WorldWideScience

Sample records for space center environmental

  1. Kennedy Space Center environmental health program

    International Nuclear Information System (INIS)

    Marmaro, G.M.; Cardinale, M.A.; Summerfield, B.R.; Tipton, D.A.

    1992-01-01

    The Kennedy Space Center's environmental health organization is responsible for programs which assure its employees a healthful workplace under diverse and varied working conditions. These programs encompass the disciplines of industrial hygiene, radiation protection (health physics), and environmental sanitation/pollution control. Activities range from the routine, such as normal office work, to the highly specialized, such as the processing of highly toxic and hazardous materials

  2. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  3. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    Science.gov (United States)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  4. Final Environmental Assessment for the California Space Center at Vandenberg Air Force Base, California

    Science.gov (United States)

    2010-06-02

    rooted , mesophylic plant species that Chapter 3. Affected Environment Final Environmental Assessment - California Space Center, Vandenberg Air...Chapter 3. Affected Environment 3-12 Final Environmental Assessment - California Space Center, Vandenberg Air Force Base the root and debris zone of the...protruding objects, slippery soils or mud, and biological hazards including vegetation (i.e. poison oak and stinging nettle ), animals (i.e. insects

  5. Environmental control and life support testing at the Marshall Space Flight Center

    Science.gov (United States)

    Schunk, Richard G.; Humphries, William R.

    1987-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) test program at the Marshall Space Flight Center (MSFC) is addressed. The immediate goals and current activities of the test program are discussed. Also described are the Core Module Integration Facility (CMIF) and the initial ECLSS test configuration. Future plans for the ECLSS test program and the CMIF are summarized.

  6. Environmental Assessment for the California Space Center at Vandenberg Air Force Base, California

    Science.gov (United States)

    2010-04-08

    shallow- rooted , mesophylic plant species that Chapter 3. Affected Environment Final Draft Environmental Assessment - California Space Center...buckwheat flowers and buds where the larvae feed until maturation. Upon maturation larvae burrow into the soil and pupate, usually within the root and...terrain, sharp or protruding objects, slippery soils or mud, and biological hazards including vegetation (i.e. poison oak and stinging nettle

  7. Environmental monitoring and research at the John F. Kennedy Space Center

    Science.gov (United States)

    Hall, C. R.; Hinkle, C. R.; Knott, W. M.; Summerfield, B. R.

    1992-01-01

    The Biomedical Operations and Research Office at the NASA John F. Kennedy Space Center has been supporting environmental monitoring and research since the mid-1970s. Program elements include monitoring of baseline conditions to document natural variability in the ecosystem, assessments of operations and construction of new facilities, and ecological research focusing on wildlife habitat associations. Information management is centered around development of a computerized geographic information system that incorporates remote sensing and digital image processing technologies along with traditional relational data base management capabilities. The proactive program is one in which the initiative is to anticipate potential environmental concerns before they occur and, by utilizing in-house expertise, develop impact minimization or mitigation strategies to reduce environmental risk.

  8. Environmental Physiology at the Johnson Space Center: Past, Present, and Future

    Science.gov (United States)

    Conkin, Johnny

    2007-01-01

    This viewgraph presentation reviews the work in environmental physiology done at Johnson Space Center (JSC). The work is aimed at keeping astronauts healthy. This is a different approach than treating the sick, and is more of an occupational health model. The reduction of risks is the main emphasis for this work. They emphasis is to reduce the risk of decompression sickness (DCS) and acute mountain sickness (AMS). The work in environmental physiology encompasses the following areas: (1) Pressure: hypobaric and hyperbaric (2) Gases: hypoxia and hyperoxia, hypercapnia--closed space issues, inert gas physiology / respiration (3) Temperature: hypothermia and hyperthermia, thermal comfort, Protective clothing diving, aviation, mountaineering, and space (4) Acceleration (5) Noise and Vibration (6) Exercise / Performance (6) Acclimatization / Adaptation: engineering solutions when necessary. This presentation reviews the work done at JSC in the areas of DCS and AMS.

  9. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    Science.gov (United States)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  10. Environmental spaces

    DEFF Research Database (Denmark)

    Larsen, Henrik Gutzon

    Using the development of intergovernmental environmental cooperation in the Baltic Sea area as a concrete example, the aim of this study is to explore how the 'environment' in situations of environmental interdependence is identified and institutionalised as political-geographical objects....... 'Environmental interdependence' is to this end conceptualised as a tension between 'political spaces' of discrete state territories and 'environmental spaces' of spatially nested ecosystems. This tension between geographies of political separateness and environmental wholeness is the implicit or explicit basis...... for a large and varied literature. But in both its critical and problemsolving manifestations, this literature tends to naturalise the spatiality of environmental concerns: environmental spaces are generally taken for granted. On the suggestion that there is a subtle politics to the specification...

  11. Space Environmental Effects (SEE) Testing Capability: NASA/Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Crave, Paul; Finckenor, Miria; Finchum, Charles; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the space environment can lead to materials degradation, reduction of functional lifetime, and system failure. Ground based testing is critical in predicting performance NASA/MSFC's expertise and capabilities make up the most complete SEE testing capability available.

  12. Preliminary study of environmental parameters associated with the feasibility of a polygeneration plant at Kennedy Space Center

    International Nuclear Information System (INIS)

    Barnes, G.D.

    1982-01-01

    The feasibility of a polygeneration plant at Kennedy Space Center was studied. Liquid hydrogen and gaseous nitrogen are the two principal products in consideration. Environmental parameters (air quality, water quality, biological diversity and hazardous waste disposal) necessary for the feasibility study were investigated. A National Environmental Policy Act (NEPA) project flow sheet was to be formulated for the environmental impact statement. Water quality criteria for Florida waters were to be established

  13. Environmental Modeling Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Modeling Center provides the computational tools to perform geostatistical analysis, to model ground water and atmospheric releases for comparison...

  14. Space Operations Learning Center

    Science.gov (United States)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.

  15. Environmental systems and management activities on the Kennedy Space Center, Merritt Island, Florida: results of a modeling workshop

    Science.gov (United States)

    Hamilton, David B.; Andrews, Austin K.; Auble, Gregor T.; Ellison, Richard A.; Farmer, Adrian H.; Roelle, James E.

    1985-01-01

    In the early 1960's, the National Aeronautics and Space Administration (NASA) began purchasing 140,000 acres on Merritt Island, Florida, in order to develop a center for space exploration. Most of this land was acquired to provide a safety and security buffer around NASA facilities. NASA, as the managing agency for the Kennedy Space Center (KSC), is responsible for preventing or controlling environmental pollution from the Federal facilities and activities at the Space Center and is committed to use all practicable means to protect and enhance the quality of the surrounding environment. The Merritt Island National Wildlife Refuge was established in 1963 when management authority for undeveloped lands at KSC was transferred to the U.S. Fish and Wildlife Service. In addition to manage for 11 Federally-listed threatened and endangered species and other resident and migratory fish and wildlife populations, the Refuge has comanagement responsibility for 19,000 acres of mosquito control impoundments and 2,500 acres of citrus groves. The Canaveral National Seashore was developed in 1975 when management of a portion of the coastal lands was transferred from NASA to the National Park Service. This multiagency jurisdiction on Merritt Island has resulted in a complex management environment. The modeling workshop described in this report was conducted May 21-25, 1984, at the Kennedy Space Center to: (1) enhance communication among the agencies with management responsibilities on Merritt Island; (2) integrate available information concerning the development, management, and ecology of Merritt Island; and (3) identify key research and monitoring needs associated with the management and use of the island's resources. The workshop was structured around the formulation of a model that would simulate primary management and use activities on Merritt Island and their effects on upland, impoundment, and estuarine vegetation and associated wildlife. The simulation model is composed of

  16. Center for Environmental Health Sciences

    Data.gov (United States)

    Federal Laboratory Consortium — The primary research objective of the Center for Environmental Health Sciences (CEHS) at the University of Montana is to advance knowledge of environmental impacts...

  17. Stennis Space Center celebrates Native American culture

    Science.gov (United States)

    2009-01-01

    Famie Willis (left), 2009-2010 Choctaw Indian Princess, displays artifacts during Native American Heritage Month activities at Stennis Space Center on Nov. 24. The celebration featured various Native American cultural displays for Stennis employees to view. Shown above are (l to r): Willis, Elaine Couchman of NASA Shared Services Center, John Cecconi of NSSC and Lakeisha Robertson of the Environmental Protection Agency.

  18. Environmental project and public space rehabilitation: the great project for the historic center of Naples Unesco World Heritage Site

    Directory of Open Access Journals (Sweden)

    Mario Losasso

    2014-05-01

    Full Text Available “Historic Centre of Naples, World Heritage Site Enhancement” project has as its goal the rehabilitation of the oldest part of the historic center of Naples, one of the largest and most representative of Europe. The research reference field is placed on the level of strategic approach to the project and process management downstream of EU funding in large cities, with particular multidisciplinary relevance and urban issues of a complex nature. The scientific products of study, training and research were collected in Guidelines for the rehabilitation of public spaces and for sustainable performance of interventions on roads, walkways, squares and urban facilities.

  19. Environmental Education Center.

    Science.gov (United States)

    Holmes (Warren) Co. and Black (Kenneth) Associate, Architects, Lansing, MI.

    Public awareness and concern for our natural environment have rapidly increased. With new demands for knowledge and action concerning all aspects of environmental quality, schools have begun to incorporate into their curriculums new programs emphasizing environmental awareness and appreciation at all age levels. To bring students into further…

  20. Esrange Space Center, a Gate to Space

    Science.gov (United States)

    Widell, Ola

    Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.

  1. Space Environmental Effects Knowledgebase

    Science.gov (United States)

    Wood, B. E.

    2007-01-01

    This report describes the results of an NRA funded program entitled Space Environmental Effects Knowledgebase that received funding through a NASA NRA (NRA8-31) and was monitored by personnel in the NASA Space Environmental Effects (SEE) Program. The NASA Project number was 02029. The Satellite Contamination and Materials Outgassing Knowledgebase (SCMOK) was created as a part of the earlier NRA8-20. One of the previous tasks and part of the previously developed Knowledgebase was to accumulate data from facilities using QCMs to measure the outgassing data for satellite materials. The main object of this current program was to increase the number of material outgassing datasets from 250 up to approximately 500. As a part of this effort, a round-robin series of materials outgassing measurements program was also executed that allowed comparison of the results for the same materials tested in 10 different test facilities. Other programs tasks included obtaining datasets or information packages for 1) optical effects of contaminants on optical surfaces, thermal radiators, and sensor systems and 2) space environmental effects data and incorporating these data into the already existing NASA/SEE Knowledgebase.

  2. Kennedy Space Center Spaceport Analysis

    Science.gov (United States)

    Wary, Samantha A.

    2013-01-01

    Until the Shuttle Atlantis' final landing on July 21, 2011, Kennedy Space Center (KSC) served as NASA's main spaceport, which is a launch and landing facility for rockets and spacecraft that are attempting to enter orbit. Many of the facilities at KSC were created to assist the Shuttle Program. One of the most important and used facilities is the Shuttle Landing Facility (SLF), This was the main landing area for the return of the shuttle after her mission in space. · However, the SLF has also been used for a number of other projects including straight-line testing by Gibbs Racing, weather data collection by NOAA, and an airfield for the KSC helicopters. This runway is three miles long with control tower at midfield and a fire department located at the end in care of an emergency. This facility, which was part of the great space race, will continue to be used for historical events as Kennedy begins to commercialize its facilities. KSC continues to be an important spaceport to the government, and it will transform into an important spaceport for the commercial industry as well. During my internship at KSC's Center Planning and Development Directorate, I had the opportunity to be a part of the negotiation team working on the agreement for Space Florida to control the Shuttle Landing Facility. This gave me the opportunity to learn about all the changes that are occurring here at Kennedy Space Center. Through various meetings, I discovered the Master Plan and its focus is to transform the existing facilities that were primarily used for the Shuttle Program, to support government operations and commercial flights in the future. This. idea is also in a new strategic business plan and completion of a space industry market analysis. All of these different documentations were brought to my attention and I. saw how they came together in the discussions of transitioning the SLF to a commercial operator, Space Florida. After attending meetings and partaking in discussions for

  3. National Space Science Data Center Master Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Space Science Data Center serves as the permanent archive for NASA space science mission data. 'Space science' means astronomy and astrophysics, solar...

  4. Kennedy Space Center Five Year Sustainability Plan

    Science.gov (United States)

    Williams, Ann T.

    2016-01-01

    The Federal Government is committed to following sustainable principles. At its heart, sustainability integrates environmental, societal and economic solutions for present needs without compromising the ability of future generations to meet their needs. Building upon its pledge towards environmental stewardship, the Administration generated a vision of sustainability spanning ten goals mandated within Executive Order (EO) 13693, Planning for Federal Sustainability in the Next Decade. In November 2015, the National Aeronautics and Space Administration (NASA) responded to this EO by incorporating it into a new release of the NASA Strategic Sustainability Performance Plan (SSPP). The SSPP recognizes the importance of aligning environmental practices in a manner that preserves, enhances and strengthens NASA's ability to perform its mission indefinitely. The Kennedy Space Center (KSC) is following suit with KSC's Sustainability Plan (SP) by promoting, maintaining and pioneering green practices in all aspects of our mission. KSC's SP recognizes that the best sustainable solutions use an interdisciplinary, collaborative approach spanning civil servant and contractor personnel from across the Center. This approach relies on the participation of all employees to develop and implement sustainability endeavors connected with the following ten goals: Reduce greenhouse gas (GHG) emissions. Design, build and maintain sustainable buildings, facilities and infrastructure. Leverage clean and renewable energy. Increase water conservation. Improve fleet and vehicle efficiency and management. Purchase sustainable products and services. Minimize waste and prevent pollution. Implement performance contracts for Federal buildings. Manage electronic equipment and data centers responsibly. Pursue climate change resilience. The KSC SP details the strategies and actions that address the following objectives: Reduce Center costs. center dot Increase energy and water efficiencies. Promote smart

  5. A continuation of base-line studies for environmentally monitoring Space Transportation Systems (STS) at John F. Kennedy Space Center. Volume 4: Threatened and endangered species of the Kennedy Space Center. Part 1: Marine turtle studies

    Science.gov (United States)

    Ehrhart, L. M.

    1980-01-01

    The status of marine turtle populations in the KSC area was studied using data from previous results from ground and aerial surveillance conducted from 1976 to April 1979. During ground surveillance, various data were recorded on emergent turtles such as: species, weight, tag number (if previously tagged), time discovered, activity at discovery and the location of discovery. Observations were also made on nesting and reproductive characteristics, population estimates, immigration and emigration and growth rate of the turtles. Mortality studies were additionally made and autopsies performed on dead turtles found in the area. It is concluded that further mortality documentation should be done just prior to and just after a future space launch operation in order to accurately assess the cause and effect relationship of such a launch on the turtle population.

  6. INFINITY at NASA Stennis Space Center

    Science.gov (United States)

    2010-01-01

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  7. A Continuation of Base-Line Studies for Environmentally Monitoring Space Transportation System (STS) at John F. Kennedy Space Center. Volume 1; Terrestrial Community Analysis

    Science.gov (United States)

    Stout, I. J.

    1979-01-01

    Vegetation and small mammal populations in or around the Merritt Island area were studied. Thirty sites were selected from plant communities which were relatively free of logging, grazing, and clearing operations. The vegetative analysis was designed to yield a quantitative description and ecological explanation of the major types of upland vegetation in order to determine the possible future effects of NASA space activities on them. Changes in the relative abundance of small mammal populations, species diversity, standing crop biomass, reproductive activity, and other demographic features were documented in order to gather sufficient information on these populations so that it would be possible to detect even the smaller nonnatural behavior changes in the mammals which might be attributable to NASA space activities.

  8. Space Environmental Effects on Materials and Processes

    Science.gov (United States)

    Sabbann, Leslie M.

    2009-01-01

    The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.

  9. Aerial view of the Kennedy Space Center Visitor Center

    Science.gov (United States)

    1998-01-01

    The Kennedy Space Center Visitor Center, shown in this aerial view looking south, sprawls across 70 acres on Florida's Space Coast , and is located off State Road 405, NASA Parkway, six miles inside the Space Center entrance. SR 405 can be seen at the bottom of the photo. Just above the roadway, from left can be seen the Shuttle/Gantry mockup; the Post Show Dome; the Astronaut Memorial; and to the far right, the Center for Space Education. Behind the Memorial are a cluster of buildings that include the Theater Complex, Cafeteria, Space Flight Exhibit Building, Souvenir Sales Building, Spaceport Central, and Ticket Pavilion. At the upper right are various rockets that have played a significant role in the growth of the space program.

  10. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-10-31

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  11. National Center for Environmental Health

    Science.gov (United States)

    ... R S T U V W X Y Z # Environmental Health Topics Emergency and Environmental Health Services Chemical Weapons Elimination Environmental Health Services Healthy Homes Healthy Places – Community ...

  12. Kennedy Space Center: Swamp Works

    Science.gov (United States)

    DeFilippo, Anthony Robert

    2013-01-01

    scaffold materials, 80/20, and massive panels of Lexan. Once the chamber is completed, it is be filled with 120 tons of regolith and dubbed the largest regolith test chamber in the world. Through my experiences with building "Big Bin" as we called it, I discovered my demand for engaging and hands on activities. Through all of my incredible experiences working with the Swamp Works at Kennedy Space Center; I have obtained crucial knowledge, insights, and experiences that have fuelled, shaped, and will continue to drive me toward my ultimate goal of obtaining not only a degree in Engineering, but obtaining a job that I can call a career. I want to give much thanks to all of those who mentored me along my journey, and to all who made this opportunity a reality.

  13. Health services at the Kennedy Space Center

    Science.gov (United States)

    Ferguson, E. B.; Humbert, P.; Long, I. D.; Tipton, D. A.

    1992-01-01

    Comprehensive occupational health services are provided to approximately 17,000 workers at the Kennedy Space Center and an additional 6000 on Cape Canaveral Air Force Station. These areas cover about 120,000 acres encompassing part of the Merritt Island Wild Life Refuge and wetlands which are the habitat of numerous endangered and protected species of wildlife. The services provided at the Kennedy Space Center optimally assure a safe and healthy working environment for the employees engaged in the preparation and launching of this country's Space Shuttle and other important space exploration programs.

  14. Activities of the Center for Space Construction

    Science.gov (United States)

    1993-01-01

    The Center for Space Construction (CSC) at the University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the center is to conduct research into space technology and to directly contribute to space engineering education. The center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Science. The college has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction is prominent evidence of this record. At the inception of CSC, the center was primarily founded on the need for research on in-space construction of large space systems like space stations and interplanetary space vehicles. The scope of CSC's research has now evolved to include the design and construction of all spacecraft, large and small. Within this broadened scope, our research projects seek to impact the underlying technological basis for such spacecraft as remote sensing satellites, communication satellites, and other special purpose spacecraft, as well as the technological basis for large space platforms. The center's research focuses on three areas: spacecraft structures, spacecraft operations and control, and regolith and surface systems. In the area of spacecraft structures, our current emphasis is on concepts and modeling of deployable structures, analysis of inflatable structures, structural damage detection algorithms, and composite materials for lightweight structures. In the area of spacecraft operations and control, we are continuing our previous efforts in process control of in-orbit structural assembly. In addition, we have begun two new efforts in formal approach to spacecraft flight software systems design and adaptive attitude control systems. In the area of regolith and surface systems, we are continuing the work of characterizing the physical properties of lunar

  15. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-09-30

    The Princeton Plasma Physics Laboratory (PPPL) demonstration of the diamond wire cutting technology on the surrogate of the Tokamak Fusion Test Reactor (TFTR), Figure 1, was performed from August 23-September 3, 1999. The plated diamond wire, Figure 2, was successful in cutting through all components of the TFTR surrogate including stainless steel, inconel and graphite. The demonstration tested three different void fill materials (mortar with sand, Rheocell-15, and foam) and three cooling systems (water, air, and liquid nitrogen). The optimum combination was determined to be the use of the low-density concrete void fill, Rheocell-15 with an average density of 52 lbs/ft{sup 3}, using a water coolant. However, the liquid nitrogen performed better than expected with only minor problems and was considered to be a successful demonstration of the Bluegrass Concrete Cutting, Inc. proprietary liquid-nitrogen coolant system. Data from the demonstration is being calculated and a summary of the technology demonstration will be included in the October monthly report. An ITSR will be written comparing the diamond wire saw to the plasma arc (baseline) technology. The MTR Chemical Protective Suit, a proprietary new suit from Kimberly Clark, was evaluated from 8/9/99 to 8/12/99 at Beaver, WV. This particular suit was tested on subjects performing three different tasks: climbing through a horizontal confined space, vertical confined space (pit), and loading and unloading material using a wheel barrow. Multiple test subjects performed each task for 20 minutes each. Performance of the innovative suit was compared to two commonly used types of protective clothing. Vital statistics, including body temperature and heart rate, were continuously monitored and recorded by an authorized physician. A summary of the demonstration will be included in the October monthly report. Along with the MTR Chemical Protective Suit, the VitalSense{trademark} Telemetric Monitoring System from Mini Mitter

  16. Networking at NASA. Johnson Space Center

    Science.gov (United States)

    Garman, John R.

    1991-01-01

    A series of viewgraphs on computer networks at the Johnson Space Center (JSC) are given. Topics covered include information resource management (IRM) at JSC, the IRM budget by NASA center, networks evolution, networking as a strategic tool, the Information Services Directorate charter, and SSC network requirements, challenges, and status.

  17. Transportation Technical Environmental Information Center index

    International Nuclear Information System (INIS)

    Davidson, C.A.; Foley, J.T.

    1979-01-01

    In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a ''Data Center'' of technical environmental information has been established by Sandia Laboratories, Division 5522, for the DOE Division of Environmental Control Technology. An index is presented which can be used to request data of interest

  18. Environmental Studies at the Guiana Space Centre

    Science.gov (United States)

    Richard, Sandrine

    2013-09-01

    The Environmental Commitment of the French Space Agency at the Guiana Space Centre (CNES / CSG) specifies that the environmental protection is a major stake. Consequently, CNES participates in numerous space programs that contribute significantly to a better knowledge, management and protection of our environment at a global scale.The studies and researches that are done at CNES / CSG meet several objectives:* Assessment of safety and environmental effects and risk related to the effects overflowing due to a pollution caused by ground and flight activities* Improvement of the studies related to the knowledge of the environment (flora and fauna monitoring).* Risk assessment and management which may affect the safety of people , property, and protection of public health and environment * Verification of the compliance of the results of impact studies of launch vehicle in flight phase provided by the launch operator (Technical Regulation) with the French Safety Operational Acts.In this note, study and research programs are presented. They allow a better knowledge of the surrounding environment and of impacts caused by the industrial activities done in Guiana Space Center.

  19. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  20. Marshall Space Flight Center Technology Investments Overview

    Science.gov (United States)

    Tinker, Mike

    2014-01-01

    NASA is moving forward with prioritized technology investments that will support NASA's exploration and science missions, while benefiting other Government agencies and the U.S. aerospace enterprise. center dotThe plan provides the guidance for NASA's space technology investments during the next four years, within the context of a 20-year horizon center dotThis plan will help ensure that NASA develops technologies that enable its 4 goals to: 1.Sustain and extend human activities in space, 2.Explore the structure, origin, and evolution of the solar system, and search for life past and present, 3.Expand our understanding of the Earth and the universe and have a direct and measurable impact on how we work and live, and 4.Energize domestic space enterprise and extend benefits of space for the Nation.

  1. Tomographic Environmental Sections for Environmental Mitigation Devices in Historical Centers

    Directory of Open Access Journals (Sweden)

    Roberta Cocci Grifoni

    2017-03-01

    Full Text Available Urban heat waves and the overall growing trend in the annual global temperature underline the importance of urban/architectural resilience and the need to reduce energy consumption. By designing urban voids, it is possible to create thermodynamic buffers, i.e., bubbles of controlled atmosphere that act as mediators between the natural and built environments, between the human body and the surrounding air, between meteorology and physiology (meteorological architecture. Multiple small actions in the urban fabric’s open spaces, such as replacing dark pavements or inserting vegetation and green spaces, are intended to improve outdoor comfort conditions and therefore the resilience of the city itself. This not only benefits the place’s quality, which is intrinsic to the new project, but also the insulating capacity of buildings, which are relieved of an external heat load. The design emphasis therefore changes from solid structures to the climate and weather conditions, which are invisible but perceivable. To design and control these constructed atmopheres, tomographic sections processed with computational fluid dynamics software (tomographic environmental section, TENS becomes necessary. It allows the effects of an extreme event on an outdoor environment to be evaluated in order to establish the appropriate (adaptive climate mitigation devices, especially in historical centers where energy retrofits are often discouraged. By fixing boundary conditions after a local intervention, the virtual environment can be simulated and then "sliced" to analyze initial values and verify the design improvements.

  2. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-03-30

    A vendor was selected for the diamond wire technology demonstration scheduled for this summer at Princeton Plasma Physics Laboratory (PPPL). A team consisting of personnel from FIU-HCET, PPPL, and AEA Technology reviewed the submitted bids. FIU-HCET will contract this vendor. At the SRS Ninth ICT teleconference, the ICT team discussed the status of the following demonstrations: LRAD; x-ray, K-edge; Strippable Coatings; Thermal Spray Vitrification; Cutting/Shearing/Dismantlement/Size Reduction; and Electrets. The LRAD demo is complete, and the x-ray/K-edge, Strippable Coatings, and Electrets demos are ongoing. The Asbestos and Thermal Spray Vitrification demos require more laboratory testing. The Cutting/Shearing/Dismantlement/Size Reduction demo is undergoing procurement. Five FIU-HCET staff members took the 1S0 14000 environmental auditor training course February 22-26, 1999, given by ASC. The test plan for the Facility Dismantlement Technology Assessment is finished and ready for internal review.

  3. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-04-30

    The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

  4. Transportation Technical Environmental Information Center index

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C. A.; Foley, J. T.

    1980-10-01

    In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a Data Center of technical environmental information has been established by Sandia National Laboratories, Division 5523, for the DOE Office of Transportation Fuel Storage. This document is an index which can be used to request data of interest. Access to the information held is not limited to Sandia personnel. The purpose of the Transportation Technical Environmental Information Center is to collect, analyze, store, and make available descriptions of the environment of transportation expressed in engineering terms. The data stored in the Center are expected to be useful in a variety of transportation related analyses. Formulations of environmental criteria for shipment of cargo, risk assessments, and detailed structural analyses of shipping containers are examples where these data have been applied. For purposes of indexing and data retrieval, the data are catalogued under two major headings: Normal and Abnormal Environments.

  5. Transportation Technical Environmental Information Center index

    International Nuclear Information System (INIS)

    Davidson, C.A.; Foley, J.T.

    1980-10-01

    In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a Data Center of technical environmental information has been established by Sandia National Laboratories, Division 5523, for the DOE Office of Transportation Fuel Storage. This document is an index which can be used to request data of interest. Access to the information held is not limited to Sandia personnel. The purpose of the Transportation Technical Environmental Information Center is to collect, analyze, store, and make available descriptions of the environment of transportation expressed in engineering terms. The data stored in the Center are expected to be useful in a variety of transportation related analyses. Formulations of environmental criteria for shipment of cargo, risk assessments, and detailed structural analyses of shipping containers are examples where these data have been applied. For purposes of indexing and data retrieval, the data are catalogued under two major headings: Normal and Abnormal Environments

  6. Space Flight Operations Center local area network

    Science.gov (United States)

    Goodman, Ross V.

    1988-01-01

    The existing Mission Control and Computer Center at JPL will be replaced by the Space Flight Operations Center (SFOC). One part of the SFOC is the LAN-based distribution system. The purpose of the LAN is to distribute the processed data among the various elements of the SFOC. The SFOC LAN will provide a robust subsystem that will support the Magellan launch configuration and future project adaptation. Its capabilities include (1) a proven cable medium as the backbone for the entire network; (2) hardware components that are reliable, varied, and follow OSI standards; (3) accurate and detailed documentation for fault isolation and future expansion; and (4) proven monitoring and maintenance tools.

  7. Renewable Energy at NASA's Johnson Space Center

    Science.gov (United States)

    McDowall, Lindsay

    2014-01-01

    NASA's Johnson Space Center has implemented a great number of renewable energy systems. Renewable energy systems are necessary to research and implement if we humans are expected to continue to grow and thrive on this planet. These systems generate energy using renewable sources - water, wind, sun - things that we will not run out of. Johnson Space Center is helping to pave the way by installing and studying various renewable energy systems. The objective of this report will be to examine the completed renewable energy projects at NASA's Johnson Space Center for a time span of ten years, beginning in 2003 and ending in early 2014. This report will analyze the success of each project based on actual vs. projected savings and actual vs. projected efficiency. Additionally, both positive and negative experiences are documented so that lessons may be learned from past experiences. NASA is incorporating renewable energy wherever it can, including into buildings. According to the 2012 JSC Annual Sustainability Report, there are 321,660 square feet of green building space on JSC's campus. The two projects discussed here are major contributors to that statistic. These buildings were designed to meet various Leadership in Energy and Environmental Design (LEED) Certification criteria. LEED Certified buildings use 30 to 50 percent less energy and water compared to non-LEED buildings. The objectives of this project were to examine data from the renewable energy systems in two of the green buildings onsite - Building 12 and Building 20. In Building 12, data was examined from the solar photovoltaic arrays. In Building 20, data was examined from the solar water heater system. By examining the data from the two buildings, it could be determined if the renewable energy systems are operating efficiently. Objectives In Building 12, the data from the solar photovoltaic arrays shows that the system is continuously collecting energy from the sun, as shown by the graph below. Building 12

  8. Stennis Space Center celebrates Diversity Day

    Science.gov (United States)

    2009-01-01

    Kendall Mitchell of the Naval Oceanographic Office (right) learns about the culture of Bolivia from Narda Inchausty, president of the Foreign Born Wives Association in Slidell, La., during 2009 Diversity Day events at NASA's John Stennis Space Center. Stennis hosted Diversity Day activities for employees on Oct. 7. The day's events included cultural and agency exhibits, diversity-related performances, a trivia contest and a classic car and motorcycle show. It also featured the first-ever sitewide Stennis Employee Showcase.

  9. Environmental Analysis of the Groningen City Center

    OpenAIRE

    GÓMEZ BUGEDA, RICARDO SANTIAGO

    2017-01-01

    This final thesis project is part of the research that is carrying out by the Gemeente Groningen in order to make the city center more sustainable and livable. The municipality of Groningen has recently published a conceptual development plan for improving the inner-city of Groningen, this report is called Bestemming Binnenstad 01/2016 . The main focus of this report is convert the city center to an environmental friendly downtown, reducing pollution, reroute public and private transpo...

  10. Business Plan: The Virginia Space Flight Center

    Science.gov (United States)

    Reed, Billie M.

    1997-01-01

    The Virginia Commercial Space Flight Authority (VCSFA) was established on July 1, 1995 and codified at Sections 9-266.1 et seq., Code of Virginia. It is governed by an eleven person Board of Directors representing industry, state and local government and academia. VCSFA has designated the Center for Commercial Space Infrastructure as its Executive Directorate and Operating Agent. This Business Plan has been developed to provide information to prospective customers, prospective investors, state and federal government agencies, the VCSFA Board and other interested parties regarding development and operation of the Virginia Space Flight Center (VSFC) at Wallops Island. The VSFC is an initiative sponsored by VCSFA to achieve its stated objectives in the areas of economic development and education. Further, development of the VSFC is in keeping with the state's economic goals set forth in Opportunity Virginia, the strategic plan for jobs and prosperity, which are to: (1) Strengthen the rapidly growing aerospace industry in space based services including launch services, remote sensing, satellite manufacturing and telecommunications; and (2) Capitalize on intellectual and technical resources throughout the state and become a leader in the development of advanced technology businesses.

  11. Transportation Technical Environmental Information Center index

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.A.; Foley, J.T.

    1982-06-01

    In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a Data Center of technical environmental information has been established by Sandia National Laboratories, Division 5523, for the DOE Office of Transportation Fuel Storage. This document is an index which can be used to request data of interest. Access to the information held is not limited to Sandia personnel.

  12. Transportation Technical Environmental Information Center index

    International Nuclear Information System (INIS)

    Davidson, C.A.; Foley, J.T.

    1982-06-01

    In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a Data Center of technical environmental information has been established by Sandia National Laboratories, Division 5523, for the DOE Office of Transportation Fuel Storage. This document is an index which can be used to request data of interest. Access to the information held is not limited to Sandia personnel

  13. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  14. Eastern forest environmental threat assessment center

    Science.gov (United States)

    Southern Research Station. USDA Forest Service

    2010-01-01

    The Eastern Forest Environmental Threat Assessment Center (EFETAC) provides the latest research and expertise concerning threats to healthy forests – such as insects and disease, wildland loss, invasive species, wildland fire, and climate change – to assist forest landowners, managers and scientists throughout the East. Established in 2005, EFETAC is a joint effort of...

  15. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Damiani, R. (Compiler)

    2017-01-01

    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College.

  16. Students build glovebox at Space Science Center

    Science.gov (United States)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  17. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Karr, G.

    2017-01-01

    The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates.

  18. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    Science.gov (United States)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  19. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F. (Compiler)

    2015-01-01

    The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm

  20. Electric Vehicles at Kennedy Space Center

    Science.gov (United States)

    Chesson, Bruce E.

    2007-01-01

    The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.

  1. Center for Space Power, Texas A and M University

    Science.gov (United States)

    Jones, Ken

    Johnson Controls is a 106 year old company employing 42,000 people worldwide with $4.7 billion annual sales. Though we are new to the aerospace industry we are a world leader in automobile battery manufacturing, automotive seating, plastic bottling, and facilities environment controls. The battery division produces over 24,000,000 batteries annually under private label for the new car manufacturers and the replacement market. We are entering the aerospace market with the nickel hydrogen battery with the help of NASA's Center for Space Power at Texas A&M. Unlike traditional nickel hydrogen battery manufacturers, we are reaching beyond the space applications to the higher volume markets of aircraft starting and utility load leveling. Though space applications alone will not provide sufficient volume to support the economies of scale and opportunities for statistical process control, these additional terrestrial applications will. For example, nickel hydrogen batteries do not have the environmental problems of nickel cadmium or lead acid and may someday start your car or power your electric vehicle. However you envision the future, keep in mind that no manufacturer moves into a large volume market without fine tuning their process. The Center for Space Power at Texas A&M is providing indepth technical analysis of all of the materials and fabricated parts of our battery as well as thermal and mechanical design computer modeling. Several examples of what we are doing with nickel hydrogen chemistry to lead to these production efficiencies are presented.

  2. Environmental Development Plan (EDP): space applications

    International Nuclear Information System (INIS)

    1978-04-01

    This Environmental Development Plan (EDP) identifies and examines the environmental, safety, health, and socioeconomic (ES and H) issues associated with the ongoing DOE Space Applications Program and the associated research, development, and demonstration programs. The EDP presents an ES and H research and development (R/D) program and strategy for timely resolutions of the issues and satisfaction of the associated requirements necessary for precluding impediments to the space nuclear systems technology. The EDP has been limited to the consideration of: (1) space nuclear power system nuclear fuel fabrication; (2) space nuclear power system heat source fabrication; (3) testing of subsystems and assembled systems; (4) R and D in support of space nuclear system development; (5) nuclear system responses to launch and reentry accidents; and (6) nuclear system environmental behavior and recovery

  3. Kennedy Space Center ITC-1 Internship Overview

    Science.gov (United States)

    Ni, Marcus

    2011-01-01

    As an intern for Priscilla Elfrey in the ITC-1 department, I was involved in many activities that have helped me to develop many new skills. I supported four different projects during my internship, which included the Center for Life Cycle Design (CfLCD), SISO Space Interoperability Smackdown, RTI Teacher Mentor Program, and the Discrete Event Simulation Integrated Visualization Environment Team (DIVE). I provided the CfLCD with web based research on cyber security initiatives involving simulation, education for young children, cloud computing, Otronicon, and Science, Technology, Engineering, and Mathematics (STEM) education initiatives. I also attended STEM meetings regarding simulation courses, and educational course enhancements. To further improve the SISO Simulation event, I provided observation feedback to the technical advisory board. I also helped to set up a chat federation for HLA. The third project involved the RTI Teacher Mentor program, which I helped to organize. Last, but not least, I worked with the DIVE team to develop new software to help visualize discrete event simulations. All of these projects have provided experience on an interdisciplinary level ranging from speech and communication to solving complex problems using math and science.

  4. The 10th Anniversary Of Daejeon Environmental Technology Development Center

    International Nuclear Information System (INIS)

    2010-12-01

    This book describes the Daejeon Environment Technology Development Center with pictures for ten years. It also introduces the purpose of the foundation and background of center, structure of the center, main project and role of the center, center logo, current situation of cost of project, research business for 10 years, business supporting the environmental corporate, environment education, public relations activity and vision and prospect of the Daejeon Environmental Technology Development Center.

  5. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    Science.gov (United States)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  6. Antarctic Martian Meteorites at Johnson Space Center

    Science.gov (United States)

    Funk, R. C.; Satterwhite, C. E.; Righter, K.; Harrington, R.

    2018-01-01

    This past year marked the 40th anniversary of the first Martian meteorite found in Antarctica by the ANSMET Antarctic Search for Meteorites) program, ALH 77005. Since then, an additional 14 Martian meteorites have been found by the ANSMET program making for a total of 15 Martian meteorites in the U. S. Antarctic meteorite collection at Johnson Space Center (JSC). Of the 15 meteorites, some have been paired so the 15 meteorites actually represent a total of approximately 9 separate samples. The first Martian meteorite found by ANSMET was ALH 77005 (482.500 g), a lherzolitic shergottite. When collected, this meteorite was split as a part of the joint expedition with the National Institute of Polar Research (NIPR) Japan. Originally classified as an "achondrite-unique", it was re-classified as a Martian lherzolitic shergottite in 1982. This meteorite has been allocated to 137 scientists for research and there are 180.934 g remaining at JSC. Two years later, one of the most significant Martian meteorites of the collection at JSC was found at Elephant Moraine, EET 79001 (7942.000 g), a shergottite. This meteorite is the largest in the Martian collection at JSC and was the largest stony meteorite sample collected during the 1979 season. In addition to its size, this meteorite is of particular interest because it contains a linear contact separating two different igneous lithologies, basaltic and olivine-phyric. EET 79001 has glass inclusions that contain noble gas and nitrogen compositions that are proportionally identical to the Martian atmosphere, as measured by the Viking spacecraft. This discovery helped scientists to identify where the "SNC" meteorite suite had originated, and that we actually possessed Martian samples. This meteorite has been allocated to 205 scientists for research and 5,298.435 g of sample is available.

  7. Environmental Impact Assessment and Space Activities

    Science.gov (United States)

    Viikari, L.

    these developments in way or another. In addition to national EIA regulations, there are also international agreements on EIA (i.a. the Espoo Convention) which establish their own EIA systems. In international law of outer space, environmental impact assessment is, however, not a well-established tool. The UN space treaties were drafted during a time when such consideratio ns were still not among the highest ranking items on national agendas. Therefore, these instruments fail to contain provisions regarding impact assessment, and also rest of the environmental content found in them is rather modest. The nearest equivalent to any impact assessment is contained in the Outer Space Treaty Article IX, namely the requirement of prior consultations in case of planned space activity or experiment that might cause "potentially harmful interference" with space activities of other St ates Parties. There also exist some applicable provisions on national level, such as the requirement of "formal assessment" on NASA programs of "[orbital] debris generation potential and debris mitigation options" in NASA Policy for Limiting Orbital Debris Generation (Art. 1.b). Also the national legislation of some space faring countries provides at least for the supply of some kind of information assessing the possible environmental consequences of proposed space activities. For instance, the Russian Statute on Lisencing Space Operations requires that for obtaining a license for space operation in the Russian Federation, the applicant has to supply, i.a. "documents confirming the safety of space operations (including ecological, fire and explosion safety) and the reliability of space equipment'"(Art.5.h). However, such provisions are obviously not enough for ensuring effective international regulation of the issue. The goal of this paper is to consider the usefulness of international environmental impact assessment for space activities. The space environment, however, is a unique arena in many ways

  8. Space Operations Learning Center Facebook Application

    Science.gov (United States)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The proposed Space Operations Learning Center (SOLC) Facebook module, initially code-named Spaceville, is intended to be an educational online game utilizing the latest social networking technology to reach a broad audience base and inspire young audiences to be interested in math, science, and engineering. Spaceville will be a Facebook application/ game with the goal of combining learning with a fun game and social environment. The mission of the game is to build a scientific outpost on the Moon or Mars and expand the colony. Game activities include collecting resources, trading resources, completing simple science experiments, and building architectures such as laboratories, habitats, greenhouses, machine shops, etc. The player is awarded with points and achievement levels. The player s ability increases as his/her points and levels increase. A player can interact with other players using multiplayer Facebook functionality. As a result, a player can discover unexpected treasures through scientific missions, engineering, and working with others. The player creates his/her own avatar with his/her selection of its unique appearance, and names the character. The player controls the avatar to perform activities such as collecting oxygen molecules or building a habitat. From observations of other successful social online games such as Farmville and Restaurant City, a common element of these games is having eye-catching and cartoonish characters, and interesting animations for all activities. This will create a fun, educational, and rewarding environment. The player needs to accumulate points in order to be awarded special items needed for advancing to higher levels. Trophies will be awarded to the player when certain goals are reached or tasks are completed. In order to acquire some special items needed for advancement in the game, the player will need to visit his/her neighboring towns to discover the items. This is the social aspect of the game that requires the

  9. Space Environmental Effects on Coated Tether Materials

    Science.gov (United States)

    Gittemeier, Keith A.; Hawk, Clark W.; Finckenor, Miria M.; Watts, Ed

    2005-01-01

    The University of Alabama in Huntsville s Propulsion Research Center has teamed with NASA's Marshall Space Flight Center (MSFC) to research the effects of atomic oxygen (AO) bombardment on coated tether materials. Tethers Unlimited Inc. has provided several candidate tether materials with various coatings for AO exposure in MSFC s Atomic Oxygen Beam Facility. Additional samples were exposed to ultraviolet (UV) radiation at MSFC. AO erodes most organic materials, and ultraviolet radiation embrittles polymers. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings, such as polyhedral oligomeric silsesquioxane (POSS) or metallization. Both TUI's Multi-Application Survivable Tether (MAST) Experiment and Marshall Space Flight Center s Momentum Exchange Electrodynamic Reboost (MXER) programs will benefit from this research by helping to determine tether materials and coatings that give the longest life with the lowest mass penalty.

  10. Space Station Freedom Environmental Health Care Program

    Science.gov (United States)

    Richard, Elizabeth E.; Russo, Dane M.

    1992-01-01

    The paper discusses the environmental planning and monitoring aspects of the Space Station Freedom (SSF) Environmental Health Care Program, which encompasses all phases of the SSF assembly and operation from the first element entry at MB-6 through the Permanent Manned Capability and beyond. Environmental planning involves the definition of acceptability limits and monitoring requirements for the radiation dose barothermal parameters and potential contaminants in the SSF air and water and on internal surfaces. Inflight monitoring will be implemented through the Environmental Health System, which consists of five subsystems: Microbiology, Toxicology, Water Quality, Radiation, and Barothermal Physiology. In addition to the environmental data interpretation and analysis conducted after each mission, the new data will be compared to archived data for statistical and long-term trend analysis and determination of risk exposures. Results of these analyses will be used to modify the acceptability limits and monitoring requirements for the future.

  11. Ecological Impacts of the Space Shuttle Program at John F. Kennedy Space Center, Florida

    Science.gov (United States)

    Hall, Carlton R.; Schmalzer, Paul A.; Breininger, David R.; Duncan, Brean W.; Drese, John H.; Scheidt, Doug A.; Lowers, Russ H.; Reyier, Eric A.; Holloway-Adkins, Karen G.; Oddy, Donna M.; hide

    2014-01-01

    The Space Shuttle Program was one of NASAs first major undertakings to fall under the environmental impact analysis and documentation requirements of the National Environmental Policy Act of 1969 (NEPA). Space Shuttle Program activities at John F. Kennedy Space Center (KSC) and the associated Merritt Island National Wildlife Refuge (MINWR) contributed directly and indirectly to both negative and positive ecological trends in the region through the long-term, stable expenditure of resources over the 40 year program life cycle. These expenditures provided support to regional growth and development in conjunction with other sources that altered land use patterns, eliminated and modified habitats, and contributed to cultural eutrophication of the Indian River Lagoon. At KSC, most Space Shuttle Program related actions were conducted in previously developed facilities and industrial areas with the exception of the construction of the shuttle landing facility (SLF) and the space station processing facility (SSPF). Launch and operations impacts were minimal as a result of the low annual launch rate. The majority of concerns identified during the NEPA process such as potential weather modification, acid rain off site, and local climate change did not occur. Launch impacts from deposition of HCl and particulates were assimilated as a result of the high buffering capacity of the system and low launch and loading rates. Metals deposition from exhaust deposition did not display acute impacts. Sub-lethal effects are being investigated as part of the Resource Conservation and Recovery Act (RCRA) regulatory process. Major positive Space Shuttle Program effects were derived from the adequate resources available at the Center to implement the numerous environmental laws and regulations designed to enhance the quality of the environment and minimize impacts from human activities. This included reduced discharges of domestic and industrial wastewater, creation of stormwater management

  12. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    Science.gov (United States)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  13. The Alabama Space and Rocket Center: The Second Decade.

    Science.gov (United States)

    Buckbee, Edward O.

    1983-01-01

    The Alabama Space and Rocket Center in Huntsville, the world's largest rocket and space museum, includes displays illustrating American rocket history, exhibits and demonstrations on rocketry principles and experiences, and simulations of space travel. A new project includes an integrated recreational-educational complex, described in the three…

  14. Permeable Pavement Monitoring at the Edison Environmental Center Demonstration Site - presentation

    Science.gov (United States)

    The EPA’s Urban Watershed Management Branch has been monitoring an instrumented 110-space pervious pavement parking lot. The lot is used by EPA personnel and visitors to the Edison Environmental Center. The design includes 28-space rows of three permeable pavement types: asphal...

  15. Environmental Assessment. Moanalua Shopping Center Redevelopment Oahu, Hawaii

    National Research Council Canada - National Science Library

    Pingree, Ryan; Halperin, William

    2004-01-01

    The Department of the Navy has prepared an Environmental Assessment (EA) and determined that an Environmental Impact Statement is not required for the redevelopment of the Moanalua Shopping Center (MSC) Oahu Hawaii...

  16. Center for Urban Environmental Research and Education (CUERE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Urban Environmental Research and Education (CUERE) at UMBC was created in 2001 with initial support from the U.S. Environmental Protection Agency and...

  17. University of Washington Center for Child Environmental Health Risks Research

    Data.gov (United States)

    Federal Laboratory Consortium — The theme of the University of Washington based Center for Child Environmental Health Risks Research (CHC) is understanding the biochemical, molecular and exposure...

  18. Marshall Space Flight Center's Impact Testing Facility Capabilities

    Science.gov (United States)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  19. Kennedy Space Center Press Site (SWMU 074) Interim Measure Report

    Science.gov (United States)

    Applegate, Joseph L.

    2015-01-01

    This report summarizes the Interim Measure (IM) activities conducted at the Kennedy Space Center (KSC) Press Site ("the Press Site"). This facility has been designated as Solid Waste Management Unit 074 under KSC's Resource Conservation and Recovery Act Corrective Action program. The activities were completed as part of the Vehicle Assembly Building (VAB) Area Land Use Controls Implementation Plan (LUCIP) Elimination Project. The purpose of the VAB Area LUCIP Elimination Project was to delineate and remove soil affected with constituents of concern (COCs) that historically resulted in Land Use Controls (LUCs). The goal of the project was to eliminate the LUCs on soil. LUCs for groundwater were not addressed as part of the project and are not discussed in this report. This report is intended to meet the Florida Department of Environmental Protection (FDEP) Corrective Action Management Plan requirement as part of the KSC Hazardous and Solid Waste Amendments permit and the U.S. Environmental Protection Agency's (USEPA's) Toxic Substance Control Act (TSCA) self-implementing polychlorinated biphenyl (PCB) cleanup requirements of 40 Code of Federal Regulations (CFR) 761.61(a).

  20. Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications

  1. Creating the Deep Space Environment for Testing the James Webb Space Telescope at NASA Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft.) in diameter and 36.6 m (120 ft.) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope, which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to minimize dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  2. Creating the Deep Space Environment for Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.

    2012-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960's to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and the modifications were funded, by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink and, the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in the overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  3. Research & Technology Report Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  4. Strategic Project Management at the NASA Kennedy Space Center

    Science.gov (United States)

    Lavelle, Jerome P.

    2000-01-01

    This paper describes Project Management at NASA's Kennedy Space Center (KSC) from a strategic perspective. It develops the historical context of the agency and center's strategic planning process and illustrates how now is the time for KSC to become a center which has excellence in project management. The author describes project management activities at the center and details observations on those efforts. Finally the author describes the Strategic Project Management Process Model as a conceptual model which could assist KSC in defining an appropriate project management process system at the center.

  5. Solar Sail Material Performance Property Response to Space Environmental Effects

    Science.gov (United States)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  6. Space Environmental Effects on Candidate Solar Sail Materials

    Science.gov (United States)

    Edwards, David L.; Nehls, Mary; Semmel, Charles; Hovater, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted ot a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA's Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar, Teonex, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized

  7. Walt Disney visited Marshall Space Flight Center (MSFC)

    Science.gov (United States)

    1965-01-01

    Walt Disney toured the West Test Area during his visit to the Marshall Space Flight Center on April 13, 1965. The three in center foreground are Karl Heimburg, Director, Test Division; Dr. von Braun, Director, MSFC; and Walt Disney. The Dynamic Test Stand with the S-1C stage being installed is in the background.

  8. Wooden Spaceships: Human-Centered Vehicle Design for Space

    Science.gov (United States)

    Twyford, Evan

    2009-01-01

    Presentation will focus on creative human centered design solutions in relation to manned space vehicle design and development in the NASA culture. We will talk about design process, iterative prototyping, mockup building and user testing and evaluation. We will take an inside look at how new space vehicle concepts are developed and designed for real life exploration scenarios.

  9. Simulated Space Environmental Effects on Thin Film Solar Array Components

    Science.gov (United States)

    Finckenor, Miria; Carr, John; SanSoucie, Michael; Boyd, Darren; Phillips, Brandon

    2017-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to >2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125degC. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.

  10. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    Science.gov (United States)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  11. Environmental effects and large space systems

    Science.gov (United States)

    Garrett, H. B.

    1981-01-01

    When planning large scale operations in space, environmental impact must be considered in addition to radiation, spacecraft charging, contamination, high power and size. Pollution of the atmosphere and space is caused by rocket effluents and by photoelectrons generated by sunlight falling on satellite surfaces even light pollution may result (the SPS may reflect so much light as to be a nuisance to astronomers). Large (100 Km 2) structures also will absorb the high energy particles that impinge on them. Altogether, these effects may drastically alter the Earth's magnetosphere. It is not clear if these alterations will in any way affect the Earth's surface climate. Large structures will also generate large plasma wakes and waves which may cause interference with communications to the vehicle. A high energy, microwave beam from the SPS will cause ionospheric turbulence, affecting UHF and VHF communications. Although none of these effects may ultimately prove critical, they must be considered in the design of large structures.

  12. Applying AI tools to operational space environmental analysis

    Science.gov (United States)

    Krajnak, Mike; Jesse, Lisa; Mucks, John

    1995-01-01

    The U.S. Air Force and National Oceanic Atmospheric Agency (NOAA) space environmental operations centers are facing increasingly complex challenges meeting the needs of their growing user community. These centers provide current space environmental information and short term forecasts of geomagnetic activity. Recent advances in modeling and data access have provided sophisticated tools for making accurate and timely forecasts, but have introduced new problems associated with handling and analyzing large quantities of complex data. AI (Artificial Intelligence) techniques have been considered as potential solutions to some of these problems. Fielding AI systems has proven more difficult than expected, in part because of operational constraints. Using systems which have been demonstrated successfully in the operational environment will provide a basis for a useful data fusion and analysis capability. Our approach uses a general purpose AI system already in operational use within the military intelligence community, called the Temporal Analysis System (TAS). TAS is an operational suite of tools supporting data processing, data visualization, historical analysis, situation assessment and predictive analysis. TAS includes expert system tools to analyze incoming events for indications of particular situations and predicts future activity. The expert system operates on a knowledge base of temporal patterns encoded using a knowledge representation called Temporal Transition Models (TTM's) and an event database maintained by the other TAS tools. The system also includes a robust knowledge acquisition and maintenance tool for creating TTM's using a graphical specification language. The ability to manipulate TTM's in a graphical format gives non-computer specialists an intuitive way of accessing and editing the knowledge base. To support space environmental analyses, we used TAS's ability to define domain specific event analysis abstractions. The prototype system defines

  13. Environmental Finance Center Serving EPA's Region 8 States

    Science.gov (United States)

    The National Rural Water Association, headquartered in Duncan Oklahoma, has been selected through a competitive grants process to establish a regional Environmental Finance Center (EFC) serving EPA Region 8 states.

  14. The Center for Space Telemetering and Telecommunications Systems

    Science.gov (United States)

    Horan, S.; DeLeon, P.; Borah, D.; Lyman, R.

    2003-01-01

    This report comprises the final technical report for the research grant 'Center for Space Telemetering and Telecommunications Systems' sponsored by the National Aeronautics and Space Administration's Goddard Space Flight Center. The grant activities are broken down into the following technology areas: (1) Space Protocol Testing; (2) Autonomous Reconfiguration of Ground Station Receivers; (3) Satellite Cluster Communications; and (4) Bandwidth Efficient Modulation. The grant activity produced a number of technical reports and papers that were communicated to NASA as they were generated. This final report contains the final summary papers or final technical report conclusions for each of the project areas. Additionally, the grant supported students who made progress towards their degrees while working on the research.

  15. Environmental radiological protection of Bariloche Atomic Center

    International Nuclear Information System (INIS)

    Andres, Pablo A.; Levanon, Izhar S.

    2013-01-01

    This plan of monitoring radiological environmental routine fits on environmental policy of CNEA, satisfying national and international recommendations for licensed facilities. Sampling matrices are related to direct routes of exposure: air and water (river, lake, sediments, drinking water). Soil samples are also analyzed for having integrated matrices. They are considered as minimum three points of measurement: a white point (water or winds up), a point of maximum (water or winds down) and a point corresponding to the location of the individual representative or a point of public interest. Measurements in air estimate KERMA rate with thermoluminescent dosimeters, bi-monthly, and concentrations of particulate material and aerosols. For water samples (monthly), soil and sediments (quarterly), radionuclides that have download limits are analyzed, according to its importance in the dosages produced in the representative individual. In these cases artificial radionuclides using gamma spectrometry, beta total and Sr-90 by radiochemical techniques if the value of total screening (1 Bq/L) is exceeded. Foods are not included because no possible matrices were detected, either by their distance. by located not predominant wind direction. They are however still looking for milk producers that fulfills the minimum requirements.The data collected are compared with environmental baselines to set trends that might point to future significant changes in the environment during the life of the facilities. So far it was not observed significant differences with respect to baseline values

  16. System security in the space flight operations center

    Science.gov (United States)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  17. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  18. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    Science.gov (United States)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  19. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    Science.gov (United States)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  20. Environmental Studies Center Teacher Books. 4th Grade - Mangrove Communities.

    Science.gov (United States)

    Martin County Schools, Jensen Beach, FL. Environmental Studies Center.

    This teacher's guide, one of nine teacher packages developed for use in the sequential, hands-on, field-oriented, K-8 environmental education program of the Martin County Schools in Florida, was developed for use with elementary children in grade four prior to and after a visit to an environmental studies center located near an estuarine area. The…

  1. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    Science.gov (United States)

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  2. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Environmental Science Information Center (ESIC). 950.6 Section 950.6 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE...

  3. Research and Technology at the John F. Kennedy Space Center 1993

    Science.gov (United States)

    1993-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.

  4. Discovery: Under the Microscope at Kennedy Space Center

    Science.gov (United States)

    Howard, Philip M.

    2013-01-01

    The National Aeronautics & Space Administration (NASA) is known for discovery, exploration, and advancement of knowledge. Since the days of Leeuwenhoek, microscopy has been at the forefront of discovery and knowledge. No truer is that statement than today at Kennedy Space Center (KSC), where microscopy plays a major role in contamination identification and is an integral part of failure analysis. Space exploration involves flight hardware undergoing rigorous "visually clean" inspections at every step of processing. The unknown contaminants that are discovered on these inspections can directly impact the mission by decreasing performance of sensors and scientific detectors on spacecraft and satellites, acting as micrometeorites, damaging critical sealing surfaces, and causing hazards to the crew of manned missions. This talk will discuss how microscopy has played a major role in all aspects of space port operations at KSC. Case studies will highlight years of analysis at the Materials Science Division including facility and payload contamination for the Navigation Signal Timing and Ranging Global Positioning Satellites (NA VST AR GPS) missions, quality control monitoring of monomethyl hydrazine fuel procurement for launch vehicle operations, Shuttle Solids Rocket Booster (SRB) foam processing failure analysis, and Space Shuttle Main Engine Cut-off (ECO) flight sensor anomaly analysis. What I hope to share with my fellow microscopists is some of the excitement of microscopy and how its discoveries has led to hardware processing, that has helped enable the successful launch of vehicles and space flight missions here at Kennedy Space Center.

  5. NCERA-101 Station Report from Kennedy Space Center, FL, USA

    Science.gov (United States)

    Massa, Gioia D.; Wheeler, Raymond M.

    2014-01-01

    This is our annual report to the North Central Extension Research Activity, which is affiliated with the USDA and Land Grant University Agricultural Experiment Stations. I have been a member of this committee for 25 years. The presentation will be given by Dr. Gioia Massa, Kennedy Space Center

  6. NASA Goddard Space Flight Center Supply Chain Management Program

    Science.gov (United States)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  7. Nanotechnology Concepts at Marshall Space Flight Center: Engineering Directorate

    Science.gov (United States)

    Bhat, B.; Kaul, R.; Shah, S.; Smithers, G.; Watson, M. D.

    2001-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has need for miniaturization of components, minimization of weight, and maximization of performance, and nanotechnology will help us get there. Marshall Space Flight Center's (MSFC's) Engineering Directorate is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science, and space optics manufacturing. MSFC has a dedicated group of technologists who are currently developing high-payoff nanotechnology concepts. This poster presentation will outline some of the concepts being developed including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors, and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  8. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    Science.gov (United States)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  9. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  10. Nuclear energy centers: Economic and environmental problems

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Bobolovich, V.N.; Emel'yanov, I.Ya.; Kochenov, A.S.; Koryakin, Yu.I.; Stolyarevskij, A.Ya.; Chernyaev, V.A.; Ponomarev-Stepnoj, N.N.; Protsenko, A.M.

    1977-01-01

    The report deals with qualitative and quantitative analysis of factors and problems, which may arise in the nearest future with the dispersion of sites of nuclear and fuel cycle plants. These problems arise with a large increase in the transportation of radioactive nuclear fuel, the necessity in valuable land and water resources, delay in construction and scheduled commercial operation of nuclear power plant, increase in the cost of labour and other economic and environmental factors and limitations. The report has an analysis of one of the ways of decreasing these difficulties, connected with the construction of large nuclear energy centres, consisting of a cluster of reactors on a single reactor site with the combined capacity of 40,000-50,000 MWe. The centres may consist, for example, of a cluster of conventional nuclear power plants that mainly consist of fast breeders and fuel cycle plants. They should be located in regions with a low density population and low value and deficiency of land and water resources. Electricity will be transmitted to consumers. The social-economic functions of such centres as factors that give birth to industrial regions are considered. Also given is the comparative estimate of benefits and problems of these two ways of further development of nuclear power system [ru

  11. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    Science.gov (United States)

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  12. Supporting Multiple Programs and Projects at NASA's Kennedy Space Center

    Science.gov (United States)

    Stewart, Camiren L.

    2014-01-01

    With the conclusion of the shuttle program in 2011, the National Aeronautics and Space Administration (NASA) had found itself at a crossroads for finding transportation of United States astronauts and experiments to space. The agency would eventually hand off the taxiing of American astronauts to the International Space Station (ISS) that orbits in Low Earth Orbit (LEO) about 210 miles above the earth under the requirements of the Commercial Crew Program (CCP). By privatizing the round trip journey from Earth to the ISS, the space agency has been given the additional time to focus funding and resources to projects that operate beyond LEO; however, adding even more stress to the agency, the premature cancellation of the program that would succeed the Shuttle Program - The Constellation Program (CxP) -it would inevitably delay the goal to travel beyond LEO for a number of years. Enter the Space Launch System (SLS) and the Orion Multipurpose Crew Vehicle (MPCV). Currently, the SLS is under development at NASA's Marshall Spaceflight Center in Huntsville, Alabama, while the Orion Capsule, built by government contractor Lockheed Martin Corporation, has been assembled and is currently under testing at the Kennedy Space Center (KSC) in Florida. In its current vision, SLS will take Orion and its crew to an asteroid that had been captured in an earlier mission in lunar orbit. Additionally, this vehicle and its configuration is NASA's transportation to Mars. Engineers at the Kennedy Space Center are currently working to test the ground systems that will facilitate the launch of Orion and the SLS within its Ground Services Development and Operations (GSDO) Program. Firing Room 1 in the Launch Control Center (LCC) has been refurbished and outfitted to support the SLS Program. In addition, the Spaceport Command and Control System (SCCS) is the underlying control system for monitoring and launching manned launch vehicles. As NASA finds itself at a junction, so does all of its

  13. Recent Activities on the Embrace Space Weather Regional Warning Center: the New Space Weather Data Center

    Science.gov (United States)

    Denardini, Clezio Marcos; Dal Lago, Alisson; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Takahashi, Hisao; Costa, D. Joaquim; Banik Padua, Marcelo; Campos Velho, Haroldo

    2016-07-01

    On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is known by the acronyms Embrace that stands for the Portuguese statement "Estudo e Monitoramento BRAasileiro de Clima Espacial" Program (Brazilian Space Weather Study and Monitoring program). The mission of the Embrace/INPE program is to monitor the Solar-Terrestrial environment, the magnetosphere, the upper atmosphere and the ground induced currents to prevent effects on technological and economic activities. The Embrace/INPE system monitors the physical parameters of the Sun-Earth environment, such as Active Regions (AR) in the Sun and solar radiation by using radio telescope, Coronal Mass Ejection (CME) information by satellite and ground-based cosmic ray monitoring, geomagnetic activity by the magnetometer network, and ionospheric disturbance by ionospheric sounders and using data collected by four GPS receiver network, geomagnetic activity by a magnetometer network, and provides a forecasting for Total Electronic Content (TEC) - 24 hours ahead - using a version of the SUPIM model which assimilates the two latter data using nudging approach. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. Regarding outreach, it has being published a daily bulletin in Portuguese and English with the status of the space weather environment on the Sun, the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus. Recently, a comprehensive data bank and an interface layer are under commissioning to allow an easy and direct access to all the space weather data collected by Embrace through the Embrace web Portal. The information being released encompasses data from: (a) the Embrace Digisonde Network (Embrace DigiNet) that monitors

  14. A discrete-space urban model with environmental amenities

    Science.gov (United States)

    Liaila Tajibaeva; Robert G. Haight; Stephen Polasky

    2008-01-01

    This paper analyzes the effects of providing environmental amenities associated with open space in a discrete-space urban model and characterizes optimal provision of open space across a metropolitan area. The discrete-space model assumes distinct neighborhoods in which developable land is homogeneous within a neighborhood but heterogeneous across neighborhoods. Open...

  15. 75 FR 26272 - Final Environmental Impact Statement; Environmental Education Center, Yosemite National Park...

    Science.gov (United States)

    2010-05-11

    ... DEPARTMENT OF THE INTERIOR National Park Service Final Environmental Impact Statement; Environmental Education Center, Yosemite National Park, Mariposa County, CA; Notice of Approval of Record of Decision SUMMARY: Pursuant to Sec. 102(2)(C) of the National Environmental Policy Act of 1969 (Pub. L. 91...

  16. Space Environmentally Stable Polyimides and Copolyimides

    Science.gov (United States)

    Watson, Kent A.; Connell, John W.

    2000-01-01

    Polyimides with a unique combination of properties including low color in thin films, atomic oxygen (AO), ultra-violet (UV) radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures and high thermal stability have been prepared and characterized. The polymers were prepared by reacting a novel aromatic diamine with aromatic dianhydrides in a polar aprotic solvent. The solubility of the polymers in the imide form as well as the color density of thin films were dependent upon the chemical structure of the dianhydride. Several thin films (25-50 mm thick) prepared by solution casting of amide acid or imide solutions exhibited very low color and high optical transparency (approximately 90%) as determined by UV/visible spectroscopy. The polymers exhibited T(sub g)s >200 C depending upon the structure of the dianhydride and temperatures of 5% weight loss approximately 500C in air as determined by dynamic thermogravimetric analysis. Thin films coated with silver/inconel were exposed to a high fluence of AO and 1000 equivalent solar hours of UV radiation. The effects of these exposures on optical properties were minor. These space environmentally durable polymers are potentially useful in a variety of applications on spacecraft such as thin film membranes on antennas, second-surface mirrors, thermal/optical coatings and multi-layer thermal insulation (MLI) blanket materials. The chemistry, physical and mechanical properties of the polymers as well as their responses to AO and UV exposure will be discussed.

  17. Environmental safety of the global information space

    Directory of Open Access Journals (Sweden)

    В’ячеслав Степанович Волошин

    2015-03-01

    Databases of full-text publications – journals, articles, monographs- are surely a means of salvation for science. There already exist a large number of such portals. Besides, advantages and disadvantages of electronic subscriptions to periodicals should certainly be considered. The former include the following most evident ones: aggregation of large data arrays, saving money on a subscription, an opportunity to work with relevant publications, thematic collections of materials, availability of records, simultaneous access of an unlimited number of users and others. Nevertheless, there are many disadvantages that make it difficult to work with full-text publications. They are the following: selective representativeness of publication numbers, complexity of keyword search, occasional presence of obsolete text formats, printed versions, possible psychological barrier, physiological incompatibility with computer equipment, fatigue caused by prolonged work on the computer. The Internet was followed by the appearance of global control networks, their aims ranging from control of a human life support to a unified control of humanity. So, the formed global information space promises the man to get access to almost any information source. Meanwhile, environmental safety of the man, his/her objective biological psyche and abilities in harmonious development are at serious risk

  18. NASA Space Engineering Research Center for VLSI systems design

    Science.gov (United States)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  19. Taxonomy, Ontology and Semantics at Johnson Space Center

    Science.gov (United States)

    Berndt, Sarah Ann

    2011-01-01

    At NASA Johnson Space Center (JSC), the Chief Knowledge Officer has been developing the JSC Taxonomy to capitalize on the accomplishments of yesterday while maintaining the flexibility needed for the evolving information environment of today. A clear vision and scope for the semantic system is integral to its success. The vision for the JSC Taxonomy is to connect information stovepipes to present a unified view for information and knowledge across the Center, across organizations, and across decades. Semantic search at JSC means seemless integration of disparate information sets into a single interface. Ever increasing use, interest, and organizational participation mark successful integration and provide the framework for future application.

  20. R and T report: Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  1. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    Science.gov (United States)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  2. Environmental Survey preliminary report, Pittsburgh Energy Technology Center, Pittsburgh, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) conducted December 7--11, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PETC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PETC, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain environmental problems identified during its on-site Survey activities at PETC. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the Plan's results will be incorporated into the PETC Survey findings for inclusion into the Environmental Survey Summary Report. 64 refs., 23 figs., 29 tabs.

  3. Environmental Survey preliminary report, Feed Materials Production Center, Fernald, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    This report presents the preliminary findings from the first phase of the environmental survey of the United States Department of Energy (DOE) Feed Materials Production Center (FMPC), conducted June 16 through 27, 1986. The survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the survey is to identify environmental problems and areas of environmental risk associated with the FMPC. The survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the survey involves the review of existing site environmental data, observations of the operations carried on at FMPC, and interviews with site personnel. The survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its onsite activities. The Sampling and Analysis Plan will be executed by a DOE national laboratory or a support contractor. When completed, the results will be incorporated into the FMPC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the FMPC survey. 41 refs., 20 figs., 25 tabs.

  4. Experts warn against cutting NOAA Space Weather Center

    Science.gov (United States)

    Showstack, Randy

    A well-timed congressional hearing, coming in the midst of fierce geomagnetic storms, could help to restore funding to the U.S. National Oceanic and Atmospheric Administration's Space Environment Center (SEC).The center, which is the nation's official source of space weather alerts and warnings, currently is funded at $5.24 million for fiscal year 2003. That amount is $2 million less than it received the previous year. The Bush Administration has requested $8.02 million in funding. The appropriations bill, for the departments of Commerce, Justice, and State for fiscal year 2004, passed on 23 July by the House of Representatives, calls for funding the SEC at the $5.29 million level.

  5. Crowd-Sourced Radio Science at Marshall Space Flight Center

    Science.gov (United States)

    Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.

    2018-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.

  6. Gregory Merkel Tours Marshall Space Flight Center (MSFC)

    Science.gov (United States)

    1972-01-01

    Gregory A. Merkel (left), high school student from Springfield, Massachusetts, is pictured here with Harry Coons of the Marshall Space Flight Center (MSFC) during a visit to the center. Merkel was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  7. Robotic Technology Efforts at the NASA/Johnson Space Center

    Science.gov (United States)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center’s Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of “dull, dirty or dangerous” tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center’s newest development areas can provide crew with low mass exercise capability and also augment an astronaut’s strength while wearing a space suit.This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center’s Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  8. New Center Links Earth, Space, and Information Sciences

    Science.gov (United States)

    Aswathanarayana, U.

    2004-05-01

    Broad-based geoscience instruction melding the Earth, space, and information technology sciences has been identified as an effective way to take advantage of the new jobs created by technological innovations in natural resources management. Based on this paradigm, the University of Hyderabad in India is developing a Centre of Earth and Space Sciences that will be linked to the university's super-computing facility. The proposed center will provide the basic science underpinnings for the Earth, space, and information technology sciences; develop new methodologies for the utilization of natural resources such as water, soils, sediments, minerals, and biota; mitigate the adverse consequences of natural hazards; and design innovative ways of incorporating scientific information into the legislative and administrative processes. For these reasons, the ethos and the innovatively designed management structure of the center would be of particular relevance to the developing countries. India holds 17% of the world's human population, and 30% of its farm animals, but only about 2% of the planet's water resources. Water will hence constitute the core concern of the center, because ecologically sustainable, socially equitable, and economically viable management of water resources of the country holds the key to the quality of life (drinking water, sanitation, and health), food security, and industrial development of the country. The center will be focused on interdisciplinary basic and pure applied research that is relevant to the practical needs of India as a developing country. These include, for example, climate prediction, since India is heavily dependent on the monsoon system, and satellite remote sensing of soil moisture, since agriculture is still a principal source of livelihood in India. The center will perform research and development in areas such as data assimilation and validation, and identification of new sensors to be mounted on the Indian meteorological

  9. The new Athens Center applied to Space Weather Forecasting

    International Nuclear Information System (INIS)

    Mavromichalaki, H.; Sarlanis, C.; Souvatzoglou, G.; Mariatos, G.; Gerontidou, M.; Plainaki, C.; Papaioannou, A.; Tatsis, S.; Belov, A.; Eroshenko, E.; Yanke, V.

    2006-01-01

    The Sun provides most of the initial energy driving space weather and modulates the energy input from sources outside the solar system, but this energy undergoes many transformations within the various components of the solar-terrestrial system, which is comprised of the solar wind, magnetosphere and radiation belts, the ionosphere, and the upper and lower atmospheres of Earth. This is the reason why an Earth's based neutron monitor network can be used in order to produce a real time forecasting of space weather phenomena.Since 2004 a fully functioned new data analysis Center in real-time is in operation in Neutron Monitor Station of Athens University (ANMODAP Center) suitable for research applications. It provides a multi sided use of twenty three neutron monitor stations distributing in all world and operating in real-time given crucial information on space weather phenomena. In particular, the ANMODAP Center can give a preliminary alert of ground level enhancements (GLEs) of solar cosmic rays which can be registered around 20 to 30 minutes before the main part of lower energy particles. Therefore these energetic solar cosmic rays provide the advantage of forth warning. Moreover, the monitoring of the precursors of cosmic rays gives a forehand estimate on that kind of events should be expected (geomagnetic storms and/or Forbush decreases)

  10. Industrial Engineering Lifts Off at Kennedy Space Center

    Science.gov (United States)

    Barth, Tim

    1998-01-01

    When the National Aeronautics and Space Administration (NASA) began the Space Shuttle Program, it did not have an established industrial engineering (IE) capability for several probable reasons. For example, it was easy for some managers to dismiss IE principles as being inapplicable at NASA's John F. Kennedy Space Center (KSC). When NASA was formed by the National Aeronautics and Space Act of 1958, most industrial engineers worked in more traditional factory environments. The primary emphasis early in the shuttle program, and during previous human space flight programs such as Mercury and Apollo, was on technical accomplishments. Industrial engineering is sometimes difficult to explain in NASA's highly technical culture. IE is different in many ways from other engineering disciplines because it is devoted to process management and improvement, rather than product design. Images of clipboards and stopwatches still come to the minds of many people when the term industrial engineering is mentioned. The discipline of IE has only recently begun to gain acceptance and understanding in NASA. From an IE perspective today, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are among the most spectacular in the world: safe and successful launches of shuttles and expendable vehicles that carry tremendous payloads into space.

  11. Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

  12. Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California

    International Nuclear Information System (INIS)

    1988-07-01

    This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs

  13. Joint Space Operations Center (JSpOC) Mission System (JMS)

    Science.gov (United States)

    Morton, M.; Roberts, T.

    2011-09-01

    US space capabilities benefit the economy, national security, international relationships, scientific discovery, and our quality of life. Realizing these space responsibilities is challenging not only because the space domain is increasingly congested, contested, and competitive but is further complicated by the legacy space situational awareness (SSA) systems approaching end of life and inability to provide the breadth of SSA and command and control (C2) of space forces in this challenging domain. JMS will provide the capabilities to effectively employ space forces in this challenging domain. Requirements for JMS were developed based on regular, on-going engagement with the warfighter. The use of DoD Architecture Framework (DoDAF) products facilitated requirements scoping and understanding and transferred directly to defining and documenting the requirements in the approved Capability Development Document (CDD). As part of the risk reduction efforts, the Electronic System Center (ESC) JMS System Program Office (SPO) fielded JMS Capability Package (CP) 0 which includes an initial service oriented architecture (SOA) and user defined operational picture (UDOP) along with force status, sensor management, and analysis tools. Development efforts are planned to leverage and integrate prototypes and other research projects from Defense Advanced Research Projects Agency, Air Force Research Laboratories, Space Innovation and Development Center, and Massachusetts Institute of Technology/Lincoln Laboratories. JMS provides a number of benefits to the space community: a reduction in operational “transaction time” to accomplish key activities and processes; ability to process the increased volume of metric observations from new sensors (e.g., SBSS, SST, Space Fence), as well as owner/operator ephemerides thus enhancing the high accuracy near-real-time catalog, and greater automation of SSA data sharing supporting collaboration with government, civil, commercial, and foreign

  14. History of Reliability and Quality Assurance at Kennedy Space Center

    Science.gov (United States)

    Childers, Frank M.

    2004-01-01

    This Kennedy Historical Document (KHD) provides a unique historical perspective of the organizational and functional responsibilities for the manned and un-manned programs at Kennedy Space Center, Florida. As systems become more complex and hazardous, the attention to detailed planning and execution continues to be a challenge. The need for a robust reliability and quality assurance program will always be a necessity to ensure mission success. As new space missions are defined and technology allows for continued access to space, these programs cannot be compromised. The organizational structure that has provided the reliability and quality assurance functions for both the manned and unmanned programs has seen many changes since the first group came to Florida in the 1950's. The roles of government and contractor personnel have changed with each program and organizational alignment has changed based on that responsibility. The organizational alignment of the personnel performing these functions must ensure independent assessment of the processes.

  15. CCSDS telemetry systems experience at the Goddard Space Flight Center

    Science.gov (United States)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  16. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  17. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    Science.gov (United States)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  18. [Factors related to the life space of daycare center users].

    Science.gov (United States)

    Kawamura, Koki; Kato, Chikako; Kondo, Izumi

    2018-01-01

    We examined the factors related to life space and changes in the care level after one year in daycare center users. The participants were 83 older adults (age, > 65 years; mean age, 79.5±6.8 years) with MMSE scores of ≥20, who could walk independently, who needed support (1-2) or care (1), and who underwent rehabilitation at a daycare center. The life space was evaluated by the Life Space Assessment (LSA). The subjects' basic information (i.e., age, medical history.) was collected, and their physical function (i.e., grip strength, timed up and go test [TUG]), mental function (i.e., vitality, fear of falls), and social function (i.e., friends, hobbies, public transportation) were assessed to investigate the factors associated with their LSA scores. In addition, a follow-up survey was conducted on the care level at approximately one year later. A multiple regression analysis indicated that TUG scores (β=-0.33), hobbies (β=0.30), friends (β=0.29), public transportation (β=0.26), and grip strength (β=0.24) were related to the life space. Next, the participants were divided into LSA-high and LSA-low groups, and changes in the care level (improvement, maintenance, deterioration) at approximately one year after the initial assessment were examined using a chi-squared test. A significant difference was observed in the distribution of the groups (p=0.03). Multiple factors were related to the life space. Moreover, it is possible that improvements in the level of care may be achieved by improving the life space.

  19. The Edison Environmental Center Permeable Pavement Site - slides

    Science.gov (United States)

    This is a presentation for a second Community Outreach Event called "Chemistry Works!" at West Windsor Public Library on Saturday, November 5th. It will review the permeable pavement research project at the Edison Environmental center. Besides slide persentation, two demo units w...

  20. Environmental risk factors of childhood asthma in urban centers.

    OpenAIRE

    Malveaux, F J; Fletcher-Vincent, S A

    1995-01-01

    Asthma morbidity and mortality are disproportionately high in urban centers, and minority children are especially vulnerable. Factors that contribute to this dilemma include inadequate preventive medical care for asthma management, inadequate asthma knowledge and management skills among children and their families, psychosocial factors, and environmental exposure to allergens or irritants. Living in substandard housing often constitutes excess exposure to indoor allergens and pollutants. Alle...

  1. National Space Transportation System telemetry distribution and processing, NASA-JFK Space Center/Cape Canaveral

    Science.gov (United States)

    Jenkins, George

    1986-01-01

    Prelaunch, launch, mission, and landing distribution of RF and hardline uplink/downlink information between Space Shuttle Orbiter/cargo elements, tracking antennas, and control centers at JSC, KSC, MSFC, GSFC, ESMC/RCC, and Sunnyvale are presented as functional block diagrams. Typical mismatch problems encountered during spacecraft-to-project control center telemetry transmissions are listed along with new items for future support enhancement.

  2. Tennessee Valley Authority National Fertilizer and Environmental Research Center

    International Nuclear Information System (INIS)

    Gautney, J.

    1991-01-01

    The National Fertilizer and Environmental Research Center (NFERC) is a unique part of the Tennessee Valley Authority (TVA), a government agency created by an Act of Congress in 1933. The Center, located in Muscle Shoals, Alabama, is a national laboratory for research, development, education and commercialization for fertilizers and related agricultural chemicals including their economic and environmentally safe use, renewable fuel and chemical technologies, alternatives for solving environmental/waste problems, and technologies which support national defense- NFERC projects in the pesticide waste minimization/treatment/disposal areas include ''Model Site Demonstrations and Site Assessments,'' ''Development of Waste Treatment and Site Remediation Technologies for Fertilizer/Agrichemical Dealers,'' ''Development of a Dealer Information/Education Program,'' and ''Constructed Wetlands.''

  3. Challenges for Data Archival Centers in Evolving Environmental Sciences

    Science.gov (United States)

    Wei, Y.; Cook, R. B.; Gu, L.; Santhana Vannan, S. K.; Beaty, T.

    2015-12-01

    Environmental science has entered into a big data era as enormous data about the Earth environment are continuously collected through field and airborne missions, remote sensing observations, model simulations, sensor networks, etc. An open-access and open-management data infrastructure for data-intensive science is a major grand challenge in global environmental research (BERAC, 2010). Such an infrastructure, as exemplified in EOSDIS, GEOSS, and NSF EarthCube, will provide a complete lifecycle of environmental data and ensures that data will smoothly flow among different phases of collection, preservation, integration, and analysis. Data archival centers, as the data integration units closest to data providers, serve as the source power to compile and integrate heterogeneous environmental data into this global infrastructure. This presentation discusses the interoperability challenges and practices of geosciences from the aspect of data archival centers, based on the operational experiences of the NASA-sponsored Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) and related environmental data management activities. Specifically, we will discuss the challenges to 1) encourage and help scientists to more actively share data with the broader scientific community, so that valuable environmental data, especially those dark data collected by individual scientists in small independent projects, can be shared and integrated into the infrastructure to tackle big science questions; 2) curate heterogeneous multi-disciplinary data, focusing on the key aspects of identification, format, metadata, data quality, and semantics to make them ready to be plugged into a global data infrastructure. We will highlight data curation practices at the ORNL DAAC for global campaigns such as BOREAS, LBA, SAFARI 2000; and 3) enhance the capabilities to more effectively and efficiently expose and deliver "big" environmental data to broad range of users and systems

  4. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    Science.gov (United States)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  5. Marshall Space Flight Center Ground Systems Development and Integration

    Science.gov (United States)

    Wade, Gina

    2016-01-01

    Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.

  6. Marshall Space Flight Center's Virtual Reality Applications Program 1993

    Science.gov (United States)

    Hale, Joseph P., II

    1993-01-01

    A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical

  7. Liquid hydrogen production and economics for NASA Kennedy Space Center

    Science.gov (United States)

    Block, D. L.

    1985-12-01

    Detailed economic analyses for the production of liquid hydrogen used to power the Space Shuttle are presented. The hydrogen production and energy needs of the NASA Kennedy Space Center are reviewed, and steam reformation, polygeneration, and electrolysis for liquid hydrogen production are examined on an equal economic basis. The use of photovoltaics as an electrolysis power source is considered. The 1985 present worth is calculated based on life cycle costs over a 21-year period beginning with full operation in 1990. Two different sets of escalation, inflation, and discount rates are used, with revenue credit being given for energy or other products of the hydrogen production process. The results show that the economic analyses are very dependent on the escalation rates used. The least net present value is found for steam reformation of natural gas, while the best net present value is found for the electrolysis process which includes the phasing of photovoltaics.

  8. Stennis Space Center observes 2009 Safety and Health Day

    Science.gov (United States)

    2009-01-01

    Sue Smith, a medical clinic employee at NASA's John C. Stennis Space Center, takes the temperature of colleague Karen Badon during 2009 Safety and Health Day activities Oct. 22. Safety Day activities included speakers, informational sessions and a number of displays on safety and health issues. Astronaut Dominic Gorie also visited the south Mississippi rocket engine testing facility during the day to address employees and present several Silver Snoopy awards for outstanding contributions to flight safety and mission success. The activities were part of an ongoing safety and health emphasis at Stennis.

  9. Finding of No Significant Impact and Environmental Assessment for Flight Test to the Edge of Space

    Science.gov (United States)

    2008-12-01

    Runway 22 or on Rogers Dry Lakebed at Edwards AFB. 17 On the basis of the findings of the Environmental Assessment, no significant impact to human...FLIGHT TEST CENTER Environmental Assessment for Flight Test to the Edge of Space Page 5-3 Bowles, A.E., S. Eckert, L . Starke, E. Berg, L . Wolski, and...Numbers. Anne Choate, Laura 20 Pederson , Jeremy Scharfenberg, Henry Farland. Washington, D.C. September. 21 Jeppesen Sanderson, Incorporated 22

  10. Environmental assessment of the Carlsbad Environmental Monitoring and Research Center Facility

    International Nuclear Information System (INIS)

    1995-10-01

    This Environmental Assessment has been prepared to determine if the Carlsbad Environmental Monitoring and Research Center (the Center), or its alternatives would have significant environmental impacts that must be analyzed in an Environmental Impact Statement. DOE's proposed action is to continue funding the Center. While DOE is not funding construction of the planned Center facility, operation of that facility is dependent upon continued funding. To implement the proposed action, the Center would initially construct a facility of approximately 2,300 square meters (25,000 square feet). The Phase 1 laboratory facilities and parking lot will occupy approximately 1.2 hectares (3 acres) of approximately 8.9 hectares (22 acres) of land which were donated to New Mexico State University (NMSU) for this purpose. The facility would contain laboratories to analyze chemical and radioactive materials typical of potential contaminants that could occur in the environment in the vicinity of the DOE Waste Isolation Pilot Plant (WIPP) site or other locations. The facility also would have bioassay facilities to measure radionuclide levels in the general population and in employees of the WIPP. Operation of the Center would meet the DOE requirement for independent monitoring and assessment of environmental impacts associated with the planned disposal of transuranic waste at the WIPP

  11. Environmental assessment of the Carlsbad Environmental Monitoring and Research Center Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This Environmental Assessment has been prepared to determine if the Carlsbad Environmental Monitoring and Research Center (the Center), or its alternatives would have significant environmental impacts that must be analyzed in an Environmental Impact Statement. DOE`s proposed action is to continue funding the Center. While DOE is not funding construction of the planned Center facility, operation of that facility is dependent upon continued funding. To implement the proposed action, the Center would initially construct a facility of approximately 2,300 square meters (25,000 square feet). The Phase 1 laboratory facilities and parking lot will occupy approximately 1.2 hectares (3 acres) of approximately 8.9 hectares (22 acres) of land which were donated to New Mexico State University (NMSU) for this purpose. The facility would contain laboratories to analyze chemical and radioactive materials typical of potential contaminants that could occur in the environment in the vicinity of the DOE Waste Isolation Pilot Plant (WIPP) site or other locations. The facility also would have bioassay facilities to measure radionuclide levels in the general population and in employees of the WIPP. Operation of the Center would meet the DOE requirement for independent monitoring and assessment of environmental impacts associated with the planned disposal of transuranic waste at the WIPP.

  12. Fecal coliforms on environmental surfaces in two day care centers.

    Science.gov (United States)

    Weniger, B G; Ruttenber, A J; Goodman, R A; Juranek, D D; Wahlquist, S P; Smith, J D

    1983-01-01

    A survey of environmental surfaces in two Atlanta area day care centers was conducted to determine the prevalence of fecal coliform bacteria, considered a marker for the presence of fecal contamination which might contain pathogenic parasites, bacteria, or viruses. Fecal coliforms were found in 17 (4.3%) of 398 representative samples of building surfaces, furniture, and other objects. These surfaces may be involved in the chain of transmission of enteric diseases among children. Therefore, disinfection of inanimate objects, in addition to good handwashing, may be important in controlling the spread of enteric diseases in day care centers. PMID:6830225

  13. The elderly in the shopping centers: the usability study of semipublic spaces as attractiveness generator.

    Science.gov (United States)

    Bittencourt, Maria Cristina; do Valle Pereira, Vera Lúcia Duarte; Pacheco, Waldemar

    2012-01-01

    This article aims to study the importance of the attributes of usability and attractiveness for the semi-public spaces of Shopping Centers considering the elderly users, the psycho-cognitive and bio-physiological changes resulting from the aging process, as well as their expectations of the built space. Through a qualitative study of theoretical review with a multidisciplinary focus in architecture, ergonomics, gerontology, environmental psychology and management, the conditions of the elderly users were identified, and also the attributes related to usability and attractiveness, collected in order to understand and organize their interrelationships, to suggest recommendations about the drafting of Shopping Centers, aiming to generate projects and environments that should promote the efficient and satisfactory use for elderly and may also create a competitive advantage for these enterprises.

  14. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    Science.gov (United States)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  15. Nanomaterials Work at NASA-Johnson Space Center

    Science.gov (United States)

    Arepalli, Sivaram

    2005-01-01

    Nanomaterials activities at NASA-Johnson Space Center focus on single wall carbon nanotube production, characterization and their applications for aerospace. Nanotubes are produced by arc and laser methods and the growth process is monitored by in-situ diagnostics using time resolved passive emission and laser induced fluorescence of the active species. Parametric study of both these processes are conducted to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, laser fluence and arc current. Characterization of the nanotube material is performed using the NASA-JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. Efforts at JSC over the past five years in composites have centered on structural polymernanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high conductivity exhibited by SWCNTs.

  16. NASA's astrophysics archives at the National Space Science Data Center

    Science.gov (United States)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  17. Contamination Effects Due to Space Environmental Interactions

    Science.gov (United States)

    Chen, Philip T.; Paquin, Krista C. (Technical Monitor)

    2001-01-01

    Molecular and particulate contaminants are commonly generated from the orbital spacecraft operations that are under the influence of the space environment. Once generated, these contaminants may attach to the surfaces of the spacecraft or may remain in the vicinity of the spacecraft. In the event these contaminants come to rest on the surfaces of the spacecraft or situated in the line-of-sight of the observation path, they will create various degrees of contamination effect which may cause undesirable effects for normal spacecraft operations, There will be circumstances in which the spacecraft may be subjected to special space environment due to operational conditions. Interactions between contaminants and special space environment may alter or greatly increase the contamination effect due to the synergistic effect. This paper will address the various types of contamination generation on orbit, the general effects of the contamination on spacecraft systems, and the typical impacts on the spacecraft operations due to the contamination effect. In addition, this paper will explain the contamination effect induced by the space environment and will discuss the intensified contamination effect resulting from the synergistic effect with the special space environment.

  18. Between Community Spaces: Squares of Minor Centers of Calabria

    Directory of Open Access Journals (Sweden)

    Mauro Francini

    2017-08-01

    Full Text Available The theme of open “community spaces” in recent years has to the development of important interdisci­plinary issues. Nevertheless, the reading of smaller towns, in urbanistic, historical-anthropological and geographical terms appears less extended, considering the declination of public spaces as "squares." Starting from this declension we would like to introduce the first results of a research. The research had the aim of (reinterpreting the particular characteristics of these areas in specific areas such as small towns, using the region of Calabria for the case of analytic application. These communities have diverse and stratified living cultures, altered by settlement processes that have triggered two different types of urban contexts. The former often lead either to urban areas in depopulated decay or, in contrast, in places of memories: empty containers of relationships, sterile and crystallized museum objects, reduced to scenarios on which passing groups of visitors move necessarily from those realities. The latter often encircle primitive nuclei, asphyxiating them, or characterizing the so-called "dual" or "satellites" towns, completely detached from the original urban center in which all public functions are decentralized. The applied methodology is based on the reading of the historical-functional evolution of squares by the identification of codified compositional criteria. Through this research we seek to verify how urban planning, in synergy with other disciplines, can define processes of regeneration aimed at restoring the meaning of "center", and thus of an urban-community reference center.

  19. Interdisciplinary research center devoted to molecular environmental science opens

    Science.gov (United States)

    Vaughan, David J.

    In October, a new research center opened at the University of Manchester in the United Kingdom. The center is the product of over a decade of ground-breaking interdisciplinary research in the Earth and related biological and chemical sciences at the university The center also responds to the British governments policy of investing in research infrastructure at key universities.The Williamson Research Centre, the first of its kind in Britain and among the first worldwide, is devoted to the emerging field of molecular environmental science. This field also aims to bring about a revolution in understanding of our environment. Though it may be a less violent revolution than some, perhaps, its potential is high for developments that could affect us all.

  20. Unique strategies for technical information management at Johnson Space Center

    Science.gov (United States)

    Krishen, Vijay

    1994-01-01

    In addition to the current NASA manned programs, the maturation of Space Station and the introduction of the Space Exploration programs are anticipated to add substantially to the number and variety of data and documentation at NASA Johnson Space Center (JSC). This growth in the next decade has been estimated at five to ten fold compared to the current numbers. There will be an increased requirement for the tracking and currency of space program data and documents with National pressures to realize economic benefits from the research and technological developments of space programs. From a global perspective the demand for NASA's technical data and documentation is anticipated to increase at local, national, and international levels. The primary users will be government, industry, and academia. In our present national strategy, NASA's research and technology will assume a great role in the revitalization of the economy and gaining international competitiveness. Thus, greater demand will be placed on NASA's data and documentation resources. In this paper the strategies and procedures developed by DDMS, Inc., to accommodate the present and future information utilization needs are presented. The DDMS, Inc., strategies and procedures rely on understanding user requirements, library management issues, and technological applications for acquiring, searching, storing, and retrieving specific information accurately and quickly. The proposed approach responds to changing customer requirements and product deliveries. The unique features of the proposed strategy include: (1) To establish customer driven data and documentation management through an innovative and unique methods to identify needs and requirements. (2) To implement a structured process which responds to user needs, aimed at minimizing costs and maximizing services, resulting in increased productivity. (3) To provide a process of standardization of services and procedures. This standardization is the central

  1. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    OpenAIRE

    Traynor, Laura; Lange, Ian A.; Moro, Mirko

    2012-01-01

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though ...

  2. Space Station Environmental Control/Life Support System engineering

    Science.gov (United States)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  3. Environmental stressors during space flight: potential effects on body temperature

    Science.gov (United States)

    Jauchem, J. R.

    1988-01-01

    1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.

  4. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  5. LEARNING AND ENVIRONMENTAL DESIGN: Softer Learning Spaces

    Directory of Open Access Journals (Sweden)

    E. Ümran TOPÇU

    2013-07-01

    Full Text Available Learning is a central part of everyone’s life that is often associated with school and  classrooms. Today’ classroom looks and functions like the classroom of an earlier century. Desks lined up in neat rows, facing the teacher and a board or screen is the general condition in many educational institutions. Most of us have sat through classes in plain, hard rooms. Although they did not look very pleasant, we all coped with them. If they could be designed slightly more tolerable, would they help in the betterment of education and learning in any measurable way? This paper aims at describing an attempt to design an alternative classroom. Based on several years of experience, it is observed that there is a demand among students for softer, warmer and more intimate instructional spaces. Students of “People and Environment” Course were asked to select a suitable space to redesign as a “Soft Classroom” within Bahçeşehir University Besiktas Campus  premises. This case study presented a potential research project to etter understand,  how student engagement can be increased by changing learning spaces.

  6. Proceedings of the Goddard Space Flight Center Workshop on Robotics for Commercial Microelectronic Processes in Space

    Science.gov (United States)

    1987-01-01

    Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.

  7. Space and Missile Systems Center Standard: Test Requirements for Launch, Upper-Stage and Space Vehicles

    Science.gov (United States)

    2014-09-05

    Aviation Blvd. El Segundo, CA 90245 4. This standard has been approved for use on all Space and Missile Systems Center/Air Force Program...140 Satellite Hardness and Survivability; Testing Rationale for Electronic Upset and Burnout Effects 30. JANNAF-GL-2012-01-RO Test and Evaluation...vehicle, subsystem, and unit lev- els . Acceptance testing shall be conducted on all subsequent flight items. The protoqualification strategy shall require

  8. An evaluation of the Goddard Space Flight Center Library

    Science.gov (United States)

    Herner, S.; Lancaster, F. W.; Wright, N.; Ockerman, L.; Shearer, B.; Greenspan, S.; Mccartney, J.; Vellucci, M.

    1979-01-01

    The character and degree of coincidence between the current and future missions, programs, and projects of the Goddard Space Flight Center and the current and future collection, services, and facilities of its library were determined from structured interviews and discussions with various classes of facility personnel. In addition to the tabulation and interpretation of the data from the structured interview survey, five types of statistical analyses were performed to corroborate (or contradict) the survey results and to produce useful information not readily attainable through survey material. Conclusions reached regarding compatability between needs and holdings, services and buildings, library hours of operation, methods of early detection and anticipation of changing holdings requirements, and the impact of near future programs are presented along with a list of statistics needing collection, organization, and interpretation on a continuing or longitudinal basis.

  9. Development of the CELSS emulator at NASA. Johnson Space Center

    Science.gov (United States)

    Cullingford, Hatice S.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Emulator is under development. It will be used to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. Described here is Version 1.0 of the CELSS Emulator that was initiated in 1988 on the Johnson Space Center (JSC) Multi Purpose Applications Console Test Bed as the simulation framework. The run model of the simulation system now contains a CELSS model called BLSS. The CELSS simulator empowers us to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.

  10. Environmental Management Assessment of the Stanford Linear Accelerator Center

    International Nuclear Information System (INIS)

    1994-01-01

    This report documents the results of the Environmental Management Assessment of the Stanford Linear Accelerator Center (SLAC), Menlo Park, California. During this assessment, the activities conducted by the assessment team included reviews of internal documents and reports from previous assessments; interviews with the US Department of Energy (DOE), US Environmental Protection Agency, State Water Resources Board, California Regional Water Quality Control Board, and SLAC contractor personnel; and inspections and observations of selected facilities and operations. Onsite portion of the assessment was conducted from January 18 through January 31, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH), and the Environment and Safety Support Division (ESS), located within the Oakland Operations Office (OAK). The EH-24 environmental management assessment and the OAK functional appraisal were combined to minimize disruptions to the site. The management disciplines and three technical areas (air quality, groundwater, and inactive waste sites) were evaluated by EH-24, and four other technical areas (surface water, waste management, toxic and chemical materials, and environmental radiation) were assessed by ESS

  11. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, Laura; Lange, Ian; Moro, Mirko [Stirling Univ. (United Kingdom). Division of Economics

    2012-06-15

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though environmentally friendly behaviours are associated with lower heating expenditure. Also, the effect of these attitudes and behaviours do not change as income increase.

  12. Thermal Stir Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  13. Environmental risk factors of childhood asthma in urban centers.

    Science.gov (United States)

    Malveaux, F J; Fletcher-Vincent, S A

    1995-09-01

    Asthma morbidity and mortality are disproportionately high in urban centers, and minority children are especially vulnerable. Factors that contribute to this dilemma include inadequate preventive medical care for asthma management, inadequate asthma knowledge and management skills among children and their families, psychosocial factors, and environmental exposure to allergens or irritants. Living in substandard housing often constitutes excess exposure to indoor allergens and pollutants. Allergens associated with dust mites (DM) and cockroaches (CR) are probably important in both onset and worsening of asthma symptoms for children who are chronically exposed to these agents. Young children spend a great deal of time on or near the floor where these allergens are concentrated in dust. Of children (2 to 10 years of age) living in metropolitan Washington, DC, 60% were found to be sensitive to CR and 72% were allergic to DM. Exposure to tobacco smoke contributes to onset of asthma earlier in life and is a risk factor for asthma morbidity. Since disparity of asthma mortality and morbidity among minority children in urban centers is closely linked to socioeconomic status and poverty, measures to reduce exposure to environmental allergens and irritants and to eliminate barriers to access to health care are likely to have a major positive impact. Interventions for children in urban centers must focus on prevention of asthma symptoms and promotion of wellness.

  14. NASA Johnson Space Center SBIR STTR Program Technology Innovations

    Science.gov (United States)

    Krishen, Kumar

    2007-01-01

    The Small Business Innovation Research (SBIR) Program increases opportunities for small businesses to participate in research and development (R&D), increases employment, and improves U.S. competitiveness. Specifically the program stimulates U.S. technological innovation by using small businesses to meet federal R&D needs, increasing private-sector commercialization of innovations derived from federal R&D, and fostering and encouraging the participation of socially disadvantaged businesses. In 2000, the Small Business Technology Transfer (STTR) Program extended and strengthened the SBIR Program, increasing its emphasis on pursuing commercial applications by awarding contracts to small business concerns for cooperative R&D with a nonprofit research institution. Modeled after the SBIR Program, STTR is nevertheless a separately funded activity. Technologies that have resulted from the Johnson Space Center SBIR STTR Program include: a device for regenerating iodinated resin beds; laser-assisted in-situ keratomileusis or LASIK; a miniature physiological monitoring device capable of collecting and analyzing a multitude of real-time signals to transmit medical data from remote locations to medical centers for diagnosis and intervention; a new thermal management system for fibers and fabrics giving rise to new line of garments and thermal-enhancing environments; and a highly electropositive material that attracts and retains electronegative particles in water.

  15. The European Person Equivalent: Measuring the personal environmental space

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Wenzel, Henrik

    2001-01-01

    The European person equivalent (PE) is a quantification of the environmental impact caused annually by the activities of an average European. It comprises contributions to all the major environmental impacts from global to local as well as our consumption of resources. Similarly, the targeted...... European person equivalent is a quantification of the average person’s environmental impact in a near future according to the current politically set environmental targets. In addition to expressing the current societal priorities in pollution reduction, the targeted PE expresses the environmental space...... available to all of us according to the current environmental policy. Both concepts were developed in the mid-nineties for use in life cycle impact assessment to help comparisons across different environmental impact categories. Since then they have shown their value as a pedagogic tool in the presentation...

  16. The Center for Environmental Technology Innovative Technology Screening Process

    International Nuclear Information System (INIS)

    Bertrand, C.M.

    1995-02-01

    The Center for Environmental Technology's (CET) mission is to provide a fully integrated system for accelerated evaluation, development, commercialization, and public acceptance of creative environmental solutions which match the foremost demands in today's environmentally sensitive world. In short, CET will create a means to provide quick, effective solutions for environmental needs. To meet this mission objective, CET has created a unique and innovative approach to eliminating the usual barriers in developing and testing environmental technologies. The approach paves the way for these emerging, cutting-edge technologies by coordinating environmental restoration and waste management activities of industry, universities, and the government to: efficiently and effectively transfer technology to these users, provide market-driven, cost-effective technology programs to the public and DOE, and aid in developing innovative ideas by initiating efforts between DOE facilities and private industry. The central part to this mission is selecting and evaluating specific innovative technologies for demonstration and application at United States Department of Energy (DOE) installations. The methodology and criteria used for this selection, which is called the CET Innovative Technology Screening Process, is the subject of this paper. The selection criteria used for the screening process were modeled after other DOE technology transfer programs and were further developed by CET's Technology Screening and Evaluation Board (TSEB). The process benefits both CET and the proposing vendors by providing objective selection procedures based on predefined criteria. The selection process ensures a rapid response to proposing vendors, all technologies will have the opportunity to enter the selection process, and all technologies are evaluated on the same scale and with identical criteria

  17. Earth Observation from Space - The Issue of Environmental Sustainability

    Science.gov (United States)

    Durrieu, Sylvie; Nelson, Ross F.

    2013-01-01

    Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given

  18. ONAV - An Expert System for the Space Shuttle Mission Control Center

    Science.gov (United States)

    Mills, Malise; Wang, Lui

    1992-01-01

    The ONAV (Onboard Navigation) Expert System is being developed as a real-time console assistant to the ONAV flight controller for use in the Mission Control Center at the Johnson Space Center. Currently, Oct. 1991, the entry and ascent systems have been certified for use on console as support tools, and were used for STS-48. The rendezvous system is in verification with the goal to have the system certified for STS-49, Intelsat retrieval. To arrive at this stage, from a prototype to real-world application, the ONAV project has had to deal with not only Al issues but operating environment issues. The Al issues included the maturity of Al languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.

  19. Digital Data Matrix Scanner Developnent At Marshall Space Flight Center

    Science.gov (United States)

    2004-01-01

    Research at NASA's Marshall Space Flight Center has resulted in a system for reading hidden identification codes using a hand-held magnetic scanner. It's an invention that could help businesses improve inventory management, enhance safety, improve security, and aid in recall efforts if defects are discovered. Two-dimensional Data Matrix symbols consisting of letters and numbers permanently etched on items for identification and resembling a small checkerboard pattern are more efficient and reliable than traditional bar codes, and can store up to 100 times more information. A team led by Fred Schramm of the Marshall Center's Technology Transfer Department, in partnership with PRI,Torrance, California, has developed a hand-held device that can read this special type of coded symbols, even if covered by up to six layers of paint. Before this new technology was available, matrix symbols were read with optical scanners, and only if the codes were visible. This latest improvement in digital Data Matrix technologies offers greater flexibility for businesses and industries already using the marking system. Paint, inks, and pastes containing magnetic properties are applied in matrix symbol patterns to objects with two-dimensional codes, and the codes are read by a magnetic scanner, even after being covered with paint or other coatings. The ability to read hidden matrix symbols promises a wide range of benefits in a number of fields, including airlines, electronics, healthcare, and the automotive industry. Many industries would like to hide information on a part, so it can be read only by the party who put it there. For instance, the automotive industry uses direct parts marking for inventory control, but for aesthetic purposes the marks often need to be invisible. Symbols have been applied to a variety of materials, including metal, plastic, glass, paper, fabric and foam, on everything from electronic parts to pharmaceuticals to livestock. The portability of the hand

  20. Are We Meeting the Goal of Responsible Environmental Behavior: An Examination of Nature and Environmental Education Center Goals.

    Science.gov (United States)

    Simmons, Deborah A.

    1991-01-01

    Through two surveys of nature and environmental centers throughout the United States, the author compares the centers' expressed goals with the goals of environmental education. These goals were determined by an accepted behavior model that is considered conducive to environmentally responsible behavior. (17 references) (MCO)

  1. SPASE: The Connection Among Solar and Space Physics Data Centers

    Science.gov (United States)

    Thieman, James R.; King, Todd A.; Roberts, D. Aaron

    2011-01-01

    The Space Physics Archive Search and Extract (SPASE) project is an international collaboration among Heliophysics (solar and space physics) groups concerned with data acquisition and archiving. Within this community there are a variety of old and new data centers, resident archives, "virtual observatories", etc. acquiring, holding, and distributing data. A researcher interested in finding data of value for his or her study faces a complex data environment. The SPASE group has simplified the search for data through the development of the SPASE Data Model as a common method to describe data sets in the various archives. The data model is an XML-based schema and is now in operational use. There are both positives and negatives to this approach. The advantage is the common metadata language enabling wide-ranging searches across the archives, but it is difficult to inspire the data holders to spend the time necessary to describe their data using the Model. Software tools have helped, but the main motivational factor is wide-ranging use of the standard by the community. The use is expanding, but there are still other groups who could benefit from adopting SPASE. The SPASE Data Model is also being expanded in the sense of providing the means for more detailed description of data sets with the aim of enabling more automated ingestion and use of the data through detailed format descriptions. We will discuss the present state of SPASE usage and how we foresee development in the future. The evolution is based on a number of lessons learned - some unique to Heliophysics, but many common to the various data disciplines.

  2. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    International Nuclear Information System (INIS)

    O'Brien, Robert C.

    2001-01-01

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  3. Friction Stir Welding Development at National Aeronautics and Space Administration-Marshall Space Flight Center

    Science.gov (United States)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents an over-view of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including very thin and very thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  4. Feed Materials Production Center annual environmental report for calendar 1989

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, T.A.; Gels, G.L.; Oberjohn, J.S.; Rogers, L.K.

    1990-10-01

    The mission of the Department of Energy's (DOE) Feed Materials Production Center (FMPC) has been to process uranium for United States' defense programs. On July 10, 1989, the FMPC suspended production operations, but remains on standby for certain segments of production. The FMPC also manages the storage of some radioactive and hazardous materials. As part of its operations, the FMPC continuously monitors the environment to determine that it is operating within federal and state standards and guidelines regarding emission of radioactive and nonradioactive materials. Data collected from the FMPC monitoring program are used to calculate estimates of radiation dose for residents due to FMPC operations. For 1989, the estimate of dose through the air pathway, excluding radon, indicated that people in the area were exposed to less than 6% of the DOE guideline established to protect the public from radiation exposure. When radon emissions are included, the dose from FMPC operations during 1989 was less than 22% of the annual background radiation dose in the Greater Cincinnati area. This report is a summary of FMPC's environmental activities and monitoring program for 1989. An Environmental Compliance Self-Assessment presents the FMPC's efforts to comply with environmental regulations through June 1990. 44 refs., 48 figs.

  5. Constitutive Soil Properties for Mason Sand and Kennedy Space Center

    Science.gov (United States)

    Thomas, Michael A.; Chitty, Daniel E.

    2011-01-01

    Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle (CEV). This report provides constitutive material models for two soil conditions at Kennedy Space Center (KSC) and four conditions of Mason Sand. The Mason Sand is the test sand for LaRC s drop tests and swing tests of the Orion. The soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LSDYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The soil models are intended to be specific to the soil conditions they were tested at. The two KSC models represent two conditions at KSC: low density dry sand and high density in-situ moisture sand. The Mason Sand model was tested at four conditions which encompass measured conditions at LaRC s drop test site.

  6. X-Ray Optics at NASA Marshall Space Flight Center

    Science.gov (United States)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; hide

    2015-01-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  7. Perspectives from the Wearable Electronics and Applications Research (WEAR) Lab, NASA, Johnson Space Center

    Science.gov (United States)

    Moses, Haifa R.

    2017-01-01

    As NASA moves beyond exploring low earth orbit and into deep space exploration, increased communication delays between astronauts and earth drive a need for crew to become more autonomous (earth-independent). Currently crew on board the International Space Station (ISS) have limited insight into specific vehicle system performance because of the dependency on monitoring and real-time communication with Mission Control. Wearable technology provides a method to bridge the gap between the human (astronaut) and the system (spacecraft) by providing mutual monitoring between the two. For example, vehicle or environmental information can be delivered to astronauts through on-body devices and in return wearables provide data to the spacecraft regarding crew health, location, etc. The Wearable Electronics and Applications Research (WEAR) Lab at the NASA Johnson Space Center utilizes a collaborative approach between engineering and human factors to investigate the use of wearables for spaceflight. Zero and partial gravity environments present unique challenges to wearables that require collaborative, user-centered, and iterative approaches to the problems. Examples of the WEAR Lab's recent wearable projects for spaceflight will be discussed.

  8. 2008 Environmental Performance Index (EPI)

    Data.gov (United States)

    National Aeronautics and Space Administration — The 2008 Environmental Performance Index (EPI) centers on two broad environmental protection objectives: (1) reducing environmental stresses on human health, and (2)...

  9. System Engineering Processes at Kennedy Space Center for Development of SLS and Orion Launch Systems

    Science.gov (United States)

    Schafer, Eric; Stambolian, Damon; Henderson, Gena

    2013-01-01

    There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems are developed at the Kennedy Space Center Engineering Directorate. The Engineering Directorate at Kennedy Space Center follows a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Presentation describes this process with examples of where the process has been applied.

  10. Kennedy Space Center Coronary Heart Disease Risk Screening Program

    Science.gov (United States)

    Tipton, David A.; Scarpa, Philip J.

    1999-01-01

    The number one cause of death in the U.S. is coronary heart disease (CHD). It is probably a major cause of death and disability in the lives of employees at Kennedy Space Center (KSC) as well. The KSC Biomedical Office used a multifactorial mathematical formula from the Framingham Heart Study to calculate CHD risk probabilities for individuals in a segment of the KSC population that required medical evaluation for job certification. Those assessed to be high-risk probabilities will be targeted for intervention. Every year, several thousand KSC employees require medical evaluations for job related certifications. Most medical information for these evaluations is gathered on-site at one of the KSC or Cape Canaveral Air Station (CCAS) medical clinics. The formula used in the Framingham Heart Study allows calculation of a person's probability of acquiring CHD within 10 years. The formula contains the following variables: Age, Diabetes, Smoking, Left Ventricular Hypertrophy, Blood Pressure (Systolic or Diastolic), Cholesterol, and HDL cholesterol. The formula is also gender specific. It was used to calculate the 10-year probabilities of CHD in KSC employees who required medical evaluations for job certifications during a one-year time frame. This KSC population was profiled and CHD risk reduction interventions could be targeted to those at high risk. Population risk could also be periodically reevaluated to determine the effectiveness of intervention. A 10-year CHD risk probability can be calculated for an individual quite easily while gathering routine medical information. An employee population's CHD risk probability can be profiled graphically revealing high risk segments of the population which can be targeted for risk reduction intervention. The small audience of NASA/contractor physicians, nurses and exercise/fitness professionals at the breakout session received the lecture very well. Approximately one third indicated by a show of hands that they would be

  11. Environmental Quality Information Analysis Center multi-year plan

    International Nuclear Information System (INIS)

    Rivera, R.G.; Das, S.; Walsh, T.E.

    1992-09-01

    An information analysis center (IAC) is a federal resource that provides technical information for a specific technology field. An IAC links an expert technical staff with an experienced information specialist group, supported by in-house or external data bases to provide technical information and maintain a corporate knowledge in a technical area. An IAC promotes the rapid transfer of technology among its users and provides assistance in adopting new technology and predicting and assessing emerging technology. This document outlines the concept, requirements, and proposed development of an Environmental Quality IAC (EQIAC). An EQIAC network is composed of several nodes, each of which has specific technology capabilities. This document outlines strategic and operational objectives for the phased development of one such node of an EQIAC network

  12. The Hayabusa Curation Facility at Johnson Space Center

    Science.gov (United States)

    Zolensky, M.; Bastien, R.; McCann, B.; Frank, D.; Gonzalez, C.; Rodriguez, M.

    2013-01-01

    The Japan Aerospace Exploration Agency (JAXA) Hayabusa spacecraft made contact with the asteroid 25143 Itokawa and collected regolith dust from Muses Sea region of smooth terrain [1]. The spacecraft returned to Earth with more than 10,000 grains ranging in size from just over 300 µm to less than 10 µm [2, 3]. These grains represent the only collection of material returned from an asteroid by a spacecraft. As part of the joint agreement between JAXA and NASA for the mission, 10% of the Hayabusa grains are being transferred to NASA for parallel curation and allocation. In order to properly receive process and curate these samples, a new curation facility was established at Johnson Space Center (JSC). Since the Hayabusa samples within the JAXA curation facility have been stored free from exposure to terrestrial atmosphere and contamination [4], one of the goals of the new NASA curation facility was to continue this treatment. An existing lab space at JSC was transformed into a 120 sq.ft. ISO class 4 (equivalent to the original class 10 standard) clean room. Hayabusa samples are stored, observed, processed, and packaged for allocation inside a stainless steel glove box under dry N2. Construction of the clean laboratory was completed in 2012. Currently, 25 Itokawa particles are lodged in NASA's Hayabusa Lab. Special care has been taken during lab construction to remove or contain materials that may contribute contaminant particles in the same size range as the Hayabusa grains. Several witness plates of various materials are installed around the clean lab and within the glove box to permit characterization of local contaminants at regular intervals by SEM and mass spectrometry, and particle counts of the lab environment are frequently acquired. Of particular interest is anodized aluminum, which contains copious sub-mm grains of a multitude of different materials embedded in its upper surface. Unfortunately the use of anodized aluminum was necessary in the construction

  13. A Detailed Assessment for the Potential use of Waste Hydrogen Gas at Stennis Space Center

    Data.gov (United States)

    National Aeronautics and Space Administration — Stennis Space Center (SSC) is NASA’s primary liquid rocket engine test facility. As such, large amounts of liquid hydrogen are used as a rocket propellant. This...

  14. Green Monopropellant Status at Marshall Space Flight Center

    Science.gov (United States)

    Burnside, Christopher G.; Pierce, Charles W.; Pedersen, Kevin W.

    2016-01-01

    NASA Marshall Space Flight Center is continuing investigations into the use of green monopropellants as a replacement for hydrazine in spacecraft propulsion systems. Work to date has been to push technology development through multiple activities designed to understand the capabilities of these technologies. Future work will begin to transition to mission pull as these technologies are mature while still keeping a solid goal of pushing technology development as opportunities become available. The AF-M315E activities began with hot-fire demonstration testing of a 1N monopropellant thruster in FY 14 and FY15. Following successful completion of the preliminary campaign, changes to the test stand to accommodate propellant conditioning capability and better control of propellant operations was incorporated to make testing more streamlined. The goal is to conduct hot-fire testing with warm and cold propellants using the existing feed system and original thruster design. Following the 1N testing, a NASA owned 100 mN thruster will be hot-fire tested in the same facility to show feasibility of scaling to smaller thrusters for cubesat applications. The end goal is to conduct a hot-fire test of an integrated cubesat propulsion system using an SLM printed propellant tank, an MSFC designed propulsion system electronic controller and the 100 mN thruster. In addition to the AF-M315E testing, MSFC is pursuing hot-fire testing with LMP-103S. Following our successful hot-fire testing of the 22N thruster in April 2015, a test campaign was proposed for a 440N LMP-103S thruster with Orbital ATK and Plasma Processes. This activity was funded through the Space Technology Mission Directorate (STMD) ACO funding call in the last quarter of CY15. Under the same funding source a test activity with Busek and Glenn Research Center for testing of 5N AF-M315E thrusters was proposed and awarded. Both activities are in-work with expected completion of hot-fire testing by the end of FY17. MSFC is

  15. Space for action: How practitioners influence environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kågström, Mari, E-mail: mari.kagstrom@slu.se [Department of Urban and Rural Development, Swedish University of Agricultural Sciences (Sweden); Richardson, Tim, E-mail: tim.richardson@nmbu.no [Department of Landscape Architecture and Spatial Planning, Norwegian University of Life Sciences, Frederik A Dahls vei 15, KA-bygningen, Ås (Norway)

    2015-09-15

    Highlights: • The concept of ‘space for action’ offers an important new lens on EA practice. • Focuses on the relation between practitioner's understanding and their actions • Environmental assessment practice is decisively shaped by practitioners. • Practitioners may underestimate their potential to make a difference. • Contributes to understanding change in the environmental assessment field. This article contributes to understanding of how change occurs in the field of environmental assessment (EA). It argues that the integration of new issues in EA, such as human health, is significantly influenced by how practitioners' understandings shape their actions, and by what happens when those, possibly different, interpretations of appropriate action are acted out. The concept of space for action is developed as a means of investigating this relation between understanding and action. Frame theory is also used, to develop a sharper focus on how ‘potential spaces for action’ are created, what these imply for (individuals') preferred choices and actions in certain situations, and what happens in practice when these are acted out and ‘actual spaces for action’ are created. This novel approach is then applied in a Swedish case study of transport planning. The analysis reveals the important work done by practitioners, revealing just how EA practice is decisively shaped by practitioners. Analysis of practice using the lens of spaces for action offers an important new perspective in understanding how the field adapts to new challenges.

  16. Space for action: How practitioners influence environmental assessment

    International Nuclear Information System (INIS)

    Kågström, Mari; Richardson, Tim

    2015-01-01

    Highlights: • The concept of ‘space for action’ offers an important new lens on EA practice. • Focuses on the relation between practitioner's understanding and their actions • Environmental assessment practice is decisively shaped by practitioners. • Practitioners may underestimate their potential to make a difference. • Contributes to understanding change in the environmental assessment field. This article contributes to understanding of how change occurs in the field of environmental assessment (EA). It argues that the integration of new issues in EA, such as human health, is significantly influenced by how practitioners' understandings shape their actions, and by what happens when those, possibly different, interpretations of appropriate action are acted out. The concept of space for action is developed as a means of investigating this relation between understanding and action. Frame theory is also used, to develop a sharper focus on how ‘potential spaces for action’ are created, what these imply for (individuals') preferred choices and actions in certain situations, and what happens in practice when these are acted out and ‘actual spaces for action’ are created. This novel approach is then applied in a Swedish case study of transport planning. The analysis reveals the important work done by practitioners, revealing just how EA practice is decisively shaped by practitioners. Analysis of practice using the lens of spaces for action offers an important new perspective in understanding how the field adapts to new challenges

  17. Structural Analysis Peer Review for the Static Display of the Orbiter Atlantis at the Kennedy Space Center Visitors Center

    Science.gov (United States)

    Minute, Stephen A.

    2013-01-01

    Mr. Christopher Miller with the Kennedy Space Center (KSC) NASA Safety & Mission Assurance (S&MA) office requested the NASA Engineering and Safety Center's (NESC) technical support on March 15, 2012, to review and make recommendations on the structural analysis being performed for the Orbiter Atlantis static display at the KSC Visitor Center. The principal focus of the assessment was to review the engineering firm's structural analysis for lifting and aligning the orbiter and its static display configuration

  18. Oceanic Storm Characteristics off the Kennedy Space Center Coast

    Science.gov (United States)

    Wilson, J. G.; Simpson, A. A.; Cummins, K. L.; Kiriazes, J. J.; Brown, R. G.; Mata, C. T.

    2014-01-01

    Natural cloud-to-ground lightning may behave differently depending on the characteristics of the attachment mediums, including the peak current (inferred from radiation fields) and the number of ground strike locations per flash. Existing literature has raised questions over the years on these characteristics of lightning over oceans, and the behaviors are not yet well understood. To investigate this we will obtain identical electric field observations over adjacent land and ocean regions during both clear air and thunderstorm periods. Oceanic observations will be obtained using a 3-meter NOAA buoy that has been instrumented with a Campbell Scientific electric field mill and New Mexico Techs slow antenna, to measure the electric fields aloft. We are currently obtaining measurements from this system on-shore at the Florida coast, to calibrate and better understand the behavior of the system in elevated-field environments. Sometime during winter 2013, this system will be moored 20NM off the coast of the Kennedy Space Center. Measurements from this system will be compared to the existing on-shore electric field mill suite of 31 sensors and a coastal slow antenna. Supporting observations will be provided by New Mexico Techs Lightning Mapping Array, the Eastern Range Cloud to Ground Lightning Surveillance System, and the National Lightning Detection Network. An existing network of high-speed cameras will be used to capture cloud-to-ground lightning strikes over the terrain regions to identify a valid data set for analysis. This on-going project will demonstrate the value of off-shore electric field measurements for safety-related decision making at KSC, and may improve our understanding of relative lightning risk to objects on the ground vs. ocean. This presentation will provide an overview of this new instrumentation, and a summary of our progress to date.

  19. Science Outreach at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Lebo, George

    2002-07-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  20. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    Science.gov (United States)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  1. Characterization of Candidate Solar Sail Material Exposed to Space Environmental Effects

    Science.gov (United States)

    Edwards, David; Hovater, Mary; Hubbs, Whitney; Wertz, George; Hollerman, William; Gray, Perry

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the exposure of candidate solar sail materials to emulated space environmental effects including energetic electrons, combined electrons and Ultraviolet radiation, and hypervelocity impact of irradiated solar sail material. This paper will describe the testing procedure and the material characterization results of this investigation.

  2. Center for the Utilization of Biological Engineering in Space (CUBES)

    Data.gov (United States)

    National Aeronautics and Space Administration — As NASA shifts its focus from low-Earth orbit to deep space missions, the agency is investing in the development of technologies that will allow long-duration...

  3. NASA Dryden Flight Research Center's Space Weather Needs

    Science.gov (United States)

    Wiley, Scott

    2011-01-01

    Presentation involves educating Goddard Space Weather staff about what our needs are, what type of aircraft we have and to learn what we have done in the past to minimize our exposure to Space Weather Hazards.

  4. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  5. The Savannah River Technology Center environmental monitoring field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.

    1993-01-01

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy's Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques

  6. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    International Nuclear Information System (INIS)

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation's primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate

  7. Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report

    Science.gov (United States)

    Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.

    1990-01-01

    A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.

  8. Environmental Assessment: Space Innovation and Development Center Schriever AFB, Colorado

    Science.gov (United States)

    2006-03-01

    coloradensis T Greenback cutthroat trout Oncorhynchus clarki stomias T Least tern (interior population) .A Sterna antillarum E Mexican spotted owl Strix...Haliaeetus leucocephalus T Boreal toad Bufo boreas boreas c Canada lynx Lynx canadensis T Greenback cutthroat trout Oncorhynchus clarki stomias T Least...T CUSTER Bald eagle IIaliaeetus leucocephalus T Canada lynx Lynx canadensis T Greenback cutthroat trout Oncorhynchus clarki stomias T Mexican

  9. Summer Center for Climate, Energy, and Environmental Decision Making (SUCCEED)

    Science.gov (United States)

    Klima, K.; Hoss, F.; Welle, P.; Larkin, S.

    2013-12-01

    Science, Technology, and Math (STEM) fields are responsible for more than half of our sustained economic expansion, and over the past 25 years the science and engineering workforce has remained at over 5% of all U.S. jobs. However, America lags behind other nations when it comes to STEM education; globally, American students rank 23th in math and 31st in science. While our youngest students show an interest in STEM subjects, roughly 40% of college students planning to major in STEM switch to other subjects. Women and minorities, 50% and 43% of school-age children, are disproportionally underrepresented in STEM fields (25% and 15%, respectively). Studies show that improved teacher curriculum combined with annual student-centered learning summer programs can promote and sustain student interest in STEM fields. Many STEM fields appear superficially simple, and yet can be truly complex and controversial topics. Carnegie Mellon University's Center for Climate and Energy Decision Making focuses on two such STEM fields: climate and energy. In 2011, we created SUCCEED: the Summer Center for Climate, Energy, and Environmental Decision Making. SUCCEED consisted of two pilot programs: a 2-day workshop for K-12 teacher professional development and a free 5-day summer school targeted at an age gap in the university's outreach, students entering 10th grade. In addition to teaching lessons climate, energy, and environment, the program aimed to highlight different STEM careers so students could better understand the breadth of choices available. SUCCEED, repeated in 2012, was wildly successful. A pre/post test demonstrated a significant increase in understanding of STEM topics. Furthermore, SUCCEED raised excitement for STEM; teachers were enthusiastic about accurate student-centered learning plans and students wanted to know more. To grow these efforts, an additional component has been added to the SUCCEED 2013 effort: online publicly available curricula. Using the curricula form

  10. Space Station Environmental Health System water quality monitoring

    Science.gov (United States)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  11. 78 FR 54669 - Draft Environmental Impact Statement for the Proposed RES Americas Moapa Solar Energy Center...

    Science.gov (United States)

    2013-09-05

    ... Environmental Impact Statement for the Proposed RES Americas Moapa Solar Energy Center, Clark County, Nevada... environmental impact statement (DEIS) for the proposed RES Americas Moapa Solar Energy Center on the Moapa River... Progress and on the following Web site: www.MoapaSolarEnergyCenterEIS.com . In order to be fully considered...

  12. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    Science.gov (United States)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  13. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    Science.gov (United States)

    1999-04-01

    Smithsonian Astrophysical Observatory will manage the Chandra science mission for NASA from the Chandra X-ray Observatory Center in Cambridge, Mass. TRW has been developing scientific, communications and environmental satellite systems for NASA since 1958. In addition to building the Chandra X-ray Observatory, the company is currently developing the architectures and technologies needed to implement several of NASA's future space science missions, including the Next Generation Space Telescope, the Space Inteferometry Mission, both part of NASA's Origins program, and Constellation-X, the next major NASA X-ray mission after Chandra. Article courtesy of TRW. TRW news releases are available on the corporate Web site: http://www.trw.com.

  14. A Historical Analysis of Crane Mishaps at Kennedy Space Center

    Science.gov (United States)

    Wolfe, Crystal

    2014-01-01

    Cranes and hoists are widely used in many areas. Crane accidents and handling mishaps are responsible for injuries, costly equipment damage, and program delays. Most crane accidents are caused by preventable factors. Understanding these factors is critical when designing cranes and preparing lift plans. Analysis of previous accidents provides insight into current recommendations for crane safety. Cranes and hoists are used throughout Kennedy Space Center to lift everything from machine components to critical flight hardware. Unless they are trained crane operators, most NASA employees and contractors do not need to undergo specialized crane training and may not understand the safety issues surrounding the use of cranes and hoists. A single accident with a crane or hoist can injure or kill people, cause severe equipment damage, and delay or terminate a program. Handling mishaps can also have a significant impact on the program. Simple mistakes like bouncing or jarring a load, or moving the crane down when it should go up, can damage fragile flight hardware and cause major delays in processing. Hazardous commodities (high pressure gas, hypergolic propellants, and solid rocket motors) can cause life safety concerns for the workers performing the lifting operations. Most crane accidents are preventable with the correct training and understanding of potential hazards. Designing the crane with human factors taken into account can prevent many accidents. Engineers are also responsible for preparing lift plans where understanding the safety issues can prevent or mitigate potential accidents. Cranes are widely used across many areas of KSC. Failure of these cranes often leads to injury, high damage costs, and significant delays in program objectives. Following a basic set of principles and procedures during design, fabrication, testing, regular use, and maintenance can significantly minimize many of these failures. As the accident analysis shows, load drops are often caused

  15. System Engineering Processes at Kennedy Space Center for Development of the SLS and Orion Launch Systems

    Science.gov (United States)

    Schafer, Eric J.

    2012-01-01

    There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems developed at the Kennedy Space Center Engineering Directorate follow a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Paper describes this process and gives an example of where the process has been applied.

  16. Redesigning Space for Interdisciplinary Connections: The Puget Sound Science Center

    Science.gov (United States)

    DeMarais, Alyce; Narum, Jeanne L.; Wolfson, Adele J.

    2013-01-01

    Mindful design of learning spaces can provide an avenue for supporting student engagement in STEM subjects. Thoughtful planning and wide participation in the design process were key in shaping new and renovated spaces for the STEM community at the University of Puget Sound. The finished project incorporated Puget Sound's mission and goals as well…

  17. Space Environmental Effects on Colored Coatings and Anodizes

    Science.gov (United States)

    Kamenetzky, Rachel R.; Finckenor, Miria M.; Vaughn, Jason A.

    1999-01-01

    Colored coatings and anodizes are used on spacecraft as markers and astronaut visual aids. These materials must be stable in the space environment and withstand atomic oxygen, ultraviolet radiation, particulate radiation, thermal cycling, and high vacuum without significant change in optical and mechanical properties. A variety of colored coatings and anodizes have been exposed to simulated space environments at Marshall Space Flight Center and also actual space environment as part of the Passive Optical Sample Assembly (POSA) - I flight experiment. Colored coatings were developed by AZ Technology, Huntsville, AL, under a NASA contract for International Space Station (ISS). These include yellow, red, blue, and black paints suitable for Extra-Vehicular Activity (EVA) visual aids and ISS emblems. AaChron, Inc., Minneapolis, MN, developed stable colored anodizes, also in yellow, red, blue, and black, for astronaut visual aids. These coatings were exposed in the laboratory to approximately 550 equivalent sun-hours of solar ultraviolet radiation and approximately 1 x 10(exp 21) atoms/sq cm of atomic oxygen in vacuum. The AZ Technology yellow colored coating, designated TMS800IY, and all four AaChron colored anodizes were flown on POSA-I. POSA-I was a Risk Mitigation Experiment for ISS. It was attached to the exterior of the Mir space station docking module by EVA and was exposed for 18 months. The laboratory-simulated space environment, the natural space environment and the unique environment of an orbiting, active space station and their effects on these developmental materials are discussed.

  18. NASA Kennedy Space Center: Contributions to Sea Turtle Science and Conservation

    Science.gov (United States)

    Provancha, Jane A.; Phillips, Lynne V.; Mako, Cheryle L.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) is a United States (US) federal agency that oversees US space exploration and aeronautical research. NASA's primary launch site, Kennedy Space Center (KSC) is located along the east coast of Florida, on Cape Canaveral and the western Atlantic Ocean. The natural environment within KSC's large land boundaries, not only functions as an extensive safety buffer-area, it performs simultaneously as a wildlife refuge and a national seashore. In the early 1960s, NASA was developing KSC for rocket launches and the US was establishing an awareness of, and commitment to protecting the environment. The US began creating regulations that required the consideration of the environment when taking action on federal land or with federal funds. The timing of the US Endangered Species Act (1973), the US National Environmental Policy Act (1972), coincided with the planning and implementation of the US Space Shuttle Program. This resulted in the first efforts to evaluate the impacts of space launch operation operations on waterways, air quality, habitats, and wildlife. The first KSC fauna and flora baseline studies were predominantly performed by University of Central Florida (then Florida Technological University). Numerous species of relative importance were observed and sea turtles were receiving regulatory review and protection as surveys by Dr. L Ehrhart (UCF) from 1973-1978 described turtles nesting along the KSC beaches and foraging in the KSC lagoon systems. These data were used in the first NASA Environmental Impact Statement for the Space Transportation System (shuttle program) in 1980. In 1982, NASA began a long term ecological monitoring program with contracted scientists on site. This included efforts to track sea turtle status and trends at KSC and maintain protective measures for these species. Many studies and collaborations have occurred on KSC over these last 45 years with agencies (USFWS, NOAA, NAVY), students

  19. Johnson Space Center Health and Medical Technical Authority

    Science.gov (United States)

    Fogarty, Jennifer A.

    2010-01-01

    1.HMTA responsibilities: a) Assure program/project compliance with Agency health and medical requirements at identified key decision points. b) Certify that programs/projects comply with Agency health and medical requirements prior to spaceflight missions. c) Assure technical excellence. 2. Designation of applicable NASA Centers for HMTA implementation and Chief Medical Officer (CMO) appointment. 3. Center CMO responsible for HMTA implementation for programs and projects at the center. JSC HMTA captured in "JSC HMTA Implementation Plan". 4. Establishes specifics of dissenting opinion process consistent with NASA procedural requirements.

  20. Aragats space-environmental centre: status and SEP forecasting possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Chilingarian, A; Avakyan, K; Babayan, V; Bostanjyan, N; Chilingarian, S; Eganov, V; Hovhanissyan, A; Karapetyan, G; Gevorgyan, N; Gharagyozyan, G; Ghazaryan, S; Garyaka, A; Ivanov, V; Martirosian, H; Martirosov, R; Melkumyan, L; Sogoyan, H; Sokhoyan, S; Tserunyan, S; Vardanyan, A; Zazyan, M [Cosmic Ray Division, Yerevan Physics Institute, Alikhanyan Brothers 2, Yerevan 36 (Armenia); Yeremian, A [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    2003-05-01

    The Aragats Space Environment Center in Armenia provides real-time monitoring of cosmic particle fluxes. Neutron monitors operating at altitudes of 2000 m and 3200 m on Mt Aragats continuously gather data to detect possible abrupt enhancement of the count rates. Additional high precision detectors, measuring muon and electron fluxes, along with directional information have been put in operation on Mt Aragats in the summer of 2002. We plan to use this information to establish an early warning system against extreme solar energetic particle (SEP) events which pose danger to the satellite electronics and the space station crew. Solar ion and proton fluxes as measured by space-borne sensors on ACE and GOES satellites are used to derive expected arrival times of highest energy ions at 1 AU. The peaks in the time series detected by Aragats neutron monitors, coincided with these times, demonstrate the possibility of early detection of SEP events using the ground-based detectors.

  1. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  2. Study of the space environmental effects on spacecraft engineering materials

    Science.gov (United States)

    Obrien, Susan K.; Workman, Gary L.; Smith, Guy A.

    1995-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the current estimates of the integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 10(exp 10) electrons/sq cm/day. and the proton integral fluence is above 1 x 109 protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionately less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are worth performing in order to simulate at some level the effect of the environment. For example the effect of protons and electrons impacting structural materials are easily simulated through experiments using the Van de Graff and Pelletron accelerators currently housed in the Environmental Effects Facility at MSFC. Proton fluxes with energies of 700 Kev-2.5 Mev can be generated and used to impinge on sample targets to determine the effects of the particles. Also the Environmental Effects Facility has the capability to generate electron beams with energies from 700 Kev to 2.5 Mev. These facilities will be used in this research to simulate space environmental effects from energetic particles. Ultraviolet radiation, particularly in the ultraviolet (less than 400 nm wavelength) is less well characterized at this time. The Environmental Effects Facility has a vacuum system dedicated to studying the effects of ultraviolet radiation on specific surface materials. This particular system was assembled in a previous study (NAS8-38609) in order to

  3. Environmental monitors in the Midcourse Space Experiments (MSX)

    Science.gov (United States)

    Uy, O. M.

    1993-01-01

    The Midcourse Space Experiment (MSX) is an SDIO sponsored space based sensor experiment with a full complement of optical sensors. Because of the possible deleterious effect of both molecular and particulate contamination on these sensors, a suite of environmental monitoring instruments are also being flown with the spacecraft. These instruments are the Total Pressure Sensor based on the cold-cathode gauge, a quadrupole mass spectrometer, a Bennett-type ion mass spectrometer, a cryogenic quartz crystal microbalance (QCM), four temperature-controlled QCM's, and a Xenon and Krypton Flash Lamp Experiment. These instruments have been fully space-qualified, are compact and low cost, and are possible candidate sensors for near-term planetary and atmospheric monitoring. The philosophy adopted during design and fabrication, calibration and ground testing, and modeling will be discussed .

  4. University of Illinois FRIENDS Children’s Environmental Health Center

    Data.gov (United States)

    Federal Laboratory Consortium — The FRIENDS Children's Environmental Health Center at the University of Illinois, Urbana-Champaign, was established in 2001 to investigate the interactive effects of...

  5. University of Tennessee Center for Space Transportation and Applied Research (CSTAR)

    Science.gov (United States)

    1995-10-01

    The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.

  6. University of Tennessee Center for Space Transportation and Applied Research (CSTAR)

    Science.gov (United States)

    1995-01-01

    The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.

  7. National Space Science Data Center and World Data Center A for Rockets and Satellites - Ionospheric data holdings and services

    Science.gov (United States)

    Bilitza, D.; King, J. H.

    1988-01-01

    The activities and services of the National Space Science data Center (NSSDC) and the World Data Center A for Rockets and Satellites (WDC-A-R and S) are described with special emphasis on ionospheric physics. The present catalog/archive system is explained and future developments are indicated. In addition to the basic data acquisition, archiving, and dissemination functions, ongoing activities include the Central Online Data Directory (CODD), the Coordinated Data Analysis Workshopps (CDAW), the Space Physics Analysis Network (SPAN), advanced data management systems (CD/DIS, NCDS, PLDS), and publication of the NSSDC News, the SPACEWARN Bulletin, and several NSSD reports.

  8. Environmental Assessment for Education Center Buckley Air Force Base, Colorado

    National Research Council Canada - National Science Library

    Meyer, Elizabeth; Myklebust, Jessica; Denier, James; Niosi, Daniel; Christner, Jennifer

    2006-01-01

    ... and social impacts from the construction and operation of the proposed Education Center. The EA considers the No Action Alternative and three action alternatives, including the Proposed Action, for the proposed Education Center...

  9. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  10. Environmental evaluation of the Federal Records Center in Overland, Missouri

    International Nuclear Information System (INIS)

    Persily, A.K.; Dols, W.S.; Nabinger, S.J.

    1992-08-01

    The National Institute of Standards and Technology (NIST) is studying the thermal and environmental performance of new federal office buildings for the Public Buildings Service of the General Services Administration (GSA). The project involves long-term performance monitoring starting before occupancy and extending into early occupancy in three new office buildings. The performance evaluation includes an assessment of the thermal integrity of the building envelope, long-term monitoring of ventilation system performance, and measurement of indoor levels of selected pollutants. This is the second report describing the study of the Federal Records Center in Overland, Missouri, and the report presents measurement results from preoccupancy to full occupancy. Ventilation rates ranged from 0.3 to 2.6 air changes per hour (ach) with the minimum levels being both the building design value of 0.8 ach and the recommended minimum in ASHRAE Standard 62-1989. The measured radon concentrations were 2 pCi/L or less on the sub-basement level, and less than or equal to 0.4 pCi/L on the other levels. Formaldehyde concentrations ranged from 0.03 to 0.07 ppm. Daily peak levels of carbon dioxide in the building were typically between 500 and 800 ppm. Maximum carbon monoxide levels were typically on the order of 1 to 2 ppm, essentially tracking outdoor levels induced by automobile traffic. There have been some occasions of elevated carbon monoxide and carbon dioxide levels in the building associated with unexplained episodic increases in the outdoor levels

  11. Climate Change Adaptation Activities at the NASA John F. Kennedy Space Center, FL., USA

    Science.gov (United States)

    Hall, Carlton; Phillips, Lynne

    2016-01-01

    In 2010, the Office of Strategic Infrastructure and Earth Sciences established the Climate Adaptation Science Investigators (CASI) program to integrate climate change forecasts and knowledge into sustainable management of infrastructure and operations needed for the NASA mission. NASA operates 10 field centers valued at $32 billion dollars, occupies 191,000 acres and employs 58,000 people. CASI climate change and sea-level rise forecasts focus on the 2050 and 2080 time periods. At the 140,000 acre Kennedy Space Center (KSC) data are used to simulate impacts on infrastructure, operations, and unique natural resources. KSC launch and processing facilities represent a valued national asset located in an area with high biodiversity including 33 species of special management concern. Numerical and advanced Bayesian and Monte Carlo statistical modeling is being conducted using LiDAR digital elevation models coupled with relevant GIS layers to assess potential future conditions. Results are provided to the Environmental Management Branch, Master Planning, Construction of Facilities, Engineering Construction Innovation Committee and our regional partners to support Spaceport development, management, and adaptation planning and design. Potential impacts to natural resources include conversion of 50% of the Center to open water, elevation of the surficial aquifer, alterations of rainfall and evapotranspiration patterns, conversion of salt marsh to mangrove forest, reductions in distribution and extent of upland habitats, overwash of the barrier island dune system, increases in heat stress days, and releases of chemicals from legacy contamination sites. CASI has proven successful in bringing climate change planning to KSC including recognition of the need to increase resiliency and development of a green managed shoreline retreat approach to maintain coastal ecosystem services while maximizing life expectancy of Center launch and payload processing resources.

  12. Climate Change Adaptation Activities at the NASA John F. Kennedy Space Center, Fl., USA

    Science.gov (United States)

    Hall, C. R.; Phillips, L. V.; Foster, T.; Stolen, E.; Duncan, B.; Hunt, D.; Schaub, R.

    2016-12-01

    In 2010, the Office of Strategic Infrastructure and Earth Sciences established the Climate Adaptation Science Investigators (CASI) program to integrate climate change forecasts and knowledge into sustainable management of infrastructure and operations needed for the NASA mission. NASA operates 10 field centers valued at $32 billion dollars, occupies 191,000 acres and employs 58,000 people. CASI climate change and sea-level rise forecasts focus on the 2050 and 2080 time periods. At the 140,000 acre Kennedy Space Center (KSC) data are used to simulate impacts on infrastructure, operations, and unique natural resources. KSC launch and processing facilities represent a valued national asset located in an area with high biodiversity including 33 species of special management concern. Numerical and advanced Bayesian and Monte Carlo statistical modeling is being conducted using LiDAR digital elevation models coupled with relevant GIS layers to assess potential future conditions. Results are provided to the Environmental Management Branch, Master Planning, Construction of Facilities, Engineering Construction Innovation Committee and our regional partners to support Spaceport development, management, and adaptation planning and design. Potential impacts to natural resources include conversion of 50% of the Center to open water, elevation of the surficial aquifer, alterations of rainfall and evapotranspiration patterns, conversion of salt marsh to mangrove forest, reductions in distribution and extent of upland habitats, overwash of the barrier island dune system, increases in heat stress days, and releases of chemicals from legacy contamination sites. CASI has proven successful in bringing climate change planning to KSC including recognition of the need to increase resiliency and development of a green managed shoreline retreat approach to maintain coastal ecosystem services while maximizing life expectancy of Center launch and payload processing resources.

  13. Center of Excellence in Space Data and Information Sciences

    Science.gov (United States)

    Yesha, Yelena

    1999-01-01

    This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1998 through June 30, 1999. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix F (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.

  14. Installation and Characterization of Charged Particle Sources for Space Environmental Effects Testing

    Science.gov (United States)

    Skevington, Jennifer L.

    2010-01-01

    Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.

  15. Water Reclamation Technology Development at Johnson Space Center

    Science.gov (United States)

    Callahan, Michael R.; Pickering, Karen

    2014-01-01

    Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.

  16. Pilot 2006 Environmental Performance Index (EPI)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Pilot 2006 Environmental Performance Index (EPI) centers on two broad environmental protection objectives: (1) reducing environmental stresses on human health,...

  17. Low Earth Orbit Environmental Effects on Space Tether Materials

    Science.gov (United States)

    Finckernor, Miria M.; Gitlemeier, Keith A.; Hawk, Clark W.; Watts, Ed

    2005-01-01

    Atomic oxygen (AO) and ultraviolet (UV) radiation erode and embrittle most polymeric materials. This research was designed to test several different materials and coatings under consideration for their application to space tethers, for resistance to these effects. The samples were vacuum dehydrated, weighed and then exposed to various levels of AO or UV radiation at the NASA Marshall Space Flight Center. They were then re-weighed to determine mass loss due to atomic oxygen erosion, inspected for damage and tensile tested to determine strength loss. The experiments determined that the Photosil coating process, while affording some protection, damaged the tether materials worse than the AO exposure. TOR-LM also failed to fully protect the materials, especially from UV radiation. The POSS and nickel coatings did provide some protection to the tethers, which survived the entire test regime. M5 was tested, uncoated, and survived AO exposure, though its brittleness prevented any tensile testing.

  18. Information management for global environmental change, including the Carbon Dioxide Information Analysis Center

    Energy Technology Data Exchange (ETDEWEB)

    Stoss, F.W. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center

    1994-06-01

    The issue of global change is international in scope. A body of international organizations oversees the worldwide coordination of research and policy initiatives. In the US the National Science and Technology Council (NSTC) was established in November of 1993 to provide coordination of science, space, and technology policies throughout the federal government. NSTC is organized into nine proposed committees. The Committee on Environmental and Natural Resources (CERN) oversees the US Department of Energy`s Global Change Research Program (USGCRP). As part of the USGCRP, the US Department of Energy`s Global Change Research Program aims to improve the understanding of Earth systems and to strengthen the scientific basis for the evaluation of policy and government action in response to potential global environmental changes. This paper examines the information and data management roles of several international and national programs, including Oak Ridge National Laboratory`s (ORNL`s) global change information programs. An emphasis will be placed on the Carbon Dioxide Information Analysis Center (CDIAC), which also serves as the World Data Center-A for Atmospheric Trace Gases.

  19. Alamos: An International Collaboration to Provide a Space Based Environmental Monitoring Solution for the Deep Space Network

    Science.gov (United States)

    Kennedy, S. O.; Dunn, A.; Lecomte, J.; Buchheim, K.; Johansson, E.; Berger, T.

    2018-02-01

    This abstract proposes the advantages of an externally mounted instrument in support of the human physiology, space biology, and human health and performance key science area. Alamos provides Space-Based Environmental Monitoring capabilities.

  20. (Congressional Interest) Network Information and Space Security Center

    Science.gov (United States)

    2011-09-30

    Zagreb , Croatia (City of Zagreb funding). Conducted three days of meetings with City/University of Zagreb , Croatia officials to structure terms for a...partnership with UCCS. In the short-term, UCCS will develop and deliver several courses in homeland security and assist the University of Zagreb in... Zagreb in maturing the Center of Excellence and designing, developing and delivering masters and doctoral degrees in homeland security. Hosted a group of

  1. Space and Missile Systems Center Standard: Systems Engineering Requirements and Products

    Science.gov (United States)

    2013-07-01

    MISSILE SYSTEMS CENTER Air Force Space Command 483 N. Aviation Blvd. El Segundo, CA 90245 4. This standard has been approved for use on all Space...Any RF receiver with a burnout level of less than 30 dBm (1 mW). b. A summary of all significant areas are addressed in the EMC Control Plan...address 7. Date Submitted 8. Preparing Activity Space and Missile Systems Center AIR FORCE SPACE COMMAND 483 N. Aviation Blvd. El Segundo, CA 91245 Attention: SMC/EN February 2013

  2. Space Utilization Management within William Beaumont Army Medical Center

    Science.gov (United States)

    2007-04-01

    coupons, drives a Toyota, and stays in low-priced motels when he travels on business. Keirlin does not, however, pinch pennies. The market value of...care can be provided today and tomorrow. (Nevidjon, 2006) One technique used to improve office space is photo mapping. This term was coined by marketing ...scholar Phillip Kotler who suggests that walking through the facility and photographing the key areas of the patient’s areas can produce clues to

  3. Implementing a Reliability Centered Maintenance Program at NASA's Kennedy Space Center

    National Research Council Canada - National Science Library

    Tuttle, Raymond

    1998-01-01

    .... A reliability centered maintenance (RCM) program seeks to offer equal or greater reliability at decreased cost by insuring only applicable, effective maintenance is performed and by in large part replacing time based maintenance...

  4. MEANINGS OF SPACE OF COTTAGE-TYPE RESIDENTIAL CENTER IN MILIEU THERAPY FOR EMOTIONALLY DISTURBED CHILDREN

    OpenAIRE

    Ishigaki, Aya; Kanno, Minoru; Onoda, Yasuaki; Sakaguchi, Taiyo

    2004-01-01

    The number of emotionally disturbed children in Japan has been increasing recently; However, only few attempts with an aim at improving children's living space have been made at treatment centers. We conducted some field surveys on the cottage-type residential center to examine the relationship among space, communication, and the effectiveness of therapy. In addition, to clarify conditions of treatment for children with emotional disturbances, the children's daily life with milieu therapy was...

  5. Center for Space Transportation and Applied Research Fifth Annual Technical Symposium Proceedings

    Science.gov (United States)

    1993-01-01

    This Fifth Annual Technical Symposium, sponsored by the UT-Calspan Center for Space Transportation and Applied Research (CSTAR), is organized to provide an overview of the technical accomplishments of the Center's five Research and Technology focus areas during the past year. These areas include chemical propulsion, electric propulsion, commerical space transportation, computational methods, and laser materials processing. Papers in the area of artificial intelligence/expert systems are also presented.

  6. Marshall Space Flight Center - Launching the Future of Science and Exploration

    Science.gov (United States)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  7. [Stanford Linear Accelerator Center] annual environmental monitoring report, January--December 1989

    International Nuclear Information System (INIS)

    1990-05-01

    This progress report discusses environmental monitoring activities at the Stanford Linear Accelerator Center for 1989. Topics include climate, site geology, site water usage, land use, demography, unusual events or releases, radioactive and nonradioactive releases, compliance summary, environmental nonradiological program information, environmental radiological program information, groundwater protection monitoring ad quality assurance. 5 figs., 7 tabs

  8. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    Science.gov (United States)

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  9. A Vision for the Future of Environmental Research: Creating Environmental Intelligence Centers

    Science.gov (United States)

    Barron, E. J.

    2002-12-01

    being in the context of global, national and regional stewardship. These societal needs lead to a vision that uses a regional framework as a stepping-stone to a comprehensive national or global capability. The development of a comprehensive regional framework depends on a new approach to environmental research - the creation of regional Environmental Intelligence Centers. A key objective is to bring a demanding level of discipline to "forecasting" in a broad arena of environmental issues. The regional vision described above is designed to address a broad range of current and future environmental issues by creating a capability based on integrating diverse observing systems, making data readily accessible, developing an increasingly comprehensive predictive capability at the spatial and temporal scales appropriate for examining societal issues, and creating a vigorous intersection with decision-makers. With demonstrated success over a few large-scale regions of the U.S., this strategy will very likely grow into a national capability that far exceeds current capabilities.

  10. Kennedy Space Center's NASA/Contractor Team-Centered Total Quality Management Seminar: Results, methods, and lessons learned

    Science.gov (United States)

    Kinlaw, Dennis C.; Eads, Jeannette

    1992-01-01

    It is apparent to everyone associated with the Nation's aeronautics and space programs that the challenge of continuous improvement can be reasonably addressed only if NASA and its contractors act together in a fully integrated and cooperative manner that transcends the traditional boundaries of proprietary interest. It is, however, one thing to assent to the need for such integration and cooperation; it is quite another thing to undertake the hard tasks of turning such a need into action. Whatever else total quality management is, it is fundamentally a team-centered and team-driven process of continuous improvement. The introduction of total quality management at KSC, therefore, has given the Center a special opportunity to translate the need for closer integration and cooperation among all its organizations into specific initiatives. One such initiative that NASA and its contractors have undertaken at KSC is a NASA/Contractor team-centered Total Quality Management Seminar. It is this seminar which is the subject of this paper. The specific purposes of this paper are to describe the following: Background, development, and evolution of Kennedy Space Center's Total Quality Management Seminar; Special characteristics of the seminar; Content of the seminar; Meaning and utility of a team-centered design for TQM training; Results of the seminar; Use that one KSC contractor, EG&G Florida, Inc. has made of the seminar in its Total Quality Management initiative; and Lessons learned.

  11. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2014-01-01

    Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  12. Creating Processes Associated with Providing Government Goods and Services Under the Commercial Space Launch Act at Kennedy Space Center

    Science.gov (United States)

    Letchworth, Janet F.

    2011-01-01

    Kennedy Space Center (KSC) has decided to write its agreements under the Commercial Space Launch Act (CSLA) authority to cover a broad range of categories of support that KSC could provide to our commercial partner. Our strategy was to go through the onerous process of getting the agreement in place once and allow added specificity and final cost estimates to be documented on a separate Task Order Request (TOR). This paper is written from the implementing engineering team's perspective. It describes how we developed the processes associated with getting Government support to our emerging commercial partners, such as SpaceX and reports on our success to date.

  13. Responding to the Concerns of Student Cultural Groups: Redesigning Spaces for Cultural Centers

    Science.gov (United States)

    McDowell, Anise Mazone; Higbee, Jeanne L.

    2014-01-01

    This paper describes the engagement of a student committee in redesigning an entire floor of a university union to accommodate student cultural centers and provide space in a fair and equitable manner. The reorganization focused on the process as well as the task of allocating space, with an emphasis on the opportunity to foster the development of…

  14. The Context of Creating Space: Assessing the Likelihood of College LGBT Center Presence

    Science.gov (United States)

    Fine, Leigh E.

    2012-01-01

    LGBT (lesbian, gay, bisexual, and transgender) resource centers are campus spaces dedicated to the success of sexual minority students. However, only a small handful of American colleges and universities have such spaces. Political opportunity and resource mobilization theory can provide a useful framework for understanding what contextual factors…

  15. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center

    Science.gov (United States)

    Mullinix, R.; Maddox, M. M.; Berrios, D.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Zheng, Y.

    2012-12-01

    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions are therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products compels the need for a single access point to such information. The Integrated Space Weather Analysis (iSWA) System provides this single point access along with the capability to collect and catalog a vast range of sources including both observational and model data. NASA Goddard Space Weather Research Center heavily utilizes the iSWA System daily for research, space weather model validation, and forecasting for NASA missions. iSWA provides the capabilities to view and analyze near real-time space weather data from any where in the world. This presentation will describe the technology behind the iSWA system and describe how to use the system for space weather research, forecasting, training, education, and sharing.

  16. Johnson Space Center's Role in a Sustainable Future

    Science.gov (United States)

    Ewert, Michael K.

    2004-01-01

    NASA scientists and many others are contributing to the growing knowledge of our Earth and its ecosystems. Satellites measure sea level rise, and changes in vegetation and air pollutants that travel between countries and continents. The U.S. federal government seeks to be a leader in environmental sustainability efforts through various Executive Orders and policies that save energy, reduce waste, and encourage less reliance on oil as an energy source. NASA, as an agency that is by nature focused on the future, has much to contribute to these efforts. The NASA mission is 'To understand and protect our home planet, to explore the universe and search for life, to inspire the next generation of explorers as only NASA can.' Pollution prevention, affirmative procurement and sustainable design are all programs that are under way at NASA. But more can be done. By sharing ideas and learning from other organizations as well as from the talented workforce we are a part of, JSC can improve its sustainability performance and spread the benefits to our community.

  17. Space Weather Forecasting and Research at the Community Coordinated Modeling Center

    Science.gov (United States)

    Aronne, M.

    2015-12-01

    The Space Weather Research Center (SWRC), within the Community Coordinated Modeling Center (CCMC), provides experimental research forecasts and analysis for NASA's robotic mission operators. Space weather conditions are monitored to provide advance warning and forecasts based on observations and modeling using the integrated Space Weather Analysis Network (iSWA). Space weather forecasters come from a variety of backgrounds, ranging from modelers to astrophysicists to undergraduate students. This presentation will discuss space weather operations and research from an undergraduate perspective. The Space Weather Research, Education, and Development Initiative (SW REDI) is the starting point for many undergraduate opportunities in space weather forecasting and research. Space weather analyst interns play an active role year-round as entry-level space weather analysts. Students develop the technical and professional skills to forecast space weather through a summer internship that includes a two week long space weather boot camp, mentorship, poster session, and research opportunities. My unique development of research projects includes studying high speed stream events as well as a study of 20 historic, high-impact solar energetic particle events. This unique opportunity to combine daily real-time analysis with related research prepares students for future careers in Heliophysics.

  18. Solar Array Sails: Possible Space Plasma Environmental Effects

    Science.gov (United States)

    Mackey, Willie R.

    2005-01-01

    An examination of the interactions between proposed "solar sail" propulsion systems with photovoltaic energy generation capabilities and the space plasma environments. Major areas of interactions ere: Acting from high voltage arrays, ram and wake effects, V and B current loops and EMI. Preliminary analysis indicates that arcing will be a major risk factor for voltages greater than 300V. Electron temperature enhancement in the wake will be produce noise that can be transmitted via the wake echo process. In addition, V and B induced potential will generate sheath voltages with potential tether like breakage effects in the thin film sails. Advocacy of further attention to these processes is emphasized so that plasma environmental mitigation will be instituted in photovoltaic sail design.

  19. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.

  20. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    International Nuclear Information System (INIS)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk

  1. Evaluation of perception on environmental movement: accessibility centered in the user

    Directory of Open Access Journals (Sweden)

    Éden Fernando Batista Ferreira

    2013-04-01

    Full Text Available Introduction: The discussion about accessibility in urban environments is observed in several studies,but the vast majority focuses attention on structural elements and not the user. Objective: This study proposes a method of assessing urban environmental movement, from the point of view of its users, to identify the relationship between perceived barriers and facilitators in the environment movement and aspects of the body functions and structures and the users’ participation in activities, which denotes the degree of accessibility of these people in this space. Method: It describes a case study in Belem, Para state, utilizing a method of assessing the perception of users, based on indicators of environmental factors, activity and participation, structure and functions of the body, highlighted by the International Classification of Functioning, Disability and Health – ICF. Results:The main finding of this study indicates that people’s perceptions about their environment directly influences the movement involved in their occupations. Conclusion: Studies with this content are relevant and necessary in our current society, because they reveal how changes in major urban centers influence the accessibility and involvement of people in their occupations, thereby directly interfering with their health, quality of life, and participation in society.

  2. Center for commercial applications of combustion in space (CCACS); A partnership for space commercialization at the Colorado School of Mines

    Science.gov (United States)

    Schowengerdt, F. D.; Kee, Bob; Linne, Mark; McKinnon, Tom; Moore, John; Parker, Terry; Readey, Dennis; Tilton, John E.; Helble, Joe

    1997-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) is a NASA/Industry/University consortium at the Colorado School of Mines (CSM). The mission of the Center is to assist industry in developing commercial products by conducting combustion research which takes advantage of the unique properties of space. By conducting experiments in near-zero gravity, convection and buoyancy effects can be minimized and new fundamental design-related knowledge can be gained which can be used to improve combustion-related products and processes on earth. Companies, government laboratories and universities most actively involved in CCACS at present include ABB Combustion, ADA Technologies, Advanced Refractory Technologies, Golden Technologies, Lockheed-Martin, Southwest Sciences, Space Systems/Lora, NASA-Lewis, JPL, the Baylor Dental School and the University of Connecticut. Products and processes of interest to the Center participants include industrial process combustors; catalytic combustion; Halon replacements; ceramic powders, whiskers and fibers; metal-matrix composites; NiTi for bone replacement; diamond coatings for oil-well drill bits; zeolites; imaging sensor arrays and other instrumentation for flame and particulate diagnostics. The center also assists member companies in marketing the resulting products and processes.

  3. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi

    2011-01-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  4. Update to Permeable Pavement Research at the Edison Environmental Center - abstract

    Science.gov (United States)

    Abstract The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers...

  5. Microorganism Removal in Permeable Pavement Parking Lots in Edison Environmental Center, New Jersey

    Science.gov (United States)

    Three types of permeable pavements (pervious concrete, permeable interlocking concrete pavers, and porous asphalt) were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed tha...

  6. Update to permeable pavement research at the Edison Environmental Center - slides

    Science.gov (United States)

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable paver...

  7. NIEHS/EPA Children’s Environmental Health Centers: Lifecourse Exposures & Diet: Epigenetics, Maturation & Metabolic Syndrome

    Science.gov (United States)

    The Columbia Center for Children’s Environmental Health (CCCEH) at Columbia University studies long-term health of urban pollutants on children raised in minority neighborhoods in inner-city communities.

  8. About Region 3's Laboratory and Field Services at EPA's Environmental Science Center

    Science.gov (United States)

    Mission & contact information for EPA Region 3's Laboratory and Field Services located at EPA's Environmental Science Center: the Office of Analytical Services and Quality Assurance & Field Inspection Program

  9. NIEHS/EPA CEHCs: Children's Environmental Health and Disease Prevention Center - Dartmouth College

    Science.gov (United States)

    The Columbia Center for Children’s Environmental Health (CCCEH) at Columbia University studies long-term health of urban pollutants on children raised in minority neighborhoods in inner-city communities.

  10. Report: Results of Technical Network Vulnerability Assessment: EPA’s Andrew W. Breidenbach Environmental Research Center

    Science.gov (United States)

    Report #10-P-0210, September 7, 2010. Vulnerability testing of EPA’s Andrew W. Breidenbach Environmental Research Center network conducted in June 2010 identified Internet Protocol addresses with numerous high-risk and medium-risk vulnerabilities.

  11. Cities are at the center of our environmental future

    Directory of Open Access Journals (Sweden)

    Saskia Sassen

    2010-06-01

    Full Text Available The global environmental challenge becomes tangible and urgent in cities. Thus, it is critical that we understand the capabilities of cities to transform what is today a negative environmental impact to a positive one. We must make cities part of the solution. One point of entry to this question is to view cities as a type of socio-ecological system that has an expanding range of articulations with nature's ecologies. Today, most of these articulations produce environmental damage. How can we begin to use these articulations to produce positive outcomes - outcomes that allow cities to contribute to environmental sustainability? The complex systemic and multi-scalar capacities of cities provide massive potential for a broad range of positive articulations with nature's ecologies.El desafío ambiental global se hace tangible y urgente en las ciudades. Por ende, es necesario que comprendamos cuáles son las potencialidades de las ciudades para transformar lo que hoy es un impacto ambiental negativo en uno positivo. En este sentido, la ciudad debe ser considerada como parte de la solución. Una ventana para mirar este asunto es la que considera a las ciudades como sistemas socio-ecológicos con un abanico de articulaciones con los sistemas ecológicos naturales. Hoy en día, la mayoría de estas articulaciones produce daños. ¿Cómo podemos empezar a utilizarlas para producir impactos positivos, que permitan una contribución de las ciudades a la sostenibilidad ambiental? Las potencialidades de carácter complejo y multi-escalar de las ciudades representan un potencial de gran relevancia para explorar un amplio rango de articulaciones positivas con las dinámicas ecológicas naturales.

  12. Research and technology: 1994 annual report of the John F. Kennedy Space Center

    Science.gov (United States)

    1994-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1994 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. The Technology Programs and Commercialization Office (DE-TPO), (407) 867-3017, is responsible for publication of this report and should be contacted for any desired information regarding the advanced technology program.

  13. Final Environmental Assessment for the construction and operation of an office building at the Stanford Linear Accelerator Center. Part 2

    International Nuclear Information System (INIS)

    1995-08-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1107, analyzing the environmental effects relating to the construction and operation of an office building at the Stanford Linear Accelerator Center (SLAC). SLAC is a national facility operated by Stanford University, California, under contract with DOE. The center is dedicated to research in elementary particle physics and in those fields that make use of its synchrotron facilities. The objective for the construction and operation of an office building is to provide adequate office space for existing SLAC Waste Management (WM) personnel, so as to centralize WM personnel and to make WM operations more efficient and effective. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  14. Low Cost Environmental Sensors for Spaceflight: NMP Space Environmental Monitor (SEM) Requirements

    Science.gov (United States)

    Garrett, Henry B.; Buehler, Martin G.; Brinza, D.; Patel, J. U.

    2005-01-01

    An outstanding problem in spaceflight is the lack of adequate sensors for monitoring the space environment and its effects on engineering systems. By adequate, we mean low cost in terms of mission impact (e.g., low price, low mass/size, low power, low data rate, and low design impact). The New Millennium Program (NMP) is investigating the development of such a low-cost Space Environmental Monitor (SEM) package for inclusion on its technology validation flights. This effort follows from the need by NMP to characterize the space environment during testing so that potential users can extrapolate the test results to end-use conditions. The immediate objective of this effort is to develop a small diagnostic sensor package that could be obtained from commercial sources. Environments being considered are: contamination, atomic oxygen, ionizing radiation, cosmic radiation, EMI, and temperature. This talk describes the requirements and rational for selecting these environments and reviews a preliminary design that includes a micro-controller data logger with data storage and interfaces to the sensors and spacecraft. If successful, such a sensor package could be the basis of a unique, long term program for monitoring the effects of the space environment on spacecraft systems.

  15. Energy efficiency and environmental considerations for green data centers

    International Nuclear Information System (INIS)

    Uddin, M.; Shah, A.

    2014-01-01

    The advancement of business and social practices based on information and social practices based on information and communication technologies (ICTs) in the last few decades has transformed many, if not most, economies and businesses into e-economies and businesses into e-businesses. For economies, ICTs are increasingly playing a critical role in transforming and generating economic opportunities. Technology has a potential to create sustainable business and society both in grim and green economic times. Especially, the recovery from the current economic crisis is going to lead to more greener and energy efficient industries. Data centers are found to be major culprits in consuming too much energy and generating higher level of CO/sub 2/ in their overall operations. In order to handle the sheer magnitude of today's data, servers have become larger, denser, hotter, and significantly more costly operate using more power than being used earlier. This paper determines the properties and attributes of green IT infrastructures and the way they will be helpful in achieving green sustainable businesses. The proposed attributes and characteristics of green IT using Virtualization technology are very productive and efficient and green, hence reducing the emission of greenhouse gases so that their overall effect on global warming can be reduced or even eliminated. The proposed attributes indicate the qualities of green IT to enhance the proper utilization of hardware and software resources available in the data center. (author)

  16. Use of IKONOS Data for Mapping Cultural Resources of Stennis Space Center, Mississippi

    Science.gov (United States)

    Spruce, Joseph P.; Giardino, Marco

    2002-01-01

    Cultural resource surveys are important for compliance with Federal and State law. Stennis Space Center (SSC) in Mississippi is researching, developing, and validating remote sensing and Geographical Information System (GIS) methods for aiding cultural resource assessments on the center's own land. The suitability of IKONOS satellite imagery for georeferencing scanned historic maps is examined in this viewgraph presentation. IKONOS data can be used to map historic buildings and farmland in Gainsville, MS, and plan archaeological surveys.

  17. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    Science.gov (United States)

    Packard, Edward

    2008-01-01

    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated

  18. NIEHS/EPA Children's Environmental Health and Disease Prevention Research Centers: 2017 Annual Meeting Proceedings

    Science.gov (United States)

    The 2017 Annual Meeting of the NIEHS/EPA Children’s Environmental Health and Disease Prevention Research Centers was hosted by EPA in collaboration with NIEHS and the Pediatric Environmental Health Specialty Units (PEHSUs). The meeting was held at the EPA Region 9 offices i...

  19. Inference in media space. The case of IBM Software Executive Briefing Center - Rome

    Directory of Open Access Journals (Sweden)

    Toni Marino

    2014-11-01

    Full Text Available In our paper we apply Peirce's model of Arguments (Statistical Deduction, Probabilistic Deduction, Induction and Abduction to a communication process where negotiating sense and meanings is emphasized. We selected a communication space where everything is planned as a medium of sense (video terminals, screens, lights, etc. namely the IBM Software Executive Briefing Center in Italy, a workplace used to exchange views, negotiate or transact. It is based in Rome in the same building as the International Development Laboratory of the IBM Software Group. The Software Center is the place where IBM welcomes its potential customers and has the opportunity to show them its technology and offer solutions. This paper focuses on "media space" in the Center which is structured by the seller according to his/her idea of the buyer's interpretive process. This paper analyzes the roles of visual codes in the allocation of functions. It also looks into the relation between the symbolism of the company with its marketing, past history and media space in order to define the buyer's typology of inference (deduction, induction or abduction in relation to the communication strategy of the media space design. The research is conducted directly in the field by interviewing the Manager of the IBM Center as well as asking people who use it to fill in an anonymous questionnaire, which analyses both the media space and the plan of the building.

  20. Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A

    Science.gov (United States)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.

  1. Kennedy Space Center: Constellation Program Electrical Ground Support Equipment Research and Development

    Science.gov (United States)

    McCoy, Keegan

    2010-01-01

    The Kennedy Space Center (KSC) is NASA's spaceport, launching rockets into space and leading important human spaceflight research. This spring semester, I worked at KSC on Constellation Program electrical ground support equipment through NASA's Undergraduate Student Research Program (USRP). This report includes a discussion of NASA, KSC, and my individual research project. An analysis of Penn State's preparation of me for an internship and my overall impressions of the Penn State and NASA internship experience conclude the report.

  2. Creating the Thermal Environment for Safely Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Lauterbach, John; Garcia, Sam

    2016-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. The chamber was originally built to support testing of the Apollo Service and Command Module for lunar missions, but underwent major modifications to be able to test the James Webb Space Telescope in a simulated deep space environment. To date seven tests have been performed in preparation of testing the flight optics for the James Webb Space Telescope (JWST). Each test has had a uniquie thermal profile and set of thermal requirements for cooling down and warming up, controlling contamination, and releasing condensed air. These range from temperatures from 335K to 15K, with tight uniformity and controllability for maintining thermal stability and pressure control. One unique requirement for two test was structurally proof loading hardware by creating thermal gradients at specific temperatures. This paper will discuss the thermal requirements and goals of the tests, the original requirements of the chamber thermal systems for planned operation, and how the new requirements were met by the team using the hardware, system flexiblilty, and engineering creativity. It will also discuss the mistakes and successes to meet the unique goals, especially when meeting the thermal proof load.

  3. The National Space Science Data Center guide to international rocket data

    Science.gov (United States)

    Dubach, L. L.

    1972-01-01

    Background information is given which briefly describes the mission of the National Space Science Data Center (NSSDC), including its functions and systems, along with its policies and purposes for collecting rocket data. The operation of a machine-sensible rocket information system, which allows the Data Center to have convenient access to information and data concerning all rocket flights carrying scientific experiments, is also described. The central feature of this system, an index of rocket flights maintained on magnetic tape, is described. Standard outputs for NSSDC and for the World Data Center A (WDC-A) for Rockets and Satellites are described.

  4. NASA Johnson Space Center Small Business Innovation Research (SBIR) Successes, Infusion and Commercializations and Potential International Partnering Opportunities

    Science.gov (United States)

    Packard, Kathryn; Goodman, Doug; Whittington, James

    2016-01-01

    The NASA Small Business Innovation Research (SBIR) Program has served as a beneficial funding vehicle to both US small technology businesses and the Federal Agencies that participate in the program. This paper, to the extent possible, while observing Intellectual Property (IP) laws, will discuss the many SBIR and STTR (SBIR Technology Transfer) successes in the recent history of the NASA Johnson Space Center (JSC). Many of the participants of the International Conference on Environmental Systems (ICES) have based their research and papers on technologies that were made possible by SBIR/STTR awards and post award funding. Many SBIR/STTR successes have flown on Space Shuttle missions, Space X Dragons, and other spacecraft. SBIR/STTR technologies are currently infused on the International Space Station (ISS) and satellites, one of which was a NASA/JAXA (Japanese Space Agency) joint venture. Many of these companies have commercialized their technologies and grown as businesses while helping the economy through the creation of new jobs. In addition, this paper will explore the opportunity for international partnership with US SBIR/STTR companies as up to 49% of the makeup of the company is not required to be American owned. Although this paper will deal with technical achievements, it does not purport to be technical in nature. It will address the many requests for information on successes and opportunities within NASA SBIR and the virtually untapped potential of international partnering.

  5. Life into Space: Space Life Sciences Experiments, Ames Research Center, Kennedy Space Center, 1991-1998, Including Profiles of 1996-1998 Experiments

    Science.gov (United States)

    Souza, Kenneth (Editor); Etheridge, Guy (Editor); Callahan, Paul X. (Editor)

    2000-01-01

    We have now conducted space life sciences research for more than four decades. The continuing interest in studying the way living systems function in space derives from two main benefits of that research. First, in order for humans to engage in long-term space travel, we must understand and develop measures to counteract the most detrimental effects of space flight on biological systems. Problems in returning to the conditions of Earth must be kept to a manageable level. Second, increasing our understanding of how organisms function in the absence of gravity gives us new understanding of fundamental biological processes. This information can be used to improve human health and the quality of life on Earth.

  6. Workshop on APEC virtual center for environmental technology exchange; APEC kankyo gijutsu koryu virtual center workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    At the 'policy maker workshop of the virtual center of APEC technology exchange' held in November 1997 in Osaka, Japan, it was agreed to organize study groups to discuss the scope of information provided by the virtual center, and to make common the classification systems and retrieval functions. In addition, the necessity was confirmed on international cooperation to promote establishment of virtual centers in different countries and territories. On the first day, Professor Ueda at the Kyoto University gave the basic lecture entitled 'global environment preservation and environmental technology transfer: problems and prospects'. Mr. Dan, the workshop manager gave the basic proposal entitled 'the future directionality of environmental technology exchange inside the APEC territories by using Internet'. Based on the basic proposal made on the first day, reports and discussions were given in the following sessions, where confirmation was made on the future directions. S1: establishment of the virtual centers in other countries and territories; S2: assurance of interchangeability of classification systems and retrieval functions in providing information, and S3: presentation of examples of inter-territorial exchange and the future directionality. (NEDO)

  7. Workshop on APEC virtual center for environmental technology exchange; APEC kankyo gijutsu koryu virtual center workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    At the 'policy maker workshop of the virtual center of APEC technology exchange' held in November 1997 in Osaka, Japan, it was agreed to organize study groups to discuss the scope of information provided by the virtual center, and to make common the classification systems and retrieval functions. In addition, the necessity was confirmed on international cooperation to promote establishment of virtual centers in different countries and territories. On the first day, Professor Ueda at the Kyoto University gave the basic lecture entitled 'global environment preservation and environmental technology transfer: problems and prospects'. Mr. Dan, the workshop manager gave the basic proposal entitled 'the future directionality of environmental technology exchange inside the APEC territories by using Internet'. Based on the basic proposal made on the first day, reports and discussions were given in the following sessions, where confirmation was made on the future directions. S1: establishment of the virtual centers in other countries and territories; S2: assurance of interchangeability of classification systems and retrieval functions in providing information, and S3: presentation of examples of inter-territorial exchange and the future directionality. (NEDO)

  8. Developing empirical lightning cessation forecast guidance for the Kennedy Space Center

    Science.gov (United States)

    Stano, Geoffrey T.

    The Kennedy Space Center in east Central Florida is one of the few locations in the country that issues lightning advisories. These forecasts are vital to the daily operations of the Space Center and take on even greater significance during launch operations. The U.S. Air Force's 45th Weather Squadron (45WS), who provides forecasts for the Space Center, has a good record of forecasting the initiation of lightning near their locations of special concern. However, the remaining problem is knowing when to cancel a lightning advisory. Without specific scientific guidelines detailing cessation activity, the Weather Squadron must keep advisories in place longer than necessary to ensure the safety of personnel and equipment. This unnecessary advisory time costs the Space Center millions of dollars in lost manpower each year. This research presents storm and environmental characteristics associated with lightning cessation that then are utilized to create lightning cessation guidelines for isolated thunderstorms for use by the 45WS during the warm season months of May through September. The research uses data from the Lightning Detection and Ranging (LDAR) network at the Kennedy Space Center, which can observe intra-cloud and portions of cloud-to-ground lightning strikes. Supporting data from the Cloud-to-Ground Lightning Surveillance System (CGLSS), radar observations from the Melbourne WSR-88D, and Cape Canaveral morning radiosonde launches also are included. Characteristics of 116 thunderstorms comprising our dataset are presented. Most of these characteristics are based on LDAR-derived spark and flash data and have not been described previously. In particular, the first lightning activity is quantified as either cloud-to-ground (CG) or intra-cloud (IC). Only 10% of the storms in this research are found to initiate with a CG strike. Conversely, only 16% of the storms end with a CG strike. Another characteristic is the average horizontal extent of all the flashes

  9. The Sharjah Center for Astronomy and Space Sciences (SCASS 2015): Concept and Resources

    Science.gov (United States)

    Naimiy, Hamid M. K. Al

    2015-08-01

    The Sharjah Center for Astronomy and Space Sciences (SCASS) was launched this year 2015 at the University of Sharjah in the UAE. The center will serve to enrich research in the fields of astronomy and space sciences, promote these fields at all educational levels, and encourage community involvement in these sciences. SCASS consists of:The Planetarium: Contains a semi-circle display screen (18 meters in diameter) installed at an angle of 10° which displays high-definition images using an advanced digital display system consisting of seven (7) high-performance light-display channels. The Planetarium Theatre offers a 200-seat capacity with seats placed at highly calculated angles. The Planetarium also contains an enormous star display (Star Ball - 10 million stars) located in the heart of the celestial dome theatre.The Sharjah Astronomy Observatory: A small optical observatory consisting of a reflector telescope 45 centimeters in diameter to observe the galaxies, stars and planets. Connected to it is a refractor telescope of 20 centimeters in diameter to observe the sun and moon with highly developed astronomical devices, including a digital camera (CCD) and a high-resolution Echelle Spectrograph with auto-giving and remote calibration ports.Astronomy, space and physics educational displays for various age groups include:An advanced space display that allows for viewing the universe during four (4) different time periods as seen by:1) The naked eye; 2) Galileo; 3) Spectrographic technology; and 4) The space technology of today.A space technology display that includes space discoveries since the launching of the first satellite in 1940s until now.The Design Concept for the Center (450,000 sq. meters) was originated by HH Sheikh Sultan bin Mohammed Al Qasimi, Ruler of Sharjah, and depicts the dome as representing the sun in the middle of the center surrounded by planetary bodies in orbit to form the solar system as seen in the sky.

  10. Surface to 90 km winds for Kennedy Space Center, Florida, and Vandenberg AFB, California

    Science.gov (United States)

    Johnson, D. L.; Brown, S. C.

    1979-01-01

    Bivariate normal wind statistics for a 90 degree flight azimuth, from 0 through 90 km altitude, for Kennedy Space Center, Florida, and Vandenberg AFB, California are presented. Wind probability distributions and statistics for any rotation of axes can be computed from the five given parameters.

  11. Regional Super ESPC Saves Energy and Dollars at NASA's Johnson Space Center

    International Nuclear Information System (INIS)

    Federal Energy Management Program

    2001-01-01

    This case study about energy saving performance contacts (ESPCs) presents an overview of how the NASA's Johnson Space Flight Center established an ESPC contract and the benefits derived from it. The Federal Energy Management Program instituted these special contracts to help federal agencies finance energy-saving projects at their facilities

  12. Using Web 2.0 (and Beyond?) in Space Flight Operations Control Centers

    Science.gov (United States)

    Scott, David W.

    2010-01-01

    Word processing was one of the earliest uses for small workstations, but we quickly learned that desktop computers were far more than e-typewriters. Similarly, "Web 2.0" capabilities, particularly advanced search engines, chats, wikis, blogs, social networking, and the like, offer tools that could significantly improve our efficiency at managing the avalanche of information and decisions needed to operate space vehicles in realtime. However, could does not necessarily equal should. We must wield two-edged swords carefully to avoid stabbing ourselves. This paper examines some Web 2.0 tools, with an emphasis on social media, and suggests which ones might be useful or harmful in real-time space operations co rnotl environments, based on the author s experience as a Payload Crew Communicator (PAYCOM) at Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) for the International Space Station (ISS) and on discussions with other space flight operations control organizations and centers. There is also some discussion of an offering or two that may come from beyond the current cyber-horizon.

  13. The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center

    Science.gov (United States)

    Singer, H. J.

    2017-12-01

    The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.

  14. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  15. Constraint based scheduling for the Goddard Space Flight Center distributed Active Archive Center's data archive and distribution system

    Science.gov (United States)

    Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications

  16. Technology for the Stars: Extending Our Reach. [Research and Technology: 1995 Annual Report of the Marshall Space Flight Center.

    Science.gov (United States)

    1996-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Studies, Research, Technology, and Technology Transfer projects are summarized in this report. The focus of the report is on the three spotlights at MSFC in 1995: space transportation technology, microgravity research, and technology transfer.

  17. Environmental Disturbance Modeling for Large Inflatable Space Structures

    National Research Council Canada - National Science Library

    Davis, Donald

    2001-01-01

    Tightening space budgets and stagnating spacelift capabilities are driving the Air Force and other space agencies to focus on inflatable technology as a reliable, inexpensive means of deploying large structures in orbit...

  18. Environmental "Omics" of International Space Station: Insights, Significance, and Consequences

    Science.gov (United States)

    Venkateswaran, Kasthuri

    2016-07-01

    The NASA Space Biology program funded two multi-year studies to catalogue International Space Station (ISS) environmental microbiome. The first Microbial Observatory (MO) experiment will generate a microbial census of the ISS surfaces and atmosphere using advanced molecular microbial community analysis "omics" techniques, supported by traditional culture-based methods and state-of-the art molecular techniques. The second MO experiment will measure presence of viral and select bacterial and fungal pathogens on ISS surfaces and correlate their presence on crew. The "omics" methodologies of the MO experiments will serve as the foundation for an extensive microbial census, offering significant insight into spaceflight-induced changes in the populations of beneficial and potentially harmful microbes. The safety of crewmembers and the maintenance of hardware are the primary goals for monitoring microorganisms in this closed habitat. The statistical analysis of the ISS microbiomes showed that three bacterial phyla dominated both in ISS and Earth cleanrooms, but varied in their abundances. While members of Actinobacteria were predominant on ISS, Proteobacteria dominated the Earth cleanrooms. Alpha diversity estimators indicated a significant drop in viable microbial diversity. To better characterize the shared community composition among samples, beta-diversity metrics analysis were conducted. At the bacterial species level characterization, the microbial community composition is strongly associated with sampling site. Results of the study indicate significant differences between ISS and Earth cleanroom microbiomes in terms of community structure and composition. Bacterial strains isolated from ISS surfaces were also tested for their resistance to nine antibiotics using conventional disc method and Vitek 2 system. Most of the Staphylococcus aureus strains were resistant to penicillin. Five strains were specifically resistant to erythromycin and the ermA gene was also

  19. Space Technology Demonstrations Using Low Cost, Short-Schedule Airborne and Range Facilities at the Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Kelly, John; Jones, Dan; Lee, James

    2013-01-01

    There is a national effort to expedite advanced space technologies on new space systems for both government and commercial applications. In order to lower risk, these technologies should be demonstrated in a relevant environment before being installed in new space systems. This presentation introduces several low cost, short schedule space technology demonstrations using airborne and range facilities available at the Dryden Flight Research Center.

  20. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, A.; Limaye, A. S.

    2011-12-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula's "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA's National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA's SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT's experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  1. The University of Nebraska at Omaha Center for Space Data Use in Teaching and Learning

    Science.gov (United States)

    Grandgenett, Neal

    2000-01-01

    Within the context of innovative coursework and other educational activities, we are proposing the establishment of a University of Nebraska at Omaha (UNO) Center for the Use of Space Data in Teaching and Learning. This Center will provide an exciting and motivating process for educators at all levels to become involved in professional development and training which engages real life applications of mathematics, science, and technology. The Center will facilitate innovative courses (including online and distance education formats), systematic degree programs, classroom research initiatives, new instructional methods and tools, engaging curriculum materials, and various symposiums. It will involve the active participation of several Departments and Colleges on the UNO campus and be well integrated into the campus environment. It will have a direct impact on pre-service and in-service educators, the K12 (kindergarten through 12th grade) students that they teach, and other college students of various science, mathematics, and technology related disciplines, in which they share coursework. It is our belief that there are many exciting opportunities represented by space data and imagery, as a context for engaging mathematics, science, and technology education. The UNO Center for Space Data Use in Teaching and Learning being proposed in this document will encompass a comprehensive training and dissemination strategy that targets the improvement of K-12 education, through changes in the undergraduate and graduate preparation of teachers in science, mathematics and technology education.

  2. Environmental Assessment of the Muscatatuck Urban Training Center near Butlerville, Indiana, October and November 2005

    Science.gov (United States)

    Risch, Martin R.; Ulberg, Amanda L.; Robinson, Bret A.

    2007-01-01

    An environmental assessment of the Muscatatuck Urban Training Center near Butlerville in Jennings County, Indiana, was completed during October and November 2005. As part of the Department of Defense Earth Science Program, the U.S. Geological Survey collected information about environmental conditions at the 825-acre former State of Indiana mental health facility prior to its conversion by the Indiana National Guard into an urban training center. The assessment was designed to investigate the type and extent of potential contamination associated with historical activities in selected areas of the facility.

  3. Environmental Survey preliminary report, Morgantown Energy Technology Center, Morgantown, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Morgantown Energy Technology Center (METC) conducted November 30 through December 4, 1987. In addition, the preliminary findings of the Laramie Project Office (LPO) Survey, which was conducted as part of the METC Survey on January 25 through 29, 1988, are presented in Appendices E and F. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with METC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at METC, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities at METC. The Sampling and Analysis Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the results will be incorporated into the METC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey METC. 60 refs., 28 figs., 43 tabs.

  4. The Study of Environmental Crisis and Local Distribution of Green Space in Tehran City

    OpenAIRE

    K. zayyari; L. Vahedian Beiky; Z. Parnoon

    2012-01-01

    Extended abstract1-IntroductionUncontrolled development of large cities due to the increase in population and migration has led to a massive environmental destruction and pollution, and the latter has destroyed green spaces within the city and changed the land use. Therefore, the need for green space and connection with nature has an important role in human life. The best way to reduce the destructive effects of environmental hazards is the development of green space. Due to its wide range of...

  5. Technical Data Management Center: a focal point for meteorological and other environmental transport computing technology

    International Nuclear Information System (INIS)

    McGill, B.; Maskewitz, B.F.; Trubey, D.K.

    1981-01-01

    The Technical Data Management Center, collecting, packaging, analyzing, and distributing information, computer technology and data which includes meteorological and other environmental transport work is located at the Oak Ridge National Laboratory, within the Engineering Physics Division. Major activities include maintaining a collection of computing technology and associated literature citations to provide capabilities for meteorological and environmental work. Details of the activities on behalf of TDMC's sponsoring agency, the US Nuclear Regulatory Commission, are described

  6. The Common information space of the Training and Consulting Center design

    Directory of Open Access Journals (Sweden)

    Dorofeeva N.S.

    2017-04-01

    Full Text Available the article describes the relevance of the research, such as the assessment of the educational and consulting services market and also the competitive environment based on the analysis of the regional innovative infrastructure. The results of the center activity design are presented, and the basis of the concept of this center functioning is TRIZ (the Theory of Invention Tasks Solving. The basic functional capabilities of the common information space (CIS are formulated and justified in this research, the CIS-structure is formed, the interfaces of the information resources in the CIS for the interaction with potential users have been developed, and data modeling has been carried out.

  7. The NASA Community Coordinated Modeling Center (CCMC) Next Generation Space Weather Data Warehouse

    Science.gov (United States)

    Maddox, M. M.; Kuznetsova, M. M.; Pulkkinen, A. A.; Zheng, Y.; Rastaetter, L.; Chulaki, A.; Pembroke, A. D.; Wiegand, C.; Mullinix, R.; Boblitt, J.; Mendoza, A. M. M.; Swindell, M. J., IV; Bakshi, S. S.; Mays, M. L.; Shim, J. S.; Hesse, M.; Collado-Vega, Y. M.; Taktakishvili, A.; MacNeice, P. J.

    2014-12-01

    The Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center enables, supports, and performs research and development for next generation space science and space weather models. The CCMC currently hosts a large and expanding collection of state-or-the-art, physics-based space weather models that have been developed by the international research community. There are many tools and services provided by the CCMC that are currently available world-wide, along with the ongoing development of new innovative systems and software for research, discovery, validation, visualization, and forecasting. Over the history of the CCMC's existence, there has been one constant engineering challenge - describing, managing, and disseminating data. To address the challenges that accompany an ever-expanding number of models to support, along with a growing catalog of simulation output - the CCMC is currently developing a flexible and extensible space weather data warehouse to support both internal and external systems and applications. This paper intends to chronicle the evolution and future of the CCMC's data infrastructure, and the current infrastructure re-engineering activities that seek to leverage existing community data model standards like SPASE and the IMPEx Simulation Data Model.

  8. NASA Pathways Co-op Tour Johnson Space Center Fall 2013

    Science.gov (United States)

    Masood, Amir; Osborne-Lee, Irwin W.

    2013-01-01

    This report outlines the tasks and objectives completed during a co-operative education tour with National Aeronautics and Space Association (NASA) at the Johnson Space Center in Houston, Texas. I worked for the Attitude & Pointing group of the Flight Dynamics Division within the Mission Operations Directorate at Johnson Space Center. NASA's primary mission is to support and expand the various ongoing space exploration programs and any research and development activities associated with it. My primary project required me to develop and a SharePoint web application for my group. My secondary objective was to become familiar with the role of my group which was primarily to provide spacecraft attitude and line of sight determination, including Tracking and Data Relay Satellite (TDRS) communications coverage for various NASA, International, and commercial partner spacecraft. My projects required me to become acquainted with different software systems, fundamentals of aerospace engineering, project management, and develop essential interpersonal communication skills. Overall, I accomplished multiple goals which included laying the foundations for an updated SharePoint which will allow for an organized platform to communicate and share data for group members and external partners. I also successfully learned about the operations of the Attitude & Pointing Group and how it contributes to the Missions Operations Directorate and NASA's Space Program as a whole

  9. Proceedings of the Space Shuttle Environmental Assessment Workshop on Stratospheric Effects

    Science.gov (United States)

    Potter, A. E. (Compiler)

    1977-01-01

    Various aspects of the potential environmental impact of space shuttle exhaust are explored. Topics include: (1) increased ultraviolet radiation levels in the biosphere due to destruction of atmospheric ozone; (2) climatic changes due to aerosol particles affecting the planetary albedo; (3) space shuttle propellants (including alternate formulations); and (4) measurement of space shuttle exhaust products.

  10. Innovative Partnerships Program Accomplishments: 2009-2010 at NASA's Kennedy Space Center

    Science.gov (United States)

    Makufka, David

    2010-01-01

    This document reports on the accomplishments of the Innovative Partnerships Program during the two years of 2009 and 2010. The mission of the Innovative Partnerships Program is to provide leveraged technology alternatives for mission directorates, programs, and projects through joint partnerships with industry, academia, government agencies, and national laboratories. As outlined in this accomplishments summary, the IPP at NASA's Kennedy Space Center achieves this mission via two interdependent goals: (1) Infusion: Bringing external technologies and expertise into Kennedy to benefit NASA missions, programs, and projects (2) Technology Transfer: Spinning out space program technologies to increase the benefits for the nation's economy and humanity

  11. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    Science.gov (United States)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  12. NASA Johnson Space Center Usability Testing and Analysis facility (UTAF) Overview

    Science.gov (United States)

    Whitmore, Mihriban; Holden, Kritina L.

    2005-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility performs research for NASA's HumanSystems Integration Program, under the HumanSystems Research and Technology Division. Specifically, the UTAF provides human factors support for space vehicles, including the International Space Station, the Space Shuttle, and the forthcoming Crew Exploration Vehicle. In addition, there are ongoing collaborative research efforts with external corporations and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes and requirements. This presentation will provide an overview of ongoing activities, and will address how the UTAF projects will evolve to meet new space initiatives.

  13. The Johnson Space Center management information systems: User's guide to JSCMIS

    Science.gov (United States)

    Bishop, Peter C.; Erickson, Lloyd

    1990-01-01

    The Johnson Space Center Management Information System (JSCMIS) is an interface to computer data bases at the NASA Johnson Space Center which allows an authorized user to browse and retrieve information from a variety of sources with minimum effort. The User's Guide to JSCMIS is the supplement to the JSCMIS Research Report which details the objectives, the architecture, and implementation of the interface. It is a tutorial on how to use the interface and a reference for details about it. The guide is structured like an extended JSCMIS session, describing all of the interface features and how to use them. It also contains an appendix with each of the standard FORMATs currently included in the interface. Users may review them to decide which FORMAT most suits their needs.

  14. On deformation of foliations with a center in the projective space

    Directory of Open Access Journals (Sweden)

    MOVASATI HOSSEIN

    2001-01-01

    Full Text Available Let be a foliation in the projective space of dimension two with a first integral of the type , where F and G are two polynomials on an affine coordinate, = and g.c.d.(p, q = 1. Let z be a nondegenerate critical point of , which is a center singularity of , and be a deformation of in the space of foliations of degree deg( such that its unique deformed singularity near z persists in being a center. We will prove that the foliation has a first integral of the same type of . Using the arguments of the proof of this result we will give a lower bound for the maximum number of limit cycles of real polynomial differential equations of a fixed degree in the real plane.

  15. Do physical environmental changes make a difference? Supporting person-centered care at mealtimes in nursing homes.

    Science.gov (United States)

    Chaudhury, Habib; Hung, Lillian; Rust, Tiana; Wu, Sarah

    2017-10-01

    Purpose Drawing on therapeutic physical environmental design principles and Kitwood's theoretical view of person-centered care, this study examined the impact of environmental renovations in dining spaces of a long-term care facility on residents' mealtime experience and staff practice in two care units. Method The research design involved pre- and post-renovation ethnographic observations in the dining spaces of the care units and a post-renovation staff survey. The objective physical environmental features pre- and post-renovations were assessed with a newly developed tool titled Dining Environment Audit Protocol. We collected observational data from 10 residents and survey responses from 17 care aides and nurses. Findings Based on a systematic analysis of observational data and staff survey responses, five themes were identified: (a) autonomy and personal control, (b) comfort of homelike environment, (c) conducive to social interaction, (d) increased personal support, and (e) effective teamwork. Implications Although the physical environment can play an influential role in enhancing the dining experience of residents, the variability in staff practices reveals the complexity of mealtime environment and points to the necessity of a systemic approach to foster meaningful culture change.

  16. Development of a NEW Vector Magnetograph at Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Hagyard, Mona; Gary, Allen; Smith, James; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This paper will describe the Experimental Vector Magnetograph that has been developed at the Marshall Space Flight Center (MSFC). This instrument was designed to improve linear polarization measurements by replacing electro-optic and rotating waveplate modulators with a rotating linear analyzer. Our paper will describe the motivation for developing this magnetograph, compare this instrument with traditional magnetograph designs, and present a comparison of the data acquired by this instrument and original MSFC vector magnetograph.

  17. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    Science.gov (United States)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  18. A preliminary evaluation of short-term thunderstorm forecasting using surface winds at Kennedy Space Center

    Science.gov (United States)

    Watson, Andrew I.; Holle, Ronald L.; Lopez, Raul E.; Nicholson, James R.

    1990-01-01

    In 1987 NASA expanded its surface wind network onto the mainland west of Kennedy Space Center, increasing the network area from nearly 800 sq km to over 1600 sq km. Here, the results of this expansion are reported using three years of wind and lightning information collected during June, July, August, and September of 1987, 1988, and 1989. The divergence-lightning relationships and the importance of wind direction are addressed, and the verification is summarized.

  19. Development of a component centered fault monitoring and diagnosis knowledge based system for space power system

    Science.gov (United States)

    Lee, S. C.; Lollar, Louis F.

    1988-01-01

    The overall approach currently being taken in the development of AMPERES (Autonomously Managed Power System Extendable Real-time Expert System), a knowledge-based expert system for fault monitoring and diagnosis of space power systems, is discussed. The system architecture, knowledge representation, and fault monitoring and diagnosis strategy are examined. A 'component-centered' approach developed in this project is described. Critical issues requiring further study are identified.

  20. Experimental study of high density foods for the Space Operations Center

    Science.gov (United States)

    Ahmed, S. M.

    1981-01-01

    The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.

  1. Positron-Electron Pairs in Astrophysics (Goddard Space Flight Center, 1983)

    International Nuclear Information System (INIS)

    Burns, M.L.; Harding, A.K.; Ramaty, R.

    1983-01-01

    A workshop on Position-Electron Pairs in Astrophysics was held in 1983 at the Goddard Space Flight Center. This workshop brought together observers and theorists actively engaged in the study of astrophysical sites, as well as physical processes therein where position-electron pairs have a profound influence on both the overall dynamics of the source region and the properties of the emitted radiation. This volume consists of the workshop proceedings

  2. The management approach to the NASA space station definition studies at the Manned Spacecraft Center

    Science.gov (United States)

    Heberlig, J. C.

    1972-01-01

    The overall management approach to the NASA Phase B definition studies for space stations, which were initiated in September 1969 and completed in July 1972, is reviewed with particular emphasis placed on the management approach used by the Manned Spacecraft Center. The internal working organizations of the Manned Spacecraft Center and its prime contractor, North American Rockwell, are delineated along with the interfacing techniques used for the joint Government and industry study. Working interfaces with other NASA centers, industry, and Government agencies are briefly highlighted. The controlling documentation for the study (such as guidelines and constraints, bibliography, and key personnel) is reviewed. The historical background and content of the experiment program prepared for use in this Phase B study are outlined and management concepts that may be considered for future programs are proposed.

  3. Organism Detection in Permeable Pavement Parking Lot Infiltrates at the Edison Environmental Center, New Jersey

    Science.gov (United States)

    Three types of permeable pavements were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed that porous asphalt had much lower concentration in monitored infiltrate compared t...

  4. 15 CFR 291.4 - National industry-specific pollution prevention and environmental compliance resource centers.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false National industry-specific pollution prevention and environmental compliance resource centers. 291.4 Section 291.4 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAM...

  5. 2007 accomplishment report for the Eastern and Western forest environmental threat assessment centers

    Science.gov (United States)

    Danny C. Lee; Jerome S. Beatty

    2008-01-01

    As chance would have it, the Eastern Forest and Western Wildland Environmental Threat Assessment Centers were created the same year (2005) that the Forest Service celebrated its centennial anniversary as an agency of the U.S. Department of Agriculture. The historic birth of the Forest Service provides a nice backdrop to view our own more modest beginnings. Both events...

  6. NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview

    Science.gov (United States)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  7. California Environmental Vulnerability Assessment (CEVA) Score, San Joaquin Valley CA, 2013, UC Davis Center for Regional Change

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set is based on a three year study by the UC Davis Center for Regional Change, in affiliation with the Environmental Justice Project of the John Muir...

  8. Survey of Beamed Energy Propulsion Concepts by the MSFC Space Environmental Effects Team

    Science.gov (United States)

    Gray, P. A.; Nehls, M. K.; Edwards, D. L.; Carruth, M. R., Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This will be a survey paper of work that was performed by the Space Environmental Effects Team at NASA's Marshall Space Flight Center in the area of laser energy propulsion concepts. Two types of laser energy propulsion techniques were investigated. The first was ablative propulsion, which used a pulsed ruby laser impacting on single layer coatings and films. The purpose of this investigation was to determine the laser power density that produced an optimum coupling coefficient for each type of material tested. A commercial off-the-shelf multi-layer film was also investigated for possible applications in ablative micro-thrusters, and its optimum coupling coefficient was determined. The second type of study measured the purely photonic force provided by a 300W CW YAG laser. In initial studies, the photon force resulting from the momentum of incident photons was measured directly using a vacuum compatible microbalance and these results were compared to theory. Follow-on work used the same CW laser to excite a stable optical cavity for the purpose of amplifying the available force from incident photons.

  9. Robotic and automatic welding development at the Marshall Space Flight Center

    Science.gov (United States)

    Jones, C. S.; Jackson, M. E.; Flanigan, L. A.

    1988-01-01

    Welding automation is the key to two major development programs to improve quality and reduce the cost of manufacturing space hardware currently undertaken by the Materials and Processes Laboratory of the NASA Marshall Space Flight Center. Variable polarity plasma arc welding has demonstrated its effectiveness on class 1 aluminum welding in external tank production. More than three miles of welds were completed without an internal defect. Much of this success can be credited to automation developments which stabilize the process. Robotic manipulation technology is under development for automation of welds on the Space Shuttle's main engines utilizing pathfinder systems in development of tooling and sensors for the production applications. The overall approach to welding automation development undertaken is outlined. Advanced sensors and control systems methodologies are described that combine to make aerospace quality welds with a minimum of dependence on operator skill.

  10. Technology Development for Hydrogen Propellant Storage and Transfer at the Kennedy Space Center (KSC)

    Science.gov (United States)

    Youngquist, Robert; Starr, Stanley; Krenn, Angela; Captain, Janine; Williams, Martha

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is a major user of liquid hydrogen. In particular, NASA's John F. Kennedy (KSC) Space Center has operated facilities for handling and storing very large quantities of liquid hydrogen (LH2) since the early 1960s. Safe operations pose unique challenges and as a result NASA has invested in technology development to improve operational efficiency and safety. This paper reviews recent innovations including methods of leak and fire detection and aspects of large storage tank health and integrity. We also discuss the use of liquid hydrogen in space and issues we are addressing to ensure safe and efficient operations should hydrogen be used as a propellant derived from in-situ volatiles.

  11. Evaluation of Environmental Health Indicators of Halva and Tahini Production Centers in Ardakan, Yazd

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ghaneian

    2014-03-01

    Results: Generally, 75% production centers had favorable hygienic status and 25% had slightly favorable hygienic status. According to obtained results, hygienic status of production centers had relatively favorable and favorable conditions and only in January and February in 31.3% and 18.8% processing hall and 12.5% product store was in a very favorable hygienic status. The results showed that in terms of environmental health status, 62.5% production centers in raw materials store part, 66.66% in production processing hall, 20.83% in packaging hall, 60.41% in product store and 37.5% in bathrooms had favorable status. Based on the results, hygienic status of bathrooms and processing hall achieved lowest and highest score, respectively. Statistical analysis showed that between hygienic status and production rate (p=0.411 there is no significant relationship. Conclusion: The results of this study indicate that the halva and tahini production centers of Ardakan city in terms of environmental health indicators had slightly favorable status to favorable and none of the production centers had not very favorable conditions. The results of this study can be used to improve health status of halva and tahini production centers.

  12. Supply Warehouse#3, SWMU 088 Operations, Maintenance, and Monitoring Report Kennedy Space Center, Florida

    Science.gov (United States)

    Murphy, Alex

    2016-01-01

    This document presents the findings, observations, and results associated with Operations, Maintenance, and Monitoring (OM&M) activities of Corrective Measures Implementation (CMI) activities conducted at Supply Warehouse #3 (SW3) located at John F. Kennedy Space Center (KSC), Florida from October 8, 2015, to September 12, 2016, and performance monitoring results for semi-annual sampling events conducted in March and September 2016. The primary objective of SW3 CMI is to actively decrease concentrations of trichloroethene (TCE) and vinyl chloride (VC) to less than Florida Department of Environmental Protection (FDEP) Natural Attenuation Default Concentrations (NADCs), and the secondary objective is to reduce TCE, cis-1,2-dichloroethene (cDCE), trans-1,2-dichloroethene (tDCE), 1,1-dichloroethene (11DCE), and VC concentrations to less than FDEP Groundwater Cleanup Target Levels (GCTLs). The SW3 facility has been designated Solid Waste Management Unit (SWMU) 088 under KSC's Resource Conservation and Recovery Act (RCRA) Corrective Action Program. Based on the results to date, the SW3 air sparging (AS) system is operating at or below the performance criteria as presented in the 2008 SW3 Corrective Measures Implementation (CMI) Work Plan and 2009 and 2012 CMI Work Plan Addenda. Since the start of AS system operations on December 19, 2012, through the September 2016 groundwater sampling event, TCE concentrations have decreased to less than the GCTL in all wells within the Active Remediation Zone (ARZ), and VC results remain less than NADC but greater than GCTL. Based on these results, team consensus was reached at the October 2016 KSC Remediation Team (KSCRT) meeting to continue AS system operations and semi-annual performance monitoring of volatile organic compounds in March 2017 at ten monitoring wells at select locations, and in September 2017 at four monitoring wells at select locations to reduce VC concentrations to below GCTL. Additionally, surface water samples

  13. Using CFD as a Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center

    Science.gov (United States)

    Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Canabal, Francisco; Rocker, marvin; Robles, Bryan; Garcia, Robert; Chenoweth, James

    2005-01-01

    New programs are forcing American propulsion system designers into unfamiliar territory. For instance, industry s answer to the cost and reliability goals set out by the Next Generation Launch Technology Program are engine concepts based on the Oxygen- Rich Staged Combustion Cycle. Historical injector design tools are not well suited for this new task. The empirical correlations do not apply directly to the injector concepts associated with the ORSC cycle. These legacy tools focus primarily on performance with environment evaluation a secondary objective. Additionally, the environmental capability of these tools is usually one-dimensional while the actual environments are at least two- and often three-dimensional. CFD has the potential to calculate performance and multi-dimensional environments but its use in the injector design process has been retarded by long solution turnaround times and insufficient demonstrated accuracy. This paper has documented the parallel paths of program support and technology development currently employed at Marshall Space Flight Center in an effort to move CFD to the forefront of injector design. MSFC has established a long-term goal for use of CFD for combustion devices design. The work on injector design is the heart of that vision and the Combustion Devices CFD Simulation Capability Roadmap that focuses the vision. The SRL concept, combining solution fidelity, robustness and accuracy, has been established as a quantitative gauge of current and desired capability. Three examples of current injector analysis for program support have been presented and discussed. These examples are used to establish the current capability at MSFC for these problems. Shortcomings identified from this experience are being used as inputs to the Roadmap process. The SRL evaluation identified lack of demonstrated solution accuracy as a major issue. Accordingly, the MSFC view of code validation and current MSFC-funded validation efforts were discussed in

  14. Super Global Projects and Environmentally Friendly Technologies Used in Space Exploration: Realities and Prospects of the Space Age

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2018-02-01

    Full Text Available The 60th anniversary of the Space Age is an important intermediate finishing point on the way of a man and the whole humanity to space. Along with the outstanding achievements, there are a number of challenges and contradictions in space exploration due to the aggravation of the global crisis on Earth, low efficiency and the backlog of space research in the transition to a new technology based reality and clean technologies. Both the international astronautics and the space exploration area nowadays face difficulties in choosing a new paradigm and a development strategy that is becoming even more complicated due to the current unstable and turbulent situation on Earth. The article reveals the optimistic scenario of further space exploration, as well as the methodological and practical aspects of new projects and technologies. The periodization of the Space Age history has been conducted. It has been also proposed a new classification of the “space” phenomenon due to concretizing the concept of “global” in the form of a three-scale structure encompassing the following levels: 1 planetary global; 2 super global; 3 universally global. The notion of “super global space exploration project” has been introduced. The concept of further space exploration is proposed, which includes four interrelated super global projects:1 Earth Protection System from Asteroid and Comet Threat; 2 Moon Exploration; 3 Mars Exploration; 4 Cosmic Humanity. Since the humanity is embarking on the practical implementation of these super global projects, it is urgent to make a transition towards a new technology based order, as well as up-to-date technologies. A couple of ecological projects and space exploration technologies of the 20th and 21st centuries have been exemplified and analyzed. It has been also worked out the list of new environmentally friendly space technologies and projects. The research makes an emphasis upon a great potential of clean and green

  15. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robots

    Science.gov (United States)

    Erikson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an obejective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  16. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    Science.gov (United States)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  17. INSPACE CHEMICAL PROPULSION SYSTEMS AT NASA's MARSHALL SPACE FLIGHT CENTER: HERITAGE AND CAPABILITIES

    Science.gov (United States)

    McRight, P. S.; Sheehy, J. A.; Blevins, J. A.

    2005-01-01

    NASA s Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V rocket and the Space Shuttle external tank, solid rocket boosters, and main engines. This paper highlights a lesser known but very rich side of MSFC-its heritage in the development of in-space chemical propulsion systems and its current capabilities for spacecraft propulsion system development and chemical propulsion research. The historical narrative describes the flight development activities associated with upper stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology (DART), X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and multiple technology development activities. This paper also highlights MSFC s advanced chemical propulsion research capabilities, including an overview of the center s Propulsion Systems Department and ongoing activities. The authors highlight near-term and long-term technology challenges to which MSFC research and system development competencies are relevant. This paper concludes by assessing the value of the full range of aforementioned activities, strengths, and capabilities in light of NASA s exploration missions.

  18. Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center

    Science.gov (United States)

    2001-01-01

    This photograph shows Wes Brown, Marshall Space Flight Center's (MSFC's) lead diamond tuner, an expert in the science of using diamond-tipped tools to cut metal, inspecting the mold's physical characteristics to ensure the uniformity of its more than 6,000 grooves. This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at MSFC, is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a fresnel lens. Weighing much less than conventional optics, fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. The MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.

  19. Rocket ranch the nuts and bolts of the Apollo Moon program at Kennedy Space Center

    CERN Document Server

    Ward, Jonathan H

    2015-01-01

    Jonathan Ward takes the reader deep into the facilities at Kennedy Space Center to describe NASA’s first computer systems used for spacecraft and rocket checkout and explain how tests and launches proceeded. Descriptions of early operations include a harrowing account of the heroic efforts of pad workers during the Apollo 1 fire. A companion to the author’s book Countdown to a Moon Launch: Preparing Apollo for Its Historic Journey, this explores every facet of the facilities that served as the base for the Apollo/Saturn missions. Hundreds of illustrations complement the firsthand accounts of more than 70 Apollo program managers and engineers. The era of the Apollo/Saturn missions was perhaps the most exciting period in American space exploration history. Cape Canaveral and Kennedy Space Center were buzzing with activity. Thousands of workers came to town to build the facilities and launch the missions needed to put an American on the Moon before the end of the decade. Work at KSC involved much more than j...

  20. Johnson Space Center's Solar and Wind-Based Renewable Energy System

    Science.gov (United States)

    Vasquez, A.; Ewert, M.; Rowlands, J.; Post, K.

    2009-01-01

    The NASA Johnson Space Center (JSC) in Houston, Texas has a Sustainability Partnership team that seeks ways for earth-based sustainability practices to also benefit space exploration research. A renewable energy gathering system was installed in 2007 at the JSC Child Care Center (CCC) which also offers a potential test bed for space exploration power generation and remote monitoring and control concepts. The system comprises: 1) several different types of photovoltaic panels (29 kW), 2) two wind-turbines (3.6 kW total), and 3) one roof-mounted solar thermal water heater and tank. A tie to the JSC local electrical grid was provided to accommodate excess power. The total first year electrical energy production was 53 megawatt-hours. A web-based real-time metering system collects and reports system performance and weather data. Improvements in areas of the CCC that were detected during subsequent energy analyses and some concepts for future efforts are also presented.

  1. Vector magnetic fields in sunspots. I - Stokes profile analysis using the Marshall Space Flight Center magnetograph

    Science.gov (United States)

    Balasubramaniam, K. S.; West, E. A.

    1991-01-01

    The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.

  2. Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)

    Science.gov (United States)

    Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine

    2012-01-01

    Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.

  3. Axes of resistance for tooth movement: does the center of resistance exist in 3-dimensional space?

    Science.gov (United States)

    Viecilli, Rodrigo F; Budiman, Amanda; Burstone, Charles J

    2013-02-01

    The center of resistance is considered the most important reference point for tooth movement. It is often stated that forces through this point will result in tooth translation. The purpose of this article is to report the results of numeric experiments testing the hypothesis that centers of resistance do not exist in space as 3-dimensional points, primarily because of the geometric asymmetry of the periodontal ligament. As an alternative theory, we propose that, for an arbitrary tooth, translation references can be determined by 2-dimensional projection intersections of 3-dimensional axes of resistance. Finite element analyses were conducted on a maxillary first molar model to determine the position of the axes of rotation generated by 3-dimensional couples. Translation tests were performed to compare tooth movement by using different combinations of axes of resistance as references. The couple-generated axes of rotation did not intersect in 3 dimensions; therefore, they do not determine a 3-dimensional center of resistance. Translation was obtained by using projection intersections of the 2 axes of resistance perpendicular to the force direction. Three-dimensional axes of resistance, or their 2-dimensional projection intersections, should be used to plan movement of an arbitrary tooth. Clinical approximations to a small 3-dimensional "center of resistance volume" might be adequate in nearly symmetric periodontal ligament cases. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  4. Environmental education excursions and proximity to urban green space : Densification in a ‘compact city’

    NARCIS (Netherlands)

    Wolsink, M.

    2016-01-01

    The value of urban green space for environmental education fieldwork is empirically investigated in a study among all secondary schools in Amsterdam. The article describes how the proximity of schools to green spaces emerges as a new factor in the ‘sustainable city’ and the ‘compact city’ debate.

  5. Students' Imaginings of Spaces of Learning in Outdoor and Environmental Education

    Science.gov (United States)

    Preston, Lou

    2014-01-01

    In this article, I interrogate students' stories about the spaces and places in a tertiary Outdoor and Environmental Education course that support and shape their environmental ethics. Drawing on a longitudinal qualitative study, I explore the ways in which particular sites of learning (outdoor, practical learning) are privileged and how…

  6. Friction Stir Welding Development at NASA-Marshall Space Flight Center

    Science.gov (United States)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.

    2001-01-01

    This paper presents an overview of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including thin and thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  7. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    Science.gov (United States)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.

  8. Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center

    Science.gov (United States)

    Zia, Omar

    1989-01-01

    The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.

  9. Independence of automorphism group, center, and state space of quantum logics

    International Nuclear Information System (INIS)

    Navara, M.

    1992-01-01

    We prove that quantum logics (-orthomodular posets) admit full independence of the attributes important within the foundations of quantum mechanics. Namely, we present the construction of quantum logics with given sublogics (=physical subsystems), automorphism groups, centers (=open-quotes classical partsclose quotes of the systems), and state spaces. Thus, all these open-quotes parametersclose quotes are independent. Our result is rooted in the line of investigation carried out by Greechie; Kallus and Trnkova; Kalmbach; and Navara and Ptak; and considerably enriches the known algebraic methods in orthomodular posets. 19 refs., 1 fig

  10. National Aeronautics and Space Administration Manned Spacecraft Center data base requirements study

    Science.gov (United States)

    1971-01-01

    A study was conducted to evaluate the types of data that the Manned Spacecraft Center (MSC) should automate in order to make available essential management and technical information to support MSC's various functions and missions. In addition, the software and hardware capabilities to best handle the storage and retrieval of this data were analyzed. Based on the results of this study, recommendations are presented for a unified data base that provides a cost effective solution to MSC's data automation requirements. The recommendations are projected through a time frame that includes the earth orbit space station.

  11. Voltage profile program for the Kennedy Space Center electric power distribution system

    Science.gov (United States)

    1976-01-01

    The Kennedy Space Center voltage profile program computes voltages at all busses greater than 1 Kv in the network under various conditions of load. The computation is based upon power flow principles and utilizes a Newton-Raphson iterative load flow algorithm. Power flow conditions throughout the network are also provided. The computer program is designed for both steady state and transient operation. In the steady state mode, automatic tap changing of primary distribution transformers is incorporated. Under transient conditions, such as motor starts etc., it is assumed that tap changing is not accomplished so that transformer secondary voltage is allowed to sag.

  12. Short-term forecasting of thunderstorms at Kennedy Space Center, based on the surface wind field

    Science.gov (United States)

    Watson, Andrew I.; Lopez, Raul E.; Holle, Ronald L.; Daugherty, John R.; Ortiz, Robert

    1989-01-01

    Techniques incorporating wind convergence that can be used for the short-term prediction of thunderstorm development are described. With these techniques, the convergence signal is sensed by the wind network array 15 to 90 min before actual storm development. Particular attention is given to the convergence cell technique (which has been applied at the Kennedy Space Center) where each convective region is analyzed independently. It is noted that, while the monitoring of areal and cellular convergence can be used to help locate the seeds of developing thunderstorms and pinpoint the lightning threat areas, this forecasting aid cannot be used in isolation.

  13. Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, E. A.; Porter, J. G.; Davis, J. M.; Gary, G. A.; Adams, M.; Smith, S.; Hraba, J. F.

    2001-01-01

    This paper will describe the scientific objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550 Angstroms) and MgII (2800 Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirror and polarimeter.

  14. Effectiveness of an existing estuarine no-take fish sanctuary within the Kennedy Space Center, Florida

    Science.gov (United States)

    Johnson, D.R.; Funicelli, N.A.; Bohnsack, James A.

    1999-01-01

    Approximately 22% of the waters of the Merritt Island National Wildlife Refuge, which encompasses the Kennedy Space Center, Florida, have been closed to public access and fishing since 1962. These closed areas offer an opportunity to test the effectiveness of 'no-take' sanctuaries by analyzing two replicated estuarine areas. Areas open and closed to fishing were sampled from November 1986 to January 1990 with 653 random trammel-net sets, each enclosing 3,721 m2. Samples from no-fishing areas had significantly (P studies documented export of important sport fish from protected areas to fished areas.

  15. Dreams, Hopes, Realities: NASA's Goddard Space Flight Center, the First Forty Years

    Science.gov (United States)

    Wallace, Lane E.

    1999-01-01

    Throughout history, the great achievements of civilizations and cultures have been recorded in lists of dates and events. But to look only at the machinery, discoveries, or milestones is to miss the value of these achievements. Each goal achieved or discovery or made represents a supreme effort on the part of individual people who came and worked together for a purpose greater than themselves. Driven by an innate curiosity of the spirit, we have built civilizations and discovered new worlds, always reaching out beyond what we knew or thought was possible. These efforts may have used ships or machinery, but the achievement was that of the humans who made those machines possible- remarkable people willing to endure discomfort, frustration, fatigue, and the risk of failure in the hope of finding out something new. This is the case with the history of the Goddard Space Flight Center. This publication traces the legacy of successes, risks, disappointments and internationally recognized triumphs of the Center's first 40 years. It is a story of technological achievement and scientific discovery; of reaching back to the dawn of time and opening up a new set of eyes on our own planet Earth. In the end, it is not a story about machinery or discoveries, but a story about ourselves. If we were able to step off our planet, and if we continue to discover new mysteries and better technology, it is because the people who work at Goddard always had a passion for exploration and the dedication to make it happen. The text that follows is a testimony to the challenges people at the Goddard Space Flight Center have faced and overcome over almost half a century. Today, we stand on the threshold of a new and equally challenging era. It will once again test our ingenuity, skills, and flexibility as we find new ways of working with our colleagues in industry, government, and academia. Doing more with less is every bit as ambitious as designing the first science instrument to study the

  16. Development of a EUV Test Facility at the Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  17. Storage Information Management System (SIMS) Spaceflight Hardware Warehousing at Goddard Space Flight Center

    Science.gov (United States)

    Kubicko, Richard M.; Bingham, Lindy

    1995-01-01

    Goddard Space Flight Center (GSFC) on site and leased warehouses contain thousands of items of ground support equipment (GSE) and flight hardware including spacecraft, scaffolding, computer racks, stands, holding fixtures, test equipment, spares, etc. The control of these warehouses, and the management, accountability, and control of the items within them, is accomplished by the Logistics Management Division. To facilitate this management and tracking effort, the Logistics and Transportation Management Branch, is developing a system to provide warehouse personnel, property owners, and managers with storage and inventory information. This paper will describe that PC-based system and address how it will improve GSFC warehouse and storage management.

  18. Estimation of environmental noise impacts within architectural spaces

    International Nuclear Information System (INIS)

    Chang, Y. S.; Liebich, R. E.; Chun, K. C.

    2002-01-01

    Public Law 91-596, ''Occupational Safety and Health Act of 1970,'' Dec. 29, 1970, stimulated interest in modeling the impacts of interior noise on employees, as well as the intelligibility of interior public-address and other speech intra-communication systems. The classical literature on this topic has primarily featured a statistical uniform diffuse-field model. This was pioneered by Leo L. Beranek in the 1950s, based on energy-density formulations at the former Bell Telephone (AT and T) Laboratories in the years from 1930 to 1950. This paper compares the classical prediction approach to the most recent statistical methods. Such models were developed in the late 1970s and included innovations such as consideration of irregularly shaped (e.g., L-shaped) interior room spaces and coupled spaces

  19. Research-to-operations (R2O) for the Space Environmental Effects Fusion System (SEEFS) system-impact products

    Science.gov (United States)

    Quigley, Stephen

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/RVBX) and the Space Environment Branch of the Space and Missile Systems Center (SMC SLG/WMLE) have combined efforts to design, develop, test, implement, and validate numerical and graphical products for Air Force Space Command's (AFSPC) Space Environmental Effects Fusion System (SEEFS). These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems. Jointly developed projects that have been completed as prototypes and are undergoing development for real-time operations include a SEEFS architecture and database, five system-impact products, and a high-level decision aid product. This first round of SEEFS products includes the Solar Radio Burst Effects (SoRBE) on radar and satellite communications, Radar Auroral Clutter (RAC), Scintillation Effects on radar and satellite communications (RadScint and SatScint), and Satellite Surface and Deep Charge/Discharge (Char/D) products. This presentation will provide overviews of the current system impact products, along with plans and potentials for future products expected for the SEEFS program. The overviews will include information on applicable research-to-operations (R2O) issues, to include input data coverage and quality control, output confidence levels, modeling standards, and validation efforts.

  20. Survival and detection of rotaviruses on environmental surfaces in day care centers.

    Science.gov (United States)

    Keswick, B H; Pickering, L K; DuPont, H L; Woodward, W E

    1983-01-01

    Previously, we demonstrated that children in day care centers commonly experience diarrhea due to rotavirus, giardia, and bacterial pathogens. Multiple agents frequently coexist, and the environment is heavily contaminated with enteric bacteria during outbreaks. A study of environmental surface contamination with rotavirus was performed during three non-outbreak periods. Of 25 samples collected from environmental surfaces and teachers hands at a day care center, 4 (16%) were positive for rotavirus antigen when a fluorescence assay was used. We also examined the survival of two animal viruses, rotavirus SA-11 and poliovirus type 1, and bacteriophage 12 on similar environmental surfaces in a laboratory. Poliovirus type 1 and bacteriophage f2 were more resistant to drying than rotavirus SA-11 and could be recovered after a 90-min exposure on a dry surface. Rotavirus SA-11 could be detected for 30 min. All three viruses survived longer when they were suspended in fecal material than when they were suspended in distilled water. These data suggest that several agents, including rotavirus, can remain viable on contaminated surfaces long enough to be transmitted to susceptible children. This finding helps explain why rotavirus shows a mode of spread like that of parasitic and bacterial agents within day care center settings. PMID:6314896

  1. Robust, Radiation Tolerant Command and Data Handling and Power System Electronics from NASA Goddard Space Flight Center

    Science.gov (United States)

    Nguyen, Hanson C.; Fraction, James; Ortiz-Acosta, Melyane; Dakermanji, George; Kercheval, Bradford P.; Hernandez-Pellerano, Amri; Kim, David S.; Jung, David S.; Meyer, Steven E.; Mallik, Udayan; hide

    2016-01-01

    The Goddard Modular Smallsat Architecture (GMSA) is developed at NASA Goddard Space Flight Center (GSFC) to address future reliability along with minimizing cost and schedule challenges for NASA Cubesat and Smallsat missions.

  2. Air Force Host and Tenant Agreements Between the 50th Space Wing, the Joint National Integration Center, and Tenants

    National Research Council Canada - National Science Library

    2007-01-01

    .... The 50th Space Wing makes available by permit two buildings on the base's real property records, 720 and 730, to the Joint National Integration Center, a Component of the Missile Defense Agency...

  3. Center for Molecular Electronics, University of Missouri, St. Louis. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Department of Energy (DOE) proposes to authorize the University of Missouri, St. Louis to proceed with the detailed design and construction of the proposed Center for Molecular Electronics. The proposed Center would consist of laboratories and offices housed in a three-story building on the University campus. The proposed modular laboratories would be adaptable for research activities principally related to physics, chemistry, and electrical engineering. Proposed research would include the development and application of thin-film materials, semi-conductors, electronic sensors and devices, and high-performance polymers. Specific research for the proposed Center has not yet been formulated, therefore, specific procedures for any particular process or study cannot be described at this time. The proposed construction site is an uncontaminated panel of land located on the University campus. This report contains information about the environmental assessment that was performed in accordance with this project.

  4. Johnson Space Center's Risk and Reliability Analysis Group 2008 Annual Report

    Science.gov (United States)

    Valentine, Mark; Boyer, Roger; Cross, Bob; Hamlin, Teri; Roelant, Henk; Stewart, Mike; Bigler, Mark; Winter, Scott; Reistle, Bruce; Heydorn,Dick

    2009-01-01

    The Johnson Space Center (JSC) Safety & Mission Assurance (S&MA) Directorate s Risk and Reliability Analysis Group provides both mathematical and engineering analysis expertise in the areas of Probabilistic Risk Assessment (PRA), Reliability and Maintainability (R&M) analysis, and data collection and analysis. The fundamental goal of this group is to provide National Aeronautics and Space Administration (NASA) decisionmakers with the necessary information to make informed decisions when evaluating personnel, flight hardware, and public safety concerns associated with current operating systems as well as with any future systems. The Analysis Group includes a staff of statistical and reliability experts with valuable backgrounds in the statistical, reliability, and engineering fields. This group includes JSC S&MA Analysis Branch personnel as well as S&MA support services contractors, such as Science Applications International Corporation (SAIC) and SoHaR. The Analysis Group s experience base includes nuclear power (both commercial and navy), manufacturing, Department of Defense, chemical, and shipping industries, as well as significant aerospace experience specifically in the Shuttle, International Space Station (ISS), and Constellation Programs. The Analysis Group partners with project and program offices, other NASA centers, NASA contractors, and universities to provide additional resources or information to the group when performing various analysis tasks. The JSC S&MA Analysis Group is recognized as a leader in risk and reliability analysis within the NASA community. Therefore, the Analysis Group is in high demand to help the Space Shuttle Program (SSP) continue to fly safely, assist in designing the next generation spacecraft for the Constellation Program (CxP), and promote advanced analytical techniques. The Analysis Section s tasks include teaching classes and instituting personnel qualification processes to enhance the professional abilities of our analysts

  5. Space Environmental Testing of the Electrodynamic Dust Shield Technology

    Science.gov (United States)

    Calle, Carlos I.; Mackey, P. J.; Hogue, M. D.; Johansen, M .R.; Yim, H.; Delaune, P. B.; Clements, J. S.

    2013-01-01

    NASA's exploration missions to Mars and the moon may be jeopardized by dust that will adhere to surfaces of (a) Optical systems, viewports and solar panels, (b) Thermal radiators, (c) Instrumentation, and (d) Spacesuits. We have developed an active dust mitigation technology, the Electrodynamic Dust Shield, a multilayer coating that can remove dust and also prevents its accumulation Extensive testing in simulated laboratory environments and on a reduced gravity flight shows that high dust removal performance can be achieved Long duration exposure to the space environment as part of the MISSE-X payload will validate the technology for lunar missions.

  6. The hydrographic basin a space for the environmental planning

    International Nuclear Information System (INIS)

    Dunoyer Mejia Monica

    2002-01-01

    This paper is a synthesis of the work done in watershed management in the framework of sustainable development in Caldas, it describes different points of view to the watershed management approaches as well as its legal aspects developed in the recent history of Colombia. You will also find different basins delineations according to the size, spatial scale used, and the proposed objectives to achieve different goals in watershed management as a way to do environmental planning. At the end of this paper you will find a description of the methodological faces used to achieve a so-called ordering plan, based on legal. Parameters used to date in Colombia

  7. Quality Control Algorithms for the Kennedy Space Center 50-Megahertz Doppler Radar Wind Profiler Winds Database

    Science.gov (United States)

    Barbre, Robert E., Jr.

    2012-01-01

    This paper presents the process used by the Marshall Space Flight Center Natural Environments Branch (EV44) to quality control (QC) data from the Kennedy Space Center's 50-MHz Doppler Radar Wind Profiler for use in vehicle wind loads and steering commands. The database has been built to mitigate limitations of using the currently archived databases from weather balloons. The DRWP database contains wind measurements from approximately 2.7-18.6 km altitude at roughly five minute intervals for the August 1997 to December 2009 period of record, and the extensive QC process was designed to remove spurious data from various forms of atmospheric and non-atmospheric artifacts. The QC process is largely based on DRWP literature, but two new algorithms have been developed to remove data contaminated by convection and excessive first guess propagations from the Median Filter First Guess Algorithm. In addition to describing the automated and manual QC process in detail, this paper describes the extent of the data retained. Roughly 58% of all possible wind observations exist in the database, with approximately 100 times as many complete profile sets existing relative to the EV44 balloon databases. This increased sample of near-continuous wind profile measurements may help increase launch availability by reducing the uncertainty of wind changes during launch countdown

  8. Innovative Educational Aerospace Research at the Northeast High School Space Research Center

    Science.gov (United States)

    Luyet, Audra; Matarazzo, Anthony; Folta, David

    1997-01-01

    Northeast High Magnet School of Philadelphia, Pennsylvania is a proud sponsor of the Space Research Center (SPARC). SPARC, a model program of the Medical, Engineering, and Aerospace Magnet school, provides talented students the capability to successfully exercise full simulations of NASA manned missions. These simulations included low-Earth Shuttle missions and Apollo lunar missions in the past, and will focus on a planetary mission to Mars this year. At the end of each scholastic year, a simulated mission, lasting between one and eight days, is performed involving 75 students as specialists in seven teams The groups are comprised of Flight Management, Spacecraft Communications (SatCom), Computer Networking, Spacecraft Design and Engineering, Electronics, Rocketry, Robotics, and Medical teams in either the mission operations center or onboard the spacecraft. Software development activities are also required in support of these simulations The objective of this paper is to present the accomplishments, technology innovations, interactions, and an overview of SPARC with an emphasis on how the program's educational activities parallel NASA mission support and how this education is preparing student for the space frontier.

  9. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project

    Science.gov (United States)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.

    2003-01-01

    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  10. The proposed EROSpace institute, a national center operated by space grant universities

    Science.gov (United States)

    Smith, Paul L.; Swiden, LaDell R.; Waltz, Frederick A.

    1993-01-01

    The "EROSpace Institute" is a proposed visiting scientist program in associated with the U.S. Geological Survey's EROS Data Center (EDC). The Institute would be operated by a consortium of universities, possible drawn from NASA's Space Grant College and Fellowship Program consortia and the group of 17 capability-enhancement consortia, or perhaps from consortia though out the nation with a topical interest in remote sensing. The National Center for Atmospheric Research or the Goddard Institute for Space Studies provide models for the structure of such an institute. The objectives of the Institute are to provide ready access to the body of data housed at the EDC and to increase the cadre of knowledgeable and trained scientists able to deal with the increasing volume of remote sensing data to become available from the Earth Observing System. The Institute would have a staff of about 100 scientists at any one time, about half permanent staff, and half visiting scientists. The latter would include graduate and undergraduate students, as well as faculty on temporary visits, summer fellowships, or sabbatical leaves. The Institute would provide office and computing facilities, as well as Internet linkages to the home institutions so that scientists could continue to participate in the program from their home base.

  11. Collaborative Preservation of At-Risk Data at NOAA's National Centers for Environmental Information

    Science.gov (United States)

    Casey, K. S.; Collins, D.; Cooper, J. M.; Ritchey, N. A.

    2017-12-01

    The National Centers for Environmental Information (NCEI) serves as the official long term archive of NOAA's environmental data. Adhering to the principles and responsibilities of the Open Archival Information System (OAIS, ISO 14721), and backed by both agency policies and formal legislation, NCEI ensures that these irreplaceable environmental data are preserved and made available for current users and future generations. These goals are achieved through regional, national, and international collaborative efforts like the ICSU World Data System, the Intergovernmental Oceanographic Commission's International Oceanographic Data and Information Exchange (IODE) program, NSF's DataOne, and through specific data preservation projects with partners such as the NOAA Cooperative Institutes, ESIP, and even retired federal employees. Through efforts like these, at-risk data with poor documentation, on aging media, and of unknown format and content are being rescued and made available to the public for widespread reuse.

  12. 76 FR 12955 - CenterPoint Energy Gas Transmission Company, LLC; Notice of Intent To Prepare an Environmental...

    Science.gov (United States)

    2011-03-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-78-000] CenterPoint Energy Gas Transmission Company, LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed Line AM- 46 Replacement Project, Request for Comments on Environmental Issues, and Notice of Onsite Environmental Review The staff of the...

  13. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    Science.gov (United States)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  14. The National Space Science and Technology Center's Education and Public Outreach Program

    Science.gov (United States)

    Cox, G. N.; Denson, R. L.

    2004-12-01

    The objective of the National Space Science and Technology Center's (NSSTC) Education and Public Outreach program (EPO) is to support K-20 education by coalescing academic, government, and business constituents awareness, implementing best business/education practices, and providing stewardship over funds and programs that promote a symbiotic relationship among these entities, specifically in the area of K-20 Science, Technology, Engineering, and Mathematics (STEM) education. NSSTC EPO Program's long-term objective is to showcase its effective community-based integrated stakeholder model in support of STEM education and to expand its influence across the Southeast region for scaling ultimately across the United States. The Education and Public Outreach program (EPO) is coordinated by a supporting arm of the NSSTC Administrative Council called the EPO Council (EPOC). The EPOC is funded through federal, state, and private grants, donations, and in-kind contributions. It is comprised of representatives of NSSTC Research Centers, both educators and scientists from the Alabama Space Science and Technology Alliance (SSTA) member institutions, the Alabama Space Grant Consortium and the NASA Marshall Space Flight Center's (MSFC) Education Office. Through its affiliation with MSFC and the SSTA - a consortium of Alabama's research universities that comprise the NSSTC, EPO fosters the education and development of the next generation of Alabama scientists and engineers by coordinating activities at the K-20 level in cooperation with the Alabama Department of Education, the Alabama Commission on Higher Education, and Alabama's businesses and industries. The EPO program's primary objective is to be Alabama's premiere organization in uniting academia, government, and private industry by way of providing its support to the State and Federal Departments of Education involved in systemic STEM education reform, workforce development, and innovative uses of technology. The NSSTC EPO

  15. 33 CFR 334.1130 - Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones.

    Science.gov (United States)

    2010-07-01

    ... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... (WSMC) at Vandenberg AFB, California. (3) The impacting of missile debris from launch operations will...

  16. The Sustainable Development of Space: Astro-environmental and dynamical considerations

    Science.gov (United States)

    Boley, Aaron; Byers, Michael; Russell, Sara

    2018-04-01

    The sustainable development of space is a global (and exo-global) challenge that is not limited by borders or research disciplines. Sustainable development is "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". While the development of space brings new economic and scientific possibilities, it also carries significant political, legal, and technical uncertainties. For example, the rapidly increasing accessibility of space is motivating states to unilaterally adopt legislation for the new era of space use, which may have significant unintended consequences, such as increased risks to space assets, disputes among state as well as non-state actors, and changes to unique astro-environments. Any policy or legal position must be informed by the dynamical and astrophysical realities of space use, creating complex and interwoven challenges. Here, we explore several of these potential challenges related to astro-environmentalism, space minining operations, and the associated dynamics.

  17. Transnational Urban Spaces and Urban Environmental Reforms : Analyzing Beijing's Environmental Restructuring in the Light of Globalization.

    NARCIS (Netherlands)

    Melchert Saguas Presas, L.

    2004-01-01

    In this era of globalization, `transnational spaces¿ are being created within urban settings, providing a direct connection between the `local¿ and the `global¿. Corporate headquarters, hotels, shopping malls, and airports are typical examples of such spaces, which while located within an urban

  18. Sustaining an Environmental Ethic: Outdoor and Environmental Education Graduates' Negotiation of School Spaces

    Science.gov (United States)

    Preston, Lou

    2011-01-01

    In this article, I draw on interviews with graduates from an Outdoor and Environmental Education course to explore the ways in which their environmental ethics changed since leaving university. I do this in relation to the graduates' personal and professional experiences, particularly in the context of teaching Outdoor Education and Physical…

  19. Training for life science experiments in space at the NASA Ames Research Center

    Science.gov (United States)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  20. Production and quality assurance automation in the Goddard Space Flight Center Flight Dynamics Facility

    Science.gov (United States)

    Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.

    1994-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.

  1. Processes and Procedures of the Higher Education Programs at Marshall Space Flight Center

    Science.gov (United States)

    Heard, Pamala D.

    2002-01-01

    The purpose of my research was to investigate the policies, processes, procedures and timelines for the higher education programs at Marshall Space Flight Center. The three higher education programs that comprised this research included: the Graduate Student Researchers Program (GSRP), the National Research Council/Resident Research Associateships Program (NRC/RRA) and the Summer Faculty Fellowship Program (SFFP). The GSRP award fellowships each year to promising U.S. graduate students whose research interest coincides with NASA's mission. Fellowships are awarded for one year and are renewable for up to three years to competitively selected students. Each year, the award provides students the opportunity to spend a period in residence at a NASA center using that installation's unique facilities. This program is renewable for three years, students must reapply. The National Research Council conducts the Resident Research Associateships Program (NRC/RRA), a national competition to identify outstanding recent postdoctoral scientists and engineers and experience senior scientists and engineers, for tenure as guest researchers at NASA centers. The Resident Research Associateship Program provides an opportunity for recipients of doctoral degrees to concentrate their research in association with NASA personnel, often as a culmination to formal career preparation. The program also affords established scientists and engineers an opportunity for research without any interruptions and distracting assignments generated from permanent career positions. All opportunities for research at NASA Centers are open to citizens of the U.S. and to legal permanent residents. The Summer Faculty Fellowship Program (SFFP) is conducted each summer. NASA awards research fellowships to university faculty through the NASA/American Society for Engineering Education. The program is designed to promote an exchange of ideas between university faculties, NASA scientists and engineers. Selected

  2. Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab /Chicago U., Astron. Astrophys. Ctr.; Goodenough, Lisa; /New York U.

    2010-10-01

    We analyze the first two years of data from the Fermi Gamma Ray Space Telescope from the direction of the inner 10{sup o} around the Galactic Center with the intention of constraining, or finding evidence of, annihilating dark matter. We find that the morphology and spectrum of the emission between 1.25{sup o} and 10{sup o} from the Galactic Center is well described by a the processes of decaying pions produced in cosmic ray collisions with gas, and the inverse Compton scattering of cosmic ray electrons in both the disk and bulge of the Inner Galaxy, along with gamma rays from known points sources in the region. The observed spectrum and morphology of the emission within approximately 1.25{sup o} ({approx}175 parsecs) of the Galactic Center, in contrast, cannot be accounted for by these processes or known sources. We find that an additional component of gamma ray emission is clearly present which is highly concentrated around the Galactic Center, but is not point-like in nature. The observed morphology of this component is consistent with that predicted from annihilating dark matter with a cusped (and possibly adiabatically contracted) halo distribution ({rho} {proportional_to} r{sup -1.34{+-}0.04}). The observed spectrum of this component, which peaks at energies between 2-4 GeV (in E{sup 2} units), is well fit by that predicted for a 7.3-9.2 GeV dark matter particle annihilating primarily to tau leptons with a cross section in the range of <{sigma}{nu}> = 3.3 x 10{sup -27} to 1.5 x 10{sup -26} cm{sup 3}/s, depending on how the dark matter distribution is normalized. We discuss other possible sources for this component, but argue that they are unlikely to account for the observed emission.

  3. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  4. Historical perspectives - The role of the NASA Lewis Research Center in the national space nuclear power programs

    Science.gov (United States)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.

  5. Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    Science.gov (United States)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.

  6. The Carlsbad Environmental Monitoring and Research Center: An independent program for community information

    International Nuclear Information System (INIS)

    Fingleton, Donald J.; Bhada, Ron K.; Derald Morgan, J.; Julien, Howard

    1992-01-01

    The Waste Isolation Pilot Plant (WIPP) was designed and built as a research and development facility to obtain data to demonstrate the safe management, storage, and disposal of defense-related transuranic (TRU) waste. The WIPP facility, near Carlsbad, New Mexico, is scheduled to receive its first shipment of TRU waste in 1992. The citizens of Carlsbad requested the U.S. Department of Energy (DOE) to provide them with an independent organization that would monitor the entire area with state-of-the-art monitoring techniques and publish the data. As a follow-up, the DOE approved a proposal from the Waste-management Education and Research Consortium of New Mexico to develop and implement this program. The purpose of this paper is to (1) describe this innovative program to establish the Carlsbad Environmental Monitoring and Research Center, an independent university based center to study health and environmental impacts associated with technological development; (2) present the Center's mission and objectives; and (3) give an overview of the progress. (author)

  7. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    Science.gov (United States)

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  8. Managing environmental enhancement plans for individual research projects at a national primate research center.

    Science.gov (United States)

    Thom, Jinhee P; Crockett, Carolyn M

    2008-05-01

    We describe a method for managing environmental enhancement plans for individual research projects at a national primate research center where most monkeys are assigned to active research projects. The Psychological Well-being Program (PWB) at the University of Washington National Primate Research Center developed an Environmental Enhancement Plan form (EEPL) that allows PWB to quantify and track changes in enrichment allowances over time while ensuring that each animal is provided with as much enrichment as possible without compromising research. Very few projects involve restrictions on toys or perches. Some projects have restrictions on food treats and foraging, primarily involving the provision of these enrichments by research staff instead of husbandry staff. Restrictions are not considered exemptions unless they entirely prohibit an element of the University of Washington Environmental Enhancement Plan (UW EE Plan). All exemptions must be formally reviewed and approved by the institutional animal care and use committee. Most exemptions from elements of the UW EE Plan involve social housing. Between 2004 and 2006, the percentage of projects with no social contact restrictions increased by 1%, but those prohibiting any tactile social contact declined by 7%, and projects permitting tactile social contact during part of the study increased by 9%. The EEPL form has facilitated informing investigators about the enrichment their monkeys will receive if no restrictions or exemptions are requested and approved. The EEPL form also greatly enhances PWB's ability to coordinate the specific enrichment requirements of a project.

  9. An environmental testing facility for Space Station Freedom power management and distribution hardware

    Science.gov (United States)

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  10. Western Mineral and Environmental Resources Science Center--providing comprehensive earth science for complex societal issues

    Science.gov (United States)

    Frank, David G.; Wallace, Alan R.; Schneider, Jill L.

    2010-01-01

    Minerals in the environment and products manufactured from mineral materials are all around us and we use and come into contact with them every day. They impact our way of life and the health of all that lives. Minerals are critical to the Nation's economy and knowing where future mineral resources will come from is important for sustaining the Nation's economy and national security. The U.S. Geological Survey (USGS) Mineral Resources Program (MRP) provides scientific information for objective resource assessments and unbiased research results on mineral resource potential, production and consumption statistics, as well as environmental consequences of mining. The MRP conducts this research to provide information needed for land planners and decisionmakers about where mineral commodities are known and suspected in the earth's crust and about the environmental consequences of extracting those commodities. As part of the MRP scientists of the Western Mineral and Environmental Resources Science Center (WMERSC or 'Center' herein) coordinate the development of national, geologic, geochemical, geophysical, and mineral-resource databases and the migration of existing databases to standard models and formats that are available to both internal and external users. The unique expertise developed by Center scientists over many decades in response to mineral-resource-related issues is now in great demand to support applications such as public health research and remediation of environmental hazards that result from mining and mining-related activities. Western Mineral and Environmental Resources Science Center Results of WMERSC research provide timely and unbiased analyses of minerals and inorganic materials to (1) improve stewardship of public lands and resources; (2) support national and international economic and security policies; (3) sustain prosperity and improve our quality of life; and (4) protect and improve public health, safety, and environmental quality. The MRP

  11. Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL)

    Science.gov (United States)

    Davis, V. Leon; Nordeen, Ross

    1988-01-01

    A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.

  12. Introduction to the Navigation Team: Johnson Space Center EG6 Internship

    Science.gov (United States)

    Gualdoni, Matthew

    2017-01-01

    The EG6 navigation team at NASA Johnson Space Center, like any team of engineers, interacts with the engineering process from beginning to end; from exploring solutions to a problem, to prototyping and studying the implementations, all the way to polishing and verifying a final flight-ready design. This summer, I was privileged enough to gain exposure to each of these processes, while also getting to truly experience working within a team of engineers. My summer can be broken up into three projects: i) Initial study and prototyping: investigating a manual navigation method that can be utilized onboard Orion in the event of catastrophic failure of navigation systems; ii) Finalizing and verifying code: altering a software routine to improve its robustness and reliability, as well as designing unit tests to verify its performance; and iii) Development of testing equipment: assisting in developing and integrating of a high-fidelity testbed to verify the performance of software and hardware.

  13. Using and Distributing Spaceflight Data: The Johnson Space Center Life Sciences Data Archive

    Science.gov (United States)

    Cardenas, J. A.; Buckey, J. C.; Turner, J. N.; White, T. S.; Havelka,J. A.

    1995-01-01

    Life sciences data collected before, during and after spaceflight are valuable and often irreplaceable. The Johnson Space Center Life is hard to find, and much of the data (e.g. Sciences Data Archive has been designed to provide researchers, engineers, managers and educators interactive access to information about and data from human spaceflight experiments. The archive system consists of a Data Acquisition System, Database Management System, CD-ROM Mastering System and Catalog Information System (CIS). The catalog information system is the heart of the archive. The CIS provides detailed experiment descriptions (both written and as QuickTime movies), hardware descriptions, hardware images, documents, and data. An initial evaluation of the archive at a scientific meeting showed that 88% of those who evaluated the catalog want to use the system when completed. The majority of the evaluators found the archive flexible, satisfying and easy to use. We conclude that the data archive effectively provides key life sciences data to interested users.

  14. Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center

    Science.gov (United States)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn; hide

    2016-01-01

    Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.

  15. Assessing Hurricane Katrina Vegetation Damage at Stennis Space Center using IKONOS Image Classification Techniques

    Science.gov (United States)

    Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.

    2007-01-01

    Hurricane Katrina hit southwestern Mississippi on August 29, 2005, at 9:45 a.m. CDT as a category 3 storm with surges up to approx. 9 m and sustained winds of approx. 120 mph. The hurricane's wind, rain, and flooding devastated several coastal towns, from New Orleans through Mobile. The storm also caused significant damage to infrastructure and vegetation of NASA's SSC (Stennis Space Center). Storm recovery at SSC involved not only repairs of critical infrastructure but also forest damage mitigation (via timber harvests and control burns to reduce fire risk). This presentation discusses an effort to use commercially available high spatial resolution multispectral IKONOS data for vegetation damage assessment, based on data collected over SSC on September 2, 2005.

  16. Stennis Space Center Salinity Drifter Project. A Collaborative Project with Hancock High School, Kiln, MS

    Science.gov (United States)

    Kalcic, Maria; Turowski, Mark; Hall, Callie

    2010-01-01

    Presentation topics include: importance of salinity of coastal waters, habitat switching algorithm, habitat switching module, salinity estimates from Landsat for Sabine Calcasieu Basin, percent of time inundated in 2006, salinity data, prototyping the system, system as packaged for field tests, salinity probe and casing, opening for water flow, cellular antenna used to transmit data, preparing to launch, system is launched in the Pearl River at Stennis Space Center, data are transmitted to Twitter by cell phone modem every 15 minutes, Google spreadsheet I used to import the data from the Twitter feed and to compute salinity (from conductivity) and display charts of salinity and temperature, results are uploaded to NASA's Applied Science and Technology Project Office Webpage.

  17. Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    Science.gov (United States)

    Muscatello, A. C.; Hintze, P. E.; Caraccio, A. J.; Bayliss, J. A.; Karr, L. J.; Paley, M. S.; Marone, M. J.; Gibson, T. L.; Surma, J. M.; Mansell, J. M.; hide

    2016-01-01

    The atmosphere of Mars, which is approximately 95% carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASA's Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100% of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon is under construction.

  18. NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch

    Science.gov (United States)

    Gilligan, Eric

    2014-01-01

    Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.

  19. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Stennis Space Center

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which NASA Stennis Space Center (Stennis) could convert part or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.

  20. Computations on the massively parallel processor at the Goddard Space Flight Center

    Science.gov (United States)

    Strong, James P.

    1991-01-01

    Described are four significant algorithms implemented on the massively parallel processor (MPP) at the Goddard Space Flight Center. Two are in the area of image analysis. Of the other two, one is a mathematical simulation experiment and the other deals with the efficient transfer of data between distantly separated processors in the MPP array. The first algorithm presented is the automatic determination of elevations from stereo pairs. The second algorithm solves mathematical logistic equations capable of producing both ordered and chaotic (or random) solutions. This work can potentially lead to the simulation of artificial life processes. The third algorithm is the automatic segmentation of images into reasonable regions based on some similarity criterion, while the fourth is an implementation of a bitonic sort of data which significantly overcomes the nearest neighbor interconnection constraints on the MPP for transferring data between distant processors.

  1. Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    Science.gov (United States)

    Muscatello, Anthony; Hintze, Paul; Meier, Anne; Bayliss, Jon; Karr, Laurel; Paley, Steve; Marone, Matt; Gibson, Tracy; Surma, Jan; Mansell, Matt; hide

    2016-01-01

    The atmosphere of Mars, which is 96 percent carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASAs Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100 of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon has been tested with encouraging results.

  2. Release monitoring and environmental surveillance of Cea centers. Assessment and regulation and method 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The quality of the natural environment around the centers of the Commissariat a l Energie Atomique is an important point of its safety policy. The environmental protection is based on the control of risks coming from research and development activities of its installations. It aims to reduce as low as possible, the impact of its activities on man and his environment. This publication develops the sampling and measurement methods that are made on effluents and in environment, according to the radionuclides characteristics, that are present. It gives also the regulation that applied to the effluents monitoring. The results of radioactive effluents releases (liquid and gaseous) and the surveillance of environment around cea centers is given in the 'Bilan 1999' publication. An analysis of these results on the 1995-1999 period allows to follow their evolution. (N.C.)

  3. Integration of Cloud Technologies for Data Stewardship at the NOAA National Centers for Environmental Information (NCEI)

    Science.gov (United States)

    Casey, K. S.; Hausman, S. A.

    2016-02-01

    In the last year, the NOAA National Oceanographic Data Center (NODC) and its siblings, the National Climatic Data Center and National Geophysical Data Center, were merged into one organization, the NOAA National Centers for Environmental Information (NCEI). Combining its expertise under one management has helped NCEI accelerate its efforts to embrace and integrate private, public, and hybrid cloud environments into its range of data stewardship services. These services span a range of tiers, from basic, long-term preservation and access, through enhanced access and scientific quality control, to authoritative product development and international-level services. Throughout these tiers of stewardship, partnerships and pilot projects have been launched to identify technological and policy-oriented challenges, to establish solutions to these problems, and to highlight success stories for emulation during operational integration of the cloud into NCEI's data stewardship activities. Some of these pilot activities including data storage, access, and reprocessing in Amazon Web Services, the OneStop data discovery and access framework project, and a set of Cooperative Research and Development Agreements under the Big Data Project with Amazon, Google, IBM, Microsoft, and the Open Cloud Consortium. Progress in these efforts will be highlighted along with a future vision of how NCEI could leverage hybrid cloud deployments and federated systems across NOAA to enable effective data stewardship for its oceanographic, atmospheric, climatic, and geophysical Big Data.

  4. Space Environmental Viewing and Analysis Network (SEVAN) – characteristics and first operation results

    International Nuclear Information System (INIS)

    Chilingarian, Ashot; Arakelyan, Karen; Avakyan, Karen; Bostanjyan, Nikolaj; Chilingaryan, Suren; Pokhsraryan, D; Sargsyan, D; Reymers, A

    2013-01-01

    Space Environmental Viewing and Analysis Network is a worldwide network of identical particle detectors located at middle and low latitudes aimed to improve fundamental research of space weather conditions and to provide short- and long-term forecasts of the dangerous consequences of space storms. SEVAN detected changing fluxes of different species of secondary cosmic rays at different altitudes and latitudes, thus turning SEVAN into a powerful integrated device used to explore solar modulation effects. Till to now the SEVAN modules are installed at Aragats Space Environmental Centre in Armenia (3 units at altitudes 800, 2000 and 3200 m a.s.l.), Bulgaria (Moussala), Croatia and India (New-Delhi JNU.) and now under installation in Slovakia, LomnitskySchtit). Recently SEVAN detectors were used for research of new high-energy phenomena originated in terrestrial atmosphere – Thunderstorm Ground Enhancements (TGEs). In 2011 first joint measurements of solar modulation effects were detected by SEVAN network, now under analysis.

  5. Southwest Center for Environmental Excellence and Opportunity Year End Report (Final Deliverable)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-11-09

    The Southwest Center for Environmental Excellence and Opportunity (Southwest CEEO) has been in existence since October 1996 at Albuquerque Technical Vocational Institute's (TVI) South Valley Campus. The Special Project was comprised of three objectives: (1) Increasing the number of Hispanics in careers related to the environment by improving education and job training opportunities; (2) Strengthening the infrastructure of Hispanic businesses and building their capacity to participate in environmental clean-up activities and potential technology commercialization; and (3) Increasing the Hispanic community's understanding of and participation in environmental protection through improved access to information and outreach activities, paying attention to cultural and linguistic issues. The Southwest CEEO has been successful in each of the above objective areas and continues to provide valuable services to TVI and the community. The Southwest CEEO has developed a scholarship/mentorship program involving business and industry, community organizations, and TVI faculty that will be replicated by other student mentorship programs. The Southwest CEEO has awarded approximately $50,000 over the two-year program funded by the U.S. Department of Energy Oakland Operations Office. The Southwest CEEO has also developed a K-12 partnership with Albuquerque Public Schools (APS) to enhance environmental education for students and professional development for teachers. Incorporated into these student activities are experimental learning opportunities and curriculum development and/or enhancement. The Southwest CEEO has worked closely with the TVI Small Business Development Center (SBDC) to support Hispanic businesses in technology partnership activities. The Southwest CEEO in partnership the TVI SBDC has provided a large business forum and business workshops. In addition, the Southwest CEEO has developed a Technology Transfer Model that will be expanded in the future to a

  6. NOAA's Big Data Partnership at the National Centers for Environmental Information

    Science.gov (United States)

    Kearns, E. J.

    2015-12-01

    In April of 2015, the U.S. Department of Commerce announced NOAA's Big Data Partnership (BDP) with Amazon Web Services, Google Cloud Platform, IBM, Microsoft Corp., and the Open Cloud Consortium through Cooperative Research and Development Agreements. Recent progress on the activities with these Partners at the National Centers for Environmental Information (NCEI) will be presented. These activities include the transfer of over 350 TB of NOAA's archived data from NCEI's tape-based archive system to BDP cloud providers; new opportunities for data mining and investigation; application of NOAA's data maturity and stewardship concepts to the BDP; and integration of both archived and near-realtime data streams into a synchronized, distributed data system. Both lessons learned and future opportunities for the environmental data community will be presented.

  7. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-01-12

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini-Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified.

  8. Proceedings of the NASA/Florida Institute of Technology Environmental Engineering Conference on Nitrogen Tetroxide. [with emphasis on space shuttle

    Science.gov (United States)

    Rhodes, E. L.

    1978-01-01

    Methods of reducing the user hazards of nitrogen tetroxide, a hypergolic oxidizer are discussed. Kennedy Space Center developments in N2O4 control for the space shuttle are featured. Other areas covered are life support equipment and transportation.

  9. Plasma Liner Research for MTF at NASA Marshall Space Flight Center

    Science.gov (United States)

    Thio, Y. C. F.; Eskridge, R.; Lee, M.; Martin, A.; Smith, J.; Cassibry, J. T.; Wu, S. T.; Kirkpatrick, R. C.; Knapp, C. E.; Turchi, P. J.; hide

    2002-01-01

    The current research effort at NASA Marshall Space Flight Center (MSFC) in MTF is directed towards exploring the critical physics issues of potential embodiments of MTF for propulsion, especially standoff drivers involving plasma liners for MTF. There are several possible approaches for forming plasma liners. One approach consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid. Current experimental plan and status to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets are described. A first-generation coaxial plasma guns (Mark-1) to launch the required plasma jets have been built and tested. Plasma jets have been launched reproducibly with a low jitter, and velocities in excess of 50 km/s for the leading edge of the plasma jet. Some further refinements are being explored for the plasma gun, Successful completion of these single-gun tests will be followed by an experimental exploration of the problems of launching a multiple number of these jets simultaneously to form a cylindrical plasma liner.

  10. Orientation of Space Station Freedom electrical power system in environmental effects assessment

    Science.gov (United States)

    Lu, Cheng-Yi

    1990-01-01

    The orientation effects of six Space Station Freedom Electrical Power System (EPS) components are evaluated for three environmental interactions: aerodynamic drag, atomic oxygen erosion, and orbital debris impact. Designers can directly apply these orientation factors to estimate the magnitude of the examined environment and the environmental effects for the EPS component of interest. The six EPS components are the solar array, photovoltaic module radiator, integrated equipment assembly, solar dynamic concentrator, solar dynamic radiator, and beta gimbal.

  11. Expansion of the Idaho National Engineering Laboratory Research Center: Environmental assessment

    International Nuclear Information System (INIS)

    1994-03-01

    The US Department of Energy (DOE) proposes to expand and upgrade facilities at the Idaho National Engineering Laboratory (INEL) Research Center (IRC) by constructing a research laboratory addition on the northeast corner of existing laboratory building; upgrading the fume hood system in the existing laboratory building; and constructing a hazardous waste handling facility and a chemical storage building. The DOE also proposes to expand the capabilities of biotechnology research programs by increasing use of radiolabeled compounds to levels in excess of current facility limits for three radionuclides (carbon-14, sulfur-35, and phosphorus-32). This Environmental assessment identifies the need for the new facilities, describes the proposed projects and environmental setting, and evaluates the potential environmental effects. Impacts associated with current operation are discussed and established as a baseline. Impacts associated with the proposed action and cumulative impacts are described against this background. Alternatives to the proposed action (No action; Locating proposed facilities at a different site) are discussed and a list of applicable regulations is provided. The no action alternative is continuation of existing operations at existing levels as described in Section 4 of this EA. Proposed facilities could be constructed at a different location, but these facilities would not be useful or practical since they are needed to provide a support function for IRC operations. Further, the potential environmental impacts would not be reduced if a different site was selected

  12. Development of Distributed Research Center for monitoring and projecting regional climatic and environmental changes: first results

    Science.gov (United States)

    Gordov, Evgeny; Shiklomanov, Alexander; Okladinikov, Igor; Prusevich, Alex; Titov, Alexander

    2016-04-01

    Description and first results of the cooperative project "Development of Distributed Research Center for monitoring and projecting of regional climatic and environmental changes" recently started by SCERT IMCES and ESRC UNH are reported. The project is aimed at development of hardware and software platform prototype of Distributed Research Center (DRC) for monitoring and projecting regional climatic and environmental changes over the areas of mutual interest and demonstration the benefits of such collaboration that complements skills and regional knowledge across the northern extratropics. In the framework of the project, innovative approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platforms of two U.S. and Russian leading institutions involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research centers focused on interdisciplinary environmental studies by international research teams. DRC under development will comprise best features and functionality of earlier developed by the cooperating teams' information-computational systems RIMS (http://rims.unh.edu) and CLIMATE(http://climate.scert.ru/), which are widely used in Northern Eurasia environment studies. The project includes several major directions of research (Tasks) listed below. 1. Development of architecture and defining major hardware and software components of DRC for monitoring and projecting of regional environmental changes. 2. Development of an information database and computing software suite for distributed processing and analysis of large geospatial data hosted at ESRC and IMCES SB RAS. 3. Development of geoportal, thematic web client and web services providing international research teams with an access to "cloud" computing resources at DRC; two options will be executed: access through a basic graphical web browser and

  13. NIEHS/EPA Children’s Environmental Health Centers: Novel Methods to Assess Effects of Chemicals on Child Development

    Science.gov (United States)

    The Columbia Center for Children’s Environmental Health (CCCEH) at Columbia University studies long-term health of urban pollutants on children raised in minority neighborhoods in inner-city communities.

  14. Internal Social Media at Marshall Space Flight Center - An Engineer's Snapshot

    Science.gov (United States)

    Scott, David W.

    2013-01-01

    In the brief span of about six years (2004-2010), social media radically enhanced people's ways of maintaining recreational friendships. Social media's impact on public affairs (PAO) and community engagement is equally striking: NASA has involved millions of non-NASA viewers in its activities via outward-facing social media, often in a very two-way street fashion. Use of social media as an internal working tool by NASA's tens of thousands of civil servants, onsite contractor employees, and external stakeholders is evolving more slowly. This paper examines, from an engineer's perspective, Marshall Space Flight Center s (MSFC) efforts to bring the power of social media to the daily working environment. Primary emphasis is on an internal Social Networking Service called Explornet that could be scaled Agency-wide. Other topics include MSFC use of other social media day-to-day for non-PAO purposes, some specialized uses of social techniques in space flight control operations, and how to help a community open up so it can discover and adopt what works well.

  15. Two X-38 Ship Demonstrators in Development at NASA Johnson Space Flight Center

    Science.gov (United States)

    1999-01-01

    This photo shows two X-38 Crew Return Vehicle technology demonstrators under development at NASA's Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle

  16. Analysis of complex wind regimes at Kennedy Space Center for radiological assessment

    International Nuclear Information System (INIS)

    Taylor, G.E.; Parks, C.R.; Atchison, M.K.

    1989-01-01

    Galileo and Ulysses will be launched from the Kennedy Space Center (KSC) during October 1989 and October 1990, respectively. These deep-space probes will contain a radioactive thermoelectric generator as a power source. An accidental breach of the containment vessel housing the generator could cause a leak of radioactive material to the atmosphere. If this occurred, the radioactive cloud would move with the prevailing wind flow pattern and pose a serious health threat to all in its path. Since the KSC/Cape Canaveral (KSC/CC) area of Florida is located in a coastal environment with several different land/water interfaces, complex low-level wind circulation patterns exist throughout the year. Thus, if any transport and diffusion model is to correctly predict the movement of effluent near KSC, it must be able to accurately portray the characteristics of the land/sea breeze flow pattern. To evaluate models used at KSC, the KSC Atmospheric Boundary Layer Experiment (KABLE) has been designed to provide a data set to better define the characteristics of these mesoscale circulations. Data collection for KABLE occurred from November 1, 1988, to October 31, 1989. This paper presents analyses for 1 day during November 1988 that demonstrate the complexity of the local meteorological conditions at KSC/CC. The NUS Corporation has used these data and empirical sea breeze parameters to evaluate their Emergency Dose Assessment System, EMERGE

  17. Kennedy Space Center Timing and Countdown Interface to Kennedy Ground Control Subsystem

    Science.gov (United States)

    Olsen, James C.

    2015-01-01

    Kennedy Ground Control System (KGCS) engineers at the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) are developing a time-tagging process to enable reconstruction of the events during a launch countdown. Such a process can be useful in the case of anomalies or other situations where it is necessary to know the exact time an event occurred. It is thus critical for the timing information to be accurate. KGCS will synchronize all items with Coordinated Universal Time (UTC) obtained from the Timing and Countdown (T&CD) organization. Network Time Protocol (NTP) is the protocol currently in place for synchronizing UTC. However, NTP has a peak error that is too high for today's standards. Precision Time Protocol (PTP) is a newer protocol with a much smaller peak error. The focus of this project has been to implement a PTP solution on the network to increase timing accuracy while introducing and configuring the implementation of a firewall between T&CD and the KGCS network.

  18. Applications of Low Density Flow Techniques and Catalytic Recombination at the Johnson Space Center

    Science.gov (United States)

    Scott, Carl D.

    2000-01-01

    The talk presents a brief background on defInitions of catalysis and effects associated with chemically nonequilibrium and low-density flows of aerospace interest. Applications of catalytic recombination on surfaces in dissociated flow are given, including aero heating on reentry spacecraft thermal protection surfaces and reflection of plume flow on pressure distributions associated with the space station. Examples include aero heating predictions for the X-38 test vehicle, the inlet of a proposed gas-sampling probe used in high enthalpy test facilities, and a parabolic body at angle of attack. The effect of accommodation coefficients on thruster induced pressure distributions is also included. Examples of tools used include simple aero heating formulas based on boundary layer solutions, an engineering approximation that uses axisymmetric viscous shock layer flow to simulate full three dimensional flow, full computational fluid dynamics, and direct simulation Monte-Carlo calculations. Methods of determining catalytic recombination rates in arc jet flow are discus ed. An area of catalysis not fully understood is the formation of single-wall carbon nanotubes (SWNT) with gas phase or nano-size metal particles. The Johnson Space Center is making SWNTs using both a laser ablation technique and an electric arc vaporization technique.

  19. Applied Virtual Reality Research and Applications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Hale, Joseph P.

    1995-01-01

    A Virtual Reality (VR) applications program has been under development at NASA/Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before this technology can be utilized with confidence in these applications, it must be validated for each particular class of application. That is, the precision and reliability with which it maps onto real settings and scenarios, representative of a class, must be calculated and assessed. The approach of the MSFC VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems. Specific validation studies for selected classes of applications have been completed or are currently underway. These include macro-ergonomic "control-room class" design analysis, Spacelab stowage reconfiguration training, a full-body micro-gravity functional reach simulator, and a gross anatomy teaching simulator. This paper describes the MSFC VR Applications Program and the validation studies.

  20. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  1. Environmental filtering structures tree functional traits combination and lineages across space in tropical tree assemblages.

    Science.gov (United States)

    Asefa, Mengesha; Cao, Min; Zhang, Guocheng; Ci, Xiuqin; Li, Jie; Yang, Jie

    2017-03-09

    Environmental filtering consistently shapes the functional and phylogenetic structure of species across space within diverse forests. However, poor descriptions of community functional and lineage distributions across space hamper the accurate understanding of coexistence mechanisms. We combined environmental variables and geographic space to explore how traits and lineages are filtered by environmental factors using extended RLQ and fourth-corner analyses across different spatial scales. The dispersion patterns of traits and lineages were also examined in a 20-ha tropical rainforest dynamics plot in southwest China. We found that environmental filtering was detected across all spatial scales except the largest scale (100 × 100 m). Generally, the associations between functional traits and environmental variables were more or less consistent across spatial scales. Species with high resource acquisition-related traits were associated with the resource-rich part of the plot across the different spatial scales, whereas resource-conserving functional traits were distributed in limited-resource environments. Furthermore, we found phylogenetic and functional clustering at all spatial scales. Similar functional strategies were also detected among distantly related species, suggesting that phylogenetic distance is not necessarily a proxy for functional distance. In summary, environmental filtering considerably structured the trait and lineage assemblages in this species-rich tropical rainforest.

  2. Variation in Nest Temperatures of the American Alligator Found on the Kennedy Space Center Merritt Island National Wildlife Refuge

    Science.gov (United States)

    Lowers, Russell; Guillette, Louis J.; Weiss, Stephanie

    2016-01-01

    Information on nest temperatures of the American Alligator (Alligator mississippiensis) constructed in the wild is limited. Nesting temperatures during a critical thermal sensitive period determine the sex of alligators and are therefore critical in establishing the sex biases in recruitment efforts of alligators within a given community. Nest components, varying environmental conditions, and global warming could have a significant impact on nest temperatures, thus affecting future generations of a given population. One hundred and seventy four programmable thermistors were inserted into fifty eight nests from 2010 through 2015 nesting cycles. Three thermistors were placed inside each nest cavity (one on top of the eggs, one in the middle of the eggs, and one at the bottom of the clutch of the eggs) to collect temperature profiles in the incubation chamber and throughout the entire incubation period. One thermistor was also placed near or above these nests to obtain an ambient air temperature profile. Once retrieved, data from these thermistors were downloaded to examine temperature profiles throughout the incubation period as well as during the period of sexual determination. These data would help establish survival rates related to nest temperature and predict sex ratio of recruited neonates at the Kennedy Space Center. Over three million temperatures have been recorded since 2010 for the alligator thermistor study giving us insight to the recruitment efforts found here. Precipitation was the largest influence on nesting temperatures outside of daily photoperiod, with immediate changes of up to eight degrees Celsius.

  3. Environmental and Clinical Risk Factors for Delirium in a Neurosurgical Center: A Prospective Study.

    Science.gov (United States)

    Matano, Fumihiro; Mizunari, Takayuki; Yamada, Keiko; Kobayashi, Shiro; Murai, Yasuo; Morita, Akio

    2017-07-01

    Few reports of delirium-related risk factors have focused on environmental risk factors and clinical risk factors, such as white matter signal abnormalities on magnetic resonance imaging fluid attenuated inversion recovery images. We prospectively enrolled 253 patients admitted to our neurosurgical center between December 2014 and June 2015 and analyzed 220 patients (100 male patients; mean age, 64.1 years; age range, 17-92 years). An Intensive Care Delirium Screening Checklist score ≥4 points indicated delirium. We evaluated patient factors consisting of baseline characteristics and related factors, such as white matter lesions (WMLs), as well as the surrounding environment. Delirium occurred in 29/220 cases (13.2%). Regarding baseline characteristics, there were significant statistical correlations between delirium and age (P = 0.0187), Hasegawa Dementia Scale-Revised score (P = 0.0022) on admission, and WMLs (P delirium and stay in a neurosurgical care unit (P = 0.0245). Multivariate logistic regression analyses showed statistically significant correlations of delirium with WMLs (P delirium (P = 0.026). WMLs in patients and the surrounding environment are risk factors for delirium in a neurosurgical center. To prevent delirium, clinicians must recognize risk factors, such as high-grade WMLs, and manage environmental factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. 77 FR 46768 - Notice of Intent To Prepare an Environmental Impact Statement for the Moapa Solar Energy Center...

    Science.gov (United States)

    2012-08-06

    ... Impact Statement for the Moapa Solar Energy Center on the Moapa River Indian Reservation, Clark County NV... Environmental Impact Statement (EIS) that evaluates a solar energy generation center on the Moapa River Indian... . SUPPLEMENTARY INFORMATION: The Proposed Action consists of constructing and operating a solar generation energy...

  5. Environmental Impact Analysis Process. Environmental Impact Statement Space Shuttle Program Vandenberg AFB, California

    Science.gov (United States)

    1978-01-01

    MAIMIEOIR, NATIUM L FEATURES TO BE ALTERED: Nost applicable. EMISSIONS: .• Operational: Space Shuttle main eagin. and SolidRocket Roast r exhaust. 414...symptom. (50) (2) From animal studies" (a) Bobwhite quail and domestic chicken eggs displayed a 50 percent mortality rate upon a single 15-minute exposure...t In another planned study (as opposed to casual observation) chicken eggs were exposed to about 30 sonic booms per day during incubation; median

  6. Ecological Unequal Exchange: International Trade and Uneven Utilization of Environmental Space in the World System

    Science.gov (United States)

    Rice, James

    2007-01-01

    We evaluate the argument that international trade influences disproportionate cross-national utilization of global renewable natural resources. Such uneven dynamics are relevant to the consideration of inequitable appropriation of environmental space in particular and processes of ecological unequal exchange more generally. Using OLS regression…

  7. Environmental space management in the harbor of Amsterdam, Netherlands; Milieuruimtemanagement haven Amsterdam

    Energy Technology Data Exchange (ETDEWEB)

    Klok, L.; Hulskotte, J. [TNO Built Environment and Geosciences, Den Haag (Netherlands); Van Breemen, T. [Haven Amsterdam, Amsterdam (Netherlands)

    2012-02-15

    A new calculation tool will quickly offer the Harbor of Amsterdam insight in the effect of activities in the harbor on the air quality and hence the available environmental space. [Dutch] Een nieuw rekeninstrument geeft Haven Amsterdam snel inzicht in het effect van alle activiteiten in de haven op de luchtkwaliteit en daarmee in de beschikbare milieuruimte.

  8. Singing the Spaces: Artful Approaches to Navigating the Emotional Landscape in Environmental Education

    Science.gov (United States)

    Burkhart, Jocelyn

    2016-01-01

    This paper briefly explores the gap in the environmental education literature on emotions, and then offers a rationale and potential directions for engaging the emotions more fully, through the arts. Using autoenthnographic and arts-based methods, and including original songs and invitational reflective questions to open spaces for further inquiry…

  9. Integration of Distinct Educating Spaces and Their Potential for a More Comprehensive Environmental Education Work

    Science.gov (United States)

    Iared, Valéria Ghisloti; de Oliveira, Haydée Torres

    2012-01-01

    To investigate if the units of the São Carlos Ecological Pole (São Carlos, São Paulo, Brazil) are educating spaces that may contribute to the understanding of the complexity of environmental issues and stimulate a sense of belonging and social responsibility, we interviewed primary school teachers who had accompanied visits to these places and…

  10. The Application of the Human Engineering Modeling and Performance Laboratory for Space Vehicle Ground Processing Tasks at Kennedy Space Center

    Science.gov (United States)

    Woodbury, Sarah K.

    2008-01-01

    The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.

  11. Large space antenna communications systems: Integrated Langley Research Center/Jet Propulsion Laboratory development activities. 2: Langley Research Center activities

    Science.gov (United States)

    Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.

    1983-01-01

    The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.

  12. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  13. Collaborative Approaches in Developing Environmental and Safety Management Systems for Commercial Space Transportation

    Science.gov (United States)

    Zee, Stacey; Murray, D.

    2009-01-01

    The Federal Aviation Administration (FAA), Office of Commercial Space Transportation (AST) licenses and permits U.S. commercial space launch and reentry activities, and licenses the operation of non-federal launch and reentry sites. ASTs mission is to ensure the protection of the public, property, and the national security and foreign policy interests of the United States during commercial space transportation activities and to encourage, facilitate, and promote U.S. commercial space transportation. AST faces unique challenges of ensuring the protection of public health and safety while facilitating and promoting U.S. commercial space transportation. AST has developed an Environmental Management System (EMS) and a Safety Management System (SMS) to help meet its mission. Although the EMS and SMS were developed independently, the systems share similar elements. Both systems follow a Plan-Do-Act-Check model in identifying potential environmental aspects or public safety hazards, assessing significance in terms of severity and likelihood of occurrence, developing approaches to reduce risk, and verifying that the risk is reduced. This paper will describe the similarities between ASTs EMS and SMS elements and how AST is building a collaborative approach in environmental and safety management to reduce impacts to the environment and risks to the public.

  14. 26th Space Simulation Conference Proceedings. Environmental Testing: The Path Forward

    Science.gov (United States)

    Packard, Edward A.

    2010-01-01

    Topics covered include: A Multifunctional Space Environment Simulation Facility for Accelerated Spacecraft Materials Testing; Exposure of Spacecraft Surface Coatings in a Simulated GEO Radiation Environment; Gravity-Offloading System for Large-Displacement Ground Testing of Spacecraft Mechanisms; Microscopic Shutters Controlled by cRIO in Sounding Rocket; Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing; Upgrade of a Thermal Vacuum Chamber for 20 Kelvin Operations; A New Approach to Improve the Uniformity of Solar Simulator; A Perfect Space Simulation Storm; A Planetary Environmental Simulator/Test Facility; Collimation Mirror Segment Refurbishment inside ESA s Large Space; Space Simulation of the CBERS 3 and 4 Satellite Thermal Model in the New Brazilian 6x8m Thermal Vacuum Chamber; The Certification of Environmental Chambers for Testing Flight Hardware; Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Wallops Flight Facility: Current and Future Test Capabilities for Suborbital and Orbital Projects; Force Limited Vibration Testing of JWST NIRSpec Instrument Using Strain Gages; Investigation of Acoustic Field Uniformity in Direct Field Acoustic Testing; Recent Developments in Direct Field Acoustic Testing; Assembly, Integration and Test Centre in Malaysia: Integration between Building Construction Works and Equipment Installation; Complex Ground Support Equipment for Satellite Thermal Vacuum Test; Effect of Charging Electron Exposure on 1064nm Transmission through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics; Environmental Testing Activities and Capabilities for Turkish Space Industry; Integrated Circuit Reliability Simulation in Space Environments; Micrometeoroid Impacts and Optical Scatter in Space Environment; Overcoming Unintended Consequences of Ambient Pressure Thermal Cycling Environmental Tests; Performance and Functionality Improvements to Next Generation

  15. Environmental effects of fog oil and CS usage at the Combat Maneuver Training Center, Hohenfels, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, K.L.; Rosenblatt, D.H.; Snyder, C.T.

    1992-03-01

    In response to environmental concerns at the Combat Maneuver Training Center (CMTC), Hohenfels, Germany, the US Army 7th Army Training Command commissioned a scientific study by Argonne National Laboratory to investigate specific issues. The study involved three parts: (1) a field study to determine if fog oil and CS (a compound named after its discoverers, B.B. Carson and R.W. Stoughton) were accumulating in the CMTC environment, (2) a screening of selected soil samples for the presence of US Environmental Protection Agency priority pollutants, and (3) a literature review of the health effects of fog oil and CS, as well as a review of training practices at CMTC. No fog oil or fog oil degradation products were detected in any soil, sediment, or vegetation sample collected at CMTC. Trace quantities of one or more priority pollutants were tentatively detected in three of eight soil and sediment samples. However, the priority pollutant concentrations are so low that they pose no environmental or health hazards. No evidence of widespread or significant contamination in the training areas was found. Crucial data needed to fully evaluate both acute and chronic health effects of civilian exposures to CS at CMTC are not available. On the basis of the available literature, long-ten-n health effects in the civilian population near CMTC that could result from the use of fog oil and CS during training activities are believed to be negligible.

  16. Environmental management systems tools applied to the nuclear fuel center of IPEN

    International Nuclear Information System (INIS)

    Mattos, Luis A. Terribile de; Meldonian, Nelson Leon; Madi Filho, Tufic

    2013-01-01

    This work aims to identify and classify the major environmental aspects and impacts related to the operation of the Nuclear Fuel Center of IPEN (CCN), through a systematic survey data, using interviews questions and consulting of licensing documents and operational records. First, the facility processes and activities, and the interactions between these processes were identified. Then, an analysis of potential failures and their probable causes was conducted to establish the significance of environmental aspects, as well as the operational controls, which are necessary to ensure the prevention of impacts on the environment. The results obtained so far demonstrate the validity of this study as a tool for identification of environmental aspects and impacts of nuclear facilities in general, as a way to achieving compliance with the ISO 14001:2004 standard. Moreover, it can serve as an auxiliary method for resolving issues related to the attendance of applicable regulatory and legal requirements of National Nuclear Energy Commission (CNEN) and Brazilian Institute of Environment (IBAMA). (author)

  17. Environmental management systems tools applied to the nuclear fuel center of IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Luis A. Terribile de; Meldonian, Nelson Leon; Madi Filho, Tufic, E-mail: mattos@ipen.br, E-mail: meldonia@ipen.br, E-mail: tmfilho@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This work aims to identify and classify the major environmental aspects and impacts related to the operation of the Nuclear Fuel Center of IPEN (CCN), through a systematic survey data, using interviews questions and consulting of licensing documents and operational records. First, the facility processes and activities, and the interactions between these processes were identified. Then, an analysis of potential failures and their probable causes was conducted to establish the significance of environmental aspects, as well as the operational controls, which are necessary to ensure the prevention of impacts on the environment. The results obtained so far demonstrate the validity of this study as a tool for identification of environmental aspects and impacts of nuclear facilities in general, as a way to achieving compliance with the ISO 14001:2004 standard. Moreover, it can serve as an auxiliary method for resolving issues related to the attendance of applicable regulatory and legal requirements of National Nuclear Energy Commission (CNEN) and Brazilian Institute of Environment (IBAMA). (author)

  18. Low earth orbit environmental effects on the space station photovoltaic power generation systems

    International Nuclear Information System (INIS)

    Nahra, H.K.

    1977-01-01

    A summary of the Low Earth Orbital Environment, its impact on the photovoltaic power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized

  19. Unsettled Conflicts in the Post-Soviet Space in the Analysis of the Western Research Centers

    Directory of Open Access Journals (Sweden)

    Konstantine Petrovich Kurylev

    2016-12-01

    Full Text Available The article considers the ideas of some leading western expert analytical centers about the problems of the conflicts development on the CIS space. The subject of research is the positions of the “think tanks” of the USA, Great Britain, Germany and France. Among a large number of the regional conflicts in the CIS the authors focused attention on the conflicts in the East of Ukraine, in Transnistria and in the Nagorno-Karabakh. Such selection is explained by the acute character and impact of these conflicts on the interests of Russia and the other leading states and the international organizations. The theoretical and methodological background of the article consists of the approaches and methods, which are used by the modern political science for the comprehensive analysis of the architecture and structure of the international relations, the mechanism of formation and functioning of the certain states’ foreign policy. The research has the cross-disciplinary character and is made at the intersection of such disciplines as history, political science, conflictology and the international relations. The authors reveal positions of the western “think tanks” on the genesis, evolution and the potential settlement of the armed conflicts in the CIS region. The article highlights the estimates of the western “think tanks” of the reasons of the “frozen” conflicts on the post-USSR space, of the Russian Federation’s role and the participation of external actors (the EU and the USA in their settlement. Giving the research of the approaches of the western expert analytical centers, the authors reach a conclusion about a set course of the western political scientists’ estimates. It reflects in assignment of a unilateral responsibility for a conflict inhaling or its unleashing on Russia, or on the party of a conflict, closed to the official Moscow. It is particularly obvious in the Ukrainian crisis: the Western countries consider our state

  20. Infrasound and Seismic Recordings of Rocket Launches from Kennedy Space Center, 2016-2017

    Science.gov (United States)

    McNutt, S. R.; Thompson, G.; Brown, R. G.; Braunmiller, J.; Farrell, A. K.; Mehta, C.

    2017-12-01

    We installed a temporary 3-station seismic-infrasound network at Kennedy Space Center (KSC) in February 2016 to test sensor calibrations and train students in field deployment and data acquisitions techniques. Each station featured a single broadband 3-component seismometer and a 3-element infrasound array. In May 2016 the network was scaled back to a single station due to other projects competing for equipment. To date 8 rocket launches have been recorded by the infrasound array, as well as 2 static tests, 1 aborted launch and 1 rocket explosion (see next abstract). Of the rocket launches recorded 4 were SpaceX Falcon-9, 2 were ULA Atlas-5 and 2 were ULA Delta-IV. A question we attempt to answer is whether the rocket engine type and launch trajectory can be estimated with appropriate travel-time, amplitude-ratio and spectral techniques. For example, there is a clear Doppler shift in seismic and infrasound spectrograms from all launches, with lower frequencies occurring later in the recorded signal as the rocket accelerates away from the array. Another question of interest is whether there are relationships between jet noise frequency, thrust and/or nozzle velocity. Infrasound data may help answer these questions. We are now in the process of deploying a permanent seismic and infrasound array at the Astronaut Beach House. 10 more rocket launches are schedule before AGU. NASA is also conducting a series of 33 sonic booms over KSC beginning on Aug 21st. Launches and other events at KSC have provided rich sources of signals that are useful to characterize and gain insight into physical processes and wave generation from man-made sources.

  1. Refurbishment and Automation of the Thermal/Vacuum Facilities at the Goddard Space Flight Center

    Science.gov (United States)

    Donohue, John T.; Johnson, Chris; Ogden, Rick; Sushon, Janet

    1998-01-01

    The thermal/vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the 11 facilities, currently 10 of the systems are scheduled for refurbishment and/or replacement as part of a 5-year implementation. Expected return on investment includes the reduction in test schedules, improvements in the safety of facility operations, reduction in the complexity of a test and the reduction in personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering and for the automation of thermal/vacuum facilities and thermal/vacuum tests. Automation of the thermal/vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs) and the use of Supervisory Control and Data Acquisition (SCADA) systems. These components allow the computer control and automation of mechanical components such as valves and pumps. In some cases, the chamber and chamber shroud require complete replacement while others require only mechanical component retrofit or replacement. The project of refurbishment and automation began in 1996 and has resulted in the computer control of one Facility (Facility #225) and the integration of electronically controlled devices and PLCs within several other facilities. Facility 225 has been successfully controlled by PLC and SCADA for over one year. Insignificant anomalies have occurred and were resolved with minimal impact to testing and operations. The amount of work remaining to be performed will occur over the next four to five years. Fiscal year 1998 includes the complete refurbishment of one facility, computer control of the thermal systems in two facilities, implementation of SCADA and PLC systems to support multiple facilities and the implementation of a Database server to allow efficient test management and data analysis.

  2. Kennedy Space Center: Creating a Spaceport Reality from the Dreams of Many

    Science.gov (United States)

    Gray, James A.; Colloredo, Scott

    2012-01-01

    On December 17, 1903, Orville Wright piloted the first powered airplane only 20 feet above the ground near Kitty Hawk, North Carolina. The flight lasted 12 seconds and covered 120 feet. Who would have guessed that the bizarre looking contraption developed by brothers in the bicycle business would lay the ground work eventually resulting in over a million passengers moved daily in a sky filled with the contrails of jets flying at over 30,000 feet in elevation and over 500 miles per hour. Similarly, who would have guessed that the destructive nature of V-2 rockets of Germany would spark the genesis of spaceflight to explore our solar system and beyond? Yet the interest in using the Kennedy Space Center (KSC) continues to grow. Potential customers have expressed interest in KSC as a location for testing new rocket engines, servicing the world's largest airborne launching platform for drop-launch rockets, developing multi-use launch platforms that permit diverse customers to use the same launch platform, developing new spacecraft, and implementing advanced modifications for lifting 150 metric ton payloads to low earth orbit. The multitude of customers has grown and with this growth comes a need to provide a command, control, communication, and range infrastructure that maximizes flexibility and reconfigurability to address a much more frequent launch rate of diverse vehicles and spacecraft. The Ground Systems Development and Operations (GSDO) Program Office at KSC is embarking upon these developments to realize the dream of a robust spaceport. Many unique technical trade studies have been completed or are underway to successfully transition KSC into a multi-user customer focused spaceport. Like the evolution of the airplane, GSDO is working to transform KSC infrastructures that will turn once unthinkable space opportunities into a reality for today.

  3. Environmental studies of the World Trade Center area after the September 11, 2001 attack

    Science.gov (United States)

    Clark, Roger N.; Green, Robert O.; Swayze, Gregg A.; Meeker, Greg; Sutley, Steve; Hoefen, Todd M.; Livo, K. Eric; Plumlee, Geoff; Pavri, Betina; Sarture, Chuck; Wilson, Steve; Hageman, Phil; Lamothe, Paul; Vance, J. Sam; Boardman, Joe; Brownfield, Isabelle; Gent, Carol; Morath, Laurie C.; Taggart, Joseph; Theodorakos, Peter M.; Adams, Monique

    2001-01-01

    This web site describes the results of an interdisciplinary environmental characterization of the World Trade Center (WTC) area after September 11, 2001.Information presented in this site was first made available to the World Trade Center emergency response teams on September 18, 2001 (Thermal hot spot information), and September 27, 2001 (maps and compositional results).The Airborne Visible / Infrared Imaging Spectrometer (AVIRIS), a hyperspectral remote sensing instrument, was flown by JPL/NASA over the World Trade Center (WTC) area on September 16, 18, 22, and 23, 2001 ( Link to the AVIRIS JPL data facility). A 2-person USGS crew collected samples of dusts and airfall debris from more than 35 localities within a 1-km radius of the World trade Center site on the evenings of September 17 and 18, 2001. Two samples were collected of indoor locations that were presumably not affected by rainfall (there was a rainstorm on September 14). Two samples of material coating a steel beam in the WTC debris were also collected. The USGS ground crew also carried out on-the-ground reflectance spectroscopy measurements during daylight hours to field calibrate AVIRIS remote sensing data. Radiance calibration and rectification of the AVIRIS data were done at JPL/NASA. Surface reflectance calibration, spectral mapping, and interpretation were done at the USGS Imaging Spectroscopy Lab in Denver. The dust/debris and beam-insulation samples were analyzed for a variety of mineralogical and chemical parameters using Reflectance Spectroscopy (RS), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), chemical analysis, and chemical leach test techniques in U.S. Geological Survey laboratories in Denver, Colorado.

  4. Classification of Global Urban Centers Using ASTER Data: Preliminary Results From the Urban Environmental Monitoring Program

    Science.gov (United States)

    Stefanov, W. L.; Stefanov, W. L.; Christensen, P. R.

    2001-05-01

    Land cover and land use changes associated with urbanization are important drivers of global ecologic and climatic change. Quantification and monitoring of these changes are part of the primary mission of the ASTER instrument, and comprise the fundamental research objective of the Urban Environmental Monitoring (UEM) Program. The UEM program will acquire day/night, visible through thermal infrared ASTER data twice per year for 100 global urban centers over the duration of the mission (6 years). Data are currently available for a number of these urban centers and allow for initial comparison of global city structure using spatial variance texture analysis of the 15 m/pixel visible to near infrared ASTER bands. Variance texture analysis highlights changes in pixel edge density as recorded by sharp transitions from bright to dark pixels. In human-dominated landscapes these brightness variations correlate well with urbanized vs. natural land cover and are useful for characterizing the geographic extent and internal structure of cities. Variance texture analysis was performed on twelve urban centers (Albuquerque, Baghdad, Baltimore, Chongqing, Istanbul, Johannesburg, Lisbon, Madrid, Phoenix, Puebla, Riyadh, Vancouver) for which cloud-free daytime ASTER data are available. Image transects through each urban center produce texture profiles that correspond to urban density. These profiles can be used to classify cities into centralized (ex. Baltimore), decentralized (ex. Phoenix), or intermediate (ex. Madrid) structural types. Image texture is one of the primary data inputs (with vegetation indices and visible to thermal infrared image spectra) to a knowledge-based land cover classifier currently under development for application to ASTER UEM data as it is acquired. Collaboration with local investigators is sought to both verify the accuracy of the knowledge-based system and to develop more sophisticated classification models.

  5. Socioeconomic Data and Applications Center (SEDAC) Treaty Status Dataset

    Data.gov (United States)

    National Aeronautics and Space Administration — The Socioeconomic Data and Application Center (SEDAC) Treaty Status Dataset contains comprehensive treaty information for multilateral environmental agreements,...

  6. Statistical Analysis of Model Data for Operational Space Launch Weather Support at Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Bauman, William H., III

    2010-01-01

    The 12-km resolution North American Mesoscale (NAM) model (MesoNAM) is used by the 45th Weather Squadron (45 WS) Launch Weather Officers at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to support space launch weather operations. The 45 WS tasked the Applied Meteorology Unit to conduct an objective statistics-based analysis of MesoNAM output compared to wind tower mesonet observations and then develop a an operational tool to display the results. The National Centers for Environmental Prediction began running the current version of the MesoNAM in mid-August 2006. The period of record for the dataset was 1 September 2006 - 31 January 2010. The AMU evaluated MesoNAM hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The MesoNAM forecast winds, temperature and dew point were compared to the observed values of these parameters from the sensors in the KSC/CCAFS wind tower network. The data sets were stratified by model initialization time, month and onshore/offshore flow for each wind tower. Statistics computed included bias (mean difference), standard deviation of the bias, root mean square error (RMSE) and a hypothesis test for bias = O. Twelve wind towers located in close proximity to key launch complexes were used for the statistical analysis with the sensors on the towers positioned at varying heights to include 6 ft, 30 ft, 54 ft, 60 ft, 90 ft, 162 ft, 204 ft and 230 ft depending on the launch vehicle and associated weather launch commit criteria being evaluated. These twelve wind towers support activities for the Space Shuttle (launch and landing), Delta IV, Atlas V and Falcon 9 launch vehicles. For all twelve towers, the results indicate a diurnal signal in the bias of temperature (T) and weaker but discernable diurnal signal in the bias of dewpoint temperature (T(sub d)) in the MesoNAM forecasts. Also, the standard deviation of the bias and RMSE of T, T(sub d), wind speed and wind

  7. Tool for evaluating the evolution Space Weather Regional Warning Centers under the innovation point of view: the Case Study of the Embrace Space Weather Program Early Stages

    Science.gov (United States)

    Denardini, Clezio Marcos

    2016-07-01

    We have developed a tool for measuring the evolutional stage of the space weather regional warning centers using the approach of the innovative evolution starting from the perspective presented by Figueiredo (2009, Innovation Management: Concepts, metrics and experiences of companies in Brazil. Publisher LTC, Rio de Janeiro - RJ). It is based on measuring the stock of technological skills needed to perform a certain task that is (or should) be part of the scope of a space weather center. It also addresses the technological capacity for innovation considering the accumulation of technological and learning capabilities, instead of the usual international indices like number of registered patents. Based on this definition, we have developed a model for measuring the capabilities of the Brazilian Study and Monitoring Program Space Weather (Embrace), a program of the National Institute for Space Research (INPE), which has gone through three national stages of development and an international validation step. This program was created in 2007 encompassing competence from five divisions of INPE in order to carry out the data collection and maintenance of the observing system in space weather; to model processes of the Sun-Earth system; to provide real-time information and to forecast space weather; and provide diagnostic their effects on different technological systems. In the present work, we considered the issues related to the innovation of micro-processes inherent to the nature of the Embrace program, not the macro-economic processes, despite recognizing the importance of these. During the development phase, the model was submitted to five scientists/managers from five different countries member of the International Space Environment Service (ISES) who presented their evaluations, concerns and suggestions. It was applied to the Embrace program through an interview form developed to be answered by professional members of regional warning centers. Based on the returning

  8. Positron--electron storage ring project: Stanford Linear Accelerator Center, Stanford, California. Final environmental statement

    International Nuclear Information System (INIS)

    1976-08-01

    A final environmental statement is given which was prepared in compliance with the National Environmental Policy Act to support the Energy Research and Development Administration project to design and construct the positron-electron colliding beam storage ring (PEP) facilities at the Stanford Linear Accelerator Center (SLAC). The PEP storage ring will be constructed underground adjacent to the existing two-mile long SLAC particle accelerator to utilize its beam. The ring will be about 700 meters in diameter, buried at depths of 20 to 100 feet, and located at the eastern extremity of the SLAC site. Positron and electron beams will collide in the storage ring to provide higher energies and hence higher particle velocities than have been heretofore achieved. Some of the energy from the collisions is transformed back into matter and produces a variety of particles of immense interest to physicists. The environmental impacts during the estimated two and one-half years construction period will consist of movement of an estimated 320,000 cubic yards of earth and the creation of some rubble, refuse, and dust and noise which will be kept to a practical minimum through planned construction procedures. The terrain will be restored to very nearly its original conditions. Normal operation of the storage ring facility will not produce significant adverse environmental effects different from operation of the existing facilities and the addition of one water cooling tower. No overall increase in SLAC staff is anticipated for operation of the facility. Alternatives to the proposed project that were considered include: termination, postponement, other locations and construction of a conventional high energy accelerator

  9. National Wind Technology Center Site Environmental Assessment: Bird and Bat Use and Fatalities -- Final Report; Period of Performance: April 23, 2001 -- December 31, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.; Piaggio, A. J.; Bock, C. E.; Armstrong, D. M.

    2003-01-01

    This study was conducted to ascertain actual and potential impacts of wind turbines on populations of birds and bats at the National Wind Technology Center (NWTC) in northern Jefferson County, Colorado. The NWTC, which is part of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), is located on a mesa dominated by ungrazed grassland with isolated patches of ponderosa pine. Similar lands to the north and west are part of the city of Boulders open space system. Areas to the east and south are part of the Rocky Flats Environmental Technology Site.

  10. ASTEC and MODEL: Controls software development at Goddard Space Flight Center

    Science.gov (United States)

    Downing, John P.; Bauer, Frank H.; Surber, Jeffrey L.

    1993-01-01

    The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at the Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. In the last three years the ASTEC (Analysis and Simulation Tools for Engineering Controls) software has been under development. ASTEC is meant to be an integrated collection of controls analysis tools for use at the desktop level. MODEL (Multi-Optimal Differential Equation Language) is a translator that converts programs written in the MODEL language to FORTRAN. An upgraded version of the MODEL program will be merged into ASTEC. MODEL has not been modified since 1981 and has not kept with changes in computers or user interface techniques. This paper describes the changes made to MODEL in order to make it useful in the 90's and how it relates to ASTEC.

  11. The Johnson Space Center Management Information Systems (JSCMIS): An interface for organizational databases

    Science.gov (United States)

    Bishop, Peter C.; Erickson, Lloyd

    1990-01-01

    The Management Information and Decision Support Environment (MIDSE) is a research activity to build and test a prototype of a generic human interface on the Johnson Space Center (JSC) Information Network (CIN). The existing interfaces were developed specifically to support operations rather than the type of data which management could use. The diversity of the many interfaces and their relative difficulty discouraged occasional users from attempting to use them for their purposes. The MIDSE activity approached this problem by designing and building an interface to one JSC data base - the personnel statistics tables of the NASA Personnel and Payroll System (NPPS). The interface was designed against the following requirements: generic (use with any relational NOMAD data base); easy to learn (intuitive operations for new users); easy to use (efficient operations for experienced users); self-documenting (help facility which informs users about the data base structure as well as the operation of the interface); and low maintenance (easy configuration to new applications). A prototype interface entitled the JSC Management Information Systems (JSCMIS) was produced. It resides on CIN/PROFS and is available to JSC management who request it. The interface has passed management review and is ready for early use. Three kinds of data are now available: personnel statistics, personnel register, and plan/actual cost.

  12. Application of NASA Kennedy Space Center system assurance analysis methodology to nuclear power plant systems designs

    International Nuclear Information System (INIS)

    Page, D.W.

    1985-01-01

    The Kennedy Space Center (KSC) entered into an agreement with the Nuclear Regulatory Commission (NRC) to conduct a study to demonstrate the feasibility and practicality of applying the KSC System Assurance Analysis (SAA) methodology to nuclear power plant systems designs. In joint meetings of KSC and Duke Power personnel, an agreement was made to select to CATAWBA systems, the Containment Spray System and the Residual Heat Removal System, for the analyses. Duke Power provided KSC with a full set a Final Safety Analysis Reports as well as schematics for the two systems. During Phase I of the study the reliability analyses of the SAA were performed. During Phase II the hazard analyses were performed. The final product of Phase II is a handbook for implementing the SAA methodology into nuclear power plant systems designs. The purpose of this paper is to describe the SAA methodology as it applies to nuclear power plant systems designs and to discuss the feasibility of its application. The conclusion is drawn that nuclear power plant systems and aerospace ground support systems are similar in complexity and design and share common safety and reliability goals. The SAA methodology is readily adaptable to nuclear power plant designs because of it's practical application of existing and well known safety and reliability analytical techniques tied to an effective management information system

  13. Organic Contamination Baseline Study in NASA Johnson Space Center Astromaterials Curation Laboratories

    Science.gov (United States)

    Calaway, Michael J.; Allen, Carlton C.; Allton, Judith H.

    2014-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids, and comets will require curating astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. 21st century sample return missions will focus on strict protocols for reducing organic contamination that have not been seen since the Apollo manned lunar landing program. To properly curate these materials, the Astromaterials Acquisition and Curation Office under the Astromaterial Research and Exploration Science Directorate at NASA Johnson Space Center houses and protects all extraterrestrial materials brought back to Earth that are controlled by the United States government. During fiscal year 2012, we conducted a year-long project to compile historical documentation and laboratory tests involving organic investigations at these facilities. In addition, we developed a plan to determine the current state of organic cleanliness in curation laboratories housing astromaterials. This was accomplished by focusing on current procedures and protocols for cleaning, sample handling, and storage. While the intention of this report is to give a comprehensive overview of the current state of organic cleanliness in JSC curation laboratories, it also provides a baseline for determining whether our cleaning procedures and sample handling protocols need to be adapted and/or augmented to meet the new requirements for future human spaceflight and robotic sample return missions.

  14. Application of NASA Kennedy Space Center System Assurance Analysis methodology to nuclear power plant systems designs

    International Nuclear Information System (INIS)

    Page, D.W.

    1985-01-01

    In May of 1982, the Kennedy Space Center (KSC) entered into an agreement with the NRC to conduct a study to demonstrate the feasibility and practicality of applying the KSC System Assurance Analysis (SAA) methodology to nuclear power plant systems designs. North Carolina's Duke Power Company expressed an interest in the study and proposed the nuclear power facility at CATAWBA for the basis of the study. In joint meetings of KSC and Duke Power personnel, an agreement was made to select two CATAWBA systems, the Containment Spray System and the Residual Heat Removal System, for the analyses. Duke Power provided KSC with a full set of Final Safety Analysis Reports (FSAR) as well as schematics for the two systems. During Phase I of the study the reliability analyses of the SAA were performed. During Phase II the hazard analyses were performed. The final product of Phase II is a handbook for implementing the SAA methodology into nuclear power plant systems designs. The purpose of this paper is to describe the SAA methodology as it applies to nuclear power plant systems designs and to discuss the feasibility of its application. (orig./HP)

  15. Marshall Space Flight Center's Tower Vector Magnetograph: Upgrades, Hardware, and Operations for the HESSI Mission

    Science.gov (United States)

    Adams, M. L.; Hagyard, M. J.; West, E. A.; Smith, J. E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Marshall Space Flight Center's (MSFC) solar group announces the successful upgrade of our tower vector magnetograph. In operation since 1973, the last major alterations to the system (which includes telescope, filter, polarizing optics, camera, and data acquisition computer) were made in 1982, when we upgraded from an SEC Vidicon camera to a CCD. In 1985, other changes were made which increased the field-of-view from 5 x 5 arc min (2.4 arc sec per pixel) to 6 x 6 arc min with a resolution of 2.81 arc sec. In 1989, the Apollo Telescope Mount H-alpha telescope was coaligned with the optics of the magnetograph. The most recent upgrades (year 2000), funded to support the High Energy Solar Spectroscopic Imager (HESSI) mission, have resulted in a pixel size of 0.64 arc sec over a 7 x 5.2 arc min field-of-view (binning 1x1). This poster describes the physical characteristics of the new system and compares spatial resolution, timing, and versatility with the old system. Finally, we provide a description of our Internet web site, which includes images of our most recent observations, and links to our data archives, as well as the history of magnetography at MSFC and education outreach pages.

  16. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    Science.gov (United States)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.

    2000-01-01

    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  17. Using the World Wide Web for GIDEP Problem Data Processing at Marshall Space Flight Center

    Science.gov (United States)

    McPherson, John W.; Haraway, Sandra W.; Whirley, J. Don

    1999-01-01

    Since April 1997, Marshall Space Flight Center has been using electronic transfer and the web to support our processing of the Government-Industry Data Exchange Program (GIDEP) and NASA ALERT information. Specific aspects include: (1) Extraction of ASCII text information from GIDEP for loading into Word documents for e-mail to ALERT actionees; (2) Downloading of GIDEP form image formats in Adobe Acrobat (.pdf) for internal storage display on the MSFC ALERT web page; (3) Linkage of stored GRDEP problem forms with summary information for access from the MSFC ALERT Distribution Summary Chart or from an html table of released MSFC ALERTs (4) Archival of historic ALERTs for reference by GIDEP ID, MSFC ID, or MSFC release date; (5) On-line tracking of ALERT response status using a Microsoft Access database and the web (6) On-line response to ALERTs from MSFC actionees through interactive web forms. The technique, benefits, effort, coordination, and lessons learned for each aspect are covered herein.

  18. Relationships between coronary heart disease risk factors and serum ionized calcium in Kennedy Space Center Cohort

    Science.gov (United States)

    Goodwin, Lisa Ann; Frey, Mary Anne Bassett; Merz, Marion P.; Alford, William R.

    1987-01-01

    Kennedy Space Center (KSC) employees are reported to be at high risk for coronary heart disease (CHD). Risk factors for CHD include high serum total cholesterol levels, low levels of high-density lipoprotein cholesterol (HDLC), elevated triglyceride, smoking, inactivity, high blood pressure, being male, and being older. Higher dietary and/or serum calcium Ca(++) may be related to a lower risk for CHD. Fifty men and 37 women participated. Subjects were tested in the morning after fasting 12 hours. Information relative to smoking and exercise habits was obtained; seated blood pressures were measured; and blood drawn. KCS men had higher risk values than KCS women as related to HDLC, triglycerides, systolic blood pressure, and diastolic blood pressure. Smoking and nonsmoking groups did not differ for other risk factors or for serum Ca(++) levels. Exercise and sedentary groups differed in total cholesterol and triglyceride levels. Serum Ca(++) levels were related to age, increasing with age in the sedentary group and decreasing in the exercisers, equally for men and women. It is concluded that these relationships may be significant to the risk of CHD and/or the risk of bone demineralization in an aging population.

  19. An Overview of My Internship with the Ecological Program at John F. Kennedy Space Center

    Science.gov (United States)

    Owen, Samantha

    2010-01-01

    During my internship with Innovative Health Applications, I participated in numerous longterm research projects involving the study of various plant and animal life at the Kennedy Space Center (KSC). I observed the monitoring of nesting sea turtles. I learned about the transfer of egg clutches from the northern Gulf Coast in an effort to help the hatchlings avoid the oil spill in the Gulf of Mexico. I gained knowledge of tracking the movements of important sport fish and sharks in this area using a hydro-acoustic tag and receiver system. This effort included routinely taking water quality data at multiple sites around KSC. Alligator population and nesting assessments was another part of my internship. I observed the biologists take morphometric measurements, blood, urine and tissue samples from alligators found in KSC waterways. I assisted in taking photosynthesis and reflectance measurements on various scrub oaks and palmettos. I participated in Florida Scrub-Jay surveys in an effort to monitor their population trends and was involved in Southeastern beach mouse trapping and identification. I also assisted in seagrass surveys monitoring the health of the seagrass beds.

  20. Latest Community Coordinated Modeling Center (CCMC) services and innovative tools supporting the space weather research and operational communities.

    Science.gov (United States)

    Mendoza, A. M. M.; Rastaetter, L.; Kuznetsova, M. M.; Mays, M. L.; Chulaki, A.; Shim, J. S.; MacNeice, P. J.; Taktakishvili, A.; Collado-Vega, Y. M.; Weigand, C.; Zheng, Y.; Mullinix, R.; Patel, K.; Pembroke, A. D.; Pulkkinen, A. A.; Boblitt, J. M.; Bakshi, S. S.; Tsui, T.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC), with the fundamental goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research, has been serving as an integral hub for over 15 years, providing invaluable resources to both space weather scientific and operational communities. CCMC has developed and provided innovative web-based point of access tools varying from: Runs-On-Request System - providing unprecedented global access to the largest collection of state-of-the-art solar and space physics models, Integrated Space Weather Analysis (iSWA) - a powerful dissemination system for space weather information, Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and Mobile apps to view space weather data anywhere to the scientific community. In addition to supporting research and performing model evaluations, CCMC also supports space science education by hosting summer students through local universities. In this poster, we will showcase CCMC's latest innovative tools and services, and CCMC's tools that revolutionized the way we do research and improve our operational space weather capabilities. CCMC's free tools and resources are all publicly available online (http://ccmc.gsfc.nasa.gov).

  1. 76 FR 63615 - Environmental Science Center Microbiology Laboratory; Notice of Public Meeting

    Science.gov (United States)

    2011-10-13

    ...The U.S. EPA invites interested stakeholders to participate in a laboratory-based technical workshop that will focus on the conduct of the Association of Official Analytical Chemists (AOAC) Use-dilution method (UDM) and the status and implementation of a new test method, the Organization for Economic Cooperation and Development (OECD) Quantitative Method for Evaluating Bactericidal Activity of Microbicides Used on Hard, Non-Porous Surfaces. The workshop is being held to discuss current and proposed revisions mainly associated with the Staphyloccocus aureus and Pseudomonas aeruginosa methodologies. The goals of the workshop are to provide a comprehensive review and discussion period on the status of the UDM and OEDC methods integrated with hands-on laboratory demonstrations. An overview of various data sets and collaborative studies will be used to supplement the discussions which will be held at the EPA Environmental Science Center Microbiology Laboratory.

  2. Conceptualization and measurement of environmental exposure in epidemiology: accounting for activity space related to daily mobility.

    Science.gov (United States)

    Perchoux, Camille; Chaix, Basile; Cummins, Steven; Kestens, Yan

    2013-05-01

    A considerable body of literature has investigated how environmental exposures affect health through various pathways. These studies have generally adopted a common approach to define environmental exposures, focusing on the local residential environment, using census tracts or postcodes to delimit exposures. However, use of such administrative units may not be appropriate to evaluate contextual effets on health because they are generally not a 'true' representation of the environments to which individuals are exposed. Recent work has suggested that advances may be made if an activity-space approach is adopted. The present paper investigates how various disciplines may contribute to the refinement of the concept of activity space for use in health research. In particular we draw on seminal work in time geography, which provides a framework to describe individual behavior in space and time, and can help the conceptualization of activity space. In addition we review work in environmental psychology and social networks research, which provides insights on how people and places interact and offers new theories for improving the spatial definition of contextual exposures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Population persistence of stream fish in response to environmental change: integrating data and models across space

    Science.gov (United States)

    Letcher, B. H.; Schueller, P.; Bassar, R.; Coombs, J.; Rosner, A.; Sakrejda, K.; Kanno, Y.; Whiteley, A.; Nislow, K. H.

    2013-12-01

    For stream fishes, environmental variation is a key driver of individual body growth/movement/survival and, by extension, population dynamics. Identifying how stream fish respond to environmental variation can help clarify mechanisms responsible for population dynamics and can help provide tools to forecast relative resilience of populations across space. Forecasting dynamics across space is challenging, however, because it can be difficult to conduct enough studies with enough intensity to fully characterize broad-scale population response to environmental change. We have adopted a multi-scale approach, using detailed individual-based studies and analyses (integral projection matrix) to determine sensitivities of population growth to environmental variation combined with broad spatial data and analyses (occupancy and abundance models) to estimate patterns of population response across space. Population growth of brook trout was most sensitive to stream flow in the spring and winter, most sensitive to stream temperature in the fall and sensitive to both flow and temperature in the summer. High flow in the spring and winter had negative effects on population growth while high temperature had a negative effect in the fall. Flow had no effect when it was cold, but a positive effect when it was warm in the summer. Combined with occupancy and abundance models, these data give insight into the spatial structure of resilient populations and can help guide prioritization of management actions.

  4. Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center

    Science.gov (United States)

    Clinton, R. G., Jr.

    2018-01-01

    NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.

  5. Common pathways toward informing policy and environmental strategies to promote health: a study of CDC's Prevention Research Centers.

    Science.gov (United States)

    Neri, Elizabeth M; Stringer, Kate J; Spadaro, Antonia J; Ballman, Marie R; Grunbaum, Jo Anne

    2015-03-01

    This study examined the roles academic researchers can play to inform policy and environmental strategies that promote health and prevent disease. Prevention Research Centers (PRCs) engage in academic-community partnerships to conduct applied public health research. Interviews were used to collect data on the roles played by 32 PRCs to inform policy and environmental strategies that were implemented between September 2009 and September 2010. Descriptive statistics were calculated in SAS 9.2. A difference in roles played was observed depending on whether strategies were policy or environmental. Of the policy initiatives, the most common roles were education, research, and partnership. In contrast, the most prevalent roles the PRCs played in environmental approaches were research and providing health promotion resources. Academic research centers play various roles to help inform policy and environmental strategies. © 2014 Society for Public Health Education.

  6. Integrated Coastal Data at NOAA's National Centers for Environmental Information (NCEI)

    Science.gov (United States)

    Stroker, K. J.; Mesick, S.

    2016-02-01

    The National Centers for Environmental Information (NCEI) provides stewardship for the world's largest collection of data enabling communities to ensure preparedness and resilience to coastal hazards. In this unique collection, NCEI has the responsibility to ensure access to high-resolution coastal tide gauge data, coastal bathymetry and topography data, global geologic hazards data (tsunami, earthquakes, and volcanic eruptions) as part of the World Data Center for Geophysics, and are expanding the archive to support other coastal data streams, such as coastal current velocity data important for safety in ports and harbors. These data, collected by partners from academia, federal and state governments, support a wide variety of uses. Ensuring accurate, high quality metadata for these data are essential for their proper use. In addition to providing easy access to partner data to extend the use of these data, NCEI also develops scientifically-validated derived products. One such example is our collection of high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. These DEMs can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Additionally, the US Extended Continental Shelf (ECS) project is determining the outer limits of the US continental shelf though the collection and analysis of data that describe the depth, shape and geophysical characteristics of the seabed and sub-seafloor. These data are all housed and stewarded at NCEI. The paper will discuss the wide variety of coastal data maintained and stewarded at NCEI

  7. Washington Alexandria Architecture Center students merge creative concepts of dance and space to design dance studio in Arlington

    OpenAIRE

    Micale, Barbara L.

    2009-01-01

    Elements of dance and dance-theatre -- including movement and exercise, flowing costumes, and expressive lighting --inspired students in the Architecture Master's design studio at the Washington Alexandria Architecture Center to imagine innovative ways of merging public and private space for a dance studio in nearby Arlington.

  8. 107 Range Commanders Council Meteorology Group Meeting (RCC-MG): NASA Marshall Space Flight Center Range Report

    Science.gov (United States)

    Roberts, Barry C.

    2016-01-01

    The following is a summary of the major meteorological/atmospheric projects and research that have been or currently are being accomplished at Marshall Space Flight Center (MSFC). Listed below are highlights of work done during the past 6 months in the Engineering Directorate (ED) and in the Science and Mission Systems Office (ZP).

  9. 108 Range Commanders Council Meteorology Group Meeting (RCC-MG) NASA Marshall Space Flight Center Range Report - April 2017

    Science.gov (United States)

    Roberts, Barry C.

    2017-01-01

    The following is a summary of the major meteorological/atmospheric projects and research that have been or currently are being accomplished at Marshall Space Flight Center (MSFC). Listed below are highlights of work done during the past 6 months in the Engineering Directorate (ED) and in the Science and Technology Office (ST).

  10. Using microsoft excel applications in the graduate intern program at Goddard Space Flight Center. M.S. Thesis

    Science.gov (United States)

    Antoine, Lisa

    1992-01-01

    An outline of the Project Operations Branch at Goddard Space Flight Center is presented that describes the management of the division and each subgroup's responsibility. The paper further describes the development of software tools for the Macintosh personal computer, and their impending implementation. A detailed step by step procedure is given for using these software tools.

  11. Research reports of the National Environmental Research Center-Las Vegas, January--December 1974

    International Nuclear Information System (INIS)

    1975-01-01

    This bibliography lists reports of the National Environmental Research Center's work in five categories. Reports published in the EPA Series, listed in Section I, are available through the National Technical Information Service (NTIS) or from the Superintendent of Documents at the U.S. Government Printing Office. Those published in the NERC-LV Series, Section II, are reports of work performed for the AEC and are available through the NTIS or from the Oak Ridge Technical Information Center in Oak Ridge, Tennessee. Reports published as articles in professional journals or in proceedings of scientific and technical meetings can usually be seen in most major libraries, particularly those associated with universities. Reprints of journal articles and hard copies of papers presented at scientific and technical meetings can sometimes be obtained from the author as long as his supply lasts. Section V lists reports in a Working Paper Series for EPA's National Eutrophication Survey. These are available from the NTIS. The NERC-LV does not maintain its own mailing list for distribution of published reports. (auth)

  12. Development of Distributed Research Center for analysis of regional climatic and environmental changes

    Science.gov (United States)

    Gordov, E.; Shiklomanov, A.; Okladnikov, I.; Prusevich, A.; Titov, A.

    2016-11-01

    We present an approach and first results of a collaborative project being carried out by a joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center UNH, USA. Its main objective is development of a hardware and software platform prototype of a Distributed Research Center (DRC) for monitoring and projecting of regional climatic and environmental changes in the Northern extratropical areas. The DRC should provide the specialists working in climate related sciences and decision-makers with accurate and detailed climatic characteristics for the selected area and reliable and affordable tools for their in-depth statistical analysis and studies of the effects of climate change. Within the framework of the project, new approaches to cloud processing and analysis of large geospatial datasets (big geospatial data) inherent to climate change studies are developed and deployed on technical platforms of both institutions. We discuss here the state of the art in this domain, describe web based information-computational systems developed by the partners, justify the methods chosen to reach the project goal, and briefly list the results obtained so far.

  13. Environmental center for integrated waste management: an experience in the Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo V, Jairo; Banalcazar, Fernando L.; Noboa Garcia, Gabriel [EnCanEcuador S.A., Houston, TX (United States)

    2004-07-01

    The creation of a large amount of both solid and liquid waste within the petroleum industry should be the reason for providing a facility that makes it possible to apply proper treatment to the waste matter, depending on the degree of complexity, especially if these operations are taking place within or in the area of influence of a national park or a biosphere reserve. EnCanEcuador has invested $1 200,000 in the construction of facilities and equipment for an integrated environmental management center, which will allow us to create in-house resources for the management of waste control. Organic waste is grinded, homogenized with sawdust and placed in a dynamic sanitary fill to form fertilizer. The leachates material will be used as foliage fertilizer. Inorganic waste is classified, grinded, compacted, packed and sent to different recycling companies or in some cases incinerated in a low emission incinerator. Drilling waste: Drilling mud water based potassium nitrate is treated through a de-nitrification process using bioremediation methods. Liquid waste: from well completion, washing vehicles, drains from production stations, is passed through an API separator system into two physical-chemical treatment pits for its later re-injection. Contaminated soil: that may be caused by petroleum activity is treated in a pit where the greatest possible amount of hydrocarbon is recovered by means of hot hydro-washing and is then treated with native bacteria in two land farming centers. Dangerous solid waste is transported to a secure fill for its confinement. Laboratory and Meteorological Station: For the control and monitoring of petroleum activities and to determine climatic variations. Plant nursery: it will have a capacity to produce 300,000 plants a year. Community Cooperatives will manage the center, enforcing our Social responsibility in our daily activities. (author)

  14. Modernization of NASA's Johnson Space Center Chamber: A Payload Transport Rail System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sam; Homan, Jonathan; Speed, John

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the "Great Observatories", scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describe the challenges of developing, integrating and modifying new payload rails capable of transporting payloads within the thermal vacuum chamber up to 65,000 pounds. Ambient and Cryogenic Operations required to configure for testing will be explained. Lastly review historical payload configurations stretching from the Apollo program era to current James Webb Space Telescope testing.

  15. Environmental Cost Analysis System (ECAS) Status and Compliance Requirements for EM Consolidated Business Center Contracts - 13204

    International Nuclear Information System (INIS)

    Sanford, P.C.; Moe, M.A.; Hombach, W.G.; Urdangaray, R.

    2013-01-01

    The Department of Energy (DOE) Office of Environmental Management (EM) has developed a web-accessible database to collect actual cost data from completed EM projects to support cost estimating and analysis. This Environmental Cost Analysis System (ECAS) database was initially deployed in early 2009 containing the cost and parametric data from 77 decommissioning, restoration, and waste management projects completed under the Rocky Flats Closure Project. In subsequent years we have added many more projects to ECAS and now have a total of 280 projects from 8 major DOE sites. This data is now accessible to DOE users through a web-based reporting tool that allows users to tailor report outputs to meet their specific needs. We are using it as a principal resource supporting the EM Consolidated Business Center (EMCBC) and the EM Applied Cost Engineering (ACE) team cost estimating and analysis efforts across the country. The database has received Government Accountability Office review as supporting its recommended improvements in DOE's cost estimating process, as well as review from the DOE Office of Acquisition and Project Management (APM). Moving forward, the EMCBC has developed a Special Contract Requirement clause or 'H-Clause' to be included in all current and future EMCBC procurements identifying the process that contractors will follow to provide DOE their historical project data in a format compatible with ECAS. Changes to DOE O 413.3B implementation are also in progress to capture historical costs as part of the Critical Decision project closeout process. (authors)

  16. Johnson Space Center's Free Range Bicycle Program.- Fall 2015 Intern Report

    Science.gov (United States)

    Lee-Stockton, Willem

    2015-01-01

    NASA's Johnson Space Center is a big place, encompassing 1,620 acres and more than a hundred buildings. Furthermore, there are reportedly 15 thousand employees, all of which have somewhere to be. To facilitate the movement of all these people JSC has historically relied on human power. Pedaling their way towards deep space, bicycles have been the go to method. Currently there are about 200 Free Range Bicycles at JSC. Free Range Bicycles belong to nobody, except NASA, and are available for anybody to use. They are not to be locked or hidden (although frequently are) and the intention is that there will always be a bike to hop on to get where you're going (although it may not be the bike you rode in on). Although not without its own shortcomings, the Free Range Bicycle Program has continued to provide low cost, simple transportation for NASA's JSC. In addition to the approximately 200 Free Range Bicycles, various larger divisions (like engineering) will often buy a few dozen bikes for their team members to use or individuals will bring their own personal bike to either commute or use on site. When these bicycles fall into disrepair or are abandoned (from retirees etc) they become a problem at JSC. They are an eye sore, create a safety hazard and make it harder to find a working bike in a time of need. The Free Range Program hopes to address this first problem by "tagging out" abandoned or out of service bicycles. A bright orange "DO NOT OPERATE" tag is placed on the bike and given a serial number for tracking purposes. See picture to the right. If the bike has an active owner with intentions to repair the bike the bottom of the tag has instructions for how to claim the abandoned bicycle. After being tagged the owner of the bicycle has 30 days to claim the bicycle and either haul it off site or get it repaired (and labeled) in accordance with Johnson's Bicycle Policy. If the abandoned bicycle is not claimed within 30 days it becomes the property of the Government. The

  17. NASA Space Flight Human-System Standard Human Factors, Habitability, and Environmental Health

    Science.gov (United States)

    Holubec, Keith; Connolly, Janis

    2010-01-01

    This slide presentation reviews the history, and development of NASA-STD-3001, NASA Space Flight Human-System Standard Human Factors, Habitability, and Environmental Health, and the related Human Integration Design Handbook. Currently being developed from NASA-STD-3000, this project standard currently in review will be available in two volumes, (i.e., Volume 1 -- VCrew Health and Volume 2 -- Human Factors, Habitability, and Environmental Health) and the handbook will be both available as a pdf file and as a interactive website.

  18. The Language Research Center's Computerized Test System for environmental enrichment and psychological assessment

    Science.gov (United States)

    Washburn, D. A.; Rumbaugh, D. M.; Richardson, W. K.

    1992-01-01

    In the spring of 1987, we undertook to provide environmental enrichment to nonhuman primate subjects in ways that would complement and even contribute to the bio-behaviorial science that justified the monkeys' captivity. Of course, the psychological well-being of captive primates--and indeed all research species-- has been an area of intense research activity since the 1985 amendment of the Animal Welfare Act. This mandate for researchers to ensure the psychological, as well as physical, fitness of experimental animals catalyzed the humane and scientific interests of the research community. The contemporary literature is replete with proposed means both of assaying and of providing enrichment and well-being. Notwithstanding, consensus on either assessment or intervention has yet to be reached. The paradigm we employed was modelled after successful efforts with chimpanzees. An automated test system was constructed in which subjects responded to computer tasks by manipulating a joystick. The tasks, interactive game-like versions of many of the classic testing paradigms of cognitive and comparative psychology, permitted the controlled presentation of stimuli and demands without the required presence of a human experimenter. Despite significant barriers to the success, rhesus monkeys (Macaca mulatta) and a variety of other primate species (including, of course, humans) have mastered the skills necessary for testing in this paradigm. Previous experiments have illustrated the utility of the test system for addressing questions of learning, memory, attention, perception, and motivation. Additional data have been reported to support the contention that the Language Research Center's Computerized Test System (LRC-CTS) serves its other raison d'etre--providing environmental enrichment and assessing psychological well-being. This paper is designed to augment previous descriptions of the technology and the paradigm for scientists and caretakers interested in environmental

  19. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  20. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in

  1. Investigations of the response of hybrid particle detectors for the Space Environmental Viewing and Analysis Network (SEVAN

    Directory of Open Access Journals (Sweden)

    A. Chilingarian

    2008-02-01

    Full Text Available A network of particle detectors located at middle to low latitudes known as SEVAN (Space Environmental Viewing and Analysis Network is being created in the framework of the International Heliophysical Year (IHY-2007. It aims to improve the fundamental research of the particle acceleration in the vicinity of the Sun and space environment conditions. The new type of particle detectors will simultaneously measure the changing fluxes of most species of secondary cosmic rays, thus turning into a powerful integrated device used for exploration of solar modulation effects. Ground-based detectors measure time series of secondary particles born in cascades originating in the atmosphere by nuclear interactions of protons and nuclei accelerated in the galaxy. During violent solar explosions, sometimes additional secondary particles are added to this "background" flux. The studies of the changing time series of secondary particles shed light on the high-energy particle acceleration mechanisms. The time series of intensities of high energy particles can also provide highly cost-effective information on the key characteristics of interplanetary disturbances. The recent results of the detection of the solar extreme events (2003–2005 by the monitors of the Aragats Space-Environmental Center (ASEC illustrate the wide possibilities provided by new particle detectors measuring neutron, electron and muon fluxes with inherent correlations. We present the results of the simulation studies revealing the characteristics of the SEVAN networks' basic measuring module. We illustrate the possibilities of the hybrid particle detector to measure neutral and charged fluxes of secondary CR, to estimate the efficiency and purity of detection; corresponding median energies of the primary proton flux, the ability to distinguish between neutron and proton initiated GLEs and some other important properties of hybrid particle detectors.

  2. Using CFD as Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center

    Science.gov (United States)

    Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Rocker, Marvin; Canabal, Francisco; Robles, Bryan; Garcia, Robert; Chenoweth, James

    2003-01-01

    The choice of tools used for injector design is in a transitional phase between exclusive reliance on the empirically based correlations and extensive use of computational fluid dynamics (CFD). The Next Generation Launch Technology (NGLT) Program goals emphasizing lower costs and increased reliability have produced a need to enable CFD as an injector design tool in a shorter time frame. This is the primary objective of the Staged Combustor Injector Technology Task currently under way at Marshall Space Flight Center (MSFC). The documentation of this effort begins with a very brief status of current injector design tools. MSFC's vision for use of CFD as a tool for combustion devices design is stated and discussed with emphasis on the injector. The concept of the Simulation Readiness Level (SRL), comprised of solution fidelity, robustness and accuracy, is introduced and discussed. This quantitative measurement is used to establish the gap between the current state of demonstrated capability and that necessary for regular use in the design process. MSFC's view of the validation process is presented and issues associated with obtaining the necessary data are noted and discussed. Three current experimental efforts aimed at generating validation data are presented. The importance of uncertainty analysis to understand the data quality is also demonstrated. First, a brief status of current injector design tools is provided as context for the current effort. Next, the MSFC vision for using CFD as an injector design tool is stated. A generic CFD-based injector design methodology is also outlined and briefly discussed. Three areas where MSFC is using injector CFD analyses for program support will be discussed. These include the Integrated Powerhead Development (IPD) engine which uses hydrogen and oxygen propellants in a full flow staged combustion (FFSC) cycle and the TR-107 and the RS84 engine both of which use RP-1 and oxygen in an ORSC cycle. Finally, an attempt is made to

  3. Assessing Sea Level Rise Impacts on the Surficial Aquifer in the Kennedy Space Center Region

    Science.gov (United States)

    Xiao, H.; Wang, D.; Hagen, S. C.; Medeiros, S. C.; Warnock, A. M.; Hall, C. R.

    2014-12-01

    Global sea level rise in the past century due to climate change has been seen at an average rate of approximately 1.7-2.2 mm per year, with an increasing rate over the next century. The increasing SLR rate poses a severe threat to the low-lying land surface and the shallow groundwater system in the Kennedy Space Center in Florida, resulting in saltwater intrusion and groundwater induced flooding. A three-dimensional groundwater flow and salinity transport model is implemented to investigate and evaluate the extent of floods due to rising water table as well as saltwater intrusion. The SEAWAT model is chosen to solve the variable-density groundwater flow and salinity transport governing equations and simulate the regional-scale spatial and temporal evolution of groundwater level and chloride concentration. The horizontal resolution of the model is 50 m, and the vertical domain includes both the Surficial Aquifer and the Floridan Aquifer. The numerical model is calibrated based on the observed hydraulic head and chloride concentration. The potential impacts of sea level rise on saltwater intrusion and groundwater induced flooding are assessed under various sea level rise scenarios. Based on the simulation results, the potential landward movement of saltwater and freshwater fringe is projected. The existing water supply wells are examined overlaid with the projected salinity distribution map. The projected Surficial Aquifer water tables are overlaid with data of high resolution land surface elevation, land use and land cover, and infrastructure to assess the potential impacts of sea level rise. This study provides useful tools for decision making on ecosystem management, water supply planning, and facility management.

  4. Overlapping and permeability: Research on the pattern hierarchy of communication space and design strategy based on environmental behavior

    Science.gov (United States)

    Leilei, Sun; Liang, Zhang; Bing, Chen; Hong, Xi

    2017-11-01

    This thesis is to analyze the basic pattern hierarchy of communication space by using the theory of environmental psychology and behavior combined with relevant principles in architecture, to evaluate the design and improvement of communication space in specific meaning, and to bring new observation ideas and innovation in design methods to the system of space, environment and behavior.

  5. Support for Maui Space Surveillance Site and Maui High Performance Computing Center

    National Research Council Canada - National Science Library

    1999-01-01

    ...) for the Maui Space Surveillance Site. GEMINI, not to be confused with the National Science Foundation's Gemini Telescopes Project, is a one-of-a-kind sensor package built for USAF Space Command operational use in conjunction...

  6. Next Steps Toward Understanding Human Habitation of Space: Environmental Impacts and Mechanisms

    Science.gov (United States)

    Globus, Ruth

    2016-01-01

    Entry into low earth orbit and beyond causes profound shifts in environmental conditions that have the potential to influence human productivity, long term health, and even survival. We now have evidence that microgravity, radiation and/or confinement in space can lead to demonstrably detrimental changes in the cardiovascular (e.g. vessel function, orthostatic intolerance), musculoskeletal (muscle atrophy, bone loss) and nervous (eye, neurovestibular) systems of astronauts. Because of both the limited number of astronauts who have flown (especially females) and the high degree of individual variability in the human population, important unanswered questions about responses to the space environment remain: What are the sex differences with respect to specific physiological systems? Are the responses age-dependent and/or reversible after return to Earth? Do observed detrimental changes that resemble accelerated aging progress continuously over time or plateau? What are the mechanisms of the biological responses? Answering these important questions certainly demands a multi-pronged approach, and the study of multicellular model organisms (such as rodents and flies) already has provided opportunities for exploring those questions in some detail. Recent long duration spaceflight experiments with rodents show that mice in space provide a mammalian model that uniquely combines the influence of reduced gravitational loading with increased physical activity. In addition, multiple investigators have shown that ground-based models that simulate aspects of spaceflight (including rodent hind limb unloading to mimic weightlessness and exposure to ionizing radiation), cause various transient and persistent detrimental consequences in multiple physiological systems. In general, we have found that adverse skeletal effects of simulated weightlessness and space radiation when combined, can be quantitatively, if not qualitatively, different from the influence of each environmental

  7. University Satellite Consortium and Space Education in Japan Centered on Micro-Nano Satellites

    Science.gov (United States)

    Nakasuka, S.; Kawashima, R.

    2002-01-01

    in Japan especially centered on micro or nano class satellites. Hands-on training using micro-nano satellites provide unique opportunity of space education to university level students, by giving them a chance to experience the whole space project cycle from mission creation, satellite design, fabrication, test, launch, operation through analysis of the results. Project management and team working are other important skills that can be trained in these projects. include 1) low cost, which allows one laboratory in university to carry out a project, 2) short development period such as one or two year, which enables students to obtain the results of their projects before they graduate, and 3) small size and weight, which enables fabrication and test within usually very narrow university laboratory areas. In Japan, several projects such as CanSat, CubeSat or Whale Observation Satellite have been carried out, proving that micro-nano satellites provide very unique and valuable educational opportunity. with the objective to make a university student and staff community of these micro-nano satellite related activities in Japan. This consortium aims for many activities including facilitating information and skills exchange and collaborations between member universities, helping students to use ground test facilities of national laboratories, consulting them on political or law related matters, coordinating joint development of equipments or projects, and bridging between these university activities and the needs or interests of the people in general. This kind of outreach activity is essential because how to create missions of micro-nano satellites should be pursued in order for this field to grow larger than a merely educational enterprise. The final objectives of the consortium is to make a huge community of the users, mission creators, investors and manufactures(i.e., university students) of micro-nano satellites, and provide a unique contribution to the activation of

  8. Space use optimisation and sustainability-environmental comparison of international cases.

    Science.gov (United States)

    de Wilde, Sebastiaan; van den Dobbelsteen, Andy

    2004-11-01

    As a follow-up to our first paper in this journal, this paper discusses projects involving intensive and multiple use of space recently completed or still being developed around railway stations in London (Broadgate and Canary Wharf), Paris (Seine Rive Gauche and La Défense) and Amsterdam (Zuidas and Bijlmer). The cases were compared on the basis of spatial, functional and environmental indicators, as treated in our first paper. The environmental performance of each of the cases was determined through comparison with a theoretic reference project for an equal number of users, yet with average West-European urban values for spatial, functional and environmental properties. The case studies revealed that a high floor space index is easily achievable in urban plans, implying efficient use of land and preservation of green area outside the city. For a mono-functional office area it is easier to achieve a high FSI than for a functionally diverse area with, e.g. apartments and shops. Therefore, with respect to a reference functionally equal to the cases, the predominant office character of Canary Wharf, Broadgate and La Défense results in good environmental performance. However, on the basis of a functionally diverse reference, for which monofunctional cases were enlarged with additional area for housing and amenities, the varied areas of Zuidas and Seine Rive Gauche perform best. With respect to average urban plans, the cases achieved environmental improvement of factor 1.5. This performance is restricted by the energy consumption of buildings, which has by far the most influence on the end result. The impact of stacking on the use of building materials and energy consumption of buildings is limited, and specific sustainability measures on the building scale were not involved in the calculations. The environmental benefits of intensive and multiple use of space are mainly demonstrated by the great improvement factors for the green area preserved and transport fuel

  9. Environmental Control and Life Support Systems technology options for Space Station application

    Science.gov (United States)

    Hall, J. B., Jr.; Ferebee, M. J., Jr.; Sage, K. H.

    1985-01-01

    Continuous assessments regarding the suitability of candidate technologies for manned Space Stations will be needed over the next several years to obtain a basis for recommending the optimum system for an Initial Operating Capability (IOC) Space Station which is to be launched in the early 1990's. This paper has the objective to present analysis programs, the candidate recommendations, and the recommended approach for integration these candidates into the NASA Space Station reference configuration. Attention is given to ECLSS (Environmental Control and Life Support System) technology assessment program, an analysis approach for candidate technology recommendations, mission model variables, a candidate integration program, metabolic oxygen recovery, urine/flush water and all waste water recovery, wash water and condensate water recovery, and an integration analysis.

  10. Modernization of NASA's Johnson Space Center Chamber: A Liquid Nitrogen System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sammy; Homan, Jonathan; Montz, Michael

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the “Great Observatories”, scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describes the steps performed in efforts to convert the existing the 60’s era Liquid Nitrogen System from a forced flow (pumped) process to a natural circulation (thermo-siphon) process. In addition, the paper will describe the dramatic conservation of liquid nitrogen to support the long duration thermal vacuum testing. Lastly, describe the simplistic and effective control system which results in zero to minimal human inputs during steady state conditions.

  11. Database created with the operation of environmental monitoring program from the Nuclear Technology Development Center (CDTN) - Brazilian CNEN

    International Nuclear Information System (INIS)

    Peixoto, C.M.

    1995-01-01

    The environmental control from the Nuclear Technology Development Center (CDTN - Brazilian CNEN) is done through a Program of Environmental Monitoring-PMA, which has been in operation since 1985. To register all the analytic results of the several samples, samples, a database was created. In this work, this database structure as well as the information used in the evaluation of the results obtained from the operation of the above-mentioned PMA are presented. (author). 5 refs, 1 fig, 3 tabs

  12. Space and Missile Systems Center Standard: Technical Requirements for Electronic Parts, Materials, and Processes used in Space Vehicles

    Science.gov (United States)

    2013-04-12

    glass or oxide passivation over junctions . 4.3 Screening (100 percent). Screening (100 percent) shall be in accordance with section 1400 for the JAN...75 VCE = 75 IC = 75 VCE = 75 IC = 75 Hetero - junction Bipolar Transistor Gallium Arsenide 3/ 105 125 N/A N/A 75 75 Current...HDBK-339 Custom Large Scale Integrated Circuit Development and Acquisition for Space Vehicles MIL-STD-403C Preparation for and Installation of

  13. Space Toxicology: Environmental Health Considerations during Spaceflight Operations and Potential Paths for Research

    Science.gov (United States)

    Khan-Mayberry, Noreen N.; Sundaresan, Alemalu

    2009-01-01

    Space Toxicology is a specialized discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids [1]. Astronaut explorers face unique challenges to their health while working and living with limited resources for rescue and medical care during space operation. At its core the practice of space toxicology to identify, assess and predict potential chemical contaminants and limit the astronaut s exposure to these environmental factors in order to protect crew health. Space toxicologists are also charged with setting safe exposure limits that will protect the astronaut against a multitude of chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space, toxicological risks are gauged and managed within the context of isolation, continual exposures, reuse of air and water, limited rescue options, and the necessary use of highly toxic compounds required for propulsion. As the space program move towards human presence and exploration other celestial bodies in situ toxicological risks, such as inhalation of unusual and/or reactive mineral dusts must also be analyzed and controlled. Placing humans for long-term presence in space creates several problems and challenges to the long-term health of the crew, such as bone-loss and immunological challenges and has spurred research into acute, chronic and episodic exposure of the pulmonary system to mineral dusts [2]. NASA has demonstrated that lunar soil contains several types of reactive dusts, including an extremely fine respirable component. In order to protect astronaut health, NASA is now investigating the toxicity of this unique class of dusts. Understanding how these reactive components behave "biochemically" in a moisture-rich pulmonary environment will aid in determining how toxic these particles are to humans. The data obtained from toxicological examination of lunar dusts will determine the human risk criteria for lunar

  14. A Comprehensive Approach to Management of Workplace and Environmental Noise at NASA Lewis Research Center

    Science.gov (United States)

    Cooper, Beth A.

    1995-01-01

    NASA Lewis Research Center is home to more than 100 experimental research testing facilities and laboratories, including large wind tunnels and engine test cells, which in combination create a varied and complex noise environment. Much of the equipment was manufactured prior to the enactment of legislation limiting product noise emissions or occupational noise exposure. Routine facility maintenance and associated construction also contributes to a noise exposure management responsibility which is equal in magnitude and scope to that of several small industrial companies. The Noise Program, centrally managed within the Office of Environmental Programs at LRC, maintains overall responsibility for hearing conservation, community noise control, and acoustical and noise control engineering. Centralized management of the LRC Noise Program facilitates the timely development and implementation of engineered noise control solutions for problems identified via either the Hearing Conservation of Community Noise Program. The key element of the Lewis Research Center Noise Program, Acoustical and Noise Control Engineering Services, is focused on developing solutions that permanently reduce employee and community noise exposure and maximize research productivity by reducing or eliminating administrative and operational controls and by improving the safety and comfort of the work environment. The Hearing Conservation Program provides noise exposure assessment, medical monitoring, and training for civil servant and contractor employees. The Community Noise Program aims to maintain the support of LRC's neighboring communities while enabling necessary research operations to accomplish their programmatic goals. Noise control engineering capability resides within the Noise Program. The noise control engineering, based on specific exposure limits, is a fundamental consideration throughout the design phase of new test facilities, labs, and office buildings. In summary, the Noise Program

  15. EUROLAUNCH - a cooperation between DLR, German Aerospace Center and SSC, Swedish Space Corporation in sounding rocket launches

    Science.gov (United States)

    Kemi, S.; Turner, P.; Norberg, O.

    Sounding rocket and balloon launches have been conducted since more than 30 years at ESRANGE - the European Sounding Rocket Launching Range of SSC, the Swedish Space Corporation of Kiruna in North-Sweden. MORABA - the Mobile Rocket Base of DLR German Aerospace Center at München-Oberpfaffenhofen, Germany, has planned and implemented sounding rocket and balloon launches on occasions throughout the globe during more than 30 years. An evolutionary step of sounding rocket launches is undertaken with the creation of EuroLaunch. EuroLaunch has recently been formed by SSC, the Swedish Space Corporation, and DLR, the German Aerospace Center. With EuroLaunch the long-lasting co-operation of the two complementary technical centers ESRANGE and MORABA is being enhanced and intensified, and this co-operation may also be the start of a future European Network of Center for sounding rockets. The comprehensive competence within the scope of the Network of Centers in Europa will be presented. The consolidation of competencies and work distribution among the partners shall be detailed. The managerial structure of EuroLaunch and the embedding in the mother organizations SSC and DLR respectively will be explained. The newly organized EuroLaunch is expected to provide improved services to experimenters in Europe and worldwide with improved competence, capability and efficiency.

  16. Space station environmental control and life support systems test bed program - an overview

    Science.gov (United States)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space

  17. Environmental Cost Analysis System (ECAS) Status and Compliance Requirements for EM Consolidated Business Center Contracts - 13204

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, P.C. [Consultant, 11221 E. Cimmarron Dr., Englewood, CO 80111 (United States); Moe, M.A. [EMCBC Office of Cost Estimating and Analysis, United States Department of Energy, 250 E. 5th Street, Suite 500, Cincinnati, OH 45202 (United States); Hombach, W.G. [Team Analysis, Inc., 2 Cardinal Park Drive, Suite 105A, Leesburg, VA 20175 (United States); Urdangaray, R. [Project Performance Corporation, 1760 Old Meadow Road, McLean, VA 22102 (United States)

    2013-07-01

    The Department of Energy (DOE) Office of Environmental Management (EM) has developed a web-accessible database to collect actual cost data from completed EM projects to support cost estimating and analysis. This Environmental Cost Analysis System (ECAS) database was initially deployed in early 2009 containing the cost and parametric data from 77 decommissioning, restoration, and waste management projects completed under the Rocky Flats Closure Project. In subsequent years we have added many more projects to ECAS and now have a total of 280 projects from 8 major DOE sites. This data is now accessible to DOE users through a web-based reporting tool that allows users to tailor report outputs to meet their specific needs. We are using it as a principal resource supporting the EM Consolidated Business Center (EMCBC) and the EM Applied Cost Engineering (ACE) team cost estimating and analysis efforts across the country. The database has received Government Accountability Office review as supporting its recommended improvements in DOE's cost estimating process, as well as review from the DOE Office of Acquisition and Project Management (APM). Moving forward, the EMCBC has developed a Special Contract Requirement clause or 'H-Clause' to be included in all current and future EMCBC procurements identifying the process that contractors will follow to provide DOE their historical project data in a format compatible with ECAS. Changes to DOE O 413.3B implementation are also in progress to capture historical costs as part of the Critical Decision project closeout process. (authors)

  18. Python-Based Scientific Analysis and Visualization of Precipitation Systems at NASA Marshall Space Flight Center

    Science.gov (United States)

    Lang, Timothy J.

    2015-01-01

    At NASA Marshall Space Flight Center (MSFC), Python is used several different ways to analyze and visualize precipitating weather systems. A number of different Python-based software packages have been developed, which are available to the larger scientific community. The approach in all these packages is to utilize pre-existing Python modules as well as to be object-oriented and scalable. The first package that will be described and demonstrated is the Python Advanced Microwave Precipitation Radiometer (AMPR) Data Toolkit, or PyAMPR for short. PyAMPR reads geolocated brightness temperature data from any flight of the AMPR airborne instrument over its 25-year history into a common data structure suitable for user-defined analyses. It features rapid, simplified (i.e., one line of code) production of quick-look imagery, including Google Earth overlays, swath plots of individual channels, and strip charts showing multiple channels at once. These plotting routines are also capable of significant customization for detailed, publication-ready figures. Deconvolution of the polarization-varying channels to static horizontally and vertically polarized scenes is also available. Examples will be given of PyAMPR's contribution toward real-time AMPR data display during the Integrated Precipitation and Hydrology Experiment (IPHEx), which took place in the Carolinas during May-June 2014. The second software package is the Marshall Multi-Radar/Multi-Sensor (MRMS) Mosaic Python Toolkit, or MMM-Py for short. MMM-Py was designed to read, analyze, and display three-dimensional national mosaicked reflectivity data produced by the NOAA National Severe Storms Laboratory (NSSL). MMM-Py can read MRMS mosaics from either their unique binary format or their converted NetCDF format. It can also read and properly interpret the current mosaic design (4 regional tiles) as well as mosaics produced prior to late July 2013 (8 tiles). MMM-Py can easily stitch multiple tiles together to provide a

  19. Marshall Space Flight Center Propulsion Systems Department (PSD) Knowledge Management (KM) Initiative

    Science.gov (United States)

    Caraccioli, Paul; Varnedoe, Tom; Smith, Randy; McCarter, Mike; Wilson, Barry; Porter, Richard

    2006-01-01

    NASA Marshall Space Flight Center's Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities within the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center of Excellence (AISCE), lntergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KNI implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to suppoth e planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have beon pedormed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural1KM surveys and practitioner interviews include

  20. Enabling the MLSpOC (Multi-Level Space Operations Center) of the Future

    Science.gov (United States)

    Missal, D.

    2012-09-01

    accredited today at multiple sites both CONUS and OCONUS. It is designed to assist information systems developers achieve DCID 6/3 Protection Level 4 or 5 (PL4 or PL5) or DoD SABI C&A for SECRET-to-UNCLASSIFIED systems (PL3). The product is on the DoD/DNI Unified Cross-domain Management Office's (UCDMO) Baseline of accredited solutions, and is the only solution on the Baseline which the Government considers to be an "All-in-One" approach to the Cross-domain Security challenge. Our solution is also the only PL-4 Cloud in existence and that is deployed and operational in the entire world today (at DIA). The Space marketplace is a very unique cross-domain challenge, as a need exists for Unclassified SSA Data Sharing at a deeper and more fundamental level than anywhere else in the IC or DoD. For instance, certain Agencies and/or Programs have a requirement to share information with Partner Nations that are not considered to be "friendly" (e.g. China). Our Solution is the ONLY solution in the world today that's achieved C&A, and that is uniquely positioned to enable the Multi-level Space Operations Center (MLSpOC) of the Future.