheat yield and yield components with no significant effect on soil C, P and K contents. It is concluded that application biochar either alone or in combination with FYM or mineral nitrogen improved yield and yield components of wheat and soil quality in wheat-maize cropping pattern. (author)

  4. Durum Wheat in Conventional and Organic Farming: Yield Amount and Pasta Quality in Southern Italy

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    2012-01-01

    Full Text Available Five durum wheat cultivars were grown in a Mediterranean area (Southern Italy under conventional and organic farming with the aim to evaluate agronomic, technological, sensory, and sanitary quality of grains and pasta. The cultivar Matt produced the best pasta quality under conventional cropping system, while the quality parameters evaluated were unsatisfactory under organic farming. The cultivar Saragolla showed the best yield amount and pasta quality in all the experimental conditions, thus proving to be the cultivar more adapt to organic farming. In all the tested experimental conditions, nivalenol (NIV and deoxynivalenol (DON occurrence was very low and the other mycotoxins evaluated were completely absent. These data confirm the low risk of mycotoxin contamination in the Mediterranean climate conditions. Finally, it has been possible to produce high-quality pasta in Southern Italy from durum wheat grown both in conventional and organic farming.

  5. Balance sheet method assessment for nitrogen fertilization in bread wheat: I. yield and quality

    Directory of Open Access Journals (Sweden)

    Maria Corbellini

    2006-09-01

    Full Text Available In the European Union the production of high quality wheat is mainly located in the Mediterranean regions where the climatic conditions positively affect protein concentration in the grain. High quality wheat calls for proper management of nitrogen fertilization, thus there is a need to verify whether the limitations imposed by local governments on maximum rate of nitrogen fertilization admitted may affect bread making quality. Trials were conducted in fourteen environments (E to study the effects of different nitrogen fertilizations on eight cultivars (C, belonging to four quality grades (Q. Nitrogen (N was applied to crops according to three rates/modalities: N1 corresponding to the maximum rate admitted calculated according to a balance sheet method and distributed at the stage of spike initiation; N2 with 50 kg ha-1 of nitrogen more than N1, also distributed at the stage of spike initiation; N3 with 50 kg ha-1 of nitrogen more than N1 but distributed at the stage of flag leaf appearance. The effects of environment, nitrogen and cultivar were significant for grain yield, test weight, 1000 kernel weight, heading time, plant height and for quality traits (protein content and alveograph indices. The existence of variability among cultivars and quality grades in the response to rate and timing of nitrogen fertilization was demonstrated by the significance of NxC and NxQ interactions. Dry matter and nitrogen contents of plant at anthesis and at harvest were significantly affected by the main sources of variation. High quality cultivars yielded more grain of better quality with higher N rates (N2 and N3 as compared to the maximum rate of nitrogen admitted by the local government (N1. These results demonstrated that the adopted balance sheet method for the calculation of N requirements of wheat crop adversely affects the full potential expression of the cultivars belonging to superior bread making quality grades.

  6. Balance sheet method assessment for nitrogen fertilization in bread wheat: I. yield and quality

    Directory of Open Access Journals (Sweden)

    Mario Monotti

    2011-02-01

    Full Text Available In the European Union the production of high quality wheat is mainly located in the Mediterranean regions where the climatic conditions positively affect protein concentration in the grain. High quality wheat calls for proper management of nitrogen fertilization, thus there is a need to verify whether the limitations imposed by local governments on maximum rate of nitrogen fertilization admitted may affect bread making quality. Trials were conducted in fourteen environments (E to study the effects of different nitrogen fertilizations on eight cultivars (C, belonging to four quality grades (Q. Nitrogen (N was applied to crops according to three rates/modalities: N1 corresponding to the maximum rate admitted calculated according to a balance sheet method and distributed at the stage of spike initiation; N2 with 50 kg ha-1 of nitrogen more than N1, also distributed at the stage of spike initiation; N3 with 50 kg ha-1 of nitrogen more than N1 but distributed at the stage of flag leaf appearance. The effects of environment, nitrogen and cultivar were significant for grain yield, test weight, 1000 kernel weight, heading time, plant height and for quality traits (protein content and alveograph indices. The existence of variability among cultivars and quality grades in the response to rate and timing of nitrogen fertilization was demonstrated by the significance of NxC and NxQ interactions. Dry matter and nitrogen contents of plant at anthesis and at harvest were significantly affected by the main sources of variation. High quality cultivars yielded more grain of better quality with higher N rates (N2 and N3 as compared to the maximum rate of nitrogen admitted by the local government (N1. These results demonstrated that the adopted balance sheet method for the calculation of N requirements of wheat crop adversely affects the full potential expression of the cultivars belonging to superior bread making quality grades.

  7. Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios

    Science.gov (United States)

    Tebaldi, Claudia; Lobell, David

    2018-06-01

    The availability of climate model experiments under three alternative scenarios stabilizing at warming targets inspired by the COP21 agreements (a 1.5 °C not exceed, a 1.5 °C with overshoot and a 2.0 °C) makes it possible to assess future expected changes in global yields for two staple crops, wheat and maize. In this study an empirical model of the relation between crop yield anomalies and temperature and precipitation changes, with or without the inclusion of CO2 fertilization effects, is used to produce ensembles of time series of yield outcomes on a yearly basis over the course of the 21st century, for each scenario. The 21st century is divided into 10 year windows starting from 2020, within which the statistical significance and the magnitude of the differences in yield changes between pairs of scenarios are assessed, thus evaluating if and when benefits of mitigations appear, and how substantial they are. Additionally, a metric of extreme heat tailored to the individual crops (number of days during the growing season above a crop-specific threshold) is used to measure exposure to harmful temperatures under the different scenarios. If CO2 effects are not included, statistically significant differences in yields of both crops appear as early as the 2030s but the magnitude of the differences remains below 3% of the historical baseline in all cases until the second part of the century. In the later decades of the 21st century, differences remain small and eventually stop being statistically significant between the two scenarios stabilizing at 1.5 °C, while differences between these two lower scenarios and the 2.0 °C scenario grow to about 4%. The inclusion of CO2 effects erases all significant benefits of mitigation for wheat, while the significance of differences is maintained for maize yields between the higher and the two lower scenarios, albeit with smaller benefits in magnitude. Changes in extremes are significant within each of the scenarios

  8. Economics of wheat based cropping systems in rainfed areas of pakistan

    International Nuclear Information System (INIS)

    Khaliq, P.; Cheema, N.M.; Malik, A.; Umair, M.

    2012-01-01

    The Pothwar tract of rainfed area has enormous potential to meet incremental food grain needs of the country. However, a significant yield gap in wheat has been reported between yields of substantive and the progressive growers mainly due to poor management of soil, water and fertility issues. A field study was conducted at National Agricultural Research Centre (NARC), Islamabad and the traditional wheat-fallow-wheat (W-F-W) cropping system was evaluated with the improved wheat-maize fodder-wheat (W-MF-W) and wheat-mungbean-wheat (W-MB-W) cropping systems. Two tillage practices, i.e. shallow tillage with cultivator and deep tillage with moldboard; and four fertilizer treatments viz., control (C), recommended dose of fertilizer for each crop (F), farmyard manure (FYM) at the rate -15 tha . The recommended doses of fertilizer for individual crop with FYM (F+FYM) were also included in the study to know their impact on the crops yield in the cropping systems. Economic analysis of the data revealed that the traditional wheat-fallow-wheat cropping system could be economically replaced with wheat-maize fodder-wheat cropping system even under drought condition and there will be no economical loss of wheat yield when planted after maize fodder. Application of recommended dose of fertilizer -1 along with FYM at the rate 5 tha will enhance the yield of wheat and maize fodder. The improved cropping system of wheat-maize fodder-wheat will help the farmers to sustain productivity of these crops, stable economic benefits and improvement in soil nutrients and organic matter over time. (author)

  9. Identification of Leaf Promoters for Use in Transgenic Wheat

    Directory of Open Access Journals (Sweden)

    Saqer S. Alotaibi

    2018-03-01

    Full Text Available Wheat yields have plateaued in recent years and given the growing global population there is a pressing need to develop higher yielding varieties to meet future demand. Genetic manipulation of photosynthesis in elite wheat varieties offers the opportunity to significantly increase yields. However, the absence of a well-defined molecular tool-box of promoters to manipulate leaf processes in wheat hinders advancements in this area. Two promoters, one driving the expression of sedoheptulose-1,7-bisphosphatase (SBPase and the other fructose-1,6-bisphosphate aldolase (FBPA from Brachypodium distachyon were identified and cloned into a vector in front of the GUS reporter gene. Both promoters were shown to be functionally active in wheat in both transient assays and in stably transformed wheat plants. Analysis of the stable transformants of wheat (cv. Cadenza showed that both promoters controlled gus expression throughout leaf development as well as in other green tissues. The availability of these promoters provides new tools for the expression of genes in transgenic wheat leaves and also paves the way for multigene manipulation of photosynthesis to improve yields.

  10. Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan.

    Science.gov (United States)

    Shah, Farhan Mahmood; Razaq, Muhammad; Ali, Abid; Han, Peng; Chen, Julian

    2017-01-01

    Wheat being staple food of Pakistan is constantly attacked by major wheat aphid species, Schizaphis graminum (R.), Rhopalosiphum padi (L.) and Sitobion avenae (F.). Due to concern on synthetic chemical use in wheat, it is imperative to search for alternative environment- and human- friendly control measures such as botanical pesticides. In the present study, we evaluated the comparative role of neem seed extract (NSE), moringa leaf extract (MLE) and imidacloprid (I) in the management of the aphid as well as the yield losses parameters in late planted wheat fields. Imidacloprid reduced significantly aphids infestation compared to the other treatments, hence resulting in higher yield, particularly when applied with MLE. The percentages of yield increase in I+MLE treated plots over the control were 19.15-81.89% for grains per spike, 5.33-37.62% for thousand grain weight and 27.59-61.12% for yield kg/ha. NSE was the second most effective control measure in suppressing aphid population, but the yield protected by NSE treatment over the control was comparable to that by imidacloprid. Population densities of coccinellids and syrphids in the plots treated with NSE-2 were higher than those treated with imidacloprid in two out of three experiments during 2013-14. Low predator density in imidacloprid-treated plots was attributed to the lower availability of prey aphids. The efficacy of NSE against aphids varied depending on degree of synchronization among the application timing, the activity of aphids, crop variety and environmental conditions. Despite that, we suggested NSE to be a promising alternative botanical insecticide compared to the most commonly recommended imidiacloprid. Further studies should consider the side effects of biopesticides on non-target organisms in order to provide better management practices in the field.

  11. Effect of gamma irradiation, evaporation retardants and transpiration suppressants on grain yield, nutrient uptake and moisture-use efficiency on bread wheat (Triticum aestivum)

    International Nuclear Information System (INIS)

    Dash, D.K.; Sen, Avijit; Misra, N.M.

    1988-01-01

    A field trial was conducted on 'Malaviya 37' bread wheat (Triticum aestivum Linn. emend. Fiori and Paol.) in 1982-83 and 1983-84. It included 4 dos es of gamma irradiation of seeds (0, 2.5, 4.5 and 6.5 kR) and 5 treatments of evaporation retardants and transpiration suppressants, viz. control, rice (Oryza sativa Linn.) straw, wheat straw, rice straw + phenyl mercuric acetate (150 ppm) and wheat straw + kaolin (6 per cent). Seed irradiation with gamma-rays at 6.5 kR and wheat straw + kaolin gave 11.76 and 61.37 per cent higher yield than the control respectively. For moisture-use efficiency and NPK uptake these treatments also showed the same trend. (author). 12 refs

  12. Genetic potential and heritability estimates of yield traits in F3 segregating populations of bread wheat

    Directory of Open Access Journals (Sweden)

    Soshma Jan

    2015-06-01

    Full Text Available An experiment comprising of 24 wheat genotypes was undertaken during 2011-12, at New Developmental Research Farm, The University of Agriculture Peshawar, to elucidate information on the nature and magnitude of genetic variability, index of transmissibility and assessing the level of genetic improvement of the quantitative characters. The experimental material comprising 19 F3 populations along with their 5 parents of bread wheat were evaluated in randomized complete block design (RCBD with three replications. Analysis of variance exhibited highly significant (P ≤ 0.01 differences among genotypes for all the traits studied. F3 population Ghaznavi-98 x Pirsabak-05 showed maximum mean value for 1000-grain weight (47.3 g and biological yield (11474.9 kg ha-1, whereas, maximum values for grain yield (4027.3 kg ha-1, and harvest index (48.1% were observed for Pirsabak-05 x AUP-4006. Moreover, maximum spike length (11 cm was recorded for cross combination Pirsabak-05 x Pirsabak-04 and Janbaz x Pirsabak-05, respectively. In addition, Pirsabak-04 showed maximum value for number of grains spike-1 (55.0. Genetic variances were of greater magnitude than environmental variances for all the traits except for spike length and 1000-grain weight. Heritability estimates were of higher magnitude ranged from 0.64 to 0.92 for harvest index, biological yield, grain yield, and grains spike-1. Moderate to low heritability (0.40-0.46 was observed for 1000-grain weight, and spike length, respectively. Genetic gain was for spike length (0.48 cm, grains spike-1 (8.57, 1000-grain weight (2.93 g, grain yield (639.87 kg ha-1, biological yield (1790.03 kg ha-1, and harvest index (5.32 %. From high values of heritability and genetic advance, it could be concluded that selection for traits like grains spike-1 suggested good selection criteria and could be effective for future breeding programs. DOI: http://dx.doi.org/10.3126/ije.v4i2.12630 International Journal of Environment

  13. Effect of nitrogen fertilizer application timing on nitrogen use efficiency and grain yield of winter wheat in Ireland

    Directory of Open Access Journals (Sweden)

    Efretuei A.

    2016-06-01

    Full Text Available The objectives of this work were to determine the effects of initiating application of fertilizer nitrogen (N to winter wheat at different growth stages (GSs on grain yield and N use efficiency (NUE. A factorial experiment was carried out in two growing seasons (2011 and 2012 with five timings of first N application (GS 24/26 [tillering], GS 30, GS 31, GS 32 or GS 37 and an unfertilized control, two sowing densities (100 and 400 seeds/m2 and a cattle slurry treatment (with or without slurry. The latter was included to simulate variation in soil N supply (SNS. Delaying the first application of N from the tillering stage until GS 30 had no significant effect on grain yield in either year. Further delaying the initial N application until GS 31 caused a significant yield reduction in 2011, in comparison to GS 30 application, but not in 2012. Differences in efficiency of recovery and use of fertilizer N by the crop among the first three application timings were small. There was no evidence to support alteration in the timing of the first application of N in response to low plant density. Slurry application did not influence SNS, so the interaction between SNS and fertilizer N application timing could not be determined. It is concluded that in order to maximise yield and NUE, the first N application should be applied to winter wheat between late tillering and GS 30 and that delaying the first N until GS 31 can lead to yield reductions compared to the yield obtained with earlier application.

  14. Relative efficiency of Azotobacter and Azospirillum on yield and P utilization by wheat (Triticum Aestivum) with various N levels

    International Nuclear Information System (INIS)

    Aishwath, O.P.; Dravid, M.S.; Yadav, B.R.

    2002-01-01

    Efficiency of 32 P labelled single superphosphate along with N levels (0, 60, 80 and 120 kg/ha) and biofertilizers (Azotobacter and Azospirillum) was studied on wheat in Typic ustifluvent (saline phase) soil. Average grain and straw yield, total P uptake, per cent P derived by crop from applied phosphorus and its utilization in grain and straw increased either with Azospirillum or Azotobacter inoculation. However, the magnitude of increase in these attributes was of higher extent in presence of Azotobacter as compared to Azospirillum. The yield, uptake and utilization of P increased with increasing levels of N. Per cent Pdff was higher with all levels of N over control, whereas, it was at par with their successive levels. Interaction effect between levels of nitrogen and biofertilizers were also positive and significant at all levels of N with respect to yield and uptake of P, while per cent Pdff and its utilization by wheat was more pronounced at 60 and 80 kg N ha -1 in the presence of Azotobacter. Azospirillum was more effective at 60 kg of N than the other levels. Generally, Azotobacter performed better than the Azospirillum with respect to all parameters. (author)

  15. A wheat cold resistance mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Li Peng; Sun Mingzhu; Zhang Fengyun; Gao Guoqiang; Qiu Denglin; Li Xinhua

    2012-01-01

    A cold resistance mutant, obtained by spaceflight mutagenesis on the seeds of wheat variety Han6172, and the DNA of cold resistance mutant and contrast Han6172 were compared by SRAP technique. 380 pairs of primers were screened, 6 pairs of them had polymorphisms between mutant and contrast, the rate was 1.58%, and this data indicated that there are no obvious DNA differences between mutant and contrast Six specific fragments were obtained, 3 fragments of them were amplified in mutant. Homology analysis in GenBank showed that Me3-Em7-Mt, Me4-Em11-CK, Me7-Em19-CK and Me6-Em9-Mt all had homologous sequences with wheat chromosome 3B-specific BAC library, and this result indicated that the gene and regulator sequences associated with mutant cold resistance might locate on 3B chromosome. It was speculated that space mutation induced the mutation of 3B chromosome primary structure, and influenced the expressions of cold resistance genes, which resulted in the mutation of cold resistance ability. (authors)

  16. A wheat cold resistance mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Li Peng; Sun Mingzhu; Zhang Fengyun; Gao Guoqiang; Qiu Denglin; Li Xinhua

    2011-01-01

    A cold resistance mutant, obtained by spaceflight mutagenesis on the seeds of wheat variety Han6172, and the DNA of cold resistance mutant and contrast Han6172 were compared by SRAP technique. 380 pairs of primers were screened, 6 pairs of them had polymorphisms between mutant and contrast, the rate was 1.58%, and this data indicated that there are no obvious DNA differences between mutant and contrast. Six specific fragments were obtained, 3 fragments of them were amplified in mutant. Homology analysis in GenBank showed that Me3-Em7-Mt, Me4-Em11-CK, Me7-Em19-CK and Me6-Em9-Mt all had homologous sequences with wheat chromosome 3B-specific BAC library, and this result indicated that the gene and regulator sequences associated with mutant cold resistance might locate on 3B chromosome. It was speculated that space mutation induced the mutation of 3B chromosome primary structure, and influenced the expressions of cold resistance genes, which resulted in the mutation of cold resistance ability. (authors)

  17. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress

    DEFF Research Database (Denmark)

    Akhtar, Saqib Saleem; Andersen, Mathias Neumann; Liu, Fulai

    2015-01-01

    Salinity is one of the major threats to global food security. Biochar amendment could alleviate the negative impacts of salt stress in crop in the season. However, its long-term residual effect on reducing Na+ uptake in latter crops remains unknown. A pot experiment with wheat was conducted...... in a greenhouse. The soil used was from an earlier experiment on potato where the plants were irrigated with tap water (S0), 25 mM (S1) and 50 mM (S2) NaCl solutions and with 0 and 5% (w/w) biochar amendment. At onset of the experiment, three different EC levels at S0, S1 and S2 were established in the non...... by transient Na+ binding due to its high adsorption capacity, decreasing osmotic stress by enhancing soil moisture content, and by releasing mineral nutrients (particularly K+, Ca++, Mg++) into the soil solution. Growth, physiology and yield of wheat were affected positively with biochar amendment...

  18. Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany

    Science.gov (United States)

    Lüttger, Andrea B.; Feike, Til

    2018-04-01

    Climate change constitutes a major challenge for high productivity in wheat, the most widely grown crop in Germany. Extreme weather events including dry spells and heat waves, which negatively affect wheat yields, are expected to aggravate in the future. It is crucial to improve the understanding of the spatiotemporal development of such extreme weather events and the respective crop-climate relationships in Germany. Thus, the present study is a first attempt to evaluate the historic development of relevant drought and heat-related extreme weather events from 1901 to 2010 on county level (NUTS-3) in Germany. Three simple drought indices and two simple heat stress indices were used in the analysis. A continuous increase in dry spells over time was observed over the investigated periods from 1901-1930, 1931-1960, 1961-1990 to 2001-2010. Short and medium dry spells, i.e., precipitation-free periods longer than 5 and 8 days, respectively, increased more strongly compared to longer dry spells (longer than 11 days). The heat-related stress indices with maximum temperatures above 25 and 28 °C during critical wheat growth phases showed no significant increase over the first three periods but an especially sharp increase in the final 1991-2010 period with the increases being particularly pronounced in parts of Southwestern Germany. Trend analysis over the entire 110-year period using Mann-Kendall test revealed a significant positive trend for all investigated indices except for heat stress above 25 °C during flowering period. The analysis of county-level yield data from 1981 to 2010 revealed declining spatial yield variability and rather constant temporal yield variability over the three investigated (1981-1990, 1991-2000, and 2001-2010) decades. A clear spatial gradient manifested over time with variability in the West being much smaller than in the east of Germany. Correlating yield variability with the previously analyzed extreme weather indices revealed strong

  19. Effects of crop rotation on weed density, biomass and yield of wheat (Titicum aestivum L.)

    OpenAIRE

    A. Zareafeizabadi; H.R. Rostamzadeh

    2016-01-01

    In order to study the weed populations in wheat, under different crop rotations an experiment was carried out at Agricultural Research Station of Jolgeh Rokh, Iran. During growing season this project was done in five years, based on Randomized Complete Bloch Design with three replications, on Crop rotations included: wheat monoculture for the whole period (WWWWW), wheat- wheat- wheat- canola- wheat (WWWCW), wheat- sugar beet- wheat-sugar beet- wheat (WSWSW), wheat- potato- wheat- potato- whea...

  20. Induced spherococcoid hard wheat

    International Nuclear Information System (INIS)

    Yanev, Sh.

    1981-01-01

    A mutant has been obtained - a spheroccocoid line -through irradiation of hard wheat seed with fast neutrons. It is distinguished by semispherical glumes and smaller grain; the plants have low stem with erect leaves but with shorter spikes and with lesser number of spikelets than those of the initial cultivar. Good productive tillering and resistance to lodging contributed to 23.5% higher yield. The line was superior to the standard and the initial cultivars by 14.2% as regards protein content, and by up to 22.8% - as to flour gluten. It has been successfully used in hybridization producing high-yielding hard wheat lines resistant to lodging, with good technological and other indicators. The possibility stated is of obtaining a spherococcoid mutant in tetraploid (hard) wheat out of the D-genome as well as its being suited to hard wheat breeding to enhance protein content, resistance to lodging, etc. (author)

  1. Contrasting response of biomass and grain yield to severe drought in Cappelle Desprez and Plainsman V wheat cultivars

    Directory of Open Access Journals (Sweden)

    Kenny Paul

    2016-02-01

    Full Text Available We report a case study of natural variations and correlations of some photosynthetic parameters, green biomass and grain yield in Cappelle Desprez and Plainsman V winter wheat (Triticum aestivum L. cultivars, which are classified as being drought sensitive and tolerant, respectively. We monitored biomass accumulation from secondary leaves in the vegetative phase and grain yield from flag leaves in the grain filling period. Interestingly, we observed higher biomass production, but lower grain yield stability in the sensitive Cappelle cultivar, as compared to the tolerant Plainsman cv. Higher biomass production in the sensitive variety was correlated with enhanced water-use efficiency. Increased cyclic electron flow around PSI was also observed in the Cappelle cv. under drought stress as shown by light intensity dependence of the ratio of maximal quantum yields of Photosystem I and Photosystem II, as well by the plot of the Photosystem I electron transport rate as a function of Photosystem II electron transport rate. Higher CO2 uptake rate in flag leaves of the drought-stressed Plainsman cv. during grain filling period correlates well with its higher grain yield and prolonged transpiration rate through spikes. The increase in drought factor (DFI and performance (PI indices calculated from variable chlorophyll fluorescence parameters of secondary leaves also showed correlation with higher biomass in the Cappelle cultivar during the biomass accumulation period. However, during the grain filling period, DFI and PI parameters of the flag leaves were higher in the tolerant Plainsman V cultivar and showed correlation with grain yield stability. Our results suggest that overall biomass and grain yield may respond differentially to drought stress in different wheat cultivars and therefore phenotyping for green biomass cannot be used as a general approach to predict grain yield. We also conclude that photosynthetic efficiency of flag and secondary leaves

  2. Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan.

    Science.gov (United States)

    Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad

    2018-01-01

    Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net

  3. Assessment of AquaCrop model in the simulation of durum wheat (Triticum aestivum L. growth and yield under different water regimes in Tadla- Morocco

    Directory of Open Access Journals (Sweden)

    Bassou BOUAZZAM

    2017-09-01

    Full Text Available Simulation models that clarify the effects of water on crop yield are useful tools for improving farm level water management and optimizing water use efficiency. In this study, AquaCrop was evaluated for Karim genotype which is the main durum winter wheat (Triticum aestivum L. practiced in Tadla. AquaCrop is based on the water-driven growth module, in that transpiration is converted into biomass through a water productivity parameter. The model was calibrated on data from a full irrigation treatment in 2014/15 and validated on other stressed and unstressed treatments including rain-fed conditions in 2014/15 and 2015/16. Results showed that the model provided excellent simulations of canopy cover, biomass and grain yield. Overall, the relationship between observed and modeled wheat grain yield for all treatments combined produced an R2 of 0.79, a mean squared error of 1.01 t ha-1 and an efficiency coefficient of 0.68. The model satisfactory predicted the trend of soil water reserve. Consequently, AquaCrop can be a valuable tool for simulating wheat grain yield in Tadla plain, particularly considering the fact that the model requires a relatively small number of input data. However, the performance of the model has to be fine-tuned under a wider range of conditions.

  4. The International Heat Stress Genotype Experiment for Modeling Wheat Response to Heat: Field Experiments and AgMIP-Wheat Multi-Model Simulations

    Science.gov (United States)

    Martre, Pierre; Reynolds, Matthew P.; Asseng, Senthold; Ewert, Frank; Alderman, Phillip D.; Cammarano, Davide; Maiorano, Andrea; Ruane, Alexander C.; Aggarwal, Pramod K.; Anothai, Jakarat; hide

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late (January-March) sowing dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models.

  5. Breeding drought tolerant wheat for the marginal areas of Kenya

    International Nuclear Information System (INIS)

    Njau, P.N.; Kinyua, M.G.; Karanja, L.

    2001-01-01

    Over the last 10 years the National Plant Breeding Research Center (NPBRC - Njoro) has been involved in developing wheat varieties for the marginal areas of Kenya with the aim of introducing wheat in the non- traditional region of the country. During this period four varieties tolerant to drought have been released. These include varieties such as Duma, Ngamia, Chozi and the newly released Njoro BW1. At the moment the released varieties are of low yielding and so there is need to develop higher yielding varieties if we are to produce at an economic level. This study was aimed at developing and evaluating some of the germplasm, which have been developed or introduced over the years over their suitability for production in the marginal areas of of Kenya. Over 600 introductions were screened in the screening nursery in Njoro while segregating populations in F2-F8 were selected and advanced to the next generation. A National Dryland Wheat Performance Trial (NDL WPT) was conducted for 10 introduced lines, 3 mutants, 1 Kenya seed line and Duma and Chozi as check varieties. KM14 has been released as a marginal area variety for its high protein content. Line R965 showed higher performance in both yield and hectolitre weight and will be entered for the second NDLWPT in 2002 and may be released as variety later. (author)

  6. Impact of Graze-­‐Out in Hard Red Winter Wheat Production

    OpenAIRE

    Neupane, Diwash; Moss, Charles B.

    2014-01-01

    We investigate the relationship between wheat graze-­‐out and cattle-­‐wheat price ratio and moisture level and examine the impact of graze-­‐out on wheat yield in major wheat-­‐producing states in US. Results indicate that cattle-­‐wheat price ratio and moisture level affect farmers’ graze out decision and graze-­‐out have significant impact on wheat yield.

  7. Drought tolerance indices and their correlation with yield in exotic wheat genotypes

    International Nuclear Information System (INIS)

    Anwar, J.; Subhani, G.M.; Ahmad, J.; Hussain, M.; Munir, M.

    2011-01-01

    Performance of nineteen exotic genotypes along with local check variety was studied during 2009-10 at Wheat Research Institute, AARI, Faisalabad, Pakistan. The experiment was conducted under two field conditions i.e., stress and irrigated conditions. In case of water stress experiment, only soaking irrigation was applied for seed bed preparation and no further irrigation was applied up to maturity. While, four irrigations were applied at critical growth stages to the second experiment (irrigated). At maturity, grain yield was recorded in both experiments (stress Y/sub s/ and irrigated Y/sub p/). From grain yield data, some drought tolerance/resistance indices such as tolerance index (TOL), mean productivity (MP), harmonic mean (HM), stress susceptibility index (SSI), geometric mean productivity (GMP), stress tolerance index (STI), yield index (YI), yield stability index (YSI) and modified stress tolerance index (k/sub 1/STI and k/sub 2/STI) were calculated. Genotypic correlation, genetic components and heritability were also calculated for grain yield and all indices. Significant differences among genotypes were observed for Y/sub p/, Y/sub s/ and all other drought tolerance indices. Moderate to high heritability and genetic advance were observed for Y/sub p/, Y/sub s/ and all drought tolerance indices. Grain yield under irrigated environment (Y/sub p/) was positively and significantly correlated with MP, HM, GMP, STI and k/sub 1/STI. Similarly, positive and significant association has also been observed between grain yield under stress condition (Y/sub s/) and MP, HM, GMP, STI, YI and k/sub 2/STI so they were the better predictor of potential yield Y/sub p/ and Y/sub s/ than TOL, SSI and YSI. According to Fernandez model; genotypes No. 2, 4, 6, 7, 9 and 13 have uniform superiority under both conditions (stress and irrigated). Genotypes No. 1, 11, 15, 16, 17, 18 and 19 were recommended for irrigated conditions. Genotypes No. 3 and 5 were identified suitable for

  8. Use of inedible wheat residues from the KSC-CELSS breadboard facility for production of fungal cellulase

    Science.gov (United States)

    Strayer, R. F.; Brannon, M. A.; Garland, J. L.

    1990-01-01

    Cellulose and xylan (a hemicellulose) comprise 50 percent of inedible wheat residue (which is 60 percent of total wheat biomass) produced in the Kennedy Space Center Closed Ecological Life Support System (CELSS) Breadboard Biomass Production Chamber (BPC). These polysaccharides can be converted by enzymatic hydrolysis into useful monosaccharides, thus maximizing the use of BPC volume and energy, and minimizing waste material to be treated. The evaluation of CELSS-derived wheat residues for production for cellulase enzyme complex by Trichoderma reesei and supplemental beta-glucosidase by Aspergillus phoenicis is in progress. Results to date are given.

  9. A temperature-sensitive winter wheat chlorophyll mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Zhao Hongbin; Guo Huijun; Zhao Linshu; Gu Jiayu; Zhao Shirong; Li Junhui; Liu Luxiang

    2010-01-01

    A temperature-sensitive winter wheat (Triticum aestivum L.) chlorophyll mutant Mt18, induced by spaceflight mutagenesis, was studied on agronomic traits, ultrastructure of chloroplast and photosynthesis characteristics. The leaf color of the mutant Mt18 showed changes from green to albino and back to green during the whole growth period. Plant height, productive tillers, spike length, grains and grain weight per plant, and 1000-grain weight of the mutant were lower than those of the wild type. The ultrastructural observation showed that no significant difference was found between the mutant and the wild type during prior albino stage, however, at the albino stage the number of granum-thylakoids and grana lamellae became fewer or completely disappeared, but the strom-thylakoid was obviously visible. After turning green,the structure of most chloroplasts recovered to normal, but number of chloroplast was still lower than that of the wild type. When exposed to photosynthetic active radiation (PAR) of 110 μmol·m -2 ·s -1 , the non-photochemical quenching (NPQ) of mutant was significantly lower than that of the wild type, and the non-regulated energy dissipation (Y NO ) was significantly higher than that of the wild type, while the change of the maximum photosystem II quantum yield (F v /F m ), potential activity of photosystem II (F v /F o ), photochemical quenching (q P ), effective quantum yield (Y PSI I) and regulated non-photochemical energy dissipation (Y NPQ ) were different at various stages. In addition, the differences of the electron transport rate (ETR), photochemical quenching (q P ), and effective quantum yield (Y PSI I) between mutant and wild type varied under different PAR conditions. It was concluded that with the change of chloroplast ultrastructure, the leaf color and photosynthesis of the wheat mutant Mt18 change correspondingly. The chloroplast ultrastructure was obviously different from that of wild type, and the photosynthetic efficiency

  10. Winter wheat yield estimation of remote sensing research based on WOFOST crop model and leaf area index assimilation

    Science.gov (United States)

    Chen, Yanling; Gong, Adu; Li, Jing; Wang, Jingmei

    2017-04-01

    Accurate crop growth monitoring and yield predictive information are significant to improve the sustainable development of agriculture and ensure the security of national food. Remote sensing observation and crop growth simulation models are two new technologies, which have highly potential applications in crop growth monitoring and yield forecasting in recent years. However, both of them have limitations in mechanism or regional application respectively. Remote sensing information can not reveal crop growth and development, inner mechanism of yield formation and the affection of environmental meteorological conditions. Crop growth simulation models have difficulties in obtaining data and parameterization from single-point to regional application. In order to make good use of the advantages of these two technologies, the coupling technique of remote sensing information and crop growth simulation models has been studied. Filtering and optimizing model parameters are key to yield estimation by remote sensing and crop model based on regional crop assimilation. Winter wheat of GaoCheng was selected as the experiment object in this paper. And then the essential data was collected, such as biochemical data and farmland environmental data and meteorological data about several critical growing periods. Meanwhile, the image of environmental mitigation small satellite HJ-CCD was obtained. In this paper, research work and major conclusions are as follows. (1) Seven vegetation indexes were selected to retrieve LAI, and then linear regression model was built up between each of these indexes and the measured LAI. The result shows that the accuracy of EVI model was the highest (R2=0.964 at anthesis stage and R2=0.920 at filling stage). Thus, EVI as the most optimal vegetation index to predict LAI in this paper. (2) EFAST method was adopted in this paper to conduct the sensitive analysis to the 26 initial parameters of the WOFOST model and then a sensitivity index was constructed

  11. Consortium Application of Endophytic Bacteria and Fungi Improves Grain Yield and Physiological Attributes in Advanced Lines of Bread Wheat

    Directory of Open Access Journals (Sweden)

    Ghulam Muhae-Ud-Din

    2018-02-01

    Full Text Available Increasing human population places pressure on agriculture. To feed this population, two time increase in the current wheat production is needed. Today agriculture is becoming input intensive with more reliance on synthetic fertilizers and agrochemicals to fulfil the feed demand of the growing numbers. Use of synthetic fertilizer since last few years is impacting the soil quality. In this scenario, the use of beneficial endophytic microbes is an attractive strategy to overcome the use of synthetic products. To investigate the effect of consortium application of endophytic bacteria and fungus on plant growth, grain yield moisture status, a pot experiment was conducted in different wheat lines. It comprised four treatments like control, application of bacterial strain Bacillus sp. MN54, fungal strain Trichoderma sp. MN6, and their consortium (Bacillus sp. MN54 + Trichoderma sp. MN6. The effect of consortium application was more prominent and significantly different from the sole application of bacteria and fungus. The results showed that with a consortium application of endophytic bacteria and fungus, there was 28.6, 4.3, -6.3 and -3.7% increases in flag leaf area, chlorophyll content, relative membrane permeability and water content respectively. Consortia of endophytic microbes also resulted in the yield enhancement through the betterment of various yield attributes like number of spikelet’s, grains per spike and grain yield per plant (32.2, 25.8 and 30.8%, respectively. So, consortia of endophytic microbes can greatly promote the progress of plants in dry land agriculture and increase the yield in an environmentally sustainable way.

  12. Multitrait, Random Regression, or Simple Repeatability Model in High-Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield.

    Science.gov (United States)

    Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E

    2017-07-01

    High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.

  13. Multi-wheat-model ensemble responses to interannual climatic variability

    DEFF Research Database (Denmark)

    Ruane, A C; Hudson, N I; Asseng, S

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and ......-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.......We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and we...... evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal...

  14. Impact of Inter-Row Spacing on Yield and Yield Components of several Annual Medics Species

    Directory of Open Access Journals (Sweden)

    Mahnaz BAGHERI

    2010-12-01

    Full Text Available A field study was conducted in Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran to evaluate the effects of three within-row spacing treatments (20, 30 and 40 cm on forage and seed production of five species of annual medics (Medicago scutellata cv. Sava; M. littoralis cv. Herald; M. polymorpha cv. Santiago; M. minima cv. Orion and M. truncatula cv. Mogul. The experiment was carried out in Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. The results of the experiment indicated that M. polymorpha had the highest forage yield out of the highest plant population. Latter with average 443.09 Kg ha-1 and M. scutellata with average 409.99 Kg ha-1 produced the highest seed yield. Also, the last species with 1306.78 Kg ha-1 had the highest pod yields. The highest seed yield and pod yield were produced at 20 cm within-row spacing because there were not adequate plants for maximum seed and pod yields in 30 and 40 cm within-row spacing. The tested plant densities did not affect on seeds number per pod, 1000 seeds weight and seeds to burr pod weight ratio. The M. truncatula and M. minima have the highest seeds number per pod. In addition, M. scutellata had the highest 1000 seeds weight with an average of 12.57 g. The highest seeds to burr pod ratio was observed in M. polymorpha. The most pod numbers were obtained in 20 and 30 cm within-row spacing and M. polymorpha while, the least pod numbers was observed in M. scutellata. Plant densities did not affect on pod numbers of the mentioned species. The highest dry forage yield was produced in 20 cm within-row spacing. Among the tested tested species, M. truncatula had the highest forage yield with average 870.07 Kg ha-1. This experiment indicated that there is possibility for seed and forage production of tested annual medics in the mentioned zone with the considering suitable plant densities.

  15. The Response of Durum Wheat to the Preceding Crop in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Laura Ercoli

    2014-01-01

    Full Text Available Crop sequence is an important management practice that may affect durum wheat (Triticum durum Desf. production. Field research was conducted in 2007-2008 and 2008-2009 seasons in a rain-fed cold Mediterranean environment to examine the impact of the preceding crops alfalfa (Medicago sativa L., maize (Zea mays L., sunflower (Helianthus annuus L., and bread wheat (Triticum aestivum L. on yield and N uptake of four durum wheat varieties. The response of grain yield of durum wheat to the preceding crop was high in 2007-2008 and was absent in the 2008-2009 season, because of the heavy rainfall that negatively impacted establishment, vegetative growth, and grain yield of durum wheat due to waterlogging. In the first season, durum wheat grain yield was highest following alfalfa, and was 33% lower following wheat. The yield increase of durum wheat following alfalfa was mainly due to an increased number of spikes per unit area and number of kernels per spike, while the yield decrease following wheat was mainly due to a reduction of spike number per unit area. Variety growth habit and performance did not affect the response to preceding crop and varieties ranked in the order Levante > Saragolla = Svevo > Normanno.

  16. Effect of Silicon application on Morpho-physiological Characteristics, Grain Yield and Nutrient Content of Bread Wheat under Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2015-03-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics, yield and yield components, and grain mineral contents of bread wheat (Triticum aestivum under water stress condition, an experiment was conducted in Ramin Agriculture and Natural Resources University, Khuzestan, in 2012. The experiment was arranged in split-plots design in RCBD (Completely Randomized Blocks Design with three replications. Treatments consisted of drought stress (irrigation after 25, 50 and 75% depletion of Available Water Content in main plots and silicon (0, 10, 20 and 30 Kg Si ha-1 arranged in sub-plots. Results showed that the effect of drought stress was significant on most traits and led to the increase of electrolyte leakage (EL, cuticular wax, leaf and grain silicon content and grain nitrogen content. But drought led to negative impacts on grain yield and its components, and leaf potassium content, i.e. moderate and severe stresses reduced yield by 17% and 38% compared to control, respectively. Effect of silicon application was significant on all traits except for spike per square meter. Silicon had the greatest impact on EL and led to 35% decrease in this trait. Also, silicon led to increase in leaf and grain silicon contents and grain K content and grain yield and yield components, when applied at 30 kg ha-1. Generally, application of 30 kg ha-1 of silicon led to 6 and 14% increases of grain yield at the presence of moderate and severe drought stresses, respectively. Thus, given the abundance of silicon it can be used as an ameliorating element for planting bread wheat in drought-prone conditions.

  17. On yield gaps and yield gains in intercropping

    NARCIS (Netherlands)

    Gou, Fang; Yin, Wen; Hong, Yu; Werf, van der Wopke; Chai, Qiang; Heerink, Nico; Ittersum, van Martin K.

    2017-01-01

    Wheat-maize relay intercropping has been widely used by farmers in northwest China, and based on field experiments agronomists report it has a higher productivity than sole crops. However, the yields from farmers’ fields have not been investigated yet. Yield gap analysis provides a framework to

  18. Correlation of concentration of fumonisins and yield grain of wheat

    Directory of Open Access Journals (Sweden)

    Protić Nada M.

    2005-01-01

    Full Text Available Wheat from different locations was served for the isolation of Fusarium spp. Isolates were precisely identified and multiplied for artificial inoculation. Three sorts of winter wheat were chosen: PKB Lepoklasa Jugoslavija and Francuska. To these sorts three different treatments were applied: artificial inoculation with the isolates of Fusarium spp. protection of wheat with fungicide Impact-C and follow-up of a spontaneous infection in different phenophasis of wheat development. The control was done with the same sort, of the same location, not covered by an experiment. The research lasted for three years. Phytopathological evaluation was done twice during vegetation. The sort of Jugoslavija had an average of 85% of infected plants, Francuska 65%, but PKB Lepoklasa during each of three years had 100% of infection by Fusarium spp. fungi. Presence of fungi Fusarium spp. causes production of numerous mycotoxins and we determined presence of fumonisins. The mentioned mycotoxin was found only in the treatment of artificial inoculation for each sort. Presence of fumonisins was proved by fluorometric method and concentration was by sorts as follows: Jugoslavija 0.30 mg/kg, Francuska 0.62 mg/kg, and PKB Lepoklasa 0.56mg/kg. In grains 100% infected by fungus, the concentration of mentioned toxins is of a greater quantity.

  19. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    NARCIS (Netherlands)

    Martre, P.; Reynolds, M.P.; Asseng, S.; Ewert, F.; Alderman, P.D.; Cammarano, D.; Maiorano, Andrea; Ruane, A.C.; Aggarwal, P.K.; Anothai, J.; Supit, I.; Wolf, J.

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during

  20. Impact of humic acid and chemical fertilizer application on growth and grain yield of rainfed wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Khan, R.U.; Khan, M.S.

    2010-01-01

    The high cost of inorganic fertilizer, use of natural fertilizer resources for increasing crop production on sustainable basis has become imperative. Two field experiments were conducted to study the potential of humic acid (HA) as a low-cost natural fertilizer and to determine its effect on the yield of rainfed wheat crop (Triticum aestivum L. cv. Naseer) at the research farm of Arid Zone Research Institute, Dera Ismail Khan during two successive winter seasons, 2007-08 and 2008-09. The treatments consisted of HA alone (3 kg ha/sup -1/ or 1.5 kg ha/sup -1/) and in combination with full (60:40 kg ha/sup -1/) and half (30:20 kg ha/sup -1/) the recommended rates of NP fertilizers. Results showed that in the first growing season (2007-08), the combination of 3 kg ha/sup -1/ HA with half (30:20 kg ha-1) rate of NP produced the highest grain yield (1314 kg ha/sup -1/) and increased the yield by 46.9% over the control. In the second growing season (2008-09), application of 3 kg ha/sup -1/ HA alone produced significantly (P<0.05) higher grain yield (2999.9 kg ha/sup -1/) and increased the yield by 24% over the control and saved 100% cost of the chemical fertilizer. Results suggested that HA applied alone at 3 kg ha/sup -1/ or in combination with half (30:20 kg ha/sup -1/) rate of NP fertilizers appeared to be the most economical rate to obtain the maximum yield of wheat under the rainfed conditions of Dera Ismail Khan. HA has great potential as a low cost natural fertilizer to improve soil fertility on sustainable basis. (author)

  1. Durum wheat quality prediction in Mediterranean environments

    DEFF Research Database (Denmark)

    Toscano, P.; Gioli, B.; Genesio, L.

    2014-01-01

    Durum wheat is one of the most important agricultural crops in the Mediterranean area. In addition to yield, grain quality is very important in wheat markets because of the demand for high-quality end products such as pasta, couscous and bulgur wheat. Grain quality is directly affected by several...

  2. The effect of plant growth promoting rhizobacteria, nitrogen and phosphorus on relative agronomic efficiency of fertilizers, growth parameters and yield of wheat (Triticum aestivum L. cultivar N-80-19 in Sari

    Directory of Open Access Journals (Sweden)

    Z. Saber

    2016-05-01

    Full Text Available In order to evaluate the efficiency of plant growth promoting rhizobacteria (PGPR plus nitrogen and phosphorous chemical fertilizers on relative agronomic efficiency of P and N fertilizers and some agronomic parameters of wheat (Triticum aestivum L. cultivar N-80-19, an experiment was conducted at Sari Agricultural Sciences and Natural Resources University during growing season of 2008-2009. Experiment was arranged in split-split plot based on randomized complete block design with three levels (0, 25 and 50 kg.ha-1 and sub-plots were considered PGPR at four levels (control, inoculation with nitrogen fixing bacteria (PFB, phosphate solubilizing bacteria (PSB and dual inoculation with PFB and PSB with three replications. Results showed that the application of biofertilizers significantly increased relative agronomic efficiency of N and P fertilizers, spike number, plant height, flag leaf area, grain yield and grain weight of wheat. Application of biofertilizers increased wheat grain yield as much as 46.6% as compared to control. Double inoculation of biofertilizers improved relative agronomic efficiency of fertilizers by 58.4 and 76.5% as compared to control, respectively. Integrated treatments showed higher performance compared to separate treatments. Generally, biofertilizers with low levels of P and N fertilizers significantly improved yield components of wheat without any reduction in yield related parameters.

  3. Interaction Effect Of Irradiation And Fertilization On Grain Yield, Kernel Weight And Severity Of Wheat To Septoria Tritici Blotch

    International Nuclear Information System (INIS)

    Arabi, M. A.; Jawhar, M.

    2004-01-01

    Field research was undertaken, for two growing seasons, to investigate the effects of soil fertilization with potassium (K 2 SO 4 , 36% K) and nitrogen (urea, 46% N), seed irradiation with gamma rays (0, 5, 10 and 15 Gy) and their combinations on the grain yield, 1000-kernel weight and severity of Mycosphaerella graminicola on wheat. Two Syrian wheat cultivars; Bohuth 6 (Triticum aestivum L.) and Bohuth 5 (T. turgidum var durum Desf.) were used in this study. Plants were inoculated with a mixture of 15 virulent isolates of the pathogen at the growth stage (GS) 33-34. Results indicated that the average response to fertilizer application and irradiation treatments was dependent on the susceptibility level of cultivars compared with the control. The level of infection of the combined NK and 15 Gy treatment was reduced by 9 and 46 % in 1998 and by 6 and 42 % in 1999 for Bohuth 5 and Bohuth 6, respectively. This was associated with increased grain yield by 68 and 59% in 1998 and 59 and 33% in 1999, respectively. Highest yield losses from M. graminicola occurred in the treatment of nil fertilization and irradiation. Grain weight was increased by various treatments applied, but such an increase was highest in the combined NK and 15 Gy treatment. This combined treatment appeared to be more effective on calcareous soils, which are typical of Mediterranean environments. (Authors)

  4. Effect of inoculation and nitrogen top-dressing on yields and fodder value of winter pea cv. Maksimirski ozimi in wheat cv. Sana mixture

    Directory of Open Access Journals (Sweden)

    Darko Uher

    2007-06-01

    Full Text Available Two year field trials (1999 - 2001 were performed to determine theinoculation seed winter pea and nitrogen top-dressing effect on number and active nodules of pea root and also on the green mass and dry matter yield of winter pea cv. Maksimirski ozimi and wheat cv. Sana mixture. Immediately before sowing the inoculation of pea seeds was accomplished by the indigenous variety of Rhizobium leguminosarum bv. viciae which belongs to the collection of Department of Microbiology at the Faculty of Agriculture University of Zagreb. The highest total nodule number on pea root (159 was determined on the inoculated variant as well as active nodule 144. Average mixture green mass yield were ranging from 24,65 t ha-1 (control up to 35,50 t ha-1 (inoculation. Total dry matter yields were ranging from 3,93 t ha-1 (control up to 5,66 t ha-1 (inoculation. Yields crude proteins pea in 2001 were ranging from 692 kg ha-1 (control up to 1058 kg ha-1 (inoculation and for wheat, those values ranged from 199 kg ha-1 (control up to 454 kg ha-1 (nitrogen top-dressing. Total crude proteins mixture yields were in range from 891 kg ha-1 (control up to 1360 kg ha-1 (inoculation.

  5. Integrated weed management in wheat

    International Nuclear Information System (INIS)

    Marwat, K.B.; Khan, M.A.; Nawab, K.; Khattak, A.M.

    2011-01-01

    The paper summarizes the results of an experiment conducted on wheat at Kohat, Khyber Pakhtunkhwa, Pakistan during winter 2004-05. Randomized complete block design with split-split-plot arrangement was used where wheat line and broadcast sowing were kept in main plots. Seed rates (100 and 150 kg ha-1) were assigned as sub-plots, while four herbicides (Topik, Isoproturon, Puma super and Buctril super) and weed check were assigned to sub-sub-plots. Results revealed that higher biological yield was recorded in line sowing. However, higher wheat seed rate decreased weed biomass and increased biological yield. Herbicides proved to be effective in decreasing weed biomass and enhancing grain yield and its contributing traits. It was suggested that line sowing in combination with higher seeding rate and Buctril super should be used in an integrated weed management fashion. However further studies are required to investigate various ranges of seeding rate and herbicides doses. (author)

  6. Gene action in some yield attributes of bread wheat under two water regimes

    International Nuclear Information System (INIS)

    Rabbani, A.; Mahmood, A.; Naeem-ud-Din; Shabbir, G.

    2011-01-01

    Breeders are always interested in the task of developing new varieties for changing environments. Thus, they have to deal with new crosses to select desired combinations. Grain yield is a complex character that is influenced by the fluctuating behavior of the environment. To overcome this situation, it is necessary to breed wheat varieties which perform better than existing ones under diverse conditions. A complete diallel cross was prepared from eight parental wheat accessions with a range of tolerance to drought. F1 hybrids and parents were grown at Barani Agricultural Research Institute, Chakwal. At maturity peduncle length, number of spike lets per spike, number of grains per spike, dry weight per plant at maturity and harvest index were recorded. Over-dominance genetic effects were important for the expression of number of spike lets per spike, number of grains per spike, dry weight per plant at maturity and harvest index under irrigated and rain fed conditions while additive type of gene action were important for the expression of peduncle length under irrigated and rain fed conditions. Average degree of dominance for peduncle length is 0.683 and 0.829 under irrigated and rain fed conditions respectively. Average degree of dominance for peduncle length was less than unity showing partial dominance and greater than unity showing over dominance in all characters under both irrigated and rain fed conditions. (author)

  7. Appraisal of wheat germplasm for adult plant resistance against stripe rust

    Directory of Open Access Journals (Sweden)

    Saleem Kamran

    2015-12-01

    Full Text Available The resurgence of wheat stripe rust is of great concern for world food security. Owing to resistance breakdown and the appearance of new virulent high-temperature adapted races of Puccinia striiformis f. sp. tritici (Pst, many high yielding commercial varieties in the country lost their yield potential. Searching for new sources of resistance is the best approach to mitigate the problem. Quantitative resistance (partial or adult plant or durable resistance is reported to be more stable than race specific resistance. In the current perusal, a repertoire of 57 promising wheat lines along with the KLcheck line Morocco, developed through hybridisation and selection of local and international lines with International Maize and Wheat Improvement Center (CIMMYT origin, were evaluated under natural field conditions at Nuclear Institute for Agriculture and Biology (NIAB during the 2012−2013 and 2013−2014 time periods. Final rust severity (FRS, the area under the rust progress curve (AURPC, the relative area under the rust progress curve (rAURPC, and the coefficient of infection (CI were unraveled to infer the level of quantitative resistance. Final rust severity was recorded when the susceptible check exhibited 100% severity. There were 21 lines which were immune (no disease, 16 which were resistant, five moderately resistant, two resistant-to-moderately resistant, one moderately resistant-to-moderately susceptible, 5 moderately susceptible-to-susceptible, one moderately susceptible, and six exhibited a susceptible response. Nevertheless, 51 lines exhibited a high level of partial resistance while the three lines, NW-5-1212-1, NW-7-30-1, and NW-7-5 all showed a moderate level of partial resistance based on FRS, while 54 lines, on the basis of AURPC and rAURPC, were identified as conferring a high level of partial resistance. Moreover, adult plant resistance was conferred by 47 wheat lines, based on CI value. It was striking that, 13 immune lines

  8. Effect of pre-sowing soil tillage for wheat on the crop structure and the yield components in Dobrudzha region

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2017-06-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute on slightly leached chernozem soil. In order to clarify the effect of some types of pre-sowing soil tillage for wheat on the crop structure and certain yield components, the following variants of a stationary field experiment were analyzed: double disking at depth 10-12 cm (check variant; ploughing at 14-16 cm + disking; no-tillage (direct sowing – pre-sowing treatment of the area with total herbicides. Wheat was sown after previous crop grain maize and was fertilized with N P K . Wheat cultivar Enola was planted at norm 550 germinating 140 120 80 2 seeds/m . The number of emerging wheat plants was read using square sampling frames sized 50 cm x 50 cm. Using the same sampling frames, the tillering in autumn prior to the wintering of the crops was followed, and in spring – prior to booting stage. The number of productive tillers was also read using these sampling frames. To determine the length of spike, the number of grains in it, and their weight, 30 spikes from 8 replications of each variant were analyzed. The emerging of the wheat plants, under the conditions of slightly leached chernozem soil in Dobrudzha region, was more uniform after sowing following disking, and after direct sowing. The minimal pre-sowing tillage and no-tillage for wheat ensured better autumn development of the crop and the plants. In these variants, higher number of overwintering plants and productive tillers per unit area were registered. Spike length was the highest after ploughing as pre-sowing tillage. Significant variations in the number of grains per spike of the investigated variants were not found. Grain weight per spike was the lowest under direct sowing.

  9. Investigation of Zn Use Efficiency and Zn Fertilization Efficiency in Some Genotypes of Wheat

    Directory of Open Access Journals (Sweden)

    P. Keshavarz

    2016-09-01

    Full Text Available Introduction: World cereal demand is growing at the present in accordance with the global expansion of human populations.Bread wheat is the most widely grown cereal grain with 65% (6.5 million hectares of the total crop cultivated area in Iran. Deficiency of micronutrients in cereal cropping is one of the major worldwide problems. Zinc (Zn is an essential micronutrient for plants. It plays a key role as a structural constituent or regulatory co-factor of a wide range of different enzymes and proteins in many important biochemical pathways. Nearly half of the world’s cereal-growing areas are affected by soil zinc deficiency, particularly in calcareous soils of arid and semiarid regions. High pH levels and bicarbonate anion concentration in these soils are the major factors resulting in low availability of Zn. About 40% of the soils, used for wheat production in Iran are Zn-deficient, which results in a decrease in growth and wheat grain yield under field conditions. Although application of zinc fertilizers is a common practice to correct Zn deficiency, growing varieties with high Zn efficiency has been reported to be a more sustainable approach. There is significant genetic variation both within and between plant species in their ability to maintain significant growth and yield under Zn deficiency conditions. Plant response to Zn deficiency and Zn fertilization are two distinct concepts. Knowing about these variations, can be very essential and useful for making correct fertilizer recommendation. Materials and Methods: In order to investigate Zn efficiency in various wheat genotypes, a factorial experiment as a randomized complete block design was carried out with three replications in agricultural research center of Khorasan razavi (Torough Station, during 2009-2011. Treatments consisted of two levels of Zn fertilizer (0 and 40 kg/h as ZnSO4 and six genotyps of wheat including: three cultivars and one line of bread wheat (Alvand, Falat, Toos

  10. Effect of Soybean and Wheat as Cover Crops on Corn Yield and Weed Control using Different Fertilizer Sources

    Directory of Open Access Journals (Sweden)

    F. Dadashi

    2016-02-01

    Full Text Available Introduction: According to the importance of corn in supplying the human food directly and indirectly, it is one of the most important plants among crops. One of the major problems in corn production systems, is competition with weeds that reduce corn yield significantly. Weeds not only reduce crop yields but also decrease the commercial quality and the feeding palatability of main crops. They enhance the soil seed bank of weeds, which may cause continuous weed infestation of field crops as well. Herbicide application is a reliable and highly effective method for weed control. However, demand for safe food products that have been produced with a minimum application of chemical inputs is increasing. Therefore, farmers interested in weed management have to rely on other control approaches. An alternative weed control method is the use of cover crops, which can suppress the growth of weeds by preventing them from light and by producing allelopathic compounds. Cover crops successfully have been integrated into conservational agriculture systems in many areas of the world. Legumes are used as cover crop because of their rapid growth, in addition their potential to provide further nitrogen,along with high ability to compete with weeds. Materials and Methods: In order to study the effect of cover crops (soybean and wheat and different fertilizers sources on yield of corn and weed control, a filed experiment was conducted in randomized complete block design with three replications in 2012. Treatments included two cover crop (wheat and soybean and three fertilizer (no fertilizer, chemical fertilizer and compost..Fertilizer treatments was used according to soil analysis and requirement of corn (as a main plant. Weed-infestation and weed-free plots were used as controls. Study cultivars of corn, wheat and soybean were NS-640, Milan and Sari, respectively. Planting of corn was in June and cover crop was planted with corn simultaneously and between corn rows

  11. Effects of enhanced UVB on growth and yield of two Syrian crops, wheat (Triticum durum desf. var. horani) and broad beans (Vicia Faba L.) under field conditions

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Baydoun, S.A.

    1997-04-01

    Wheat and broad beans were exposed, under field conditions, to a daily UVB of 20 % above the ambient UVB. The plant height, tiller number, number of flowers, spikletes, dry weight and leaf area in both species showed positive responses to UVB treatment. At harvest, the seeds weight of broad beans was virtually equal in exposed and unexposed plants. In wheat, seeds yield increased significantly by 15 %. In conclusion, broad beans can be considered as a tolerant cultivar to enhanced UVB, while wheat is more tolerant. (Author). 17 Tabs. 36 Refs

  12. Australian wheat production expected to decrease by the late 21st century.

    Science.gov (United States)

    Wang, Bin; Liu, De L; O'Leary, Garry J; Asseng, Senthold; Macadam, Ian; Lines-Kelly, Rebecca; Yang, Xihua; Clark, Anthony; Crean, Jason; Sides, Timothy; Xing, Hongtao; Mi, Chunrong; Yu, Qiang

    2017-12-28

    Climate change threatens global wheat production and food security, including the wheat industry in Australia. Many studies have examined the impacts of changes in local climate on wheat yield per hectare, but there has been no assessment of changes in land area available for production due to changing climate. It is also unclear how total wheat production would change under future climate when autonomous adaptation options are adopted. We applied species distribution models to investigate future changes in areas climatically suitable for growing wheat in Australia. A crop model was used to assess wheat yield per hectare in these areas. Our results show that there is an overall tendency for a decrease in the areas suitable for growing wheat and a decline in the yield of the northeast Australian wheat belt. This results in reduced national wheat production although future climate change may benefit South Australia and Victoria. These projected outcomes infer that similar wheat-growing regions of the globe might also experience decreases in wheat production. Some cropping adaptation measures increase wheat yield per hectare and provide significant mitigation of the negative effects of climate change on national wheat production by 2041-2060. However, any positive effects will be insufficient to prevent a likely decline in production under a high CO 2 emission scenario by 2081-2100 due to increasing losses in suitable wheat-growing areas. Therefore, additional adaptation strategies along with investment in wheat production are needed to maintain Australian agricultural production and enhance global food security. This scenario analysis provides a foundation towards understanding changes in Australia's wheat cropping systems, which will assist in developing adaptation strategies to mitigate climate change impacts on global wheat production. © 2017 John Wiley & Sons Ltd.

  13. Mapping Smallholder Wheat Yields and Sowing Dates Using Micro-Satellite Data

    Directory of Open Access Journals (Sweden)

    Meha Jain

    2016-10-01

    Full Text Available Remote sensing offers a low-cost method for developing spatially continuous crop production statistics across large areas and through time. Nevertheless, it has been difficult to characterize the production of individual smallholder farms, given that the land-holding size in most areas of South Asia (<2 ha is smaller than the spatial resolution of most freely available satellite imagery, like Landsat and MODIS. In addition, existing methods to map yield require field-level data to develop and parameterize predictive algorithms that translate satellite vegetation indices to yield, yet these data are costly or difficult to obtain in many smallholder systems. To overcome these challenges, this study explores two issues. First, we employ new high spatial (2 m and temporal (bi-weekly resolution micro-satellite SkySat data to map sowing dates and yields of smallholder wheat fields in Bihar, India in the 2014–2015 and 2015–2016 growing seasons. Second, we compare how well we predict sowing date and yield when using ground data, like crop cuts and self-reports, versus using crop models, which require no on-the-ground data, to develop and parameterize prediction models. Overall, sow dates were predicted well (R2 = 0.41 in 2014–2015 and R2 = 0.62 in 2015–2016, particularly when using models that were parameterized using self-report sow dates collected close to the time of planting and when using imagery that spanned the entire growing season. We were also able to map yields fairly well (R2 = 0.27 in 2014–2015 and R2 = 0.33 in 2015–2016, with crop cut parameterized models resulting in the highest accuracies. While less accurate, we were able to capture the large range in sow dates and yields across farms when using models parameterized with crop model data and these estimates were able to detect known relationships between management factors (e.g., sow date, fertilizer, and irrigation and yield. While these results are specific to our study

  14. Genetic gains in wheat in Turkey: Winter wheat for dryland conditions

    Directory of Open Access Journals (Sweden)

    Mesut Keser

    2017-12-01

    Full Text Available Wheat breeders in Turkey have been developing new varieties since the 1920s, but few studies have evaluated the rates of genetic improvement. This study determined wheat genetic gains by evaluating 22 winter/facultative varieties released for rainfed conditions between 1931 and 2006. The study was conducted at three locations in Turkey during 2008–2012, with a total of 21 test sites. The experimental design was a randomized complete block with four replicates in 2008 and 2009 and three replicates in 2010–2012. Regression analysis was conducted to determine genetic progress over time. Mean yield across all 21 locations was 3.34 t ha−1, but varied from 1.11 t ha−1 to 6.02 t ha−1 and was highly affected by moisture stress. Annual genetic gain was 0.50% compared to Ak-702, or 0.30% compared to the first modern landmark varieties. The genetic gains in drought-affected sites were 0.75% compared to Ak-702 and 0.66% compared to the landmark varieties. Modern varieties had both improved yield potential and tolerance to moisture stress. Rht genes and rye translocations were largely absent in the varieties studied. The number of spikes per unit area decreased by 10% over the study period, but grains spike−1 and 1000-kernel weight increased by 10%. There were no significant increases in harvest index, grain size, or spike fertility, and no significant decrease in quality over time. Future use of Rht genes and rye translocations in breeding programs may increase yield under rainfed conditions. Keywords: Genetic gain, Rainfed wheat production, Winter wheat, Yield

  15. Promoting certified seed availability of wheat (triticum aestivum L) through public-private partnership and its impact on yield in rainfed areas

    International Nuclear Information System (INIS)

    Tariq, M.; Mian, M.A.; Omer, M.; Abbass, K.; Rehman, O.U.

    2012-01-01

    The use of poor quality seed results in poor crop stand and eventually in lesser vegetative growth leading to poor crop yield. Hence, it is the need of the time to enhance provision of certified seed of improved varieties to the farmers. An approved wheat variety 'Chakwal-50' of rainfed areas was selected for certified seed production and distribution in rainfed District Chakwal under joint venture of a study on comparison of seed source(Certified vs. Farmer's seed) contribution towards wheat yield at six sites in the District. All the agronomic practices were the same in both -2 treatments. The number of fertile tillers m were significantly higher in certified seed source than the farmer's own seed that resulted in significant increase in grain yield. Other yield contributing parameters including number of spikelet per spike, numbers of grains per spike and 1000 grain weight were at par in both seed sources. It was concluded that healthy and pure seed source gave high seed germination and good crop stand which enabled the plants to withstand abiotic stress especially drought during the crop season. The seed multiplication of crop varieties of rainfed areas can be done in irrigated areas to ensure the quality of seed and its availability in rainfed areas, which ultimately will increase the income of the farming community of the area. (author)

  16. Optimizing nitrogen uptake efficiency by irrigated wheat to reduce environmental pollution

    International Nuclear Information System (INIS)

    Arslan, A.; Kurdali, F.; Al-Shayeb, R.

    2000-01-01

    Two wheat cultivars (Sham 3 and Sham 6) were grown after fallow for two seasons and after wheat for another two seasons, with sprinkler irrigation. Four N-fertilizer rates (0, 50, 100, and 150% of the recommended dose) were used. A neutron moisture probe was used to determine the time and amount of irrigation. Nitrogen-15 was used to determine the fate of fertilizer N. Porous ceramic samplers were installed at different depths in micro-plots fertilized with 15 N to monitor its movement in the soil. Dry biomass and grain yield of wheat after fallow were much higher than those of wheat after wheat. The effects of increasing amounts of N fertilizer were significant during the four seasons, but were more pronounced in wheat after wheat. The appropriate timing and amount of irrigation water contributed to high fertilizer-N recovery (between 44 and 75%). Plants recovered N fertilizer applied at tillering more efficiently than when it was applied at germination. Labelled N analysis showed no deep percolation of N fertilizer with water during the same growing season. Water use efficiency of wheat after fallow was almost twice that of wheat after wheat, and N fertilization of wheat after wheat increased the water use efficiency two to three fold. Chlorophyll readings with all treatments were high during the first and second seasons, especially those fertilized with the recommended N rate or more. These results were in agreement with Ceres-Wheat model output, where it did not predict any N stress. Nitrogen deficit was observed by eye, and was indicated by the Ceres-Wheat model and chlorophyll-meter readings on plants fertilized with low rates of N during the last two seasons. Acceptable agreement was observed between model prediction of soil-water content and that determined using isotopic techniques, and between observed and predicted grain yields and biomass, N yields of grain and total N yields. However, predictions of the model for some variables were weak-, indicating a

  17. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield.

    Science.gov (United States)

    Ma, Lin; Li, Tian; Hao, Chenyang; Wang, Yuquan; Chen, Xinhong; Zhang, Xueyong

    2016-05-01

    Grain size is a dominant component of grain weight in cereals. Earlier studies have shown that OsGS5 plays a major role in regulating both grain size and weight in rice via promotion of cell division. In this study, we isolated TaGS5 homoeologues in wheat and mapped them on chromosomes 3A, 3B and 3D. Temporal and spatial expression analysis showed that TaGS5 homoeologues were preferentially expressed in young spikes and developing grains. Two alleles of TaGS5-3A, TaGS5-3A-T and TaGS5-3A-G were identified in wheat accessions, and a functional marker was developed to discriminate them. Association analysis revealed that TaGS5-3A-T was significantly correlated with larger grain size and higher thousand kernel weight. Biochemical assays showed that TaGS5-3A-T possesses a higher enzymatic activity than TaGS5-3A-G. Transgenic rice lines overexpressing TaGS5-3A-T also exhibited larger grain size and higher thousand kernel weight than TaGS5-3A-G lines, and the transcript levels of cell cycle-related genes in TaGS5-3A-T lines were higher than those in TaGS5-3A-G lines. Furthermore, systematic evolution analysis in diploid, tetraploid and hexaploid wheat showed that TaGS5-3A underwent strong artificial selection during wheat polyploidization events and the frequency changes of two alleles demonstrated that TaGS5-3A-T was favoured in global modern wheat cultivars. These results suggest that TaGS5-3A is a positive regulator of grain size and its favoured allele TaGS5-3A-T exhibits a larger potential application in wheat high-yield breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Oyster mushroom cultivation with rice and wheat straw.

    Science.gov (United States)

    Zhang, Ruihong; Li, Xiujin; Fadel, J G

    2002-05-01

    Cultivation of the oyster mushroom, Pleurotus sajor-caju, on rice and wheat straw without nutrient supplementation was investigated. The effects of straw size reduction method and particle size, spawn inoculation level, and type of substrate (rice straw versus wheat straw) on mushroom yield, biological efficiency, bioconversion efficiency, and substrate degradation were determined. Two size reduction methods, grinding and chopping, were compared. The ground straw yielded higher mushroom growth rate and yield than the chopped straw. The growth cycles of mushrooms with the ground substrate were five days shorter than with the chopped straw for a similar particle size. However, it was found that when the straw was ground into particles that were too small, the mushroom yield decreased. With the three spawn levels tested (12%, 16% and 18%), the 12% level resulted in significantly lower mushroom yield than the other two levels. Comparing rice straw with wheat straw, rice straw yielded about 10% more mushrooms than wheat straw under the same cultivation conditions. The dry matter loss of the substrate after mushroom growth varied from 30.1% to 44.3%. The straw fiber remaining after fungal utilization was not as degradable as the original straw fiber, indicating that the fungal fermentation did not improve the feed value of the straw.

  19. Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars

    Directory of Open Access Journals (Sweden)

    Lianne eMerchuk-Ovnat

    2016-04-01

    Full Text Available Wild emmer wheat (Triticum turgidum ssp. dicoccoides is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum and bread (T. aestivum wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4 were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm and water-limited (290–320 mm conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS, and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS. In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass - specifically under drought (7AS QTL in cv. Bar Nir background, under both treatments (2BS QTL, and a greater stability across treatments (1BL QTL. The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.

  20. BRS 374 – Wheat cultivar

    Directory of Open Access Journals (Sweden)

    Eduardo Caierão

    2013-01-01

    Full Text Available BRS 374 is a wheat cultivar developed by Embrapa. It resulted from a cross between the F1 generation of PF 88618/Coker80.33 and Frontana/Karl. BRS 374 belongs to the soft wheat class, has a low plant height, a high potential grain yield, andwhite flour.

  1. Effect of agroforestry system on yield attributes of wheat (Triticum Aestivum l.) under shallow water table conditions

    International Nuclear Information System (INIS)

    Kiran, R.; Agnihotri, A.K.

    2001-01-01

    Fifteen tree rows of Eucalyptus tereticornis were planted at G.B.Pant University of Agriculture and Technology, Pant Nagar, located in tarai region of Uttaranchal in a Nelder fan design in March 1989 at the angle of 24øN' from each other starting from north in anticlockwise direction. Area per tree was 30 m 2 . Wheat was intercropped with Eucalyptus tereticornis of 21st November, 1996. Each row of trees was one treatment. There were 15 treatments with control as sole crop. Various yield attributes, net radiation and water table depth were measured below trees and in control, simultaneously. In treatments 7, 8, 9, 10 and 12 early vegetative growth was observed below trees. Higher yield attributing characters were also observed in some of the treatments below trees. In general, treatment 9 (192-216ø) gave better yield attributes than that of control

  2. The uncertainty of crop yield projections is reduced by improved temperature response functions

    DEFF Research Database (Denmark)

    Wang, Enli; Martre, Pierre; Zhao, Zhigan

    2017-01-01

    , we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature......Quality) and analysing their results against the HSC data and an additional global dataset from the International Heat Stress Genotpye Experiment (IHSGE)8 carried out by the International Maize and Wheat Improvement Center (CIMMYT). More importantly, we derive, based on newest knowledge and data, a set of new...

  3. Root growth, soil water variation, and grain yield response of winter wheat to supplemental irrigation

    Directory of Open Access Journals (Sweden)

    Jianguo Man

    2016-04-01

    Full Text Available Water shortage threatens agricultural sustainability in the Huang-Huai-Hai Plain of China. Thus, we investigated the effect of supplemental irrigation (SI on the root growth, soil water variation, and grain yield of winter wheat in this region by measuring the moisture content in different soil layers. Prior to SI, the soil water content (SWC at given soil depths was monitored to calculate amount of irritation water that can rehydrate the soil to target SWC. The SWC before SI was monitored to depths of 20, 40, and 60 cm in treatments of W20, W40, and W60, respectively. Rainfed treatment with no irrigation as the control (W0. The mean root weight density (RWD, triphenyl tetrazolium chloride reduction activity (TTC reduction activity, soluble protein (SP concentrations as well as catalase (CAT, and superoxide dismutase (SOD activities in W40 and W60 treatments were significantly higher than those in W20. The RWD in 60–100 cm soil layers and the root activity, SP concentrations, CAT and SOD activities in 40–60 cm soil layers in W40 treatment were significantly higher than those in W20 and W60. W40 treatment is characterized by higher SWC in the upper soil layers but lower SWC in the 60–100-cm soil layers during grain filling. The soil water consumption (SWU in the 60–100 cm soil layers from anthesis after SI to maturity was the highest in W40. The grain yield, water use efficiency (WUE, and irrigation water productivity were the highest in W40, with corresponding mean values of 9169 kg ha−1, 20.8 kg ha−1 mm−1, and 35.5 kg ha−1 mm−1. The RWD, root activities, SP concentrations, CAT and SOD activities, and SWU were strongly positively correlated with grain yield and WUE. Therefore, the optimum soil layer for SI of winter wheat after jointing is 0–40 cm.

  4. Evaluation of 10 wheat cultivars under water stress at Moghan (Iran ...

    African Journals Online (AJOL)

    Hami

    2011-09-14

    Sep 14, 2011 ... Accepted 20 May, 2011. Water deficit is one of the main abiotic factors that affect yield and yield component of wheat planted in ... evaluate the effects of water stress on seed yield and yield components of ten wheat cultivars and lines that differ in .... Analysis of variance is presented in Table 2. According to.

  5. Evaluation of 10 wheat cultivars under water stress at Moghan (Iran ...

    African Journals Online (AJOL)

    Water deficit is one of the main abiotic factors that affect yield and yield component of wheat planted in arid and semi-arid regions. This study was conducted to evaluate the effect of water stress on wheat yield and yield component during 2008 at Moghan conditions. The objective of this study was to evaluate the effects of ...

  6. Activities of the Center for Space Construction

    Science.gov (United States)

    1993-01-01

    The Center for Space Construction (CSC) at the University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the center is to conduct research into space technology and to directly contribute to space engineering education. The center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Science. The college has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction is prominent evidence of this record. At the inception of CSC, the center was primarily founded on the need for research on in-space construction of large space systems like space stations and interplanetary space vehicles. The scope of CSC's research has now evolved to include the design and construction of all spacecraft, large and small. Within this broadened scope, our research projects seek to impact the underlying technological basis for such spacecraft as remote sensing satellites, communication satellites, and other special purpose spacecraft, as well as the technological basis for large space platforms. The center's research focuses on three areas: spacecraft structures, spacecraft operations and control, and regolith and surface systems. In the area of spacecraft structures, our current emphasis is on concepts and modeling of deployable structures, analysis of inflatable structures, structural damage detection algorithms, and composite materials for lightweight structures. In the area of spacecraft operations and control, we are continuing our previous efforts in process control of in-orbit structural assembly. In addition, we have begun two new efforts in formal approach to spacecraft flight software systems design and adaptive attitude control systems. In the area of regolith and surface systems, we are continuing the work of characterizing the physical properties of lunar

  7. Efeito de práticas culturais sobre o rendimento e outras características agronômicas de trigo Effect of cultural practices on yield andagronomic characteristics of wheat

    Directory of Open Access Journals (Sweden)

    Henrique Pereira dos Santos

    2006-01-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos de práticas culturais sobre o rendimento de grãos e algumas características agronômicas de plantas de trigo. Foram comparados quatro sistemas de manejo de solo, a saber: 1 plantio direto; 2 cultivo mínimo; 3 preparo convencional de solo com arado de discos mais grade de discos e 4 preparo convencional de solo com arado de aivecas mais grade de discos, e três sistemas de rotação de culturas: sistema I (trigo/soja, sistema II (trigo/soja e ervilhaca/milho ou sorgo e sistema III (trigo/soja, aveia branca/soja e ervilhaca/milho ou sorgo. O delineamento experimental foi em blocos ao acaso, com parcelas subdivididas e três repetições. A parcela principal foi constituída pelos sistemas de manejo de solo, e as subparcelas, pelos sistemas de rotação de culturas. O rendimento de grãos e a altura de plantas de trigo cultivadas sob plantio direto e sob cultivo mínimo foram superiores ao trigo cultivado sob preparo convencional de solo com arado de discos e arado de aivecas. A maior massa de mil grãos de trigo ocorreu no plantio direto. A rotação de culturas foi eficiente na redução de doenças do sistema radicular, resultando em aumento do rendimento de grãos de trigo. O menor rendimento de grãos, massa de grãos, massa de mil grãos e peso do hectolitro ocorreu quando trigo foi cultivado em monocultura (trigo/soja.The effects of soil management systems and winter crop rotation on wheat yield and root diseases were assessed. Four soil management systems: 1 no-tillage; 2 minimum tillage;3 conventional tillage using a disk plow plus disk harrow and 4 conventional tillage using a moldboard plow plus disk harrow, and three crop rotation systems [system I (wheat/soybean, system II (wheat/soybean and common vetch/corn or sorghum, and system III (wheat/soybean, white oats/soybean, and common vetch/corn or sorghum] were compared. A randomized block experimental design, whereas split-plots and

  8. Comparison of Four Weighting Methods in Fuzzy-based Land Suitability to Predict Wheat Yield

    Directory of Open Access Journals (Sweden)

    Fatemeh Rahmati

    2017-06-01

    Full Text Available Introduction: Land suitability evaluation is a process to examine the degree of land fitness for specific utilization and also makes it possible to estimate land productivity potential. In 1976, FAO provided a general framework for land suitability classification. It has not been proposed a specific method to perform this classification in the framework. In later years, a collection of methods was presented based on the FAO framework. In parametric method, different land suitability aspects are defined as completely discrete groups and are separated from each other by distinguished and consistent ranges. Therefore, land units that have moderate suitability can only choose one of the characteristics of predefined classes of land suitability. Fuzzy logic is an extension of Boolean logic by LotfiZadeh in 1965 based on the mathematical theory of fuzzy sets, which is a generalization of the classical set theory. By introducing the notion of degree in the verification of a condition, fuzzy method enables a condition to be in a state other than true or false, as well as provides a very valuable flexibility for reasoning, which makes it possible to take into account inaccuracies and uncertainties. One advantage of fuzzy logic in order to formalize human reasoning is that the rules are set in natural language. In evaluation method based on fuzzy logic, the weights are used for land characteristics. The objective of this study was to compare four methods of weight calculation in the fuzzy logic to predict the yield of wheat in the study area covering 1500 ha in Kian town in Shahrekord (Chahrmahal and Bakhtiari province, Iran. Materials and Methods: In such investigations, climatic factors, and soil physical and chemical characteristics are studied. This investigation involves several studies including a lab study, and qualitative and quantitative land suitability evaluation with fuzzy logic for wheat. Factors affecting the wheat production consist of

  9. Effect of different forms of nitrogen fertlizers applied in the end of tillering on yield and quality of winter wheat grain

    Directory of Open Access Journals (Sweden)

    Ladislav Ducsay

    2005-01-01

    Full Text Available In the years 1999 to 2001 in conditions of small-plot field experiments was carried out on loamy degraded chernozems at the Plant Breeding Station of Sládkovičovo-Nový Dvor to solve the problems of topdressing winter wheat (Triticum aestivum, L., variety Astella, with different forms of nitrogenous fertilizers. Nitrogenous fertilizers were applied at the growth phase of the 6th leaf (Zadoks = 29. Four various forms of fertilizers were exemined: urea solution, DAM-390, DAM-390 + Dumag, DASA. Different weather conditions statistically highly significantly influenced grain yield in respective experimental years. Topdressing with nitrogen (30 kg N.ha–1 caused statistically highly significant increase of grain yield in all fertilized variants ranging from +0.29 t.ha–1 (applied of DAM-390 to +0.69 t.ha–1 (applied of DASA according to respective treatments. Average grain yield in unfertilized control variant represented 7.23 t.ha–1. Nitrogen nutrition showed positive effect on the main macroelements offtake (N, P, K, Ca, Mg, S by winter wheat grain in all fertilized variants. Nitrogen fertilizing positively influenced formation of wet gluten and crude protein with highest increment in variant with DASA and variant with DAM-390 + Dumag.

  10. Effect of heavy haze and aerosol pollution on rice and wheat productions in China

    Science.gov (United States)

    Tie, Xuexi; Huang, Ru-Jin; Dai, Wenting; Cao, Junji; Long, Xin; Su, Xiaoli; Zhao, Shuyu; Wang, Qiyuan; Li, Guohui

    2016-07-01

    In China, regional haze pollution is a serious environmental problem. The impact on ecosystem, however, is not clearly understood. This study investigates the effect of regional haze pollution on the yields of rice and wheat in China. The spatial and temporal distributions of aerosol optical depth (AOD) show high particulate pollution in the North China Plain region, Yangtze River Delta region, the central eastern China, and the Si Chuan Basin, coexisted largely with crop growth in time and space. The solar irradiance reaching these regions is estimated to reduce by up to 28-49%, calculated using the AOD distributions and tropospheric ultraviolet-visible (TUV) model. Reduction of solar irradiance in these regions can depress optimal yields of about 45% of rice and 75% of wheat growth in China, leading to 2% reduction in total rice production and 8% reduction in total wheat production in China. However, there are large uncertainties of the estimate related to the diffuse solar radiation. For high diffuse radiation case, the estimate reductions of rice and wheat decrease to 1% and 4.5%, respectively. A further detailed study is needed to clearly understand this effect to meet the growing food demand in the nation in the coming decades.

  11. Integrated Soil, Water and Nitrogen Management For Sustainable Rice–Wheat Cropping System in Pakistan

    International Nuclear Information System (INIS)

    Hussain, F.; Yasin, M.; Gurmani, A.R.; Zia, M.S.

    2016-01-01

    The area under the rice–wheat (R–W) cropping system in Pakistan is about 2.2 Mha and despite its great importance as staple foods for the local population, the productivity of the system is poor due to several constraints. Rice (Oryza sativa L.) and wheat (Triticum aestivum L.) are normally grown in sequence on the same land in the same year. Field experiments with rice and wheat were conducted during four years on a Typic Halorthid soil at Lahore, in the alluvial plain of Punjab, Pakistan to assess nitrogen use efficiency and water productivity under both traditional and emerging crop establishment methods (raised beds, unpuddled soil, direct seeding). The climate in this region is semiarid. The experimental design was a randomized complete block design with five crop establishment methods as treatments and four replications. One micro-plot was laid down in each main plot to apply 15 N labelled urea (5 atom % 15 N). Both wheat and rice received a uniform application of 120 kg N ha -1 as urea, 30 kg P ha -1 as triple super phosphate, 50 kg K ha -1 as potassium sulphate and 5 kg Zn ha -1 as zinc sulphate. Pooled data of wheat grown in 2002–03, 2004–05 and 2005–06 showed that the highest wheat grain yield (3.89 t ha -1 ) was produced with conventional flatbed sowing (well pulverised soil) followed by raised bed sowing (3.79–3.82 t ha -1 ), whereas the lowest yield (3.45 t ha -1 ) was obtained in flat bed sowing with zero till rice in sequence. The highest rice paddy yield (4.15 t ha -1 ) was achieved with conventional flooded transplanted rice at 20 × 20 cm spacing and the lowest paddy yield (3.57 t ha -1 ) was recorded with direct seeding of rice in zero tilled soil. Total N uptake in wheat was maximum (117 kg ha -1 ) with conventional flatbed sowing and it was lowest with zero tilled soil. The highest total N uptake by rice (106 kg ha -1 ) was recorded with conventional flooded transplanted rice at 20 × 20 cm spacing and the lowest (89 kg ha -1 ) with

  12. Global QTL Analysis Identifies Genomic Regions on Chromosomes 4A and 4B Harboring Stable Loci for Yield-Related Traits Across Different Environments in Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Panfeng Guan

    2018-04-01

    Full Text Available Major advances in wheat production are needed to address global food insecurity under future climate conditions, such as high temperatures. The grain yield of bread wheat (Triticum aestivum L. is a quantitatively inherited complex trait that is strongly influenced by interacting genetic and environmental factors. Here, we conducted global QTL analysis for five yield-related traits, including spike yield, yield components and plant height (PH, in the Nongda3338/Jingdong6 doubled haploid (DH population using a high-density SNP and SSR-based genetic map. A total of 12 major genomic regions with stable QTL controlling yield-related traits were detected on chromosomes 1B, 2A, 2B, 2D, 3A, 4A, 4B, 4D, 5A, 6A, and 7A across 12 different field trials with timely sown (normal and late sown (heat stress conditions. Co-location of yield components revealed significant tradeoffs between thousand grain weight (TGW and grain number per spike (GNS on chromosome 4A. Dissection of a “QTL-hotspot” region for grain weight on chromosome 4B was helpful in marker-assisted selection (MAS breeding. Moreover, this study identified a novel QTL for heat susceptibility index of thousand grain weight (HSITGW on chromosome 4BL that explains approximately 10% of phenotypic variation. QPh.cau-4B.2, QPh.cau-4D.1 and QPh.cau-2D.3 were coincident with the dwarfing genes Rht1, Rht2, and Rht8, and haplotype analysis revealed their pleiotropic architecture with yield components. Overall, our findings will be useful for elucidating the genetic architecture of yield-related traits and developing new wheat varieties with high and stable yield.

  13. Demonstration of an Integrated Pest Management Program for Wheat in Tajikistan

    OpenAIRE

    Landis, Douglas A.; Saidov, Nurali; Jaliov, Anvar; El Bouhssini, Mustapha; Kennelly, Megan; Bahlai, Christie; Landis, Joy N.; Maredia, Karim

    2016-01-01

    Wheat is an important food security crop in central Asia but frequently suffers severe damage and yield losses from insect pests, pathogens, and weeds. With funding from the United States Agency for International Development, a team of scientists from three U.S. land-grant universities in collaboration with the International Center for Agricultural Research in Dry Areas and local institutions implemented an integrated pest management (IPM) demonstration program in three regions of Tajikistan ...

  14. Haplotype analysis of the genes encoding glutamine synthetase plastic isoforms and their association with nitrogen-use- and yield-related traits in bread wheat.

    Science.gov (United States)

    Li, Xin-Peng; Zhao, Xue-Qiang; He, Xue; Zhao, Guang-Yao; Li, Bin; Liu, Dong-Cheng; Zhang, Ai-Min; Zhang, Xue-Yong; Tong, Yi-Ping; Li, Zhen-Sheng

    2011-01-01

    Glutamine synthetase (GS) plays a key role in the growth, nitrogen (N) use and yield potential of cereal crops. Investigating the haplotype variation of GS genes and its association with agronomic traits may provide useful information for improving wheat N-use efficiency and yield. We isolated the promoter and coding region sequences of the plastic glutamine synthetase isoform (GS2) genes located on chromosomes 2A, 2B and 2D in bread wheat. By analyzing nucleotide sequence variations of the coding region, two, six and two haplotypes were distinguished for TaGS2-A1 (a and b), TaGS2-B1 (a-f) and TaGS2-D1 (a and b), respectively. By analyzing the frequency data of different haplotypes and their association with N use and agronomic traits, four major and favorable TaGS2 haplotypes (A1b, B1a, B1b, D1a) were revealed. These favorable haplotypes may confer better seedling growth, better agronomic performance, and improved N uptake during vegetative growth or grain N concentration. Our data suggest that certain TaGS2 haplotypes may be valuable in breeding wheat varieties with improved agronomic performance and N-use efficiency. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  15. Yield trends and yield gap analysis of major crops in the world

    OpenAIRE

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are quantified, yield gaps evaluated by crop experts, current yield progress by breeding estimated, and different yield projections compared. Results show decreasing yield growth for wheat and rice, but ...

  16. The mechanism on rhizosphere phosphorus activation of two wheat ...

    African Journals Online (AJOL)

    The mechanism on rhizosphere phosphorus activation of two wheat genotypes with different phosphorus efficiency. ... genotype would be a potential approach for maintaining wheat yield potential in soils with low P bioavailability. Key words: Wheat, P efficiency, rhizosphere properties, P fractions, phosphates activity.

  17. Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation–alkaline pretreatment

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    Pretreatment of wheat straw with gamma irradiation and NaOH was performed to enhance the enzymatic hydrolysis of wheat straw for production of reducing sugar. The results showed that the irradiation of wheat straw at 50 kGy decreased the yield of reducing sugar, however, the reducing sugar yield increased with increasing dose from 50 kGy to 400 kGy. The irradiation of wheat straw at 100 kGy can significantly decrease NaOH consumption and treatment time. The reducing sugar yield could reach 72.67% after irradiation at 100 kGy and 2% NaOH treatment for 1 h. The combined pretreatment of wheat straw by gamma radiation and NaOH immersion can increase the solubilization of hemicellulose and lignin as well as the accessible surface area for enzyme molecules. - Highlights: • Pretreatment of wheat straw by gamma radiation and NaOH was investigated. • Irradiation pretreatment can significantly decrease NaOH consumption. • Reducing sugar yield reached 72.67% at 100 kGy and 2% NaOH treatment for 1 h.

  18. Effect of Arbuscular Mycorrhizal Fungi and Organic Fertilizers Application on Yield Components of Two Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    A. Gholamalizadeh Ahangar

    2014-12-01

    Full Text Available This investigation was conducted in order to evaluate the direct effects of organic and bio - fertilizers on yield components of two native wheat cultivars, Bolani and cross - Bolani. The experiment conducted as a factorial in a completely randomized design with three replications. Treatment includes fertilizer factor: vermicompost (F1, vermicompost + compost (F2, vermicompost + mycorrhiza (F3, compost + vermicompost + mycorrhiza (F4, compost (F5, mycorrhiza + compost (F6, mycorrhiza (F7 and control (no fertilizer application F8 and cultivar factor includes two cultivar Bolani (C1 and cross - Bolani (C2. The results showed that the interaction effect of combined treatments (F7C2 of high yield (1.13 g.pot-1 obtained. The treatment combination (F7C2 of (0.355 was highest harvest index. The high correlation between weight per plant with plant height, spike length, grain yield and harvest index were observed. Generally the combined application of vermicompost and mycorrhiza cultivar cross - Bolani is more suitable for grain production.

  19. Evaluation of nitrogen sources (15 N) in three wheat varieties in an andisol and in an ultisol, IX region. 1. Effect of yield, absorption and N efficiency

    International Nuclear Information System (INIS)

    Peyrelongue, A.; Pino, Y.; Buneder, M.

    1997-01-01

    Full text: During 1988/1989 the effect of nitrate and ammoniacal fertilization was studied on yield, yield components, absorption and efficiency of N according the conventional methods in three wheat varieties. The field evaluation was done in an Ultisol and Andisol of the IX Region of Chile. In both soils the statistical design was completely randomized blocks where the sources of N were the treatment: sodium nitrate, urea and ammonium nitrate. In the Andisol the wheat variety used was Laurel and in the Ultisol Dalcahue and Perquenco varieties were used. The rate of N was 160 kg N ha -1 . The application of N had a significant effect on yield in the three environments. For Dalcahue this effect was obtained with sodium nitrate and for Perquenco and Laurel there was not significant differences between nitrogen sources. The results in Ultisol show different behavior between varieties, with a better response of Perquenco according N application but a lower yield in relationship with Dalcahue. The best yield was obtained with Laurel in the Andisol, also with the higher total N absorption, AE and FUE, according with the yield obtained

  20. Biofortification: High zinc wheat programme – The potential agricultural options for alleviating malnutrition in Pakistan

    Directory of Open Access Journals (Sweden)

    Qadir Bux Baloch

    2015-07-01

    Full Text Available The deficiency of micronutrients (zinc, iron, iodine and vitamin A is persistently afflicting millions of people living across Africa, Southern Americas, Asia and Pakistan. Among these, the zinc deficiency syndrome is occurring by 47.6, 41.3, and 39.2% in pregnant, non-pregnant and children under 5 years, respectively in Pakistan. The reason being that majority of the people subsists on cereal-based diets, i.e., wheat. The commercially grown wheat varieties contain zinc about 25 mg/g, whereas about 40 mg/g zinc is required in daily diet.The potential risk of zinc deficiency could be mitigated through certain interventions i.e., mineral drugs, food supplements, diversity in diets, production of fortified foods, and genetic biofortification of staple food crops. Among these, quantum increase in zinc content in wheat grains through genetic manipulation would be basics to alleviate zinc deficiency in the malnourished communities. The objective of the programme is to enhance the concentration of zinc nutrient from 25 to 40 mg/g in wheat grains through conventional plant breeding techniques.Pakistan Agricultural Research Council, Islamabad in collaboration with Consultative Group on International Agricultural Research (CGIAR and International Maize & Wheat Improvement Center (CIMMYT and HarvestPlus, Pakistan started R&D works to develop biofortified high zinc wheat varieties containing around 40 mg/g in the year 2009. The biofortified wheat crop is developed through conventional plant breeding techniques. The germplasm inherited with high zinc nutrient are crossed with high yielding and adopted to ecological conditions. The varieties are high yielding, and inheriting zinc around 40 mg/g in the grains under both irrigated and rainfed production environments. The Government of Punjab has also given high priority to develop and consume biofortified high zinc wheat in its multi-sectoral Nutrition Strategy Plan 2015, as potential agricultural option to

  1. Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat.

    Science.gov (United States)

    Popko, Małgorzata; Michalak, Izabela; Wilk, Radosław; Gramza, Mateusz; Chojnacka, Katarzyna; Górecki, Henryk

    2018-02-21

    Field and laboratory experiments were carried out in 2012-2013, aimed at evaluating the influence of new products stimulating plant growth based on amino acids on crop yield, characteristics of grain and content of macro- and micronutrients in winter wheat ( Triticum aestivum L.). The tests included two formulations produced in cooperation with INTERMAG Co. (Olkusz, Poland)-AminoPrim and AminoHort, containing 15% and 20% amino acids, respectively, and 0.27% and 2.1% microelements, respectively. Field experiments showed that the application of products based on amino acids influenced the increase of grain yield of winter wheat (5.4% and 11%, respectively, for the application of AminoPrim at a dose 1.0 L/ha and AminoHort at dose 1.25 L/ha) when compared to the control group without biostimulant. Laboratory tests showed an increase of technological characteristics of grain such as ash content, Zeleny sedimentation index and content of protein. The use of the tested preparations at different doses also contributed to the increase of the nutrients content in grains, in particular copper (ranging 31-50%), as well as sodium (35-43%), calcium (4.3-7.9%) and molybdenum (3.9-16%). Biostimulants based on amino acids, tested in the present study, can be recommended for an efficient agricultural production.

  2. Maintaining yields and reducing nitrogen loss in rice–wheat rotation system in Taihu Lake region with proper fertilizer management

    International Nuclear Information System (INIS)

    Xue, Lihong; Yu, Yingliang; Yang, Linzhang

    2014-01-01

    In the Tailake region of China, heavy nitrogen (N) loss of rice–wheat rotation systems, due to high fertilizer-N input with low N use efficiency (NUE), was widely reported. To alleviate the detrimental impacts caused by N loss, it is necessary to improve the fertilizer management practices. Therefore, a 3 yr field experiments with different N managements including organic combined chemical N treatment (OCN, 390 kg N ha −1 yr −1 , 20% organic fertilizer), control–released urea treatment (CRU, 390 kg N ha −1 yr −1 , 70% resin-coated urea), reduced chemical N treatment (RCN, 390 kg N ha −1 yr −1 , all common chemical fertilizer), and site-specific N management (SSNM, 333 kg N ha −1 yr −1 , all common chemical fertilizer) were conducted in the Taihu Lake region with the ‘farmer’s N’ treatment (FN, 510 kg N ha −1 yr −1 , all common chemical fertilizer) as a control. Grain yield, plant N uptake (PNU), NUE, and N losses via runoff, leaching, and ammonia volatilization were assessed. In the rice season, the FN treatment had the highest N loss and lowest NUE, which can be attributed to an excessive rate of N application. Treatments of OCN and RCN with a 22% reduced N rate from FN had no significant effect on PNU nor the yield of rice in the 3 yr; however, the NUE was improved and N loss was reduced 20–32%. OCN treatment achieved the highest yield, while SSNM has the lowest N loss and highest NUE due to the lowest N rate. In wheat season, N loss decreased about 28–48% with the continuous reduction of N input, but the yield also declined, with the exception of OCN treatment. N loss through runoff, leaching and ammonia volatilization was positively correlated with the N input rate. When compared with the pure chemical fertilizer treatment of RCN under the same N input, OCN treatment has better NUE, better yield, and lower N loss. 70% of the urea replaced with resin-coated urea had no significant effect on yield and NUE improvement, but

  3. Deoxynivalenol in wheat and wheat products from a harvest affected by fusarium head blight

    Directory of Open Access Journals (Sweden)

    Lidiane Viera MACHADO

    Full Text Available Abstract Fusarium head blight is an important disease occurring in wheat, caused mainly by the fungus Fusarium graminearum. In addition to direct damage to crops, reduced quality and yield losses, the infected grains can accumulate mycotoxins (toxic metabolites originating from prior fungal growth, especially deoxynivalenol (DON. Wheat crops harvested in 2014/2015 in southern Brazil were affected by high levels of Fusarium head blight. In this context, the aim of this study was evaluate the mycotoxicological quality of Brazilian wheat grains and wheat products (wheat flour and wheat bran for DON. DON contamination was evaluated in 1,504 wheat and wheat product samples produced in Brazil during 2014. It was determined by high performance liquid chromatograph fitted to a mass spectrometer (LC-MS / MS. The results showed that 1,000 (66.5% out of the total samples tested were positive for DON. The mean level of sample contamination was 1047 µg.kg-1, but only 242 samples (16.1% had contamination levels above the maximum permissible levels (MPL - the maximum content allowed by current Brazilian regulation. As of 2017, MPL will be stricter. Thus, research should be conducted on DON contamination of wheat and wheat products, since wheat is a raw material widely used in the food industry, and DON can cause serious harm to public health.

  4. Srain Yield Stability of some Bread Wheat Cultivars Introduced in Moderate and Cold Area of Iran

    Directory of Open Access Journals (Sweden)

    Alireza Tarinejad

    2017-07-01

    Full Text Available Due to genotype×environmental interaction, seed yields of genotypes are usually evaluated in broad range of environmental conditions to obtain efficient information concering cultivar selection and introduction. For this purpose, an experiment was conducted based on RCBD with three replications, using 20 bread wheat cultivars to study seed yield stability of cultivars introduced during the past several years to cold, and moderate areas of Iran. This experiment was carried out at the Agriculture Research Station of Islamic Azad University, Tabriz branch during 2009-2012, for 4 years. Because of significant genotype×environmental interaction, stability analysis was performed by all possible methods to obtain stable and high potential cultivars. The result of stability analysis showed non parametric, AMMI, GGE biplot and simultaneous selection stability methods introduce lower, high, and higher yielding cultivars to be stable. On basis of all stability methods, Bahar (spring type introduced in 2008, Mahdavi (facultative type released in 1995, and Azadi cultivar (winter type introduced in 1989 respectively with 7.27, 7.13 and 6.88 (t/ha grain yield were stable and were highly potential cultivars among other cultivars. These cultivars could be introduced to researchers as stable cultivars to be used as parental ones in breeding programs for production of highly stable and seed yielding lines.

  5. Diagnostic Yield of Microscopic Colitis in Open Access Endoscopy Center.

    Science.gov (United States)

    Ellingson, Derek; Miick, Ronald; Chang, Faye; Hillard, Robert; Choudhary, Abhishek; Ashraf, Imran; Bechtold, Matthew; Diaz-Arias, Alberto

    2011-08-01

    The diagnostic yield in open access endoscopy has been evaluated which generally support the effectiveness and efficiency of open access endoscopy. With a few exceptions, diagnostic yield studies have not been performed in open access endoscopy for more specific conditions. Therefore, we conducted a study to determine the efficiency of open access endoscopy in the detection of microscopic colitis as compared to traditional referral via a gastroenterologist. A retrospective search of the pathology database at the University of Missouri for specimens from a local open access endoscopy center was conducted via SNOMED code using the terms: "microscopic", "lymphocytic", "collagenous", "spirochetosis", "focal active colitis", "melanosis coli" and "histopathologic" in the diagnosis line for the time period between January 1, 2004 and May 25, 2006. Specimens and colonoscopy reports were reviewed by a single pathologist. Of 266 consecutive patients with chronic diarrhea and normal colonoscopies, the number of patients with microscopic disease are as follows: Lymphocytic colitis (n = 12, 4.5%), collagenous colitis (n = 17, 6.4%), focal active colitis (n = 15, 5.6%), and spirochetosis (n = 2, 0.4%). The diagnostic yield of microscopic colitis in this study of an open access endoscopy center does not differ significantly from that seen in major medical centers. In terms of diagnostic yield, open access endoscopy appears to be as effective in diagnosing microscopic colitis.

  6. A generalized approach to wheat yield forecasting using earth observations: Data considerations, application and relevance

    Science.gov (United States)

    Becker-Reshef, Inbal

    In recent years there has been a dramatic increase in the demand for timely, comprehensive global agricultural intelligence. The issue of food security has rapidly risen to the top of government agendas around the world as the recent lack of food access led to unprecedented food prices, hunger, poverty, and civil conflict. Timely information on global crop production is indispensable for combating the growing stress on the world's crop production, for stabilizing food prices, developing effective agricultural policies, and for coordinating responses to regional food shortages. Earth Observations (EO) data offer a practical means for generating such information as they provide global, timely, cost-effective, and synoptic information on crop condition and distribution. Their utility for crop production forecasting has long been recognized and demonstrated across a wide range of scales and geographic regions. Nevertheless it is widely acknowledged that EO data could be better utilized within the operational monitoring systems and thus there is a critical need for research focused on developing practical robust methods for agricultural monitoring. Within this context this dissertation focused on advancing EO-based methods for crop yield forecasting and on demonstrating the potential relevance for adopting EO-based crop forecasts for providing timely reliable agricultural intelligence. This thesis made contributions to this field by developing and testing a robust EO-based method for wheat production forecasting at state to national scales using available and easily accessible data. The model was developed in Kansas (KS) using coarse resolution normalized difference vegetation index (NDVI) time series data in conjunction with out-of-season wheat masks and was directly applied in Ukraine to assess its transferability. The model estimated yields within 7% in KS and 10% in Ukraine of final estimates 6 weeks prior to harvest. The relevance of adopting such methods to

  7. Durum wheat modeling

    DEFF Research Database (Denmark)

    Toscano, P.; Ranieri, R.; Matese, A.

    2012-01-01

    in predicting grain yield even before maturity for a wide range of growing conditions in the Mediterranean climate, governed by different annual weather patterns. The results were evaluated on the basis of regression and normalized root mean squared error with known crop yield statistics at regional level....... durum wheat during phenological development, at regional scale. We present an innovative system capable of predicting spatial yield variation and temporal yield fluctuation in long-term analysis, that are the main purposes of regional crop simulation study. The Delphi system was applied to simulate...

  8. Field Screening of Waterlogging Tolerance in Spring Wheat and Spring Barley

    Directory of Open Access Journals (Sweden)

    Tove Kristina Sundgren

    2018-03-01

    Full Text Available Improved waterlogging tolerance of wheat and barley varieties may alleviate yield constraints caused by heavy or long-lasting precipitation. The waterlogging tolerance of 181 wheat and 210 barley genotypes was investigated in field trials between 2013 and 2014. A subset of wheat genotypes were selected for yield trials in 2015 and 2016. Our aim was to: (1 characterize the waterlogging tolerance of genotypes with importance for Norwegian wheat and barley breeding, and (2 identify which phenotypic traits that most accurately determine the waterlogging tolerance of wheat in our field trials. Waterlogging tolerance was determined by principal component analysis (PCA where best linear unbiased predictors (BLUPs of the traits chlorosis, relative plant height, heading delay, relative spike number, relative biomass and an overall condition score were used as input variables. Six wheat and five barley genotypes were identified as consistently more tolerant in 2013 and 2014. This included the waterlogging tolerant CIMMYT line CETA/Ae. tauschii (895. Chlorosis and the overall condition score were the traits that best explained the yield response of the genotypes selected for the yield trials. Our results show that early stress symptoms did not necessarily reflect the ability to recover post treatment. Thus, records from full crop cycles appear as fundamental when screening populations with unknown tolerance properties.

  9. Effects of location and year on grain yield and its components in wheat genotypes developed from seed irradiation treatment

    International Nuclear Information System (INIS)

    Amer, I.M.; El-Rassas, H.N.; Abdel-Aleem, M.M.

    1994-01-01

    Eight mutant lines derived from gamma ray treatments and their parental cultivar sokha 69 of bread wheat were evaluated for grain yield per feddan, straw yield per feddan, harvest index, spike length, spike yield and weight of 1000-kernels at two locations (El-Fayoum and Inshas) in two seasons, 1991/92 and 1992/93. Significant effects of location on yield and yield components were found and the year significantly affects all the studied traits except grain yield per feddan. A significant location genotype interaction was detected for spike length, 1000-kernel weight and straw yield per feddan. In addition, year genotype interaction was significant in weight of 1000-kernels, straw yield per feddan and harvest index. The statistical analysis showed a significant difference among genotypes over all environments for spike length, 1000-kernel weight, straw yield per feddan and harvest index. However, these did not reflect significant effect on grain yield per feddan over all environments because it has a highly compensation ability. Meanwhile, mutant L 1 2 -1 exhibited significantly higher straw yield than sokha 69, when averaged over two seasons at El-Fayoum. Mutant L 1 9 -1 gave higher weight of 1000-kernels, spike length and harvest index than the other genotypes at low-yielding location (Inshas). It seems to be stable over a wide range of environments. 3 tabs

  10. Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS

    Science.gov (United States)

    Dong, Chen; Fu, Yuming; Liu, Guanghui; Liu, Hong

    2014-06-01

    Minimizing energy consumption and maximizing crop productivity are major challenges to growing plants in Bioregenerative Life Support System (BLSS) for future long-term space mission. As a primary source of energy, light is one of the most important environmental factors for plant growth. The purpose of this study is to investigate the effects of low light intensity at different stages on growth, pigment composition, photosynthetic efficiency, biological production and antioxidant defence systems of wheat (Triticum aestivum L.) cultivars during ontogenesis. Experiments were divided into 3 intensity-controlled stages according to growth period (a total of 65 days): seedling stage (first 20 days), heading and flowering stage (middle 30 days) and grain filling stage (last 15 days). Initial light condition of the control was 420 μmol m-2 s-1 and the light intensity increased with the growth of wheat plants. The light intensities of group I and II at the first stage and the last stage were adjusted to the half level of the control respectively. For group III, the first and the last stage were both adjusted to half level of the control. During the middle 30 days, all treatments were kept the same intensity. The results indicated that low-light treatment at seedling stage, biomass, nutritional contents, components of inedible biomass and healthy index (including peroxidase (POD) activity, malondialdehyde (MDA) and proline content) of wheat plants have no significant difference to the control. Furthermore, unit kilojoule yield of group I reached 0.591 × 10-3 g/kJ and induced the highest energy efficiency. However, low-light treatment at grain filling stage affected the final production significantly.

  11. National Space Science Data Center Master Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Space Science Data Center serves as the permanent archive for NASA space science mission data. 'Space science' means astronomy and astrophysics, solar...

  12. [Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat].

    Science.gov (United States)

    Zhao, Jun; Dong, Shu-ting; Liu, Peng; Zhang, Ji-wang; Zhao, Bin

    2015-08-01

    A field experiment was conducted using the winter wheat (Triticum aestivum) variety Shimai 15. The source of organic nitrogen was cow manure, and four fertilization treatments were included, i.e., no N fertilizer application, single application of urea, single application of cow manure, and mixed application of urea and cow manure. The effects of different applications of inorganic and organic nitrogen on canopy apparent photosynthesis (CAP), photosynthetic rate of flag leaves (Pn), leaf area index (LAI), florescence parameters and grain yield of winter wheat were determined. The results showed that urea had the largest effect on the early growth period, as at this stage the CAP, Pn and LAI of the single application of urea were the highest, which was followed by the mixed application and the single application of cow manure. However, 10 days after anthesis, the single application of cow manure and the mixed application delayed the leaf senescence process when compared with the single application of urea. This could be due to the two treatments having higher anti-oxidant enzyme activity and promoting a longer green leaf duration, which could maintain a higher photosynthetic capability. What' s more, the mixed application had a better performance and got the highest grain yield. Consequently, the mixed application of organic and inorganic fertilizers could delay leaf senescence and maintain a better canopy structure and higher photosynthesis capability at the late grain filling stage, which resulted in a higher grain yield.

  13. Studies on water use efficiency of wheat in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M [Suez Canal Univ., Ismailia (Egypt). Soil and Water Dept.

    1996-07-01

    This experiment was carried out in Ismailia region to investigate water use efficiency of 14 bred wheat cultivars (Triticum aestivum L.) and 4 durum wheat cultivars (T. durum L.). Two irrigation water levels were used, an optimum level of 441 mm and a low level of 271 mm during the growing season using a sprinkler irrigation system. Yield and yield components examined showed significant differences among cultivars. The best cultivar for grain yield was Sakha 8 giving 4850 kg/ha. The lowest yield of 2650 kg/ha was produced by Sohag 3. There were also large genotypic differences among cultivars for water use efficiency. The cultivars that are better in water use efficiency may be used for wheat production in areas in Egypt where rainfall is low, or for use in breeding programmes aimed at incorporating the traits of high water use efficiency with high grain yield. Protein and phytin content of grains were negatively correlated with irrigation water level. (author). 10 refs, 1 fig., 1 tab.

  14. Studies on water use efficiency of wheat in Egypt

    International Nuclear Information System (INIS)

    Abdou, M.

    1996-01-01

    This experiment was carried out in Ismailia region to investigate water use efficiency of 14 bred wheat cultivars (Triticum aestivum L.) and 4 durum wheat cultivars (T. durum L.). Two irrigation water levels were used, an optimum level of 441 mm and a low level of 271 mm during the growing season using a sprinkler irrigation system. Yield and yield components examined showed significant differences among cultivars. The best cultivar for grain yield was Sakha 8 giving 4850 kg/ha. The lowest yield of 2650 kg/ha was produced by Sohag 3. There were also large genotypic differences among cultivars for water use efficiency. The cultivars that are better in water use efficiency may be used for wheat production in areas in Egypt where rainfall is low, or for use in breeding programmes aimed at incorporating the traits of high water use efficiency with high grain yield. Protein and phytin content of grains were negatively correlated with irrigation water level. (author). 10 refs, 1 fig., 1 tab

  15. The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield1[OPEN

    Science.gov (United States)

    He, Xue; Qu, Baoyuan; Li, Wenjing; Zhao, Xueqiang; Teng, Wan; Ma, Wenying; Ren, Yongzhe; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-01-01

    Nitrate is a major nitrogen resource for cereal crops; thus, understanding nitrate signaling in cereal crops is valuable for engineering crops with improved nitrogen use efficiency. Although several regulators have been identified in nitrate sensing and signaling in Arabidopsis (Arabidopsis thaliana), the equivalent information in cereals is missing. Here, we isolated a nitrate-inducible and cereal-specific NAM, ATAF, and CUC (NAC) transcription factor, TaNAC2-5A, from wheat (Triticum aestivum). A chromatin immunoprecipitation assay showed that TaNAC2-5A could directly bind to the promoter regions of the genes encoding nitrate transporter and glutamine synthetase. Overexpression of TaNAC2-5A in wheat enhanced root growth and nitrate influx rate and, hence, increased the root’s ability to acquire nitrogen. Furthermore, we found that TaNAC2-5A-overexpressing transgenic wheat lines had higher grain yield and higher nitrogen accumulation in aerial parts and allocated more nitrogen in grains in a field experiment. These results suggest that TaNAC2-5A is involved in nitrate signaling and show that it is an exciting gene resource for breeding crops with more efficient use of fertilizer. PMID:26371233

  16. Phenological Variation and its Relation with Yield in several Wheat (Triticum aestivum L. Cultivars under Normal and Late Sowing Mediated Heat Stress Condition

    Directory of Open Access Journals (Sweden)

    Kamrun NAHAR

    2010-09-01

    Full Text Available Phenological performance in relation to yield of five modern varieties of wheat Sourav, Pradip, Sufi, Shatabdi and Bijoy were evaluated under two growing environments; one is normal growing environment (sowing at November 30 and the other is post anthesis heat stressed environment (sowing at December 30. In case of late seeding, the varieties phased a significant level of high temperature stress that also significantly affected the required days to germination, booting, anthesis, maturity of all varieties including the yield as compared to normal sowing treatment. The temperature during the grain filling or grain maturing period was near 23C in case of normal seeding and it was near about 28C to 30C and sometimes reached above this range in the later period of late seeded treatment. In the normal sowing treatment the germination period was lower than the late sowing treatment as during that time the temperature was higher as compared to late sowing condition where temperature was lower. Days to anthesis and booting decreased due to late sown heat stress condition regardless the cultivars. These phenological characteristics under heat stressed condition led the wheat cultivars to significantly lower the grain yield as compared to normal condition. Due to heat stress, the yield reduction was 69.53% in Sourav, 58.41% in Pradip, 73.01% in Sufi, 55.46% in Shatabdi and 53.42% in Bijoy.

  17. The Effect of High Concentrations of Glufosinate Ammonium on the Yield Components of Transgenic Spring Wheat (Triticum aestivum L.) Constitutively Expressing the bar Gene

    OpenAIRE

    Áy, Zoltán; Mihály, Róbert; Cserháti, Mátyás; Kótai, Éva; Pauk, János

    2012-01-01

    We present an experiment done on a bar + wheat line treated with 14 different concentrations of glufosinate ammonium—an effective component of nonselective herbicides—during seed germination in a closed experimental system. Yield components as number of spikes per plant, number of grains per spike, thousand kernel weight, and yield per plant were thoroughly analysed and statistically evaluated after harvesting. We found that a concentration of glufosinate ammonium 5000 times the lethal dose w...

  18. Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces

    Czech Academy of Sciences Publication Activity Database

    Pirttioja, N. K.; Carter, T. R.; Fronzek, S.; Bindi, M.; Hoffmann, H. D.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, Miroslav; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M. F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, Petr; Jacquemin, I.; Kersebaum, K. C.; Kollas, C.; Krzyszczak, J.; Lorite, I. J.; Minet, J.; Minquez, M. I.; Montesino, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodriguez, A.; Ruane, A. C.; Ruget, F.; Sanna, M.; Semenov, M. A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R. P.

    2015-01-01

    Roč. 65, č. 31 (2015), s. 87-105 ISSN 0936-577X R&D Projects: GA MZe QJ1310123; GA MŠk(CZ) LD13030 Grant - others:German Federal Ministries of Education and Research, and Food and Agriculture(DE) 2812ERA115 Institutional support: RVO:67179843 Keywords : climate * crop model * impact response surface * IRS * sensitivity analysis * wheat * yield Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.690, year: 2015

  19. Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System

    Directory of Open Access Journals (Sweden)

    Dengpan Xiao

    2018-04-01

    Full Text Available With regard to global climate change due to increasing concentration in greenhouse gases, particularly carbon dioxide (CO2, it is important to examine its potential impact on crop development and production. We used statistically-downscaled climate data from 28 Global Climate Models (GCMs and the Agricultural Production Systems sIMulator (APSIM–Wheat model to simulate the impact of future climate change on wheat production. Two future scenarios (RCP4.5 and RCP8.5 were used for atmospheric greenhouse gas concentrations during two different future periods (2031–2060 referred to as 40S and 2071–2100 referred to as 80S. Relative to the baseline period (1981–2010, the trends in mean daily temperature and radiation significantly increased across all stations under the future scenarios. Furthermore, the trends in precipitation increased under future climate scenarios. Due to climate change, the trend in wheat phenology significantly advanced. The early flowering and maturity dates shortened both the vegetative growth stage (VGP and the whole growth period (WGP. As the advance in the days of maturity was more than that in flowering, the length of the reproductive growth stage (RGP of spring wheat was shortened. However, as the advance in the date of maturity was less than that of flowering, the RGP of winter wheat was extended. When the increase in CO2 concentration under future climate scenarios was not considered, the trend in change in wheat production for the baseline declined. In contrast, under increased CO2 concentration, the trend in wheat yield increased for most of the stations (except for Nangong station under future climatic conditions. Winter wheat and spring wheat evapotranspiration (ET decreased across all stations under the two future climate scenarios. As wheat yield increased with decreasing water consumption (as ET under the future climatic conditions, water use efficiency (WUE significantly improved in the future period.

  20. Harnessing Diversity in Wheat to Enhance Grain Yield, Climate Resilience, Disease and Insect Pest Resistance and Nutrition Through Conventional and Modern Breeding Approaches

    Science.gov (United States)

    Mondal, Suchismita; Rutkoski, Jessica E.; Velu, Govindan; Singh, Pawan K.; Crespo-Herrera, Leonardo A.; Guzmán, Carlos; Bhavani, Sridhar; Lan, Caixia; He, Xinyao; Singh, Ravi P.

    2016-01-01

    Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance. PMID:27458472

  1. Influence of gypsum and farmyard manure on fertilizer zinc uptake by wheat and its residual effect on succeeding rice and wheat crops in a sodic soil

    International Nuclear Information System (INIS)

    Sachdev, P.; Deb, D.L.

    1990-01-01

    Greenhouse experiments were conducted to evaluate the effectiveness of gypsum and FYM on a sodic soil on fertilizer Zn uptake by wheat and residual effect on succeeding crops of rice and wheat. Application of FYM significantly increased the yield of first wheat crop as well as the yield of subsequent rice and wheat crops, but gypsum showed significant effect only on rice. FYM application also resulted in an increase in Zn content of all the three crops. Utilisation of the fertilizer Zn by the first crop of wheat ranged between 0.30 to 0.54 per cent while succeeding crop of rice utilised 1.00 to 1.25 per cent of the applied Zn. Application of gypsum to the first crop did not influence the fertilizer Zn uptake by wheat, rice and wheat, however, it significantly reduced the soil pH and increased the available Zn content in soil. (author). 15 refs., 6 tabs

  2. Health services at the Kennedy Space Center

    Science.gov (United States)

    Ferguson, E. B.; Humbert, P.; Long, I. D.; Tipton, D. A.

    1992-01-01

    Comprehensive occupational health services are provided to approximately 17,000 workers at the Kennedy Space Center and an additional 6000 on Cape Canaveral Air Force Station. These areas cover about 120,000 acres encompassing part of the Merritt Island Wild Life Refuge and wetlands which are the habitat of numerous endangered and protected species of wildlife. The services provided at the Kennedy Space Center optimally assure a safe and healthy working environment for the employees engaged in the preparation and launching of this country's Space Shuttle and other important space exploration programs.

  3. Development of RAPD based markers for wheat rust resistance ...

    African Journals Online (AJOL)

    Rust diseases are the major cause of low yield of wheat in Pakistan. Wheat breeders all over the world as well as in Pakistan are deriving rust resistance genes from alien species like Triticum ventricosum and introducing them in common wheat (Triticum aestivum). One such example is the introgression of rust resistance ...

  4. Effect of Sowing Quantity on Soil Temperature and Yield of Winter Wheat under Straw Strip Mulching in Arid Region of Northwest China

    Science.gov (United States)

    Lan, Xuemei; Chai, Yuwei; Li, Rui; Li, Bowen; Cheng, Hongbo; Chang, Lei; Chai, Shouxi

    2018-01-01

    In order to explore the characteristics and relationship between soil temperature and yield of winter wheat, under different sowing quantities conditions of straw mulching conventional drilling in Northwest China, this study took Lantian 26 as material, under the whole corn mulching conventional drilling in Changhe town and Pingxiang town, setting up 3 different seeding quantities of 270 kg/ha (SSMC1), 324 kg/ha (SSMC2) and 405 kg/ha (SSMC3), to study the difference of soil temperature during the growth period of winter wheat and its correlation with yield components. Results showed: the average soil temperature of 0∼25cm in two ecological zones in the whole growth period have a significant change with the increase of sowing quantities; too much seeding had a sharp drop in soil temperature; the highest temperature of SSMC in Changhe town was the middle quantity of SSMC 2; the highest temperature of SSMC in Pingxiang town was the lowest sowing quantity of SSMC1. Diurnal variation of soil temperature at all growth stages showed: with the increase of SSMC, in the morning it increased with the increase of soil depth, noon and evening reducing with the depth of the soil. The average soil temperature of SSMC2 was higher than that of in all the two ecological zones in the whole growth period of SSMC.The maximum day temperature difference of each treatment was at noon. With the increase of SSMC, the yield increase varied with two ecological zones. SSMC of the local conventional sowing quantity of 270kg/ha SSMC1 yield was the highest in Changhe Town. SSMC of the middle sowing quantity SSMC2 of 324kg/ha yield was the highest in Pingxiang town. The difference of grain number per spike was the main cause of yield difference among these 3 treatments. Correlation analysis showed: the correlation among the yield and yield components, growth index and soil temperature varied with different ecological zones; thousand kernel weight and grain number per ear (.964** and.891**) had a

  5. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    Directory of Open Access Journals (Sweden)

    Erdei Borbála

    2012-03-01

    Full Text Available Abstract Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS, resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and

  6. Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat.

    Science.gov (United States)

    Bonneau, Julien; Taylor, Julian; Parent, Boris; Bennett, Dion; Reynolds, Matthew; Feuillet, Catherine; Langridge, Peter; Mather, Diane

    2013-03-01

    Improved mapping, multi-environment quantitative trait loci (QTL) analysis and dissection of allelic effects were used to define a QTL associated with grain yield, thousand grain weight and early vigour on chromosome 3BL of bread wheat (Triticum aestivum L.) under abiotic stresses. The QTL had pleiotropic effects and showed QTL x environment interactions across 21 diverse environments in Australia and Mexico. The occurrence and the severity of water deficit combined with high temperatures during the growing season affected the responsiveness of this QTL, resulting in a reversal in the direction of allelic effects. The influence of this QTL can be substantial, with the allele from one parent (RAC875) increasing grain yield by up to 12.5 % (particularly in environments where both heat and drought stress occurred) and the allele from the other parent (Kukri) increasing grain yield by up to 9 % in favourable environments. With the application of additional markers and the genotyping of additional recombinant inbred lines, the genetic map in the QTL region was refined to provide a basis for future positional cloning.

  7. Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance and no yield penalty under controlled growth conditions.

    Science.gov (United States)

    Bi, Huihui; Shi, Jianxin; Kovalchuk, Natalia; Luang, Sukanya; Bazanova, Natalia; Chirkova, Larissa; Zhang, Dabing; Shavrukov, Yuri; Stepanenko, Anton; Tricker, Penny; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy; Borisjuk, Nikolai

    2018-05-14

    Transcription factors regulate multiple networks, mediating the responses of organisms to stresses, including drought. Here we investigated the role of the wheat transcription factor TaSHN1 in crop growth and drought tolerance. TaSHN1, isolated from bread wheat, was characterised for molecular interactions and functionality. The overexpression of TaSHN1 in wheat was followed by the evaluation of T 2 and T 3 transgenic lines for drought tolerance, growth and yield components. Leaf surface changes were analysed by light microscopy, SEM, TEM and GC-MS/GC-FID. TaSHN1 behaves as a transcriptional activator in a yeast transactivation assay and binds stress-related DNA cis-elements, determinants of which were revealed using 3D molecular modelling. The overexpression of TaSHN1 in transgenic wheat did not result in a yield penalty under the controlled plant growth conditions of a glasshouse. Transgenic lines had significantly lower stomatal density and leaf water loss, and exhibited improved recovery after severe drought, compared to control plants. The comparative analysis of cuticular waxes revealed an increased accumulation of alkanes in leaves of transgenic lines. Our data demonstrate that TaSHN1 may operate as a positive modulator of drought stress tolerance. Positive attributes could be mediated through an enhanced accumulation of alkanes and reduced stomatal density. This article is protected by copyright. All rights reserved.

  8. Effects of replacing wheat bran by pistachio skins on feed intake, nutrient digestibility, milk yield, milk composition and blood metabolites of dairy Saanen goats.

    Science.gov (United States)

    Naserian, A A; Staples, C R; Ghaffari, M H

    2016-04-01

    The objective of this study was to investigate the effect of pistachio skins (PiS) as a replacement of wheat bran on feed intake, nutrient digestibility, milk yield, milk composition and blood metabolites of dairy Saanen goats. Eight multiparous lactating Saanen goats (55 ± 7.2 days post-partum, 45 ± 2 kg body weight) were randomly assigned to one of the four dietary treatments arranged in a replicated 4 × 4 Latin square design. The dietary treatments were 1) 0 g/kg PiS and 210 g/kg wheat bran in the TMR (0PiS), 2) 70 g/kg PiS and 140 g/kg wheat bran in the TMR (7PiS), 3) 140 g/kg PiS and 70 g/kg wheat bran in the TMR (14PiS) and 4) 210 g/kg PiS and 0 g/kg wheat bran in the TMR (21PiS). The trial consisted of four 21-day periods, each composed of 14 days adaptation and 7 days data collection. Dry matter intake (p < 0.05) and crude protein digestibility (p < 0.01) increased linearly with increasing PiS proportions in the diet. Increasing the proportion of PiS in the diet caused a quadratic increase in apparent digestibility of dry matter (p < 0.05), and tended (p = 0.05) to increase quadratically organic matter, and ether extract digestibility. Replacing wheat bran with PiS in the diet had no effects on milk yield, whereas milk fat concentration increased linearly (p < 0.01) with increasing inclusion of PiS in the diet. As the dietary proportion of PiS increased, ruminal pH tended (p = 0.07) to increase linearly, whereas ammonia-N concentration declined in the rumen. Plasma concentrations of glucose and BUN remained unaffected, whereas triglycerides (p < 0.05) and cholesterol (p < 0.01) concentrations increased linearly with increasing inclusion of PiS in the diet. It was concluded that PiS based on local ingredients can successfully replace wheat bran in diets of dairy goats without detrimental effects on feed intake, nutrient digestibility and milk production. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell

  9. Effects of Row Spacing and Plant Density on Yield and Yield Components of Sweet Corn in Climatic Conditions of Isfahan

    Directory of Open Access Journals (Sweden)

    N. Khodaeian

    2013-06-01

    Full Text Available To evaluate the effects of row spacing and plant density on yield and yield components of sweet corn, variety KSC403, an experiment was conducted in Research Farm of Isfahan University of Technology, Isfahan, Iran, in 2007, as randomized complete block design with a split-plot layout and three replications. The main plots were allocated to two row spacing (60 and 75 cm and the sub-plots accommodated four levels of plant density (50000, 70000, 90000 and 110000 plants per ha. There was significant increase in leaf area index, shoot dry weight, 100-grain fresh weight and grain fresh yield, as row width was decreased from 75 to 60 cm but the plant height was decreased. There was no significant effect of row spacing on number of rows per ear, number of grains per row and number of grains per ear. Plant height, leaf area index, shoot dry weight per m2 and number of ears per m2 were increased with an increase in plant density. The number of rows per ear, number of grains per row, number of grains per ear, 100-grain fresh weight and grain fresh yield were significantly higher under plant densities of 90000 and 110000 as compared to 50000 and 70000 plants per ha. There was significant interaction between row spacing and plant density for leaf area index, shoot dry weight, number of grains per ear, 100-grain fresh weight and grain fresh yield. Under all plant densities, the grain fresh yield was higher in 60-cm row width compared to 70-cm row width. However, the difference between these two row spacing was not significant in plant densities of 50000 and 110000 plants per ha. The highest grain fresh yield (33940 kg/ha was achieved under row spacing 60 cm and 70000 plants per ha and the least grain fresh yield (20750 kg/ha was obtained in under 75 cm row width and 110000 plants per ha. Considering the obtained results of this experiment, to have maximum grain fresh yield of sweet corn under Isfahan climate, the row spacing of 60 cm and plant density of

  10. RE-evolution of durum wheat by restoring the hardness locus

    Science.gov (United States)

    Durum wheat is an important crop worldwide. In many areas, durum wheat appears to have competitive yield and biotic and abiotic advantages over bread wheat. What limits durum production? In one respect, the comparatively more limited processing and food functionality. Two traits directly relate to t...

  11. Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage

    Directory of Open Access Journals (Sweden)

    Iduna Arduini

    2016-06-01

    Full Text Available Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (Triticum durum Desf., bread wheat (T. aestivum L. and barley (Hordeum vulgare L. were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley >durum wheat >bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.

  12. Distribution of genes associated with yield potential and water ...

    Indian Academy of Sciences (India)

    Supplementary data: Distribution of genes associated with yield potential and water-saving in. Chinese Zone II wheat detected by developed functional markers. Zhenxian Gao, Zhanliang Shi, Aimin Zhang and Jinkao Guo. J. Genet. 94, 35–42. Table 1. Functional markers for high-yield or water-saving genes in wheat and ...

  13. Effect of Selenium and Application Methods of Urea Top-dress on Yield and its Components and Quality Traits of Wheat under Rainfed Conditions

    Directory of Open Access Journals (Sweden)

    M Konani

    2018-02-01

    Full Text Available Introduction Wheat (Triticum aestivum L. is the greatest nourishment for most of world’s population. In many lands of Iran, water is not enough for irrigation and also the most regions of country have arid and semi-arid climate. Water deficit is an important stressful factor for plant growth and crop productivity. Nitrogen is main component of proteins and enzymes. It is essential in all of the plant growth stages. Application of nitrogen is essential for retard leaf senescence, maintenance of photosynthetic leaf during grain filling period and increasing grain protein. The time and method of nitrogen fertilizer application are effective on grain yield. The reported that maximum of grain yield recorded when that nitrogen fertilizer was applied at sowing time along with foliar application at the tillering stage. In higher plants, the role of selenium is still unclear. Selenium can increase the tolerance of plants to induced oxidative stress include drought, salinity, high temperature. Selenium increases the tolerance of plants by transpiration or osmotic potential under water deficit. The current paper studies the influence of selenium and application methods of urea top-dress under rainfed conditions in order to promote improved drought stress tolerance and increase the quantity and quality of wheat. Materials and Methods In order to study the effect of selenium and application methods of urea top-dress on yield, yield components and quality traits of wheat under rainfed conditions, an experiment was conducted at Ashianeh-ye Sofla village, Khomeyn County, Markazi Province during 2012- 2013 growing season. This experiment was carried out as split plot based on randomized complete block design with four replicates. Experimental factors were included application methods of urea fertilizer in four levels (without application of fertilizer (control, application of 60 kg ha-1 at the tillering stage, application of 30 kg ha-1 at the tillering stage

  14. The impacts of surface ozone pollution on winter wheat productivity in China – An econometric approach

    International Nuclear Information System (INIS)

    Yi, Fujin; Jiang, Fei; Zhong, Funing; Zhou, Xun; Ding, Aijun

    2016-01-01

    The impact of surface ozone pollution on winter wheat yield is empirically estimated by considering socio-economic and weather determinants. This research is the first to use an economic framework to estimate the ozone impact, and a unique county-level panel is employed to examine the impact of the increasing surface ozone concentration on the productivity of winter wheat in China. In general, the increment of surface ozone concentration during the ozone-sensitive period of winter wheat is determined to be harmful to its yield, and a conservative reduction of ozone pollution could significantly increase China's wheat supply. - Highlights: • We examine the impacts of the surface ozone exposure on winter wheat yield in China. • An econometric method is used to measure the ozone impacts. • The results conclude that surface ozone is harmful to winter wheat yield in China. • We confirm that stress conditions such as drought and air particles can mitigate the adverse effect of ozone. - Surface ozone pollution is harmful to winter wheat yield in China by considering socio-economic determinants, weather, and other stress conditions like drought and air particles.

  15. Rain-induced spring wheat harvest losses

    Science.gov (United States)

    Bauer, A.; Black, A. L. (Principal Investigator)

    1983-01-01

    When rain or a combination of rain and high humidity delay wheat harvest, losses can occur in grain yield and/or grain quality. Yield losses can result from shattering, from reduction in test weight, and in the case of windrowed grain, from rooting of sprouting grain at the soil: windrow contact. Losses in grain quality can result from reduction in test weight and from sprouting. Sprouting causes a degradation of grain proteins and starches, hence flour quality is reduced, and the grain price deteriorates to the value of feed grain. Although losses in grain yield and quality are rain-induced, these losses do not necessarily occur because a standing or windrowed crop is wetted by rain. Spike water concentration in hard red spring wheat must be increased to about 45-49% before sprouting is initiated in grain that has overcome dormancy. The time required to overcome this dormancy after the cultivar has dried to 12 to 14% water concentration differs with hard red spring cultivars. The effect of rain on threshing-ready standing and windrowed hard red spring wheat grain yeild and quality was evaluated. A goal was to develop the capability to forecast the extent of expected loss of grain yield and quality from specific climatic events that delay threshing.

  16. IPR 118 - Bread wheat cultivar

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Riede

    2007-01-01

    Full Text Available Wheat cultivar IPR 118 developed by IAPAR has a good yield potential and is widely adapted. It is earlymaturing and moderately tolerant to shattering and soil aluminum, moderately resistant to leaf rust and presents high glutenstrength for bread-making. The overall yield exceeded controls by 13%.

  17. Improving the precision of genotype selection in wheat performance trials

    Directory of Open Access Journals (Sweden)

    Giovani Benin

    2013-12-01

    Full Text Available The aim of this study was to verify whether using the Papadakis method improves model assumptions and experimental accuracy in field trials used to determine grain yield for wheat lineages indifferent Value for Cultivation and Use (VCU regions. Grain yield data from 572 field trials at 31 locations in the VCU Regions 1, 2, 3 and 4 in 2007-2011 were used. Each trial was run with and without the use of the Papadakis method. The Papadakis method improved the indices of experimental precision measures and reduced the number of experimental repetitions required to predict grain yield performance among the wheat genotypes. There were differences among the wheat adaptation regions in terms of the efficiency of the Papadakis method, the adjustment coefficient of the genotype averages and the increases in the selective accuracy of grain yield.

  18. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions.

    Science.gov (United States)

    Zahir, Zahir Ahmad; Ghani, Usman; Naveed, Muhammad; Nadeem, Sajid Mahmood; Asghar, Hafiz Naeem

    2009-05-01

    Ethylene synthesis is accelerated in response to various environmental stresses like salinity. Ten rhizobacterial strains isolated from wheat rhizosphere taken from different salt affected areas were screened for growth promotion of wheat under axenic conditions at 1, 5, 10 and 15 dS m(-1). Three strains, i.e., Pseudomonas putida (N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) showing promising performance under axenic conditions were selected for a pot trial at 1.63 (original), 5, 10 and 15 dS m(-1). Results showed that inoculation was effective even in the presence of higher salinity levels. P. putida was the most efficient strain compared to the other strains and significantly increased the plant height, root length, grain yield, 100-grain weight and straw yield up to 52, 60, 76, 19 and 67%, respectively, over uninoculated control at 15 dS m(-1). Similarly, chlorophyll content and K(+)/Na(+) of leaves also increased by P. putida over control. It is highly likely that under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of these microbial strains might have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of ethylene. The results suggested that these strains could be employed for salinity tolerance in wheat; however, P. putida may have better prospects in stress alleviation/reduction.

  19. Climate Change and Rainfed Wheat Production in Iran

    OpenAIRE

    A Koocheki; GH kamali

    2011-01-01

    Abstract This research was conducted to evaluate the impacts of climate change on rainfed wheat growth and yield at country level. Weather data generated by a General Circulation model based on the ICCP scenarios for the target years of 2025 and 2050. Daily weather data including minimum and maximum temperatures, precipitation and radiation were used as the inputs of a growth simulation model for rainfed after calibration and validation for predicting wheat yield under current climatic con...

  20. Breeding of new variety Yangfumai 4 with high resistance to wheat yellow mosaic disease

    International Nuclear Information System (INIS)

    He Zhentian; Chen Xiulan; Zhang Rong; Wang Jianhua; Wang Jinrong; Liu Jian

    2011-01-01

    To control the infection of wheat yellow mosaic disease,new wheat variety with high-yield, disease-resistant was selected. Ningmai 9, which carries yellow mosaic disease resistant genes, was used as original material. Combination of conventional breeding technique and radiation methods, a new wheat variety Yangfumai 4 was developed during 1996-2007, and registered in 2008. The new wheat variety with high yield and resistance to yellow mosaic disease is suitable to plant in the Yangtze River region. (authors)

  1. Khorasan wheat population researching (Triticum turgidum, ssp. Turanicum (McKey in the minimum tillage conditions

    Directory of Open Access Journals (Sweden)

    Ikanović Jela

    2014-01-01

    Full Text Available Khorasan wheat occupies a special place in the group of new-old cereals (Triticum turgidum, ssp. Turanicum McKey. It is an ancient species, native to eastern Persia, that is very close to durum wheat by morphological characteristics. Investigations were carried out in agro ecological conditions of the eastern Srem, with two wheat populations with dark and bright awns as objects of study. The following morphological and productive characteristics were investigated: plant height (PH, spike length (SH, number of spikelets per spike (NSS, absolute weight (AW and grain weight per spike (GW, seed germination (G and grains yield (YG. Field micro-experiments were set on the carbonate chernozem soil type on loess plateau in 2011 and 2012. Hand wheat sowing was conducted in early March with drill row spacing of 12 cm. The experiment was established as complete randomized block system with four replications. Tending crops measures were not applied during the growing season. Plants were grown without usage of NPK mineral nutrients. Chemical crop protection measures were not applied, although powdery mildew (Erysiphe graminis was appeared before plants spike formation in a small extent. The results showed that both populations have a genetic yield potential. In general, both populations manifested a satisfactory tolerance on lodging and there was no seed dispersal. Plants from bright awns population were higher, had longer spikes and larger number of spikelet’s per spike. However, plants from dark awns population had higher absolute weight and grains weight per spike, as well as grain yield per plant. Strong correlation connections were identified among the investigated characteristics. The determination of correlations, as well as direct and indirect affects, enabled easier understanding of the mutual relationships and their balancing in order to improve the yield per unit area. [Projekat Ministarstva nauke Republike Srbije, br. TR 31078 i br. TR 31022

  2. Kennedy Space Center Spaceport Analysis

    Science.gov (United States)

    Wary, Samantha A.

    2013-01-01

    Until the Shuttle Atlantis' final landing on July 21, 2011, Kennedy Space Center (KSC) served as NASA's main spaceport, which is a launch and landing facility for rockets and spacecraft that are attempting to enter orbit. Many of the facilities at KSC were created to assist the Shuttle Program. One of the most important and used facilities is the Shuttle Landing Facility (SLF), This was the main landing area for the return of the shuttle after her mission in space. · However, the SLF has also been used for a number of other projects including straight-line testing by Gibbs Racing, weather data collection by NOAA, and an airfield for the KSC helicopters. This runway is three miles long with control tower at midfield and a fire department located at the end in care of an emergency. This facility, which was part of the great space race, will continue to be used for historical events as Kennedy begins to commercialize its facilities. KSC continues to be an important spaceport to the government, and it will transform into an important spaceport for the commercial industry as well. During my internship at KSC's Center Planning and Development Directorate, I had the opportunity to be a part of the negotiation team working on the agreement for Space Florida to control the Shuttle Landing Facility. This gave me the opportunity to learn about all the changes that are occurring here at Kennedy Space Center. Through various meetings, I discovered the Master Plan and its focus is to transform the existing facilities that were primarily used for the Shuttle Program, to support government operations and commercial flights in the future. This. idea is also in a new strategic business plan and completion of a space industry market analysis. All of these different documentations were brought to my attention and I. saw how they came together in the discussions of transitioning the SLF to a commercial operator, Space Florida. After attending meetings and partaking in discussions for

  3. Phenological Variation and its Relation with Yield in several Wheat (Triticum aestivum L. Cultivars under Normal and Late Sowing Mediated Heat Stress Condition

    Directory of Open Access Journals (Sweden)

    Kamrun NAHAR

    2010-09-01

    Full Text Available Phenological performance in relation to yield of five modern varieties of wheat �Sourav�, �Pradip�, �Sufi�, �Shatabdi� and �Bijoy� were evaluated under two growing environments; one is normal growing environment (sowing at November 30 and the other is post anthesis heat stressed environment (sowing at December 30. In case of late seeding, the varieties phased a significant level of high temperature stress that also significantly affected the required days to germination, booting, anthesis, maturity of all varieties including the yield as compared to normal sowing treatment. The temperature during the grain filling or grain maturing period was near 23�C in case of normal seeding and it was near about 28�C to 30�C and sometimes reached above this range in the later period of late seeded treatment. In the normal sowing treatment the germination period was lower than the late sowing treatment as during that time the temperature was higher as compared to late sowing condition where temperature was lower. Days to anthesis and booting decreased due to late sown heat stress condition regardless the cultivars. These phenological characteristics under heat stressed condition led the wheat cultivars to significantly lower the grain yield as compared to normal condition. Due to heat stress, the yield reduction was 69.53% in �Sourav�, 58.41% in �Pradip�, 73.01% in �Sufi�, 55.46% in �Shatabdi� and 53.42% in �Bijoy�.

  4. Dryland wheat domestication changed the development of aboveground architecture for a well-structured canopy.

    Directory of Open Access Journals (Sweden)

    Pu-Fang Li

    Full Text Available We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUE(i. Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate.

  5. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    Science.gov (United States)

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  6. Crop Nitrogen Uptake in A Legume-wheat Rotation Using1'5N Methodology

    International Nuclear Information System (INIS)

    Badarneh, D.

    2005-01-01

    Afield experiment was conducted to assess the impact of residual N from legume crops, fertilizer applied N, and fallow on the subsequent wheat production. The experiment was carried out in a randomized complex block design for the years 1993 and 1994. In 1993, barley was planted as a reference crop in legume plots. Micro plots, in both years were treated with 15 N. In 1994, whole plots were planted with wheat. In 1993, the yield of lentil treatments was not significantly different. The wheat yield, responded significantly to N addition. Lentil and chickpea derived 2/3 and 3/4 of their N needs from the atmosphere, respectively. In contrast, wheat derived most of its N needs(90%) from the soil. Water consumption was similar expect for wheat fertilized at low rate of N (179.5 mm). In 1994, wheat yields, the harvesting index and water consumption were not significantly different. Traditional harvesting of lentil and fertilizing wheat at a low rate reduced significantly the N% of wheat bio-mass. The % of N derived from fertilizer (Ndff) by wheat was much higher in 1994 (4.18 to 9.24%), but it was 3.62% for the fallow treatments. The % of N derived from soil (%Ndfs) by wheat 93% in 1994 for wheat planted after legume. The results indicated that legumes depleted soil N under the croping system currently adopted in Jordan, and the benefit of fallow to the subsequent wheat crop is attributed to the increase of soil organic N mineralization. (Author) 35 refs., 3 tabs., 2 figs

  7. Supplemental exogenous NPK application alters biochemical processes to improve yield and drought tolerance in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Shabbir, Rana Nauman; Waraich, E A; Ali, H; Nawaz, F; Ashraf, M Y; Ahmad, R; Awan, M I; Ahmad, S; Irfan, M; Hussain, S; Ahmad, Z

    2016-02-01

    The recent food security issues, combined with the threats from climate change, demand future farming systems to be more precise and accurate to fulfill the ever increasing global food requirements. The role of nutrients such as nitrogen (N), phosphorous (P), and potassium (K) in stimulating plant growth and development is well established; however, little is known about their function, if applied in combination, in improving crop yields under environmental stresses like drought. The aim of this study was to evaluate the effects of combined foliar spray of supplemental NPK (NPKc) on physiological and biochemical mechanisms that enhance the drought tolerance potential of wheat for improved yield. Foliar NPKc markedly influenced the accumulation of osmoprotectants and activity of both nitrogen assimilation and antioxidant enzymes. It significantly improved the concentration of proline (66 %), total soluble sugars (37 %), and total soluble proteins (10 %) and enhanced the activity of nitrate reductase, nitrite reductase, catalase, and peroxidase by 47, 45, 19, and 8 %, respectively, with respect to no spray under water-deficit conditions which, in turn, improve the yield and yield components. The accumulation of osmolytes and activity of antioxidant machinery were more pronounced in drought tolerant (Bhakkar-02) than sensitive genotype (Shafaq-06).

  8. SEWAGE SLUDGE EFFECTS ON POTATO, WINTER WHEAT AND MAIZE YIELD CULTIVATED IN ROTATION, AND SOIL PROPERTY MODIFICATION

    Directory of Open Access Journals (Sweden)

    Gh. Lixandru

    2005-10-01

    Full Text Available The objective of this study was to evaluate the effectiveness of sewage sludge as phosphorus and nitrogen amendment for cambic chernozem soils in comparison with inorganic fertilizers (NH4NO3 and KCl. The experiment reported here were conducted during 10 years in two rotation: 1 potato – winter wheat – maize, and 2 maize – potato – winter wheat. Sewage sludge rates applied in potato was 65, 130 and 195 t/ha respectively, and in maize 30, 60 and 90 t/ha, sewage sludge rates applied alone or in combination with N and K as mineral fertilizers. The results led to the following conclusions: 1 The air-dried sewage sludge from plot Iaşi contained about 200 kg organic matter, 6 kg N, 8 kg P, 2 kg K, 30 kg Ca and 10 kg soluble salts in 1000 kg. The heavy metals content was under the maximum limits allowable, excepting Zn which was found between 4140 and 5378 ppm Zn. 2 At potato crops resulted in an yield increase of 100 kg tubers for one ton sewage sludge in case of rate of 65 t/ha, at higher rates the yield increase being lower. Annual rainfall had a significant influence on yield increase. 3 The nitrogen utilization from sewage sludge was of 8.5 % at a rate of 65 t/ha and 2.5 % at a rate of 195 t/ha. From 100 kg N as mineral fertilizer, potato used 30 % and produced 60 kg tubers/1 kg N applied in soil. The yield increase at 1 kg N from sewage sludge was of 17 kg tubers at a rate of 65 t/ha. Therefore, the nitrogen efficiency from mineral fertilizer was about three times higher compared to N from sewage sludge. 4 Applied in maize crop, resulted an yield increase of 23.2 kg grains for 1 ton sewage sludge at a rate of 30 t/ha and only 13.2 kg/1 t at a rates 90 t/ha. By comparing to manure, the yield increased was lower. The nitrogen utilization from sewage sludge by maize was of 11 % at 3o t/ha and 6.6 % at 90 t/ha. From mineral fertilizer, maize used 25.9 % of 100 kg N/ha. 5 Residual effect of sewage sludge in second year in wheat crop was of 7

  9. Source/ sink interactions underpin crop yield: the case for trehalose 6-phosphate/ SnRK1 in improvement of wheat

    Directory of Open Access Journals (Sweden)

    Matthew ePaul

    2014-08-01

    Full Text Available Considerable interest has been evoked by the analysis of the regulatory pathway in carbohydrate metabolism and cell growth involving trehalose (TRE. TRE is at small concentrations in mesophytes such as Triticum aestivum. Studies of TRE metabolism, and genetic modification of it, have shown a very wide and important role of the pathway in regulation of many processes in development, growth and photosynthesis. It has now been established that trehalose 6-phosphate (T6P, is formed from glucose-6-phosphate and UDP-glucose, derived from sucrose, by the action of trehalose phosphate synthase (TPS and broken down by trehalose-6-phosphate phosphatase (TPP providing for subtle regulation. The concentration of T6P increases with sucrose concentration. Many of the effects of T6P on metabolism and growth occur via the interaction of T6P with the SnRK1 protein kinase system. A large concentration of sucrose increases T6P and thereby inhibits SnRK1, so stimulating growth of cells and their metabolism. The T6P/SnRK1 mechanism offers an important new view of how the distribution of assimilates to organs, such as developing cereal grains, is achieved. Changing T6P concentrations by genetically modifying TPS and TPP has altered photosynthesis, sugar metabolism, growth and development which affect responses to, and recovery from, environmental factors. This review briefly summarizes the factors determining, and limiting, yield of wheat, particularly mass/grain which is highly conserved. The interactions between the source and sink relations are addressed together with how T6P/SnRK1 might function to determine grain number, size, and yield. The possibility of how these might be increased by modifying trehalose metabolism is considered. Cereal yields globally are not increasing and careful targeting of T6P may offer a way of optimizing grain growth and thus increasing yield in wheat.

  10. Impact of future climate change on wheat production in relation to plant-available water capacity in a semiaridenvironment

    Science.gov (United States)

    Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; Zuo, Heping; Yang, Yonghui

    2014-02-01

    Conceptions encompassing climate change are irreversible rise of atmospheric carbon dioxide (CO2) concentration, increased temperature, and changes in rainfall both in spatial- and temporal-scales worldwide. This will have a major impact on wheat production, particularly if crops are frequently exposed to a sequence, frequency, and intensity of specific weather events like high temperature during growth period. However, the process of wheat response to climate change is complex and compounded by interactions among atmospheric CO2 concentration, climate variables, soil, nutrition, and agronomic management. In this study, we use the Agricultural Production Systems sIMulator (APSIM)-wheat model, driven by statistically downscaled climate projections of 18 global circulation models (GCMs) under the 2007 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 CO2 emission scenario to examine impact on future wheat yields across key wheat growing regions considering different soil types in New South Wales (NSW) of Australia. The response of wheat yield, yield components, and phenology vary across sites and soil types, but yield is closely related to plant available water capacity (PAWC). Results show a decreasing yield trend during the period of 2021-2040 compared to the baseline period of 1961-1990. Across different wheat-growing regions in NSW, grain yield difference in the future period (2021-2040) over the baseline (1961-1990) varies from +3.4 to -14.7 %, and in most sites, grain number is decreased, while grain size is increased in future climate. Reduction of wheat yield is mainly due to shorter growth duration, where average flowering and maturing time are advanced by an average of 11 and 12 days, respectively. In general, larger negative impacts of climate change are exhibited in those sites with higher PAWC. Current wheat cultivars with shorter growing season properties are viable in the future climate, but breading for

  11. INDUCED GENETIC VARIABILITY AND SELECTION FOR HIGH YIELDING MUTANTS IN BREAD WHEAT(TRITICUM AESTIVUM L.)

    International Nuclear Information System (INIS)

    SOBIEH, S.EL-S.S.

    2007-01-01

    This study was conducted during the two winter seasons of 2004/2005 and 2005/2006 at the experimental farm belonging to Plant Research Department, Nuclear Research Centre, AEA, Egypt.The aim of this study is to determine the effect of gamma rays(150, 200 and 250 Gy) on means of yield and its attributes for exotic wheat variety (vir-25) and induction of genetic variability that permits to perform visual selection through the irradiated populations, as well as to determine difference in seed protein patterns between vir-25 parent variety and some selectants in M2 generation.The results showed that the different doses of gamma rays had non-significant effect on mean value of yield/plant and significant effect on mean values of it's attributes. 0n the other hand, the considered genetic variability was generated as result of applying gamma irradiation. The highest amount of induced genetic variability was detected for number of grains/ spike, spike length and number of spikes/plant. Additionally, these three traits exhibited strong association with grain yield/plant, hence, they were used as a criterion for selection.Some variant plants were selected from radiation treatment 250 Gy, with 2-10 spikes per plant.These variant plants exhibited increasing in spike length and number of gains/spike.The results also revealed that protein electrophoresis were varied in the number and position of bands from genotype to another and various genotypes share bands with molecular weights 31.4 and 3.2 KD.Many bands were found to be specific for the genotype and the nine wheat mutants were characterized by the presence of bands of molecular weights: 151.9, 125.7, 14.1 and 5.7 KD at M-167.4, 21.7 and 8.2 at M-299.7 KD at M-3136.1, 97.6, 49.8, 27.9 and 20.6 KD at M-4 135.2, 95.3 and 28.1 KD at M-5 135.5, 67.7, 47.1, 32.3, 21.9 and 9.6 KD at M-6 126.1, 112.1, 103.3, 58.8, 20.9 and 12.1 KD at M-7 127.7, 116.6, 93.9, 55.0 and 47.4 KD at M-8 141.7, 96.1, 79.8, 68.9, 42.1, 32.7, 22.0 and 13

  12. Effects of allelopathic chemicals extracted from various plant leaves on weed control and wheat crop productivity

    International Nuclear Information System (INIS)

    Khan, E.A.; Khakwani, A.A.; Ghazanfarullah, A.

    2015-01-01

    A study on allelopathic effect of leaf water extracts of Eucalyptus, Acacia, Sorghum, Shishum, Sunflower, Poplar, Tobacco and Congress grass on weeds control and growth of wheat cv. Hashim-8 was conducted at Faculty of Agriculture, Gomal University, Dera Ismail Khan during 2012-2013. The findings of this study revealed that allelopathic chemicals in leaf water extracts of these plants significantly suppressed weeds growth by reducing weed density, fresh and dry weed biomass, and encouraged wheat yield and yield components such as days to 50% heading, plant height, tillers m-2, grain spike-1, 1000-gain weight, biological and grain yield. Even though minimum fresh and dry weed biomass and highest wheat grain yield and yield related components were observed in twice hand weeding treatment which is economically less feasible on large scale. However, our findings showed an alternative allelopathic technique to minimize weed infestation and boost wheat growth and yield using natural plant material. On the basis of present results, it is recommended that leaf water extracts of Sorghum, Sunflower and Congress grass can be applied twice (30 and 60 DAS) during the growing season to control weeds and to enhance wheat grain yield. (author)

  13. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    Science.gov (United States)

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Intercropping of wheat and pea as influenced by nitrogen fertilization

    DEFF Research Database (Denmark)

    Ghaley, B.B.; Hauggaard-Nielsen, Henrik; Jensen, Henning Høgh

    2005-01-01

    The effect of sole and intercropping of field pea (Pisum sativum L.) and spring wheat (Triticum aestivum L.) on crop yield, fertilizer and soil nitrogen (N) use was tested on a sandy loam soil at three levels of urea fertilizer N (0, 4 and 8 g N m−2) applied at sowing. The 15N enrichment and natu...... with lower soil N levels, and vice versa for wheat, paving way for future option to reduce N inputs and negative environmental impacts of agricultural crop production......., grain N concentration, the proportion of N derived from symbiotic N2 fixation, and soil N accumulation. With increasing fertilizer N supply, intercropped and sole cropped wheat responded with increased yield, grain N yield and soil N accumulation, whereas the opposite was the case for pea. Fertilizer N...

  15. Pea yield and its components in different crop rotations

    OpenAIRE

    Seibutis, Vytautas; Deveikytė, Irena

    2006-01-01

    The effects of the crop rotations (2-4 course) differing in duration on the formation of pea productivity elements and the yield were investigated in stationary field experiments in Dotnuva during 1997-2004. Averaged experimental data showed that the highest pea yield (3.70 t ha-1) was recorded in the three-course crop rotation (sugar beet-spring barley-pea), in the four-course (pea-winter wheat-sugar beet-spring barley) and two-course (pea-winter wheat) crop rotations the grain yield consist...

  16. Changes in carbon and nitrogen allocation, growth and grain yield induced by arbuscular mycorrhizal fungi in wheat (Triticum aestivum L.) subjected to a period of water deficit

    DEFF Research Database (Denmark)

    Zhou, Qin; Ravnskov, Sabine; Jiang, Dong

    2015-01-01

    Drought is a major abiotic factor limiting agricultural crop production. One of the effective ways to increase drought resistance in plants could be to optimize the exploitation of symbiosis with arbuscular mycorrhizal fungi (AMF). Hypothesizing that alleviation of water deficits by AMF in wheat...... will help maintain photosynthetic carbon-use, we studied the role of AMF on gas-exchange, light-use efficiencies, carbon/nitrogen ratios and growth and yield parameters in the contrasting wheat (Triticum aestivum L.) cultivars ‘Vinjett’ and ‘1110’ grown with/without AMF symbiosis. Water deficits applied...... at the floret initiation stage significantly decreased rates of photosynthetic carbon gain, transpiration and stomatal conductance in the two wheat cultivars. AMF increased the rates of photosynthesis, transpiration and stomatal conductance under drought conditions. Water deficits decreased electron transport...

  17. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    Directory of Open Access Journals (Sweden)

    Harsh Chauhan

    Full Text Available Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  18. Winter wheat response to irrigation, nitrogen fertilization, and cold hazards in the Community Land Model 5

    Science.gov (United States)

    Lu, Y.

    2017-12-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.

  19. Nitrate reductase and photosynthetic activities of wheat and their relationship with plant productivity under soil water deficit conditions (abstract)

    International Nuclear Information System (INIS)

    Ashraf, M.Y.; Sarwar, G.; Hussain, F.

    2005-01-01

    Experiments were conducted in lysimeters with wheat during two consecutive years. The first year experiment comprised of eight wheat genotypes with four water stress treatments, i.e. normal irrigation, pre-anthesis drought, post-anthesis drought and terminal drought, with four replications. The results showed that yield and yield parameters reduced with the severity of drought in all wheat lines. However, wheat lines Chakwal-86, DS-4 and Barani-83 had comparatively higher yield and yield components than others. The maximum reduction in all parameters was under terminal drought. The difference between pre- and post-anthesis drought was nonsignificant, particularly for grain yield. The second experiment was conducted with four wheat lines: two were tolerant (Chakwal-86 and DS-4) and two susceptible (Pavon and DS-17) under similar environments with same treatments to study the photosynthetic efficiency, nitrogen metabolism and their relationship with plant productivity (yield). The results showed that leaf area, transpiration, dry matter accumulation and nitrate reductase activity were reduced while diffusive resistance and total amino acids increased in all the wheat lines under water deficit conditions. The relationship between yield and leaf area, transpiration, dry matter accumulation and nitrate reductase activity was positive. The overall results showed that wheat lines Chakwal-86 and DS-4 showed better performance than others. (author)

  20. Influence of Inter-Intra Row Spacing on Yield Losses of Tomato ...

    African Journals Online (AJOL)

    Data on major yield loss agents such as, blossom end rot, decay, insect, disease, sunburn, crack, catface and others minor disorders were collected; as well as total yield, percent of marketable and unmarketable fruit yield parameters were analyzed. Results of the study showed that inter-intra row spacing and cultivar had a ...

  1. Effect of Early Foliar Disease Control on Wheat Scab Severity (Fusarium graminearum in Argentina

    Directory of Open Access Journals (Sweden)

    Jorge David Mantecón

    2013-01-01

    Full Text Available Wheat scab is common in Argentina mainly durum wheat and some bread varieties. The epidemics occur every 5 to 7 years. During the 2007, 2008, and 2009 growing seasons, three trials were conducted at the INTA Balcarce Experimental Station. Each plot had six rows of 5 m long, spaced 0.15 m apart and was set up in a randomized complete block design with four replications. Trifloxystrobin plus cyproconazole was sprayed at Z3.1 stage. Treatments were sprayed at Z6.1 stage with tebuconazole, prochloraz, and metconazole to improve scab control. Artificial inoculations were made in Z6.1. Severity of Septoria leaf bloth and leaf rust was assessed in boot stage (Z3.9. Scab severity was rated at early dough stage (Z8.3. Yields were recorded each year. Fungicide only applied at Z3.1 stage did not reduce field scab severity but reduced the seeds infection and increased the yields. Early fungicide spray produced yield increase at about 22% and a decrease in seed infection of up to 40%. Yields increased in a 55.3% and in a 19.6% when compared with the inoculated and not inoculated check, respectively. The purpose of this study was to evaluate the effect of foliar disease control on scab, crop yield, and seed health.

  2. Networking at NASA. Johnson Space Center

    Science.gov (United States)

    Garman, John R.

    1991-01-01

    A series of viewgraphs on computer networks at the Johnson Space Center (JSC) are given. Topics covered include information resource management (IRM) at JSC, the IRM budget by NASA center, networks evolution, networking as a strategic tool, the Information Services Directorate charter, and SSC network requirements, challenges, and status.

  3. OPPORTUNITIES TO USE PEA - WHEAT MIXES IN ORGANIC FARMING

    Directory of Open Access Journals (Sweden)

    Grigori Ivanov

    2015-12-01

    Full Text Available This article presented the results of productivity and quality of the green mass of pea-wheat mixes grown in conditions of organic farming. Are explored 5 wheat varieties - Sadovo 1, Geia 1, Guinness, Farmer, Liusil and 4 varieties of winter peas -Mir, Vesela, №11, L12AB, at different ratio between them - 50:50 and 30:70%. The selection of varieties is made based on previous studies of their complex characteristics – ripening, yield, chemistry (Angelova S., T.Georgieva, M.Sabeva, 2011. Setting up and raising the experimental mixture of seeds has been made in a medium free of organic and mineral fertilizers. We have studied the changes in green mass yield and the biochemistry of surface biomass. The cultivation of pea–wheat mixtures under conditions of organic farming leads to increased yields of green mass in comparison with the self-seeding of wheat and peas. According to the results obtained at early ripening and the highest crude protein content average of three years is the mixture Sadovo1–Mir 30:70%. The most productive is the mixture Sadovo1-Mir 50-50%.

  4. Genetic improvement of drought tolerance in semi-dwarf wheat

    International Nuclear Information System (INIS)

    Sial, M.A.; Laghari, K.A.

    2012-01-01

    Water stress is one of the main environmental constraints for the wheat crop. Drought stress from anthesis to maturity, especially if accompanied by heat stress, affects every morphological and physiological aspect of wheat plant and significantly reduces final yield. Genetic improvement for drought tolerance in wheat could be possible through conventional and mutation breeding tools. There is a dire need to identify stress tolerant genotypes which can grow and flourish well under harsh environments (low water requirements). Twelve newly evolved bread wheat genotypes alongwith 3 drought-tolerant commercial check varieties, viz., Sarsabz, Khirman and Chakwal-86 were screened under three water stresses (zero, single and two irrigations). Different yield associated traits were studied. At severe water stress (zero irrigation), six genotypes (BWM-3, NIA-8/7, NIA-9/5, NIA-28/4, NIA-25/5, MSH-36) produced significantly higher grain yield (ranged from 1522 to 2022 kg/ha) than check varieties. These genotypes had higher seed index and less spike sterility at severe stress, which indicated that these genotypes were less responsive to water stress and possessed more tolerance to drought stress. (author)

  5. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment.

    Science.gov (United States)

    Rizwan, Muhammad; Ali, Shafaqat; Hussain, Afzal; Ali, Qasim; Shakoor, Muhammad Bilal; Zia-Ur-Rehman, Muhammad; Farid, Mujahid; Asma, Maliha

    2017-11-01

    Cadmium (Cd) is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. The role of micronutrient-amino chelates on reducing Cd toxicity in crop plants is recently introduced. The current study was conducted to highlight the role of foliar application of zinc-lysine (Zn-lys) complex on biochemical and growth parameters and Cd uptake in wheat (Triticum aestivum) grown in aged Cd-contaminated soil. Foliar concentration of Zn-lys (0, 10, 20, and 30 mg L -1 ) was applied at different time intervals (2nd, 3rd, 5th and 7th week of sowing) and plants were harvested at maturity. Folliar application of Zinc-lys significantly increased the photosynthesis, grain yield, enzyme activities and Zn contents in different plant tissues. Zinc-lys reduced Cd contents in grains, shoot and root as well as reduced the oxidative stress in wheat linearly in a dose-additive manner. Taken together, Zn-lys chelate efficiently improved wheat growth and fortified Zn contents while reduced Cd concentration in plant in a Zn-deficient Cd-contaminated soil. Although, health risk index (HRI) from the soil sampling area seems to be lower than <1 for Cd but may exceed due to long-term consumption of grains produced from such contaminated soil. Foliar applied Zn-lys reduced HRI which may help to reduce health risks associated with Cd. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sensitivity of crop yield and N losses in winter wheat to changes in mean and variability of temperature and precipitation in Denmark using the FASSET model

    DEFF Research Database (Denmark)

    Patil, Raveendra Hanumantagoud; Lægdsmand, Mette; Olesen, Jørgen Eivind

    2012-01-01

    Sensitivity of wheat yield and soil nitrogen (N) losses to stepwise changes in means and variances of climatic variables were determined using the FASSET model. The LARS-WG was used to generate climate scenarios using observed climate data (1961–90) from two sites in Denmark, which differed...... loam. This study illustrates the importance of considering effects of changes to mean climatic factors, climatic variability and soil types on both crop yield and soil N losses....

  7. Cause and effect relationship for some biometric traits in bread wheat

    International Nuclear Information System (INIS)

    Cheema, M.N.; Mian, A.M.; Ihsan, M.; Tariq, A.M.; Rabbani, G.; Mahmood, A.

    2005-01-01

    Genotypic and phenotypic correlations and path coefficient analysis were conducted for grains yield and some biometric traits in 25 cross-combinations of break wheat under the rain fed conditions. Significant positive genotypic and phenotypic association was observed between grain yield per plant, and the yield components, such as productive tillers per plant, spike-length, spike lets per spike, grains per spike and 1000-grain weight. The path coefficient analysis revealed that the number of grains per spike and 1000-grain weight had the maximum direct effect on grain yield. These traits may be considered as the selection criteria for developing highly yielding wheat genotypes for rain fed areas. (author)

  8. Mutation breeding for durum wheat (Triticum turgidum ssp. durum Desf.) improvement in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Scarascia-Mugnozza, G T [Universita della Tuscia, Viterbo (Italy); D' Amato, F [Dipartimento di Biologia delle Piante Agrarie, Universita di Pisa (Italy); Avanzi, S [Dipartimento di Botanica, Universita di Pisa (Italy); and others

    1993-12-01

    In view of the economic importance of durum wheat in Italy and in the Mediterranean and Near East Region much effort was devoted to its genetic improvement. Lodging susceptibility and straw weakness, particularly under high fertilizer level, were the main reasons of substantially lower yields compared to bread wheat. An experimental mutagenesis programme was started in Italy in 1956 by F. D'Amato and G.T. Scarascia. It included both fundamental genetic studies and applied mutation breeding. Remarkable results were obtained at the 'Laboratorio Applicazioni in Agricoltura', Casaccia Nuclear Research Center, Roma, Italy, in radiobiology, radiogenetics, cytology and cytogenetics, genetics and breeding. Selection among some 1,000 induced mutants and hybridization led to 11 registered mutant varieties, six by the direct use of selected mutants and the remaining from cross-breeding. The economic benefits derived from the developed mutant cultivars are substantial. Mutant varieties have a great impact on durum wheat production, both in Italy and other countries like Bulgaria or Austria where Italian mutants have been used successfully in cross-breeding. (author)

  9. Mutation breeding for durum wheat (Triticum turgidum ssp. durum Desf.) improvement in Italy

    International Nuclear Information System (INIS)

    Scarascia-Mugnozza, G.T.; D'Amato, F.; Avanzi, S.

    1993-01-01

    In view of the economic importance of durum wheat in Italy and in the Mediterranean and Near East Region much effort was devoted to its genetic improvement. Lodging susceptibility and straw weakness, particularly under high fertilizer level, were the main reasons of substantially lower yields compared to bread wheat. An experimental mutagenesis programme was started in Italy in 1956 by F. D'Amato and G.T. Scarascia. It included both fundamental genetic studies and applied mutation breeding. Remarkable results were obtained at the 'Laboratorio Applicazioni in Agricoltura', Casaccia Nuclear Research Center, Roma, Italy, in radiobiology, radiogenetics, cytology and cytogenetics, genetics and breeding. Selection among some 1,000 induced mutants and hybridization led to 11 registered mutant varieties, six by the direct use of selected mutants and the remaining from cross-breeding. The economic benefits derived from the developed mutant cultivars are substantial. Mutant varieties have a great impact on durum wheat production, both in Italy and other countries like Bulgaria or Austria where Italian mutants have been used successfully in cross-breeding. (author)

  10. Assessing climate change impacts on wheat production (a case study

    Directory of Open Access Journals (Sweden)

    J. Valizadeh

    2014-06-01

    Full Text Available Climate change is one of the major challenges facing humanity in the future and effect of climate change has been detrimental to agricultural industry. The aim of this study was to simulate the effects of climate change on the maturity period, leaf area index (LAI, biomass and grain yield of wheat under future climate change for the Sistan and Baluchestan region in Iran. For this purpose, two general circulation models HadCM3 and IPCM4 under three scenarios A1B, B1 and A2 in three time periods 2020, 2050 and 2080 were used. LARS-WG model was used for simulating climatic parameters for each period and CERES-Wheat model was used to simulate wheat growth. The results of model evaluation showed that LARS-WG had appropriate prediction for climatic parameters and simulation of stochastic growing season in future climate change conditions for the studied region. Wheat growing season period in all scenarios of climate change was reduced compared to the current situation. Possible reasons were the increase in temperature rate and the accelerated growth stages of wheat. This reduction in B1 scenario was less than A1B and A2 scenarios. Maximum wheat LAI in all scenarios, except scenario A1B in 2050, is decreased compared to the current situation. Yield and biological yield of wheat in both general circulation models under all scenarios and all times were reduced in comparison with current conditions and the lowest reduction was related to B1 scenario. In general, the results showed that wheat production in the future will be affected by climate change and will decrease in the studied region. To reduce these risks, the impact of climate change mitigation strategies and management systems for crop adaptation to climate change conditions should be considered.

  11. Production of ethanol from wheat straw

    Directory of Open Access Journals (Sweden)

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  12. Greater Agronomic Water Use Efficiency in Wheat and Rice using Carbon Isotope Discrimination

    International Nuclear Information System (INIS)

    2012-05-01

    Wheat and rice are the two most important cereal crops worldwide. The potential yield of a cereal crop may be constrained by many factors, both biotic and abiotic, which may be related to the physical, chemical and biological properties of the soil itself (edaphic factors) or to the environmental conditions pertaining during the growth of the crop. Foremost among the abiotic factors is the availability of water, which is governed by climatic conditions and the ability of the soil to store available water. Together with drought, soil salinity is becoming a major stress factor limiting cereal yields globally. Soil salinization is accelerated by anthropogenic activities, including various forms of land and water mismanagement, which allow salts in geological strata to rise to the surface soil or seawater to encroach on low-lying coastal paddy soils. National programmes in crop improvement generally focus on local production problems through selection of stress resistant germplasm and traditional breeding methods, aided by modern molecular techniques. Traditional approaches are labour intensive and time consuming, with grain yield being the final arbiter of success or failure. Thus any technique that can predict yield well in advance of harvest has the potential to save considerable time, effort and money. The objective of this coordinated research project (CRP) was to evaluate carbon isotope discrimination (CID, or Δ 13 C) as a selection tool for yield and biomass of wheat under drought stress and rice under salt stress. This CRP was implemented following the recommendations of a consultants meeting of international experts. The research network included 11 contract holders from Algeria, Australia, Bangladesh, China (2), India, Morocco, Pakistan, Philippines, Syrian Arab Republic and Yemen, and two agreement holders from Mexico and the United States of America. The CRP was conducted in collaboration with national agricultural research systems (NARS) in Africa and

  13. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    Science.gov (United States)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  14. Yield Interactions of Wheat Genotypes to Dates of Seeding in Eastern Mid Hills of Nepal

    OpenAIRE

    Rudra Bhattarai; Bedanand Chaudhary; Dhruba Bahadur Thapa; Ramesh Raj Puri; Ram Nath Chaudhary; Ram Nath Chaudhary; Bibek Sapkota; Kiran Baral; Shukra Raj Shrestha; Surya Prasad Adhikari

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the major cereal crops and staple food sources in Nepal. Wheat varieties being popular in mid hill regions are still in the early stages of adoption. Identification of appropriate date of seeding plays important role in enhancing the adoption rate ensuring the sustainable production. Therefore, three dates viz 15th November, 1st and 15th December for seeding and twenty eight wheat genotypes were evaluated in a split plot design with two replications for ...

  15. Management Effects On Quality of Organically Grown Winter Wheat

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Schweinzer, A.; Friedel, J. K.

    2013-01-01

    The potential for improving wheat grain quality by management strategies involving crop rotation, catch crops, and organic manure was tested in organic long-term experiments in Denmark and Austria. Growing grass clover in a four-year rotation resulted in a higher wheat yield increase that could n...

  16. Marshall Space Flight Center Technology Investments Overview

    Science.gov (United States)

    Tinker, Mike

    2014-01-01

    NASA is moving forward with prioritized technology investments that will support NASA's exploration and science missions, while benefiting other Government agencies and the U.S. aerospace enterprise. center dotThe plan provides the guidance for NASA's space technology investments during the next four years, within the context of a 20-year horizon center dotThis plan will help ensure that NASA develops technologies that enable its 4 goals to: 1.Sustain and extend human activities in space, 2.Explore the structure, origin, and evolution of the solar system, and search for life past and present, 3.Expand our understanding of the Earth and the universe and have a direct and measurable impact on how we work and live, and 4.Energize domestic space enterprise and extend benefits of space for the Nation.

  17. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    Science.gov (United States)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  18. Drought Tolerance in Modern and Wild Wheat

    Science.gov (United States)

    Budak, Hikmet; Kantar, Melda; Yucebilgili Kurtoglu, Kuaybe

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance. PMID:23766697

  19. Drought Tolerance in Modern and Wild Wheat

    Directory of Open Access Journals (Sweden)

    Hikmet Budak

    2013-01-01

    Full Text Available The genus Triticum includes bread (Triticum aestivum and durum wheat (Triticum durum and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides, which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.

  20. Grain yield and competitive ability against weeds in modern and heritage common wheat cultivars are differently influenced by sowing density

    Directory of Open Access Journals (Sweden)

    Mariateresa Lazzaro

    2017-12-01

    Full Text Available Sowing density can have a strong impact on crop stand development during wheat growing cycle. In organic and low-input agriculture, and therefore with minimum or nil use of chemical herbicides, increased sowing density is expected to affect not only grain yield but also weed suppression. In this study we tested, under Mediterranean conditions, six common wheat cultivars (three modern and three heritage and two three-component mixtures (arranged by combining the three modern or the three heritage cultivars. The different crop stands were tested at sowing densities of 250 (low and 400 (high, similar to standard sowing density used by local farmers viable seeds m–2 for two growing seasons. We did not detect a significant effect of crop stand diversity (single cultivars vs mixtures on grain yield and weed suppression. Differences were ascribed to type of cultivars used (heritage vs modern. Compared to high sowing density, in modern cultivars grain yield did not decrease significantly with low sowing density, whereas in heritage cultivars it increased by 15.6%, possibly also because of 21.5% lower plant lodging. Weed biomass increased with low sowing density both in heritage and modern cultivar crop stand types. However, heritage crop stands had, on average, a lower weed biomass (56% than modern crop stands. Moreover, weed biomass in heritage crop stands at low density (6.82±1.50 g m–2 was lower than that of modern cultivars at the same sowing density (15.54±3.35 g m–2, confirming the higher suppressive potential of the former. We can conclude that lower sowing density can be advisable when using heritage crop stands as it keeps productivity while decreasing plant lodging and maintaining weeds under control.

  1. Lime and gypsum application on the wheat crop

    Directory of Open Access Journals (Sweden)

    Caires Eduardo Fávero

    2002-01-01

    Full Text Available Root growth and crop yield can be affected by chemical modifications of the soil profile owing to lime and gypsum applications. A field trial was carried out on a dystrophic Clayey Rhodic Hapludox at Ponta Grossa, PR, Brazil, aiming to evaluate lime (without or with incorporation into the soil and gypsum effects on root growth, mineral nutrition and grain yield of wheat (cv. OR 1. A randomized complete block design was used, with three replications, in a split-plot experiment. Treatments with dolomitic limestone (without lime and 4.5 t ha-1 of lime applied on the surface, in total rate and 1/3 of the requirement per year during 3 years, or incorporated into the soil were applied in July 1998 (main plots and the rates of gypsum (0, 3, 6 and 9 t ha-1 in October 1998 (subplots. Wheat was evaluated in the 2000 winter season. In conditions of water deficit absence, there was no limitation in root growth in depth, for exchangeable Ca of 6 mmol c dm-3. Lime incorporation of lime increased the Mg concentration in the leaves, but wheat yield was not influenced by the correction of soil acidity through liming treatments. Gypsum increased the concentrations of Ca and S in wheat leaves, with significant effects on grain yield. The critical level of S-SO4(2- in the 0-20 cm soil layer, extracted by ammonium acetate 0.5 mol L-1 in acetic acid 0.25 mol L-1, was 25.8 mg dm-3.

  2. Effect of Water Stress and Spraying of Potassium Iodide on Agronomic Traits and Grain Yield of Bread Wheat (Tiriticum aistivum L. Genotypes

    Directory of Open Access Journals (Sweden)

    N. Pooladsaz

    2011-01-01

    Full Text Available Abstract In order to study the effect of water stress and chemical desiccation (potassium iodide on grain yield and agronomic traits of 8 wheat genotypes, a field experiment was conducted using a split split plot design based on a randomized complete block design with three replications in Torogh Agricultural and Natural Resources Research Station (Mashhad, Iran in 2006-2007 and 2007-2008. Main plots were assigned to two levels of water stress treatments; D1: optimum irrigation, and D2: cessation of watering from anthesis to maturity stages. Sub plots were assigned to eight bread wheat genotypes: 9103, 9116, 9203, 9205, 9207, 9212, C-81-10 and Cross Shahi (drought sensitive; and photosynthetic conditions with two levels: P1: using of current photosynthesis and P2: inhibition of current photosynthesis were in sub-sub plots. The results showed that the effects of water stress and photosynthetic conditions on number of total florets per spike (NTF/S, seed set percentage (SSP, spike harvest index (SHI, duration of grain filling (DGF and grain yield (GY were significant. There was a significant difference between genotypes for spike dry weight at anthesis (SDWA, number of spikletes per spike (NSP/S, NTF/S, SSP, SHI, spike partitioning coefficient (SPC, plant height (PLH, spike length (SL, DGF and GY. 9103 genotype produced the most GY (7870 kg/ha under D1P1 treatment. The least GY ( 1114 kg/ha related to Cross Shahi cultivar under D2P2 treatment. Considering that C-81-10, 9103 and 9116 genotypes showed the highest grain yield, potential for reserves and remobilizations of assimilates under different irrigation conditions thus, these genotypes could be introduced as promising in breeding programs for arid and semi-arid regions. Keywords: Triticum aestivum L., Cessation of watering, Chemical Desiccation, Spike, Grain yield

  3. Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw

    DEFF Research Database (Denmark)

    Pedersen, Mads; Johansen, Katja S.; Meyer, Anne S.

    2011-01-01

    Background: The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic...... alkaline pretreatments. Alkaline pretreatments also solubilized most of the lignin. Conclusions: Pretreatment pH exerted significant effects and factor interactions on the enzymatic glucose and xylose releases. Quite extreme pH values were necessary with mild thermal pretreatment strategies (T...... glucose and xylose yields from mildly pretreated wheat straw in multivariate experimental designs of acid and alkaline pretreatments. Results: The pretreatment pH was the most significant factor affecting both the enzymatic glucose and xylose yields after mild thermal pretreatments at maximum 140 degrees...

  4. Agriculture for Space: People and Places Paving the Way

    Directory of Open Access Journals (Sweden)

    Wheeler Raymond M.

    2017-02-01

    Full Text Available Agricultural systems for space have been discussed since the works of Tsiolkovsky in the early 20th century. Central to the concept is the use of photosynthetic organisms and light to generate oxygen and food. Research in the area started in 1950s and 60s through the works of Jack Myers and others, who studied algae for O2 production and CO2 removal for the US Air Force and the National Aeronautics and Space Administration (NASA. Studies on algal production and controlled environment agriculture were also carried out by Russian researchers in Krasnoyarsk, Siberia beginning in 1960s including tests with human crews whose air, water, and much of their food were provided by wheat and other crops. NASA initiated its Controlled Ecological Life Support Systems (CELSS Program ca. 1980 with testing focused on controlled environment production of wheat, soybean, potato, lettuce, and sweetpotato. Findings from these studies were then used to conduct tests in a 20 m2, atmospherically closed chamber located at Kennedy Space Center. Related tests with humans and crops were conducted at NASA’s Johnson Space Center in the 1990s. About this same time, Japanese researchers developed a Controlled Ecological Experiment Facility (CEEF in Aomori Prefecture to conduct closed system studies with plants, humans, animals, and waste recycling systems. CEEF had 150 m2 of plant growth area, which provided a near-complete diet along with air and water regeneration for two humans and two goats. The European Space Agency MELiSSA Project began in the late 1980s and pursued ecological approaches for providing gas, water and materials recycling for space life support, and later expanded to include plant testing. A Canadian research team at the University of Guelph developed a research facility ca. 1994 for space crop research. The Canadian team eventually developed sophisticated canopy-scale hypobaric plant production chambers ca. 2000 for testing crops for space, and have

  5. Response of Wheat Genotypes to Different Levels of Nitrogen

    Directory of Open Access Journals (Sweden)

    Shukra Raj Shrestha

    2016-12-01

    Full Text Available A field experiment was conducted using six genotypes of wheat (Triticum aestivum L. for response to different levels of nitrogen (N use. The experiment was laid out in split plot design with four levels (0, 50, 100 and 150 kg N ha-1 as main plots and six wheat genotypes (BL 3623, BL 3629, BL 3872, NL 1008, NL 1055 and Vijay, a check variety as sub-plots. Grain yield and other yield components increased linearly in response to N concentrations in both seasons. Only two parameters: days to heading (DOH and days to maturity (DTM varied significantly (p ≤ 0.05 among wheat genotypes in both the years. None of the parameters showed interaction effects in both seasons. Vijay showed highest grain yield of 3.12 t ha-1 in 2013 with the application of 100 kg N ha-1, and 3.23 t ha-1 in 2014 with 150 kg N ha-1. Spike length, productive tillers m-2, number of spikes m-2 and test weight were greater with higher N rates. The straw yield of wheat fertilized with 150 kg N ha-1 was the highest in Vijay (4.35 t ha-1 and BL 3872 (4.33 t ha-1, respectively. Vijay with 100 kg N ha-1 produced the highest number of productive tillers m-2 (276.33 in 2013 and 296.00 with the application of 150 kg N ha-1 in 2014.

  6. Improving wheat productivity through source and timing of nitrogen fertilization

    International Nuclear Information System (INIS)

    Jan, M.T.; Khan, A.; Afridi, M.Z.; Arif, M.; Khan, M.J.; Farhatullah; Jan, D.; Saeed, M.

    2011-01-01

    Efficient nitrogen (N) fertilizer management is critical for the improved production of wheat (Triticum aestivum L.) and can be achieved through source and timing of N application. Thus, an experiment was carried out at the Research Farm of KPK Agricultural University Peshawar during 2005-06 to test the effects of sources and timing of N application on yield and yield components of wheat. Nitrogen sources were ammonium (NH/sub 4/) and nitrate (NO/sub 3/) applied at the rate of 100 kg ha/sup -1/ at three different stages i.e., at sowing (S1), tillering (S2) and boot stage (S3). Ammonium N increased yield component but did not affect the final grain yield. Split N application at sowing, tillering and boot stages had increased productive tillers m-2, and thousand grains weight, whereas grain yield was higher when N was applied at tillering and boot stages. Nitrogen fertilization increased 20% grain yield compared to control regardless of N application time. It was concluded from the experiment that split application of NH/sub 4/-N performed better than full dose application and/or NO/sub 3/-N for improved wheat productivity and thus, is recommended for general practice in agro-climatic conditions of Peshawar. (author)

  7. Water-use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau

    Science.gov (United States)

    Wang, Li-Fang; Shangguan, Zhou-Ping

    2015-07-01

    Mulching and tillage are widely considered to be major practices for improving soil and water conservation where water is scarce. This paper studied the effects of FM (flat mulching), RFM (ridge-furrow mulching), SM (straw mulching), MTMC (mulching with two materials combined), MOM (mulching with other materials), NT (no-tillage) ST (subsoiling tillage) and RT (rotational tillage) on wheat yield based on a synthesis of 85 recent publications (including 2795 observations at 24 sites) in the Loess Plateau, China. This synthesis suggests that wheat yield was in the range of 259-7898 kg ha-1 for FM and RFM. The sequence of water use efficiency (WUE) effect sizes was similar to that of wheat yield for the practices. Wheat yields were more sensitive to soil water at planting covered by plastic film, wheat straw, liquid film, water-permeable plastic film and sand compared to NT, ST and RT. RFM and RT increased the yields of wheat by 18 and 15%, respectively, and corresponding for WUE by 20.11 and 12.50%. This synthesis demonstrates that RFM was better for avoiding the risk of reduced production due to lack of precipitation; however, under conditions of better soil moisture, RT and MTMC were also economic.

  8. Glycine betaine and salicylic acid induced modification in productivity of two different cultivars of wheat grown under water stress

    Directory of Open Access Journals (Sweden)

    Heshmat S. Aldesuquy

    2012-05-01

    Full Text Available A pot experiment was conducted to evaluate the beneficial effect of foliar application of glycine betaine (10mM, grain presoaking in salicylic acid (0.05 M and their interaction on drought tolerance of two wheat (Triticum aestivum L. cultivars (sensitive, Sakha 94 and resistant, Sakha 93. Water stress decreased wheat yield components (spike length, number of spikelets / main spike, 100 kernel weight, grain number / spike, grain yield / spike, grain yield / plant, straw yield / plant, crop yield / plant, harvest, mobilization and crop indices and the biochemical aspects of grains(grain biomass, carbohydrates, total protein, total phosphorus, ions content and amino acids in both wheat cultivars. The applied chemicals appeared to alleviate the negative effects of water stress on wheat productivity (particularly the sensitive one and the biochemical aspects of yielded grains. The effect was more pronounced with GB+SA treatment. This improvement would result from the repairing effect of the provided chemicals on growth and metabolism of wheat plants grown under water deficit condition. In response to the applied water stress and the used chemicals, the grain yield of the sensitive and resistant wheat cultivars was strongly correlated with all the estimated yield components (shoot length, spike length, plant height, main spike weight, number of spikelets per main spike, 100 kernel weight, grain number per spike, grain weight per plant, straw weight per plant, crop yield per plant, harvest, mobilization and crop indices.

  9. Wheat Yield Production Grown on Sandy Soil as Fertilized by Different N-Sources Using 15N-Technique

    International Nuclear Information System (INIS)

    Ismail, M. M.; Soliman, S. M.; El-Akel, E. A.; El-Sherbieny, A. E.; Awad, E. A. M.

    2007-01-01

    A pot experiment was carried out to evaluate the ability of some plant residues to meet total N demand of wheat crop in sandy soil and their performance to reduce chemical N fertilizer requirements. Residue-N sources, i.e. soybean and wheat residues were compared to ammonium sulfate as inorganic N source as well as mixtures of residue-N sources and (NH 4 )SO 4 in ratios of (3:1), (1:1) and (1:3), respectively. The nitrogen application rate in all amended pots was kept at 100 mg N pot -1 . The obtained results could be summarized as follows: 1) ry weight of straw and grains of wheat crop was significantly increased this at the addition of nitrogen sources as a result of N-uptake increased. The highest value was observed at the application treatment ratios of (1:1) and (1:3) on the basis of (residue: ammonium sulfate), which can be arranged in this order: Soybean > wheat + soybean > wheat residues. 2) he value of N derived from residues (Ndfr) and fertilizer (Ndff), as well as 15N -recovery ratios can be arranged in this order: Ammonium sulfate > soybean residue > Soybean + wheat residue > wheat residue. 3) he values indicated that 15N -labelled soybean residue in combination with ordinary, ammonium sulfate at the ratios of (*25: 75) and (*50: 50), respectively was found to be effective on 15N -recovery ratios in the straw and grains of wheat crop. 4) he present study indicates that the entire N requirements of wheat crop cannot be met by the separate application of any residue-N source examined.

  10. Esrange Space Center, a Gate to Space

    Science.gov (United States)

    Widell, Ola

    Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.

  11. Durable field resistance to wheat yellow mosaic virus in transgenic wheat containing the antisense virus polymerase gene.

    Science.gov (United States)

    Chen, Ming; Sun, Liying; Wu, Hongya; Chen, Jiong; Ma, Youzhi; Zhang, Xiaoxiang; Du, Lipu; Cheng, Shunhe; Zhang, Boqiao; Ye, Xingguo; Pang, Junlan; Zhang, Xinmei; Li, Liancheng; Andika, Ida B; Chen, Jianping; Xu, Huijun

    2014-05-01

    Wheat yellow mosaic virus (WYMV) has spread rapidly and causes serious yield losses in the major wheat-growing areas in China. Because it is vectored by the fungus-like organism Polymyxa graminis that survives for long periods in soil, it is difficult to eliminate by conventional crop management or fungicides. There is also only limited resistance in commercial cultivars. In this research, fourteen independent transgenic events were obtained by co-transformation with the antisense NIb8 gene (the NIb replicase of WYMV) and a selectable gene bar. Four original transgenic lines (N12, N13, N14 and N15) and an offspring line (N12-1) showed high and durable resistance to WYMV in the field. Four resistant lines were shown to have segregated and only contain NIb8 (without bar) by PCR and herbicide resistance testing in the later generations. Line N12-1 showed broad-spectrum resistance to WYMV isolates from different sites in China. After growing in the infested soil, WYMV could not be detected by tissue printing and Western blot assays of transgenic wheat. The grain yield of transgenic wheat was about 10% greater than the wild-type susceptible control. Northern blot and small RNA deep sequencing analyses showed that there was no accumulation of small interfering RNAs targeting the NIb8 gene in transgenic wheat plants, suggesting that transgene RNA silencing, a common mechanism of virus-derived disease resistance, is not involved in the process of WYMV resistance. This durable and broad-spectrum resistance to WYMV in transgenic wheat will be useful for alleviating the damage caused by WYMV. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis

    Science.gov (United States)

    Feng, Zhaozhong; Kobayashi, Kazuhiko

    Meta-analysis was conducted to quantitatively assess the effects of rising ozone concentrations ([O 3]) on yield and yield components of major food crops: potato, barley, wheat, rice, bean and soybean in 406 experimental observations. Yield loss of the crops under current and future [O 3] was expressed relative to the yield under base [O 3] (≤26 ppb). With potato, current [O 3] (31-50 ppb) reduced the yield by 5.3%, and it reduced the yield of barley, wheat and rice by 8.9%, 9.7% and 17.5%, respectively. In bean and soybean, the yield losses were 19.0% and 7.7%, respectively. Compared with yield loss at current [O 3], future [O 3] (51-75 ppb) drove a further 10% loss in yield of soybean, wheat and rice, and 20% loss in bean. Mass of individual grain, seed, or tuber was often the major cause of the yield loss at current and future [O 3], whereas other yield components also contributed to the yield loss in some cases. No significant difference was found between the responses in crops grown in pots and those in the ground for any yield parameters. The ameliorating effect of elevated [CO 2] was significant in the yields of wheat and potato, and the individual grain weight in wheat exposed to future [O 3]. These findings confirm the rising [O 3] as a threat to food security for the growing global population in this century.

  13. The Center for Space Telemetering and Telecommunications Systems

    Science.gov (United States)

    Horan, S.; DeLeon, P.; Borah, D.; Lyman, R.

    2003-01-01

    This report comprises the final technical report for the research grant 'Center for Space Telemetering and Telecommunications Systems' sponsored by the National Aeronautics and Space Administration's Goddard Space Flight Center. The grant activities are broken down into the following technology areas: (1) Space Protocol Testing; (2) Autonomous Reconfiguration of Ground Station Receivers; (3) Satellite Cluster Communications; and (4) Bandwidth Efficient Modulation. The grant activity produced a number of technical reports and papers that were communicated to NASA as they were generated. This final report contains the final summary papers or final technical report conclusions for each of the project areas. Additionally, the grant supported students who made progress towards their degrees while working on the research.

  14. Genetic controls on starch amylose content in wheat and rice grains

    Indian Academy of Sciences (India)

    2014-04-07

    Apr 7, 2014 ... cuboid in appearance and smaller than wheat or maize. (figure 3; Kaur et al. 2007). ..... gaps in our knowledge. Due to the hexaploid ...... Makino A 2011 Photosynthesis, grain yield, and nitrogen utilization in rice and wheat.

  15. Influence of a Phospho-Potassic fertilizer solution on yield and quality of Wheat Crops

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, C.; Tejada, M.; Gonzalez, J. L.; Benitez, C.

    2009-07-01

    There is currently interest in the use of industrial by-products to reduce the use of synthetic fertilizers. For this reason, in this paper the influence of a phospho-potassic fertilizer solution obtained from a aminoacid production process on wheat crops is studied. The positive influence on leaf potassium contents was most significant when the dosage of phospho-potassic fertilizer solution was applied to bread wheat. (Author)

  16. Long Term Evaluation of Yield Stability Trend for Cereal Crops in Iran

    Directory of Open Access Journals (Sweden)

    mehdi nassiri mahalati

    2016-05-01

    Full Text Available During the last few decades cereals yield have increased drastically at the national level however, information about yield stability and its resistance to annual environmental variability are scare. In this study long term stability of grin yield of wheat, barley, rice, corn and overall cereals in Iran were evaluated during a 40-year period (1971-2011. Stability analysis was conducted using two different methods. In the first method the residuals of regression between crop yield and time (years were calculated as stability index. For this different segmented regression models including linear, bi-linear and tri-linear were fitted to yield trend data and the best model for each crop was selected based on statistical measures. Absolute residuals (the difference between actual and predicted yields for each year as well as relative residuals (absolute residuals as percent of predicted yield were estimated. In the second method yield stability was estimated from the slope of the regression line between average annual yield of all cereals (environmental index and the yield of each crop in the same year. Results indicted that in wheat and barley absolute and relative residuals were increased during the study period leading to reduction of stability despite considerable yield increment. However, for rice and corn residuals followed a decreasing trend and therefore yield stability of these crops was increased during the last 40 years. The same result was obtained with the environmental index but in this method reduction of yield stability in barley was lower than wheat. Based on the results, yield and yield stability of cereals crops in Iran increased during the last 40 years. However, the percentage increase in stability is lower than that of yield. Application of nitrogen fertilizers was led to reduction in stability. Yield stability of wheat, barley, rice, corn and overall cereals was improved with increasing their cultivated area.

  17. Ensembles modeling approach to study Climate Change impacts on Wheat

    Science.gov (United States)

    Ahmed, Mukhtar; Claudio, Stöckle O.; Nelson, Roger; Higgins, Stewart

    2017-04-01

    Simulations of crop yield under climate variability are subject to uncertainties, and quantification of such uncertainties is essential for effective use of projected results in adaptation and mitigation strategies. In this study we evaluated the uncertainties related to crop-climate models using five crop growth simulation models (CropSyst, APSIM, DSSAT, STICS and EPIC) and 14 general circulation models (GCMs) for 2 representative concentration pathways (RCP) of atmospheric CO2 (4.5 and 8.5 W m-2) in the Pacific Northwest (PNW), USA. The aim was to assess how different process-based crop models could be used accurately for estimation of winter wheat growth, development and yield. Firstly, all models were calibrated for high rainfall, medium rainfall, low rainfall and irrigated sites in the PNW using 1979-2010 as the baseline period. Response variables were related to farm management and soil properties, and included crop phenology, leaf area index (LAI), biomass and grain yield of winter wheat. All five models were run from 2000 to 2100 using the 14 GCMs and 2 RCPs to evaluate the effect of future climate (rainfall, temperature and CO2) on winter wheat phenology, LAI, biomass, grain yield and harvest index. Simulated time to flowering and maturity was reduced in all models except EPIC with some level of uncertainty. All models generally predicted an increase in biomass and grain yield under elevated CO2 but this effect was more prominent under rainfed conditions than irrigation. However, there was uncertainty in the simulation of crop phenology, biomass and grain yield under 14 GCMs during three prediction periods (2030, 2050 and 2070). We concluded that to improve accuracy and consistency in simulating wheat growth dynamics and yield under a changing climate, a multimodel ensemble approach should be used.

  18. Response of Agronomic Traits of Wheat and Barley to Sources and Different Rates of Selenium in Rainfed Condition

    Directory of Open Access Journals (Sweden)

    N. A Sajedi

    2017-10-01

    Full Text Available Introduction Environmental stresses affect growth, metabolism and crops yield. Drought is an important stress and it decreases crop productivity. Drought stress symptoms vary, depending on intensity and duration of drought and growth stage of the plant. The first response of plant to drought stress is producing the active oxygen species (ROS in cell that these cause injury to membranes and proteins. Selenium (Se application could have beneficial effect on growth and stress tolerance of plants by increasing their activity of antioxidants and reduce the reactive oxygen species over production. Selenium is essential for growth and activities of human and animals. Absorption and accumulation of selenium in plant depend on chemical compound and concentration of selenium in soil. Recent studies have demonstrated that Se increases resistance and antioxidant capacity of plants to various stress. It is reported that selenium application in barley plant no changes the amounts of malondialdehyde and hydrogen peroxide under water deficit stress. The current paper studies the response of agronomic traits of wheat and barley to sources and different rates of selenium in rain fed condition. Materials and Methods In order to investigate response of agronomic traits of wheat and barley to sources and different rates of selenium in rainfed condition, an experiment was carried out as factorial based on randomized complete block design with three replications at the Research Station of Islamic Azad University, Arak Branch, during 2014-2015. Experimental factors were included selenium sources at two levels, Sodium selenate and Selenite, Selenium rates at three levels of zero, 18 and 36 g ha-1 and two crop plants of wheat and barley. The wheat rain fed seed Azar 2 cultivar and Barley cultivar Abidar were hand planted at 15 cm spacing in 6 m rows, with one meter borders between the plots. Foliar application of Se was performed at rate of 18 and 36 g ha-1 at appearance

  19. Effects of space environment on chlorophyll fluorescence and photosynthesis characteristics of wheat

    International Nuclear Information System (INIS)

    Lu Li; Lv Jinyin; Gong Qingzhu; Gao Junfeng

    2006-01-01

    The effects of the space environment on the chlorophyll fluorescence parameters and photosynthesis characteristics of wheat cultivars, Xinong 1043 M1 and Shaan253 M 1 , were studied. The results showed that the decrement of contents of PS II primary photochemical efficiency (F v /F m ), potential activity (F v /F 0 ), photochemical quenching coefficient (qP) and photosynthesis rate (Pn) were less than that of control, increment of non-photochemical quenching coefficient (qN) were more than that of control. The results suggested that photosynthetic apparatus were damaged, photosynthetic electron transport, photosynthetic primary reaction were inhibited, rate of photosynthesis decreased and growth of M 1 plant were retarded, which leading to thousand kernel weights decreased. (authors)

  20. Identification of ISSR and RAPD markers linked to yield traits in bread wheat under normal and drought conditions

    Directory of Open Access Journals (Sweden)

    A.G.A. Khaled

    2015-12-01

    Full Text Available Genetic variability and identification of some molecular markers were studied in twenty promising lines of wheat using agronomic traits, ISSR (inter simple sequences repeats and RAPD (random amplified polymorphic DNA markers. Significant variation was evidenced in all agronomic traits. The lines proved to be superior to the check cultivar Sahel1 in yield and its component traits. Lines L2, L7 and L8 were the best in most yield component traits in both seasons. Moreover, Lines L2, L4, L5, L7 and L8 showed drought tolerance by which they displayed high performance in agronomic traits as well as a low drought susceptibility index. The percentage of polymorphism was 39.3% and 53.2% for ISSRs and RAPDs, respectively. UBC-881 belonged to penta-nucleotide repeat sequences (GGGTG that produced the highest level of polymorphism, while UBC-846 belonged to di-nucleotide repeat sequences (CA that produced the lowest level of polymorphism. Genetic similarities among wheat lines based on ISSR and RAPD markers ranged from 0.81 to 1.00 and from 0.86 to 0.98, respectively. There was a low average of PIC (polymorphism information content values which were 0.10 (ISSR and 0.15 (RAPD. The RAPD technique exhibited a higher marker index (MI = 0.69 compared to ISSR (MI = 0.43. There was insignificant correlation between ISSR and RAPD data (0.168, p > 0.05. There were two markers (UBC-881450bp and OPF-10540bp, on each of which two traits regressed significantly. The associated markers each explained a maximum regression of 18.92–34.95% of the total available variation for individual associated traits.

  1. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  2. A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark

    Directory of Open Access Journals (Sweden)

    C. D. Børgesen

    2011-09-01

    Full Text Available Climate change will impact agricultural production both directly and indirectly, but uncertainties related to likely impacts constrain current political decision making on adaptation. This analysis focuses on a methodology for applying probabilistic climate change projections to assess modelled wheat yields and nitrate leaching from arable land in Denmark. The probabilistic projections describe a range of possible changes in temperature and precipitation. Two methodologies to apply climate projections in impact models were tested. Method A was a straightforward correction of temperature and precipitation, where the same correction was applied to the baseline weather data for all days in the year, and method B used seasonal changes in precipitation and temperature to correct the baseline weather data. Based on climate change projections for the time span 2000 to 2100 and two soil types, the mean impact and the uncertainty of the climate change projections were analysed. Combining probability density functions of climate change projections with crop model simulations, the uncertainty and trends in nitrogen (N leaching and grain yields with climate change were quantified. The uncertainty of climate change projections was the dominating source of uncertainty in the projections of yield and N leaching, whereas the methodology to seasonally apply climate change projections had a minor effect. For most conditions, the probability of large yield reductions and large N leaching losses tracked trends in mean yields and mean N leaching. The impacts of the uncertainty in climate change were higher for loamy sandy soil than for sandy soils due to generally higher yield levels for loamy sandy soils. There were large differences between soil types in response to climate change, illustrating the importance of including soil information for regional studies of climate change impacts on cropping systems.

  3. Resistance of Wheat Accessions to the English Grain Aphid Sitobion avenae

    Science.gov (United States)

    Hu, Xiang-Shun; Liu, Ying-Jie; Wang, Yu-Han; Wang, Zhe; Yu, Xin-lin; Wang, Bo; Zhang, Gai-Sheng; Liu, Xiao-Feng; Hu, Zu-Qing; Zhao, Hui-Yan; Liu, Tong-Xian

    2016-01-01

    The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice between 2 wheat varieties, strongly discriminated against certain varieties. Specifically, the ‘Amigo’ variety had the lowest palatability to S. avenae alatae of all varieties. ‘Tm’ (Triticum monococcum), ‘Astron,’ ‘Xanthus,’ ‘Ww2730,’ and ‘Batis’ varieties also had lower palatability than other varieties. Thus, these accessions may use antibiosis as the resistant mechanism. In contrast, under field conditions, there were no significant differences in the number of alatae detected on the 14 wheat varieties. One synthetic line (98-10-30, a cross between of Triticum aestivum (var. Chris) and Triticum turgidum (var. durum) hybridization) had low aphid numbers but high yield loss, indicating that it has high antibiosis, but poor tolerance. In comparison, ‘Amigo,’ ‘Xiaoyan22,’ and some ‘186Tm’ samples had high aphid numbers but low yield loss rates, indicating they have low antibiosis, but good tolerance. Aphid population size and wheat yield loss rates greatly varied in different fields and years for ‘98-10-35,’ ‘Xiaoyan22,’ ‘Tp,’ ‘Tam200,’ ‘PI high,’ and other ‘186Tm’ samples, which were hybrid offspring of T. aestivum and wheat related species. Thus, these germplasm should be considered for use in future studies. Overall, S. avenae is best adapted to ‘Xinong1376,’ because it was the most palatable variety, with the greatest yield loss rates of all 14 wheat varieties. However, individual varieties/lines influenced aphid populations differently in different years. Therefore, we strongly recommend a combination of

  4. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  5. [Responses of rice-wheat rotation system in south Jiangsu to organic-inorganic compound fertilizers].

    Science.gov (United States)

    Tian, Heng-Da; Zhang, Li; Zhang, Jian-Chao; Wang, Qiu-Jun; Xu, Da-Bing; Yibati, Halihashi; Xu, Jia-Le; Huang, Qi-Wei

    2011-11-01

    In 2006-2007, a field trial was conducted to study the effects of applying three kinds of organic-inorganic compound fertilizers [rapeseed cake compost plus inorganic fertilizers (RCC), pig manure compost plus inorganic fertilizers (PMC), and Chinese medicine residues plus inorganic fertilizers (CMC)] on the crop growth and nitrogen (N) use efficiency of rice-wheat rotation system in South Jiangsu. Grain yield of wheat and rice in the different fertilization treatments was significantly higher than the control (no fertilization). In treatments RCC, PMC and CMC, the wheat yield was 13.1%, 32.2% and 39.3% lower than that of the NPK compound fertilizer (CF, 6760 kg x hm(-2)), respectively, but the rice yield (8504-9449 kg x hm(-2)) was significantly higher than that (7919 kg x hm(-2)) of CF, with an increment of 7.4%-19.3%. In wheat season, the aboveground dry mass, N accumulation, and N use efficiency in treatments RCC, PMC, and CMC were lower than those of CF, but in rice season, these parameters were significantly higher than or as the same as CF. In sum, all the test three compound fertilizers had positive effects on the rice yield and its nitrogen use efficiency in the rice-wheat rotation system, being most significant for RCC.

  6. Cultivation of Agaricus bisporus on wheat straw and waste tea ...

    African Journals Online (AJOL)

    This study was designed to determine the pin head formation time and yield values of Agaricus bisporus on some casing materials. Composts were prepared basically from wheat straw and waste tea leaves by using wheat chaff as activator substance. Temperatures of the compost formulas were measured during ...

  7. An optimized protocol for DNA extraction from wheat seeds and Loop-Mediated Isothermal Amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain.

    Science.gov (United States)

    Abd-Elsalam, Kamel; Bahkali, Ali; Moslem, Mohamed; Amin, Osama E; Niessen, Ludwig

    2011-01-01

    A simple, rapid, and efficient method for isolating genomic DNA from germinated seeds of wheat that is free from polysaccharides and polyphenols is reported. DNA was extracted, treated with RNase, measured and tested for completeness using agarose gel electrophoresis. DNA purification from wheat grains yielded abundant, amplifiable DNA with yields typically between 100 and 200 ng DNA/mg. The effectiveness and reliability of the method was tested by assessing quantity and quality of the isolated DNA using three PCR-based markers. Inter-simple sequence repeats (ISSRs) were used to assess the genetic diversity between different wheat varieties. Specific PCR primer pair Tox5-1/Tox5-2 and a loop-mediated isothermal amplification (LAMP) procedure were used to detect genomic DNA of Fusarium graminearum in contaminated wheat seeds. In this method there is no need to use liquid nitrogen for crushing germinated seedlings. The protocol takes approximately one hour to prepare high quality DNA. In combination with the LAMP assay it is a fast and cost-effective alternative to traditional diagnostic methods for the early detection of toxigenic fusaria in cereals.

  8. Assimilating Remote Sensing Observations of Leaf Area Index and Soil Moisture for Wheat Yield Estimates: An Observing System Simulation Experiment

    Science.gov (United States)

    Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.

    2012-01-01

    Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.

  9. Efficient induction of Wheat-agropyron cristatum 6P translocation lines and GISH detection.

    Directory of Open Access Journals (Sweden)

    Liqiang Song

    Full Text Available The narrow genetic background restricts wheat yield and quality improvement. The wild relatives of wheat are the huge gene pools for wheat improvement and can broaden its genetic basis. Production of wheat-alien translocation lines can transfer alien genes to wheat. So it is important to develop an efficient method to induce wheat-alien chromosome translocation. Agropyroncristatum (P genome carries many potential genes beneficial to disease resistance, stress tolerance and high yield. Chromosome 6P possesses the desirable genes exhibiting good agronomic traits, such as high grain number per spike, powdery mildew resistance and stress tolerance. In this study, the wheat-A. cristatum disomic addition was used as bridge material to produce wheat-A. cristatum translocation lines induced by (60Co-γirradiation. The results of genomic in situ hybridization showed that 216 plants contained alien chromosome translocation among 571 self-pollinated progenies. The frequency of translocation was 37.83%, much higher than previous reports. Moreover, various alien translocation types were identified. The analysis of M2 showed that 62.5% of intergeneric translocation lines grew normally without losing the translocated chromosomes. The paper reported a high efficient technical method for inducing alien translocation between wheat and Agropyroncristatum. Additionally, these translocation lines will be valuable for not only basic research on genetic balance, interaction and expression of different chromosome segments of wheat and alien species, but also wheat breeding programs to utilize superior agronomic traits and good compensation effect from alien chromosomes.

  10. Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential.

    Science.gov (United States)

    Rehman, Abdul; Farooq, Muhammad; Nawaz, Ahmad; Al-Sadi, Abdullah M; Al-Hashmi, Khalid S; Nadeem, Faisal; Ullah, Aman

    2018-03-15

    Zinc (Zn) is essential for all life forms and its deficiency is a major issue of malnutrition in humans. This study was carried out to characterize 28 wheat genotypes of Pakistani origin for grain zinc biofortification potential, genetic diversity and relatedness. There was low genetic differentiation among the tested genotypes. However, they differed greatly in yield-related traits, grain mineral (Zn, calcium (Ca) and protein) concentrations and Zn bioavailability. Zinc application increased the concentration of Zn in wheat grain (32.1%), embryo (19.8%), aleurone (47%) and endosperm (23.7%), with an increase in bioavailable Zn (22.2%) and a reduction in phytate concentration (6.8%). Application of Zn also enhanced grain protein and Ca concentrations. Among wheat genotypes, Blue Silver had the highest concentration of Zn in grain, embryo, aleurone and endosperm, with high bioavailable Zn, while Kohinoor-83 had low phytate concentration. Wheat genotypes of Pakistan are genetically less diverse owing to continuous focus on the development of high-yielding varieties only. Therefore genetically diverse wheat genotypes with high endospermic Zn concentration and better grain yield should be used in breeding programs approaches, aiming at improving Zn bioavailability. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  11. Effects Of Organic Fertilizer And Spacing On Growth And Yield Of ...

    African Journals Online (AJOL)

    NIHORT), Ibadan to investigate the effects of maize-stover compost fertilizer and plant spacing on the growth and shoot yield of Celosia argentea L. var. TLV8. Plants were spaced 15x 15cm; 20 x 20cm and 25 x 25cm and the compost fertilizer was ...

  12. Tailoring wheat management to ENSO phases for increased wheat production in Paraguay

    Directory of Open Access Journals (Sweden)

    Melissa A. Ramirez-Rodrigues

    2014-01-01

    Full Text Available Reported regional wheat yields in Paraguay vary from 1 to 3 t/ha from year to year, but appear not to be correlated with El Niño-Southern Oscillation (ENSO phases. Historical weather data from two locations in representative wheat-growing regions of Paraguay, Encarnación-Itapúa and Ciudad del Este-Alto Paraná combined with crop modeling, were analyzed to optimize nitrogen (N fertilizer application rates according to the ENSO phase of a growing season. The ENSO phase of a growing season was defined based on the average of the sea surface temperature (SST anomalies in the Eastern Equatorial Pacific region for the period June–October using the El Niño region 3.0 index (Niño 3.0. Simulated average yields in Alto Paraná were higher in the drier and cooler La Niña wheat-growing seasons (average of 3.5 t/ha compared to the other phases (average of 3.2 t/ha and in Itapúa, in Neutral seasons (average of 3.8 t/ha compared to the other phases (average of 3.7 t/ha. Accordingly, optimal N fertilizer applications ranged between 20 and 60 kg N/ha between phases depending on the sowing date, soil type and initial amount of soil water content. Applying an ENSO or General Circulation Model (GCM-based forecast for ENSO-season-type specific N fertilizer applications resulted in benefits of >100 US$/ha when compared with current farmers’ practice of consistently low N fertilizer applications in Paraguay. When N management based on forecasts was compared with optimized N application without forecast, the benefits of the forecast was only up to 8 US$/ha. The ENSO-persistence-based forecast showed higher values than the GCM-based forecasts with two lead-times but lower skill. Using climate information can significantly increase current wheat yields and gross margins in Paraguay by tailoring N fertilizer applications to the Niño 3.0-defined ENSO phases, which can be forecasted with moderate skill at the beginning of the growing season.

  13. Effect of crop density on competition by wheat and barley with Agrostemma githago and other weeds

    DEFF Research Database (Denmark)

    Doll, H.; Holm, U.; Søgaard, B.

    1995-01-01

    The effect of Agrostemma githago L. and other naturally occurring weeds on biomass production and grain yield was studied in winter wheat and winter barley. Naturally occurring weeds had only a negligible effect on barley, but reduced wheat grain yield by 10% at a quarter of normal crop density....... The interaction between the cereals and A. githago was studied in additive series employing different crop densities. Growth of this weed species was strongly dependent on crop density, which was more important for controlling weed growth than it was for obtaining a normal grain yield. Wheat and especially barley...

  14. Trend Analysis of Nitrogen Use and Productivity in Wheat (Triticum aestivum L. Production Systems of Iran

    Directory of Open Access Journals (Sweden)

    M. Nassiri

    2017-10-01

    Full Text Available Introduction At global level nitrogen (N fertilizers had drastic effects on crop yields increment during the last century. However, high application rates of this input have resulted to environmental pollution all around the world in addition decreased yields per unit of applied N is also reported in some countries. To fulfill increasing demands for agricultural crops with conservative application of N fertilizers, increasing N use efficiencies is recognized as a sustainable management. This calls for systematic studies on N use efficiency and its components at crop, field and regional levels. However, N efficiencies of agricultural crops at national level are not fully analyzed in Iran. In this research, forty years (1960-2010 data on yield and N application rate were analyzed for yield trend, N efficiencies and its related components for wheat (Triticum aestivum L. production systems of Iran. Materials and Methods Required data of wheat yield and nitrogen fertilizer application rates during the 40 years study period was obtained from official web sites of national agricultural statistics as well as Ministry of Jihad Agriculture. Using these data partial nitrogen productivity (kg yield kg N-1; nitrogen use efficiency (kg yield kg-1 N, ignoring soil N, nitrogen uptake efficiency (%; nitrogen utilization efficiency (kg yield kg-1 absorbed N; and relative contribution of Nitrogen to grain yield (% was estimated based on previously reported methods. Yield and N fertilizer application rate were subjected to time series analysis and fertilizer rates were predicted for the next decade over the studied period. Results and Discussion The results indicated that during the studied period mean annual growth rate of wheat yield and nitrogen application were 2.9 and 6.9%, respectively leading to 3.4 fold increase in yield and 9.5 fold increase in N fertilizers so that fertilize application rate was changed from 25 to 240 kg ha-1. However, N fertilizer

  15. The impacts of surface ozone pollution on winter wheat productivity in China--An econometric approach.

    Science.gov (United States)

    Yi, Fujin; Jiang, Fei; Zhong, Funing; Zhou, Xun; Ding, Aijun

    2016-01-01

    The impact of surface ozone pollution on winter wheat yield is empirically estimated by considering socio-economic and weather determinants. This research is the first to use an economic framework to estimate the ozone impact, and a unique county-level panel is employed to examine the impact of the increasing surface ozone concentration on the productivity of winter wheat in China. In general, the increment of surface ozone concentration during the ozone-sensitive period of winter wheat is determined to be harmful to its yield, and a conservative reduction of ozone pollution could significantly increase China's wheat supply. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Can Growing Degree Days and Photoperiod Predict Spring Wheat Phenology?

    Directory of Open Access Journals (Sweden)

    Muhammad A. Aslam

    2017-09-01

    Full Text Available Wheat (Triticum aestivum production in the rainfed area of Pothwar Pakistan is extremely vulnerable to high temperature. The expected increase in temperature due to global warming should result in shorter crop life cycles, and thus lower biomass and grain yield. Two major factors control wheat phenological development: temperature and photoperiod. To evaluate wheat development in response to these factors, we conducted experiments that created diverse temperature and daylength conditions by adjusting the crop sowing time. The study was conducted during 2013–14 and 2014–15 using five spring wheat genotypes, four sowing times, at three sites under rainfed management in Pothwar, Pakistan. Wheat crops experienced more cold days with early sowing, but later sowing dates resulted in higher temperatures, especially from anthesis to maturity. These treatments produced large differences in phenology, biomass production, and yield. To investigate whether growing degree days (GDD and photoperiod algorithms could predict wheat phenology under these changing conditions, GDD was calculated based on the method proposed by Wang and Engel while photoperiod followed the approach introduced in the APSIM crop growth model. GDD was calculated separately and in combination with photoperiod from germination to anthesis. For the grain filling period, only GDD was calculated. The observed and predicted number of days to anthesis and maturity were in good agreement, showing that the combination of GDD and photoperiod algorithms provided good estimations of spring wheat phenology under variable temperature and daylength conditions.

  17. Ammonium as sole N source improves grain quality in wheat.

    Science.gov (United States)

    Fuertes-Mendizábal, Teresa; González-Torralba, Jon; Arregui, Luis M; González-Murua, Carmen; González-Moro, M Begoña; Estavillo, José M

    2013-07-01

    The skilful handling of N fertilizer, including N source type and its timing, is necessary to obtain maximum profitability in wheat crops in terms of production and quality. Studies on grain yield and quality with ammonium as sole N source have not yet been conducted. The aim of this study was to evaluate the effect of N source management (nitrate vs. ammonium), and splitting it into two or three amendments during the wheat life cycle, on grain yield and quality under irrigated conditions. This experiment demonstrates that Cezanne wheat plants growing with ammonium as exclusive N source are able to achieve the same yield as plants growing with nitrate and that individual wheat plants grown in irrigated pots can efficiently use late N applied in GS37. Ammonium nutrition increased both types of grain reserve proteins (gliadins and glutenins) and also increased the ratio gli/glu with respect to nitrate nutrition. The splitting of the N rate enhanced the ammonium effect on grain protein composition. The application of ammonium N source, especially when split into three amendments, has an analogous effect on grain protein content and composition to applications at a higher N rate, leading to higher N use efficiency. © 2012 Society of Chemical Industry.

  18. Effects of Nitrification Inhibitors and Sulphur Coated Urea(SCU on Different Nitrogen Sources and Wheat Yield

    Directory of Open Access Journals (Sweden)

    LI Yong-qiang

    2016-05-01

    Full Text Available Nitrogen is essential for plant growth and health, and it is also a limiting factor for the growth in most agricultural systems. Intensive N fertilizer application has become the traditional habit for agricultural producers in China because of its importance to plant productivity and agricultural land profitability. But some problems have appeared with the increase of the amount of nitrogen fertilizer applied, urea used in crops is easy to lose from volatilization or leaching. Therefore, current crop management practices lead to a highly nitrifying soil environments. Nitrogen emission is the main source of soil acidity and environmental pollution. Several methods for the use of slow controlled release urea have been reported to be used to control the pollution and to enhance nitrogen use efficiency. There is a growing interest in the formulations of coated chemical fertilizers with both urease inhibitor and nitrification inhibitor. Urease inhibitor and nitrification inhibitor may improve urea N-use efficiency and minimize N losses by gaseous emissions of ammonia(NH3 to the atmosphere and nitrate(NO3- leaching into the surface and ground water. Dicyandiamide(DCD is a nitrification inhibitor that has been studied for many years, it can effectively inhibit nitrification and N2O emission in many agricultural ecosystems. However, limited information is available on the use of the combination of nitrification inhibitor and urease inhibitor applied with urea fertilizer, especially for thiourea(THU and thiourea formaldehyde resin(TFR applications. Therefore the purpose of this study is to investigate the effect of urea with different inhibitors to improve the efficiency of nitrogen utilization. A field pot experiment was conducted to explore how to increase the concentration of DCD/THU/TFR/sulfur-coated urea(SCU to affect the transformation of soil nitrogen and wheat yield. The experiment was designed for twelve treatments which included no nitrogen

  19. [Effects of N application on wheat powdery mildew occurrence, nitrogen accumulation and allocation in intercropping system].

    Science.gov (United States)

    Zhu, Jin Hui; Dong, Yan; Xiao, Jing Xiu; Zheng, Yi; Tang, Li

    2017-12-01

    The main objective of this field experiment was to study the effects of wheat and faba bean intercropping on occurrence of wheat powdery mildew, nitrogen content, accumulation and allocation of wheat plant at 4 nitrogen levels of N 0 (0 kg·hm -2 ), N 1 (112.5 kg·hm -2 ), N 2 (225 kg·hm -2 ), N 3 (337.5 kg·hm -2 ), and to explore the relationship between N content, accumulation, allocation and the occurrence of wheat powdery mildew. The results showed that both monocropped and intercropped wheat yields increased with nitrogen application, with the highest yields of monocropped and intercropped wheat being 4146 kg·hm -2 and 4679 kg·hm -2 at N 2 le-vel, respectively. The occurrence and development of wheat powdery mildew become more severe with the increase of N application and area under disease progression curve (AUDPC) were averagely increased by 39.6%-55.6%(calculated with disease incidence, DI) and 92.5%-217.0% (calculated with disease severity index, DSI) with N 1 , N 2 and N 3 treatments. The disease severity index was more affected by nitrogen regulation than by disease incidence. The nitrogen content and accumulation of wheat plant were significantly increased by 8.4%-51.6% and 19.7%-133.7% with nitrogen application, but there was no significant effect on N allocation ratio. Compared with monocropped wheat, yield of intercropped wheat was averagely increased by 12%, whereas, the AUDPC(DI) and AUDPC(DSI) of intercropped wheat were averagely decreased by 11.5% and 30.7%, respectively. The control effect of the disease severity index by intercropping was better than disease incidence. The nitrogen content, accumulation and nitrogen allocation ratio in intercropped wheat leaves were significantly decreased by 6.6%-12.5%, 1.4%-6.9% and 9.0%-15.5% respectively at the peak infection stage of powdery mildew. Overall findings showed that the maximum rate of nitrogen application for wheat should not exceed 225 kg·hm -2 when taking into account both disease

  20. grain and biomass yield reduction due to russian wheat aphid on ...

    African Journals Online (AJOL)

    ACSS

    2015-05-25

    May 25, 2015 ... farmers' management is far lower than under on- station and on-farm ... of seeds for improved varieties and insect pests and diseases. .... the control of D. noxia infestation by. Fenitrothion 50 ... International Education (SRF) and Rutgers. Foundation. ... wheat, related cereals and a Bromus grass species. pp.

  1. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    Science.gov (United States)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  2. Assessment of Climate Change and Atmospheric CO2 Impact on Winter Wheat in the Pacific Northwest Using a Multimodel Ensemble

    Directory of Open Access Journals (Sweden)

    Mukhtar Ahmed

    2017-05-01

    Full Text Available Simulations of crop yields under climate change are subject to uncertainties whose quantification is important for effective use of projected results for adaptation and mitigation strategies. In the US Pacific Northwest (PNW, studies based on single crop models and weather projections downscaled from a few general circulation models (GCM have indicated mostly beneficial effects of climate change on winter wheat production for most of the twenty-first century. In this study we evaluated the uncertainty in the projection of winter wheat yields at seven sites in the PNW using five crop growth simulation models (CropSyst, APSIM, DSSAT, STICS, and EPIC and daily weather data downscaled from 14 GCMs for 2 representative concentration pathways (RCP of atmospheric CO2 (RCP4.5 and 8.5. All crop models were calibrated for high, medium, and low precipitation dryland sites and one irrigated site using 1979–2010 as the baseline period. All five models were run from years 2000 to 2100 to evaluate the effect of future conditions (precipitation, temperature and atmospheric CO2 on winter wheat grain yield. Simulations of future climatic conditions and impacts were organized into three 31-year periods centered around the years 2030, 2050, and 2070. All models predicted a decrease of the growing season length and crop transpiration, and increase in transpiration-use efficiency, biomass production, and yields, but with substantial variation that increased from the 2030s to 2070s. Most of the uncertainty (up to 85% associated with predictions of yield was due to variation among the crop models. Maximum uncertainty due to GCMs was 15% which was less than the maximum uncertainty associated with the interaction between the crop model effect and GCM effect (25%. Large uncertainty associated with the interaction between crop models and GCMs indicated that the effect of GCM on yield varied among the five models. The mean of the ensemble of all crop models and GCMs

  3. AMMI and GGE biplot analysis for yield stability of promising bread wheat genotypes in bangladesh

    International Nuclear Information System (INIS)

    Ashrafulalam, M.; Li, M.; Farhad, M.; Hakim, M. A.

    2017-01-01

    Identification of stable and high yielding varieties under different environmental conditions prior to release as a variety is the major steps for plant breeding. Eight promising wheat genotypes were evaluated against two standard checks across five locations under terminal heat stress condition. The experimental design was an RCBD with three replications in over one year. AMMI analyses exhibited significant (p<0.01) variation in genotype, location and genotype by location interaction with respect to grain yield. The ASV value revealed that GEN4, GEN9, and GEN8 were stable, while GEN5, GEN1, and GEN6 were the most sensitive genotypes. The GGE results also confirmed GEN3, GEN7, GEN8, GEN9 and GEN4 were the most stable cultivars. Five distant mega-environments were identified including Dinajpur and Jamalpur with GEN3, GEN7 and GEN8 as the most favorable, Joydebpur, Rajshahi and Jessore with GEN4 and GEN9 as the most favorable. Genotype GEN7 and GEN8 showed highly resistant to BpLB, GEN3 and GEN4 showed moderately resistance to BpLB, and GEN9 showed moderate susceptible to BpLB. On the other hand, these five genotypes performed resistance to leaf rust. The genotype GEN7 (BAW 1202) was released as BARI Gom 32. Considering all analysis, GEN3 (BAW 1194), GEN7 (BAW 1202) and GEN8 (BAW 1203) demonstrated more stable genotypes with high mean yield, resistant to BpLB and leaf rust. Thus it is indicated that these genotypes can be used as suitable plant material for future breeding programs. (author)

  4. Induced mutation aiming at obtaining lodging resistance in wheat C V.Omid(Triticum Aestivum)

    International Nuclear Information System (INIS)

    Majd, F.; Rezazadeh, M.; Ghohari, A.

    1993-01-01

    Mutation breeding has been an important part breeding research for solving some of the existing problems related to wheat. A locally adopted wheat cultivar 'Omid' which is a traditionally tall wheat mostly cultivated in regions with a continental climate and is susceptible to lodging was chosen as research material. The nuclear research department for agriculture of Atomic Energy Organization of Iran initiated a mutation breeding program for creating genetic variability in wheat using this local cultivar. Seeds of this variety was irradiated with gamma radiation (50-150 Gy) to induce short straw mutants with greater lodging resistance and yield potential. from a total of about 20000 irradiated seeds 1500 plants showing promising agronomic character were isolated as potential mutants. Following progeny tests and selection 18 mutants lines entered preliminary yield trail. Further field trails at different locations gave two promising lines which are characterized by higher yield, lodging resistance and early maturity. (author). 3 tabs

  5. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Aziz, H.M.M.; Hasaneen, M.N.A.; Ome, A.M.

    2016-11-01

    Nanofertilizers have become a pioneer approach in agriculture research nowadays. In this paper we investigate the delivery of chitosan nanoparticles loaded with nitrogen, phosphorus and potassium (NPK) for wheat plants by foliar uptake. Chiotsan-NPK nanoparticles were easily applied to leaf surfaces and entered the stomata via gas uptake, avoiding direct interaction with soil systems. The uptake and translocation of nanoparticles inside wheat plants was investigated by transmission electron microscopy. The results revealed that nano particles were taken up and transported through phloem tissues. Treatment of wheat plants grown on sandy soil with nano chitosan-NPK fertilizer induced significant increases in harvest index, crop index and mobilization index of the determined wheat yield variables, as compared with control yield variables of wheat plants treated with normal non-fertilized and normal fertilized NPK. The life cycle of the nano-fertilized wheat plants was shorter than normal-fertilized wheat plants with the ratio of 23.5% (130 days compared with 170 days for yield production from date of sowing). Thus, accelerating plant growth and productivity by application of nanofertilizers can open new perspectives in agricultural practice. However, the response of plants to nanofertilizers varies with the type of plant species, their growth stages and nature of nanomaterials. (Author)

  6. Differential growth and yield by canola (Brassica napus L.) and wheat (Triticum aestivum L.) arising from alterations in chemical properties of sandy soils due to additions of fly ash.

    Science.gov (United States)

    Yunusa, Isa A M; Manoharan, Veeragathipillai; Harris, Rob; Lawrie, Roy; Pal, Yash; Quiton, Jonathan T; Bell, Richard; Eamus, Derek

    2013-03-30

    There is a need for field trials on testing agronomic potential of coal fly ash to engender routine use of this technology. Two field trials were undertaken with alkaline and acidic fly ashes supplied at between 3 and 6 Mg ha⁻¹ to acidic soils and sown to wheat and canola at Richmond (Eastern Australia) and to wheat only at Merredin (Western Australia). Ash addition marginally (PAPSIM at Richmond over a 100-year period (1909-2008) predicted yield increases in 52% of years with addition of ash at 3.0 Mg ha⁻¹ compared with 24% of years with addition of ash at 6.0 Mg ha⁻¹. The simulated yield increases did not exceed 40% over the control with addition of 6 Mg ha⁻¹ ash, but was between 40% and 50% with an addition rate of 3 Mg ha⁻¹. We found no evidence of phytotoxicity in either crop in this unusually dry year and there is still a need for further field assessment in years with favourable rainfall to enable development of clear recommendations on fly ash rates for optimum yield benefits. © 2012 Society of Chemical Industry.

  7. The Effect of Plant Growth Promoting Rhizobacteria (PGPR and Phosphate Solubilizing Microorganism (PSM on Yield and Yield Components of Wheat (cv. N80 under Different Nitrogen and Phosphorous Fertilizers Levels in Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    S. H Bahari saravi

    2013-04-01

    Full Text Available In order to evaluate the effect of plant growth promoting rhizobacteria (PGPR and phosphate solubilizing microorganism (PSM on yield and yield components of wheat a pot experiment was conducted at Sari Agricultural Sciences and Natural Resources University during 2009. Experiment was arranged in factorial based on completely randomized design in three replicates. Treatments were included bio-fertilizer in four levels (non-inoculation control, Phosphate Barvare 2 (Pseudomonas fluorescens+Bacillus subtilis, Supernitroplus (Azotobacter brasilense+Azospirillum lipoferum and Nitroxine (Azospirillum + Pseudomona + Bacillus, three levels of chemical nitrogen fertilizer (0, 75 and 150 kg urea/ha and three levels of phosphorus fertilizer (0, 60 and 120 kg super phosphate triple/ha. Results showed that the studied treatments (biofertilizer, nitrogen and phosphate inorganic fertilizers had significant effect on grain number per spike, 1000 grain weight, grain yield, straw yield, biological yield and harvest index. Interaction effect between biofertilizer and chemical fertilizers was significant in terms of grain yield. The maximum grain yield was resulted from simultaneously applying of Nitroxine and 75 kg ha-1 nitrogen fertilizer. By contrast, the highest straw yield was obtained when 150 kg nitrogen fertilizer was used. Grain yield had the maximum correlation with biological yield (r=0.85**. Grain yield positively and significantly correlated with grain number per spike (r=0.73**, 1000 grain weight (r=0.68**, straw yield (r=0.56** and harvest index (r=0.69**. In conclusion biofertilizer inoculations could reduce application of nitrogen and phosphorus chemical fertilizers and increase plant performance.

  8. Simulation of spring wheat responses to elevated CO2 and temperature by using CERES-wheat crop model

    Directory of Open Access Journals (Sweden)

    H. LAURILA

    2008-12-01

    Full Text Available The CERES-wheat crop simulation model was used to estimate the changes in phenological development and yield production of spring wheat (Triticum aestivum L., cv. Polkka under different temperature and CO2 growing conditions. The effects of elevated temperature (3-4°C and CO2 concentration (700 ppm as expected for Finland in 2100 were simulated. The model was calibrated for long-day growing conditions in Finland. The CERES-wheat genetic coefficients for cv. Polkka were calibrated by using the MTT Agrifood Research Finland (MTT official variety trial data (1985-1990. Crop phenological development and yield measurements from open-top chamber experiments with ambient and elevated temperature and CO2 treatments were used to validate the model. Simulated mean grain yield under ambient temperature and CO2 conditions was 6.16 t ha-1 for potential growth (4.49 t ha-1 non-potential and 5.47 t ha-1 for the observed average yield (1992-1994 in ambient open-top chamber conditions. The simulated potential grain yield increased under elevated CO2 (700 ppm to 142% (167% non-potential from the simulated reference yield (100%, ambient temperature and CO2 350 ppm. Simulations for current sowing date and elevated temperature (3°C indicate accelerated anthesis and full maturity. According to the model estimations, potential yield decreased on average to 80.4% (76.8% non-potential due to temperature increase from the simulated reference. When modelling the concurrent elevated temperature and CO2 interaction, the increase in grain yield due to elevated CO2 was reduced by the elevated temperature. The combined CO2 and temperature effect increased the grain yield to 106% for potential growth (122% non-potential compared to the reference. Simulating the effects of earlier sowing, the potential grain yield increased under elevated temperature and CO2 conditions to 178% (15 days earlier sowing from 15 May, 700 ppm CO2, 3°C from the reference. Simulation results suggest

  9. First report of Fusarium redolens causing crown rot of wheat (Triticum spp.) in Turkey

    Science.gov (United States)

    Fusarium crown rot, caused by a complex of Fusarium spp., is a yield-limiting disease of wheat world-wide, especially in dry Mediterranean climates. In order to identify Fusarium species associated with crown rot of wheat, a survey was conducted in summer 2013 in the major wheat growing regions of T...

  10. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    Science.gov (United States)

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  11. [Adaptability of APSIM model in Southwestern China: A case study of winter wheat in Chongqing City].

    Science.gov (United States)

    Dai, Tong; Wang, Jing; He, Di; Zhang, Jian-ping; Wang, Na

    2015-04-01

    Field experimental data of winter wheat and parallel daily meteorological data at four typical stations in Chongqing City were used to calibrate and validate APSIM-wheat model and determine the genetic parameters for 12 varieties of winter wheat. The results showed that there was a good agreement between the simulated and observed growth periods from sowing to emergence, flowering and maturity of wheat. Root mean squared errors (RMSEs) between simulated and observed emergence, flowering and maturity were 0-3, 1-8, and 0-8 d, respectively. Normalized root mean squared errors (NRMSEs) between simulated and observed above-ground biomass for 12 study varieties were less than 30%. NRMSE between simulated and observed yields for 10 varieties out of 12 study varieties were less than 30%. APSIM-wheat model performed well in simulating phenology, aboveground biomass and yield of winter wheat in Chongqing City, which could provide a foundational support for assessing the impact of climate change on wheat production in the study area based on the model.

  12. QTLs for seedling traits under salinity stress in hexaploid wheat

    OpenAIRE

    Ren, Yongzhe; Xu, Yanhua; Teng, Wan; Li, Bin; Lin, Tongbao

    2018-01-01

    ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs) associated with salinity tolerance of wheat under 150mM NaCl co...

  13. Summer fallow soil management - impact on rainfed winter wheat

    DEFF Research Database (Denmark)

    Li, Fucui; Wang, Zhaohui; Dai, Jian

    2014-01-01

    Summer fallow soil management is an important approach to improve soil and crop management in dryland areas. In the Loess Plateau regions, the annual precipitation is low and varies annually and seasonally, with more than 60% concentrated in the summer months from July to September, which...... is the summer fallow period in the winter wheat-summer fallow cropping system. With bare fallow in summer as a control, a 3-year location-fixed field experiment was conducted in the Loess Plateau to investigate the effects of wheat straw retention (SR), green manure (GM) planting, and their combination on soil...... water retention (WR) during summer fallow, winter wheat yield, and crop water use and nitrogen (N) uptake. The results showed that SR increased soil WR during summer fallow by 20 mm on average compared with the control over 3 experimental years but reduced the grain yield by 8% in the third year...

  14. EFFECT OF REPLACING COCOA HUSK FOR WHEAT BRAN ON ...

    African Journals Online (AJOL)

    Carcass yield, serum metabolites and economy of production of cockerels were studied for 12 weeks to determine the effect of replacing wheat bran with cocoa husk at 0, 25, 50, 75 and 100% levels. Results of eviscerated yield were statistically different (P<0.05). Highest eviscerated yield of 70.52% was obtained from 25% ...

  15. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  16. Performance of diverse wheat genetic stocks under moisture stress condition

    International Nuclear Information System (INIS)

    Seher, M.; Shabbir, G.; Rasheed, A.

    2015-01-01

    This study was conducted to evaluate divergent wheat germplasm for their performance under drought and control conditions. The germplasm consists of wheat land races of Pakistan, advanced D-genome synthetic derivatives and high yielding varieties of Pakistan. This wide array of germplasm was selected to identify sources, which can be opted later by the wheat breeders while breeding for drought tolerance. The evaluation parameters involved some important physiochemical testing and morphological characteristics in the field under drought and control conditions. Based on these parameters, 13 wheat genotypes were selected on the basis of their best performance regarding morphological and physiological parameters. These genotypes exhibited higher yield under drought stress conditions and increased percentage of proline, sugar, SOD and protein content under laboratory conditions as compared to the susceptible genotypes. Correlation studies revealed that grains per spike (GPS) and thousand grain weight (TGW) had direct relationship with spike length (SL), proline and sugar content under both control and drought conditions. Thus, these parameters can be used as selection criteria for the identification of tolerant genotypes. (author)

  17. Effect of osmopriming sources and moisture stress on wheat

    International Nuclear Information System (INIS)

    Amin, R.; Khan, A.Z.; Khalil, S.K.

    2012-01-01

    Wheat yield in Pakistan is very low due to poor germination and poor stand establishment and optimum amount of water availability at critical growth stages. To cope with these problems experiments were planned including control and nine osmopriming sources per liter of water that is PEG (100 g), KCl (37.25 g), KNO/sub 3/ (101 g), NaCl (58.5 g), NH/sub 4/ Cl (53.5 g), CaCl/sub 2/ (55.5 g), Mannitol (20 g), Na/sub 2/ SO/sub 4/ (71 g) and hydro priming. In the filed these were studied at three moisture stresses of 60, 70 and 80% MAD (management allowable depletion). The experiments were repeated during 2008 and 2009 and were laid out in randomized complete block design with split plot arrangement replicated three times. Moisture stress was allotted to main plots and osmopriming sources to sub plots. Best combinations of moisture stress (M) and osmopriming sources (OPS) significantly affected pheno logical and grain yield components of wheat. Increased moisture stress showed decreased pheno logical life of the wheat. Hence lowest days to maturity (157.1) were noted for 80% MAD. The optimum MAD (70%) contributed to maximum grain yield (3348.6 kg ha/sup -1/). Wheat showed variation in response to osmopriming sources. Minimum days to emergence (8.1) were noted for PEG. While KNO/sub 3/ osmoprimed seeds took lowest days to maturity (155.4). Highest emergence m/sup -2/ (82), thousand grains weight (39.97 g), and grain yield (3481 kg ha/sup -1/) were recorded for PEG (100 g L/sup -1/ of water). Likewise KNO/sub 3/ (101 g L/sup -1/ of water) osmoprimed seeds attained highest number of grains spike/sup -1/ (51.0). From this study it was concluded that wheat seeds may be osmoprimed with PEG, Na/sub 2/ SO/sub 4/, KNO/sub 3/, CaCl/sub 2/ and water along with the application of 70% MAD irrigation at critical growth stages for gaining high yield. However, due to the high prices of PEG and other osmopriming sources in the market hydro priming is recommended for gaining high net

  18. Demonstration of an Integrated Pest Management Program for Wheat in Tajikistan

    Science.gov (United States)

    Landis, Douglas A.; Saidov, Nurali; Jaliov, Anvar; El Bouhssini, Mustapha; Kennelly, Megan; Bahlai, Christie; Landis, Joy N.; Maredia, Karim

    2016-01-01

    Wheat is an important food security crop in central Asia but frequently suffers severe damage and yield losses from insect pests, pathogens, and weeds. With funding from the United States Agency for International Development, a team of scientists from three U.S. land-grant universities in collaboration with the International Center for Agricultural Research in Dry Areas and local institutions implemented an integrated pest management (IPM) demonstration program in three regions of Tajikistan from 2011 to 2014. An IPM package was developed and demonstrated in farmer fields using a combination of crop and pest management techniques including cultural practices, host plant resistance, biological control, and chemical approaches. The results from four years of demonstration/research indicated that the IPM package plots almost universally had lower pest abundance and damage and higher yields and were more profitable than the farmer practice plots. Wheat stripe rust infestation ranged from 30% to over 80% in farmer practice plots, while generally remaining below 10% in the IPM package plots. Overall yield varied among sites and years but was always at least 30% to as much as 69% greater in IPM package plots. More than 1,500 local farmers—40% women—were trained through farmer field schools and field days held at the IPM demonstration sites. In addition, students from local agricultural universities participated in on-site data collection. The IPM information generated by the project was widely disseminated to stakeholders through peer-reviewed scientific publications, bulletins and pamphlets in local languages, and via Tajik national television. PMID:28446990

  19. Studies on seed yield potential of some selected kenaf (Hibiscus ...

    African Journals Online (AJOL)

    SAM

    2014-06-11

    Jun 11, 2014 ... Kenaf seed yield depends on morpho-physiological traits between varieties, .... separated using Duncan's Multiple Range Test (DMRT) at 5% ... Mean squares derived from combined analysis of variance for seed yield and yield components in 20 .... environment interaction and yield stability in winter wheat.

  20. Sensitivity of European wheat to extreme weather

    DEFF Research Database (Denmark)

    Mäkinen, H; Kaseva, J; Trnka, M

    2018-01-01

    The frequency and intensity of extreme weather is increasing concomitant with changes in the global climate change. Although wheat is the most important food crop in Europe, there is currently no comprehensive empirical information available regarding the sensitivity of European wheat to extreme...... weather. In this study, we assessed the sensitivity of European wheat yields to extreme weather related to phenology (sowing, heading) in cultivar trials across Europe (latitudes 37.21° to 61.34° and longitudes −6.02° to 26.24°) during the period 1991–2014. All the observed agro-climatic extremes (≥31 °C...... wheat cultivars that responded positively (+10%) to drought after sowing, or frost during winter (−15 °C and −20 °C). Positive responses to extremes were often shown by cultivars associated with specific regions, such as good performance under high temperatures by southern-origin cultivars. Consequently...