WorldWideScience

Sample records for sourced amine-modified sirna

  1. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    Science.gov (United States)

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-28

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod.

  2. Bioreducible poly(amido amine)s for siRNA delivery

    NARCIS (Netherlands)

    van der Aa, L.J.

    2011-01-01

    Successes in RNA interference based therapies are still limited due to the lack of efficient delivery of the mediator, small interfering RNA (siRNA), to the targeted site. The key to success can be the delivery of the siRNA molecules by polymer-based carrier systems, since they can be chemically

  3. Treating respiratory viral diseases with chemically modified, second generation intranasal siRNAs.

    Science.gov (United States)

    Barik, Sailen

    2009-01-01

    Chemically synthesized short interfering RNA (siRNA) of pre-determined sequence has ushered a new era in the application of RNA interference (RNAi) against viral genes. We have paid particular attention to respiratory viruses that wreak heavy morbidity and mortality worldwide. The clinically significant ones include respiratory syncytial virus (RSV), parainfluenza virus (PIV) and influenza virus. As the infection by these viruses is clinically restricted to the respiratory tissues, mainly the lungs, the logical route for the application of the siRNA was also the same, i.e., via the nasal route. Following the initial success of intranasal siRNA against RSV, second-generation siRNAs were made against the viral polymerase large subunit (L) that were chemically modified and screened for improved stability, activity and pharmacokinetics. 2'-O-methyl (2'-O-Me) and 2'-deoxy-2'-fluoro (2'-F) substitutions in the ribose ring were incorporated in different positions of the sense and antisense strands and the resultant siRNAs were tested with various transfection reagents intranasally against RSV. Based on these results, we propose the following consensus for designing intranasal antiviral siRNAs: (i) modified 19-27 nt long double-stranded siRNAs are functional in the lung, (ii) excessive 2'-OMe and 2'-F modifications in either or both strands of these siRNAs reduce efficacy, and (iii) limited modifications in the sense strand are beneficial, although their precise efficacy may be position-dependent.

  4. 2'-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity.

    Science.gov (United States)

    Wu, Sherry Y; Yang, Xianbin; Gharpure, Kshipra M; Hatakeyama, Hiroto; Egli, Martin; McGuire, Michael H; Nagaraja, Archana S; Miyake, Takahito M; Rupaimoole, Rajesha; Pecot, Chad V; Taylor, Morgan; Pradeep, Sunila; Sierant, Malgorzata; Rodriguez-Aguayo, Cristian; Choi, Hyun J; Previs, Rebecca A; Armaiz-Pena, Guillermo N; Huang, Li; Martinez, Carlos; Hassell, Tom; Ivan, Cristina; Sehgal, Vasudha; Singhania, Richa; Han, Hee-Dong; Su, Chang; Kim, Ji Hoon; Dalton, Heather J; Kovvali, Chandra; Keyomarsi, Khandan; McMillan, Nigel A J; Overwijk, Willem W; Liu, Jinsong; Lee, Ju-Seog; Baggerly, Keith A; Lopez-Berestein, Gabriel; Ram, Prahlad T; Nawrot, Barbara; Sood, Anil K

    2014-03-12

    Improving small interfering RNA (siRNA) efficacy in target cell populations remains a challenge to its clinical implementation. Here, we report a chemical modification, consisting of phosphorodithioate (PS2) and 2'-O-Methyl (2'-OMe) MePS2 on one nucleotide that significantly enhances potency and resistance to degradation for various siRNAs. We find enhanced potency stems from an unforeseen increase in siRNA loading to the RNA-induced silencing complex, likely due to the unique interaction mediated by 2'-OMe and PS2. We demonstrate the therapeutic utility of MePS2 siRNAs in chemoresistant ovarian cancer mouse models via targeting GRAM domain containing 1B (GRAMD1B), a protein involved in chemoresistance. GRAMD1B silencing is achieved in tumours following MePS2-modified siRNA treatment, leading to a synergistic anti-tumour effect in combination with paclitaxel. Given the previously limited success in enhancing siRNA potency with chemically modified siRNAs, our findings represent an important advance in siRNA design with the potential for application in numerous cancer types.

  5. Conjugation chemistry through acetals toward a dextran-based delivery system for controlled release of siRNA

    KAUST Repository

    Cui, Lina

    2012-09-26

    New conjugation chemistry for polysaccharides, exemplified by dextran, was developed to enable the attachment of therapeutic or other functional moieties to the polysaccharide through cleavable acetal linkages. The acid-lability of the acetal groups allows the release of therapeutics under acidic conditions, such as that of the endocytic compartments of cells, regenerating the original free polysaccharide in the end. The physical and chemical behavior of these acetal groups can be adjusted by modifying their stereoelectronic and steric properties, thereby providing materials with tunable degradation and release rates. We have applied this conjugation chemistry in the development of water-soluble siRNA carriers, namely acetal-linked amino-dextrans, with various amine structures attached through either slow- or fast-degrading acetal linker. The carriers with the best combination of amine moieties and structural composition of acetals showed high in vitro transfection efficiency and low cytotoxicity in the delivery of siRNA. © 2012 American Chemical Society.

  6. 2’f-OMe-phosphorodithioate modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity

    Science.gov (United States)

    Wu, Sherry Y.; Yang, Xianbin; Gharpure, Kshipra M.; Hatakeyama, Hiroto; Egli, Martin; McGuire, Michael H.; Nagaraja, Archana S.; Miyake, Takahito M.; Rupaimoole, Rajesha; Pecot, Chad V.; Taylor, Morgan; Pradeep, Sunila; Sierant, Malgorzata; Rodriguez-Aguayo, Cristian; Choi, Hyun J.; Previs, Rebecca A.; Armaiz-Pena, Guillermo N.; Huang, Li; Martinez, Carlos; Hassell, Tom; Ivan, Cristina; Sehgal, Vasudha; Singhania, Richa; Han, Hee-Dong; Su, Chang; Kim, Ji Hoon; Dalton, Heather J.; Kowali, Chandra; Keyomarsi, Khandan; McMillan, Nigel A.J.; Overwijk, Willem W.; Liu, Jinsong; Lee, Ju-Seog; Baggerly, Keith A.; Lopez-Berestein, Gabriel; Ram, Prahlad T.; Nawrot, Barbara; Sood, Anil K.

    2014-01-01

    Improving small interfering RNA (siRNA) efficacy in target cell populations remains a challenge to its clinical implementation. Here, we report a chemical modification, consisting of phosphorodithioate (PS2) and 2’-O-Methyl (2’-OMe) MePS2 on one nucleotide that significantly enhances potency and resistance to degradation for various siRNAs. We find enhanced potency stems from an unforeseen increase in siRNA loading to the RNA-induced silencing complex, likely due to the unique interaction mediated by 2’-OMe and PS2. We demonstrate the therapeutic utility of MePS2 siRNAs in chemoresistant ovarian cancer mouse models via targeting GRAM Domain Containing 1B (GRAMD1B), a protein involved in chemoresistance. GRAMD1B silencing is achieved in tumors following MePS2-modified siRNA treatment, leading to a synergistic anti-tumor effect in combination with paclitaxel. Given the previously limited success in enhancing siRNA potency with chemically modified siRNAs, our findings represent an important advance in siRNA design with the potential for application in numerous cancer types. PMID:24619206

  7. Titanium dioxide modified with various amines used as sorbents of carbon dioxide

    International Nuclear Information System (INIS)

    Kapica-Kozar, Joanna; Pirog, Ewa; Kusiak-Nejman, Ewelina; Wrobel, Rafal J.; Gesikiewicz-Puchalska, Andzelika; Morawski, Antoni W.; Narkiewicz, Urszula; Michalkiewicz, Beata

    2017-01-01

    In this study, titanium dioxide was modified with various amines through hydrothermal treatment for adsorption of CO_2. The carbon dioxide adsorption performance of the prepared samples was measured using an STA 449 C thermo-balance (Netzsch Company, Germany). The morphological structures, functional groups and elemental compositions of the unmodified and amine-modified titanium dioxide sorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR/DR) and scanning electron microscopy (SEM), respectively. The results showed that modification of TiO_2 with amines through hydrothermal treatment is a simple method to prepare CO_2 sorbents with high adsorption capacities. Moreover, the results revealed that TEPA-modified titanium dioxide shoved the highest adsorption capacity, enabling an increase in CO_2 uptake from 0.45 mmol CO_2 g"-"1 in the case of raw TiO_2 to 1.63 mmol CO_2 g"-"1. This result could be indirectly related to the fact that TEPA has the highest amino group content among the three amines used in our research. Additionally, durability tests performed by cyclic adsorption-desorption revealed that TEPA modified titanium dioxide also possesses excellent stability, despite a slight decrease in adsorption capacity over time. (authors)

  8. Development of efficient amine-modified mesoporous silica SBA-15 for CO2 capture

    International Nuclear Information System (INIS)

    Zhang, Xiaoyun; Qin, Hongyan; Zheng, Xiuxin; Wu, Wei

    2013-01-01

    Graphical abstract: - Highlights: • A secondary amine AN-TEPA is used to modify the SBA-15. • CO 2 adsorption capacity (180.1 mg g −1 -adsorbent for 70% amine loading) is high. • The sorbent exhibits a high stability after 12 cycling runs. • The modified SBA-15 achieves complete desorption at low temperature (100 °C). - Abstract: A novel CO 2 sorbent was prepared by impregnating mesoporous silica, SBA-15, with acrylonitrile (AN)-modified tetraethylenepentamine (TEPA) in order to increase CO 2 adsorption capacity and improve cycling stability. The mesoporous silica with pre- and post-surface modification was investigated by X-ray diffraction characterization (XRD), N 2 adsorption–desorption test (N 2 -BET), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The adsorption/desorption performance of S-TN (TN: AN modified TEPA) and S-TEPA was studied by dynamic adsorption. Test results showed that the solid base-impregnated SBA-15 demonstrated high CO 2 adsorption capacity (180.1 mg g −1 -adsorbent for 70% amine loading level). Compared to S-TEPA (24.1% decrease of initial capacity), S-TN with 50% amine loading exhibited improved cycling stability, 99.9% activity reserved (from initial 153.0 mg g −1 to 151.3 mg g −1 ) after 12 cycles of adsorption/desorption at 100 °C. A mechanism of molecular structure of the loaded amine was attributed to the improved performance

  9. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    Science.gov (United States)

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy.

  10. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA.

    Science.gov (United States)

    Jensen, Ditte Krohn; Jensen, Linda Boye; Koocheki, Saeid; Bengtson, Lasse; Cun, Dongmei; Nielsen, Hanne Mørck; Foged, Camilla

    2012-01-10

    Matrix systems based on biocompatible and biodegradable polymers like the United States Food and Drug Administration (FDA)-approved polymer poly(DL-lactide-co-glycolide acid) (PLGA) are promising for the delivery of small interfering RNA (siRNA) due to favorable safety profiles, sustained release properties and improved colloidal stability, as compared to polyplexes. The purpose of this study was to design a dry powder formulation based on cationic lipid-modified PLGA nanoparticles intended for treatment of severe lung diseases by pulmonary delivery of siRNA. The cationic lipid dioleoyltrimethylammoniumpropane (DOTAP) was incorporated into the PLGA matrix to potentiate the gene silencing efficiency. The gene knock-down level in vitro was positively correlated to the weight ratio of DOTAP in the particles, and 73% silencing was achieved in the presence of 10% (v/v) serum at 25% (w/w) DOTAP. Optimal properties were found for nanoparticles modified with 15% (w/w) DOTAP, which reduced the gene expression with 54%. This formulation was spray-dried with mannitol into nanocomposite microparticles of an aerodynamic size appropriate for lung deposition. The spray-drying process did not affect the physicochemical properties of the readily re-dispersible nanoparticles, and most importantly, the in vitro gene silencing activity was preserved during spray-drying. The siRNA content in the powder was similar to the theoretical loading and the siRNA was intact, suggesting that the siRNA is preserved during the spray-drying process. Finally, X-ray powder diffraction analysis demonstrated that mannitol remained in a crystalline state upon spray-drying with PLGA nanoparticles suggesting that the sugar excipient might exert its stabilizing effect by sterical inhibition of the interactions between adjacent nanoparticles. This study demonstrates that spray-drying is an excellent technique for engineering dry powder formulations of siRNA nanoparticles, which might enable the local

  11. Effective gene silencing activity of prodrug-type 2'-O-methyldithiomethyl siRNA compared with non-prodrug-type 2'-O-methyl siRNA.

    Science.gov (United States)

    Hayashi, Junsuke; Nishigaki, Misa; Ochi, Yosuke; Wada, Shun-Ichi; Wada, Fumito; Nakagawa, Osamu; Obika, Satoshi; Harada-Shiba, Mariko; Urata, Hidehito

    2018-07-01

    Small interfering RNAs (siRNAs) are an active agent to induce gene silencing and they have been studied for becoming a biological and therapeutic tool. Various 2'-O-modified RNAs have been extensively studied to improve the nuclease resistance. However, the 2'-O-modified siRNA activities were often decreased by modification, since the bulky 2'-O-modifications inhibit to form a RNA-induced silencing complex (RISC). We developed novel prodrug-type 2'-O-methyldithiomethyl (MDTM) siRNA, which is converted into natural siRNA in an intracellular reducing environment. Prodrug-type 2'-O-MDTM siRNAs modified at the 5'-end side including 5'-end nucleotide and the seed region of the antisense strand exhibited much stronger gene silencing effect than non-prodrug-type 2'-O-methyl (2'-O-Me) siRNAs. Furthermore, the resistances for nuclease digestion of siRNAs were actually enhanced by 2'-O-MDTM modifications. Our results indicate that 2'-O-MDTM modifications improve the stability of siRNA in serum and they are able to be introduced at any positions of siRNA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Thermal Stability of siRNA Modulates Aptamer- conjugated siRNA Inhibition

    Directory of Open Access Journals (Sweden)

    Alexey Berezhnoy

    2012-01-01

    Full Text Available Oligonucleotide aptamer-mediated in vivo cell targeting of small interfering RNAs (siRNAs is emerging as a useful approach to enhance the efficacy and reduce the adverse effects resulting from siRNA-mediated genetic interference. A current main impediment in aptamer-mediated siRNA targeting is that the activity of the siRNA is often compromised when conjugated to an aptamer, often requiring labor intensive and time consuming design and testing of multiple configurations to identify a conjugate in which the siRNA activity has not been significantly reduced. Here, we show that the thermal stability of the siRNA is an important parameter of siRNA activity in its conjugated form, and that siRNAs with lower melting temperature (Tm are not or are minimally affected when conjugated to the 3′ end of 2′F-pyrimidine-modified aptamers. In addition, the configuration of the aptamer-siRNA conjugate retains activity comparable with the free siRNA duplex when the passenger strand is co-transcribed with the aptamer and 3′ overhangs on the passenger strand are removed. The approach described in this paper significantly reduces the time and effort necessary to screening siRNA sequences that retain biological activity upon aptamer conjugation, facilitating the process of identifying candidate aptamer-siRNA conjugates suitable for in vivo testing.

  13. Formation of Biogenic Amines in Chicken Meat Stored under Modified Atmosphere

    Directory of Open Access Journals (Sweden)

    Leo Gallas

    2010-01-01

    Full Text Available The aim of the study was to investigate the effects of two modified atmospheres with a different combination of gases on selected groups of microorganisms and on concentrations of biogenic amines (BAs in samples of poultry breast muscle. The samples were packaged under modified atmosphere A (75% O2 a 25% CO2 or B (75% N2 and 25% CO2 and stored at temperatures from +2 to +4 °C for 14 days. During the storage period, O2 concentrations in modified atmosphere A (MA A decreased from the initial 74.8 ± 0.3% to 55.9 ± 6.6% at the end of the storage period. In all samples, counts of psychrotrophic bacteria counts, Brochothrix thermosphacta, lactic acid bacteria and coliform microorganism were determined. The tests were made on the packaging day, and then after three, nine and fourteen days of storage. At the end of the storage period, higher numbers of psychrotrophic bacteria (6.5 ± 0.7 log10 cfu g-1, Brochothrix thermosphacta (4.8 ± 0.3 log10 cfu g-1 and lactic acid bacteria (1.7 ± 0.4 log10 cfu g-1 were found on samples packaged under MA A. Samples packaged under modified atmosphere B on the other hand contained higher numbers of coliform bacteria (4.1 ± 0.6 log10 cfu g-1 at the end of the storage period. In addition to microbiological indicators, concentrations of biogenic amines (putrescine, cadaverine, histamine, tyramine, spermine, spermidine and β-phenylethylamine were also determined. In fresh samples and after three days of storage, only spermine and spermidine were found. After 9 and 14 days, also other BAs were detected. The biogenic amine totals at the end of the storage period was 60.0 ± 13.2 mg kg-1 in samples packaged under MA A and 129.0 ± 41.3 mg kg-1 in samples packaged under MA B. The most abundantly represented biogenic amines in samples packaged under MA A were putrescine and spermine (49.7 and 24.8%, respectively, at the end of the storage period, and putrescine and cadaverine in samples packaged under MA B (47.0 and 32

  14. The highly conserved 5' untranslated region as an effective target towards the inhibition of Enterovirus 71 replication by unmodified and appropriate 2'-modified siRNAs

    Directory of Open Access Journals (Sweden)

    Deng Jun-Xia

    2012-08-01

    Full Text Available Abstract Background Enterovirus 71 (EV71 is a highly infectious agent that plays an etiological role in hand, foot, and mouth disease. It is associated with severe neurological complications and has caused significant mortalities in recent large-scale outbreaks. Currently, no effective vaccine or specific clinical therapy is available against EV71. Methods Unmodified 21 nucleotide small interfering RNAs (siRNAs and classic 2′-modified (2′-O-methylation or 2′-fluoro modification siRNAs were designed to target highly conserved 5′ untranslated region (UTR of the EV71 genome and employed as anti-EV71 agents. Real-time TaqMan RT-PCR, western blot analysis and plaque assays were carried out to evaluate specific viral inhibition by the siRNAs. Results Transfection of rhabdomyosarcoma (RD cells with siRNAs targeting the EV71 genomic 5′ UTR significantly delayed and alleviated the cytopathic effects of EV71 infection, increased cell viability in EV71-infected RD cells. The inhibitory effect on EV71 replication was sequence-specific and dosage-dependent, with significant corresponding decreases in viral RNA, VP1 protein and viral titer. Appropriate 2′-modified siRNAs exhibited similar RNA interference (RNAi activity with dramatically increased serum stability in comparison with unmodified counterparts. Conclusion Sequences were identified within the highly conserved 5′ UTR that can be targeted to effectively inhibit EV71 replication through RNAi strategies. Appropriate 2′-modified siRNAs provide a promising approach to optimizing siRNAs to overcome barriers on RNAi-based antiviral therapies for broader administration.

  15. Nanoindentation study of interphases in epoxy/amine thermosetting systems modified with thermoplastics.

    Science.gov (United States)

    Ramos, Jose Angel; Blanco, Miren; Zalakain, Iñaki; Mondragon, Iñaki

    2009-08-15

    The characterization of a mixture of epoxy/amine with different stoichiometric ratios was carried out by means of nanoindentation. The epoxy system was composed by diglycidyl ether of bisphenol-A and 4,4'-methylene bis-(3-chloro 2,6-diethylaniline). Diffusion through interface formed by epoxy/amine system in stoichiometric ratio and several thermoplastic polymers was also analyzed by means of stiffness analysis, as studied by atomic force microscopy (AFM) and coupled nanoindentation tests. Used thermoplastics were an amorphous, atactic polystyrene, and two semicrystalline, syndiotactic polystyrene and poly(phenylene sulfide). Larger range diffusion was obtained in epoxy/amine systems modified with atactic polystyrene while the study of the influence of stoichiometric ratio suggests that the excess of epoxy generated stiffer material. In addition, larger indentation loads resulted in higher apparent stiffness because of the more number of polymer chains that had to re-accommodate owing to the increase in contact area.

  16. Removal of chromium (VI) ions from aqueous solutions using amine-impregnated TiO2 nanoparticles modified cellulose acetate membranes.

    Science.gov (United States)

    Gebru, Kibrom Alebel; Das, Chandan

    2018-01-01

    In this work, TiO 2 nanoparticles (NPs) were modified using tetraethylenepentamine (TEPA), ethylenediamine (EDA), and hexamethylenetetramine (HMTA) amines using impregnation process. The prepared amine modified TiO 2 samples were explored as an additive to fabricate ultrafiltration membranes with enhanced capacity towards the removal of chromium ions from aqueous solution. Modified membranes were prepared from cellulose acetate (CA) polymer blended with polyethylene glycol (PEG) additive, and amine modified TiO 2 by using phase inversion technique. Fourier transform infrared spectroscopy (FTIR), zeta potential (ζ), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), water contact angle (WCA), and atomic absorption spectrophotometer (AAS) studies were done to characterize the membranes in terms of chemical structure, electric charge, thermal stability, morphology, hydrophilicity, and removal performance. The pure water permeability and Cr (VI) ion removal efficiency of the unmodified (i.e. CA/U-Ti) and the amine modified (CA/Ti-HMTA, CA/Ti-EDA, and CA/Ti-TEPA) membranes were dependent on pH and metal ion concentration. Incorporation of amine modified TiO 2 composite to the CA polymer was found to improve the fouling and removal characteristics of the membranes during the chromium ultrafiltration process. The maximum removal efficiency result of Cr (VI) ions at pH of 3.5 using CA/Ti-TEPA membrane was 99.8%. The washing/regeneration cycle results in this study described as an essential part for prospect industrial applications of the prepared membranes. The maximum Cr (VI) removal results by using CA/Ti-TEPA membrane for four washing/regeneration cycles are 99.6%, 99.5%, 98.6% and, 96.6%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes

    Science.gov (United States)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhang, Li; Zhou, Junhu; Cen, Kefa

    2017-07-01

    Mixed matrix membranes with ionic liquids and molecular sieve particles had high CO2 permeabilities, but CO2 separation from small gas molecules such as H2 was dissatisfied because of bad interfacial interaction between ionic liquid and molecular sieve particles. To solve that, amine groups were introduced to modify surface of molecular sieve particles before loading with ionic liquid. SAPO 34 was adopted as the original filler, and four mixed matrix membranes with different fillers were prepared on the outer surface of ceramic hollow fibers. Both surface voids and hard agglomerations disappeared, and the surface became smooth after SAPO 34 was modified by amine groups and ionic liquid [P66614][2-Op]. Mixed matrix membranes with composites of amine-modified SAPO 34 and ionic liquid exhibited excellent CO2 permeability (408.9 Barrers) and CO2/H2 selectivity (22.1).

  18. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles.

    Science.gov (United States)

    Zhan, Sihui; Yang, Yang; Shen, Zhiqiang; Shan, Junjun; Li, Yi; Yang, Shanshan; Zhu, Dandan

    2014-06-15

    A novel amine-functionalized magnetic Fe3O4-SiO2-NH2 nanoparticle was prepared by layer-by-layer method and used for rapid removal of both pathogenic bacteria and viruses from water. The nanoparticles were characterized by TEM, EDS, XRD, XPS, FT-IR, BET surface analysis, magnetic property tests and zeta-potential measurements, respectively, which demonstrated its well-defined core-shell structures and strong magnetic responsivity. Pathogenic bacteria and viruses are often needed to be removed conveniently because of a lot of co-existing conditions. The amine-modified nanoparticles we prepared were attractive for capturing a wide range of pathogens including not only bacteriophage f2 and virus (Poliovirus-1), but also various bacteria such as S. aureus, E. coli O157:H7, P. aeruginosa, Salmonella, and B. subtilis. Using as-prepared amine-functionalized MNPs as absorbent, the nonspecific removal efficiency of E. coli O157:H7 or virus was more than 97.39%, while it is only 29.8% with Fe3O4-SiO2 particles. From joint removal test of bacteria and virus, there are over 95.03% harmful E. coli O157:H7 that can be removed from mixed solution with polyclonal anti-E. coli O157:H7 antibody modified nanoparticles. Moreover, the synergy effective mechanism has also been suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effect of immobilized amine density on cadmium(II) adsorption capacities for ethanediamine-modified magnetic poly-(glycidyl methacrylate) microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Tingting [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Liangrong, E-mail: lryang@ipe.ac.cn [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Pan, Feng; Xing, Huifang; Wang, Li; Yu, Jiemiao [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Qu, Hongnan [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Rong, Meng [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Huizhou, E-mail: hzliu@ipe.ac.cn [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-01

    A series of ethanediamine (EDA) – modified magnetic poly-(glycidyl methacrylate) (m-PGMA-EDA)microspheres with different amine density were synthesized and their cadmium saturation adsorption capacities were examined. The results showed that the cadmium saturation adsorption capacity increased with the immobilized amine density. However, they did not show strong positive linear correlation in the whole range of amine density examined. The molar ratio of amine groups to the adsorbed cadmium decreased with the increase of amine density and eventually reached a minimum value about 4. It suggested that low immobilized amine density led to low coordination efficiency of the amine. It is hypothesized that the immobilized amine groups needed to be physically close enough to form stable amine-metal complex. When the amine density reached to a critical value 1.25 m mol m{sup −2}, stable amine-cadmium complex (4:1 N/Cd) was proposed to form. To illustrate the coordination mechanism (structure and number) of amine and Cd, FT-IR spectra of m-PGMA-EDA and m-PGMA-EDA-Cd , and X-ray photoelectron spectroscopy (XPS) of PGMA–EDA and PGMA-EDA-Cd were examined and analyzed. - Highlights: • A series of magnetic poly-(glycidyl methacrylate) (m-PGMA-EDA)microspheres with different amine density were synthesized and their cadmium saturation adsorption capacities were examined. • The molar ratio of amine groups to adsorbed cadmium decreased with the increase of amine density and eventually reached a minimum value about 4. • when the amine density reached high enough, 4:1 N/Cd complex was proposed to form, and the hydroxyl also participated in the chelating with Cd.

  20. Transdermal Delivery of siRNA through Microneedle Array

    Science.gov (United States)

    Deng, Yan; Chen, Jiao; Zhao, Yi; Yan, Xiaohui; Zhang, Li; Choy, Kwongwai; Hu, Jun; Sant, Himanshu J.; Gale, Bruce K.; Tang, Tao

    2016-02-01

    Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.

  1. A novel tyrosine-modified low molecular weight polyethylenimine (P10Y) for efficient siRNA delivery in vitro and in vivo.

    Science.gov (United States)

    Ewe, Alexander; Przybylski, Susanne; Burkhardt, Jana; Janke, Andreas; Appelhans, Dietmar; Aigner, Achim

    2016-05-28

    The delivery of nucleic acids, particularly of small RNA molecules like siRNAs for the induction of RNA interference (RNAi), still represents a major hurdle with regard to their application in vivo. Possible therapeutic applications thus rely on the development of efficient non-viral gene delivery vectors. While low molecular weight polyethylenimines (PEIs) have been successfully explored, the introduction of chemical modifications offers an avenue towards the development of more efficient vectors. In this paper, we describe the synthesis of a novel tyrosine-modified low-molecular weight polyethylenimine (P10Y) for efficient siRNA complexation and delivery. The comparison with the respective parent PEI reveals that knockdown efficacies are considerably enhanced by the tyrosine modification, as determined in different reporter cell lines, without appreciable cytotoxicity. We furthermore identify optimal conditions for complex preparation as well as for storing or lyophilization of the complexes without loss of biological activity. Beyond reporter cell lines, P10Y/siRNA complexes mediate the efficient knockdown of endogenous target genes and, upon knockdown of the anti-apoptotic oncogene survivin, tumor cell inhibitory effects in different carcinoma cell lines. Pushing the system further towards its therapeutic in vivo application, we demonstrate in mice the delivery of intact siRNAs and distinct biodistribution profiles upon systemic (intravenous or intraperitoneal) injection. No adverse effects (hepatotoxicity, immunostimulation/alterations in immunophenotype, weight loss) are observed. More importantly, profound tumor-inhibitory effects in a melanoma xenograft mouse model are observed upon systemic application of P10Y/siRNA complexes for survivin knockdown, indicating the therapeutic efficacy of P10Y/siRNA complexes. Taken together, we (i) establish tyrosine-modified PEI (P10Y) as efficient platform for siRNA delivery in vitro and in vivo, (ii) identify optimal

  2. Improved nucleic acid descriptors for siRNA efficacy prediction.

    Science.gov (United States)

    Sciabola, Simone; Cao, Qing; Orozco, Modesto; Faustino, Ignacio; Stanton, Robert V

    2013-02-01

    Although considerable progress has been made recently in understanding how gene silencing is mediated by the RNAi pathway, the rational design of effective sequences is still a challenging task. In this article, we demonstrate that including three-dimensional descriptors improved the discrimination between active and inactive small interfering RNAs (siRNAs) in a statistical model. Five descriptor types were used: (i) nucleotide position along the siRNA sequence, (ii) nucleotide composition in terms of presence/absence of specific combinations of di- and trinucleotides, (iii) nucleotide interactions by means of a modified auto- and cross-covariance function, (iv) nucleotide thermodynamic stability derived by the nearest neighbor model representation and (v) nucleic acid structure flexibility. The duplex flexibility descriptors are derived from extended molecular dynamics simulations, which are able to describe the sequence-dependent elastic properties of RNA duplexes, even for non-standard oligonucleotides. The matrix of descriptors was analysed using three statistical packages in R (partial least squares, random forest, and support vector machine), and the most predictive model was implemented in a modeling tool we have made publicly available through SourceForge. Our implementation of new RNA descriptors coupled with appropriate statistical algorithms resulted in improved model performance for the selection of siRNA candidates when compared with publicly available siRNA prediction tools and previously published test sets. Additional validation studies based on in-house RNA interference projects confirmed the robustness of the scoring procedure in prospective studies.

  3. Identification of Novel Fibrosis Modifiers by In Vivo siRNA Silencing

    Directory of Open Access Journals (Sweden)

    Elisabeth H. Vollmann

    2017-06-01

    Full Text Available Fibrotic diseases contribute to 45% of deaths in the industrialized world, and therefore a better understanding of the pathophysiological mechanisms underlying tissue fibrosis is sorely needed. We aimed to identify novel modifiers of tissue fibrosis expressed by myofibroblasts and their progenitors in their disease microenvironment through RNA silencing in vivo. We leveraged novel biology, targeting genes upregulated during liver and kidney fibrosis in this cell lineage, and employed small interfering RNA (siRNA-formulated lipid nanoparticles technology to silence these genes in carbon-tetrachloride-induced liver fibrosis in mice. We identified five genes, Egr2, Atp1a2, Fkbp10, Fstl1, and Has2, which modified fibrogenesis based on their silencing, resulting in reduced Col1a1 mRNA levels and collagen accumulation in the liver. These genes fell into different groups based on the effects of their silencing on a transcriptional mini-array and histological outcomes. Silencing of Egr2 had the broadest effects in vivo and also reduced fibrogenic gene expression in a human fibroblast cell line. Prior to our study, Egr2, Atp1a2, and Fkbp10 had not been functionally validated in fibrosis in vivo. Thus, our results provide a major advance over the existing knowledge of fibrogenic pathways. Our study is the first example of a targeted siRNA assay to identify novel fibrosis modifiers in vivo.

  4. Factors affecting the photovoltaic behavior of inverted polymer solar cells using various indium tin oxide electrodes modified by amines with simple chemical structures

    Energy Technology Data Exchange (ETDEWEB)

    Kusumi, Takuji [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Kuwabara, Takayuki, E-mail: tkuwabar@se.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Yamaguchi, Takahiro [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Taima, Tetsuya [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Takahashi, Kohshin, E-mail: ktakaha@se.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan)

    2015-09-30

    In a glass–indium tin oxide (ITO)/amine/regioregular poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C{sub 61} butyric acid methyl ester (PCBM)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid) (PEDOT:PSS)/Au cell, which uses small molecule amine-modified ITO as the electron collection electrode, a light-soaking effect under irradiation of simulated sunlight was restrained considerably compared with in an ITO/P3HT:PCBM/PEDOT:PSS/Au cell containing bare ITO. That is, the time taken to arrive at a saturated V{sub oc} from the initial V{sub oc} became short when the ionization potential (I{sub P}) of ITO reduced by the amine modification, and consequently both of its saturated V{sub oc} and power conversion efficiency (PCE) improved. The I{sub P} decreased with an increase in the number (N) of amino groups in a single amine molecule, because the basic amino groups can efficiently neutralize any acidic hydroxyl groups on ITO through a multipoint interaction. The superior performance of the cell containing the amine-modified electrode with large N was perhaps because the energy mismatch formed by a contact between ITO and acceptor PCBM reduced, and consequently the rate of electron collection at ITO increased. - Highlights: • Surface-modification of ITO electrode with low molecular weight amines • Ionization potential of ITO was decreased by forming an electrical double layer. • Light-soaking effect has been observed by irradiating white light. • The light-soaking effect mainly improved the open-circuit photovoltage. • Open-circuit photovoltage was limited by ionization potential of amine-modified ITO.

  5. Factors affecting the photovoltaic behavior of inverted polymer solar cells using various indium tin oxide electrodes modified by amines with simple chemical structures

    International Nuclear Information System (INIS)

    Kusumi, Takuji; Kuwabara, Takayuki; Yamaguchi, Takahiro; Taima, Tetsuya; Takahashi, Kohshin

    2015-01-01

    In a glass–indium tin oxide (ITO)/amine/regioregular poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C_6_1 butyric acid methyl ester (PCBM)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid) (PEDOT:PSS)/Au cell, which uses small molecule amine-modified ITO as the electron collection electrode, a light-soaking effect under irradiation of simulated sunlight was restrained considerably compared with in an ITO/P3HT:PCBM/PEDOT:PSS/Au cell containing bare ITO. That is, the time taken to arrive at a saturated V_o_c from the initial V_o_c became short when the ionization potential (I_P) of ITO reduced by the amine modification, and consequently both of its saturated V_o_c and power conversion efficiency (PCE) improved. The I_P decreased with an increase in the number (N) of amino groups in a single amine molecule, because the basic amino groups can efficiently neutralize any acidic hydroxyl groups on ITO through a multipoint interaction. The superior performance of the cell containing the amine-modified electrode with large N was perhaps because the energy mismatch formed by a contact between ITO and acceptor PCBM reduced, and consequently the rate of electron collection at ITO increased. - Highlights: • Surface-modification of ITO electrode with low molecular weight amines • Ionization potential of ITO was decreased by forming an electrical double layer. • Light-soaking effect has been observed by irradiating white light. • The light-soaking effect mainly improved the open-circuit photovoltage. • Open-circuit photovoltage was limited by ionization potential of amine-modified ITO.

  6. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    V. Zelenak; M. Badanicova; D. Halamova; J. Cejka; A. Zukal; N. Murafa; G. Goerigk [P.J. Safarik University, Kosice (Slovak Republic)

    2008-10-15

    Three mesoporous silica materials with different pore sizes and pore connectivity were prepared and functionalized with aminopropyl (AP) ligands by post-synthesis treatment. The materials were characterized by small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and nitrogen adsorption/desorption experiments. The carbon dioxide sorption on modified mesoporous molecular sieves was investigated by using of microbalances at 25{sup o}C, and the influence of pore size and pore architecture on CO{sub 2} sorption was discussed. The large pore silica, SBA-15, showed the largest carbon dioxide sorption capacity (1.5 mmol/g), relating to highest amine surface density in this material. On the other hand, three-dimensional accessibility of amine sites inside the pores of SBA-12 silica resulted in a faster response to CO{sub 2} uptake in comparison with MCM-41 and SBA-15 molecular sieves

  7. The modification of siRNA with 3' cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes.

    Science.gov (United States)

    Ambardekar, Vishakha V; Han, Huai-Yun; Varney, Michelle L; Vinogradov, Serguei V; Singh, Rakesh K; Vetro, Joseph A

    2011-02-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. The Modification of siRNA with 3′ Cholesterol to Increase Nuclease Protection and Suppression of Native mRNA by Select siRNA Polyplexes

    Science.gov (United States)

    Ambardekar, Vishakha V.; Han, Huai-Yun; Varney, Michelle L.; Vinogradov, Serguei V.; Singh, Rakesh K.; Vetro, Joseph A.

    2010-01-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3′ cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. PMID:21047680

  9. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes.

    Science.gov (United States)

    Gu, Jijin; Al-Bayati, Karam; Ho, Emmanuel A

    2017-08-01

    RNA interference (RNAi)-mediated gene silencing offers a novel treatment and prevention strategy for human immunodeficiency virus (HIV) infection. HIV was found to infect and replicate in human brain cells and can cause neuroinfections and neurological deterioration. We designed dual-antibody-modified chitosan/small interfering RNA (siRNA) nanoparticles to deliver siRNA across the blood-brain barrier (BBB) targeting HIV-infected brain astrocytes as a strategy for inhibiting HIV replication. We hypothesized that transferrin antibody and bradykinin B2 antibody could specifically bind to the transferrin receptor (TfR) and bradykinin B2 receptor (B2R), respectively, and deliver siRNA across the BBB into astrocytes as potential targeting ligands. In this study, chitosan nanoparticles (CS-NPs) were prepared by a complex coacervation method in the presence of siRNA, and antibody was chemically conjugated to the nanoparticles. The antibody-modified chitosan nanoparticles (Ab-CS-NPs) were spherical in shape, with an average particle size of 235.7 ± 10.2 nm and a zeta potential of 22.88 ± 1.78 mV. The therapeutic potential of the nanoparticles was evaluated based on their cellular uptake and gene silencing efficiency. Cellular accumulation and gene silencing efficiency of Ab-CS-NPs in astrocytes were significantly improved compared to non-modified CS-NPs and single-antibody-modified CS-NPs. These results suggest that the combination of anti-Tf antibody and anti-B2 antibody significantly increased the knockdown effect of siRNA-loaded nanoparticles. Thus, antibody-mediated dual-targeting nanoparticles are an efficient and promising delivery strategy for inhibiting HIV replication in astrocytes. Graphical abstract Graphic representation of dual-antibody-conjugated chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier (BBB) for inhibiting HIV replication in astrocytes. a Nanoparticle delivery to the BBB and penetration. b Tf

  10. Intracellular Delivery of siRNA by Polycationic Superparamagnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Betzaida Castillo

    2012-01-01

    Full Text Available The siRNA transfection efficiency of nanoparticles (NPs, composed of a superparamagnetic iron oxide core modified with polycationic polymers (poly(hexamethylene biguanide or branched polyethyleneimine, were studied in CHO-K1 and HeLa cell lines. Both NPs demonstrated to be good siRNA transfection vehicles, but unmodified branched polyethyleneimine (25 kD was superior on both cell lines. However, application of an external magnetic field during transfection (magnetofection increased the efficiency of the superparamagnetic NPs. Furthermore, our results reveal that these NPs are less toxic towards CHO-K1 cell lines than the unmodified polycationic-branched polyethyleneimine (PEI. In general, the external magnetic field did not alter the cell’s viability nor it disrupted the cell membranes, except for the poly(hexamethylene biguanide-modified NP, where it was observed that in CHO-K1 cells application of the external magnetic field promoted membrane damage. This paper presents new polycationic superparamagnetic NPs as promising transfection vehicles for siRNA and demonstrates the advantages of magnetofection.

  11. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA

    Directory of Open Access Journals (Sweden)

    Malhotra M

    2013-05-01

    Full Text Available Meenakshi Malhotra,1 Catherine Tomaro-Duchesneau,1 Shyamali Saha,2 Imen Kahouli,3 Satya Prakash11Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, 2Faculty of Dentistry, 3Department of Experimental Medicine, McGill University, Montreal, QC, CanadaAbstract: Recently, cell-penetrating peptides have been proposed to translocate antibodies, proteins, and other molecules in targeted drug delivery. The proposed study presents the synthesis and characterization of a peptide-based chitosan nanoparticle for small interfering RNA (siRNA delivery, in-vitro. Specifically, the synthesis included polyethylene glycol (PEG, a hydrophilic polymer, and trans-activated transcription (TAT peptide, which were chemically conjugated on the chitosan polymer. The conjugation was achieved using N-Hydroxysuccinimide-PEG-maleimide (heterobifunctional PEG as a cross-linker, with the bifunctional PEG facilitating the amidation reaction through its N-Hydroxysuccinimide group and reacting with the amines on chitosan. At the other end of PEG, the maleimide group was chemically conjugated with the cysteine-modified TAT peptide. The degree of substitution on chitosan with PEG and on PEG with TAT was confirmed using colorimetric assays. The resultant polymer was used to form nanoparticles complexing siRNA, which were then characterized for particle size, morphology, cellular uptake, and cytotoxicity. The nanoparticles were tested in-vitro on mouse neuroblastoma cells (Neuro2a. Particle size and surface charge were characterized and an optimal pH condition and PEG molecular weight were determined to form sterically stable nanoparticles. Results indicate 7.5% of the amines in chitosan polymer were conjugated to the PEG and complete conjugation of TAT peptide was observed on the synthesized PEGylated chitosan polymer. Compared with unmodified chitosan nanoparticles, the nanoparticles formed at pH 6 were

  12. Hydrophobically Modified siRNAs Silence Huntingtin mRNA in Primary Neurons and Mouse Brain

    Directory of Open Access Journals (Sweden)

    Julia F Alterman

    2015-01-01

    Full Text Available Applications of RNA interference for neuroscience research have been limited by a lack of simple and efficient methods to deliver oligonucleotides to primary neurons in culture and to the brain. Here, we show that primary neurons rapidly internalize hydrophobically modified siRNAs (hsiRNAs added directly to the culture medium without lipid formulation. We identify functional hsiRNAs targeting the mRNA of huntingtin, the mutation of which is responsible for Huntington's disease, and show that direct uptake in neurons induces potent and specific silencing in vitro. Moreover, a single injection of unformulated hsiRNA into mouse brain silences Htt mRNA with minimal neuronal toxicity. Thus, hsiRNAs embody a class of therapeutic oligonucleotides that enable simple and straightforward functional studies of genes involved in neuronal biology and neurodegenerative disorders in a native biological context.

  13. Rapid determination of 9 aromatic amines in mainstream cigarette smoke by modified dispersive liquid liquid microextraction and ultraperformance convergence chromatography tandem mass spectrometry.

    Science.gov (United States)

    Deng, Huimin; Yang, Fei; Li, Zhonghao; Bian, Zhaoyang; Fan, Ziyan; Wang, Ying; Liu, Shanshan; Tang, Gangling

    2017-07-21

    Aromatic amines in mainstream cigarette smoke have long been monitored due to their carcinogenic toxicity. In this work, a reliable and rapid method was developed for the simultaneous determination of 9 aromatic amines in mainstream cigarette smoke by modified dispersive liquid liquid microextraction (DLLME) and ultraperformance convergence chromatography tandem mass spectrometry (UPC 2 -MS/MS). Briefly, the particulate phase of the cigarette smoke was captured by a Cambridge filter pad, and diluted hydrogen chloride aqueous solution is employed to extract the aromatic amines under mechanical shaking. After alkalization with sodium hydroxide solution, small amount of toluene was introduced to further extract and enrich aromatic amines by modified DLLME under vortexing. After centrifugation, toluene phase was purified by a universal QuEChERS cleanup kit and was finally analyzed by UPC 2 -MS/MS. Attributing to the superior performance of UPC 2 -MS/MS, this novel approach allowed the separation and determination of 9 aromatic amines within 5.0min with satisfactory resolution and sensitivity. The proposed method was finally validated using Kentucky reference cigarette 3R4F, and emission levels of targeted aromatic amines determined were comparable to previously reported methods At three different spiked levels, the recoveries of most analytes were ranged from 74.01% to 120.50% with relative standard deviation (RSD) less than 12%, except that the recovery of p-toluidine at low spiked level and 3-aminobiphenyl at medium spiked level was 62.77% and 69.37% respectively. Thus, this work provides a novel alternative method for the simultaneous analysis of 9 aromatic amines in mainstream cigarette smoke. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. SiRNAs conjugated with aromatic compounds induce RISC-mediated antisense strand selection and strong gene-silencing activity

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Takanori, E-mail: kubo-t@yasuda-u.ac.jp [Faculty of Pharmacy, Yasuda Women' s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153 (Japan); Yanagihara, Kazuyoshi [Faculty of Pharmacy, Yasuda Women' s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153 (Japan); Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Takei, Yoshifumi [Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumi-cho, Showa-ku, Nagoya 466-8550 (Japan); Mihara, Keichiro [Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Sato, Yuichiro; Seyama, Toshio [Faculty of Pharmacy, Yasuda Women' s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153 (Japan)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer SiRNAs conjugated with aromatic compounds (Ar-siRNAs) at 5 Prime -sense strand were synthesized. Black-Right-Pointing-Pointer Ar-siRNAs increased resistance against nuclease degradation. Black-Right-Pointing-Pointer Ar-siRNAs were thermodynamically stable compared with the unmodified siRNA. Black-Right-Pointing-Pointer High levels of cellular uptake and cytoplasmic localization were found. Black-Right-Pointing-Pointer Strong gene-silencing efficacy was exhibited in the Ar-siRNAs. -- Abstract: Short interference RNA (siRNA) is a powerful tool for suppressing gene expression in mammalian cells. In this study, we focused on the development of siRNAs conjugated with aromatic compounds in order to improve the potency of RNAi and thus to overcome several problems with siRNAs, such as cellular delivery and nuclease stability. The siRNAs conjugated with phenyl, hydroxyphenyl, naphthyl, and pyrenyl derivatives showed strong resistance to nuclease degradation, and were thermodynamically stable compared with unmodified siRNA. A high level of membrane permeability in HeLa cells was also observed. Moreover, these siRNAs exhibited enhanced RNAi efficacy, which exceeded that of locked nucleic acid (LNA)-modified siRNAs, against exogenous Renilla luciferase in HeLa cells. In particular, abundant cytoplasmic localization and strong gene-silencing efficacy were found in the siRNAs conjugated with phenyl and hydroxyphenyl derivatives. The novel siRNAs conjugated with aromatic compounds are promising candidates for a new generation of modified siRNAs that can solve many of the problems associated with RNAi technology.

  15. An albumin-mediated cholesterol design-based strategy for tuning siRNA pharmacokinetics and gene silencing.

    Science.gov (United States)

    Bienk, Konrad; Hvam, Michael Lykke; Pakula, Malgorzata Maria; Dagnæs-Hansen, Frederik; Wengel, Jesper; Malle, Birgitte Mølholm; Kragh-Hansen, Ulrich; Cameron, Jason; Bukrinski, Jens Thostrup; Howard, Kenneth A

    2016-06-28

    Major challenges for the clinical translation of small interfering RNA (siRNA) include overcoming the poor plasma half-life, site-specific delivery and modulation of gene silencing. In this work, we exploit the intrinsic transport properties of human serum albumin to tune the blood circulatory half-life, hepatic accumulation and gene silencing; based on the number of siRNA cholesteryl modifications. We demonstrate by a gel shift assay a strong and specific affinity of recombinant human serum albumin (rHSA) towards cholesteryl-modified siRNA (Kd>1×10(-7)M) dependent on number of modifications. The rHSA/siRNA complex exhibited reduced nuclease degradation and reduced induction of TNF-α production by human peripheral blood mononuclear cells. The increased solubility of heavily cholesteryl modified siRNA in the presence of rHSA facilitated duplex annealing and consequent interaction that allowed in vivo studies using multiple cholesteryl modifications. A structural-activity-based screen of in vitro EGFP-silencing was used to select optimal siRNA designs containing cholesteryl modifications within the sense strand that were used for in vivo studies. We demonstrate plasma half-life extension in NMRI mice from t1/2 12min (naked) to t1/2 45min (single cholesteryl) and t1/2 71min (double cholesteryl) using fluorescent live bioimaging. The biodistribution showed increased accumulation in the liver for the double cholesteryl modified siRNA that correlated with an increase in hepatic Factor VII gene silencing of 28% (rHSA/siRNA) compared to 4% (naked siRNA) 6days post-injection. This work presents a novel albumin-mediated cholesteryl design-based strategy for tuning pharmacokinetics and systemic gene silencing. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Design of amine modified polymer dispersants for liquid-phase exfoliation of transition metal dichalcogenide nanosheets and their photodetective nanocomposites

    Science.gov (United States)

    Lee, Jinseong; Hahnkee Kim, Richard; Yu, Seunggun; Babu Velusamy, Dhinesh; Lee, Hyeokjung; Park, Chanho; Cho, Suk Man; Jeong, Beomjin; Sol Kang, Han; Park, Cheolmin

    2017-12-01

    Liquid-phase exfoliation (LPE) of transition metal dichalcogenide (TMD) nanosheets is a facile, cost-effective approach to large-area photoelectric devices including photodetectors and non-volatile memories. Non-destructive exfoliation of nanosheets using macromolecular dispersing agents is beneficial in rendering the TMD nanocomposite films suitable for mechanically flexible devices. Here, an efficient LPE of molybdenum disulfide (MoS2) with an amine modified poly(styrene-co-maleic anhydride) co-polymer (AM-PSMA) is demonstrated, wherein the maleic anhydrides were converted into maleic imides with primary amines using N-Boc-(CH2) n -NH2. The exfoliation of nanosheets was facilitated through Lewis acid-base interaction between the primary amine and transition metal. The results demonstrate that the exfoliation depends upon both the fraction of primary amines in the polymer chain and their distance from the polymer backbone. Under optimized conditions of primary amine content and its distance from the backbone, AM-PSMA gave rise to a highly concentrated MoS2 nanosheet suspension that was stable for over 10 d. Exfoliation of several other TMDs was also achieved using the optimized AM-PSMA, indicating the scope of AM-PSMA applications. Furthermore, a flexible composite film of AM-PSMA and MoS2 nanosheets fabricated by vacuum-assisted filtration showed excellent photoconductive performances including a high I on/I off ratio of 102 and a fast photocurrent switching of 300 ms.

  17. SiRNAs in vivo imaging: methodology of fluorine-18 radiolabelling and application for the optimization of the siRNAs biodistribution and pharmaceutical properties

    International Nuclear Information System (INIS)

    Viel, Th.

    2008-01-01

    As RNA interference is a natural process which enables eukaryote cells to regulate the gene expressions, to control transposons, and to struggle against some viruses, two imagery techniques have been used in this research, i.e. optical imagery and Positron Emission Tomography (PET) imagery, to study the various modifications of the small interferential RNAs (siRNA). Different chemically modified siRNAs have been prepared and their in vitro activity, their in vivo metabolism (by HPLC analysis), their bio-distribution and their pharmacokinetic properties (by PET imagery) after marking them with fluorine-18. Their in vivo activity has been assessed by optical imagery

  18. Function and anatomy of plant siRNA pools derived from hairpin transgenes

    Directory of Open Access Journals (Sweden)

    Lee Kevin AW

    2007-11-01

    Full Text Available Abstract Background RNA interference results in specific gene silencing by small-interfering RNAs (siRNAs. Synthetic siRNAs provide a powerful tool for manipulating gene expression but high cost suggests that novel siRNA production methods are desirable. Strong evolutionary conservation of siRNA structure suggested that siRNAs will retain cross-species function and that transgenic plants expressing heterologous siRNAs might serve as useful siRNA bioreactors. Here we report a detailed evaluation of the above proposition and present evidence regarding structural features of siRNAs extracted from plants. Results Testing the gene silencing capacity of plant-derived siRNAs in mammalian cells proved to be very challenging and required partial siRNA purification and design of a highly sensitive assay. Using the above assay we found that plant-derived siRNAs are ineffective for gene silencing in mammalian cells. Plant-derived siRNAs are almost exclusively double-stranded and most likely comprise a mixture of bona fide siRNAs and aberrant partially complementary duplexes. We also provide indirect evidence that plant-derived siRNAs may contain a hitherto undetected physiological modification, distinct from 3' terminal 2-O-methylation. Conclusion siRNAs produced from plant hairpin transgenes and extracted from plants are ineffective for gene silencing in mammalian cells. Thus our findings establish that a previous claim that transgenic plants offer a cost-effective, scalable and sustainable source of siRNAs is unwarranted. Our results also indicate that the presence of aberrant siRNA duplexes and possibly a plant-specific siRNA modification, compromises the gene silencing capacity of plant-derived siRNAs in mammalian cells.

  19. Site-Specific Modification Using the 2′-Methoxyethyl Group Improves the Specificity and Activity of siRNAs

    Directory of Open Access Journals (Sweden)

    Xinyun Song

    2017-12-01

    Full Text Available Rapid progress has been made toward small interfering RNA (siRNA-based therapy for human disorders, but rationally optimizing siRNAs for high specificity and potent silencing remains a challenge. In this study, we explored the effect of chemical modification at the cleavage site of siRNAs. We found that modifications at positions 9 and 10 markedly reduced the silencing potency of the unmodified strand of siRNAs but were well tolerated by the modified strand. Intriguingly, addition of the 2′-methoxyethyl (MOE group at the cleavage site improved both the specificity and silencing activity of siRNAs by facilitating the oriented RNA-induced silencing complex (RISC loading of the modified strand. Furthermore, we combined MOE modifications at positions 9 and 10 of one strand together with 2′-O-methylation (OMe at position 14 of the other strand and found a synergistic effect that improved the specificity of siRNAs. The surprisingly beneficial effect of the combined modification was validated using siRNA-targeting endogenous gene intercellular adhesion molecule 1 (ICAM1. We found that the combined modifications eliminated its off-target effects. In conclusion, we established effective strategies to optimize siRNAs using site-specific MOE modifications. The findings may allow the creation of superior siRNAs for therapy in terms of activity and specificity.

  20. Structure, thermal and fracture mechanical properties of benzoxazine-modified amine-cured DGEBA epoxy resins

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available First, traditional diamine hardeners of epoxy resins (EP were checked as potential accelerators for the benzoxazine (BOX homopolymerization. It was established that the acceleration effect depends on both the type and amount of the diamine compounds. In the follow-up work amine-curable diglycidyl ether bisphenol A (DGEBA type EP was modified with BOX keeping the EP/BOX ratio constant (75/25 wt.%. The amine hardeners, added in the EP in stoichiometric amounts, were of aliphatic and aromatic nature, viz. diethylenetriamine (DETA, 4,4'-diaminodiphenyl methane (DDM, and their 1/1 mixture. The thermal, viscoelastic, flexural and fracture mechanical properties of the EP/BOX hybrids were determined and compared to those of the reference EPs. Based on dynamic-mechanical thermal analysis and atomic force microscopy the formation of co-network between EP and BOX was concluded. Homopolymerized BOX was built in the network in nanoscaled inclusions and it was associated with internal antiplasticization. Incorporation of BOX improved the charring, enhanced the flexural modulus and strength, and reduced the glass transition of the parent EP. The fracture toughness and energy were not improved by hybridization with BOX.

  1. Amine Measurements in Boreal Forest Air

    Science.gov (United States)

    Hemmilä, Marja; Hellén, Heidi; Makkonen, Ulla; Hakola, Hannele

    2015-04-01

    Amines are reactive, volatile bases in the air with a general formula of RNH2, R2NH or R3N. Especially small amines can stabilize sulphuric acid clusters and hence affect nucleation. Amines react rapidly with hydroxyl radical (OH˙) thus affecting oxidative capacity of the atmosphere. The amine concentrations are higher in forest air than in urban air (Hellén et al., 2014), but the sources are not known. In order to get more information concerning amine sources, we conducted a measurement campaign in a boreal forest. At SMEAR II station at Hyytiälä, Southern Finland (61°510'N, 24°170'E, 180 m a.s.l.) The measurements cover seven months, from June to December 2014. For sampling and measuring we used MARGA (The instrument for Measuring AeRosols and Gases in Ambient air) which is an on-line ion chromatograph (IC) connected to a sampling system. The IC component of the MARGA system was coupled to an electrospray ionization quadrupole mass spectrometer (MS) to improve sensitivity of amine measurements. This new set-up enabled amine concentration measurements in ambient air both in aerosol and gas phases with a time resolution of only 1 hour. With MARGA-MS we analysed 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). In preliminary data-analysis we found out, that in June and July most of the measured amines were in gas phase, and particle phase amine concentrations were mostly under detection limits (<1.7 pptv). In June the gaseous amine concentrations were higher than in July. The measured concentrations of gaseous amines followed temperature variation, which could indicate that amines are produced and emitted from the environment or re-emitted from the surfaces as temperature rises after deposition during night-time. All measured amines had similar diurnal variation with maxima during afternoon and minima during night. Results from other months will also

  2. Exosomes as nanocarriers for siRNA delivery: paradigms and challenges.

    Science.gov (United States)

    Shahabipour, Fahimeh; Banach, Maciej; Sahebkar, Amirhossein

    2016-12-01

    Exosomes are nano-sized vesicles that facilitate intercellular communications through carrying genetic materials and functional biomolecules. Owing to their unique size and structure, exosomes have emerged as a useful tool to overcome the limitations of siRNA delivery. The use of exosomes as siRNA delivery vehicles lacks certain disadvantages of the existing foreign delivery systems such as viruses, polycationic polymers and liposomes, and introduces several advantages including inherent capacity to pass through biological barriers and escape from phagocytosis by the reticuloendothelial system, as well as being biocompatible, non-toxic, and immunologically inert. Different strategies have been employed to harness exosome-based delivery systems, including surface modification with targeting ligands, and using exosome-display technology, virus-modified exosomes, and exosome-mimetic vesicles. The present review provides a capsule summary of the recent advances and current challenges in the field of exosome-mediated siRNA delivery.

  3. An albumin-mediated cholesterol design-based strategy for tuning siRNA pharmacokinetics and gene silencing

    DEFF Research Database (Denmark)

    Bienk, Konrad; Hvam, Michael Lykke; Pakula, Malgorzata Maria

    2016-01-01

    /2 12 min (naked) to t1/2 45 min (single cholesteryl) and t1/2 71 min (double cholesteryl) using fluorescent live bioimaging. The biodistribution showed increased accumulation in the liver for the double cholesteryl modified siRNA that correlated with an increase in hepatic Factor VII gene silencing......HSA/siRNA complex exhibited reduced nuclease degradation and reduced induction of TNF-α production by human peripheral blood mononuclear cells. The increased solubility of heavily cholesteryl modified siRNA in the presence of rHSA facilitated duplex annealing and consequent interaction that allowed in vivo studies...

  4. Bifunctional (cyclopentadienone)iron-tricarbonyl complexes: Synthesis, computational studies and application in reductive amination

    KAUST Repository

    Moulin, Solenne; Dentel, Hé lè ne; Pagnoux-Ozherelyeva, Anastassiya; Gaillard, Sylvain; Poater, Albert; Cavallo, Luigi; Lohier, Jean Franç ois; Renaud, Jean Luc

    2013-01-01

    . Festival of amination: Two series of modified Knölker's complexes were synthesised and applied in the reductive amination of various carbonyl derivatives with primary or secondary amines (see scheme, TIPS = triisopropylsilyl). For a mechanistic insight

  5. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  6. Data on cell growth inhibition induced by anti-VEGF siRNA delivered by Stealth liposomes incorporating G2 PAMAM-cholesterol versus Metafectene® as a function of exposure time and siRNA concentration

    Directory of Open Access Journals (Sweden)

    Nasim Golkar

    2016-09-01

    Full Text Available In this data article, carboxyfluorescein-loaded liposomes were prepared and purified from free carboxyfluorescein using gel filtration chromatography in the first part. In the next part, following preparation of anti-VEGF siRNA loaded liposomes incorporating hydrophobically modified G2 PAMAM dendrimer (G2-Chol40% (Golkar et al., 2016 [1], the cell growth inhibition induced by the formulations (siRNA/Metafectene complexes and siRNA loaded liposomes incorporating hydrophobic G2 was evaluated at two exposure times through MTT assay in a breast cancer cell (SKBR-3 and compared by two-way ANOVA. Keywords: Anti-VEGF siRNA, Cell growth inhibition, Polyamidoaminedendrimer, Liposome

  7. Impact behavior of f-silica and amine terminated polybutadiene co-acrylonitrile rubber modified novolac epoxy/Kevlar nanocomposites

    Science.gov (United States)

    Kavita, Pal, Vijayeta; Tiwari, R. K.

    2018-05-01

    In the present work, nano-fumed silica treated with 3-Glycidoxypropyl trimethoxy silane (f-silica) was used as a nanoreinforcement in the fabrication of amine terminated polybutadiene co-acrylonitrile rubber (ATBN) modified Kevlar/epoxy based nanocomposites. Nanocomposites with different f-silica loading (0, 0.5, 1.0 and 2.0 wt. %) and having same ATBN (10 wt. %) were made and characterized by Izod impact test for evaluating impact strength values. All the nanocomposites showed better impact strength than neat Kevlar/novolac epoxy based composite.

  8. siRNA and innate immunity.

    Science.gov (United States)

    Robbins, Marjorie; Judge, Adam; MacLachlan, Ian

    2009-06-01

    Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.

  9. In vivo silencing of alpha-synuclein using naked siRNA

    Directory of Open Access Journals (Sweden)

    Charisse Klaus

    2008-11-01

    Full Text Available Abstract Background Overexpression of α-synuclein (SNCA in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD, possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. Results We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked, murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion. Conclusion We have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from SNCA overexpression.

  10. In vivo silencing of alpha-synuclein using naked siRNA

    Science.gov (United States)

    Lewis, Jada; Melrose, Heather; Bumcrot, David; Hope, Andrew; Zehr, Cynthia; Lincoln, Sarah; Braithwaite, Adam; He, Zhen; Ogholikhan, Sina; Hinkle, Kelly; Kent, Caroline; Toudjarska, Ivanka; Charisse, Klaus; Braich, Ravi; Pandey, Rajendra K; Heckman, Michael; Maraganore, Demetrius M; Crook, Julia; Farrer, Matthew J

    2008-01-01

    Background Overexpression of α-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD), possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. Results We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked), murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion. Conclusion We have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from SNCA overexpression. PMID:18976489

  11. Intranasal delivery of antiviral siRNA.

    Science.gov (United States)

    Barik, Sailen

    2011-01-01

    Intranasal administration of synthetic siRNA is an effective modality of RNAi delivery for the prevention and therapy of respiratory diseases, including pulmonary infections. Vehicles used for nasal siRNA delivery include established as well as novel reagents, many of which have been recently optimized. In general, they all promote significant uptake of siRNA into the lower respiratory tract, including the lung. When properly designed and optimized, these siRNAs offer significant protection against respiratory viruses such as influenza virus, parainfluenza virus and respiratory syncytial virus (RSV). Nasally administered siRNA remains within the lung and does not access systemic blood flow, as judged by its absence in other major organs such as liver, heart, kidney, and skeletal muscle. Adverse immune reaction is generally not encountered, especially when immunogenic and/or off-target siRNA sequences and toxic vehicles are avoided. In fact, siRNA against RSV has entered Phase II clinical trials in human with promising results. Here, we provide a standardized procedure for using the nose as a specific route for siRNA delivery into the lung of laboratory animals. It should be clear that this simple and efficient system has enormous potential for therapeutics.

  12. Intolerance to dietary biogenic amines: A review

    NARCIS (Netherlands)

    Jansen, S.C.; Dusseldorp, M. van; Bottema, K.C.; Dubois, A.E.J.

    2003-01-01

    Objective: To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. Data Sources: MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allerg*, intoler*, and

  13. Intolerance to dietary biogenic amines : a review

    NARCIS (Netherlands)

    Jansen, SC; van Dusseldorp, M; Bottema, KC; Dubois, AEJ

    Objective: To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. Data Sources: MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allergen intoler*, and

  14. Synthesis and characterization of amino acid-functionalized calcium phosphate nanoparticles for siRNA delivery.

    Science.gov (United States)

    Bakan, Feray; Kara, Goknur; Cokol Cakmak, Melike; Cokol, Murat; Denkbas, Emir Baki

    2017-10-01

    Small interfering RNAs (siRNA) are short nucleic acid fragments of about 20-27 nucleotides, which can inhibit the expression of specific genes. siRNA based RNAi technology has emerged as a promising method for the treatment of a variety of diseases. However, a major limitation in the therapeutic use of siRNA is its rapid degradation in plasma and cellular cytoplasm, resulting in short half-life. In addition, as siRNA molecules cannot penetrate into the cell efficiently, it is required to use a carrier system for its delivery. In this work, chemically and morphologically different calcium phosphate (CaP) nanoparticles, including spherical-like hydroxyapatite (HA-s), needle-like hydroxyapatite (HA-n) and calcium deficient hydroxyapatite (CDHA) nanoparticles were synthesized by the sol-gel technique and the effects of particle characteristics on the binding capacity of siRNA were investigated. In order to enhance the gene loading efficiency, the nanoparticles were functionalized with arginine and the morphological and their structural characteristics were analyzed. The addition of arginine did not significantly change the particle sizes; however, it provided a significantly increased binding of siRNA for all types of CaP nanoparticles, as revealed by spectrophotometric measurements analysis. Arginine functionalized HA-n nanoparticles showed the best binding behavior with siRNA among the other nanoparticles due to its high, positive zeta potential (+18.8mV) and high surface area of Ca ++ rich "c" plane. MTT cytotoxicity assays demonstrated that all the nanoparticles tested herein were biocompatible. Our results suggest that high siRNA entrapment in each of the three modified non-toxic CaP nanoparticles make them promising candidates as a non-viral vector for delivering therapeutic siRNA molecules to treat cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis of two new alkyne-bearing linkers used for the preparation of siRNA for labeling by click chemistry with fluorine-18

    International Nuclear Information System (INIS)

    Flagothier, Jessica; Kaisin, Geoffroy; Mercier, Frederic; Thonon, David; Teller, Nathalie; Wouters, Johan; Luxen, André

    2012-01-01

    Oligonucleotides (ONs) and more particularly siRNAs are promising drugs but their pharmacokinetics and biodistribution are widely unknown. Positron Emission Tomography (PET) using fluorine-18 is a suitable technique to quantify these biological processes. Click chemistry (Huisgen cycloaddition) is the current method for labeling siRNA. In order to study the influence of a linker bearing by [ 18 F] labeled ONs, on the in vivo pharmacokinetic and metabolism, we have developed two modified ONs by two new linkers. Here we report the synthesis of two alkyne-bearing linkers, the incorporation onto a ONs and the conjugation by click chemistry with a [ 18 F] prosthetic group. - Highlights: ► Synthesis of two new alkyne linkers. ► Functionalization at the 3′-end siRNA by alkyne linker derived of proline. ► Click chemistry between alkyne modified siRNA and [ 18 F] prosthetic group.

  16. pH-sensitive diamond field-effect transistors (FETs) with directly aminated channel surface

    International Nuclear Information System (INIS)

    Song, Kwang-Soup; Nakamura, Yusuke; Sasaki, Yuichi; Degawa, Munenori; Yang, Jung-Hoon; Kawarada, Hiroshi

    2006-01-01

    We have introduced pH sensors fabricated on diamond thin films through modification of the surface-terminated atom. We directly modified the diamond surface from hydrogen to amine or oxygen with ultraviolet (UV) irradiation under ammonia gas. The quantified amine site based on the spectra obtained by X-ray photoelectron spectroscopy (XPS) is 26% (2.6 x 10 14 cm -2 ) with UV irradiation for 8 h and its coverage is dependent on the UV irradiation time. This directly aminated diamond surface is stable with long-term exposure in air and electrolyte solution. We fabricated diamond solution-gate field-effect transistors (SGFETs) without insulating layers on the channel surface. These diamond SGFETs with amine modified by direct amination are sensitive to pH (45 mV/pH) over a wide range from pH 2 to 12 and their sensitivity is dependent on the density of binding sites corresponding to UV irradiation time on the channel surface

  17. Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence.

    Science.gov (United States)

    Gavrilov, Kseniya; Seo, Young-Eun; Tietjen, Gregory T; Cui, Jiajia; Cheng, Christopher J; Saltzman, W Mark

    2015-12-01

    Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing molecule. Here we focus on strategies for rational optimization of two siRNAs that target the junction sites of fusion oncogenes BCR-ABL and TMPRSS2-ERG. We demonstrate that modifying the termini of these siRNAs with a terminal G-U wobble pair or a carefully selected pair of terminal asymmetry-enhancing mismatches can result in an increase in potency at low doses. Importantly, we observed that improvements in silencing at the mRNA level do not necessarily translate to reductions in protein level and/or cell death. Decline in protein level is also heavily influenced by targeted protein half-life, and delivery vehicle toxicity can confound measures of cell death due to silencing. Therefore, for BCR-ABL, which has a long protein half-life that is difficult to overcome using siRNA, we also developed a nontoxic transfection vector: poly(lactic-coglycolic acid) nanoparticles that release siRNA over many days. We show that this system can achieve effective killing of leukemic cells. These findings provide insights into the implications of siRNA sequence for potency and suggest strategies for the design of more effective therapeutic siRNA molecules. Furthermore, this work points to the importance of integrating studies of siRNA design and delivery, while heeding and addressing potential limitations such as restricted targetable mRNA regions, long protein half-lives, and nonspecific toxicities.

  18. Inhibition of ABCB1 (MDR1 expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Michiro Susa

    2010-05-01

    Full Text Available The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients' average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR after prolonged therapy.In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure resulting from MDR, we designed and evaluated a novel drug delivery system for MDR1 siRNA delivery. Novel biocompatible, lipid-modified dextran-based polymeric nanoparticles were used as the platform for MDR1 siRNA delivery; and the efficacy of combination therapy with this system was evaluated. In this study, multi-drug resistant osteosarcoma cell lines (KHOS(R2 and U-2OS(R2 were treated with the MDR1 siRNA nanocarriers and MDR1 protein (P-gp expression, drug retention, and immunofluoresence were analyzed. Combination therapy of the MDR1 siRNA loaded nanocarriers with increasing concentrations of doxorubicin was also analyzed. We observed that MDR1 siRNA loaded dextran nanoparticles efficiently suppresses P-gp expression in the drug resistant osteosarcoma cell lines. The results also demonstrated that this approach may be capable of reversing drug resistance by increasing the amount of drug accumulation in MDR cell lines.Lipid-modified dextran-based polymeric nanoparticles are a promising platform for siRNA delivery. Nanocarriers loaded with MDR1 siRNA are a potential treatment strategy for reversing MDR in osteosarcoma.

  19. A comparative study of three ternary complexes prepared in different mixing orders of siRNA/redox-responsive hyperbranched poly (amido amine/hyaluronic acid

    Directory of Open Access Journals (Sweden)

    Chen CJ

    2012-07-01

    Full Text Available Cheng-Jun Chen,1 Zhi-Xia Zhao,1 Jian-Cheng Wang,1 En-Yu Zhao,1 Ling-Yan Gao,1 Shu-Feng Zhou,2 Xiao-Yan Liu,1 Wan-Liang Lu,1 Qiang Zhang11State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmaceutics, School of Pharmaceutical Science, Peking University, Beijing, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USAAbstract: In this study, a novel redox-responsive hyperbranched poly(amido amine (named PCD was synthesized and used as a cationic polymer to form a ternary complex with small interfering RNA (siRNA and hyaluronic acid (HA for siRNA delivery. Here, it is hypothesized that different mixing orders result in different assembly structures, which may affect the siRNA delivery efficiency. To investigate the effects of mixing orders on siRNA delivery efficiency in two human breast cancer cell lines, three ternary complexes with different mixing orders of siRNA/PCD/HA were prepared and characterized: mixing order I (initially prepared siRNA/PCD binary complex further coated by negatively charged HA, mixing order II (initially prepared HA/PCD binary complex further incubated with siRNA, and mixing order III (initially prepared siRNA/HA mixture further electrostatically compacted by positively charged PCD. With an optimized siRNA/PCD/HA charge ratio of 1/20/16, the particle sizes and zeta potentials of these ternary complexes were 124.8 nm and 27.3 mV (mixing order I, 147.5 nm and 29.9 mV (mixing order II, and 128.8 nm and 19.4 mV (mixing order III. Also, the effects on stability, cellular uptake, and gene silencing efficiency of siRNA formulated in ternary complexes with different mixing orders were investigated. The results showed that mixing orders I and III displayed better siRNA transfection and protection than mixing order II in human breast cancer MCF-7 and MDA-MB-231 cells. More interesting, at the siRNA/PCD/HA charge ratio of 1/20/16, the

  20. Chemical and Molecular Descriptors for the Reactivity of Amines with CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Anita S.; Kitchin, John R.

    2012-10-24

    Amine-based solvents are likely to play an important role in CO{sub 2} capture applications in the future, and the identification of amines with superior performance will facilitate their use in CO{sub 2} capture. While some improvements in performance will be achieved through process modifications, modifying the CO{sub 2} capture performance of an amine also implies in part an ability to modify the reactions between the amine and CO{sub 2} through development of new functionalized amines. We present a computational study of trends in the reactions between CO{sub 2} and functionalized amines with a focus on identifying molecular descriptors that determine trends in reactivity. We examine the formation of bicarbonate and carbamate species on three classes of functionalized amines: alkylamines, alkanolamines, and fluorinated alkylamines including primary, secondary and tertiary amines in each class. These functional groups span electron-withdrawing to donating behavior, hydrogen-bonding, extent of functionalization, and proximity effects of the functional groups. Electron withdrawing groups tend to destabilize CO{sub 2} reaction products, whereas electron-donating groups tend to stabilize CO{sub 2} reaction products. Hydrogen bonding stabilizes CO{sub 2} reaction products. Electronic structure descriptors based on electronegativity were found to describe trends in the bicarbonate formation energy. A chemical correlation was observed between the carbamate formation energy and the carbamic acid formation energy. The local softness on the reacting N in the amine was found to partially explain trends carbamic acid formation energy.

  1. Synthesis and Gene Silencing Properties of siRNAs Containing Terminal Amide Linkages

    Directory of Open Access Journals (Sweden)

    Maria Gaglione

    2014-01-01

    Full Text Available The active components of the RNAi are 21 nucleotides long dsRNAs containing a 2 nucleotide overhang at the 3′ end, carrying 5′-phosphate and 3′-hydroxyl groups (siRNAs. Structural analysis revealed that the siRNA is functionally bound at both ends to RISC. Terminal modifications are considered with interest as the introduction of chemical moieties interferes with the 3′ overhang recognition by the PAZ domain and the 5′-phosphate recognition by the MID and PIWI domains of RISC. Herein, we report the synthesis of modified siRNAs containing terminal amide linkages by introducing hydroxyethylglycine PNA (hegPNA moieties at 5′, and at 3′ positions and on both terminals. Results of gene silencing studies highlight that some of these modifications are compatible with the RNAi machinery and markedly increase the resistance to serum-derived nucleases even after 24 h of incubation. Molecular docking simulations were attained to give at atomistic level a clearer picture of the effect of the most performing modifications on the interactions with the human Argonaute 2 PAZ, MID, and PIWI domains. This study adds another piece to the puzzle of the heterogeneous chemical modifications that can be attained to enhance the silencing efficiency of siRNAs.

  2. Bifunctional (cyclopentadienone)iron-tricarbonyl complexes: Synthesis, computational studies and application in reductive amination

    KAUST Repository

    Moulin, Solenne

    2013-11-15

    Reductive amination under hydrogen pressure is a valuable process in organic chemistry to access amine derivatives from aldehydes or ketones. Knölker\\'s complex has been shown to be an efficient iron catalyst in this reaction. To determine the influence of the substituents on the cyclopentadienone ancillary ligand, a series of modified Knölker\\'s complexes was synthesised and fully characterised. These complexes were also transformed into their analogous acetonitrile iron-dicarbonyl complexes. Catalytic activities of these complexes were evaluated and compared in a model reaction. The scope of this reaction is also reported. For mechanistic insights, deuterium-labelling experiments and DFT calculations were undertaken and are also presented. Festival of amination: Two series of modified Knölker\\'s complexes were synthesised and applied in the reductive amination of various carbonyl derivatives with primary or secondary amines (see scheme, TIPS = triisopropylsilyl). For a mechanistic insight, deuterium-labelling experiments and DFT calculations were undertaken and are also presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Biogenic amine formation and microbial spoilage in chilled garfish ( Belone belone belone ) - effect of modified atmosphere packaging and previous frozen storage

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Madsen, H.L.; Samieian, N.

    2006-01-01

    Abstract Aims: To evaluate biogenic amine formation and microbial spoilage in fresh and thawed chilled garfish. Methods and Results: Storage trials were carried out with fresh and thawed garfish fillets at 0 or 5oC in air or in modified atmosphere packaging (MAP: 40% CO2 and 60% N2). During storage...... 1000 ppm of histamine was formed in garfish; thus even when it is chilled this product represents a histamine fish-poisoning risk....

  4. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis.

    Science.gov (United States)

    Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Fan, Bo; Kang, Lin; Gao, Zhonggao

    Nanoparticle-mediated small interfering RNA (siRNA) delivery is a promising therapeutic strategy in various cancers. However, it is difficult to deliver degradative siRNA to tumor tissue, and thus a safe and efficient vector for siRNA delivery is essential for cancer therapy. In this study, poly(ethylene glycol)-modified chitosan (PEG-CS) was synthesized successfully for delivering nucleic acid drug. We deemed that PEGylated CS could improve its solubility by forming a stable siRNA loaded in nanoparticles, and enhancing transfection efficiency of siRNA-loaded CS nanoparticles in cancer cell line. The research results showed that siRNA loaded in PEGylated CS (PEG-CS/siRNA) nanoparticles with smaller particle size had superior structural stability in the physical environment compared to CS nanoparticles. The data of in vitro antitumor activity revealed that 4T1 tumor cell growth was significantly inhibited and cellular uptake of PEG-CS/siRNA nanoparticles in 4T1 cells was dramatically enhanced compared to naked siRNA groups. The results from flow cytometry and confocal laser scanning microscopy showed that PEG-CS/siRNA nanoparticles were more easily taken up than naked siRNA. Importantly, PEG-CS/siRNA nanoparticles significantly reduced the growth of xenograft tumors of 4T1 cells in vivo. It has been demonstrated that the PEG-CS is a safe and efficient vector for siRNA delivery, and it can effectively reduce tumor growth and prevent metastasis.

  5. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment.

    Science.gov (United States)

    Kim, Sang-Soo; Ye, Chunting; Kumar, Priti; Chiu, Isaac; Subramanya, Sandesh; Wu, Haoquan; Shankar, Premlata; Manjunath, N

    2010-05-01

    Inflammation mediated by tumor necrosis factor-alpha (TNF-alpha) and the associated neuronal apoptosis characterizes a number of neurologic disorders. Macrophages and microglial cells are believed to be the major source of TNF-alpha in the central nervous system (CNS). Here, we show that suppression of TNF-alpha by targeted delivery of small interfering RNA (siRNA) to macrophage/microglial cells dramatically reduces lipopolysaccharide (LPS)-induced neuroinflammation and neuronal apoptosis in vivo. Because macrophage/microglia express the nicotinic acetylcholine receptor (AchR) on their surface, we used a short AchR-binding peptide derived from the rabies virus glycoprotein (RVG) as a targeting ligand. This peptide was fused to nona-D-arginine residues (RVG-9dR) to enable siRNA binding. RVG-9dR was able to deliver siRNA to induce gene silencing in macrophages and microglia cells from wild type, but not AchR-deficient mice, confirming targeting specificity. Treatment with anti-TNF-alpha siRNA complexed to RVG-9dR achieved efficient silencing of LPS-induced TNF-alpha production by primary macrophages and microglia cells in vitro. Moreover, intravenous injection with RVG-9dR-complexed siRNA in mice reduced the LPS-induced TNF-alpha levels in blood as well as in the brain, leading to a significant reduction in neuronal apoptosis. These results demonstrate that RVG-9dR provides a tool for siRNA delivery to macrophages and microglia and that suppression of TNF-alpha can potentially be used to suppress neuroinflammation in vivo.

  6. Efficient Inhibition of wear debris-induced inflammation by locally delivered siRNA

    International Nuclear Information System (INIS)

    Peng Xiaochun; Tao Kun; Cheng Tao; Zhu Junfeng; Zhang Xianlong

    2008-01-01

    Aseptic loosening is the most common long-term complication of total joint replacement, which is associated with the generation of wear debris. The purpose of this study was to investigate the inhibitory effect of small interfering RNA (siRNA) targeting tumor necrosis factor-α (TNF-α) on wear debris-induced inflammation. A local delivery of lentivirus-mediated TNF-α siRNA into the modified murine air pouch, which was stimulated by polymethylmethacrylate (PMMA) particles, resulted in significant blockage of TNF-α both in mRNA and protein levels for up to 4 weeks. In addition, significant down-regulation of interleukin-1 (IL-1) and interleukin-6 (IL-6) was observed in TNF-α siRNA-treated pouches. The safety profile of gene therapy was proven by Bioluminescent assay and quantitative fluorescent flux. Histological analysis revealed less inflammatory responses (thinner pouch membrane and decreased cellular infiltration) in TNF-α siRNA-treated pouches. These findings suggest that local delivery of TNF-α siRNA might be an excellent therapeutic candidate to inhibit particle-induced inflammation.

  7. siRNA as an alternative therapy against viral infections

    Directory of Open Access Journals (Sweden)

    Hana A. Pawestri

    2012-07-01

    Full Text Available siRNA (small interfering ribonucleic acid adalah sebuah metode yang dapat digunakan untuk mengatasi infeksi virus yang prinsip kerjanya berdasarkan metode komplementer dsRNA (double stranded RNA pada RNA virus sehingga menyebabkan kegagalan proses transkripsi (silencing.  Untuk lebih memahami bagaimana proses kerja dan ulasan penelitian siRNA yang terkini, di dalam tulisan ini ditinjau siRNA sebagai metoda yang dikembangkan untuk mengatasi infeksi dan meneliti efeknya pada replikasi beberapa virus seperti Hepatitis C, Influenza, Polio, dan HIV. Kami menemukan bahwa urutan basa nukleotida dari target siRNA sangat penting. Hal tersebut harus homolog dengan target RNA virus dan tidak menganggu RNA sel inang. Untuk mengurangi kegagalan terapi siRNA oleh adanya mutasi, digunakan beberapa siRNA yang sekaligus menjadi target RNA virus yang berbeda. Namun demikian, terapi siRNA masih menghadapi beberapa kesulitan seperti pengiriman (transfer khusus ke jaringan yang terinfeksi dan perlindungan siRNA dari perusakan oleh nuklease. Berdasarkan beberapa penelitian yang telah dilakukan, siRNA dapat digunakan sebagai alternatif untuk mengobati infeksi yang disebabkan oleh virus. Terapi tersebut direkomendasikan untuk dilakukan uji klinis dengan memperhatikan beberapa aspek seperti desain siRNA dan mekanisme transfer. (Health Science Indones 2010; 1: 58 - 65 Kata kunci: siRNA, infeksi virus, target virus, alternatif terapi Abstract SiRNA is a promising method to deal with viral infections. The principle of siRNA is based on the complementarily of (synthetic dsRNA to an RNA virus which, in consequence, will be silenced. Many studies are currently examining the effects of siRNA on replication of diverse virus types like Hepatitis C, polio and HIV. The choice of the siRNA target sequence is crucial. It has to be very homologous to the target RNA, but it cannot target RNA of the host cell. To reduce the possibility for the virus to escape from the siRNA therapy by

  8. Detection of small interfering RNA (siRNA) by mass spectrometry procedures in doping controls.

    Science.gov (United States)

    Thomas, Andreas; Walpurgis, Katja; Delahaut, Philippe; Kohler, Maxie; Schänzer, Wilhelm; Thevis, Mario

    2013-01-01

    Uncovering manipulation of athletic performance via small interfering (si)RNA is an emerging field in sports drug testing. Due to the potential to principally knock down every target gene in the organism by means of the RNA interference pathway, this facet of gene doping has become a realistic scenario. In the present study, two distinct model siRNAs comprising 21 nucleotides were designed as double strands which were perfect counterparts to a sequence of the respective messenger RNA coding the muscle regulator myostatin of Rattus norvegicus. Several modified nucleotides were introduced in both the sense and the antisense strand comprising phosphothioates, 2'-O-methylation, 2'-fluoro-nucleotides, locked nucleic acids and a cholesterol tag at the 3'-end. The model siRNAs were applied to rats at 1 mg/kg (i.v.) and blood as well as urine samples were collected. After isolation of the RNA by means of a RNA purification kit, the target analytes were detected by liquid chromatography - high resolution/high accuracy mass spectrometry (LC-HRMS). Analytes were detected as modified nucleotides after alkaline hydrolysis, as intact oligonucleotide strands (top-down) and by means of denaturing SDS-PAGE analysis. The gel-separated siRNA was further subjected to in-gel hydrolysis with different RNases and subsequent identification of the fragments by untargeted LC-HRMS analysis (bottom-up, 'experimental RNomics'). Combining the results of all approaches, the identification of several 3'-truncated urinary metabolites was accomplished and target analytes were detected up to 24 h after a single administration. Simultaneously collected blood samples yielded no promising results. The methods were validated and found fit-for-purpose for doping controls. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Nonviral pulmonary delivery of siRNA.

    Science.gov (United States)

    Merkel, Olivia M; Kissel, Thomas

    2012-07-17

    RNA interference (RNAi) is an important part of the cell's defenses against viruses and other foreign genes. Moreover, the biotechnological exploitation of RNAi offers therapeutic potential for a range of diseases for which drugs are currently unavailable. Unfortunately, the small interfering RNAs (siRNAs) that are central to RNAi in the cytoplasm are readily degradable by ubiquitous nucleases, are inefficiently targeted to desired organs and cell types, and are excreted quickly upon systemic injection. As a result, local administration techniques have been favored over the past few years, resulting in great success in the treatment of viral infections and other respiratory disorders. Because there are several advantages of pulmonary delivery over systemic administration, two of the four siRNA drugs currently in phase II clinical trials are delivered intranasally or by inhalation. The air-blood barrier, however, has only limited permeability toward large, hydrophilic biopharmaceuticals such as nucleic acids; in addition, the lung imposes intrinsic hurdles to efficient siRNA delivery. Thus, appropriate formulations and delivery devices are very much needed. Although many different formulations have been optimized for in vitro siRNA delivery to lung cells, only a few have been reported successful in vivo. In this Account, we discuss both obstacles to pulmonary siRNA delivery and the success stories that have been achieved thus far. The optimal pulmonary delivery vehicle should be neither cytotoxic nor immunogenic, should protect the payload from degradation by nucleases during the delivery process, and should mediate the intracellular uptake of siRNA. Further requirements include the improvement of the pharmacokinetics and lung distribution profiles of siRNA, the extension of lung retention times (through reduced recognition by macrophages), and the incorporation of reversible or stimuli-responsive binding of siRNA to allow for efficient release of the siRNAs at the

  10. Co-delivery of siRNA and hypericin into cancer cells by hyaluronic acid modified PLGA-PEI nanoparticles.

    Science.gov (United States)

    Li, Yanan; Zhang, Junling; Wang, Buhai; Shen, Yan; Ouahab, Ammar

    2016-01-01

    Malignant tumors cause more death because of the resistance of the hypoxic cancer cell toward radiotherapy. Targeting for hypoxic cancer area and gene silencing to overcome the hypoxia are two kinds of important therapeutic strategies for treating tumors. In order to explore the combined effects of gene therapy and hypericin (Hy) on tumor cells, hypoxia-inducible factor 1 alpha (HIF-1α) small interfering ribonucleic acid (siRNA) was transfected into the hypoxic human nasopharyngeal carcinoma (CNE2) cells using Hy-encapsulated nanocomplexes (Hy-HPP NPs) as a carrier which would achieve dual targeting to the tumor necrosis area. NPs were prepared by emulsion-diffusion-evaporation method. Formulations were evaluated by conducting in vitro physicochemical studies, electrophoresis, in vivo study, and biochemical studies. Hy-loaded nanoparticles with a mean size of around 160 nm was able to enhance the accumulation in the tumors by enhanced permeability and retention effect. The electrophoresis confirmed the good stability of siRNA/Hy-HPP NPs in the presence of phosphate-buffered saline (pH 7.4), competitive heparin, and RNase. The results of transfection showed that the uptake of siRNA was significantly increased up to 50% in CNE2 cells. The level of the HIF-1α with Hy-encapsulated nanocomplexes was significantly reduced to 30% in the transfected CNE2 cells. In vivo studies, the carrier exhibited higher intensity at the tumor tissue cells and higher affinity toward the necrotic tumor tissue. Results demonstrated that Hy-HPP NPs could significantly enhance the tranfection efficiency of siRNA, suggesting Hy-encapsulated nanoparticle as an efficient gene carrier. The co-delivery of HIF-1α siRNA (siHIF-1α) and Hy could efficiently decrease the level of HIF-1α and increase the affinity toward necrotic tissues. Hence, this is a promising strategy for further application in radiotherapy.

  11. In Silico, In Vitro, and In Vivo Studies Indicate the Potential Use of Bolaamphiphiles for Therapeutic siRNAs Delivery

    Directory of Open Access Journals (Sweden)

    Taejin Kim

    2013-01-01

    Full Text Available Specific small interfering RNAs (siRNAs designed to silence different oncogenic pathways can be used for cancer therapy. However, non-modified naked siRNAs have short half-lives in blood serum and encounter difficulties in crossing biological membranes due to their negative charge. These obstacles can be overcome by using siRNAs complexed with bolaamphiphiles, consisting of two positively charged head groups that flank an internal hydrophobic chain. Bolaamphiphiles have relatively low toxicities, long persistence in the blood stream, and most importantly, in aqueous conditions can form poly-cationic micelles thus, becoming amenable to association with siRNAs. Herein, two different bolaamphiphiles with acetylcholine head groups attached to an alkyl chain in two distinct configurations are compared for their abilities to complex with siRNAs and deliver them into cells inducing gene silencing. Our explicit solvent molecular dynamics (MD simulations showed that bolaamphiphiles associate with siRNAs due to electrostatic, hydrogen bonding, and hydrophobic interactions. These in silico studies are supported by various in vitro and in cell culture experimental techniques as well as by some in vivo studies. Results demonstrate that depending on the application, the extent of siRNA chemical protection, delivery efficiency, and further intracellular release can be varied by simply changing the type of bolaamphiphile used.

  12. Efficient construction of an inverted minimal H1 promoter driven siRNA expression cassette: facilitation of promoter and siRNA sequence exchange.

    Directory of Open Access Journals (Sweden)

    Hoorig Nassanian

    2007-08-01

    Full Text Available RNA interference (RNAi, mediated by small interfering RNA (siRNA, is an effective method used to silence gene expression at the post-transcriptional level. Upon introduction into target cells, siRNAs incorporate into the RNA-induced silencing complex (RISC. The antisense strand of the siRNA duplex then "guides" the RISC to the homologous mRNA, leading to target degradation and gene silencing. In recent years, various vector-based siRNA expression systems have been developed which utilize opposing polymerase III promoters to independently drive expression of the sense and antisense strands of the siRNA duplex from the same template.We show here the use of a ligase chain reaction (LCR to develop a new vector system called pInv-H1 in which a DNA sequence encoding a specific siRNA is placed between two inverted minimal human H1 promoters (approximately 100 bp each. Expression of functional siRNAs from this construct has led to efficient silencing of both reporter and endogenous genes. Furthermore, the inverted H1 promoter-siRNA expression cassette was used to generate a retrovirus vector capable of transducing and silencing expression of the targeted protein by>80% in target cells.The unique design of this construct allows for the efficient exchange of siRNA sequences by the directional cloning of short oligonucleotides via asymmetric restriction sites. This provides a convenient way to test the functionality of different siRNA sequences. Delivery of the siRNA cassette by retroviral transduction suggests that a single copy of the siRNA expression cassette efficiently knocks down gene expression at the protein level. We note that this vector system can potentially be used to generate a random siRNA library. The flexibility of the ligase chain reaction suggests that additional control elements can easily be introduced into this siRNA expression cassette.

  13. Surveillance of siRNA integrity by FRET imaging

    Science.gov (United States)

    Järve, Anne; Müller, Julius; Kim, Il-Han; Rohr, Karl; MacLean, Caroline; Fricker, Gert; Massing, Ulrich; Eberle, Florian; Dalpke, Alexander; Fischer, Roger; Trendelenburg, Michael F.; Helm, Mark

    2007-01-01

    Techniques for investigation of exogenous small interfering RNA (siRNA) after penetration of the cell are of substantial interest to the development of efficient transfection methods as well as to potential medical formulations of siRNA. A FRET-based visualization method including the commonplace dye labels fluorescein and tetramethylrhodamin (TMR) on opposing strands of siRNA was found compatible with RNA interference (RNAi). Investigation of spectral properties of three labelled siRNAs with differential FRET efficiencies in the cuvette, including pH dependence and FRET efficiency in lipophilic environments, identified the ratio of red and green fluorescence (R/G-ratio) as a sensitive parameter, which reliably identifies samples containing >90% un-degraded siRNA. Spectral imaging of siRNAs microinjected into cells showed emission spectra indistinguishable from those measured in the cuvette. These were used to establish a calibration curve for assessing the degradation state of siRNA in volume elements inside cells. An algorithm, applied to fluorescence images recorded in standard green and red fluorescence channels, produces R/G-ratio images of high spatial resolution, identifying volume elements in the cell with high populations of intact siRNA with high fidelity. To demonstrate the usefulness of this technique, the movement of intact siRNA molecules are observed after introduction into the cytosol by microinjection, standard transfection and lipofection with liposomes. PMID:17890733

  14. siRNA for Influenza Therapy

    Directory of Open Access Journals (Sweden)

    Sailen Barik

    2010-07-01

    Full Text Available Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world's population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA, has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here.

  15. siRNA for Influenza Therapy.

    Science.gov (United States)

    Barik, Sailen

    2010-07-01

    Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world's population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA), has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here.

  16. Base metal dehydrogenation of amine-boranes

    Science.gov (United States)

    Blacquiere, Johanna Marie [Ottawa, CA; Keaton, Richard Jeffrey [Pearland, TX; Baker, Ralph Thomas [Los Alamos, NM

    2009-06-09

    A method of dehydrogenating an amine-borane having the formula R.sup.1H.sub.2N--BH.sub.2R.sup.2 using base metal catalyst. The method generates hydrogen and produces at least one of a [R.sup.1HN--BHR.sup.2].sub.m oligomer and a [R.sup.1N--BR.sup.2].sub.n oligomer. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources, such as, but not limited to, fuel cells.

  17. Biogenic amines degradation by microorganisms isolated from cheese

    Directory of Open Access Journals (Sweden)

    Irena Butor

    2017-01-01

    Full Text Available The aim of this study was the isolation and characterization of microorganisms able to degrade biogenic amines and their identification. Individual microorganisms were obtained by isolation from commercially available foodstuffs and food produced in the technological laboratories of Faculty of Technology, Tomas Bata University in Zlín and subsequently identified by MALDI-TOF MS. The results of MALDI-TOF MS identification were verified by 16S rRNA sequenation. In this work was studied the ability of 5 bacterial strains positive to biogenic amines degradation isolated from dairy products to decrease biogenic amines content in vitro and quantified reduction in the concentration of biogenic amines tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine and tyramine. The level of degradation (decrease of biogenic amines was determined on the base of the ability to grow in media with biogenic amines as the sole source carbon and nitrogen. The isolated strains with the ability of degradation of one or more biogenic amines were cultured in medium supplemented with relevant biogenic amines, the media derivatized with dansyl chloride and these amines separated by HPLC at a wavelength of 254 nm. From five tested strains identified as Bacillus subtilis, Bacillus pumilus, Enterobacter cloacae, Rhizobium radiobacter and Acinetobacter pitii, isolated from gouda type cheese, the greatest ability of degradation was observed in Bacillus subtilis, which was capable to degrade almost all amount of histamine, cadaverine and putrescine. Other four strains showed a lower rate of degradation than Bacillus subtilis, but the ability to degrade biogenic amines with these microorganisms was still significant.

  18. Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon ( Salmo salar ) at 2 degrees C

    DEFF Research Database (Denmark)

    Emborg, Jette; Laursen, B.G.; Rathjen, T.

    2002-01-01

    series of storage trials with naturally contaminated fresh and thawed modified atmosphere-packed (MAP) salmon at 2 degrees C. Photobacterium phosphoreum dominated the spoilage microflora of fresh MAP salmon at more than 106 cfu g-1 and the activity of this specific spoilage organism (SSO) limited...... small amounts of biogenic amines in this product. The elimination of P. phosphoreum by freezing allowed this bacteria to be identified as the SSO in fresh MAP salmon.Significance and Impact of the Study: The identification of P. phosphoreum as the SSO in fresh MAP salmon facilitates the development...

  19. Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity.

    Science.gov (United States)

    Perche, F; Yi, Y; Hespel, L; Mi, P; Dirisala, A; Cabral, H; Miyata, K; Kataoka, K

    2016-06-01

    Current technology of siRNA delivery relies on pharmaceutical dosage forms to route maximal doses of siRNA to the tumor. However, this rationale does not address intracellular bottlenecks governing silencing activity. Here, we tested the impact of hydroxychloroquine conjugation on the intracellular fate and silencing activity of siRNA conjugated PEGylated gold nanoparticles. Addition of hydroxychloroquine improved endosomal escape and increased siRNA guide strand distribution to the RNA induced silencing complex (RISC), both crucial obstacles to the potency of siRNA. This modification significantly improved gene downregulation in cellulo. Altogether, our data suggest the benefit of this modification for the design of improved siRNA delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The ozonolysis of primary aliphatic amines in fine particles

    Science.gov (United States)

    Zahardis, J.; Geddes, S.; Petrucci, G. A.

    2008-02-01

    The oxidative processing by ozone of the particulate amines octadecylamine (ODA) and hexadecylamine (HDA) is reported. Ozonolysis of these amines resulted in strong NO2- and NO3- ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitroalkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3- (HNO3). For ozonized mixed particles containing ODA or HDA + oleic acid (OL), with pO3≥3×10-7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines) and stabilized Criegee intermediates (SCI) or secondary ozonides (for amides) from the fatty acid. The routes to amides via SCI and/or secondary ozonides were shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10-3 atm for 17 s). This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g.~NO2, NO3), formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  1. Synthesis of PLGA-Lipid Hybrid Nanoparticles for siRNA Delivery Using the Emulsion Method PLGA-PEG-Lipid Nanoparticles for siRNA Delivery.

    Science.gov (United States)

    Wang, Lei; Griffel, Benjamin; Xu, Xiaoyang

    2017-01-01

    The effective delivery of small interfering RNA (siRNA) to tumor cells remains a challenge for applications in cancer therapy. The development of polymeric nanoparticles with high siRNA loading efficacy has shown great potential for cancer targets. Double emulsion solvent evaporation technique is a useful tool for encapsulation of hydrophilic molecules (e.g., siRNA). Here we describe a versatile platform for siRNA delivery based on PLGA-PEG-cationic lipid nanoparticles by using the double emulsion method. The resulting nanoparticles show high encapsulation efficiency for siRNA (up to 90%) and demonstrate effective downregulation of the target genes in vitro and vivo.

  2. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien; Bunker, Matt; Zhang, Jianxin; Martin-Bertelsen, Birte; Yaghmur, Anan; Braeckmans, Kevin; Nielsen, Hanne M; Foged, Camilla

    2015-03-10

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(DL-lactic-co-glycolic acid) (PLGA) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X-ray scattering (SAXS) and confocal laser scanning microscopy (CLSM) studies suggested that the siRNA-loaded LPNs are characterized by a core-shell structure consisting of a PLGA matrix core coated with lamellar DOTAP structures with siRNA localized both in the core and in the shell. Release studies in buffer and serum-containing medium combined with in vitro gene silencing and quantification of intracellular siRNA suggested that this self-assembling core-shell structure influences the siRNA release kinetics and the delivery dynamics. A main delivery mechanism appears to be mediated via the release of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Iridium-Catalyzed Condensation of Primary Amines To Form Secondary Amines

    DEFF Research Database (Denmark)

    Lorentz-Petersen, Linda Luise Reeh; Jensen, Paw; Madsen, Robert

    2009-01-01

    Symmetric secondary amines are readily obtained by heating a neat primary amine with 0.5 mol% of bis(dichloro[eta(5)-pentamethylcyclopentadienyl]iridium). The products are isolated by direct distillation in good yields.......Symmetric secondary amines are readily obtained by heating a neat primary amine with 0.5 mol% of bis(dichloro[eta(5)-pentamethylcyclopentadienyl]iridium). The products are isolated by direct distillation in good yields....

  4. Genetically modified CHO cells for studying the genotoxicity of heterocyclic amines from cooked foods

    International Nuclear Information System (INIS)

    Thompson, L.H.; Wu, R.W.; Felton, J.S.

    1995-07-01

    We have developed metabolically competent CHO cells to evaluate the genotoxicity associated with heterocyclic amines, such as those that are present in cooked foods. Into repair-deficient UV5 cells we introduced cDNAs for expressing cytochrome P450IA2 and acetyltransferases. We then genetically reverted these transformed lines to obtain matched metabolically competent repair-deficient/proficient lines. For a high mutagenic response, we find a requirement for acetyltransferase with IQ but not with PhIP. This system allows for both quantifying mutagenesis and analyzing the mutational spectra produced by heterocyclic amines

  5. HIVsirDB: a database of HIV inhibiting siRNAs.

    Directory of Open Access Journals (Sweden)

    Atul Tyagi

    Full Text Available Human immunodeficiency virus (HIV is responsible for millions of deaths every year. The current treatment involves the use of multiple antiretroviral agents that may harm patients due to their toxic nature. RNA interference (RNAi is a potent candidate for the future treatment of HIV, uses short interfering RNA (siRNA/shRNA for silencing HIV genes. In this study, attempts have been made to create a database HIVsirDB of siRNAs responsible for silencing HIV genes.HIVsirDB is a manually curated database of HIV inhibiting siRNAs that provides comprehensive information about each siRNA or shRNA. Information was collected and compiled from literature and public resources. This database contains around 750 siRNAs that includes 75 partially complementary siRNAs differing by one or more bases with the target sites and over 100 escape mutant sequences. HIVsirDB structure contains sixteen fields including siRNA sequence, HIV strain, targeted genome region, efficacy and conservation of target sequences. In order to facilitate user, many tools have been integrated in this database that includes; i siRNAmap for mapping siRNAs on target sequence, ii HIVsirblast for BLAST search against database, iii siRNAalign for aligning siRNAs.HIVsirDB is a freely accessible database of siRNAs which can silence or degrade HIV genes. It covers 26 types of HIV strains and 28 cell types. This database will be very useful for developing models for predicting efficacy of HIV inhibiting siRNAs. In summary this is a useful resource for researchers working in the field of siRNA based HIV therapy. HIVsirDB database is accessible at http://crdd.osdd.net/raghava/hivsir/.

  6. Yb(OTf){sub 3}-catalyzed one-pot three component synthesis for tertiary amines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bum Seok; Kim, Ji Hye; Nam, Tae Kyu; Jang, Doo Ok [Dept. of Chemistry, Yonsei University, Wonju (Korea, Republic of)

    2015-07-15

    Tertiary amine functionality is found in many natural bioactive products such as alkaloids, amino acids, nucleic acids, pharmaceuticals, and agrochemicals. Tertiary amines have also been used as building blocks for nitrogen-containing organic compounds and synthetic polymers. A one-pot method for direct reductive amination of aldehydes has been developed to synthesize tertiary amines using HMDS as a nitrogen source in the presence of Yb(OTf ){sub 3}. With a stoichiometric amount of HMDS, the reaction afforded the desired tertiary amines without competitive reduction of the parent carbonyl compounds. This reaction offers a convenient and efficient protocol for synthesizing aromatic and aliphatic tertiary amines under mild reaction conditions.

  7. The ozonolysis of primary aliphatic amines in fine particles

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2008-02-01

    Full Text Available The oxidative processing by ozone of the particulate amines octadecylamine (ODA and hexadecylamine (HDA is reported. Ozonolysis of these amines resulted in strong NO2 and NO3 ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitroalkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3 (HNO3. For ozonized mixed particles containing ODA or HDA + oleic acid (OL, with pO3≥3×10–7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines and stabilized Criegee intermediates (SCI or secondary ozonides (for amides from the fatty acid. The routes to amides via SCI and/or secondary ozonides were shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10−3 atm for 17 s. This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g.~NO2, NO3, formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  8. Supported polytertiary amines: highly efficient and selective SO2 adsorbents.

    Science.gov (United States)

    Tailor, Ritesh; Abboud, Mohamed; Sayari, Abdelhamid

    2014-01-01

    Tertiary amine containing poly(propyleneimine) second (G2) and third (G3) generation dendrimers as well as polyethyleneimine (PEI) were developed for the selective removal of SO2. N-Alkylation of primary and secondary amines into tertiary amines was confirmed by FTIR and NMR analysis. Such modified polyamines were impregnated on two nanoporous supports, namely, SBA-15PL silica with platelet morphology and ethanol-extracted pore-expanded MCM-41 (PME) composite. In the presence of 0.1% SO2/N2 at 23 °C, the uptake of modified PEI, G2, and G3 supported on SBA-15PL was 2.07, 2.35, and 1.71 mmol/g, respectively; corresponding to SO2/N ratios of 0.22, 0.4, and 0.3. Under the same conditions, the SO2 adsorption capacity of PME-supported modified PEI and G3 was significantly higher, reaching 4.68 and 4.34 mmol/g, corresponding to SO2/N ratios of 0.41 and 0.82, respectively. The working SO2 adsorption capacity decreased with increasing temperature, reflecting the exothermic nature of the process. The adsorption capacity of these materials was enhanced dramatically in the presence of humidity in the gas mixture. FTIR data before SO2 adsorption and after adsorption and regeneration did not indicate any change in the materials. Nonetheless, the SO2 working capacity decreased in consecutive adsorption/regeneration cycles due to evaporation of impregnated polyamines, rather than actual deactivation. FTIR and (13)C and (15)N CP-MAS NMR of fresh and SO2 adsorbed modified G3 on PME confirmed the formation of a complexation adduct.

  9. Laser Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples Using Locally Sourced Materials

    Directory of Open Access Journals (Sweden)

    Diana C. Vanegas

    2018-04-01

    Full Text Available In foods, high levels of biogenic amines (BA are the result of microbial metabolism that could be affected by temperatures and storage conditions. Thus, the level of BA is commonly used as an indicator of food safety and quality. This manuscript outlines the development of laser scribed graphene electrodes, with locally sourced materials, for reagent-free food safety biosensing. To fabricate the biosensors, the graphene surface was functionalized with copper microparticles and diamine oxidase, purchased from a local supermarket; and then compared to biosensors fabricated with analytical grade materials. The amperometric biosensor exhibits good electrochemical performance, with an average histamine sensitivity of 23.3 µA/mM, a lower detection limit of 11.6 µM, and a response time of 7.3 s, showing similar performance to biosensors constructed from analytical grade materials. We demonstrated the application of the biosensor by testing total BA concentration in fish paste samples subjected to fermentation with lactic acid bacteria. Biogenic amines concentrations prior to lactic acid fermentation were below the detection limit of the biosensor, while concentration after fermentation was 19.24 ± 8.21 mg histamine/kg, confirming that the sensor was selective in a complex food matrix. The low-cost, rapid, and accurate device is a promising tool for biogenic amine estimation in food samples, particularly in situations where standard laboratory techniques are unavailable, or are cost prohibitive. This biosensor can be used for screening food samples, potentially limiting food waste, while reducing chances of foodborne outbreaks.

  10. Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier - from Targeting to Safe Administration.

    Science.gov (United States)

    Gomes, Maria João; Fernandes, Carlos; Martins, Susana; Borges, Fernanda; Sarmento, Bruno

    2017-03-01

    Blood-brain barrier is a tightly packed layer of endothelial cells surrounding the brain that acts as the main obstacle for drugs enter the central nervous system (CNS), due to its unique features, as tight junctions and drug efflux systems. Therefore, since the incidence of CNS disorders is increasing worldwide, medical therapeutics need to be improved. Consequently, aiming to surpass blood-brain barrier and overcome CNS disabilities, silencing P-glycoprotein as a drug efflux transporter at brain endothelial cells through siRNA is considered a promising approach. For siRNA enzymatic protection and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm and association efficiency close to 52 %. Their surface was functionalized with a peptide-binding transferrin receptor, in a site-oriented manner confirmed by NMR, and their targeting ability against human brain endothelial cells was successfully demonstrated by fluorescence microscopy and flow cytometry. The interaction of modified nanoparticles with brain endothelial cells increased 3-fold compared to non-modified lipid nanoparticles, and 4-fold compared to non-modified PLGA nanoparticles, respectively. These nanosystems, which were also demonstrated to be safe for human brain endothelial cells, without significant cytotoxicity, bring a new hopeful breath to the future of brain diseases therapies.

  11. MysiRNA-designer: a workflow for efficient siRNA design.

    Directory of Open Access Journals (Sweden)

    Mohamed Mysara

    Full Text Available The design of small interfering RNA (siRNA is a multi factorial problem that has gained the attention of many researchers in the area of therapeutic and functional genomics. MysiRNA score was previously introduced that improves the correlation of siRNA activity prediction considering state of the art algorithms. In this paper, a new program, MysiRNA-Designer, is described which integrates several factors in an automated work-flow considering mRNA transcripts variations, siRNA and mRNA target accessibility, and both near-perfect and partial off-target matches. It also features the MysiRNA score, a highly ranked correlated siRNA efficacy prediction score for ranking the designed siRNAs, in addition to top scoring models Biopredsi, DISR, Thermocomposition21 and i-Score, and integrates them in a unique siRNA score-filtration technique. This multi-score filtration layer filters siRNA that passes the 90% thresholds calculated from experimental dataset features. MysiRNA-Designer takes an accession, finds conserved regions among its transcript space, finds accessible regions within the mRNA, designs all possible siRNAs for these regions, filters them based on multi-scores thresholds, and then performs SNP and off-target filtration. These strict selection criteria were tested against human genes in which at least one active siRNA was designed from 95.7% of total genes. In addition, when tested against an experimental dataset, MysiRNA-Designer was found capable of rejecting 98% of the false positive siRNAs, showing superiority over three state of the art siRNA design programs. MysiRNA is a freely accessible (Microsoft Windows based desktop application that can be used to design siRNA with a high accuracy and specificity. We believe that MysiRNA-Designer has the potential to play an important role in this area.

  12. siRNA delivery with lipid-based systems

    DEFF Research Database (Denmark)

    Foged, Camilla

    2012-01-01

    A key hurdle for the further development of RNA interference (RNAi) therapeutics like small interfering RNA (siRNA) is their safe and effective delivery. Lipids are promising and versatile carriers because they are based on Nature's own building blocks and can be provided with properties which......RNA into more hydrophobic lipoplexes, which promote passage of the siRNA across cellular membrane barriers, especially when lipids are added that facilitate membrane fusion. Despite these attractive features, siRNA delivery vehicles are facing a number of challenges such as the limited delivery efficiency...

  13. MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Corrêa, Régis L; Steiner, Florian A; Berezikov, Eugene; Ketting, René F

    2010-04-08

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi-related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer.

  14. MicroRNA–Directed siRNA Biogenesis in Caenorhabditis elegans

    Science.gov (United States)

    Corrêa, Régis L.; Steiner, Florian A.; Berezikov, Eugene; Ketting, René F.

    2010-01-01

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi–related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer. PMID:20386745

  15. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades.

    Science.gov (United States)

    Mutti, Francesco G; Knaus, Tanja; Scrutton, Nigel S; Breuer, Michael; Turner, Nicholas J

    2015-09-25

    α-Chiral amines are key intermediates for the synthesis of a plethora of chemical compounds at industrial scale. We present a biocatalytic hydrogen-borrowing amination of primary and secondary alcohols that allows for the efficient and environmentally benign production of enantiopure amines. The method relies on a combination of two enzymes: an alcohol dehydrogenase (from Aromatoleum sp., Lactobacillus sp., or Bacillus sp.) operating in tandem with an amine dehydrogenase (engineered from Bacillus sp.) to aminate a structurally diverse range of aromatic and aliphatic alcohols, yielding up to 96% conversion and 99% enantiomeric excess. Primary alcohols were aminated with high conversion (up to 99%). This redox self-sufficient cascade possesses high atom efficiency, sourcing nitrogen from ammonium and generating water as the sole by-product. Copyright © 2015, American Association for the Advancement of Science.

  16. Control of Biogenic Amines in Fermented Sausages: Role of Starter Cultures

    Science.gov (United States)

    Latorre-Moratalla, M.L.; Bover-Cid, Sara; Veciana-Nogués, M.T.; Vidal-Carou, M.C.

    2012-01-01

    Biogenic amines show biological activity and exert undesirable physiological effects when absorbed at high concentrations. Biogenic amines are mainly formed by microbial decarboxylation of amino acids and thus are usually present in a wide range of foods, fermented sausages being one of the major biogenic amine sources. The use of selected starter cultures is one of the best technological measures to control aminogenesis during meat fermentation. Although with variable effectiveness, several works show the ability of some starters to render biogenic amine-free sausages. In this paper, the effect of different starter culture is reviewed and the factors determining their performance discussed. PMID:22586423

  17. Control of biogenic amines in fermented sausages: role of starter cultures

    Directory of Open Access Journals (Sweden)

    Mariluz eLatorre-Moratalla

    2012-05-01

    Full Text Available Biogenic amines show biological activity and exert undesirable physiological effects when absorbed at high concentrations. Biogenic amines are mainly formed by microbial decarboxylation of amino acids and thus are usually present in a wide range of foods, fermented sausages being one of the major biogenic amine sources. The use of selected starter cultures is one of the best technological measures to control aminogenesis during meat fermentation. Although with variable effectiveness, several works show the ability of some starters to render biogenic amine-free sausages. In this paper, the effect of different starter culture is reviewed and the factors determining their performance discussed.

  18. Identification of amines in wintertime ambient particulate material using high resolution aerosol mass spectrometry

    Science.gov (United States)

    Bottenus, Courtney L. H.; Massoli, Paola; Sueper, Donna; Canagaratna, Manjula R.; VanderSchelden, Graham; Jobson, B. Thomas; VanReken, Timothy M.

    2018-05-01

    Significant amounts of amines were detected in fine particulate matter (PM) during ambient wintertime conditions in Yakima, WA, using a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Positive matrix factorization (PMF) of the organic aerosol (OA) signal resulted in a six-factor solution that included two previously unreported amine OA factors. The contributions of the amine factors were strongly episodic, but the concentration of the combined amine factors was as high as 10-15 μg m-3 (2-min average) during those episodes. In one occasion, the Amine-II component was 45% of total OA signal. The Amine-I factor was dominated by spectral peaks at m/z 86 (C5H12N+) and m/z 100 (C6H14N+), while the Amine-II factor was dominated by spectral peaks at m/z 58 (C3H8N+ and C2H6N2+) and m/z 72 (C4H10N+ and C3H8N2+). The ions dominating each amine factor showed distinct time traces, suggesting different sources or formation processes. Investigation into the chemistry of the amine factors suggests a correlation with inorganic anions for Amine-I, but no evidence that the Amine-II was being neutralized by the same inorganic ions. We also excluded the presence of organonitrates (ON) in the OA. The presence of C2H4O2+ at m/z 60 (a levoglucosan fragment) in the Amine-I spectrum suggests some influence of biomass burning emissions (more specifically residential wood combustion) in this PMF factor, but wind direction suggested that the most likely sources of these amines were agricultural activities and feedlots to the S-SW of the site.

  19. Use of small diameter column particles to enhance HPLC determination of histamine and other biogenic amines in seafood

    DEFF Research Database (Denmark)

    Simat, Vida; Dalgaard, Paw

    2011-01-01

    Pre-column and post-column HPLC derivatization methods were modified and evaluated for the identification and quantification of nine biogenic amines in seafood Two HPLC methods with column particles of 1 8 mu m or 3 mu m in diameter were modified and compared to classical methods using 5 mu m...... column particles Both pre-column derivatization with dansyl chloride and post-column derivatization with O-phthalaldehyde were studied The HPLC methods were compared with respect to the time of elution eluent consumption backpressure as well as separation sensitivity recovery and repeatability...... for determination of biogenic amines in lean canned tuna and fatty frozen herring The modified methods using smaller column particles of 1 8 mu m or 3 mu m allowed biogenic amines to be separated and quantified faster (23-59%) and with less eluent consumption (59-62%) than classical HPLC methods Backpressures were...

  20. Application of ultraviolet, ozone, and advanced oxidation treatments to washwaters to destroy nitrosamines, nitramines, amines, and aldehydes formed during amine-based carbon capture.

    Science.gov (United States)

    Shah, Amisha D; Dai, Ning; Mitch, William A

    2013-03-19

    Although amine-based CO(2) absorption is a leading contender for full-scale postcombustion CO(2) capture at power plants, concerns have been raised about the potential release of carcinogenic N-nitrosamines and N-nitramines formed by reaction of exhaust gas NO(x) with the amines. Experiments with a laboratory-scale pilot unit suggested that washwater units meant to scrub contaminants from absorber unit exhaust could potentially serve as a source of N-nitrosamines via reactions of residual NO(x) with amines accumulating in the washwater. Dosage requirements for the continuous treatment of the washwater recycle line with ultraviolet (UV) light for destruction of N-nitrosamines and N-nitramines, and with ozone or hydroxyl radical-based advanced oxidation processes (AOPs) for destruction of amines and aldehydes, were evaluated. Although amine destruction. Ozone achieved 90% amine removal in washwaters at 5-12 molar excess of ozone, indicating transferred dosage levels of ∼100 mg/L for 90% removal in a first-stage washwater unit, but likely only ∼10 mg/L if applied to a second-stage washwater. Accurate dosage and cost estimates would require pilot testing to capture synergies between UV and ozone treatments.

  1. Cancer-targeting siRNA delivery from porous silicon nanoparticles.

    Science.gov (United States)

    Wan, Yuan; Apostolou, Sinoula; Dronov, Roman; Kuss, Bryone; Voelcker, Nicolas H

    2014-10-01

    Porous silicon nanoparticles (pSiNPs) with tunable pore size are biocompatible and biodegradable, suggesting that they are suitable biomaterials as vehicles for drug delivery. Loading of small interfering RNA (siRNA) into the pores of pSiNPs can protect siRNA from degradation as well as improve the cellular uptake. We aimed to deliver MRP1 siRNA loaded into pSiNPs to glioblastoma cells, and to demonstrate downregulation of MRP1 at the mRNA and protein levels. 50-220 nm pSiNPs with an average pore size of 26 nm were prepared, followed by electrostatic adsorption of siRNA into pores. Oligonucleotide loading and release profiles were investigated; MRP1 mRNA and protein expression, cell viability and cell apoptosis were studied. Approximately 7.7 µg of siRNA was loaded per mg of pSiNPs. Cells readily took up nanoparticles after 30 min incubation. siRNA-loaded pSiNPs were able to effectively downregulate target mRNA (~40%) and protein expression (31%), and induced cell apoptosis and necrosis (33%). siRNA loaded pSiNPs downregulated mRNA and protein expression and induced cell death. This novel siRNA delivery system may pave the way towards developing more effective tumor therapies.

  2. Effect of pH and modifier-concentration on the solvent extraction of molybdenum with an alkyl amine

    International Nuclear Information System (INIS)

    Al-Siddique, F.R.; Adeler, I.; Huwyler, S.

    1980-07-01

    The results of the extraction behaviour of molybdenum in aqueous sulfuric acid solutions of an alkyl amine (amberlite LA-2) in kerosene under various pH and in the presence of various percentage of 1-octanol has been reported. The concentration of molybdenum employed was high enough to precipitate it partially during extraction as an amine-molybdenum complex. The maximum extraction coefficient was found to lie between pH 1.5-2.5. Presence of 1-octanol increased the extraction coefficient of molybdenum by increasing the solubility of the amine-molybdenum complex in the organic phase without changing the pH at the maximum extraction. (Auth.)

  3. New insights into siRNA amplification and RNAi.

    Science.gov (United States)

    Zhang, Chi; Ruvkun, Gary

    2012-08-01

    In the nematode Caenorhabditis elegans (C. elegans), gene inactivation by RNA interference can achieve remarkable potency due to the amplification of initial silencing triggers by RNA-dependent RNA polymerases (RdRPs). RdRPs catalyze the biogenesis of an abundant species of secondary small interfering RNAs (siRNAs) using the target mRNA as template. The interaction between primary siRNAs derived from the exogenous double-stranded RNA (dsRNA) trigger and the target mRNA is required for the recruitment of RdRPs. Other genetic requirements for RdRP activities have not been characterized. Recent studies have identified the RDE-10/RDE-11 complex which interacts with the primary siRNA bound target mRNA and acts upstream of the RdRPs. rde-10 and rde-11 mutants show an RNAi defective phenotype because the biogenesis of secondary siRNAs is completely abolished. In addition, the RDE-10/RDE-11 complex plays a similar role in the endogenous RNAi pathway for the biogenesis of a subset of siRNAs targeting recently acquired, duplicated genes.

  4. Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells.

    Science.gov (United States)

    Alshehri, Abdullah; Grabowska, Anna; Stolnik, Snow

    2018-02-28

    Design of an efficient delivery system is a generally recognised bottleneck in translation of siRNA technology into clinic. Despite research efforts, cellular processes that determine efficiency of siRNA silencing achieved by different delivery formulations remain unclear. Here, we investigated the mechanism(s) of cellular internalisation of a model siRNA-loaded liposome system in a correlation to the engagement of delivered siRNA with its target and consequent silencing by adopting siRNA molecular beacon technology. Probing of cellular internalisation pathways by a panel of pharmacological inhibitors indicated that clathrin-mediated (dynamin-dependent) endocytosis, macropinocytosis (dynamine independent), and cell membrane cholesterol dependent process(es) (clathrin and caveolea-independent) all play a role in the siRNA-liposomes internalization. The inhibition of either of these entry routes was, in general, mirrored by a reduction in the level of siRNA engagement with its target mRNA, as well as in a reduction of the target gene silencing. A dramatic increase in siRNA engagement with its target RNA was observed on disruption of endosomal membrane (by chloroquine), accompanied with an increased silencing. The work thus illustrates that employing molecular beacon siRNA technology one can start to assess the target RNA engagement - a stage between initial cellular internalization and final gene silencing of siRNA delivery systems.

  5. Enhanced removal of nitrate from water using amine-grafted agricultural wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kalaruban, Mahatheva; Loganathan, Paripurnanda [Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia); Shim, W.G. [Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia); Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-ro, Suncheon, Jeollanam-do (Korea, Republic of); Kandasamy, Jaya; Ngo, H.H. [Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia); Vigneswaran, Saravanamuthu, E-mail: s.vigneswaran@uts.edu.au [Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia)

    2016-09-15

    Adsorption using low-cost adsorbents is a favourable water treatment method for the removal of water contaminants. In this study the enhanced removal of nitrate, a contaminant at elevated concentration affecting human health and causing eutrophication of water, was tested using chemically modified agricultural wastes as adsorbents. Batch and fixed-bed adsorption studies were performed on corn cob and coconut copra that were surface modified by amine-grafting to increase the surface positive charges. The Langmuir nitrate adsorption capacities (mg N/g) were 49.9 and 59.0 for the amine-grafted (AG) corn cob and coconut copra, respectively at pH 6.5 and ionic strength 1 × 10{sup −3} M NaCl. These values are higher than those of many commercially available anion exchange resins. Fixed-bed (15-cm height) adsorption capacities (mg N/g) calculated from the breakthrough curves were 15.3 and 18.6 for AG corn cob and AG coconut copra, respectively, for an influent nitrate concentration 20 mg N/L at a flow velocity 5 m/h. Nitrate adsorption decreased in the presence of sulphate, phosphate and chloride, with sulphate being the most competitive anion. The Thomas model fitted well to the fixed-bed adsorption data from four repeated adsorption/desorption cycles. Plug-flow model fitted well to the data from only the first cycle. - Highlights: • Ground coconut copra and corn cob particles surfaces are readily amine-grafted. • Amine-grafting reversed the particles' surface charge from negative to positive. • Amine-grafting of the waste particles increased nitrate adsorption capacity. • Nitrate adsorption capacity reduced by co-ions; sulphate > chloride > phosphate. • Fixed-bed nitrate adsorption data fitted well to Thomas and plug-flow models.

  6. Enhanced removal of nitrate from water using amine-grafted agricultural wastes

    International Nuclear Information System (INIS)

    Kalaruban, Mahatheva; Loganathan, Paripurnanda; Shim, W.G.; Kandasamy, Jaya; Ngo, H.H.; Vigneswaran, Saravanamuthu

    2016-01-01

    Adsorption using low-cost adsorbents is a favourable water treatment method for the removal of water contaminants. In this study the enhanced removal of nitrate, a contaminant at elevated concentration affecting human health and causing eutrophication of water, was tested using chemically modified agricultural wastes as adsorbents. Batch and fixed-bed adsorption studies were performed on corn cob and coconut copra that were surface modified by amine-grafting to increase the surface positive charges. The Langmuir nitrate adsorption capacities (mg N/g) were 49.9 and 59.0 for the amine-grafted (AG) corn cob and coconut copra, respectively at pH 6.5 and ionic strength 1 × 10"−"3 M NaCl. These values are higher than those of many commercially available anion exchange resins. Fixed-bed (15-cm height) adsorption capacities (mg N/g) calculated from the breakthrough curves were 15.3 and 18.6 for AG corn cob and AG coconut copra, respectively, for an influent nitrate concentration 20 mg N/L at a flow velocity 5 m/h. Nitrate adsorption decreased in the presence of sulphate, phosphate and chloride, with sulphate being the most competitive anion. The Thomas model fitted well to the fixed-bed adsorption data from four repeated adsorption/desorption cycles. Plug-flow model fitted well to the data from only the first cycle. - Highlights: • Ground coconut copra and corn cob particles surfaces are readily amine-grafted. • Amine-grafting reversed the particles' surface charge from negative to positive. • Amine-grafting of the waste particles increased nitrate adsorption capacity. • Nitrate adsorption capacity reduced by co-ions; sulphate > chloride > phosphate. • Fixed-bed nitrate adsorption data fitted well to Thomas and plug-flow models.

  7. Novel bioreducible poly(amido amine)s for highly efficient gene delivery

    NARCIS (Netherlands)

    Lin, C.; Zhong, Zhiyuan; Lok, Martin C.; Jiang, Xulin; Hennink, Wim E.; Feijen, Jan; Engbersen, Johannes F.J.

    2007-01-01

    A series of novel bioreducible poly(amido amine)s containing multiple disulfide linkages (SS-PAAs) were synthesized and evaluated as nonviral gene vectors. These linear SS-PAAs could be easily obtained by Michael-type polyaddition of various primary amines to the disulfide-containing cystamine

  8. Reducing the energy penalty costs of postcombustion CCS systems with amine-storage.

    Science.gov (United States)

    Patiño-Echeverri, Dalia; Hoppock, David C

    2012-01-17

    Carbon capture and storage (CCS) can significantly reduce the amount of CO(2) emitted from coal-fired power plants but its operation significantly reduces the plant's net electrical output and decreases profits, especially during times of high electricity prices. An amine-based CCS system can be modified adding amine-storage to allow postponing 92% of all its energy consumption to times of lower electricity prices, and in this way has the potential to effectively reduce the cost of CO(2) capture by reducing the costs of the forgone electricity sales. However adding amine-storage to a CCS system implies a significant capital cost that will be outweighed by the price-arbitrage revenue only if the difference between low and high electricity prices is substantial. In this paper we find a threshold for the variability in electricity prices that make the benefits from electricity price arbitrage outweigh the capital costs of amine-storage. We then look at wholesale electricity markets in the Eastern Interconnect of the United States to determine profitability of amine-storage systems in this region. Using hourly electricity price data from years 2007 and 2008 we find that amine storage may be cost-effective in areas with high price variability.

  9. Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.

    Science.gov (United States)

    Tanaka, Mutsuo; Sawaguchi, Takahiro; Sato, Yukari; Yoshioka, Kyoko; Niwa, Osamu

    2011-01-04

    Surface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration. (ii) The surface concentration of immobilized amine derivative did not reach to the dense-monolayer concentration reflecting their low reactivity. (iii) The surface modification with the dense-monolayer concentration was also possible with azide derivative, but the modified surface contained some oligomers produced by the photoreaction of azides. Besides, the blocking effect against redox reaction was observed for GC modified with diazonium derivative and for HOPG modified with diazonium and azide derivatives, suggesting fabrication of a densely modified surface. Finally, the surface observation for HOPG modified with diazonium derivative by EC-STM showed a typical monolayer structure, in which the ferrocene moieties were packed densely at random. On the basis of those results, it was demonstrated that surface modification of carbon substrates with diazonium could afford a dense monolayer similar to the self-assembled monolayer (SAM) formation.

  10. Mass spectrometric detection of siRNA in plasma samples for doping control purposes.

    Science.gov (United States)

    Kohler, Maxie; Thomas, Andreas; Walpurgis, Katja; Schänzer, Wilhelm; Thevis, Mario

    2010-10-01

    Small interfering ribonucleic acid (siRNA) molecules can effect the expression of any gene by inducing the degradation of mRNA. Therefore, these molecules can be of interest for illicit performance enhancement in sports by affecting different metabolic pathways. An example of an efficient performance-enhancing gene knockdown is the myostatin gene that regulates muscle growth. This study was carried out to provide a tool for the mass spectrometric detection of modified and unmodified siRNA from plasma samples. The oligonucleotides are purified by centrifugal filtration and the use of an miRNA purification kit, followed by flow-injection analysis using an Exactive mass spectrometer to yield the accurate masses of the sense and antisense strands. Although chromatography and sensitive mass spectrometric analysis of oligonucleotides are still challenging, a method was developed and validated that has adequate sensitivity (limit of detection 0.25-1 nmol mL(-1)) and performance (precision 11-21%, recovery 23-67%) for typical antisense oligonucleotides currently used in clinical studies.

  11. Self-Consistent Sources Extensions of Modified Differential-Difference KP Equation

    Science.gov (United States)

    Gegenhasi; Li, Ya-Qian; Zhang, Duo-Duo

    2018-04-01

    In this paper, we investigate a modified differential-difference KP equation which is shown to have a continuum limit into the mKP equation. It is also shown that the solution of the modified differential-difference KP equation is related to the solution of the differential-difference KP equation through a Miura transformation. We first present the Grammian solution to the modified differential-difference KP equation, and then produce a coupled modified differential-difference KP system by applying the source generation procedure. The explicit N-soliton solution of the resulting coupled modified differential-difference system is expressed in compact forms by using the Grammian determinant and Casorati determinant. We also construct and solve another form of the self-consistent sources extension of the modified differential-difference KP equation, which constitutes a Bäcklund transformation for the differential-difference KP equation with self-consistent sources. Supported by the National Natural Science Foundation of China under Grant Nos. 11601247 and 11605096, the Natural Science Foundation of Inner Mongolia Autonomous Region under Grant Nos. 2016MS0115 and 2015MS0116 and the Innovation Fund Programme of Inner Mongolia University No. 20161115

  12. Chemical role of amines in the colloidal synthesis of CdSe quantum dots and their luminescence properties

    International Nuclear Information System (INIS)

    Nose, Katsuhiro; Fujita, Hiroshi; Omata, Takahisa; Otsuka-Yao-Matsuo, Shinya; Nakamura, Hiroyuki; Maeda, Hideaki

    2007-01-01

    The role of organic amines in the colloidal synthesis of CdSe quantum dots (QDs) has been studied. CdSe QDs were synthesized from the source solutions containing 5 vol% of amines having various alkyl chain lengths, stereochemical sizes and electron donation abilities. The role of the additional amines was evaluated on the basis of the photoluminescence (PL) properties such as PL wavelength and intensity of the obtained CdSe QDs. The observed PL spectra were explained by the fact that the amines behaved as capping ligands on the surface of the QDs in the product colloidal solution and complex ligands for cadmium in the source solutions. It was shown that the particle size was controlled by the diffusion process depending on the mass and stereochemical shape of the amines, and the luminescence intensity increased with the increasing electron donation ability and capping density of the amines

  13. Electrodeposition of amine-terminatedpoly(ethylene glycol) to titanium surface

    International Nuclear Information System (INIS)

    Tanaka, Yuta; Doi, Hisashi; Iwasaki, Yasuhiko; Hiromoto, Sachiko; Yoneyama, Takayuki; Asami, Katsuhiko; Imai, Hachiro; Hanawa, Takao

    2007-01-01

    The immobilization of poly(ethylene glycol), PEG, to a solid surface is useful to functionalize the surface, e.g., to prevent the adsorption of proteins. No successful one-stage technique for the immobilization of PEG to base metals has ever been developed. In this study, PEG in which both terminals or one terminal had been modified with amine bases was immobilized onto a titanium surface using electrodeposition. PEG was dissolved in a NaCl solution, and electrodeposition was carried out at 310 K with - 5 V for 300 min. The thickness of the deposited PEG layer was evaluated using ellipsometry, and the bonding manner of PEG to the titanium surface was characterized using X-ray photoelectron spectroscopy after electrodeposition. The results indicated that a certain amount of PEG was adsorbed on titanium through both electrodeposition and immersion when PEG was terminated by amine. However, terminated amines existed at the surface of titanium and were combined with titanium oxide as N-HO by electrodeposition, while amines randomly existed in the molecule and showed an ionic bond with titanium oxide by immersion. The electrodeposition of PEG was effective for the inhibition of albumin adsorption. This process is useful for materials that have electroconductivity and a complex morphology

  14. Block Copolymer Modified Epoxy Amine System for Reactive Rotational Molding: Structures, Properties and Processability

    Science.gov (United States)

    Lecocq, Eva; Nony, Fabien; Tcharkhtchi, Abbas; Gérard, Jean-François

    2011-05-01

    Poly(styrene-butadiene-methylmethacrylate) (SBM) and poly(methylmethacrylate-butyle-acrylate-methylmethacrylate) (MAM) triblock copolymers have been dissolved in liquid DGEBA epoxy resin which is subsequently polymerized by meta-xylene diamine (MXDA) or Jeffamine EDR-148. A chemorheology study of these formulations by plate-plate rheology and by thermal analysis has allowed to conclude that the addition of these copolymer blocks improve the reactive rotational moulding processability without affecting the processing time. Indeed, it prevents the pooling of the formulation at the bottom of the mould and a too rapid build up of resin viscosity of these thermosetting systems. The morphology of the cured blends examined by scanning electron microscopy (SEM) shows an increase of fracture surface area and thereby a potential increase of the toughness with the modification of epoxy system. Dynamic mechanical spectroscopy (DMA) and opalescence of final material show that the block PMMA, initially miscible, is likely to induce phase separation from the epoxy-amine matrix. Thereby, the poor compatibilisation between the toughener and the matrix has a detrimental effect on the tensile mechanical properties. The compatibilisation has to be increased to improve in synergy the processability and the final properties of these block copolymer modified formulations. First attempts could be by adapting the length and ratio of each block.

  15. Programming MIL-101Cr for selective and enhanced CO2 adsorption at low pressure by postsynthetic amine functionalization.

    Science.gov (United States)

    Khutia, Anupam; Janiak, Christoph

    2014-01-21

    MIL-101Cr fully or partially (p) postsynthetically modified with nitro (-NO2) or amino (-NH2) groups was shown to be a robust, water stable, selective and enhanced carbon dioxide (CO2) adsorption material with the amine-functionality. The highly microporous amine-modified frameworks (up to 1.6 cm(3) g(-1) total pore volume) exhibit excellent thermal stability (>300 °C) with BET surface areas up to 2680 m(2) g(-1). At 1 bar (at 273 K) the gases CO2, CH4 and N2 are adsorbed up to 22.2 wt%, 1.67 wt% and 2.27 wt%, respectively. The two amine-modified MIL-101Cr-NH2 (4) and MIL-101Cr-pNH2 (5) showed the highest gas uptake capacities in the series with high ratios for the CO2 : N2 and CO2 : CH4 selectivities (up to 119 : 1 and 75 : 1, respectively, at 273 K). Comparison with non-modified MIL-101Cr traces the favorable CO2 adsorption properties of MIL-101Cr-NH2 (4) and MIL-101Cr-pNH2 (5) to the presence of the Lewis-basic amine groups. MIL-101Cr-NH2 (4) has a high isosteric heat of adsorption of 43 kJ mol(-1) at zero surface coverage and also >23 kJ mol(-1) over the entire adsorption range, which is well above the heat of liquefaction of bulk CO2. Large CO2 uptake capacities of amine-functionalized 4 and 5, coupled with high adsorption enthalpy, high selectivities and proven long-term water stability, make them suitable candidates for capturing CO2 at low pressure from gas mixtures including the use as a CO2 sorbent from moist air.

  16. Surface modification of amine-functionalised graphite for preparation of cobalt hexacyanoferrate (CoHCF)-modified electrode: an amperometric sensor for determination of butylated hydroxyanisole (BHA).

    Science.gov (United States)

    Prabakar, S J Richard; Narayanan, S Sriman

    2006-12-01

    A cobalt hexacyanoferrate (CoHCF)-modified graphite paraffin wax composite electrode was prepared by a new approach. An amine-functionalised graphite powder was used for the fabrication of the electrode. A functionalised graphite paraffin wax composite electrode was prepared and the surface of the electrode was modified with a thin film of CoHCF. Various parameters that influence the electrochemical behaviour of the modified electrode were studied by varying the background electrolytes, scan rates and pH. The modified electrode showed good electrocatalytic activity towards the oxidation of butylated hydroxyanisole (BHA) under optimal conditions and showed a linear response over the range from 7.9 x 10(-7) to 1.9 x 10(-4) M of BHA with a correlation coefficient of 0.9988. The limit of detection was 1.9 x 10(-7) M. Electrocatalytic oxidation of BHA was effective at the modified electrode at a significantly reduced potential and at a broader pH range. The utility of the modified electrode as an amperometric sensor for the determination of BHA in flow systems was evaluated by carrying out hydrodynamic and chronoamperometric experiments. The modified electrode showed very good stability and a longer shelf life. The modified electrode was applied for the determination of BHA in spiked samples of chewing gum and edible sunflower oil. The advantage of this method is the ease of electrode fabrication, good stability, longer shelf life, low cost and its diverse application for BHA determination.

  17. SiRNA Crosslinked Nanoparticles for the Treatment of Inflammation-induced Liver Injury.

    Science.gov (United States)

    Tang, Yaqin; Zeng, Ziying; He, Xiao; Wang, Tingting; Ning, Xinghai; Feng, Xuli

    2017-02-01

    RNA interference mediated by small interfering RNA (siRNA) provides a powerful tool for gene regulation, and has a broad potential as a promising therapeutic strategy. However, therapeutics based on siRNA have had limited clinical success due to their undesirable pharmacokinetic properties. This study presents pH-sensitive nanoparticles-based siRNA delivery systems (PNSDS), which are positive-charge-free nanocarriers, composed of siRNA chemically crosslinked with multi-armed poly(ethylene glycol) carriers via acid-labile acetal linkers. The unique siRNA crosslinked structure of PNSDS allows it to have minimal cytotoxicity, high siRNA loading efficiency, and a stimulus-responsive property that enables the selective intracellular release of siRNA in response to pH conditions. This study demonstrates that PNSDS can deliver tumor necrosis factor alpha (TNF-α) siRNA into macrophages and induce the efficient down regulation of the targeted gene in complete cell culture media. Moreover, PNSDS with mannose targeting moieties can selectively accumulate in mice liver, induce specific inhibition of macrophage TNF-α expression in vivo, and consequently protect mice from inflammation-induced liver damages. Therefore, this novel siRNA delivering platform would greatly improve the therapeutic potential of RNAi based therapies.

  18. Purification and characterization of the amine dehydrogenase from a facultative methylotroph.

    Science.gov (United States)

    Coleman, J P; Perry, J J

    1984-01-01

    Strain RA-6 is a pink-pigmented organism which can grow on a variety of substrates including methylamine. It can utilize methylamine as sole source of carbon via an isocitrate lyase negative serine pathway. Methylamine grown cells contain an inducible primary amine dehydrogenase [primary amine: (acceptor) oxidoreductase (deaminating)] which is not present in succinate grown cells. The amine dehydrogenase was purified to over 90% homogeneity. It is an acidic protein (isoelectric point of 5.37) with a molecular weight of 118,000 containing subunits with approximate molecular weights of 16,500 and 46,000. It is active on an array of primary terminal amines and is strongly inhibited by carbonyl reagents. Cytochrome c or artificial electron acceptors are required for activity; neither NAD nor NADP can serve as primary electron acceptor.

  19. The ozonolysis of primary aliphatic amines in single and multicomponent fine particles

    Science.gov (United States)

    Zahardis, J.; Geddes, S.; Petrucci, G. A.

    2007-10-01

    The oxidative processing by ozone of the particulate amines octadecylamine (ODA) and hexadecylamine (HDA) is reported. Ozonolysis of these amines resulted in strong NO2- and NO3- ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitro alkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3-(HNO3). For ozonized mixed particles containing ODA or HDA + oleic acid (OL), with pO3≥3×10-7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines) and stabilized Criegee intermediates (SCI) or secondary ozonides (for amides) from the fatty acid. The routes to amides via SCI and/or secondary ozonides was shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10-3 atm for 17 s). This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g. NO2, NO3), formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  20. Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier – from Targeting to Safe Administration

    DEFF Research Database (Denmark)

    Gomes, Maria João; Fernandes, Carlos; Martins, Susana

    2017-01-01

    . The interaction of modified nanoparticles with brain endothelial cells increased 3-fold compared to non-modified lipid nanoparticles, and 4-fold compared to non-modified PLGA nanoparticles, respectively. These nanosystems, which were also demonstrated to be safe for human brain endothelial cells, without...... and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm...

  1. In vivo siRNA delivery system for targeting to the liver by poly-l-glutamic acid-coated lipoplex

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Hattori

    2014-01-01

    Full Text Available In this study, we developed anionic polymer-coated liposome/siRNA complexes (lipoplexes with chondroitin sulfate C (CS, poly-l-glutamic acid (PGA and poly-aspartic acid (PAA for siRNA delivery by intravenous injection, and evaluated the biodistribution and gene silencing effect in mice. The sizes of CS-, PGA- and PAA-coated lipoplexes were about 200 nm and their ζ-potentials were negative. CS-, PGA- and PAA-coated lipoplexes did not induce agglutination after mixing with erythrocytes. In terms of biodistribution, siRNAs after intravenous administration of cationic lipoplexes were largely observed in the lungs, but those of CS-, PGA- and PAA-coated lipoplexes were in both the liver and the kidneys, indicating that siRNA might be partially released from the anionic polymer-coated lipoplexes in the blood circulation and accumulate in the kidney, although the lipoplexes can prevent the agglutination with blood components. To increase the association between siRNA and cationic liposome, we used cholesterol-modified siRNA (siRNA-Chol for preparation of the lipoplexes. When CS-, PGA- and PAA-coated lipoplexes of siRNA-Chol were injected into mice, siRNA-Chol was mainly observed in the liver, not in the kidneys. In terms of the suppression of gene expression in vivo, apolipoprotein B (ApoB mRNA in the liver was significantly reduced 48 h after single intravenous injection of PGA-coated lipoplex of ApoB siRNA-Chol (2.5 mg siRNA/kg, but not cationic, CS- and PAA-coated lipoplexes. In terms of toxicity after intravenous injection, CS-, PGA- and PAA-coated lipoplexes did not increase GOT and GPT concentrations in blood. From these findings, PGA coatings for cationic lipoplex of siRNA-Chol might produce a systemic vector of siRNA to the liver.

  2. Thermo-sensitive nanoparticles for triggered release of siRNA.

    Science.gov (United States)

    Yang, Zheng; Cheng, Qiang; Jiang, Qian; Deng, Liandong; Liang, Zicai; Dong, Anjie

    2015-01-01

    Efficient delivery of small interfering RNA (siRNA) is crucially required for cancer gene therapy. Herein, a thermo-sensitive copolymer with a simple structure, poly (ethylene glycol) methyl ether acrylate-b-poly (N-isopropylacrylamide) (mPEG-b-PNIPAM) was developed. A novel kind of thermo-sensitive nanoparticles (DENPs) was constructed for the cold-shock triggered release of siRNA by double emulsion-solvent evaporation method using mPEG-b-PNIPAM and a cationic lipid, 3β [N-(N', N'-dimethylaminoethane)-carbamoyl] cholesterol [DC-Chol]. DENPs were observed by transmission electron microscopy and dynamical light scattering before and after 'cold shock' treatment. The encapsulation efficiency (EE) of siRNA in DENPs, which was measured by fluorescence spectrophotometer was 96.8% while it was significantly reduced to be 23.2% when DC-Chol was absent. DENPs/siRNA NPs exhibited a thermo-sensitive siRNA release character that the cumulatively released amount of siRNA from cold shock was approximately 2.2 folds higher after 7 days. In vitro luciferase silencing experiments indicated that DENPs showed potent gene silencing efficacy in HeLa-Luc cells (HeLa cells steadily expressed luciferase), which was further enhanced by a cold shock. Furthermore, MTT assay showed that cell viability with DENPs/siRNA up to 200 nM remained above 80%. We also observed that most of siRNA was accumulated in kidney mediated by DENPs instead of liver and spleen in vivo experiments. Thus, DENPs as a cold shock responsive quick release model for siRNA or hydrophilic macromolecules delivery provide a new way to nanocarrier design and clinic therapy.

  3. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.

    Science.gov (United States)

    Ikawa, Takashi; Fujita, Yuki; Mizusaki, Tomoteru; Betsuin, Sae; Takamatsu, Haruki; Maegawa, Tomohiro; Monguchi, Yasunari; Sajiki, Hironao

    2012-01-14

    Nitriles were found to be highly effective alkylating reagents for the selective N-alkylation of amines under catalytic hydrogenation conditions. For the aromatic primary amines, the corresponding secondary amines were selectively obtained under Pd/C-catalyzed hydrogenation conditions. Although the use of electron poor aromatic amines or bulky nitriles showed a lower reactivity toward the reductive alkylation, the addition of NH(4)OAc enhanced the reactivity to give secondary aromatic amines in good to excellent yields. Under the same reaction conditions, aromatic nitro compounds instead of the aromatic primary amines could be directly transformed into secondary amines via a domino reaction involving the one-pot hydrogenation of the nitro group and the reductive alkylation of the amines. While aliphatic amines were effectively converted to the corresponding tertiary amines under Pd/C-catalyzed conditions, Rh/C was a highly effective catalyst for the N-monoalkylation of aliphatic primary amines without over-alkylation to the tertiary amines. Furthermore, the combination of the Rh/C-catalyzed N-monoalkylation of the aliphatic primary amines and additional Pd/C-catalyzed alkylation of the resulting secondary aliphatic amines could selectively prepare aliphatic tertiary amines possessing three different alkyl groups. According to the mechanistic studies, it seems reasonable to conclude that nitriles were reduced to aldimines before the nucleophilic attack of the amine during the first step of the reaction.

  4. Amine oxidase from lentil seedlings: energetic domains and effect of temperature on activity.

    Science.gov (United States)

    Moosavi-Nejad, S Z; Rezaei-Tavirani, M; Padiglia, A; Floris, G; Moosavi-Movahedi, A A

    2001-07-01

    Copper/TPQ amine oxidases from mammalian and plant sources have shown many differences in substrate specificity and molecular properties. In this work the activity of lentil seedling amine oxidase was followed at various temperatures in 100 mM potassium phosphate buffer, pH 7, using benzylamine as substrate. The discontinuous Arrhenius plot of lentil amine oxidase showed two distinct phases with a jump between them. Thermal denaturation of the enzyme, using differential scanning calorimetry under the same experimental conditions, showed a transition at the same temperature ranges in the absence of substrate, indicating the occurrence of conformational changes, with an enthalpy change of about 175.9 kJ/mole. The temperature-induced changes of the activity of lentil amine oxidase are compared with those of bovine serum amine oxidase (taken from the literature).

  5. Sorption Characteristics of Mixed Molecules of Glutaraldehyde from Water on Mesoporous Acid-Amine Modified Low-Cost Activated Carbon: Mechanism, Isotherm, and Kinetics

    Directory of Open Access Journals (Sweden)

    Mukosha Lloyd

    2015-01-01

    Full Text Available The environmental discharge of inefficiently treated waste solutions of the strong biocide glutaraldehyde (GA from hospitals has potential toxic impact on aquatic organisms. The adsorption characteristics of mixed polarized monomeric and polymeric molecules of GA from water on mesoporous acid-amine modified low-cost activated carbon (AC were investigated. It was found that the adsorption strongly depended on pH and surface chemistry. In acidic pH, the adsorption mechanism was elaborated to involve chemical sorption of mainly hydroxyl GA monomeric molecules on acidic surface groups, while in alkaline pH, the adsorption was elaborated to involve both chemical and physical sorption of GA polymeric forms having mixed functional groups (aldehyde, carboxyl, and hydroxyl on acidic and amine surface groups. The optimum pH of adsorption was about 12 with significant contribution by cooperative adsorption, elucidated in terms of hydrogen bonding and aldol condensation. Freundlich and Dubinin-Radushkevich models were fitted to isotherm data. The adsorption kinetics was dependent on initial concentration and temperature and described by the Elovich model. The adsorption was endothermic, while the intraparticle diffusion model suggested significant contribution by film diffusion. The developed low-cost AC could be used to supplement the GA alkaline deactivation process for efficient removal of residual GA aquatic toxicity.

  6. Azobisisobutyronitrile initiated aerobic oxidative transformation of amines: coupling of primary amines and cyanation of tertiary amines.

    Science.gov (United States)

    Liu, Lianghui; Wang, Zikuan; Fu, Xuefeng; Yan, Chun-Hua

    2012-11-16

    In the presence of a catalytic amount of radical initiator AIBN, primary amines are oxidatively coupled to imines and tertiary amines are cyanated to α-aminonitriles. These "metal-free" aerobic oxidative coupling reactions may find applications in a wide range of "green" oxidation chemistry.

  7. High-throughput screening of effective siRNAs using luciferase-linked chimeric mRNA.

    Directory of Open Access Journals (Sweden)

    Shen Pang

    Full Text Available The use of siRNAs to knock down gene expression can potentially be an approach to treat various diseases. To avoid siRNA toxicity the less transcriptionally active H1 pol III promoter, rather than the U6 promoter, was proposed for siRNA expression. To identify highly efficacious siRNA sequences, extensive screening is required, since current computer programs may not render ideal results. Here, we used CCR5 gene silencing as a model to investigate a rapid and efficient screening approach. We constructed a chimeric luciferase-CCR5 gene for high-throughput screening of siRNA libraries. After screening approximately 900 shRNA clones, 12 siRNA sequences were identified. Sequence analysis demonstrated that most (11 of the 12 sequences of these siRNAs did not match those identified by available siRNA prediction algorithms. Significant inhibition of CCR5 in a T-lymphocyte cell line and primary T cells by these identified siRNAs was confirmed using the siRNA lentiviral vectors to infect these cells. The inhibition of CCR5 expression significantly protected cells from R5 HIV-1JRCSF infection. These results indicated that the high-throughput screening method allows efficient identification of siRNA sequences to inhibit the target genes at low levels of expression.

  8. One step gold (bio)functionalisation based on CS{sub 2}-amine reaction

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ines [Centro de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa (Portugal); Cascalheira, Antonio C. [Lumisense, Lda, Campus Faculdade de Ciencias da Universidade de Lisboa, Ed. ICAT, Campo Grande, 1749-016 Lisboa (Portugal); Viana, Ana S., E-mail: anaviana@fc.ul.p [Centro de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa (Portugal)

    2010-12-01

    Dithiocarbamates have been regarded as alternative anchor groups to thiols on gold surfaces, and claimed to be formed in situ through the reaction between secondary amines and carbon disulphide. In this paper, we further exploit this methodology for a convenient one step biomolecule immobilisation onto gold surfaces. First, the reactivity between CS{sub 2} and electroactive compounds containing amines, primary (dopamine), secondary (epinephrine), and an amino acid (tryptophan) has been investigated by electrochemical methods. Cyclic voltammetric characterisation of the modified electrodes confirmed the immobilisation of all the target compounds, allowing the estimation of their surface concentration. The best result was obtained with epinephrine, a secondary amine, for which a typical quasi-reversible behaviour of surface confined electroactive species could be clearly depicted. Electrochemical reductive desorption studies enabled to infer on the extent of the reaction and on the relative stability of the generated monolayers. Bio-functionalisation studies have been accomplished through the reaction of CS{sub 2} with glucose oxidase in aqueous medium, and the catalytic activity of the immobilised enzyme was evaluated towards glucose, by electrochemical methods in the presence of a redox mediator. Scanning tunnelling microscopy (STM) and Atomic force microscopy (AFM) were used respectively, to characterize the gold electrodes and Glucose Oxidase coverage and distribution on the modified surfaces.

  9. Albumin-mediated delivery of siRNA

    DEFF Research Database (Denmark)

    Bienk, Konrad

    2015-01-01

    . The human body, however, possesses several natural transport mechanisms for active transport of molecules. Amongst these is albumin, which is the most abundant plasma protein and has a circulatory half-life of ~21 days, partially due to engagement and recycling by the neonatal Fc receptor (FcRn). Albumin...... vehicle. This proof of concept silencing showed that siRNA can be used for therapeutic purposes without the use of non-biocompatible polymer or lipid materials. This work, therefore, provides a novel technology platform for the safe delivery of siRNA therapeutics....

  10. Computational analysis of siRNA recognition by the Ago2 PAZ domain and identification of the determinants of RNA-induced gene silencing.

    Directory of Open Access Journals (Sweden)

    Mahmoud Kandeel

    Full Text Available RNA interference (RNAi is a highly specialized process of protein-siRNA interaction that results in the regulation of gene expression and cleavage of target mRNA. The PAZ domain of the Argonaute proteins binds to the 3' end of siRNA, and during RNAi the attaching end of the siRNA switches between binding and release from its binding pocket. This biphasic interaction of the 3' end of siRNA with the PAZ domain is essential for RNAi activity; however, it remains unclear whether stronger or weaker binding with PAZ domain will facilitate or hinder the overall RNAi process. Here we report the correlation between the binding of modified siRNA 3' overhang analogues and their in vivo RNAi efficacy. We found that higher RNAi efficacy was associated with the parameters of lower Ki value, lower total intermolecular energy, lower free energy, higher hydrogen bonding, smaller total surface of interaction and fewer van der Waals interactions. Electrostatic interaction was a minor contributor to compounds recognition, underscoring the presence of phosphate groups in the modified analogues. Thus, compounds with lower binding affinity are associated with better gene silencing. Lower binding strength along with the smaller interaction surface, higher hydrogen bonding and fewer van der Waals interactions were among the markers for favorable RNAi activity. Within the measured parameters, the interaction surface, van der Waals interactions and inhibition constant showed a statistically significant correlation with measured RNAi efficacy. The considerations provided in this report will be helpful in the design of new compounds with better gene silencing ability.

  11. Biogenic amines in dry fermented sausages: a review.

    Science.gov (United States)

    Suzzi, Giovanna; Gardini, Fausto

    2003-11-15

    Biogenic amines are compounds commonly present in living organisms in which they are responsible for many essential functions. They can be naturally present in many foods such as fruits and vegetables, meat, fish, chocolate and milk, but they can also be produced in high amounts by microorganisms through the activity of amino acid decarboxylases. Excessive consumption of these amines can be of health concern because their not equilibrate assumption in human organism can generate different degrees of diseases determined by their action on nervous, gastric and intestinal systems and blood pressure. High microbial counts, which characterise fermented foods, often unavoidably lead to considerable accumulation of biogenic amines, especially tyramine, 2-phenylethylamine, tryptamine, cadaverine, putrescine and histamine. However, great fluctuations of amine content are reported in the same type of product. These differences depend on many variables: the quali-quantitative composition of microbial microflora, the chemico-physical variables, the hygienic procedure adopted during production, and the availability of precursors. Dry fermented sausages are worldwide diffused fermented meat products that can be a source of biogenic amines. Even in the absence of specific rules and regulations regarding the presence of these compounds in sausages and other fermented products, an increasing attention is given to biogenic amines, especially in relation to the higher number of consumers with enhanced sensitivity to biogenic amines determined by the inhibition of the action of amino oxidases, the enzymes involved in the detoxification of these substances. The aim of this paper is to give an overview on the presence of these compounds in dry fermented sausages and to discuss the most important factors influencing their accumulation. These include process and implicit factors as well as the role of starter and nonstarter microflora growing in the different steps of sausage production

  12. Preparation and characterization of aminated graphite oxide for CO2 capture

    International Nuclear Information System (INIS)

    Zhao Yunxia; Ding Huiling; Zhong Qin

    2012-01-01

    Adsorption with solid sorbents is one of the most promising options for postcombustion carbon dioxide (CO 2 ) capture. In this study, aminated graphite oxide used for CO 2 adsorption was synthesized, based on the intercalation reaction of graphite oxide (GO) with amines, including ethylenediamine (EDA), diethylenetriamine (DETA) and triethylene tetramine (TETA). The structural information, surface chemistry and thermal behavior of the adsorbent samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), transmission electron microscope (TEM), elemental analysis, particle size analysis, nitrogen adsorption as well as differential thermal and thermogravimetric analysis (DSC-TGA). CO 2 capture was investigated by dynamic adsorption experiments with N 2 -CO 2 mixed gases at 30 °C. The three kinds of graphite oxide samples modified by excess EDA, DETA and TETA showed similar adsorption behaviors seen from their breakthrough curves. Among them, the sample aminated by EDA exhibited the highest adsorption capacity with the longest breakthrough time of CO 2 . Before saturation, its adsorption capacity was up to 53.62 mg CO 2 /g sample. In addition, graphite oxide samples modified by different amount of EDA (EDA/GO raw ratio 10 wt%, 50 wt% and 100 wt%) were prepared in the ethanol. Their CO 2 adsorption performance was investigated. The experimental results demonstrated that graphite oxide with 50 wt% EDA had the largest adsorption capacity 46.55 mg CO 2 /g sample.

  13. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sumi; Kim, Kyuwon [Incheon National University, Incheon (Korea, Republic of)

    2016-03-15

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  14. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    International Nuclear Information System (INIS)

    Park, Sumi; Kim, Kyuwon

    2016-01-01

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  15. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates

    Directory of Open Access Journals (Sweden)

    Santiago Grijalvo

    2018-02-01

    Full Text Available Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs or restoring the anomalous levels of non-coding RNAs (ncRNAs that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs, carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs, peptide nucleic acids (PNAs as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed.

  16. Strong cation exchange-type chiral stationary phase for enantioseparation of chiral amines in subcritical fluid chromatography.

    Science.gov (United States)

    Wolrab, Denise; Kohout, Michal; Boras, Mario; Lindner, Wolfgang

    2013-05-10

    A new strong cation exchange type chiral stationary phase (SCX CSP) based on a syringic acid amide derivative of trans-(R, R)-2-aminocyclohexanesulfonic acid was applied to subcritical fluid chromatography (SFC) for separation of various chiral basic drugs and their analogues. Mobile phase systems consisting of aliphatic alcohols as polar modifiers and a broad range of amines with different substitution patterns and lipophilicity were employed to evaluate the impact on the SFC retention and selectivity characteristics. The observed results point to the existence of carbonic and carbamic acid salts formed as a consequence of reactions occurring between carbon dioxide, the alcoholic modifiers and the amine species present in the sub/supercritical fluid medium, respectively. Evidence is provided that these species are essential for affecting ion exchange between the strongly acidic chiral selector units and the basic analytes, following the well-established stoichiometric displacement mechanisms. Specific trends were observed when different types of amines were used as basic additives. While ammonia gave rise to the formation of the most strongly eluting carbonic and carbamic salt species, simple tertiary amines consistently provided superior levels of enantioselectivity. Furthermore, trends in the chiral SFC separation characteristics were investigated by the systematic variation of the modifier content and temperature. Different effects of additives are interpreted in terms of changes in the relative concentration of the transient ionic species contributing to analyte elution, with ammonia-derived carbamic salts being depleted at elevated temperatures by decomposition. Additionally, in an effort to optimize SFC enantiomer separation conditions for selected analytes, the impact of the type of the organic modifier, temperature, flow rate and active back pressure were also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture

    Czech Academy of Sciences Publication Activity Database

    Zeleňák, V.; Badaničová, M.; Halamová, D.; Čejka, Jiří; Zukal, Arnošt; Murafa, Nataliya; Goerigk, G.

    2008-01-01

    Roč. 144, č. 2 (2008), s. 336-342 ISSN 1385-8947 R&D Projects: GA ČR GA203/08/0604 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : mesoporous silica * hexagonal * amine * carbon dioxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.813, year: 2008

  18. Targeted Delivery of siRNA to Macrophages for Anti-inflammatory Treatment

    OpenAIRE

    Kim, Sang-Soo; Ye, Chunting; Kumar, Priti; Chiu, Isaac; Subramanya, Sandesh; Wu, Haoquan; Shankar, Premlata; Manjunath, N

    2010-01-01

    Inflammation mediated by tumor necrosis factor-α (TNF-α) and the associated neuronal apoptosis characterizes a number of neurologic disorders. Macrophages and microglial cells are believed to be the major source of TNF-α in the central nervous system (CNS). Here, we show that suppression of TNF-α by targeted delivery of small interfering RNA (siRNA) to macrophage/microglial cells dramatically reduces lipopolysaccharide (LPS)-induced neuroinflammation and neuronal apoptosis in vivo. Because ma...

  19. Solid nano-in-nanoparticles for potential delivery of siRNA.

    Science.gov (United States)

    Amsalem, Orit; Nassar, Taher; Benhamron, Sandrine; Lazarovici, Philip; Benita, Simon; Yavin, Eylon

    2017-07-10

    siRNA-based therapeutics possess great potential to treat a wide variety of genetic disorders. However, they suffer from low cellular uptake and short half-lives in blood circulation; issues that remain to be addressed. This work is, to the best of our knowledge, the first to report the production of solid nano-in-nanoparticles, termed double nano carriers (DNCs) by means of the innovative technology of nano spray drying. DNCs (with a median size of 580-770nm) were produced by spraying at low temperatures (50°C) to prevent damage to heat-sensitive biomacromolecules like siRNA. DNCs consisting of Poly (d,l-lactide-co-glycolide) used as a wall material, encapsulating 20% human serum albumin primary nanoparticles (PNPs) loaded with siRNA, were obtained as a dry nanoparticulate powder with smooth spherical surfaces and a unique inner morphology. Incubation of pegylated or non-pegylated DNCs under sink conditions at 37°C, elicited a controlled release profile of the siRNA for up to 12 or 24h, respectively, with a minimal burst effect. Prolonged incubation of pegylated DNCs loaded with active siRNA (anti EGFR) in an A549 epithelial cell culture monolayer did not induce any apparent cytotoxicity. A slow degradation of the internalized DNCs by the cells was also observed resulting in the progressive release of the siRNA for up to 6days, as corroborated by laser confocal microscopy. The structural integrity and silencing activity of the double encapsulated siRNA were fully preserved, as demonstrated by HPLC, gel electrophoresis, and potent RNAi activity of siRNA extracted from DNCs. These results demonstrate the potential use of DNCs as a nano drug delivery system for systemic administration and controlled release of siRNA and potentially other sensitive bioactive macromolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. [Efficacy of siRNA on feline leukemia virus replication in vitro].

    Science.gov (United States)

    Lehmann, Melanie; Weber, Karin; Rauch, Gisep; Hofmann-Lehmann, Regina; Hosie, Margaret J; Meli, Marina L; Hartmann, Katrin

    2015-01-01

    Feline leukemia virus (FeLV) can lead to severe clinical signs in cats. Until now, there is no effective therapy for FeLV-infected cats. RNA interference-based antiviral therapy is a new concept. Specific small interfering RNA (siRNA) are designed complementary to the mRNA of a target region, and thus inhibit replication. Several studies have proven efficacy of siRNAs in inhibiting virus replication. The aim of this study was to evaluate the inhibitory potential of siRNAs against FeLV replication in vitro. siRNAs against the FeLV env gene and the host cell surface receptor (feTHTR1) which is used by FeLV-A for entry as well as siRNA that were not complementary to the FeLV or cat genome, were tested. Crandell feline kidney cells (CrFK cells) were transfected with FeLV-A/Glasgow-1. On day 13, infected cells were transfected with siRNAs. As control, cells were mock-transfected or treated with azidothymidine (AZT) (5 μg/ml). Culture supernatants were analyzed for FeLV RNA using quantitative real-time RT-PCR and for FeLV p27 by ELISA every 24 hours for five days. All siRNAs significantly reduced viral RNA and p27 production, starting after 48 hours. The fact that non-complementary siRNAs also inhibited virus replication may lead to the conclusion that unspecific mechanisms rather than specific binding lead to inhibition.

  1. Functional characterization of endogenous siRNA target genes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Heikkinen Liisa

    2008-06-01

    Full Text Available Abstract Background Small interfering RNA (siRNA molecules mediate sequence specific silencing in RNA interference (RNAi, a gene regulatory phenomenon observed in almost all organisms. Large scale sequencing of small RNA libraries obtained from C. elegans has revealed that a broad spectrum of siRNAs is endogenously transcribed from genomic sequences. The biological role and molecular diversity of C. elegans endogenous siRNA (endo-siRNA molecules, nonetheless, remain poorly understood. In order to gain insight into their biological function, we annotated two large libraries of endo-siRNA sequences, identified their cognate targets, and performed gene ontology analysis to identify enriched functional categories. Results Systematic trends in categorization of target genes according to the specific length of siRNA sequences were observed: 18- to 22-mer siRNAs were associated with genes required for embryonic development; 23-mers were associated uniquely with post-embryonic development; 24–26-mers were associated with phosphorus metabolism or protein modification. Moreover, we observe that some argonaute related genes associate with siRNAs with multiple reads. Sequence frequency graphs suggest that different lengths of siRNAs share similarities in overall sequence structure: the 5' end begins with G, while the body predominates with U and C. Conclusion These results suggest that the lengths of endogenous siRNA molecules are consequential to their biological functions since the gene ontology categories for their cognate mRNA targets vary depending upon their lengths.

  2. A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid

    Science.gov (United States)

    Andrews, Keith G.; Faizova, Radmila; Denton, Ross M.

    2017-06-01

    Amines are a fundamentally important class of biologically active compounds and the ability to manipulate their physicochemical properties through the introduction of fluorine is of paramount importance in medicinal chemistry. Current synthesis methods for the construction of fluorinated amines rely on air and moisture sensitive reagents that require special handling or harsh reductants that limit functionality. Here we report practical, catalyst-free, reductive trifluoroethylation reactions of free amines exhibiting remarkable functional group tolerance. The reactions proceed in conventional glassware without rigorous exclusion of either moisture or oxygen, and use trifluoroacetic acid as a stable and inexpensive fluorine source. The new methods provide access to a wide range of medicinally relevant functionalized tertiary β-fluoroalkylamine cores, either through direct trifluoroethylation of secondary amines or via a three-component coupling of primary amines, aldehydes and trifluoroacetic acid. A reduction of in situ-generated silyl ester species is proposed to account for the reductive selectivity observed.

  3. Development of a modified electrode with amine-functionalized TiO{sub 2}/multi-walled carbon nanotubes nanocomposite for electrochemical sensing of the atypical neuroleptic drug olanzapine

    Energy Technology Data Exchange (ETDEWEB)

    Arvand, Majid, E-mail: arvand@guilan.ac.ir; Palizkar, Bahareh

    2013-12-01

    In this work, using of amine-functionalized TiO{sub 2}/multi-walled carbon nanotubes (NH{sub 2}-TiO{sub 2}-MWCNTs) nanocomposite for modification of glassy carbon electrode (GCE) was investigated. The nanocomposite was characterized by Fourier transformed infrared spectroscopy, transmission electron microscopy and scanning electron microscopy. The efficiency of modified electrode for electrocatalytic the oxidation of olanzapine was studied by cyclic voltammetry, square wave voltammetry and chronoamperometry. The electrochemical measurements were carried out in phosphate-buffered solution (PBS, pH 5.0). The NH{sub 2}-TiO{sub 2}-MWCNTs/GCE provided high surface area and more sensitive performance. The charge transfer coefficient (α) and the apparent charge transfer rate constant (k{sub s}) were calculated to be equal to 0.42 and 0.173 s{sup −1}, respectively. The square wave voltammetry exhibited two linear dynamic ranges and a detection limit of 0.09 μM of olanzapine. In addition, the modified electrode was employed for the determination of olanzapine in pharmaceutical and human blood serum samples in order to illustrate the applicability of proposed method. - Highlights: • A simple and rapid sensor for determination of olanzapine in tablet and serum was prepared. • The amine-functionalized TiO{sub 2}-MWCNTs/GCE showed an obvious increase in surface area. • The presence of NH{sub 2}-TiO{sub 2} nanoparticles showed good ability to distinguish the response of olanzapine.

  4. Dendrimers for siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Swati Biswas

    2013-02-01

    Full Text Available Since the discovery of the “starburst polymer”, later renamed as dendrimer, this class of polymers has gained considerable attention for numerous biomedical applications, due mainly to the unique characteristics of this macromolecule, including its monodispersity, uniformity, and the presence of numerous functionalizable terminal groups. In recent years, dendrimers have been studied extensively for their potential application as carriers for nucleic acid therapeutics, which utilize the cationic charge of the dendrimers for effective dendrimer-nucleic acid condensation. siRNA is considered a promising, versatile tool among various RNAi-based therapeutics, which can effectively regulate gene expression if delivered successfully inside the cells. This review reports on the advancements in the development of dendrimers as siRNA carriers.

  5. N-heterocyclic carbene copper(I) catalysed N-methylation of amines using CO2

    KAUST Repository

    Santoro, Orlando

    2015-09-30

    The N-methylation of amines using CO2 and PhSiH3 as source of CH3 was efficiently performed using a N-heterocyclic carbene copper(I) complex. The methodology was found compatible with aromatic and aliphatic primary and secondary amines. Synthetic and computational studies have been carried out to support the proposed reaction mechanism for this transformation.

  6. N-heterocyclic carbene copper(I) catalysed N-methylation of amines using CO2

    KAUST Repository

    Santoro, Orlando; Lazreg, Faï ma; Minenkov, Yury; Cavallo, Luigi; Cazin, Catherine S. J.

    2015-01-01

    The N-methylation of amines using CO2 and PhSiH3 as source of CH3 was efficiently performed using a N-heterocyclic carbene copper(I) complex. The methodology was found compatible with aromatic and aliphatic primary and secondary amines. Synthetic and computational studies have been carried out to support the proposed reaction mechanism for this transformation.

  7. SiRNAs in vivo imaging: methodology of fluorine-18 radiolabelling and application for the optimization of the siRNAs biodistribution and pharmaceutical properties; Imagerie in vivo des ARN interferentiels: methodologie de marquage au fluor-18 et application pour l'optimisation par imagerie de leur biodistribution et de leurs proprietes pharmacologiques

    Energy Technology Data Exchange (ETDEWEB)

    Viel, Th

    2008-01-15

    As RNA interference is a natural process which enables eukaryote cells to regulate the gene expressions, to control transposons, and to struggle against some viruses, two imagery techniques have been used in this research, i.e. optical imagery and Positron Emission Tomography (PET) imagery, to study the various modifications of the small interferential RNAs (siRNA). Different chemically modified siRNAs have been prepared and their in vitro activity, their in vivo metabolism (by HPLC analysis), their bio-distribution and their pharmacokinetic properties (by PET imagery) after marking them with fluorine-18. Their in vivo activity has been assessed by optical imagery.

  8. Amine Chemistry at Aqueous Interfaces: The Study of Organic Amines in Neutralizing Acidic Gases at an Air/Water Surface Using Vibrational Sum Frequency Spectroscopy

    Science.gov (United States)

    McWilliams, L.; Wren, S. N.; Valley, N. A.; Richmond, G.

    2014-12-01

    Small organic bases have been measured in atmospheric samples, with their sources ranging from industrial processing to animal husbandry. These small organic amines are often highly soluble, being found in atmospheric condensed phases such as fogwater and rainwater. Additionally, they display acid-neutralization ability often greater than ammonia, yet little is known regarding their kinetic and thermodynamic properties. This presentation will describe the molecular level details of a model amine system at the vapor/liquid interface in the presence of acidic gas. We find that this amine system shows very unique properties in terms of its bonding, structure, and orientation at aqueous surfaces. The results of our studies using a combination of computation, vibrational sum frequency spectroscopy, and surface tension will report the properties inherent to these atmospherically relevant species at aqueous surfaces.

  9. Amine-modified ordered mesoporous silica: The effect of pore size on CO{sub 2} capture performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin; Yao, Manli [Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Hu, Xin [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); Hu, Gengshen, E-mail: gshu@zjnu.edu.cn [Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Lu, Jiqing; Luo, Mengfei [Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Fan, Maohong, E-mail: mfan@uwyo.edu [Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    2015-01-01

    Highlights: • Larger pore size could decrease the mass transfer resistance and increase the interaction between CO{sub 2} and TEPA. • The CO{sub 2} uptakes of sorbents were enhanced in the presence of moisture. • The sorbents are stable and regenerable under test conditions. - Abstract: The objective of current research is to investigate the effect of pore size of mesoporous silica supports on the CO{sub 2} capture performance of solid amine sorbents. Two ordered mesoporous silicas (OMS) with different pore sizes (5.6 nm and 7.6 nm) were synthesized as tetraethylenepentamine (TEPA) supports. A serious of techniques, such as physical adsorption, infrared spectroscopy and thermal gravimetric analysis were used to characterize the solid amine sorbents. The CO{sub 2} capture performances of the sorbents were evaluated using breakthrough method with a fixed-bed reactor equipped with an online mass spectrometer. The experimental results indicate that the pore size has significant influence on CO{sub 2} capture performance. Larger pore size could decrease the mass transfer resistance and increase the interaction between CO{sub 2} and TEPA. Therefore, OMS-7.6 is better than OMS-5.6 as amine support. The highest CO{sub 2} sorption capacities achieved with OMS-7.6 with 50 wt% TEPA loading (OMS-7.6-50) in the absence and presence of moisture are 3.45 mmol/g and 4.28 mmol/g, respectively, under the conditions of 10.0% CO{sub 2}/N{sub 2} mixture at 75 °C. Cyclic CO{sub 2} adsorption–desorption experiments indicate that the solid amine sorbents are fairly stable and regenerable.

  10. Bioreducible poly(amido amine)s for non-viral gene delivery

    NARCIS (Netherlands)

    Lin, C.

    2008-01-01

    This thesis describes the design and development of bioreducible poly(amido amine)s as non-viral vectors for gene delivery in vitro and in vivo. The structural influences of these polymers on their physico-chemical properties and gene delivery properties, transfection capability and cytotoxicity in

  11. Dietary exposure to heterocyclic amines in high-temperature cooked meat and fish in Malaysia.

    Science.gov (United States)

    Jahurul, M H A; Jinap, S; Ang, S J; Abdul-Hamid, A; Hajeb, P; Lioe, H N; Zaidul, I S M

    2010-08-01

    The intake of heterocyclic amines is influenced by the amount and type of meat and fish ingested, frequency of consumption, cooking methods, cooking temperature, and duration of cooking. In this study, the dietary intake of heterocyclic amines in Malaysia and their main sources were investigated. Forty-two samples of meat and fish were analysed by high-performance liquid chromatography with photodiode array detector to determine the concentration of the six predominant heterocyclic amines, namely: 2-amino-3-methylimidazo[4,5-f] quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f] quinoline(MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f] quinoxaline (4,8-DiMeIQx), 2-amino-3,7,8-trimethylimidazo[4,5-f] quinoxaline (7,8-DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Dietary intake data were obtained using a food-frequency questionnaire when interviewing 600 Malaysian respondents. The level of total heterocyclic amines in food samples studies ranged from not detected to 38.7 ng g(-1). The average daily intake level of heterocyclic amine was 553.7 ng per capita day(-1). The intake of PhIP was the highest, followed by MeIQx and MeIQ. The results reveal that fried and grilled chicken were the major dietary source of heterocyclic amines in Malaysia. However, the heterocyclic amine intake by the Malaysian population was lower than those reported from other regions.

  12. Docosahexaenoic Acid Conjugation Enhances Distribution and Safety of siRNA upon Local Administration in Mouse Brain

    Directory of Open Access Journals (Sweden)

    Mehran Nikan

    2016-01-01

    Full Text Available The use of siRNA-based therapies for the treatment of neurodegenerative disease requires efficient, nontoxic distribution to the affected brain parenchyma, notably the striatum and cortex. Here, we describe the synthesis and activity of a fully chemically modified siRNA that is directly conjugated to docosahexaenoic acid (DHA, the most abundant polyunsaturated fatty acid in the mammalian brain. DHA conjugation enables enhanced siRNA retention throughout both the ipsilateral striatum and cortex following a single, intrastriatal injection (ranging from 6–60 μg. Within these tissues, DHA conjugation promotes internalization by both neurons and astrocytes. We demonstrate efficient and specific silencing of Huntingtin mRNA expression in both the ipsilateral striatum (up to 73% and cortex (up to 51% after 1 week. Moreover, following a bilateral intrastriatal injection (60 μg, we achieve up to 80% silencing of a secondary target, Cyclophilin B, at both the mRNA and protein level. Importantly, DHA-hsiRNAs do not induce neural cell death or measurable innate immune activation following administration of concentrations over 20 times above the efficacious dose. Thus, DHA conjugation is a novel strategy for improving siRNA activity in mouse brain, with potential to act as a new therapeutic platform for the treatment of neurodegenerative disorders.

  13. Arthrobacter P 1, a Fast Growing Versatile Methylotroph with Amine Oxidase as a Key Enzyme in the Metabolism of Methylated Amines

    NARCIS (Netherlands)

    Dijken, J.P. van; Veenhuis, M.; Harder, W.

    1981-01-01

    A facultative methylotrophic bacterium was isolated from enrichment cultures containing methylamine as the sole carbon source. It was tentatively identified as an Arthrobacter species. Extracts of cells grown on methylamine or ethylamine contained high levels of amine oxidase (E.C. 1.4.3) activity.

  14. Efficient siRNA delivery system using carboxilated single-wall carbon nanotubes in cancer treatment.

    Science.gov (United States)

    Neagoe, Ioana Berindan; Braicu, Cornelia; Matea, Cristian; Bele, Constantin; Florin, Graur; Gabriel, Katona; Veronica, Chedea; Irimie, Alexandru

    2012-08-01

    Several functionalized carbon nanotubes have been designed and tested for the purpose of nucleic acid delivery. In this study, the capacity of SWNTC-COOH for siRNA deliverey were investigated delivery in parallel with an efficient commercial system. Hep2G cells were reverse-transfected with 50 nM siRNA (p53 siRNA, TNF-alphasiRNA, VEGFsiRNA) using the siPORT NeoFX (Ambion) transfection agent in paralel with SWNTC-COOH, functionalised with siRNA. The highest level of gene inhibition was observed in the cases treated with p53 siRNA gene; in the case of transfection with siPort, the NeoFX value was 33.8%, while in the case of SWNTC-COOH as delivery system for p53 siRNA was 37.5%. The gene silencing capacity for VEGF was 53.7%, respectively for TNF-alpha 56.7% for siPORT NeoFX delivery systems versus 47.7% (VEGF) and 46.5% (TNF-alpha) for SWNTC-COOH delivery system. SWNTC-COOH we have been showed to have to be an efficient carrier system. The results from the inhibition of gene expresion for both transfection systems were confirmed at protein level. Overall, the lowest mRNA expression was confirmed at protein level, especially in the case of p53 siRNA and TNF-alpha siRNA transfection. Less efficient reduction protein expressions were observed in the case of VEGF siRNA, for both transfection systems at 24 h; only at 48 h, there was a statistically significant reduction of VEGF protein expression. SWCNT-COOH determined an efficient delivery of siRNA. SWNTC-COOH, combined with suitable tumor markers like p53 siRNA, TNFalpha siRNA or VEGF siRNA can be used for the efficient delivery of siRNA.

  15. Smart Inulin-Based Polycationic Nanodevices for siRNA Delivery.

    Science.gov (United States)

    Cavallaro, G; Sardo, C; Scialabba, C; Licciardi, M; Giammona, G

    2017-01-01

    The advances of short interfering RNA (siRNA) mediated therapy provide a powerful option for the treatment of many diseases by silencing the expression of targeted genes including cancer development and progression. Inulin is a very simple and biocompatible polysaccharide proposed by our groups to produce interesting delivery systems for Nucleic Acid Based Drugs (NABDs), such as siRNA, either as polycations able to give polyplexes and polymeric coatings for nanosystems having a metallic core. In this research field, different functionalizing groups were linked to the inulin backbone with specific aims including oligoamine such as Ethylendiammine (EDA), Diethylediamine (DETA), Spermine, (SPM) etc. In this contribution the main Inulin-based nanodevices for the delivery of siRNA have been reported, analysed and compared with particular reference to their chemical design and structure, biocompatibility, siRNA complexing ability, silencing ability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Overcoming the Challenges of siRNA Delivery: Nanoparticle Strategies.

    Science.gov (United States)

    Shajari, Neda; Mansoori, Behzad; Davudian, Sadaf; Mohammadi, Ali; Baradaran, Behzad

    2017-01-01

    Despite therapeutics based on siRNA have an immense potential for the treatment of incurable diseases such as cancers. However, the in vivo utilization of siRNA and also the delivery of this agent to the target site is one of the most controversial challenges. The helpful assistance by nanoparticles can improve stable delivery and also enhance efficacy. More nanoparticle-based siRNA therapeutics is expected to become available in the near future. The search strategy followed the guidelines of the Centre of Reviews and Dissemination. The studies were identified from seven databases (Scopus, Web of Science, Academic Search Premiere, CINAHL, Medline Ovid, Eric and Cochrane Library). Studies was selected based on titles, abstracts and full texts. One hundred twenty nine papers were included in the review. These papers defined hurdles in RNAi delivery and also strategies to overcome these hurdles. This review discussed the existing hurdles for systemic administration of siRNA as therapeutic agents and highlights the various strategies to overcome these hurdles, including lipid-based nanoparticles and polymeric nanoparticles, and we also briefly reviewed chemical modification. Delivery of siRNA to the target site is the biggest challenge for its application in the clinic. The findings of this review confirmed by encapsulation siRNA in the nanoparticles can overcome these challenges. The rapid progress in nanotechnology has enabled the development of effective nanoparticles as the carrier for siRNA delivery. However, our data about siRNA-based therapeutics and also nanomedicine are still limited. More clinical data needs to be completely understood in the benefits and drawbacks of siRNA-based therapeutics. Prospective studies must pay attention to the in vivo safety profiles of the different delivery systems, including uninvited immune system stimulation and cytotoxicity. In essence, the development of nontoxic, biocompatible, and biodegradable delivery systems for

  17. Detection of cometary amines in samples returned by Stardust

    Science.gov (United States)

    Glavin, D. P.; Dworkin, J. P.; Sandford, S. A.

    2008-02-01

    The abundances of amino acids and amines, as well as their enantiomeric compositions, were measured in samples of Stardust comet-exposed aerogel and foil using liquid chromatography with UV fluorescence detection and time of flight mass spectrometry (LC-FD/ToF-MS). A suite of amino acids and amines including glycine, L-alanine, β-alanine (BALA), γ-amino-n-butyric acid (GABA), ɛ-amino-n-caproic acid (EACA), ethanolamine (MEA), methylamine (MA), and ethylamine (EA) were identified in acid-hydrolyzed, hot-water extracts of these Stardust materials above background levels. With the exception of MA and EA, all other primary amines detected in cometexposed aerogel fragments C2054,4 and C2086,1 were also present in the flight aerogel witness tile that was not exposed to the comet, indicating that most amines are terrestrial in origin. The enhanced relative abundances of MA and EA in comet-exposed aerogel compared to controls, coupled with MA to EA ratios (C2054,4: 1.0 ± 0.2; C2086,1: 1.8 ± 0.2) that are distinct from preflight aerogels (E243-13C and E243-13F: 7 ± 3), suggest that these volatile amines were captured from comet Wild 2. MA and EA were present predominantly in an acid-hydrolyzable bound form in the aerogel, rather than as free primary amines, which is consistent with laboratory analyses of cometary ice analog materials. It is possible that Wild 2 MA and EA were formed on energetically processed icy grains containing ammonia and approximately equal abundances of methane and ethane. The presence of cometary amines in Stardust material supports the hypothesis that comets were an important source of prebiotic organic carbon and nitrogen on the early Earth.

  18. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    Science.gov (United States)

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  19. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng

    2017-03-13

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  20. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng; Guo, Lin; Liu, Xiangqian; Rueping, Magnus

    2017-01-01

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  1. Content of biogenic amines in Lemna minor (common duckweed) growing in medium contaminated with tetracycline.

    Science.gov (United States)

    Baciak, Michał; Sikorski, Łukasz; Piotrowicz-Cieślak, Agnieszka I; Adomas, Barbara

    2016-11-01

    Aquatic plants are continuously exposed to a variety of stress factors. No data on the impact of antibiotics on the biogenic amines in duckweed (Lemna minor) have been available so far, and such data could be significant, considering the ecological role of this plant in animal food chains. In the tissues of control (non-stressed) nine-day-old duckweed, the following biogenic amines were identified: tyramine, putrescine, cadaverine, spermidine and spermine. Based on the tetracycline contents and the computed EC values, the predicted toxicity units have been calculated. The obtained results demonstrated phytoxicity caused by tetracycline in relation to duckweed growth rate, yield and the contents of chlorophylls a and b. The carotenoid content was not modified by tetracycline. It was found that tetracycline as a water pollutant was a stress factor triggering an increase in the synthesis of amines. Tetracycline at 19, 39 and 78μM concentrations increased biogenic amine synthesis by 3.5 times. Although the content of tyramine increased fourteen times with the highest concentration of the drug (and of spermidine - only three-fold) the increase of spermidine was numerically the highest. Among the biogenic amines the most responsive to tetracycline were spermine and tyramine, while the least affected were putrescine and spermidine. Despite putrescine and spermidine being the least sensitive, their sum of contents increased five-fold compared to the control. These studies suggest that tetracycline in water reservoirs is taken up by L. minor as the antibiotic clearly modifies the metabolism of this plant and it may likely pose a risk. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment.

    Science.gov (United States)

    Jiang, Ying; Hardie, Joseph; Liu, Yuanchang; Ray, Moumita; Luo, Xiang; Das, Riddha; Landis, Ryan F; Farkas, Michelle E; Rotello, Vincent M

    2018-06-05

    The use of nanoparticle-stabilized nanocapsules for cytosolic siRNA delivery for immunomodulation in vitro and in vivo is reported. These NPSCs deliver siRNA directly to the cytosol of macrophages in vitro with concomitant knockdown of gene expression. In vivo studies showed directed delivery of NPSCs to the spleen, enabling gene silencing of macrophages, with preliminary studies showing 70% gene knockdown at a siRNA dose of 0.28 mg/kg. Significantly, the delivery of siRNA targeting tumor necrosis factor-α efficiently silenced TNF-α expression in LPS-challenged mice, demonstrating efficacy in modulating immune response in an organ-selective manner. This research highlights the potential of the NPSC platform for targeted immunotherapy and further manipulation of the immune system. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. EGF receptor targeted lipo-oligocation polyplexes for antitumoral siRNA and miRNA delivery

    Science.gov (United States)

    Müller, Katharina; Klein, Philipp M.; Heissig, Philipp; Roidl, Andreas; Wagner, Ernst

    2016-11-01

    Antitumoral siRNA and miRNA delivery was demonstrated by epidermal growth factor receptor (EGFR) targeted oligoaminoamide polyplexes. For this purpose, the T-shaped lipo-oligomer 454 was used to complex RNA into a core polyplex, which was subsequently functionalized with the targeting peptide ligand GE11 via a polyethylene glycol (PEG) linker. To this end, free cysteines on the surface of 454 polyplex were coupled with a maleimide-PEG-GE11 reagent (Mal-GE11). Resulting particles with sizes of 120-150 nm showed receptor-mediated uptake into EGFR-positive T24 bladder cancer cells, MDA-MB 231 breast cancer cells and Huh7 liver cancer cells. Furthermore, these formulations led to ligand-dependent gene silencing. RNA interference (RNAi) triggered antitumoral effects were observed for two different therapeutic RNAs, a miRNA-200c mimic or EG5 siRNA. Using polyplexes modified with a ratio of 0.8 molar equivalents of Mal-GE11, treatment of T24 or MDA-MB 231 cancer cells with miR-200c led to the expected decreased proliferation and migration, changes in cell cycle and enhanced sensitivity towards doxorubicin. Delivery of EG5 siRNA into Huh7 cells resulted in antitumoral activity with G2/M arrest, triggered by loss of mitotic spindle separation and formation of mono-astral spindles. These findings demonstrate the potential of GE11 ligand-containing RNAi polyplexes for cancer treatment.

  4. Bioinspired aerobic oxidation of secondary amines and nitrogen heterocycles with a bifunctional quinone catalyst.

    Science.gov (United States)

    Wendlandt, Alison E; Stahl, Shannon S

    2014-01-08

    Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here we report a novel bioinspired quinone catalyst system consisting of 1,10-phenanthroline-5,6-dione/ZnI2 that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts.

  5. The economics of amine usage

    International Nuclear Information System (INIS)

    Fountain, M.J.

    1994-01-01

    The EPRI computer programm, 'Aminemod', a PWR chemistry model, has been used to compare the technical advantages of the 'advanced' amines, ethanolamine, 1,2 diaminoethane and 5 aminopentanol over morpholine in generating an elevated pH in the moisture separator and the economics of using these amines has been assessed by using an MS Excel spreadsheet in conjunction with Aminemod. The advanced amines are capable of achieving 1 pH unit above neutrality, the EPRI target for prevention of erosion-corrison, at acceptable cost and, compared with 'conventional' amines, at considerably reduced ionic load on the condensate polisher. The exercise demonstrates that it is essential to evaluate the effect of an amine dosing regime on the total operating cost and that it is not possible to prejudge the economic outcome on the basis of an amine's purchase price. (orig.)

  6. Spectroscopic Studies of the Chan-Lam Amination: A Mechanism-Inspired Solution to Boronic Ester Reactivity.

    Science.gov (United States)

    Vantourout, Julien C; Miras, Haralampos N; Isidro-Llobet, Albert; Sproules, Stephen; Watson, Allan J B

    2017-04-05

    We report an investigation of the Chan-Lam amination reaction. A combination of spectroscopy, computational modeling, and crystallography has identified the structures of key intermediates and allowed a complete mechanistic description to be presented, including off-cycle inhibitory processes, the source of amine and organoboron reactivity issues, and the origin of competing oxidation/protodeboronation side reactions. Identification of key mechanistic events has allowed the development of a simple solution to these issues: manipulating Cu(I) → Cu(II) oxidation and exploiting three synergistic roles of boric acid has allowed the development of a general catalytic Chan-Lam amination, overcoming long-standing and unsolved amine and organoboron limitations of this valuable transformation.

  7. Highly efficient and diastereoselective gold(I)-catalyzed synthesis of tertiary amines from secondary amines and alkynes: substrate scope and mechanistic insights.

    Science.gov (United States)

    Liu, Xin-Yuan; Guo, Zhen; Dong, Sijia S; Li, Xiao-Hua; Che, Chi-Ming

    2011-11-11

    An efficient method for the synthesis of tertiary amines through a gold(I)-catalyzed tandem reaction of alkynes with secondary amines has been developed. In the presence of ethyl Hantzsch ester and [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %), a variety of secondary amines bearing electron-deficient and electron-rich substituents and a wide range of alkynes, including terminal and internal aryl alkynes, aliphatic alkynes, and electron-deficient alkynes, underwent a tandem reaction to afford the corresponding tertiary amines in up to 99 % yield. For indolines bearing a preexisting chiral center, their reactions with alkynes in the presence of ethyl Hantzsch ester catalyzed by [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %) afforded tertiary amines in excellent yields and with good to excellent diastereoselectivity. All of these organic transformations can be conducted as a one-pot reaction from simple and readily available starting materials without the need of isolation of air/moisture-sensitive enamine intermediates, and under mild reaction conditions (mostly room temperature and mild reducing agents). Mechanistic studies by NMR spectroscopy, ESI-MS, isotope labeling studies, and DFT calculations on this gold(I)-catalyzed tandem reaction reveal that the first step involving a monomeric cationic gold(I)-alkyne intermediate is more likely than a gold(I)-amine intermediate, a three-coordinate gold(I) intermediate, or a dinuclear gold(I)-alkyne intermediate. These studies also support the proposed reaction pathway, which involves a gold(I)-coordinated enamine complex as a key intermediate for the subsequent transfer hydrogenation with a hydride source, and reveal the intrinsic stereospecific nature of these transformations observed in the experiments. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A novel program to design siRNAs simultaneously effective to highly variable virus genomes.

    Science.gov (United States)

    Lee, Hui Sun; Ahn, Jeonghyun; Jun, Eun Jung; Yang, Sanghwa; Joo, Chul Hyun; Kim, Yoo Kyum; Lee, Heuiran

    2009-07-10

    A major concern of antiviral therapy using small interfering RNAs (siRNAs) targeting RNA viral genome is high sequence diversity and mutation rate due to genetic instability. To overcome this problem, it is indispensable to design siRNAs targeting highly conserved regions. We thus designed CAPSID (Convenient Application Program for siRNA Design), a novel bioinformatics program to identify siRNAs targeting highly conserved regions within RNA viral genomes. From a set of input RNAs of diverse sequences, CAPSID rapidly searches conserved patterns and suggests highly potent siRNA candidates in a hierarchical manner. To validate the usefulness of this novel program, we investigated the antiviral potency of universal siRNA for various Human enterovirus B (HEB) serotypes. Assessment of antiviral efficacy using Hela cells, clearly demonstrates that HEB-specific siRNAs exhibit protective effects against all HEBs examined. These findings strongly indicate that CAPSID can be applied to select universal antiviral siRNAs against highly divergent viral genomes.

  9. Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs.

    Science.gov (United States)

    Zhang, Huifang M; Su, Yue; Guo, Songchuan; Yuan, Ji; Lim, Travis; Liu, Jing; Guo, Peixuan; Yang, Decheng

    2009-09-01

    Coxsackievirus B3 (CVB3) is a common pathogen of myocarditis. We previously synthesized a siRNA targeting the CVB3 protease 2A (siRNA/2A) gene and achieved reduction of CVB3 replication by 92% in vitro. However, like other drugs under development, CVB3 siRNA faces a major challenge of targeted delivery. In this study, we investigated a novel approach to deliver CVB3 siRNAs to a specific cell population (e.g. HeLa cells containing folate receptor) using receptor ligand (folate)-linked packaging RNA (pRNA) from bacterial phage phi29. pRNA monomers can spontaneously form dimers and multimers under optimal conditions by base-pairing between their stem loops. By covalently linking a fluorescence-tag to folate, we delivered the conjugate specifically to HeLa cells without the need of transfection. We further demonstrated that pRNA covalently conjugated to siRNA/2A achieved an equivalent antiviral effect to that of the siRNA/2A alone. Finally, the drug targeted delivery was further evaluated by using pRNA monomers or dimers, which carried both the siRNA/2A and folate ligand and demonstrated that both of them strongly inhibited CVB3 replication. These data indicate that pRNA as a siRNA carrier can specifically deliver the drug to target cells via its ligand and specific receptor interaction and inhibit virus replication effectively.

  10. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams. In particular, these materials are being extensively studied for the adsorption of CO 2 from simulated flue gas streams, with an eye towards utilizing these materials as part of a post-combustion carbon capture process at large flue gas producing installations, such as coal-fired electricity-generating power plants. In this Application Article, the utilization of amine-modified organic-inorganic hybrid materials is discussed, focusing on important attributes of the materials, such as (i) CO 2 adsorption capacities, (ii) adsorption and desorption kinetics, and (iii) material stability, that will determine if these materials may one day be useful adsorbents in practical CO 2 capture applications. Specific research needs and limitations associated with the current body of work are identified. © 2011 The Royal Society of Chemistry.

  11. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  12. Delivery systems and local administration routes for therapeutic siRNA.

    Science.gov (United States)

    Vicentini, Fabiana Testa Moura de Carvalho; Borgheti-Cardoso, Lívia Neves; Depieri, Lívia Vieira; de Macedo Mano, Danielle; Abelha, Thais Fedatto; Petrilli, Raquel; Bentley, Maria Vitória Lopes Badra

    2013-04-01

    With the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.

  13. TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations.

    Science.gov (United States)

    Bielski, Elizabeth; Zhong, Qian; Mirza, Hamad; Brown, Matthew; Molla, Ashura; Carvajal, Teresa; da Rocha, Sandro R P

    2017-07-15

    The regulation of genes utilizing the RNA interference (RNAi) mechanism via the delivery of synthetic siRNA has great potential in the treatment of a variety of lung diseases. However, the delivery of siRNA to the lungs is challenging due to the poor bioavailability of siRNA when delivered intraveneously, and difficulty in formulating and maintaining the activity of free siRNA when delivered directly to the lungs using inhalation devices. The use of non-viral vectors such as cationic dendrimers can help enhance the stability of siRNA and its delivery to the cell cytosol. Therefore, in this work, we investigate the ability of a triphenylphosphonium (TPP) modified generation 4 poly(amidoamine) (PAMAM) dendrimer (G4NH 2 -TPP) to enhance the in vitro transfection efficiency of siRNA in a model of the pulmonary epithelium and their aerosol formulations in pressurized metered dose inhalers (pMDIs) and dry powder inhalers (DPIs). Complexes of siRNA and G4NH 2 -TPP were prepared with varying TPP densities and increasing N/P ratios. The complexation efficiency was modulated by the presence of the TPP on the dendrimer surface, allowing for a looser complexation compared to unmodified dendrimer as determined by gel electrophoresis and polyanion competition assay. An increase in TPP density and N/P ratio led to an increase in the in vitro gene knockdown of stably green fluorescent protein (eGFP) expressing lung alveolar epithelial (A549) cells. G4NH 2 -12TPP dendriplexes (G4NH 2 PAMAM dendrimers containing 12 TPP molecules on the surface complexed with siRNA) at N/P ratio 30 showed the highest in vitro gene knockdown efficiency. To assess the potential of TPP-dendriplexes for pulmonary use, we also developed micron particle technologies for both pMDIs and DPIs and determined their aerosol characteristics utilizing an Andersen Cascade Impactor (ACI). Mannitol microparticles encapsulating 12TPP-dendriplexes were shown to be effective in producing aerosols suitable for deep lung

  14. Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions.

    Directory of Open Access Journals (Sweden)

    Liang Gong

    Full Text Available BACKGROUND: Over the last 60 years, synthetic chemical pesticides have served as a main tactic in the field of crop protection, but their availability is now declining as a result of the development of insect resistance. Therefore, alternative pest management agents are needed. However, the demonstration of RNAi gene silencing in insects and its successful usage in disrupting the expression of vital genes opened a door to the development of a variety of novel, environmentally sound approaches for insect pest management. METHODOLOGY/PRINCIPAL FINDINGS: Six small interfering RNAs (siRNAs were chemically synthesized and modified according to the cDNA sequence of P. xylostella acetylcholine esterase genes AChE1 and AChE2. All of them were formulated and used in insecticide activity screening against P. xylostella. Bioassay data suggested that Si-ace1_003 and Si-ace2_001 at a concentration of 3 µg cm(-2 displayed the best insecticidal activity with 73.7% and 89.0%, mortality, respectively. Additional bioassays were used to obtain the acute lethal concentrations of LC50 and LC90 for Si-ace2_001, which were 53.66 µg/ml and 759.71 µg/ml, respectively. Quantitative Real-time PCR was used to confirm silencing and detected that the transcript levels of P. xylostella AChE2 (PxAChE2 were reduced by 5.7-fold compared to the control group. Consequently, AChE activity was also reduced by 1.7-fold. Finally, effects of the siRNAs on treated plants of Brassica oleracea and Brassica alboglabra were investigated with different siRNA doses. Our results showed that Si-ace2_001 had no negative effects on plant morphology, color and growth of vein under our experimental conditions. CONCLUSIONS: The most important finding of this study is the discovery that chemically synthesized and modified siRNA corresponding to P. xylostella AChE genes cause significant mortality of the insect both under laboratory and field conditions, which provides a novel strategy to control P

  15. Halide salts and their structural properties in presence of secondary amine based molecule: A combined experimental and theoretical analysis

    Science.gov (United States)

    Ghosh, Pritam; Hazra, Abhijit; Ghosh, Meenakshi; Chandra Murmu, Naresh; Banerjee, Priyabrata

    2018-04-01

    Biologically relevant halide salts and its solution state structural properties are always been significant. In general, exposure of halide salts into polar solution medium results in solvation which in turn separates the cationic and anionic part of the salt. However, the conventional behaviour of salts might alter in presence of any secondary amine based compound, i.e.; moderately strong Lewis acid. In its consequence, to investigate the effect of secondary amine based compound in the salt solution, novel (E)-2-(4-bromobenzylidene)-1-(perfluorophenyl) hydrazine has been synthesized and used as secondary amine source. The secondary amine compound interestingly shows a drastic color change upon exposure to fluoride salts owing to hydrogen bonding interaction. Several experimental methods, e.g.; SCXRD, UV-Vis, FT-IR, ESI-MS and DLS together with modern DFT (i.e.; DFT-D3) have been performed to explore the structural properties of the halide salts upon exposure to secondary amine based compound. The effect of counter cation of the fluoride salt in binding with secondary amine source has also been investigated.

  16. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    Directory of Open Access Journals (Sweden)

    Jiangyu Wu

    2013-01-01

    Full Text Available RNA interference (RNAi was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc. of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system.

  17. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    Science.gov (United States)

    Huang, Weizhe; He, Ziying

    2013-01-01

    RNA interference (RNAi) was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA) are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc.) of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system. PMID:24288498

  18. Amine oxidases as important agents of pathological processes of rhabdomyolysis in rats.

    Science.gov (United States)

    Gudkova, O O; Latyshko, N V; Shandrenko, S G

    2016-01-01

    In this study we have tested an idea on the important role of amine oxidases (semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase) as an additional source of oxidative/carbonyl stress under glycerol-induced rhabdomyolysis, since the enhanced formation of reactive oxygen species and reactive carbonyl species in a variety of tissues is linked to various diseases. In our experiments we used the sensitive fluorescent method devised for estimation of amine oxidases activity in the rat kidney and thymus as targeted organs under rhabdomyolysis. We have found in vivo the multiple rises in activity of semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase (2-4.5 times) in the corresponding cell fractions, whole cells or their lysates at the 3-6th day after glycerol injection. Aberrant antioxidant activities depended on rhabdomyolysis stage and had organ specificity. Additional treatment of animals with metal chelator ‘Unithiol’ adjusted only the activity of antioxidant enzymes but not amine oxidases in both organs. Furthermore the in vitro experiment showed that Fenton reaction (hydrogen peroxide in the presence of iron) products alone had no effect on semicarbazide-sensitive amine oxidase activity in rat liver cell fraction whereas supplementation with methylglyoxal resulted in its significant 2.5-fold enhancement. Combined action of the both agents had additive effect on semicarbazide-sensitive amine oxidase activity. We can assume that biogenic amine and polyamine catabolism by amine oxidases is upregulated by oxidative and carbonyl stress factors directly under rhabdomyolysis progression, and the increase in catabolic products concentration contributes to tissue damage in glycerol-induced acute renal failure and apoptosis stimulation in thymus.

  19. Efficient and gentle siRNA delivery by magnetofection

    Science.gov (United States)

    Ensenauer, R; Hartl, D; Vockley, J; Roscher, AA; Fuchs, U

    2015-01-01

    Magnetic force combined with magnetic nanoparticles recently has shown potential for enhancing nucleic acid delivery. Achieving effective siRNA delivery into primary cultured cells is challenging. We compared the utility of magnetofection with lipofection procedures for siRNA delivery to primary and immortalized mammalian fibroblasts. Transfection efficiency and cell viability were analyzed by flow cytometry and effects of gene knockdown were quantified by real-time PCR. Lipofectamine 2000 and magnetofection achieved high transfection efficiencies comparable to similar gene silencing effects of about 80%; the cytotoxic effect of magnetofection, however, was significantly less. Magnetofection is a reliable and gentle alternative method with low cytotoxicity for siRNA delivery into difficult to transfect cells such as mammalian fibroblasts. These features are especially advantageous for functional end point analyses of gene silencing, e.g., on the metabolite level. PMID:20297946

  20. Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology.

    Science.gov (United States)

    Xia, Chun-Fang; Zhang, Yufeng; Zhang, Yun; Boado, Ruben J; Pardridge, William M

    2007-12-01

    The effective delivery of short interfering RNA (siRNA) to brain following intravenous administration requires the development of a delivery system for transport of the siRNA across the brain capillary endothelial wall, which forms the blood-brain barrier in vivo. siRNA was delivered to brain in vivo with the combined use of a receptor-specific monoclonal antibody delivery system, and avidin-biotin technology. The siRNA was mono-biotinylated on either terminus of the sense strand, in parallel with the production of a conjugate of the targeting MAb and streptavidin. Rat glial cells (C6 or RG-2) were permanently transfected with the luciferase gene, and implanted in the brain of adult rats. Following the formation of intra-cranial tumors, the rats were treated with a single intravenous injection of 270 microg/kg of biotinylated siRNA attached to a transferrin receptor antibody via a biotin-streptavidin linker. The intravenous administration of the siRNA caused a 69-81% decrease in luciferase gene expression in the intracranial brain cancer in vivo. Brain delivery of siRNA following intravenous administration is possible with siRNAs that are targeted to brain with the combined use of receptor specific antibody delivery systems and avidin-biotin technology.

  1. BSA Nanoparticles for siRNA Delivery: Coating Effects on Nanoparticle Properties, Plasma Protein Adsorption, and In Vitro siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Haran Yogasundaram

    2012-01-01

    Full Text Available Developing vehicles for the delivery of therapeutic molecules, like siRNA, is an area of active research. Nanoparticles composed of bovine serum albumin, stabilized via the adsorption of poly-L-lysine (PLL, have been shown to be potentially inert drug-delivery vehicles. With the primary goal of reducing nonspecific protein adsorption, the effect of using comb-type structures of poly(ethylene glycol (1 kDa, PEG units conjugated to PLL (4.2 and 24 kDa on BSA-NP properties, apparent siRNA release rate, cell viability, and cell uptake were evaluated. PEGylated PLL coatings resulted in NPs with ζ-potentials close to neutral. Incubation with platelet-poor plasma showed the composition of the adsorbed proteome was similar for all systems. siRNA was effectively encapsulated and released in a sustained manner from all NPs. With 4.2 kDa PLL, cellular uptake was not affected by the presence of PEG, but PEG coating inhibited uptake with 24 kDa PLL NPs. Moreover, 24 kDa PLL systems were cytotoxic and this cytotoxicity was diminished upon PEG incorporation. The overall results identified a BSA-NP coating structure that provided effective siRNA encapsulation while reducing ζ-potential, protein adsorption, and cytotoxicity, necessary attributes for in vivo application of drug-delivery vehicles.

  2. Impact of biogenic amine molecular weight and structure on surfactant adsorption at the air-water interface.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun

    2016-02-01

    The oligoamines, such as ethylenediamine to pentaethylenetetramine, and the aliphatic biogenic amines, such as putrescine, spermidine and spermine, strongly interact with anionic surfactants, such as sodium dodecylsulfate, SDS. It has been shown that this results in pronounced surfactant adsorption at the air-water interface and the transition from monolayer to multilayer adsorption which depends upon solution pH and oligoamine structure. In the neutron reflectivity, NR, and surface tension, ST, results presented here the role of the oligoamine structure on the adsorption of SDS is investigated more fully using a range of different biogenic amines. The effect of the extent of the intra-molecular spacing between amine groups on the adsorption has been extended by comparing results for cadavarine with putrescine and ethylenediamine. The impact of more complex biogenic amine structures on the adsorption has been investigated with the aromatic phenethylamine, and the heterocyclic amines histamine and melamine. The results provide an important insight into how surfactant adsorption at interfaces can be manipulated by the addition of biogenic amines, and into the role of solution pH and oligoamine structure in modifying the interaction between the surfactant and oligoamine. The results impact greatly upon potential applications and in understanding some of the important biological functions of biogenic amines. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity

    Science.gov (United States)

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-07-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects.

  4. Sulfonated poly(styrene-divinylbenzene) modified with amines and the application for pipette-tip solid-phase extraction of carbendazim in apples.

    Science.gov (United States)

    Ma, Yuxin; Liu, Lingling; Tang, Weiyang; Zhu, Tao

    2017-10-01

    Sulfonated poly(styrene-divinylbenzene) modified with five kinds of amine functional groups was applied to the determination of carbendazim in apple samples with a pipette-tip solid-phase extraction method. The structures of the polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Five different modifications of the solid-phase extraction sorbent based on sulfonated poly(styrene-divinylbenzene) were tested under static and pipette-tip solid-phase extraction conditions. The polymer modified with p-methoxyaniline showed the best recognition capacity and adsorption amount for carbendazim. Under the optimum conditions, 3.00 mg of the adsorbent, 1.00 mL of ethyl acetate as washing solvent, and 1.00 mL of ammonia/acetonitrile (5:95, v/v) as elution solvent were used in the pretreatment procedure of apple samples. The calibration graphs of carbendazim in methanol were linear over 5.00-200.00 μg/mL, and the limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of carbendazim were in the range of 91.31-98.13% with associated intraday relative standard deviations of 0.76-2.13% and interday relative standard deviations of 1.10-1.85%. Sulfonated poly(styrene-divinylbenzene) modified with p-methoxyaniline showed satisfactory results (recovery: 97.96%) and potential for the rapid purification of carbendazim in apple samples combined with the pipette-tip solid-phase extraction. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Magnetic particles-based biosensor for biogenic amines using an optical oxygen sensor as a transducer

    International Nuclear Information System (INIS)

    Pospiskova, K.; Sebela, M.; Safarik, I.; Kuncova, G.

    2013-01-01

    We have developed a fibre optic biosensor with incorporated magnetic microparticles for the determination of biogenic amines. The enzyme diamine oxidase from Pisum sativum was immobilized either on chitosan-coated magnetic microparticles or on commercial microbeads modified with a ferrofluid. Both the immobilized enzyme and the ruthenium complex were incorporated into a UV-cured inorganic-organic polymer composite and deposited on a lens that was connected, by optical fibres, to an electro-optical detector. The enzyme catalyzes the oxidation of amines under consumption of oxygen. The latter was determined by measuring the quenched fluorescence lifetime of the ruthenium complex. The limits of detection for the biogenic amines putrescine and cadaverine are 25-30 μmol L -1 , and responses are linear up to a concentration of 1 mmol L -1 . (author)

  6. Cytocompatibility of amine functionalized carbon nanoparticles grafted on polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Žáková, Pavlína, E-mail: pavlina.zakova@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Slepičková Kasálková, Nikola [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Kolská, Zdeňka [Faculty of Science, J. E. Purkyně University, Ústí nad Labem (Czech Republic); Leitner, Jindřich [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Karpíšková, Jana; Stibor, Ivan [Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (Czech Republic); Slepička, Petr; Švorčík, Václav [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic)

    2016-03-01

    Five types of amide–amine Carbon Nano-Particles (CNPs) were prepared by functionalization of CNPs and characterized by several analytical methods. The successful grafting of amines on CNPs was verified by X-ray photoelectron spectroscopy (XPS), organic elemental analysis and electrokinetic analysis. The size and morphology of CNPs were determined from transmission electron microscopy. The surface area and porosity of CNPs were examined by adsorption and desorption isotherms. Differential scanning calorimetry was used to investigate thermal stability of CNPs. The amount of bonded amine depends on its dimensionality arrangement. Surface area and pore volumes of CNPs decrease several times after individual amino-compound grafting. Selected types of functionalized CNPs were grafted onto a plasma activated surface of HDPE. The successful grafting of CNPs on the polymer surface was verified by XPS. Wettability was determined by contact angle measurements. Surface morphology and roughness were studied by atomic force microscopy. A dramatic decrease of contact angle and surface morphology was observed on CNP grafted polymer surface. Cytocompatibility of modified surfaces was studied in vitro, by determination of adhesion, proliferation and viability of vascular smooth muscle cells (VSMCs). Grafting of CNPs onto the polymer surface has a positive effect on the adhesion, proliferation and viability of VSMCs. - Highlights: • Amine functionalized CNPs were successfully grafted on HDPE surface. • Significant change to the positive zeta potential for grafted CNPs was induced. • Grafting of CNPs significantly enhanced cell cytocompatibility and viability. • Homogeneous distribution of cells with correct size was achieved.

  7. Cationized dextran nanoparticle-encapsulated CXCR4-siRNA enhanced correlation between CXCR4 expression and serum alkaline phosphatase in a mouse model of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Abedini F

    2012-07-01

    Full Text Available Fatemeh Abedini,1 Hossein Hosseinkhani,2 Maznah Ismail,1,3 Abraham J Domb,4 Abdul Rahman Omar,1,5 Pei Pei Chong,1,2 Po-Da Hong,3 Dah-Shyong Yu,6 Ira-Yudovin Farber41Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 2Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 3Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia, 4Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel, 5Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia, 6Nanomedicine Research Center, National Defense Medical Center, Taipei, TaiwanPurpose: The failure of colorectal cancer treatments is partly due to overexpression of CXCR4 by tumor cells, which plays a critical role in cell metastasis. Moreover, serum alkaline phosphatase (ALP levels are frequently elevated in patients with metastatic colorectal cancer. A polysaccharide, dextran, was chosen as the vector of siRNA. Spermine was conjugated to oxidized dextran by reductive amination process to obtain cationized dextran, so-called dextran-spermine, in order to prepare CXCR4-siRNAs/dextran-spermine nanoparticles. The fabricated nanoparticles were used in order to investigate whether downregulation of CXCR4 expression could affect serum ALP in mouse models of colorectal cancer.Methods: Colorectal cancer was established in BALB/C mice following injection of mouse colon carcinoma cells CT.26WT through the tail vein. CXCR4 siRNA for two sites of the target gene was administered following injection of naked siRNA or siRNA encapsulated into nanoparticles.Results: In vivo animal data revealed that CXCR4 silencing by dextran-spermine nanoparticles significantly downregulated CXCR4 expression compared with naked CXCR4 siRNA. Furthermore, there was

  8. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.

    2015-06-25

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  9. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.; He, L.-S.; Wong, Y. H.; Yu, L.; Qian, P.-Y.

    2015-01-01

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  10. In vivo efficacy and off-target effects of locked nucleic acid (LNA) and unlocked nucleic acid (UNA) modified siRNA and small internally segmented interfering RNA (sisiRNA) in mice bearing human tumor xenografts

    NARCIS (Netherlands)

    Mook, O. R. F.; Vreijling, Jeroen; Wengel, Suzy L.; Wengel, Jesper; Zhou, Chuanzheng; Chattopadhyaya, Jyoti; Baas, Frank; Fluiter, Kees

    2010-01-01

    The clinical use of small interfering RNA (siRNA) is hampered by poor uptake by tissues and instability in circulation. In addition, off-target effects pose a significant additional problem for therapeutic use of siRNA. Chemical modifications of siRNA have been reported to increase stability and

  11. The distribution and adsorption behavior of aliphatic amines in marine and lacustrine sediments

    Science.gov (United States)

    Wang, Xu-chen; Lee, Cindy

    1990-10-01

    The methylated amines—monomethyl-, dimethyl-, and trimethyl amine (MMA, DMA, TMA)—are commonly found in aquatic environments, apparently as a result of decomposition processes. Adsorption of these amines to clay minerals and organic matter significantly influences their distribution in sediments. Laboratory measurements using 14C-radiolabelled amines and application of a linear partitioning model resulted in calculated adsorption coefficients of 2.4-4.7 (MMA), 3.3 (DMA), and 3.3-4.1 (TMA). Further studies showed that adsorption of amines is influenced by salinity of the porewaters, and clay mineral and organic matter content of the sediment solid phase. Concentrations of monomethyl- and dimethyl amine were measured in the porewaters and the solid phase of sediment samples collected from Flax Pond and Lake Ronkonkoma (NY), Long Island Sound, and the coastal Peru upwelling area. These two amines were present in all sediments investigated. A clear seasonal increase in the solid-phase concentration of MMA and DMA in Flax Pond sediments was likely related to the annual senescence of salt marsh grasses, either directly as a source of these compounds or indirectly by providing additional exchange capacity to the sediments. The distribution of amines in the solid and dissolved phases observed in all sediments investigated suggests that the distribution of these compounds results from a balance among production, decomposition, and adsorption processes.

  12. Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study.

    Science.gov (United States)

    Liu, Qi; Xu, Qian; Zheng, Vincent W; Xue, Hong; Cao, Zhiwei; Yang, Qiang

    2010-04-10

    Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs) have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. The knowledge gained from our study provides useful insights on how to analyze various cross-platform RNAi data for uncovering

  13. Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study

    Directory of Open Access Journals (Sweden)

    Xue Hong

    2010-04-01

    Full Text Available Abstract Background Gene silencing using exogenous small interfering RNAs (siRNAs is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. Results An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. Conclusions The knowledge gained from our study provides useful insights on how to

  14. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells.

    Science.gov (United States)

    Rea, Ilaria; Martucci, Nicola M; De Stefano, Luca; Ruggiero, Immacolata; Terracciano, Monica; Dardano, Principia; Migliaccio, Nunzia; Arcari, Paolo; Taté, Rosarita; Rendina, Ivo; Lamberti, Annalisa

    2014-12-01

    Diatomite is a natural porous biomaterial of sedimentary origin, formed by fragments of diatom siliceous skeletons, called "frustules". Due to large availability in many areas of the world, chemical stability, and non-toxicity, these fossil structures have been widespread used in lot of industrial applications, such as food production, water extracting agent, production of cosmetics and pharmaceutics. However, diatomite is surprisingly still rarely used in biomedical applications. In this work, we exploit diatomite nanoparticles for small interfering ribonucleic acid (siRNA) transport inside human epidermoid cancer cells (H1355). Morphology and composition of diatomite microfrustules (average size lower than 40μm) are investigated by scanning electron microscopy equipped by energy dispersive X-ray spectroscopy, Fourier transform infrared analysis, and photoluminescence measurements. Nanometric porous particles (average size lower than 450nm) are obtained by mechanical crushing, sonication, and filtering of micrometric frustules. siRNA bioconjugation is performed on both micrometric and nanometric fragments by silanization. In-vitro experiments show very low toxicity on exposure of the cells to diatomite nanoparticle concentration up to 300μg/ml for 72h. Confocal microscopy imaging performed on cancer cells incubated with siRNA conjugated nanoparticles demonstrates a cytoplasmatic localization of vectors. Gene silencing by delivered siRNA is also demonstrated. Our studies endorse diatomite nanoparticles as non-toxic nanocarriers for siRNA transport in cancer cells. siRNA is a powerful molecular tool for cancer treatment but its delivery is inefficient due to the difficulty to penetrate the cell membrane. siRNA-diatomite nanoconjugate may be well suited for delivery of therapeutic to cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Tasleem Arif

    2014-01-01

    Full Text Available Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1, a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA. A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF. VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs.

  16. Influence on wine biogenic amine composition of modifications to soil N availability and grapevine N by cover crops.

    Science.gov (United States)

    Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; Cabrita, Maria João; García-Escudero, Enrique; Peregrina, Fernando

    2017-11-01

    Vineyard soil management can modify the nitrogen soil availability and, therefore, grape amino acid content. These compounds are precursors of biogenic amines, which have negative effects on wine quality and human health. The objective was to study whether the effect of conventional tillage and two cover crops (barley and clover) on grapevine nitrogen status could be related to wine biogenic amines. Over 4 years, soil NO 3 - -N, nitrogen content in leaf and wine biogenic amine concentration were determined. Barley reduced soil NO 3 - -N availability and clover increased it. In 2011, at bloom, nitrogen content decreased with barley treatment in both blade and petiole. In 2012, nitrogen content in both leaf tissues at bloom was greater with clover than with tillage and barley treatments. Also, total biogenic amines decreased in barley with respect to tillage and clover treatments. There were correlations between some individual and total biogenic amine concentrations with respect to nitrogen content in leaf tissues. Wine biogenic amine concentration can be affected by the grapevine nitrogen status, provoked by changes in the soil NO 3 - -N availability with both cover crop treatments. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine + piperazine + water)

    International Nuclear Information System (INIS)

    Chung, P.-Y.; Soriano, Allan N.; Leron, Rhoda B.; Li, M.-H.

    2010-01-01

    In this study, a new set of data for the equilibrium solubility of carbon dioxide in the amine solvent system that consists of triethanolamine (TEA), piperazine (PZ), and water is presented. Equilibrium solubility values were obtained at T = (313.2, 333.2, and 353.2) K and pressures up to 153 kPa using the vapour-recirculation equilibrium cell. The TEA concentrations in the considered ternary (solvent) mixture were (2 and 3) kmol . m -3 and those of PZ's were (0.5, 1.0, and 1.5) kmol . m -3 . The solubility data (CO 2 loading in the amine solution) obtained were correlated as a function of CO 2 partial pressure, system temperature, and amine composition via the modified Kent-Eisenberg model. Results showed that the model applied is generally satisfactory in representing the CO 2 absorption into mixed aqueous solutions of TEA and PZ.

  18. Modified impedance source inverter for power conditioning system

    Indian Academy of Sciences (India)

    DC link voltage boost, reduced total harmonic distortion of output current and voltage, better voltage gain and wide range of output voltage controlcan be achieved easily with improved power quality. Experimental set-up of the modified impedance source inverter with Field Programmable Gate Array (FPGA) controller has ...

  19. Polyamidoamine-Decorated Nanodiamonds as a Hybrid Gene Delivery Vector and siRNA Structural Characterization at the Charged Interfaces.

    Science.gov (United States)

    Lim, Dae Gon; Rajasekaran, Nirmal; Lee, Dukhee; Kim, Nam Ah; Jung, Hun Soon; Hong, Sungyoul; Shin, Young Kee; Kang, Eunah; Jeong, Seong Hoon

    2017-09-20

    Nanodiamonds have been discovered as a new exogenous material source in biomedical applications. As a new potent form of nanodiamond (ND), polyamidoamine-decorated nanodiamonds (PAMAM-NDs) were prepared for E7 or E6 oncoprotein-suppressing siRNA gene delivery for high risk human papillomavirus-induced cervical cancer, such as types 16 and 18. It is critical to understand the physicochemical properties of siRNA complexes immobilized on cationic solid ND surfaces in the aspect of biomolecular structural and conformational changes, as the new inert carbon material can be extended into the application of a gene delivery vector. A spectral study of siRNA/PAMAM-ND complexes using differential scanning calorimetry and circular dichroism spectroscopy proved that the hydrogen bonding and electrostatic interactions between siRNA and PAMAM-NDs decreased endothermic heat capacity. Moreover, siRNA/PAMAM-ND complexes showed low cell cytotoxicity and significant suppressing effects for forward target E6 and E7 oncogenic genes, proving functional and therapeutic efficacy. The cellular uptake of siRNA/PAMAM-ND complexes at 8 h was visualized by macropinocytes and direct endosomal escape of the siRNA/PAMAM-ND complexes. It is presumed that PAMAM-NDs provided a buffering cushion to adjust the pH and hard mechanical stress to escape endosomes. siRNA/PAMAM-ND complexes provide a potential organic/inorganic hybrid material source for gene delivery carriers.

  20. Stable Dispersions of Covalently Tethered Polymer Improved Graphene Oxide Nanoconjugates as an Effective Vector for siRNA Delivery.

    Science.gov (United States)

    Yadav, Nisha; Kumar, Naveen; Prasad, Peeyush; Shirbhate, Shivani; Sehrawat, Seema; Lochab, Bimlesh

    2018-05-02

    Conjugates of poly(amidoamine) (PAMAM) with modified graphene oxide (GO) are attractive nonviral vectors for gene-based cancer therapeutics. GO protects siRNA from enzymatic cleavage and showed reasonable transfection efficiency along with simultaneous benefits of low cost and large scale production. PAMAM is highly effective in siRNA delivery but suffers from high toxicity with poor in vivo efficacy. Co-reaction of GO and PAMAM led to aggregation and more importantly, have detrimental effect on stability of dispersion at physiological pH preventing their exploration at clinical level. In the current work, we have designed, synthesized, characterized and explored a new type of hybrid vector (GPD), using GO synthesized via improved method which was covalently tethered with poly(ethylene glycol) (PEG) and PAMAM. The existence of covalent linkage, relative structural changes and properties of GPD is well supported by Fourier transform infrared (FTIR), UV-visible (UV-vis), Raman, X-ray photoelectron (XPS), elemental analysis, powder X-ray diffraction (XRD), thermogravimetry analysis (TGA), dynamic light scattering (DLS), and zeta potential. Scanning electron microscopy (SEM), and transmission electron microscopy (TEM) of GPD showed longitudinally aligned columnar self-assembled ∼10 nm thick polymeric nanoarchitectures onto the GO surface accounting to an average size reduction to ∼20 nm. GPD revealed an outstanding stability in both phosphate buffer saline (PBS) and serum containing cell medium. The binding efficiency of EPAC1 siRNA to GPD was supported by gel retardation assay, DLS, zeta potential and photoluminescence (PL) studies. A lower cytotoxicity with enhanced cellular uptake and homogeneous intracellular distribution of GPD/siRNA complex is confirmed by imaging studies. GPD exhibited a higher transfection efficiency with remarkable inhibition of cell migration and lower invasion than PAMAM and Lipofectamine 2000 suggesting its role in prevention of breast

  1. Sillica Gel-Amine from Geothermal Sludge

    Science.gov (United States)

    Muljani, S.; Pujiastuti, C.; Wicaksono, P.; Lutfianingrum, R.

    2018-01-01

    Silica Gel-Amine (SGA) has been made from geothermal sludge by grafting amine method. Sodium silicate solution is prepared by extracted geothermal sludge powder using sodium hidroxide solution then acidification in the range of pH 5 - 9 by using tartaric acid 1N. The grafting process uses 1 ml of ammonia solution and 10 ml of toluene at a rate of 0.1 ml min-1 accompanied by a reflux process. The amine grafting is done in two methods. The first method is grafting amine in silicate solution and the second method is grafting amine in washed gel. Product SGA was confirmed by FTIR, TGA-DTG and BET characterization. The results show that the pH affects the amount of amine that is grafted onto silica gel. Differences in grafting method affect the size of the pore and surface area. SGA product prepared by grafting washed gel at pH 8 have pore diameter of 12.06 nm, surface area of 173.44 m2g-1, and mass of decomposed amine compound 0.4 mg. In the presence of amine groups on the silica gel surface, these adsorbents may be able to selectively adsorb CO2 gas from natural gas.

  2. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene

    Energy Technology Data Exchange (ETDEWEB)

    Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa [Institute of Microbial Technology (CSIR) Sector-39A, Chandigarh160036 (India); Suri, C. Raman, E-mail: raman@imtech.res.in [Institute of Microbial Technology (CSIR) Sector-39A, Chandigarh160036 (India)

    2013-03-15

    Highlights: ► Binding of electron-deficient trinitrotoluene to the electron rich amino groups to form JM complexes. ► rGO/CNT based platform for enhanced electrochemical detection. ► Functionalization and characterization of rGO/CNT with amine derivative. ► Ultrasenstitive and specific detection of TNT. -- Abstract: Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson–Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available -OH and -COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n = 3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications.

  3. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene

    International Nuclear Information System (INIS)

    Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa; Suri, C. Raman

    2013-01-01

    Highlights: ► Binding of electron-deficient trinitrotoluene to the electron rich amino groups to form JM complexes. ► rGO/CNT based platform for enhanced electrochemical detection. ► Functionalization and characterization of rGO/CNT with amine derivative. ► Ultrasenstitive and specific detection of TNT. -- Abstract: Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson–Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available -OH and -COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n = 3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications

  4. The economics of amine usage

    International Nuclear Information System (INIS)

    Fountain, M.J.

    1994-01-01

    Research carried out over the past decade in the USA (funded by EPRI) and by the CEGB/Nuclear Electric in the UK has identified several thermally stable, low-toxicity 'advanced' amines with good high-temperature basicity and low steam-water distribution ratio. As a direct result of this work several US PWR stations are now evaluating monoethanolamine (ETA) and Nuclear Electric's Wylfa Power Station (magnox) now doses 5 aminopentanol (5AP) instead of AMP, which had successfully combated erosion-corrosion for the past nine years. It has recently been stated that the use of 5AP ''...could save Nuclear Electric up to 1.5M pounds per year''. To provide US power station chemists with a tool for tailoring amine dosage to their own plant requirements EPRI has developed a computer model, Aminmod, which can, with user-defined circuit parameters and amine feed concentrations, calculate amine concentrations and pH(t) values at various points around the circuit. To complement this model a user-friendly spreadsheet program is being developed which will work in conjunction with Aminmod, via active links, to calculate the total operating cost associated with the selected amine dosing regime and compare alternative scenarios. This paper discusses the relationship between the technical and economic aspects of choosing an amine dosing regime and draws on combined Aminmod/spreadsheet results to illustrate how differences in amine properties can influence the optimum economic solution for a typical PWR. (author). 3 figs., 2 tabs., 5 refs

  5. Ternary complexes of folate-PEG-appended dendrimer (G4)/α-cyclodextrin conjugate, siRNA and low-molecular-weight polysaccharide sacran as a novel tumor-selective siRNA delivery system.

    Science.gov (United States)

    Ohyama, Ayumu; Higashi, Taishi; Motoyama, Keiichi; Arima, Hidetoshi

    2017-06-01

    We previously developed a tumor-selective siRNA carrier by preparing polyamidoamine dendrimer (generation 4, G4) conjugates with α-cyclodextrin and folate-polyethylene glycol (Fol-PαC (G4)). In the present study, we developed ternary complexes of Fol-PαC (G4)/siRNA with low-molecular-weight-sacrans to achieve more effective siRNA transfer activity. Among the different molecular-weight sacrans, i.e. sacran 100, 1000 and 10,000 (MW 44,889Da, 943,692Da and 1,488,281Da, respectively), sacran 100 significantly increased the cellular uptake and the RNAi effects of Fol-PαC (G4)/siRNA binary complex with negligible cytotoxicity in KB cells (folate receptor-α positive cells). In addition, the ζ-potential and particle size of Fol-PαC (G4)/siRNA complex were decreased by the ternary complexation with sacran 100. Importantly, the in vivo RNAi effect of the ternary complex after the intravenous administration to tumor-bearing BALB/c mice was significantly higher than that of the binary complex. In conclusion, Fol-PαC (G4)/siRNA/sacran 100 ternary complex has a potential as a novel tumor-selective siRNA delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. siMacro: A Fast and Easy Data Processing Tool for Cell-Based Genomewide siRNA Screens

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Singh

    2013-03-01

    Full Text Available Growing numbers of studies employ cell line-based systematic short interfering RNA (siRNA screens to study gene functions and to identify drug targets. As multiple sources of variations that are unique to siRNA screens exist, there is a growing demand for a computational tool that generates normalized values and standardized scores. However, only a few tools have been available so far with limited usability. Here, we present siMacro, a fast and easy-to-use Microsoft Office Excel-based tool with a graphic user interface, designed to process single-condition or two-condition synthetic screen datasets. siMacro normalizes position and batch effects, censors outlier samples, and calculates Z-scores and robust Z-scores, with a spreadsheet output of >120,000 samples in under 1 minute.

  7. Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA

    Directory of Open Access Journals (Sweden)

    Nathan M Belliveau

    2012-01-01

    Full Text Available Lipid nanoparticles (LNP are the leading systems for in vivo delivery of small interfering RNA (siRNA for therapeutic applications. Formulation of LNP siRNA systems requires rapid mixing of solutions containing cationic lipid with solutions containing siRNA. Current formulation procedures employ macroscopic mixing processes to produce systems 70-nm diameter or larger that have variable siRNA encapsulation efficiency, homogeneity, and reproducibility. Here, we show that microfluidic mixing techniques, which permit millisecond mixing at the nanoliter scale, can reproducibly generate limit size LNP siRNA systems 20 nm and larger with essentially complete encapsulation of siRNA over a wide range of conditions with polydispersity indexes as low as 0.02. Optimized LNP siRNA systems produced by microfluidic mixing achieved 50% target gene silencing in hepatocytes at a dose level of 10 µg/kg siRNA in mice. We anticipate that microfluidic mixing, a precisely controlled and readily scalable technique, will become the preferred method for formulation of LNP siRNA delivery systems.

  8. Mechanism of Oxidative Amidation of Nitroalkanes with Oxygen and Amine Nucleophiles by Using Electrophilic Iodine.

    Science.gov (United States)

    Li, Jing; Lear, Martin J; Kwon, Eunsang; Hayashi, Yujiro

    2016-04-11

    Recently, we developed a direct method to oxidatively convert primary nitroalkanes into amides that entailed mixing an iodonium source with an amine, base, and oxygen. Herein, we systematically investigated the mechanism and likely intermediates of such methods. We conclude that an amine-iodonium complex first forms through N-halogen bonding. This complex reacts with aci-nitronates to give both α-iodo- and α,α-diiodonitroalkanes, which can act as alternative sources of electrophilic iodine and also generate an extra equimolar amount of I(+) under O2. In particular, evidence supports α,α-diiodonitroalkane intermediates reacting with molecular oxygen to form a peroxy adduct; alternatively, these tetrahedral intermediates rearrange anaerobically to form a cleavable nitrite ester. In either case, activated esters are proposed to form that eventually reacts with nucleophilic amines in a traditional fashion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. CO{sub 2} adsorption in amine-grafted zeolite 13X

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Diôgo P. [GPSA, Universidade Federal do Ceará (Brazil); Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Campus Ipanguaçu, Rio Grande do Norte (Brazil); Silva, Francisco W.M. da; Moura, Pedro A.S. de; Sousa, Allyson G.S.; Vieira, Rodrigo S. [GPSA, Universidade Federal do Ceará (Brazil); Rodriguez-Castellon, Enrique [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Azevedo, Diana C.S., E-mail: diana@gpsa.ufc.br [GPSA, Universidade Federal do Ceará (Brazil)

    2014-09-30

    Highlights: • CO{sub 2} adsorption mechanism in amine-grafted zeolite 13X was investigated. • The loaded amine tends to fill zeolite micropores and most of it is unaccessible to react with CO{sub 2}. • Part of loaded MEA binds covalently to the zeolitic structure and will not detach from the surface even at low pressures. • Chemisorption is likely to lead to CO{sub 2} higher uptakes upon a rise in temperature for solids with the highest amine load. - Abstract: The adsorption of CO{sub 2} on Zeolite 13X functionalized with amino groups was studied. Adsorbent functionalization was carried out by grafting with different loads of monoethanolamine (MEA). The adsorbents were characterized by N{sub 2} adsorption/desorption isotherms at 77 K, x-ray diffraction, TGA, in situ FTIR, XPS and adsorption microcalorimetry. CO{sub 2} isotherms were studied in a gravimetric device up to 10 bar at 298 and 348 K. It was found that increasing loads of amine to the adsorbent tend to reduce micropore volume of the resulting adsorbents by pore blocking with MEA. There is experimental evidence that part of the loaded MEA is effectively covalently bonded to the zeolitic structure, whereas there is also physisorbed excess MEA which will eventually be desorbed by raising the temperature beyond MEA boiling point. Heats of adsorption at nearly zero coverage indicate that some of the adsorbed CO{sub 2} reacts with available amino groups, which agrees with the finding that the adsorption capacity increases with increasing temperature for the modified zeolite with the highest MEA load.

  10. Amines, Astrocytes and Arousal

    OpenAIRE

    Bazargani, N.; Attwell, D.

    2017-01-01

    Amine neurotransmitters, such as noradrenaline, mediate arousal, attention, and reward in the CNS. New data suggest that, from flies to mammals, a major mechanism for amine transmitter action is to raise astrocyte [Ca2+]i and release gliotransmitters that modulate neuronal activity and behavior.

  11. Extraction of sulphates by long chain amines; Extraction des sulfates par les amines a longues chaines

    Energy Technology Data Exchange (ETDEWEB)

    Boirie, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-05-15

    The extraction of sulphuric acid by long chain amines in organic solution has been studied with a view to determining the value of the stability constants of the amine sulphates and bi-sulphates formed. We have concentrated chiefly on uranium sulphate and thorium sulphate. The formulae of the complexes extractable with amines have been established, as well as the corresponding dissociation constants. We have observed that for uranium sulphate the formula of the complex depends only on the nature of the amine, whereas for thorium this formula varies with the amine structure. From the formulae determined and the value of the constants calculated, we have been able to establish the best conditions for uranium and thorium extraction and also for a separation of these two elements. Finally we propose an application of this study to the determination of uranium in ores, where the separation of uranium by this method is particularly easy and complete. (author) [French] L'extraction de l'acide sulfurique par des amines a longues chaines en solution organique a ete etudiee en vue de la determination de la valeur des constantes de stabilite des sulfates et bisulfates d'amines formes. Parmi les sulfates, nous nous sommes particulierement interesses au sulfate d'uranium et au sulfate de thorium. Nous avons determine les formules des complexes extractibles avec les amines, ainsi que les constantes de dissociation correspondantes. Nous avons remarque que pour le sulfate d'uranium, la formule du complexe ne depend que de la nature de l'amine, alors que pour le thorium cette formule varie avec la structure de l'amine. Les formules determinees et la valeur des constantes calculees, nous ont permis de decrire les meilleures conditions d'extraction de l'uranium et du thorium ainsi que celles d'une separation de ces deux elements. Nous proposons enfin une application de cette etude au dosage de l'uranium dans les minerais, ou la separation de l'uranium par cette methode est

  12. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties.

    Science.gov (United States)

    Jiang, Feng; Chen, Daiqin; Li, Ruimin; Wang, Yucheng; Zhang, Guoqiang; Li, Shumu; Zheng, Junpeng; Huang, Naiyan; Gu, Ying; Wang, Chunru; Shu, Chunying

    2013-02-07

    Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine.

  13. Random small interfering RNA library screen identifies siRNAs that induce human erythroleukemia cell differentiation.

    Science.gov (United States)

    Fan, Cuiqing; Xiong, Yuan; Zhu, Ning; Lu, Yabin; Zhang, Jiewen; Wang, Song; Liang, Zicai; Shen, Yan; Chen, Meihong

    2011-03-01

    Cancers are characterized by poor differentiation. Differentiation therapy is a strategy to alleviate malignant phenotypes by inducing cancer cell differentiation. Here we carried out a combinatorial high-throughput screen with a random siRNA library on human erythroleukemia K-562 cell differentiation. Two siRNAs screened from the library were validated to be able to induce erythroid differentiation to varying degrees, determined by CD235 and globin up-regulation, GATA-2 down-regulation, and cell growth inhibition. The screen we performed here is the first trial of screening cancer differentiation-inducing agents from a random siRNA library, demonstrating that a random siRNA library can be considered as a new resource in efforts to seek new therapeutic agents for cancers. As a random siRNA library has a broad coverage for the entire genome, including known/unknown genes and protein coding/non-coding sequences, screening using a random siRNA library can be expected to greatly augment the repertoire of therapeutic siRNAs for cancers.

  14. Folate-targeted amphiphilic cyclodextrin nanoparticles incorporating a fusogenic peptide deliver therapeutic siRNA and inhibit the invasive capacity of 3D prostate cancer tumours.

    Science.gov (United States)

    Evans, James C; Malhotra, Meenakshi; Sweeney, Katrina; Darcy, Raphael; Nelson, Colleen C; Hollier, Brett G; O'Driscoll, Caitriona M

    2017-10-30

    The main barrier to the development of an effective RNA interference (RNAi) therapy is the lack of a suitable delivery vector. Modified cyclodextrins have emerged in recent years for the delivery of siRNA. In the present study, a folate-targeted amphiphilic cyclodextrin was formulated using DSPE-PEG 5000 -folate to target prostate cancer cells. The fusogenic peptide GALA was included in the formulation to aid in the endosomal release of siRNA. Targeted nanoparticles were less than 200nm in size with a neutral surface charge. The complexes were able to bind siRNA and protect it from serum nucleases. Incubation with excess free folate resulted in a significant decrease in the uptake of targeted nanoparticles in LNCaP and PC3 cells, both of which have been reported to have differing pathways of folate uptake. There was a significant reduction in the therapeutic targets, ZEB1 and NRP1 at mRNA and protein level following treatment with targeted complexes. In preliminary functional assays using 3D spheroids, treatment of PC3 tumours with targeted complexes with ZEB1 and NRP1 siRNA resulted in more compact colonies relative to the untargeted controls and inhibited infiltration into the Matrigel™ layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Mesoporous silica nanorods toward efficient loading and intracellular delivery of siRNA

    Science.gov (United States)

    Chen, Lijue; She, Xiaodong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2018-02-01

    The technology of RNA interference (RNAi) that uses small interfering RNA (siRNA) to silence the gene expression with complementary messenger RNA (mRNA) sequence has great potential for the treatment of cancer in which certain genes were usually found overexpressed. However, the carry and delivery of siRNA to the target site in the human body can be challenging for this technology to be used clinically to silence the cancer-related gene expression. In this work, rod shaped mesoporous silica nanoparticles (MSNs) were developed as siRNA delivery system for specific intracellular delivery. The rod MSNs with an aspect ratio of 1.5 had a high surface area of 934.28 m2/g and achieved a siRNA loading of more than 80 mg/g. With the epidermal growth factor (EGF) grafted on the surface of the MSNs, siRNA can be delivered to the epidermal growth factor receptor (EGFR) overexpressed colorectal cancer cells with high intracellular concentration compared to MSNs without EGF and lead to survivin gene knocking down to less than 30%.

  16. Peptide-mediated lipofection is governed by lipoplex physical properties and the density of surface-displayed amines.

    Science.gov (United States)

    Rea, Jennifer C; Barron, Annelise E; Shea, Lonnie D

    2008-11-01

    Peptides can potentiate lipid-mediated gene delivery by modifying lipoplex physiochemical properties to overcome rate-limiting steps to gene transfer. The objectives of this study were to determine the regimes over which cationic peptides enhance lipofection and to investigate the mechanism of action, such as increased cellular association resulting from changes in lipoplex physical properties. Short, cationic peptides were incorporated into lipoplexes by mixing peptide, lipid and DNA. Lipoplexes were characterized using gel retardation, dynamic light scattering, and fluorescent microscopy, and the amount of surface-displayed amines was quantified by fluorescamine. Size, zeta potential, and surface amines for lipoplexes were dependent on peptide/DNA ratio. Inclusion of peptides in lipoplexes resulted in up to a 13-fold increase in percentage of cells transfected, and up to a 76-fold increase in protein expression. This transfection enhancement corresponded to a small particle diameter and positive zeta potential of lipoplexes, as well as increased amount of surface-displayed amines. Relative to lipid alone, these properties of the peptide-modified lipoplexes enhanced cellular association, which has been reported as a rate-limiting step for transfection with lipoplexes. The addition of peptides is a simple method of lipofection enhancement, as direct chemical modification of lipids is not necessary for increased transfection.

  17. In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus.

    Science.gov (United States)

    Watanabe, Tsunamasa; Hatakeyama, Hiroto; Matsuda-Yasui, Chiho; Sato, Yusuke; Sudoh, Masayuki; Takagi, Asako; Hirata, Yuichi; Ohtsuki, Takahiro; Arai, Masaaki; Inoue, Kazuaki; Harashima, Hideyoshi; Kohara, Michinori

    2014-04-23

    The development of RNA interference (RNAi)-based therapy faces two major obstacles: selecting small interfering RNA (siRNA) sequences with strong activity, and identifying a carrier that allows efficient delivery to target organs. Additionally, conservative region at nucleotide level must be targeted for RNAi in applying to virus because hepatitis C virus (HCV) could escape from therapeutic pressure with genome mutations. In vitro preparation of Dicer-generated siRNAs targeting a conserved, highly ordered HCV 5' untranslated region are capable of inducing strong RNAi activity. By dissecting the 5'-end of an RNAi-mediated cleavage site in the HCV genome, we identified potent siRNA sequences, which we designate as Dicer-hunting siRNAs (dh-siRNAs). Furthermore, formulation of the dh-siRNAs in an optimized multifunctional envelope-type nano device inhibited ongoing infectious HCV replication in human hepatocytes in vivo. Our efforts using both identification of optimal siRNA sequences and delivery to human hepatocytes suggest therapeutic potential of siRNA for a virus.

  18. In vitro and in vivo siRNA delivery to hepatocyte utilizing ternary complexation of lactosylated dendrimer/cyclodextrin conjugates, siRNA and low-molecular-weight sacran.

    Science.gov (United States)

    Hayashi, Yuya; Higashi, Taishi; Motoyama, Keiichi; Jono, Hirofumi; Ando, Yukio; Arima, Hidetoshi

    2018-02-01

    In this study, we newly developed the ternary complexes consisting of lactosylated dendrimer (generation 3)/α-cyclodextrin conjugate (Lac-α-CDE), siRNA and the anionic polysaccharide sacrans, and evaluated their utility as siRNA transfer carriers. Three kinds of the low-molecular-weight sacrans, i.e. sacran (100) (Mw 44,889Da), sacran (1000) (Mw 943,692Da) and sacran (10,000) (Mw 1,488,281Da) were used. Lac-α-CDE/siRNA/sacran ternary complexes were prepared by adding the low-molecular-weight sacrans to the Lac-α-CDE/siRNA binary complex solution. Cellular uptake of the ternary complex with sacran (100) was higher than that of the binary complex or the other ternary complexes with sacran (1000) and sacran (10,000) in HepG2 cells. Additionally, the ternary complex possessed high serum resistance and endosomal escaping ability in HepG2 cells. High liver levels of siRNA and Lac-α-CDE were observed after the intravenous administration of the ternary complex rather than that of the binary complex. Moreover, intravenous administration of the ternary complex (siRNA 5mg/kg) induced the significant RNAi effect in the liver of mice with negligible change of blood chemistry values. Therefore, a ternary complexation of the Lac-α-CDE/siRNA binary complex with sacran is useful as a hepatocyte-specific siRNA delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Photocatalytic oxidation of aromatic amines using MnO2@g ...

    Science.gov (United States)

    An efficient and direct oxidation of aromatic amines to aromatic azo-compounds has been achieved using a MnO2@g-C3N4 catalyst under visible light as a source of energy at room temperature Prepared for submission to the journal, Advanced Materials Letters.

  20. Protection and systemic translocation of siRNA following oral administration of chitosan/siRNA nanoparticles

    DEFF Research Database (Denmark)

    Gonzalez, Borja Ballarin; Dagnæs-Hansen, Frederik; Fenton, Robert A.

    2013-01-01

    , gastrointestinal (GI) deposition, and translocation into peripheral tissue of nonmodified siRNA after oral gavage of chitosan/siRNA nanoparticles in mice. In contrast to naked siRNA, retained structural integrity and deposition in the stomach, proximal and distal small intestine, and colon was observed at 1 and 5...... hours for siRNA within nanoparticles. Furthermore, histological detection of fluorescent siRNA at the apical regions of the intestinal epithelium suggests mucoadhesion provided by chitosan. Detection of intact siRNA in the liver, spleen, and kidney was observed 1 hour after oral gavage, with an organ...

  1. Amine terminated SAMs: Investigating why oxygen is present in these films

    International Nuclear Information System (INIS)

    Baio, J.E.; Weidner, T.; Brison, J.; Graham, D.J.; Gamble, Lara J.; Castner, David G.

    2009-01-01

    Self-assembled monolayers (SAMs) on gold prepared from amine-terminated alkanethiols have long been employed as model positively charged surfaces. Yet in previous studies significant amounts of unexpected oxygen containing species are always detected in amine terminated SAMs. Thus, the goal of this investigation was to determine the source of these oxygen species and minimize their presence in the SAM. The surface composition, structure, and order of amine-terminated SAMs on Au were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), sum frequency generation (SFG) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. XPS determined compositions of amine-terminated SAMs in the current study exhibited oxygen concentrations of 2.4 ± 0.4 atomic %, a substantially lower amount of oxygen than reported in previously published studies. High-resolution XPS results from the S 2p , C 1s and N 1s regions did not detect any oxidized species. Angle-resolved XPS indicated that the small amount of oxygen detected was located at or near the amine head group. Small amounts of oxidized nitrogen, carbon and sulfur secondary ions, as well as ions attributed to water, were detected in the ToF-SIMS data due to the higher sensitivity of ToF-SIMS. The lack of N-O, S-O, and C-O stretches in the SFG spectra are consistent with the XPS and ToF-SIMS results and together show that oxidation of the amine-terminated thiols alone can only account for, at most, a small fraction of the oxygen detected by XPS. Both the SFG and angle-dependent NEXAFS indicated the presence of gauche defects in the amine SAMs. However, the SFG spectral features near 2865 cm -1 , assigned to the stretch of the methylene group next to the terminal amine unit, demonstrate the SAM is reasonably ordered. The SFG results also show another broad feature near 3200 cm -1 related to hydrogen-bonded water. From this multi-technique investigation it is

  2. Targeted Delivery of siRNA Therapeutics to Malignant Tumors

    Directory of Open Access Journals (Sweden)

    Qixin Leng

    2017-01-01

    Full Text Available Over the past 20 years, a diverse group of ligands targeting surface biomarkers or receptors has been identified with several investigated to target siRNA to tumors. Many approaches to developing tumor-homing peptides, RNA and DNA aptamers, and single-chain variable fragment antibodies by using phage display, in vitro evolution, and recombinant antibody methods could not have been imagined by researchers in the 1980s. Despite these many scientific advances, there is no reason to expect that the ligand field will not continue to evolve. From development of ligands based on novel or existing biomarkers to linking ligands to drugs and gene and antisense delivery systems, several fields have coalesced to facilitate ligand-directed siRNA therapeutics. In this review, we discuss the major categories of ligand-targeted siRNA therapeutics for tumors, as well as the different strategies to identify new ligands.

  3. Enhanced Adsorption of p-Arsanilic Acid from Water by Amine-Modified UiO-67 as Examined Using Extended X-ray Absorption Fine Structure, X-ray Photoelectron Spectroscopy, and Density Functional Theory Calculations.

    Science.gov (United States)

    Tian, Chen; Zhao, Jian; Ou, Xinwen; Wan, Jieting; Cai, Yuepeng; Lin, Zhang; Dang, Zhi; Xing, Baoshan

    2018-03-20

    p-Arsanilic acid ( p-ASA) is an emerging organoarsenic pollutant comprising both inorganic and organic moieties. For the efficient removal of p-ASA, adsorbents with high adsorption affinity are urgently needed. Herein, amine-modified UiO-67 (UiO-67-NH 2 ) metal-organic frameworks (MOFs) were synthesized, and their adsorption affinities toward p-ASA were 2 times higher than that of the pristine UiO-67. Extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculation results revealed adsorption through a combination of As-O-Zr coordination, hydrogen bonding, and π-π stacking, among which As-O-Zr coordination was the dominant force. Amine groups played a significant role in enhancing the adsorption affinity through strengthening the As-O-Zr coordination and π-π stacking, as well as forming new adsorption sites via hydrogen bonding. UiO-67-NH 2 s could remove p-ASA at low concentrations (<5 mg L -1 ) in simulated natural and wastewaters to an arsenic level lower than that of the drinking water standard of World Health Organization (WHO) and the surface water standard of China, respectively. This work provided an emerging and promising method to increase the adsorption affinity of MOFs toward pollutants containing both organic and inorganic moieties, via modifying functional groups based on the pollutant structure to achieve synergistic adsorption effect.

  4. Low-weight polyethylenimine cross-linked 2-hydroxypopyl-ß-cyclodextrin and folic acid as an efficient and nontoxic siRNA carrier for gene silencing and tumor inhibition by VEGF siRNA

    Directory of Open Access Journals (Sweden)

    Li JM

    2013-06-01

    Full Text Available Jin-Ming Li, Yuan-Yuan Wang, Wei Zhang, Hua Su, Liang-Nian Ji, Zong-Wan Mao MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China Background: Targeted delivery of small interfering RNA (siRNA has been regarded as one of the most important technologies for the development of siRNA therapeutics. However, the need for safe and efficient delivery systems is a barrier to further development of RNA interference therapeutics. In this work, a nontoxic and efficient siRNA carrier delivery system of low molecular weight polyethyleneimine (PEI-600 Da cross-linked with 2-hydroxypopyl-β-cyclodextrin (HP-β-CD and folic acid (FA was synthesized for biomedical application. Methods: The siRNA carrier was prepared using a simple method and characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. The siRNA carrier nanoparticles were characterized in terms of morphology, size and zeta potential, stability, efficiency of delivery, and gene silencing efficiency in vitro and in vivo. Results: The siRNA carrier was synthesized successfully. It showed good siRNA binding capacity and ability to protect siRNA. Further, the toxicity of the carrier measured in vitro and in vivo appeared to be negligible, probably because of degradation of the low molecular weight PEI and HP-β-CD in the cytosol. Flow cytometry and confocal microscopy confirmed that the FA receptor-mediated endocytosis of the FA-HP-β-CD-PEI/siRNA complexes was greater than that of the HP-β-CD-PEI/siRNA complexes in FA receptor-enriched HeLa cells. The FA-HP-β-CD-PEI/siRNA complexes also demonstrated excellent gene silencing efficiency in vitro (in the range of 90%, and reduced vascular endothelial growth factor (VEGF protein expression in the presence of 20% serum. FA-HP-β-CD-PEI/siRNA complexes administered via tail vein injection resulted in marked

  5. Synthesis of amphiphilic aminated inulin via 'click chemistry' and evaluation for its antibacterial activity.

    Science.gov (United States)

    Dong, Fang; Zhang, Jun; Yu, Chunwei; Li, Qing; Ren, Jianming; Wang, Gang; Gu, Guodong; Guo, Zhanyong

    2014-09-15

    Inulins are a group of abundant, water-soluble, renewable polysaccharides, which exhibit attractive bioactivities and natural properties. Improvement such as chemical modification of inulin is often performed prior to further utilization. We hereby presented a method to modify inulin at its primary hydroxyls to synthesize amphiphilic aminated inulin via 'click chemistry' to facilitate its chemical manipulation. Additionally, its antibacterial property against Staphylococcus aureus (S. aureus) was also evaluated and the best inhibitory index against S. aureus was 58% at 1mg/mL. As the amphiphilic aminated inulin is easy to prepare and exhibits improved bioactivity, this material may represent as an attractive new platform for chemical modifications of inulin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs

    International Nuclear Information System (INIS)

    Li, Fengfeng; Fan, Cunyi; Cheng, Tao; Jiang, Chaoyin; Zeng, Bingfang

    2009-01-01

    Transforming growth factor-β1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.

  7. CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs.

    Science.gov (United States)

    van Wolfswinkel, Josien C; Claycomb, Julie M; Batista, Pedro J; Mello, Craig C; Berezikov, Eugene; Ketting, René F

    2009-10-02

    We have studied the function of a conserved germline-specific nucleotidyltransferase protein, CDE-1, in RNAi and chromosome segregation in C. elegans. CDE-1 localizes specifically to mitotic chromosomes in embryos. This localization requires the RdRP EGO-1, which physically interacts with CDE-1, and the Argonaute protein CSR-1. We found that CDE-1 is required for the uridylation of CSR-1 bound siRNAs, and that in the absence of CDE-1 these siRNAs accumulate to inappropriate levels, accompanied by defects in both meiotic and mitotic chromosome segregation. Elevated siRNA levels are associated with erroneous gene silencing, most likely through the inappropriate loading of CSR-1 siRNAs into other Argonaute proteins. We propose a model in which CDE-1 restricts specific EGO-1-generated siRNAs to the CSR-1 mediated, chromosome associated RNAi pathway, thus separating it from other endogenous RNAi pathways. The conserved nature of CDE-1 suggests that similar sorting mechanisms may operate in other animals, including mammals.

  8. Core/shell-type nanorods of Tb{sup 3+}-doped LaPO{sub 4}, modified with amine groups, revealing reduced cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Runowski, Marcin [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Dąbrowska, Krystyna [Polish Academy of Sciences, Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy (Poland); Grzyb, Tomasz [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Miernikiewicz, Paulina [Polish Academy of Sciences, Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy (Poland); Lis, Stefan, E-mail: blis@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2013-11-15

    A simple co-precipitation reaction between Ln{sup 3+} cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb{sup 3+}-doped LaPO{sub 4} crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with –NH{sub 2} groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer–Emmett–Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb{sup 3+} ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO{sub 4}:Tb{sup 3+}@SiO{sub 2}@NH{sub 2} exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO{sub 4}:Tb{sup 3+}@SiO{sub 2}.Graphical Abstract.

  9. Oxidation of amines by flavoproteins.

    Science.gov (United States)

    Fitzpatrick, Paul F

    2010-01-01

    Many flavoproteins catalyze the oxidation of primary and secondary amines, with the transfer of a hydride equivalent from a carbon-nitrogen bond to the flavin cofactor. Most of these amine oxidases can be classified into two structural families, the D-amino acid oxidase/sarcosine oxidase family and the monoamine oxidase family. This review discusses the present understanding of the mechanisms of amine and amino acid oxidation by flavoproteins, focusing on these two structural families. Copyright 2009 Elsevier Inc. All rights reserved.

  10. Kinetic analysis of the effects of target structure on siRNA efficiency

    Science.gov (United States)

    Chen, Jiawen; Zhang, Wenbing

    2012-12-01

    RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.

  11. Development of a Positive-readout Mouse Model of siRNA Pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Mark Stevenson

    2013-01-01

    Full Text Available Development of RNAi-based therapeutics has the potential to revolutionize treatment options for a range of human diseases. However, as with gene therapy, a major barrier to progress is the lack of methods to achieve and measure efficient delivery for systemic administration. We have developed a positive-readout pharmacodynamic transgenic reporter mouse model allowing noninvasive real-time assessment of siRNA activity. The model combines a luciferase reporter gene under the control of regulatory elements from the lac operon of Escherichia coli. Introduction of siRNA targeting lac repressor results in increased luciferase expression in cells where siRNA is biologically active. Five founder luciferase-expressing and three founder Lac-expressing lines were generated and characterized. Mating of ubiquitously expressing luciferase and lac lines generated progeny in which luciferase expression was significantly reduced compared with the parental line. Administration of isopropyl β-D-1-thiogalactopyranoside either in drinking water or given intraperitoneally increased luciferase expression in eight of the mice examined, which fell rapidly when withdrawn. Intraperitoneal administration of siRNA targeting lac in combination with Lipofectamine 2000 resulted in increased luciferase expression in the liver while control nontargeting siRNA had no effect. We believe a sensitive positive readout pharmacodynamics reporter model will be of use to the research community in RNAi-based vector development.

  12. siRNA Transfection and EMSA Analyses on Freshly Isolated Human Villous Cytotrophoblasts.

    Science.gov (United States)

    Lokossou, Adjimon Gatien; Toufaily, Chirine; Vargas, Amandine; Barbeau, Benoit

    2016-09-20

    Human primary villous cytotrophoblasts are a very useful source of primary cells to study placental functions and regulatory mechanisms, and to comprehend diseases related to pregnancy. In this protocol, human primary villous cytotrophoblasts freshly isolated from placentas through a standard DNase/trypsin protocol are microporated with small interfering RNA (siRNA). This approach provided greater efficiency for siRNA transfection when compared to a lipofection-based method. Transfected cells can subsequently be analyzed by standard Western blot within a time frame of 3-4 days post-transfection. In addition, using cultured primary villous cytotrophoblasts, Electrophoretic Mobility Shift Assay (EMSA) analysis was optimized and performed on extracts from days 1 to 4. The use of these cultured primary cells and the protocol described allow for an evaluation of the implication of specific genes and transcription factors in the process of villous cytotrophoblast differentiation into a syncytiotrophoblast-like cell layer. However, the limited time span allowable in culture precludes the use of methods requiring more time, such as generation of a stable cell population. Therefore testing of this cell population requires highly optimized gene transfer protocols.

  13. Controlling Nitrosamines, Nitramines, and Amines in Amine-Based CO₂ Capture Systems with Continuous Ultraviolet and Ozone Treatment of Washwater.

    Science.gov (United States)

    Dai, Ning; Mitch, William A

    2015-07-21

    Formation of nitrosamines and nitramines from reactions between flue gas NOx and the amines used in CO2 capture units has arisen as a significant concern. Washwater scrubbers can capture nitrosamines and nitramines. They can also capture amines, preventing formation of nitrosamines and nitramines downwind by amine reactions with ambient NOx. The continuous application of UV alone, or a combination of UV and ozone to the return line of a washwater treatment unit was evaluated to control the accumulation of nitrosamines, nitramines and amines in a laboratory-scale washwater unit. With model secondary amine solvents ranging from nonvolatile diethanolamine to volatile morpholine, application of 272-537 mJ/cm(2) UV incident fluence alone reduced the accumulation of nitrosamines and nitramines by approximately an order of magnitude. Modeling indicated that the gains achieved by UV treatment should increase over time, because UV treatment converts the time dependence of nitrosamine accumulation from a quadratic to a linear function. Ozone (21 mg/L) maintained low steady-state concentrations of amines in the washwater. While modeling indicated that more than 80% of nitrosamine accumulation in the washwater was associated with reaction of washwater amines with residual NOx, a reduction in nitrosamine accumulation rates due to ozone oxidation of amines was not fully realized because the ozonation products of amines reduced nitrosamine photolysis rates by competing for photons.

  14. Metal and base free synthesis of primary amines via ipso amination of organoboronic acids mediated by [bis(trifluoroacetoxy)iodo]benzene (PIFA).

    Science.gov (United States)

    Chatterjee, Nachiketa; Goswami, Avijit

    2015-08-07

    A metal and base free synthesis of primary amines has been developed at ambient temperature through ipso amination of diversely functionalized organoboronic acids, employing a combination of [bis(trifluoroacetoxy)iodo]benzene (PIFA)-N-bromosuccinimide (NBS) and methoxyamine hydrochloride as the aminating reagent. The amines were primarily obtained as their trifluoroacetate salts which on subsequent aqueous alkaline work up provided the corresponding free amines. The combination of PIFA-NBS is found to be the mildest choice compared to the commonly used strong bases (e.g. n-BuLi, Cs2CO3) for activating the aminating agent. The reaction is expected to proceed via activation of the aminating reagent followed by B-N 1,2-aryl migration.

  15. Extraction of some acids using aliphatic amines; Extraction de quelques acides par des amines aliphatiques

    Energy Technology Data Exchange (ETDEWEB)

    Matutano, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-01

    Hydrochloric, nitric, sulphuric, perchloric, phosphoric, acetic and formic acids in aqueous solution (0.05 to 10 M) are extracted by amberlite LA2 and trilaurylamine in solution, 5 per cent by volume, in kerosene and xylene respectively. The extraction process consists of: neutralization of the amine salt; a 'molecular extraction', i.e. an extraction using an excess of acid with respect to the stoichiometry of the amine salt. According to the behaviour of the acid during the extraction, three groups may be distinguished: completely dissociated acids, carboxylic acids, phosphoric acid. This classification is also valid for the extraction of the water which occurs simultaneously with that of the acid. An extraction mechanism is put forward for formic acid and the formation constant of its amine salt is calculated. (author) [French] Les acides chlorhydrique, nitrique, sulfurique, perchlorique, phosphorique, acetique et formique, en solution aqueuse - 0,05 a 10 M - sont extraits par l'amberlite LA2 et la trilaurylamine en solution, a 5 pour cent en volume, dans le kerosene et le xylene respectivement. L'extraction comprend: une neutralisation de l'amine par l'acide avec formation d'un sel d'amine; une 'extraction moleculaire', c'est-a-dire une extraction d'acide en exces par rapport a la stoechiometrie du sel d'amine. Suivant le comportement des acides au cours de l'extraction nous distinguons trois groupes: acides entierement dissocies, acides carboxyliques, acide phosphorique. Cette classification est egalement valable pour l'extraction de l'eau qui est simultanee a celle de l'acide. Un mecanisme d'extraction pour l'acide formique est propose et nous calculons la constante de formation de son sel d'amine. (auteur)

  16. Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells

    Directory of Open Access Journals (Sweden)

    Li Y

    2016-07-01

    Full Text Available Yinghua Li,1 Zhengfang Lin,1 Mingqi Zhao,1 Tiantian Xu,1 Changbing Wang,1 Huimin Xia,1,* Hanzhong Wang,2,* Bing Zhu1,* 1Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, 2State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Small interfering RNA (siRNA as a new therapeutic modality holds promise for cancer treatment, but it is unable to cross cell membrane. To overcome this limitation, nanotechnology has been proposed for mediation of siRNA transfection. Selenium (Se is a vital dietary trace element for mammalian life and plays an essential role in the growth and functioning of humans. As a novel Se species, Se nanoparticles have attracted more and more attention for their higher anticancer efficacy. In the present study, siRNAs with polyethylenimine (PEI-modified Se nanoparticles (Se@PEI@siRNA have been demonstrated to enhance the apoptosis of HepG2 cells. Heat shock protein (HSP-70 is overexpressed in many types of human cancer and plays a significant role in several biological processes including the regulation of apoptosis. The objective of this study was to silence inducible HSP70 and promote the apoptosis of Se-induced HepG2 cells. Se@PEI@siRNA were successfully prepared and characterized by various microscopic methods. Se@PEI@siRNA showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. The cytotoxicity of Se@PEI@siRNA was lower for normal cells than tumor cells, indicating that these compounds may have fewer side effects. The gene-silencing efficiency of Se@PEI@siRNA was significantly much higher than Lipofectamine 2000@siRNA and resulted in a significantly reduced HSP70 mRNA and protein expression in cancer cells. When the expression of HSP70 was diminished, the function of cell protection was also removed and cancer cells became more

  17. Ideas and perspectives: on the emission of amines from terrestrial vegetation in the context of new atmospheric particle formation

    Directory of Open Access Journals (Sweden)

    J. Sintermann

    2015-06-01

    Full Text Available In this article we summarise recent science which shows how airborne amines, specifically methylamines (MAs, play a key role in new atmospheric particle formation (NPF by stabilising small molecule clusters. Agricultural emissions are assumed to constitute the most important MA source, but given the short atmospheric residence time of MAs, they can hardly have a direct impact on NPF events observed in remote regions. This leads us to the presentation of existing knowledge focussing on natural vegetation-related MA sources. High MA contents as well as emissions by plants was already described in the 19th century. Strong MA emissions predominantly occur during flowering as part of a pollination strategy. The behaviour is species-specific, but examples of such species are common and widespread. In addition, vegetative plant tissue exhibiting high amounts of MAs might potentially lead to significant emissions. The decomposition of organic material constitutes another, potentially ubiquitous, source of airborne MAs. These mechanisms would provide sources, which could be crucial for the amine's role in NPF, especially in remote regions. Knowledge about vegetation-related amine emissions is, however, very limited, and thus it is also an open question how global change and the intensified cycling of reactive nitrogen over the last 200 years have altered amine emissions from vegetation with a corresponding effect on NPF.

  18. Emerging RNA-based drugs: siRNAs, microRNAs and derivates.

    Science.gov (United States)

    Pereira, Tiago Campos; Lopes-Cendes, Iscia

    2012-09-01

    An emerging new category of therapeutic agents based on ribonucleic acid has emerged and shown very promising in vitro, animal and pre-clinical results, known as small interfering RNAs (siRNAs), microRNAs mimics (miRNA mimics) and their derivates. siRNAs are small RNA molecules that promote potent and specific silencing of mutant, exogenous or aberrant genes through a mechanism known as RNA interference. These agents have called special attention to medicine since they have been used to experimentally treat a series of neurological conditions with distinct etiologies such as prion, viral, bacterial, fungal, genetic disorders and others. siRNAs have also been tested in other scenarios such as: control of anxiety, alcohol consumption, drug-receptor blockage and inhibition of pain signaling. Although in a much earlier stage, miRNAs mimics, anti-miRs and small activating RNAs (saRNAs) also promise novel therapeutic approaches to control gene expression. In this review we intend to introduce clinicians and medical researchers to the most recent advances in the world of siRNA- and miRNA-mediated gene control, its history, applications in cells, animals and humans, delivery methods (an yet unsolved hurdle), current status and possible applications in future clinical practice.

  19. siRNAs Targeting Viral Protein 5: The Major Capsid Protein of ...

    African Journals Online (AJOL)

    Purpose: To investigate whether siRNA targeting viral protein 5 (VP5) can become a new treatment for herpes simplex virus type 1 (HSV-1). Methods: Flow cytometry was performed to determine the ratio of siRNA and lipo2000 to reach the highest transfection efficiency. Western blot and q-PCR were performed to determine ...

  20. Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Fatima Khaja

    2016-01-01

    Full Text Available Since its discovery, small interfering RNA (siRNA has been considered a potent tool for modulating gene expression. It has the ability to specifically target proteins via selective degradation of messenger RNA (mRNA not easily accessed by conventional drugs. Hence, RNA interference (RNAi therapeutics have great potential in the treatment of many diseases caused by faulty protein expression such as fibrosis and cancer. However, for clinical application siRNA faces a number of obstacles, such as poor in vivo stability, and off-target effects. Here we developed a unique targeted nanomedicine to tackle current siRNA delivery issues by formulating a biocompatible, biodegradable and relatively inexpensive nanocarrier of sterically stabilized phospholipid nanoparticles (SSLNPs. This nanocarrier is capable of incorporating siRNA in its core through self-association with a novel cationic lipid composed of naturally occuring phospholipids and amino acids. This overall assembly protects and delivers sufficient amounts of siRNA to knockdown over-expressed protein in target cells. The siRNA used in this study, targets connective tissue growth factor (CTGF, an important regulator of fibrosis in both hepatic and renal cells. Furthermore, asialoglycoprotein receptors are targeted by attaching the galactosamine ligand to the nanocarries which enhances the uptake of nanoparticles by hepatocytes and renal tubular epithelial cells, the major producers of CTGF in fibrosis. On animals this innovative nanoconstruct, small interfering RNA in sterically stabilized phospholipid nanoparticles (siRNA-SSLNP, showed favorable pharmacokinetic properties and accumulated mostly in hepatic and renal tissues making siRNA-SSLNP a suitable system for targeting liver and kidney fibrotic diseases.

  1. Regio- and Stereoselective Conjugate Addition of Aldehydes to β-Tosyl Enones under the Catalysis of a Binaphthyl-Modified Chiral Amine.

    Science.gov (United States)

    Kano, Taichi; Sugimoto, Hisashi; Maruyama, Hiroki; Maruoka, Keiji

    2015-07-13

    A simple axially chiral amine catalyst promoted the regio-, diastereo-, and enantioselective conjugate addition of aldehydes to β-tosyl enones, which serve as ynone surrogates. The adducts were readily converted by treatment with L-selectride into less accessible enones with a γ stereogenic center. Such compounds cannot be prepared through the amine-catalyzed conjugate addition of aldehydes to ynones. The obtained enones underwent further conjugate addition of diorganozinc compounds in the presence of a copper catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Lipid-Based Liquid Crystalline Nanoparticles Facilitate Cytosolic Delivery of siRNA via Structural Transformation.

    Science.gov (United States)

    He, Shufang; Fan, Weiwei; Wu, Na; Zhu, Jingjing; Miao, Yunqiu; Miao, Xiaran; Li, Feifei; Zhang, Xinxin; Gan, Yong

    2018-04-11

    RNA interference (RNAi) technology has shown great promise for the treatment of cancer and other genetic disorders. Despite the efforts to increase the target tissue distribution, the safe and effective delivery of siRNA to the diseased cells with sufficient cytosolic transport is another critical factor for successful RNAi clinical application. Here, the constructed lipid-based liquid crystalline nanoparticles, called nano-Transformers, can transform thestructure in the intracellular acidic environment and perform high-efficient siRNA delivery for cancer treatment. The developed nano-Transformers have satisfactory siRNA loading efficiency and low cytotoxicity. Different from the traditional cationic nanocarriers, the endosomal membrane fusion induced by the conformational transition of lipids contributes to the easy dissociation of siRNA from nanocarriers and direct release of free siRNA into cytoplasm. We show that transfection with cyclin-dependent kinase 1 (CDK1)-siRNA-loaded nano-Transformers causes up to 95% reduction of relevant mRNA in vitro and greatly inhibits the tumor growth without causing any immunogenic response in vivo. This work highlights that the lipid-based nano-Transformers may become the next generation of siRNA delivery system with higher efficacy and improved safety profiles.

  3. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells.

    Science.gov (United States)

    Imani, Rana; Shao, Wei; Taherkhani, Samira; Emami, Shahriar Hojjati; Prakash, Satya; Faghihi, Shahab

    2016-11-01

    The aim of this study is to improve hydrocolloid stability and siRNA transfection ability of a reduced graphene oxide (rGO) based nano-carrier using a phospholipid-based amphiphilic polymer (PL-PEG) and cell penetrating peptide (CPPs). The dual functionalized nano-carrier is comprehensively characterized for its chemical structure, size, surface charge and morphology as well as thermal stability. The nano-carrier cytocompatibility, siRNA condensation ability both in the presence and absence of enzyme, endosomal buffering capacity, cellular uptake and intracellular localization are also assessed. The siRNA loaded nano-carrier is used for internalization to MCF-7 cells and its gene silencing ability is compared with AllStars Hs Cell Death siRNA as a model gene. The nano-carrier remains stable in biological solution, exhibits excellent cytocompatibility, retards the siRNA migration and protects it against enzyme degradation. The buffering capacity analysis shows that incorporation of the peptide in nano-carrier structure would increase the resistance to endo/lysosomal like acidic condition (pH 6-4) The functionalized nano-carrier which is loaded with siRNA in an optimal N:P ratio presents superior internalization efficiency (82±5.1% compared to HiPerFect(®)), endosomal escape quality and capable of inducing cell death in MCF-7 cancer cells (51±3.1% compared to non-treated cells). The success of siRNA-based therapy is largely dependent on the safe and efficient delivery system, therefore; the dual functionalized rGO introduced here could have a great potential to be used as a carrier for siRNA delivery with relevancy in therapeutics and clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Chemoselective organocatalytic aerobic oxidation of primary amines to secondary imines.

    Science.gov (United States)

    Wendlandt, Alison E; Stahl, Shannon S

    2012-06-01

    Biomimetic aerobic oxidation of primary benzylic amines has been achieved by using a quinone catalyst. Excellent selectivity is observed for primary, unbranched benzylic amines relative to secondary/tertiary amines, branched benzylic amines, and aliphatic amines. The exquisite selectivity for benzylic amines enables oxidative self-sorting within dynamic mixtures of amines and imines to afford high yields of cross-coupled imine products.

  5. Degradation of biogenetic amines by gamma radiation process and identification by GC/MS

    Energy Technology Data Exchange (ETDEWEB)

    Cardozo, Monique; Souza, Stefania P. de; Lima, Keila dos S.C.; Lima, Antonio L. dos S., E-mail: santoslima@ime.eb.br [Departamento de Quimica - IME, Instituto Militar de Engenharia, RJ (Brazil)

    2011-07-01

    , using a research radiator with Cs-137 source and maximum dose rate of 1,8kGy/h. Dosimetry was performed with the calculation of the source exposure time using a specific program for the irradiator. For identification of amines it was used gas chromatography associated with a mass detector. The chromatographic conditions used were: interface temperature at 200 degree C, SCAN mode for m/z 15 to 300, helium mobile phase, manual injection, split rate of 1/5 and flow rate of 1.00mL/min. The heating was linear from 40 degree C to 300 degree C, with a rate of 10 degree C/min. Chromatographic separation was performed with column RTx-5MS, 30m x 0,25mm x 0,25 {mu}m, stationary phase 5% diphenyl - 95% dimethylpolysiloxane. The content of the amines after the irradiation process suffered considerable reduction. Tryptamine was more radiosensitive being reduced by about 85% at 1kGy, 99% at 3kGy and 100% at 5kGy. The b-phenylethylamine was reduced from its initial amount in about 20% at 1kGy, 70% at 3kGy and 85% at 5kGy. Tyramine showed less sensitivity to gamma radiation with reduction only 20% at 1kGy, 50% at 3kGy and 60% at 5kGy. These results show that the use of the irradiation process was efficient in the degradation of the amines tested. (author)

  6. Degradation of biogenetic amines by gamma radiation process and identification by GC/MS

    International Nuclear Information System (INIS)

    Cardozo, Monique; Souza, Stefania P. de; Lima, Keila dos S.C.; Lima, Antonio L. dos S.

    2011-01-01

    , using a research radiator with Cs-137 source and maximum dose rate of 1,8kGy/h. Dosimetry was performed with the calculation of the source exposure time using a specific program for the irradiator. For identification of amines it was used gas chromatography associated with a mass detector. The chromatographic conditions used were: interface temperature at 200 degree C, SCAN mode for m/z 15 to 300, helium mobile phase, manual injection, split rate of 1/5 and flow rate of 1.00mL/min. The heating was linear from 40 degree C to 300 degree C, with a rate of 10 degree C/min. Chromatographic separation was performed with column RTx-5MS, 30m x 0,25mm x 0,25 μm, stationary phase 5% diphenyl - 95% dimethylpolysiloxane. The content of the amines after the irradiation process suffered considerable reduction. Tryptamine was more radiosensitive being reduced by about 85% at 1kGy, 99% at 3kGy and 100% at 5kGy. The b-phenylethylamine was reduced from its initial amount in about 20% at 1kGy, 70% at 3kGy and 85% at 5kGy. Tyramine showed less sensitivity to gamma radiation with reduction only 20% at 1kGy, 50% at 3kGy and 60% at 5kGy. These results show that the use of the irradiation process was efficient in the degradation of the amines tested. (author)

  7. Enantioselective Direct α-Amination of Aldehydes via a Photoredox Mechanism: A Strategy for Asymmetric Amine Fragment Coupling

    OpenAIRE

    Cecere, Giuseppe; Koenig, Christian M.; Alleva, Jennifer L.; MacMillan, David W. C.

    2013-01-01

    The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated, nitrogen-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Important...

  8. Amine synergism in uranium extraction

    International Nuclear Information System (INIS)

    Rinelli, G.; Abbruzzese, C.

    1977-01-01

    Commercial products based on C 8 to C 12 tertiary amine mixtures are now widely used in the solvent extraction of uranium from sulphuric pregnant solutions. The satisfactory results generally obtained have never required an analysis of the synergistic effects of amine combinations similar to that carried out for the organo-phosphorus compounds. In the research described the increase in the extraction power of an organic phase composed of an amine binary mixture was studied with regard to an aqueous solution from the sulphuric acid treatment of uranium ore. On the basis of the experimental results obtained, it is possible to select the best composition of the amine mixture to ensure a percentage increase in uranium recovery. Bearing in mind the tendency for the yellow-cake price to rise, the study is considered to be a useful contribution in the context of commercial products currently available on the market. (author)

  9. Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2008-07-01

    Full Text Available Abstract Background Thus far gene therapy strategies for HIV/AIDS have used either conventional retroviral vectors or lentiviral vectors for gene transfer. Although highly efficient, their use poses a certain degree of risk in terms of viral mediated oncogenesis. Sleeping Beauty (SB transposon system offers a non-viral method of gene transfer to avoid this possible risk. With respect to conferring HIV resistance, stable knock down of HIV-1 coreceptors CCR5 and CXCR4 by the use of lentiviral vector delivered siRNAs has proved to be a promising strategy to protect cells from HIV-1 infection. In the current studies our aim is to evaluate the utility of SB system for stable gene transfer of CCR5 and CXCR4 siRNA genes to derive HIV resistant cells as a first step towards using this system for gene therapy. Results Two well characterized siRNAs against the HIV-1 coreceptors CCR5 and CXCR4 were chosen based on their previous efficacy for the SB transposon gene delivery. The siRNA transgenes were incorporated individually into a modified SB transfer plasmid containing a FACS sortable red fluorescence protein (RFP reporter and a drug selectable neomycin resistance gene. Gene transfer was achieved by co-delivery with a construct expressing a hyperactive transposase (HSB5 into the GHOST-R3/X4/R5 cell line, which expresses the major HIV receptor CD4 and and the co-receptors CCR5 and CXCR4. SB constructs expressing CCR5 or CXCR4 siRNAs were also transfected into MAGI-CCR5 or MAGI-CXCR4 cell lines, respectively. Near complete downregulation of CCR5 and CXCR4 surface expression was observed in transfected cells. During viral challenge with X4-tropic (NL4.3 or R5-tropic (BaL HIV-1 strains, the respective transposed cells showed marked viral resistance. Conclusion SB transposon system can be used to deliver siRNA genes for stable gene transfer. The siRNA genes against HIV-1 coreceptors CCR5 and CXCR4 are able to downregulate the respective cell surface proteins

  10. Quantification of amine functional groups and their influence on OM/OC in the IMPROVE network

    Science.gov (United States)

    Kamruzzaman, Mohammed; Takahama, Satoshi; Dillner, Ann M.

    2018-01-01

    Recently, we developed a method using FT-IR spectroscopy coupled with partial least squares (PLS) regression to measure the four most abundant organic functional groups, aliphatic C-H, alcohol OH, carboxylic acid OH and carbonyl C=O, in atmospheric particulate matter. These functional groups are summed to estimate organic matter (OM) while the carbon from the functional groups is summed to estimate organic carbon (OC). With this method, OM and OM/OC can be estimated for each sample rather than relying on one assumed value to convert OC measurements to OM. This study continues the development of the FT-IR and PLS method for estimating OM and OM/OC by including the amine functional group. Amines are ubiquitous in the atmosphere and come from motor vehicle exhaust, animal husbandry, biomass burning, and vegetation among other sources. In this study, calibration standards for amines are produced by aerosolizing individual amine compounds and collecting them on PTFE filters using an IMPROVE sampler, thereby mimicking the filter media and collection geometry of ambient standards. The moles of amine functional group on each standard and a narrow range of amine-specific wavenumbers in the FT-IR spectra (wavenumber range 1 550-1 500 cm-1) are used to develop a PLS calibration model. The PLS model is validated using three methods: prediction of a set of laboratory standards not included in the model, a peak height analysis and a PLS model with a broader wavenumber range. The model is then applied to the ambient samples collected throughout 2013 from 16 IMPROVE sites in the USA. Urban sites have higher amine concentrations than most rural sites, but amine functional groups account for a lower fraction of OM at urban sites. Amine concentrations, contributions to OM and seasonality vary by site and sample. Amine has a small impact on the annual average OM/OC for urban sites, but for some rural sites including amine in the OM/OC calculations increased OM/OC by 0.1 or more.

  11. Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Giorgia Urbinati

    Full Text Available TMPRSS2-ERG junction oncogene is present in more than 50% of patients with prostate cancer and its expression is frequently associated with poor prognosis. Our aim is to achieve gene knockdown by siRNA TMPRSS2-ERG and then to assess the biological consequences of this inhibition. First, we designed siRNAs against the two TMPRSS2-ERG fusion variants (III and IV, most frequently identified in patients' biopsies. Two of the five siRNAs tested were found to efficiently inhibit mRNA of both TMPRSS2-ERG variants and to decrease ERG protein expression. Microarray analysis further confirmed ERG inhibition by both siRNAs TMPRSS2-ERG and revealed one common down-regulated gene, ADRA2A, involved in cell proliferation and migration. The siRNA against TMPRSS2-ERG fusion variant IV showed the highest anti-proliferative effects: Significantly decreased cell viability, increased cleaved caspase-3 and inhibited a cluster of anti-apoptotic proteins. To propose a concrete therapeutic approach, siRNA TMPRSS2-ERG IV was conjugated to squalene, which can self-organize as nanoparticles in water. The nanoparticles of siRNA TMPRSS2-ERG-squalene injected intravenously in SCID mice reduced growth of VCaP xenografted tumours, inhibited oncoprotein expression and partially restored differentiation (decrease in Ki67. In conclusion, this study offers a new prospect of treatment for prostate cancer based on siRNA-squalene nanoparticles targeting TMPRSS2-ERG junction oncogene.

  12. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hadi Karami

    2014-05-01

    Full Text Available Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy.

  13. Impact of target mRNA structure on siRNA silencing efficiency: A large-scale study.

    Science.gov (United States)

    Gredell, Joseph A; Berger, Angela K; Walton, S Patrick

    2008-07-01

    The selection of active siRNAs is generally based on identifying siRNAs with certain sequence and structural properties. However, the efficiency of RNA interference has also been shown to depend on the structure of the target mRNA, primarily through studies using exogenous transcripts with well-defined secondary structures in the vicinity of the target sequence. While these studies provide a means for examining the impact of target sequence and structure independently, the predicted secondary structures for these transcripts are often not reflective of structures that form in full-length, native mRNAs where interactions can occur between relatively remote segments of the mRNAs. Here, using a combination of experimental results and analysis of a large dataset, we demonstrate that the accessibility of certain local target structures on the mRNA is an important determinant in the gene silencing ability of siRNAs. siRNAs targeting the enhanced green fluorescent protein were chosen using a minimal siRNA selection algorithm followed by classification based on the predicted minimum free energy structures of the target transcripts. Transfection into HeLa and HepG2 cells revealed that siRNAs targeting regions of the mRNA predicted to have unpaired 5'- and 3'-ends resulted in greater gene silencing than regions predicted to have other types of secondary structure. These results were confirmed by analysis of gene silencing data from previously published siRNAs, which showed that mRNA target regions unpaired at either the 5'-end or 3'-end were silenced, on average, approximately 10% more strongly than target regions unpaired in the center or primarily paired throughout. We found this effect to be independent of the structure of the siRNA guide strand. Taken together, these results suggest minimal requirements for nucleation of hybridization between the siRNA guide strand and mRNA and that both mRNA and guide strand structure should be considered when choosing candidate siRNAs

  14. Nitrogen fertilisation increases biogenic amines and amino acid concentrations in Vitis vinifera var. Riesling musts and wines.

    Science.gov (United States)

    Smit, Inga; Pfliehinger, Marco; Binner, Antonie; Großmann, Manfred; Horst, Walter J; Löhnertz, Otmar

    2014-08-01

    Wines rich in biogenic amines can cause adverse health effects to the consumer. Being nitrogen-containing substances, the amount of amines in wines might be strongly influenced by the rate of nitrogen fertiliser application during grape production. The aim of this work was to evaluate the effect of nitrogen fertilisation in the vineyard on the formation of biogenic amines in musts and wines. In a field experiment which compared unfertilised and fertilised (60 and 150 kg N ha(-1)) vines over two separate years, the total amine concentrations in must and wine increased. The latter was due to an increase of individual amines such as ethylamine, histamine, isopentylamine, phenylethylamine and spermidine in the musts and wines with the nitrogen application. Furthermore, the fermentation process increased the concentration of histamine and ethylamine in most of the treatments, while spermidine, spermine and isopentylamine concentrations generally decreased. Throughout both vintages, the concentrations of tyramine and histamine of the investigated musts and wines never reached detrimental levels to the health of non-allergenic people. Nitrogen fertilisation has a significant effect on amines formation in musts and wines. Furthermore, during fermentation, ethylamine and histamine increased while other amines were presumably serving as N sources during fermentation. © 2013 Society of Chemical Industry.

  15. Elucidating the role of free polycations in gene knockdown by siRNA polyplexes

    DEFF Research Database (Denmark)

    Klauber, Thomas Christopher Bogh; Søndergaard, Rikke Vicki; Sawant, Rupa R.

    2016-01-01

    capability, but are very different regarding siRNA decondensation, cellular internalization and induction of reporter gene knockdown. Lipid conjugation of bPEI 1.8. kDa improves the siRNA delivery properties, but with markedly different formulation requirements and mechanisms of action compared...... today.A major reason for the lack of progress is insufficient understanding of cell-polyplex interaction. We investigate siRNA delivery using polyethyleneimine (PEI) based vectors and examine how crucial formulation parameters determine the challenges associated with PEI as a delivery vector. We further...

  16. Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor

    Science.gov (United States)

    Diehl, Katharine L.; Kolesnichenko, Igor V.; Robotham, Scott A.; Bachman, J. Logan; Zhong, Ye; Brodbelt, Jennifer S.; Anslyn, Eric V.

    2016-10-01

    The coupling and decoupling of molecular units is a fundamental undertaking of organic chemistry. Herein we report the use of a very simple conjugate acceptor, derived from Meldrum's acid, for the sequential ‘clicking’ together of an amine and a thiol in aqueous conditions at neutral pH. Subsequently, this linkage can be ‘declicked’ by a chemical trigger to release the original amine and thiol undisturbed. The reactivity differs from that of other crosslinking agents because the selectivity for sequential functionalization derives from an altering of the electrophilicity of the conjugate acceptor on the addition of the amine. We describe the use of the procedure to modify proteins, create multicomponent libraries and synthesize oligomers, all of which can be declicked to their starting components in a controlled fashion when desired. Owing to the mild reaction conditions and ease of use in a variety of applications, the method is predicted to have wide utility.

  17. [siRNAs with high specificity to the target: a systematic design by CRM algorithm].

    Science.gov (United States)

    Alsheddi, T; Vasin, L; Meduri, R; Randhawa, M; Glazko, G; Baranova, A

    2008-01-01

    'Off-target' silencing effect hinders the development of siRNA-based therapeutic and research applications. Common solution to this problem is an employment of the BLAST that may miss significant alignments or an exhaustive Smith-Waterman algorithm that is very time-consuming. We have developed a Comprehensive Redundancy Minimizer (CRM) approach for mapping all unique sequences ("targets") 9-to-15 nt in size within large sets of sequences (e.g. transcriptomes). CRM outputs a list of potential siRNA candidates for every transcript of the particular species. These candidates could be further analyzed by traditional "set-of-rules" types of siRNA designing tools. For human, 91% of transcripts are covered by candidate siRNAs with kernel targets of N = 15. We tested our approach on the collection of previously described experimentally assessed siRNAs and found that the correlation between efficacy and presence in CRM-approved set is significant (r = 0.215, p-value = 0.0001). An interactive database that contains a precompiled set of all human siRNA candidates with minimized redundancy is available at http://129.174.194.243. Application of the CRM-based filtering minimizes potential "off-target" silencing effects and could improve routine siRNA applications.

  18. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    Science.gov (United States)

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click

  19. Chemical modification of carbon powders with aminophenyl and aryl-aliphatic amine groups by reduction of in situ generated diazonium cations: Applicability of the grafted powder towards CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Aurelie Grondein; Daniel Belanger [Universite du Quebec a Montreal, Montreal, PQ (Canada). Departement de Chimie

    2011-08-15

    Aminophenyl, p-aminobenzyl and p-aminoethylphenyl groups were grafted at the surface of carbon Vulcan XC72R by spontaneous reduction of the in situ generated diazonium cations from the corresponding amine. X-ray photoelectron spectroscopy and elemental analysis confirmed an amine loading of about 1 mmol/g. The grafting of amine functionalities leads to a decrease of specific surface area from 223 to about 110 m{sup 2}/g with a drastic loss of microporosity. Acid-base properties of the surface are also affected by the modification. Aminophenyl grafted groups make the surface more acidic while aryl-aliphatic amines groups tends to render it more basic. The grafted layer shows in each case a good thermal stability up to 250{sup o}C. The affinity of the modified powder towards CO{sub 2} and N{sub 2} has been evaluated by thermal swing adsorption. The maximum adsorption capacity of CO{sub 2} of modified carbons is lower than the unmodified carbon but the presence of the amine functionalities involves a better selectivity of the material towards CO{sub 2} adsorption in comparison of N{sub 2} adsorption. 53 refs., 9 figs., 3 tabs.

  20. siRNA Treatment: “A Sword-in-the-Stone” for Acute Brain Injuries

    Directory of Open Access Journals (Sweden)

    Jerome Badaut

    2013-09-01

    Full Text Available Ever since the discovery of small interfering ribonucleic acid (siRNA a little over a decade ago, it has been highly sought after for its potential as a therapeutic agent for many diseases. In this review, we discuss the promising possibility of siRNA to be used as a drug to treat acute brain injuries such as stroke and traumatic brain injury. First, we will give a brief and basic overview of the principle of RNA interference as an effective mechanism to decrease specific protein expression. Then, we will review recent in vivo studies describing siRNA research experiments/treatment options for acute brain diseases. Lastly, we will discuss the future of siRNA as a clinical therapeutic strategy against brain diseases and injuries, while addressing the current obstacles to effective brain delivery.

  1. Thermodynamics of mixtures containing amines

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Juan Antonio [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain)], E-mail: jagl@termo.uva.es; Mozo, Ismael; Garcia de la Fuente, Isaias; Cobos, Jose Carlos [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain); Riesco, Nicolas [Department of Chemical Engineering, Loughborough University, Loughborough, LE113TU Leicestershire (United Kingdom)

    2008-01-30

    Mixtures with dimethyl or trimethylpyridines and alkane, aromatic compound or 1-alkanol have been examined using different theories: DISQUAC, Flory, the concentration-concentration structure factor, S{sub CC}(0), or the Kirkwood-Buff formalism. DISQUAC represents fairly well the available experimental data, and improves theoretical calculations from Dortmund UNIFAC. Two important effects have been investigated: (i) the effect of increasing the number of methyl groups attached to the aromatic ring of the amine; (ii) the effect of modifying the position of the methyl groups in this ring. The molar excess enthalpy, H{sup E}, and the molar excess volume, V{sup E}, decrease in systems with alkane or methanol as follows: pyridine > 3-methylpyridine > 3,5-dimethylpyridine and pyridine > 2-methylpyridine > 2,4-dimethylpyridine > 2,4,6-trimethylpyridine, which has been attributed to a weakening of the amine-amine interactions in the same sequences. This is in agreement with the relative variation of the effective dipole moment, {mu}-bar, and of the differences between the boiling temperature of a pyridine base and that of the homomorphic alkane. For heptane solutions, the observed H{sup E} variation, H{sup E} (3,5-dimethylpyridine) > H{sup E} (2,4-dimethylpyridine) > H{sup E} (2,6-dimethylpyridine), is explained similarly. Calculations on the basis of the Flory model confirm that orientational effects become weaker in systems with alkane in the order: pyridine > methylpyridine > dimethylpyridine > trimethylpyridine. S{sub CC}(0) calculations show that steric effects increase with the number of CH{sub 3}- groups in the pyridine base, and that the steric effects exerted by methyl groups in positions 2 and 6 are higher than when they are placed in positions 3 and 5. The hydrogen bond energy in methanol mixtures is independent of the pyridine base, and it is estimated to be -35.2 kJ mol{sup -1}. Heterocoordination in these solutions is due in part to size effects. Their

  2. Multifunctional Amine Mesoporous Silica Spheres Modified with Multiple Amine as Carriers for Drug Release

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-01-01

    Full Text Available Mesoporous silica spheres were synthesized by using Stöber theory (MSN-40. Calcination of the mesostructured phase resulted in the starting solid. Organic modification with aminopropyl groups resulted in two MSN-40 materials: named MSN-NH2 and MSN-DQ-40, respectively. These two kinds of samples with different pore sizes (obtained from 3-[2-(2-aminoethylaminoethylamino]propyl-trimethox-ysilane (NQ-62 and modified NQ-62 showed control of the delivery rate of ibuprofen (IBU from the siliceous matrix. The obtained sample from modified NQ-62 has an increased loading rate and shows better control of the delivery rate of IBU than the obtained sample from NQ-62. These three solids were characterized using standard solid state procedures. During tests of in vitro drug release, an interesting phenomenon was observed: at high pH (pH 7.45, IBU in all carriers was released slowly; at low pH (pH 4.5, only a part of the IBU was slowly released from this carrier within 25 hours; most IBU was effectively confined in mesoporous material, but the remaining IBU was released rapidly and completely after 25 hours.

  3. Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Molecular Epidemiology Studies: Lessons Learned from Aromatic Amines

    Science.gov (United States)

    2011-01-01

    Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group, to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs and, thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review article, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and

  4. Regularities of synthesis and mechanism of polycondensation of aromatic amines

    International Nuclear Information System (INIS)

    Matnishyan, Hagob

    2002-01-01

    Full text.Aniline polymers and its derivatives are widely used in modern electronics, electrical engineering and manufacturing of various appliances. They are used for production of electrical power sources, probes and sensors, composite materials absorbing high frequency radiations, anticorrosion coatings, nonlinear optical devices-such as lasers, cathode ray tubes, photodiodes etc. Such a wide usage of aromatic amine polymers brings up new demands to their structure and properties, which is dependent on conditions of synthesis and forming of the hard phase. The presented article describes regularities and mechanisms of oxidative polycondensation of aromatic amines. Several types of polymers have been synthesized by chemical and electrochemical oxidation of aniline and its chlor-, brom-, iodo-, nitro-, p-substituted derivatives; diphenylamine, benzidine and phenylenediamines in nonwater media. On the basis of kinetic and electrochemical studies and literature analysis we suggested a mechanism of polycondensation of aromatic amines. According to it, oxidation of amines starts with the electron transfer with cation-radical formation on the first stage, which stabilizes in acid environments due to complex formation with initial amine. Dimer formation and further growth of chain takes place upon another electron transfer from formed complex, which results in forming of macromolecules. We also suggested a scheme for obtaining of structures defect in media assisting in deprotonizing of cation radicals and formation of arylamine radical centers. Those processes lead to formation of azo- and diphenyl fragments in the main chain of the polymer and predetermine the possibility of chain disruption. We also considered reactions leading to formation of branched polymers and cyclic structures, such as phenazine in particular. The peculiarity of electrochemical process lies in regulation of concentration of active centres on the positive electrode surface

  5. Methods for attaching polymerizable ceragenins to water treatment membranes using amine and amide linkages

    Science.gov (United States)

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D.T.; Savage, Paul B.

    2013-10-15

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  6. Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies

    Science.gov (United States)

    Fernandes, Julio C; Qiu, Xingping; Winnik, Francoise M; Benderdour, Mohamed; Zhang, Xiaoling; Dai, Kerong; Shi, Qin

    2012-01-01

    The low transfection efficiency of chitosan is one of its drawbacks as a gene delivery carrier. Low molecular weight chitosan may help to form small-sized polymer-DNA or small interfering RNA (siRNA) complexes. Folate conjugation may improve gene transfection efficiency because of the promoted uptake of folate receptor-bearing cells. In the present study, chitosan was conjugated with folate and investigated for its efficacy as a delivery vector for siRNA in vitro. We demonstrate that the molecular weight of chitosan has a major influence on its biological and physicochemical properties, and very low molecular weight chitosan (below 10 kDa) has difficulty in forming stable complexes with siRNA. In this study, chitosan 25 kDa and 50 kDa completely absorbed siRNA and formed nanoparticles (≤220 nm) at a chitosan to siRNA weight ratio of 50:1. The introduction of a folate ligand onto chitosan decreased nanoparticle toxicity. Compared with chitosan-siRNA, folate-chitosan-siRNA nanoparticles improved gene silencing transfection efficiency. Therefore, folate-chitosan shows potential as a viable candidate vector for safe and efficient siRNA delivery. PMID:23209368

  7. Amine promoted, metal enhanced degradation of Mirex under high temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jallad, Karim N. [American University of Sharjah, Department of Chemistry, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: kjallad@runbox.com; Lynn, Bert C. [University of Kentucky, Department of Chemistry, Lexington, KY 40506-055 (United States); Alley, Earl G. [Mississippi State University, Department of Chemistry, MS State, MS 39762 (United States)

    2006-07-31

    In this study, zero-valent metal dehalogenation of mirex was conducted with amine solvents at high temperatures. Mirex was treated with excess amine in sealed glass tube reactors under nitrogen. The amines used were n-butyl amine (l), ethyl amine (l), dimethyl amine (g), diethyl amine (l), triethyl amine (l), trimethyl amine (g) and ammonia (g). The metals used were copper, zinc, magnesium, aluminum and calcium. The most suitable amine solvent and metal were selected by running a series of reactions with different amines and different zero-valent metals, in order to optimize the conditions under which complete degradation of mirex takes place. These dehalogenation reactions illustrated the role of zero-valent metals as reductants, whereas the amine solvents acted as proton donors. In this study, we report that mirex was completely degraded with diethyl amine (l) in the presence of copper at 100 deg. C and the hydrogenated products accounted for more than 94 of the degraded mirex.

  8. On-column nitrosation of amines observed in liquid chromatography impurity separations employing ammonium hydroxide and acetonitrile as mobile phase.

    Science.gov (United States)

    Myers, David P; Hetrick, Evan M; Liang, Zhongming; Hadden, Chad E; Bandy, Steven; Kemp, Craig A; Harris, Thomas M; Baertschi, Steven W

    2013-12-06

    The availability of high performance liquid chromatography (HPLC) columns capable of operation at pH values up to 12 has allowed a greater selectivity space to be explored for method development in pharmaceutical analysis. Ammonium hydroxide is of particular value in the mobile phase because it is compatible with direct interfacing to electrospray mass spectrometers. This paper reports an unexpected N-nitrosation reaction that occurs with analytes containing primary and secondary amines when ammonium hydroxide is used to achieve the high pH and acetonitrile is used as the organic modifier. The nitrosation reaction has generality. It has been observed on multiple columns from different vendors and with multiple amine-containing analytes. Ammonia was established to be the source of the nitroso nitrogen. The stainless steel column frit and metal ablated from the frit have been shown to be the sites of the reactions. The process is initiated by removal of the chromium oxide protective film from the stainless steel by acetonitrile. It is hypothesized that the highly active, freshly exposed metals catalyze room temperature oxidation of ammonia to NO but that the actual nitrosating agent is likely N(2)O(3). Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    International Nuclear Information System (INIS)

    Ying, Bo; Campbell, Robert B.

    2014-01-01

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carrier systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest amount of

  10. Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat.

    Science.gov (United States)

    Amadio, Marialaura; Pascale, Alessia; Cupri, Sarha; Pignatello, Rosario; Osera, Cecilia; D Agata, Velia; D Amico, Agata Grazia; Leggio, Gian Marco; Ruozi, Barbara; Govoni, Stefano; Drago, Filippo; Bucolo, Claudio

    2016-09-01

    We evaluated whether specifically and directly targeting human antigen R (HuR), a member of embryonic lethal abnormal vision (ELAV) proteins family, may represent a new potential therapeutic strategy to manage diabetic retinopathy. Nanosystems loaded with siRNA silencing HuR expression (lipoplexes), consisting of solid lipid nanoparticles (SLN) and liposomes (SUV) were prepared. Photon correlation spectroscopy analysis, Zeta potential measurement and atomic force microscopy (AFM) studies were carried out to characterize the complexation of siRNA with the lipid nanocarriers. Nanosystems were evaluated by using AFM and scanning electron microscopy. The lipoplexes were injected into the eye of streptozotocin (STZ)-induced diabetic rats. Retinal HuR and VEGF levels were detected by Western blot and ELISA, respectively. Retinal histology was also carried out. The results demonstrated that retinal HuR and VEGF are significantly increased in STZ-rats and are blunted by HuR siRNA treatment. Lipoplexes with a weak positive surface charge and with a 4:1 N/P (cationic lipid nitrogen to siRNA phosphate) ratio exert a better transfection efficiency, significantly dumping retinal HuR and VEGF levels. In conclusion, we demonstrated that siRNA can be efficiently delivered into the rat retina using lipid-based nanocarriers, and some of the lipoplexes loaded with siRNA silencing HuR expression are potential candidates to manage retinal diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Song, Y.; Engbersen, Johannes F.J.; Lok, Martin C.; Hennink, Wim E.; Feijen, Jan

    2005-01-01

    A variety of degradable hyperbranched poly(ester amine)s containing primary, secondary and tertiary amino groups, were synthesized and evaluated as non-viral gene carriers. The polymers were obtained in high yields through a Michael-type conjugate addition of diacrylate monomers with trifunctional

  12. Chemosensitization of cancer cells by siRNA using targeted nanogel delivery

    International Nuclear Information System (INIS)

    Dickerson, Erin B; Blackburn, William H; Smith, Michael H; Kapa, Laura B; Lyon, L Andrew; McDonald, John F

    2010-01-01

    Chemoresistance is a major obstacle in cancer treatment. Targeted therapies that enhance cancer cell sensitivity to chemotherapeutic agents have the potential to increase drug efficacy while reducing toxic effects on untargeted cells. Targeted cancer therapy by RNA interference (RNAi) is a relatively new approach that can be used to reversibly silence genes in vivo by selectively targeting genes such as the epidermal growth factor receptor (EGFR), which has been shown to increase the sensitivity of cancer cells to taxane chemotherapy. However, delivery represents the main hurdle for the broad development of RNAi therapeutics. We report here the use of core/shell hydrogel nanoparticles (nanogels) functionalized with peptides that specially target the EphA2 receptor to deliver small interfering RNAs (siRNAs) targeting EGFR. Expression of EGFR was determined by immunoblotting, and the effect of decreased EGFR expression on chemosensitization of ovarian cancer cells after siRNA delivery was investigated. Treatment of EphA2 positive Hey cells with siRNA-loaded, peptide-targeted nanogels decreased EGFR expression levels and significantly increased the sensitivity of this cell line to docetaxel (P < 0.05). Nanogel treatment of SK-OV-3 cells, which are negative for EphA2 expression, failed to reduce EGFR levels and did not increase docetaxel sensitivity (P > 0.05). This study suggests that targeted delivery of siRNAs by nanogels may be a promising strategy to increase the efficacy of chemotherapy drugs for the treatment of ovarian cancer. In addition, EphA2 is a viable target for therapeutic delivery, and the siRNAs are effectively protected by the nanogel carrier, overcoming the poor stability and uptake that has hindered clinical advancement of therapeutic siRNAs

  13. PLK-1 Silencing in Bladder Cancer by siRNA Delivered With Exosomes.

    Science.gov (United States)

    Greco, Kristin A; Franzen, Carrie A; Foreman, Kimberly E; Flanigan, Robert C; Kuo, Paul C; Gupta, Gopal N

    2016-05-01

    To use exosomes as a vector to deliver small interfering ribonucleic acid (siRNA) to silence the polo-like kinase 1 (PLK-1) gene in bladder cancer cells. Exosomes were isolated from both human embryonic kidney 293 (HEK293) cell and mesenchymal stem cell (MSC) conditioned media. Fluorescently labeled exosomes were co-cultured with bladder cancer and normal epithelial cells and uptake was quantified by image cytometry. PLK-1 siRNA and negative control siRNA were loaded into HEK293 and MSC exosomes using electroporation. An invasive bladder cancer cell line (UMUC3) was co-cultured with the electroporated exosomes. Quantitative reverse transcriptase polymerase chain reaction was performed. Protein analysis was performed by Western blot. Annexin V staining and MTT assays were used to investigate effects on apoptosis and viability. Bladder cancer cell lines internalize an increased percentage of HEK293 exosomes when compared to normal bladder epithelial cells. Treatment of UMUC3 cells with exosomes electroporated with PLK-1 siRNA achieved successful knockdown of PLK-1 mRNA and protein when compared to cells treated with negative control exosomes. HEK293 and MSC exosomes were effectively used as a delivery vector to transport PLK-1 siRNA to bladder cancer cells in vitro, resulting in selective gene silencing of PLK-1. The use of exosomes as a delivery vector for potential intravesical therapy is attractive. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Inhibition of erythropoietin siRNA on corneal neovascularization of rabbit

    Directory of Open Access Journals (Sweden)

    Yu-Shun Xue

    2017-03-01

    Full Text Available AIM: To observe the expression of erythropoietin(EPOon the corneal of rabbit and evaluate the inhibition effect of EPO siRNA on corneal neovascularization(CNV. METHODS: Totally 22 healthy rabbits were randomly divided into 2 groups, which were experimental group and normal control group. Both eyes of rabbits in experimental group were chosen to establish corneal neovascularization model by alkali burn. The morphologic change of corneal was observed with slit lamp microscope and the area of CNV was calculated every day. After alkali burn, the right eye of the experimental group was accepted EPO siRNA injection under the conjunctiva, and the left eye was assigned to be experimental control group. The corneal with CNV was collected for immunohistochemistry at 3d, 7d, 14d, 21d after alkali burn, and the expression of EPO was measured. RESULTS: CNV began growing at the 3d after alkali burn in experimental group, and it was vigorous growing at 7d-14d period. The result of immunohistochemistry shows that the expression of EPO increased after the operation. Compared with experimental group, the rabbits who were treated by EPO siRNA was found with less neovascularization on their corneal, and the expression of EPO decreased. There were statistical significance between the two group at different time(PCONCLUSION: EPO is likely to play an important role on CNV growth, and EPO siRNA can inhibit the growth of CNV by restraining the expression of EPO.

  15. The antifibrotic effects of TGF-β1 siRNA on hepatic fibrosis in rats

    International Nuclear Information System (INIS)

    Lang, Qing; Liu, Qi; Xu, Ning; Qian, Ke-Li; Qi, Jing-Hu; Sun, Yin-Chun; Xiao, Lang; Shi, Xiao-Feng

    2011-01-01

    Highlights: → We constructed CCL4 induced liver fibrosis model successfully. → We proofed that the TGF-β1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. → The therapy effect of TGF-β1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-β1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-β1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-β1 siRNA 0.125 mg/kg treatment group, TGF-β1 siRNA 0.25 mg/kg treatment group and TGF-β1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-β1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-β1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-β1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-β1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-β1 siRNA negative control group and the TGF-β1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the mRNA expression of TGF-β1, type I collagen and type III collagen (P < 0

  16. The antifibrotic effects of TGF-{beta}1 siRNA on hepatic fibrosis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Qing; Liu, Qi [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Xu, Ning [The Second Hospital of YuLin, Shanxi Province (China); Qian, Ke-Li; Qi, Jing-Hu; Sun, Yin-Chun; Xiao, Lang [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Shi, Xiao-Feng, E-mail: sxff2003@yahoo.com.cn [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China)

    2011-06-10

    Highlights: {yields} We constructed CCL4 induced liver fibrosis model successfully. {yields} We proofed that the TGF-{beta}1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. {yields} The therapy effect of TGF-{beta}1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-{beta}1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-{beta}1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-{beta}1 siRNA 0.125 mg/kg treatment group, TGF-{beta}1 siRNA 0.25 mg/kg treatment group and TGF-{beta}1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-{beta}1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-{beta}1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-{beta}1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-{beta}1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-{beta}1 siRNA negative control group and the TGF-{beta}1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the m

  17. Synthesis and bioelectrochemical behavior of aromatic amines.

    Science.gov (United States)

    Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Bolte, Michael; McKee, Vickie

    2017-12-01

    Four aromatic amines 1-amino-4-phenoxybenzene (A 1 ), 4-(4-aminophenyloxy) biphenyl (A 2 ), 1-(4-aminophenoxy) naphthalene (A 3 ) and 2-(4-aminophenoxy) naphthalene (A 4 ) were synthesized and characterized by elemental, spectroscopic (FTIR, NMR), mass spectrometric and single crystal X-ray diffraction methods. The compounds crystallized in monoclinic crystal system with space group P2 1 . Intermolecular hydrogen bonds were observed between the amine group and amine/ether acceptors of neighboring molecules. Electrochemical investigations were done using cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV). CV studies showed that oxidation of aromatic amines takes place at about 0.9 V (vs. Ag/AgCl) and the electron transfer (ET) process has irreversible nature. After first scan reactive intermediate were generated electrochemically and some other cathodic and anodic peaks also appeared in the succeeding scans. DPV study revealed that ET process is accompanied by one electron. DNA binding study of aromatic amines was performed by CV and UV-visible spectroscopy. These investigations revealed groove binding mode of interaction of aromatic amines with DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. FcepsilonRI-alpha siRNA inhibits the antigen-induced activation of mast cells.

    Science.gov (United States)

    Safaralizadeh, Reza; Soheili, Zahra-Soheila; Deezagi, Abdolkhaleg; Pourpak, Zahra; Samiei, Shahram; Moin, Mostafa

    2009-12-01

    FcepsilonRI, The high affinity receptor for IgE plays a critical role in triggering the allergic reactions. It is responsible for inducing mast cell degranulation and deliberation of allergy mediators when it is aggregated by allergen and IgE complexes. FcepsilonRI on the mast cells consists of three subunits; alpha chain directly binds IgE, beta chain and dimmer of gamma chains together mediate intracellular signaling. Cross-linking of IgE-bound FcepsilonRI on the surface of mast cells and basophils by the multivalent antigen induces release of chemical mediators. The present in vitro study was designed to investigate the effect of synthetic FcepsilonRI-alpha siRNA on the antigen-induced activation of MC/9 cells. MC/9 cells which are murine mast cells were transfected by FcepsilonRI-alpha siRNA and negative control siRNA. After 6 h, anti-DNP (Dinitrophenyl) IgE was used for the cells sensitization. Then the cells were challenged with Dinitrophenyl-Human Serum Albumin (DNP-HSA) for mast cell degranulation induction before collection of supernatants. The amount of mRNA and protein expression was measured by Real Time PCR and western blot analysis, respectively. Determination of the expression rate of FcepsilonRI-alpha on cell surface was achieved by flow cytometry. ELISA and spectrophotometry methods were used subsequently for measuring the effects of FcepsilonRI-alpha siRNA on antigen-induced histamine and beta-hexosaminidase release. FcepsilonRI-alpha siRNA treated cells showed significant decrease in FcepsilonRI-alpha mRNA and protein expression in comparison to control cells. FcepsilonRI-mediated mast cell release of beta-hexosaminidase and histamine were also inhibited. In this study it was shown that FcepsilonRI-alpha siRNA could suppress FcepsilonRI-alpha expression and inhibited degranulation and histamine release in antigen-stimulated MC/9 cells. In conclusion, knock-down of FcepsilonRI-alpha by siRNA could be a promising method for inhibition of the mast

  19. Amine Swingbed Payload Project Management

    Science.gov (United States)

    Walsch, Mary; Curley, Su

    2013-01-01

    The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the Orion Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the Orion vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6 ]person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload-the swingbed unit itself-launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open -loop Orion application as well as the closed-loop ISS application.

  20. Tandem catalytic allylic amination and [2,3]-Stevens rearrangement of tertiary amines.

    Science.gov (United States)

    Soheili, Arash; Tambar, Uttam K

    2011-08-24

    We have developed a catalytic allylic amination involving tertiary aminoesters and allylcarbonates, which is the first example of the use of tertiary amines as intermolecular nucleophiles in metal-catalyzed allylic substitution chemistry. This process is employed in a tandem ammonium ylide generation/[2,3]-rearrangement reaction, which formally represents a palladium-catalyzed Stevens rearrangement. Low catalyst loadings and mild reaction conditions are compatible with an unprecedented substrate scope for the ammonium ylide functionality, and products are generated in high yields and diastereoselectivities. Mechanistic studies suggested the reversible formation of an ammonium intermediate.

  1. Optimizations of siRNA design for the activation of gene transcription by targeting the TATA-box motif.

    Directory of Open Access Journals (Sweden)

    Miaomiao Fan

    Full Text Available Small interfering RNAs (siRNAs are widely used to repress gene expression by targeting mRNAs. Some reports reveal that siRNAs can also activate or inhibit gene expression through targeting the gene promoters. Our group has found that microRNAs (miRNAs could activate gene transcription via interaction with the TATA-box motif in gene promoters. To investigate whether siRNA targeting the same region could upregulate the promoter activity, we test the activating efficiency of siRNAs targeting the TATA-box motif of 16 genes and perform a systematic analysis to identify the common features of the functional siRNAs for effective activation of gene promoters. Further, we try various modifications to improve the activating efficiency of siRNAs and find that it is quite useful to design the promoter-targeting activating siRNA by following several rules such as (a complementary to the TATA-box-centered region; (b UA usage at the first two bases of the antisense strand; (c twenty-three nucleotides (nts in length; (d 2'-O-Methyl (2'-OMe modification at the 3' terminus of the antisense strand; (e avoiding mismatches at the 3' end of the antisense strand. The optimized activating siRNAs potently enhance the expression of interleukin-2 (IL-2 gene in human and mouse primary CD4+ T cells with a long-time effect. Taken together, our study provides a guideline for rational design the promoter-targeting siRNA to sequence-specifically enhance gene expression.

  2. Surface grafting of poly(ethylene glycol) onto poly(acrylamide-co-vinyl amine) cross-linked films under mild conditions.

    Science.gov (United States)

    Yamamoto, Y; Sefton, M V

    1998-01-01

    Poly(ethylene glycol) (PEG) was grafted onto poly(acrylamide-co-vinyl amine) (poly(AM-co-VA)) film using tresylated PEG (TPEG) at 37 degrees C in aqueous buffers (pH 7.4) with a view to surface-modifying microencapsulated mammalian cells. Poly(AM-co-VA) film was synthesized by Hofmann degradation of a cross-linked poly(acrylamide) film. Conversion to vinyl amine on the surface of the film was approximately 50%, but bulk conversion was not observed; surface specificity was thought to be the result of cleavage of aminated polymer chains at the surface due to chain scission. Reaction between primary amine and TPEG gave a graft yield of 2 mol% (based on XPS) with respect to available surface amine groups, equivalent to 54 mol% ethylene oxide based on monomer units. Physical adsorption of non-activated polymer was done under identical conditions as a control and the difference in oxygen content was significant compared to TPEG. The type of buffer agent and buffer concentration did not influence graft yields. This graft reaction, which was completed in as little as 2 h was considered to be mild enough to be used for a surface modification of microcapsules containing cells without affecting their viability. Such a surface modification technique may prove to be a useful means of enhancing the biocompatibility of microcapsules (or any tissue engineering construct) even after cell encapsulation or seeding.

  3. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro--a quantitative study.

    Science.gov (United States)

    Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje

    2010-01-25

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Targeted siRNA Delivery and mRNA Knockdown Mediated by Bispecific Digoxigenin-binding Antibodies

    Directory of Open Access Journals (Sweden)

    Britta Schneider

    2012-01-01

    Full Text Available Bispecific antibodies (bsAbs that bind to cell surface antigens and to digoxigenin (Dig were used for targeted small interfering RNA (siRNA delivery. They are derivatives of immunoglobulins G (IgGs that bind tumor antigens, such as Her2, IGF1-R, CD22, and LeY, with stabilized Dig-binding variable domains fused to the C-terminal ends of the heavy chains. siRNA that was digoxigeninylated at its 3′end was bound in a 2:1 ratio to the bsAbs. These bsAb–siRNA complexes delivered siRNAs specifically to cells that express the corresponding antigen as demonstrated by flow cytometry and confocal microscopy. The complexes internalized into endosomes and Dig-siRNAs separated from bsAbs, but Dig-siRNA was not released into the cytoplasm; bsAb-targeting alone was thus not sufficient for effective mRNA knockdown. This limitation was overcome by formulating the Dig-siRNA into nanoparticles consisting of dynamic polyconjugates (DPCs or into lipid-based nanoparticles (LNPs. The resulting complexes enabled bsAb-targeted siRNA-specific messenger RNA (mRNA knockdown with IC50 siRNA values in the low nanomolar range for a variety of bsAbs, siRNAs, and target cells. Furthermore, pilot studies in mice bearing tumor xenografts indicated mRNA knockdown in endothelial cells following systemic co-administration of bsAbs and siRNA formulated in LNPs that were targeted to the tumor vasculature.

  5. Mapping Optimal Charge Density and Length of ROMP-Based PTDMs for siRNA Internalization.

    Science.gov (United States)

    Caffrey, Leah M; deRonde, Brittany M; Minter, Lisa M; Tew, Gregory N

    2016-10-10

    A fundamental understanding of how polymer structure impacts internalization and delivery of biologically relevant cargoes, particularly small interfering ribonucleic acid (siRNA), is of critical importance to the successful design of improved delivery reagents. Herein we report the use of ring-opening metathesis polymerization (ROMP) methods to synthesize two series of guanidinium-rich protein transduction domain mimics (PTDMs): one based on an imide scaffold that contains one guanidinium moiety per repeat unit, and another based on a diester scaffold that contains two guanidinium moieties per repeat unit. By varying both the degree of polymerization and, in effect, the relative number of cationic charges in each PTDM, the performances of the two ROMP backbones for siRNA internalization were evaluated and compared. Internalization of fluorescently labeled siRNA into Jurkat T cells demonstrated that fluorescein isothiocyanate (FITC)-siRNA internalization had a charge content dependence, with PTDMs containing approximately 40 to 60 cationic charges facilitating the most internalization. Despite this charge content dependence, the imide scaffold yielded much lower viabilities in Jurkat T cells than the corresponding diester PTDMs with similar numbers of cationic charges, suggesting that the diester scaffold is preferred for siRNA internalization and delivery applications. These developments will not only improve our understanding of the structural factors necessary for optimal siRNA internalization, but will also guide the future development of optimized PTDMs for siRNA internalization and delivery.

  6. Extraction of sulphates by long chain amines

    International Nuclear Information System (INIS)

    Boirie, Ch.

    1959-05-01

    The extraction of sulphuric acid by long chain amines in organic solution has been studied with a view to determining the value of the stability constants of the amine sulphates and bi-sulphates formed. We have concentrated chiefly on uranium sulphate and thorium sulphate. The formulae of the complexes extractable with amines have been established, as well as the corresponding dissociation constants. We have observed that for uranium sulphate the formula of the complex depends only on the nature of the amine, whereas for thorium this formula varies with the amine structure. From the formulae determined and the value of the constants calculated, we have been able to establish the best conditions for uranium and thorium extraction and also for a separation of these two elements. Finally we propose an application of this study to the determination of uranium in ores, where the separation of uranium by this method is particularly easy and complete. (author) [fr

  7. Perivascular delivery of Notch 1 siRNA inhibits injury-induced arterial remodeling.

    Directory of Open Access Journals (Sweden)

    Eileen M Redmond

    Full Text Available To determine the efficacy of perivascular delivery of Notch 1 siRNA in preventing injury-induced arterial remodeling.Carotid artery ligation was performed to induce arterial remodeling. After 14 days, morphometric analysis confirmed increased vSMC growth and subsequent media thickening and neointimal formation. Laser capture microdissection, quantitative qRT-PCR and immunoblot analysis of medial tissue revealed a significant increase in Notch1 receptor and notch target gene, Hrt 1 and 2 expression in the injured vessels. Perivascular delivery of Notch 1 siRNA by pluronic gel inhibited the injury-induced increase in Notch 1 receptor and target gene expression when compared to scrambled siRNA controls while concomitantly reducing media thickening and neointimal formation to pre-injury, sham-operated levels. Selective Notch 1 knockdown also reversed the injury-induced inhibition of pro-apoptotic Bax expression while decreasing injury-induced anti-apoptotic Bcl-XL expression to sham-operated control levels. In parallel experiments, proliferative cyclin levels, as measured by PCNA expression, were reversed to sham-operated control levels following selective Notch 1 knockdown.These results suggest that injury-induced arterial remodeling can be successfully inhibited by localized perivascular delivery of Notch 1 siRNA.

  8. Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Yujing Li

    2016-10-01

    Full Text Available Polyethylenimine (PEI as a cationic polymer is commonly used as a carrier for gene delivery. PEI-800 is less toxic than PEI-25K but it is also less efficient. A novel nanocarrier was developed by combining PEI-800 with a pH-sensitive lipid to form polymer-lipid hybrid nanoparticles (P/LNPs. They were synthesized by microfluidic focusing (MF. Two microfluidic devices were used to synthesize P/LNPs loaded with VEGF siRNA. A series of P/LNPs with different particle sizes and distributions were obtained by altering the flow rate and geometry of microfluidic chips, and introducing sonication. Furthermore, the P/LNPs can be loaded with VEGF siRNA efficiently and were stable in serum for 12 h. Finally, P/LNPs produced by the microfluidic chip showed greater cellular uptake as well as down-regulation of VEGF protein level in both A549 and MCF-7 with reduced cellular toxicity. All in all, the P/LNPs produced by MF method were shown to be a safe and efficient carrier for VEGF siRNA, with potential application for siRNA therapeutics.

  9. Polo-like kinase 1 siRNA-607 induces mitotic arrest and apoptosis in ...

    African Journals Online (AJOL)

    Polo-like kinase (Plk) 1 is overexpressed in many human malignancies including nasopharyngeal carcinoma, indicating its potential as a therapeutic target. Recently, using a simple cellular morphologybased strategy, we have identified several novel effective siRNAs against Plk1 including Plk1 siRNA- 607. In this study, we ...

  10. Photocatalytic oxidation of aromatic amines using MnO2@g-C3N4

    Data.gov (United States)

    U.S. Environmental Protection Agency — An efficient and direct oxidation of aromatic amines to aromatic azo-compounds has been achieved using a MnO2@g-C3N4 catalyst under visible light as a source of...

  11. Redox reactions of Cu(II)-amine complexes in aqueous solutions

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Kishore, Kamal

    2003-01-01

    A number of amines can be employed for all volatile treatment (AVT) of steam generator (SG) systems of nuclear power reactors. These amines form complexes with Cu 2+ and Ni 2+ ions which come into water due to corrosion. The redox reactions of a number of Cu(II)-AVT amine complexes and the stability of the transient species formed have been studied by pulse radiolysis technique. Rate constants for the reaction of e aq - with a number of Cu(II)-amine complexes have been determined by following the decay of e aq - absorption. Stability of Cu(I)-amine complexes was studied by following the kinetics of the bleaching signal formed at the λ max of the Cu(II) amine complex. Except for Cu(I)-triethanolamine complex all other Cu(I)-amine complexes were found to be stable. One-electron oxidation of Cu(II) amine complexes was studied using azidyl radicals for the oxidation reaction as OH radicals react with the alcohol groups present in the amines used in this study. Cu(III)-amine complexes were found to be unstable and decayed by second-order kinetics

  12. Low cytotoxicity fluorescent PAMAM dendrimer as gene carriers for monitoring the delivery of siRNA

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Lingmei [Sichuan University, State Key Laboratory of Bio-resources and Eco-environment, The Ministry of Education, College of Life Sciences (China); Huang, Saipeng [Chinese Academy of Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry (China); Chen, Zhao [Xi’an Jiaotong University, School of Science (China); Li, Yanchao [Chinese Academy of Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry (China); Liu, Ke [Sichuan University, State Key Laboratory of Bio-resources and Eco-environment, The Ministry of Education, College of Life Sciences (China); Liu, Yang, E-mail: yliu@iccas.ac.cn; Du, Libo, E-mail: dulibo@iccas.ac.cn [Chinese Academy of Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry (China)

    2015-09-15

    Visual detection of gene vectors has attracted a great deal of attention due to the application of these vectors in monitoring and evaluating the effect of gene carriers in living cells. A non-viral vector, the fluorescent PAMAM dendrimer (F-PAMAM), was synthesized through conjugation of PAMAM dendrimers and fluorescein. In vitro and ex vivo experiments show that F-PAMAM exhibits superphotostability, low cytotoxicity and facilitates endocytosis by A549 cells. The vector has a high siRNA binding affinity and it increases the efficiency of cy5-siRNA delivery in A549 cells, in comparison with a cy5-siRNA monomer. Our results provide a new method for simultaneously monitoring the delivery of siRNA and its non-viral carriers in living cells.

  13. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.

    Science.gov (United States)

    Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R; Vehkamäki, Hanna; Kirkby, Jasper

    2013-10-17

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.

  14. A Modified Treatment of Sources in Implicit Monte Carlo Radiation Transport

    International Nuclear Information System (INIS)

    Gentile, N.A.; Trahan, T.J.

    2011-01-01

    We describe a modification of the treatment of photon sources in the IMC algorithm. We describe this modified algorithm in the context of thermal emission in an infinite medium test problem at equilibrium and show that it completely eliminates statistical noise.

  15. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    KAUST Repository

    Khraiwesh, Basel

    2012-02-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress. © 2011 Elsevier B.V.

  16. Therapeutic miRNA and siRNA: Moving from Bench to Clinic as Next Generation Medicine

    Directory of Open Access Journals (Sweden)

    Chiranjib Chakraborty

    2017-09-01

    Full Text Available In the past few years, therapeutic microRNA (miRNA and small interfering RNA (siRNA are some of the most important biopharmaceuticals that are in commercial space as future medicines. This review summarizes the patents of miRNA- and siRNA-based new drugs, and also provides a snapshot about significant biopharmaceutical companies that are investing for the therapeutic development of miRNA and siRNA molecules. An insightful view about individual siRNA and miRNA drugs has been depicted with their present status, which is gaining attention in the therapeutic landscape. The efforts of the biopharmaceuticals are discussed with the status of their preclinical and/or clinical trials. Here, some of the setbacks have been highlighted during the biopharmaceutical development of miRNA and siRNA as individual therapeutics. Finally, a snapshot is illustrated about pharmacokinetics, pharmacodynamics with absorption, distribution, metabolism, and excretion (ADME, which is the fundamental development process of these therapeutics, as well as the delivery system for miRNA- and siRNA-based drugs. Keywords: miRNA, siRNA, drug development

  17. Down-regulation of viral replication by adenoviral-mediated expression of siRNA against cellular cofactors for hepatitis C virus

    International Nuclear Information System (INIS)

    Zhang Jing; Yamada, Osamu; Sakamoto, Takashi; Yoshida, Hiroshi; Iwai, Takahiro; Matsushita, Yoshihisa; Shimamura, Hideo; Araki, Hiromasa; Shimotohno, Kunitada

    2004-01-01

    Small interfering RNA (siRNA) is currently being evaluated not only as a powerful tool for functional genomics, but also as a potentially promising therapeutic agent for cancer and infectious diseases. Inhibitory effect of siRNA on viral replication has been demonstrated in multiple pathogenic viruses. However, because of the high sequence specificity of siRNA-mediated RNA degradation, antiviral efficacy of siRNA directed to viral genome will be largely limited by emergence of escape variants resistant to siRNA due to high mutation rates of virus, especially RNA viruses such as poliovirus and hepatitis C virus (HCV). To investigate the therapeutic feasibility of siRNAs specific for the putative cellular cofactors for HCV, we constructed adenovirus vectors expressing siRNAs against La, polypyrimidine tract-binding protein (PTB), subunit gamma of human eukaryotic initiation factors 2B (eIF2Bγ), and human VAMP-associated protein of 33 kDa (hVAP-33). Adenoviral-mediated expression of siRNAs markedly diminished expression of the endogenous genes, and silencing of La, PTB, and hVAP-33 by siRNAs substantially blocked HCV replication in Huh-7 cells. Thus, our studies demonstrate the feasibility and potential of adenoviral-delivered siRNAs specific for cellular cofactors in combating HCV infection, which can be used either alone or in combination with siRNA against viral genome to prevent the escape of mutant variants and provide additive or synergistic anti-HCV effects

  18. Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Suo, Aili, E-mail: ailisuo@mail.xjtu.edu.cn [Department of Oncology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710061 (China); Qian, Junmin, E-mail: jmqian@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Yaping; Liu, Rongrong; Xu, Weijun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Hejing [Department of Oncology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710061 (China)

    2016-05-01

    A comb-like amphiphilic copolymer methoxypolyethylene glycol-graft-poly(L-lysine)-block-poly(L-phenylalanine) (mPEG-g-PLL-b-Phe) was successfully synthesized. To synthesize mPEG-g-PLL-b-Phe, diblock copolymer PLL-b-Phe was first synthesized by successive ring-opening polymerization of α-amino acid N-carboxyanhydrides followed by the removal of benzyloxycarbonyl protecting groups, and then mPEG was grafted onto PLL-b-Phe by reductive amination via Schiff's base formation. The chemical structures of the copolymers were identified by {sup 1}H NMR. mPEG-g-PLL-b-Phe copolymer had a critical micelle concentration of 6.0 mg/L and could self-assemble in an aqueous solution into multicompartment nanomicelles with a mean diameter of approximately 78 nm. The nanomicelles could encapsulate doxorubicin (DOX) through hydrophobic and π–π stacking interactions between DOX molecules and Phe blocks and simultaneously complex P-gp siRNA with cationic PLL blocks via electrostatic interactions. The DOX/P-gp siRNA-loaded nanomicelles showed spherical morphology, possessed narrow particle size distribution and had a mean particle size of 120 nm. The DOX/P-gp siRNA-loaded nanomicelles exhibited pH-responsive release behaviors and displayed accelerated release under acidic conditions. The DOX/P-gp siRNA-loaded nanomicelles were efficiently internalized into MCF-7 cells, and DOX released could successfully reach nuclei. In vitro cytotoxicity assay demonstrated that the DOX/P-gp siRNA-loaded nanomicelles showed a much higher cytotoxicity in MCF-7 cells than DOX-loaded nanomicelles due to their synergistic killing effect and that the blank nanomicelles had good biocompatibility. Thus, the novel comb-like mPEG-g-PLL-b-Phe nanomicelles could be a promising vehicle for co-delivery of chemotherapeutic drug and genetic material. - Highlights: • Comb-like amphiphilic copolymer mPEG-g-PLL-b-Phe was successfully synthesized. • Polypeptide-based copolymer could self-assemble into

  19. A High Throughput In Vivo Model for Testing Delivery and Antiviral Effects of siRNAs in Vertebrates

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Lorenzen, Niels; Pedersen, Finn Skou

    2007-01-01

    composed of small juvenile rainbow trout and a fish pathogenic virus to analyze the delivery and antiviral effects of formulated siRNAs. Intraperitoneally (IP) injected siRNAs formulated in polycationic liposomes, and to a lesser degree naked siRNAs, primarily entered free IP cells, including macrophage......-like cells. Uptake in these cells correlated with antiviral activity, seen as reduced mortality of virus-challenged fish. However, protection at the disease level was not dependent upon which of three tested siRNAs was used, and protection correlated with up-regulation of an interferon (IFN)-related gene...

  20. Reductive amination with zinc powder in aqueous media

    Directory of Open Access Journals (Sweden)

    Giovanni B. Giovenzana

    2011-08-01

    Full Text Available Zinc powder in aqueous alkaline media was employed to perform reductive amination of aldehydes with primary amines. The corresponding secondary amines were obtained in good yields along with minor amounts of hydrodimerization byproducts. The protocol is a green alternative to the use of complex hydrides in chlorinated or highly flammable solvents.

  1. Thermometric titrations of amines with nitrosyl perchlorate in acetonitrile solvent.

    Science.gov (United States)

    Gündüz, T; Kiliç, E; Cakirer, O

    1996-05-01

    Thirteen aliphatic and four aromatic amines, namely diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-butylamine, isopropylamine, di-isopropylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, aniline, N,N-dimethylaniline, 2-nitroaniline and 4-nitroaniline were titrated thermometrically with nitrosyl perchlorate in acetonitrile solvent. All the aliphatic amines gave very well-shaped thermometric titration curves. The calculated recovery values of the amines were very good. In comparison, the aromatic amines, aniline and N,N-dimethylaniline gave rather well-shaped titration curves, but the recovery values were fairly low. 2-Nitro- and 4-nitro anilines gave no thermometric response at all. The heats of reaction of the amines with nitrosyl perchlorate are rather high. However, the average heat of reaction of the aromatic amines is approximately two-thirds that of the average heat of the aliphatic amines. To support this method all the amines were also titrated potentiometrically and very similar results to those obtained with the thermometric method are seen. The nitrosyl ion is a Lewis acid, strong enough to titrate quantitatively aliphatic amines in acetonitrile solvent, but not strong enough to titrate aromatic amines at the required level in the same solvent.

  2. Photometric Characterization of the Reductive Amination Scope of the Imine Reductases from Streptomyces tsukubaensis and Streptomyces ipomoeae.

    Science.gov (United States)

    Matzel, Philipp; Krautschick, Lukas; Höhne, Matthias

    2017-10-18

    Imine reductases (IREDs) have emerged as promising enzymes for the asymmetric synthesis of secondary and tertiary amines starting from carbonyl substrates. Screening the substrate specificity of the reductive amination reaction is usually performed by time-consuming GC analytics. We found two highly active IREDs in our enzyme collection, IR-20 from Streptomyces tsukubaensis and IR-Sip from Streptomyces ipomoeae, that allowed a comprehensive substrate screening with a photometric NADPH assay. We screened 39 carbonyl substrates combined with 17 amines as nucleophiles. Activity data from 663 combinations provided a clear picture about substrate specificity and capabilities in the reductive amination of these enzymes. Besides aliphatic aldehydes, the IREDs accepted various cyclic (C 4 -C 8 ) and acyclic ketones, preferentially with methylamine. IR-Sip also accepted a range of primary and secondary amines as nucleophiles. In biocatalytic reactions, IR-Sip converted (R)-3-methylcyclohexanone with dimethylamine or pyrrolidine with high diastereoselectivity (>94-96 % de). The nucleophile acceptor spectrum depended on the carbonyl substrate employed. The conversion of well-accepted substrates could also be detected if crude lysates were employed as the enzyme source. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Soft computing model for optimized siRNA design by identifying off target possibilities using artificial neural network model.

    Science.gov (United States)

    Murali, Reena; John, Philips George; Peter S, David

    2015-05-15

    The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model

  4. Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes

    International Nuclear Information System (INIS)

    Zhang, Min; Chai, Yang D; Brumbaugh, Jeffrey; Liu, Xiaojun; Rabii, Ramin; Feng, Sizhe; Misuno, Kaori; Messadi, Diana; Hu, Shen

    2014-01-01

    Cancer cells may undergo metabolic adaptations that support their growth as well as drug resistance properties. The purpose of this study is to test if oral cancer cells can overcome the metabolic defects introduced by using small interfering RNA (siRNA) to knock down their expression of important metabolic enzymes. UM1 and UM2 oral cancer cells were transfected with siRNA to transketolase (TKT) or siRNA to adenylate kinase (AK2), and Western blotting was used to confirm the knockdown. Cellular uptake of glucose and glutamine and production of lactate were compared between the cancer cells with either TKT or AK2 knockdown and those transfected with control siRNA. Statistical analysis was performed with student T-test. Despite the defect in the pentose phosphate pathway caused by siRNA knockdown of TKT, the survived UM1 or UM2 cells utilized more glucose and glutamine and secreted a significantly higher amount of lactate than the cells transferred with control siRNA. We also demonstrated that siRNA knockdown of AK2 constrained the proliferation of UM1 and UM2 cells but similarly led to an increased uptake of glucose/glutamine and production of lactate by the UM1 or UM2 cells survived from siRNA silencing of AK2. Our results indicate that the metabolic defects introduced by siRNA silencing of metabolic enzymes TKT or AK2 may be compensated by alternative feedback metabolic mechanisms, suggesting that cancer cells may overcome single defective pathways through secondary metabolic network adaptations. The highly robust nature of oral cancer cell metabolism implies that a systematic medical approach targeting multiple metabolic pathways may be needed to accomplish the continued improvement of cancer treatment

  5. Screening of siRNA nanoparticles for delivery to airway epithelial cells using high-content analysis

    LENUS (Irish Health Repository)

    Hibbitts, Alan

    2011-08-01

    Aims: Delivery of siRNA to the lungs via inhalation offers a unique opportunity to develop a new treatment paradigm for a range of respiratory conditions. However, progress has been greatly hindered by safety and delivery issues. This study developed a high-throughput method for screening novel nanotechnologies for pulmonary siRNA delivery. Methodology: Following physicochemical analysis, the ability of PEI–PEG–siRNA nanoparticles to facilitate siRNA delivery was determined using high-content analysis (HCA) in Calu-3 cells. Results obtained from HCA were validated using confocal microscopy. Finally, cytotoxicity of the PEI–PEG–siRNA particles was analyzed by HCA using the Cellomics® multiparameter cytotoxicity assay. Conclusion: PEI–PEG–siRNA nanoparticles facilitated increased siRNA uptake and luciferase knockdown in Calu-3 cells compared with PEI–siRNA.

  6. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice.

    Science.gov (United States)

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Eldar-Finkelman, Hagit; Martinez, Ana; Faghihi, Mohammad A; Jope, Richard S; Beurel, Eleonore

    2017-03-23

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA- or HDAC4 siRNA-induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1 -/- mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets.

  7. Combination siRNA therapy against feline coronavirus can delay the emergence of antiviral resistance in vitro.

    Science.gov (United States)

    McDonagh, Phillip; Sheehy, Paul A; Norris, Jacqueline M

    2015-03-23

    Virulent biotypes of feline coronavirus (FCoV), commonly referred to as feline infectious peritonitis virus (FIPV), can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. We previously reported the successful in vitro inhibition of FIPV replication by synthetic siRNA mediated RNA interference (RNAi) in an immortalised cell line (McDonagh et al., 2011). A major challenge facing the development of any antiviral strategy is that of resistance, a problem which is particularly acute for RNAi based therapeutics due to the exquisite sequence specificity of the targeting mechanism. The development of resistance during treatment can be minimised using combination therapy to raise the genetic barrier or using highly potent compounds which result in a more rapid and pronounced reduction in the viral replication rate, thereby reducing the formation of mutant, and potentially resistant viruses. This study investigated the efficacy of combination siRNA therapy and its ability to delay or prevent viral escape. Virus serially passaged through cells treated with a single or dual siRNAs rapidly acquired resistance, with mutations identified in the siRNA target sites. Combination therapy with three siRNA prevented viral escape over the course of five passages. To identify more potent silencing molecules we also compared the efficacy, in terms of potency and duration of action, of canonical versus Dicer-substrate siRNAs for two previously identified effective viral motifs. Dicer-substrate siRNAs showed equivalent or better potency than canonical siRNAs for the target sites investigated, and may be a more appropriate molecule for in vivo use. Combined, these data inform the potential therapeutic application of antiviral RNAi against FIPV. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Yue ePei

    2016-04-01

    Full Text Available Biogenic amines are a collection of endogenous molecules that play pivotal roles as neurotransmitters and hormones. In addition to the classical biogenic amines resulting from decarboxylation of aromatic acids, including dopamine (DA, norepinephrine, epinephrine, serotonin (5-HT and histamine, other biogenic amines, present at much lower concentrations in the central nervous system (CNS, and hence referred to as trace amines (TAs, are now recognized to play significant neurophysiological and behavioural functions. At the turn of the century, the discovery of the trace amine-associated receptor 1 (TAAR1, a phylogenetically conserved G protein-coupled receptor that is responsive to both TAs, such as β-phenylethylamine, octopamine and tyramine, and structurally-related amphetamines, unveiled mechanisms of action for TAs other than interference with aminergic pathways, laying the foundations for deciphering the functional significance of TAs and its mammalian CNS receptor, TAAR1. Although its molecular interactions and downstream targets have not been fully elucidated, TAAR1 activation triggers accumulation of intracellular cAMP, modulates PKA and PKC signalling and interferes with the β-arrestin2-dependent pathway via G protein-independent mechanisms. TAAR1 is uniquely positioned to exert direct control over DA and 5-HT neuronal firing and release, which has profound implications for understanding the pathophysiology of, and therefore designing more efficacious therapeutic interventions for, a range of neuropsychiatric disorders that involve aminergic dysregulation, including Parkinson’s disease, schizophrenia, mood disorders and addiction. Indeed, the recent development of novel pharmacological tools targeting TAAR1 has uncovered the remarkable potential of TAAR1-based medications as new generation pharmacotherapies in neuropsychiatry. This review summarizes recent developments in the study of TAs and TAAR1, their intricate neurochemistry and

  9. Tunable, chemoselective amination via silver catalysis.

    Science.gov (United States)

    Rigoli, Jared W; Weatherly, Cale D; Alderson, Juliet M; Vo, Brian T; Schomaker, Jennifer M

    2013-11-20

    Organic N-containing compounds, including amines, are essential components of many biologically and pharmaceutically important molecules. One strategy for introducing nitrogen into substrates with multiple reactive bonds is to insert a monovalent N fragment (nitrene or nitrenoid) into a C-H bond or add it directly to a C═C bond. However, it has been challenging to develop well-defined catalysts capable of promoting predictable and chemoselective aminations solely through reagent control. Herein, we report remarkable chemoselective aminations that employ a single metal (Ag) and a single ligand (phenanthroline) to promote either aziridination or C-H insertion by manipulating the coordination geometry of the active catalysts.

  10. Novel siRNA formulation to effectively knockdown mutant p53 in osteosarcoma.

    Science.gov (United States)

    Kundu, Anup K; Iyer, Swathi V; Chandra, Sruti; Adhikari, Amit S; Iwakuma, Tomoo; Mandal, Tarun K

    2017-01-01

    The tumor suppressor p53 plays a crucial role in the development of osteosarcoma. The primary objective of this study is to develop and optimize lipid based nanoparticle formulations that can carry siRNA and effectively silence mutant p53 in 318-1, a murine osteosarcoma cell line. The nanoparticles were composed of a mixture of two lipids (cholesterol and DOTAP) and either PLGA or PLGA-PEG and prepared by using an EmulsiFlex-B3 high pressure homogenizer. A series of studies that include using different nanoparticles, different amount of siRNAs, cell numbers, incubation time, transfection media volume, and storage temperature was performed to optimize the gene silencing efficiency. Replacement of lipids by PLGA or PLGA-PEG decreased the particle size and overall cytotoxicity. Among all lipid-polymer nanoformulations, nanoparticles with 10% PLGA showed highest mutant p53 knockdown efficiency while maintaining higher cell viability when a nanoparticle to siRNA ratio equal to 6.8:0.66 and 75 nM siRNA was used. With long term storage the mutant p53 knockdown efficiency decreased to a greater extent. This study warrants a future evaluation of this formulation for gene silencing efficiency of mutant p53 in tissue culture and animal models for the treatment of osteosarcoma.

  11. Novel siRNA formulation to effectively knockdown mutant p53 in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Anup K Kundu

    Full Text Available The tumor suppressor p53 plays a crucial role in the development of osteosarcoma. The primary objective of this study is to develop and optimize lipid based nanoparticle formulations that can carry siRNA and effectively silence mutant p53 in 318-1, a murine osteosarcoma cell line.The nanoparticles were composed of a mixture of two lipids (cholesterol and DOTAP and either PLGA or PLGA-PEG and prepared by using an EmulsiFlex-B3 high pressure homogenizer. A series of studies that include using different nanoparticles, different amount of siRNAs, cell numbers, incubation time, transfection media volume, and storage temperature was performed to optimize the gene silencing efficiency.Replacement of lipids by PLGA or PLGA-PEG decreased the particle size and overall cytotoxicity. Among all lipid-polymer nanoformulations, nanoparticles with 10% PLGA showed highest mutant p53 knockdown efficiency while maintaining higher cell viability when a nanoparticle to siRNA ratio equal to 6.8:0.66 and 75 nM siRNA was used. With long term storage the mutant p53 knockdown efficiency decreased to a greater extent.This study warrants a future evaluation of this formulation for gene silencing efficiency of mutant p53 in tissue culture and animal models for the treatment of osteosarcoma.

  12. Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Wang Heng

    2010-01-01

    Full Text Available Abstract Background Small endogenous non-coding RNAs (sncRNAs such as small interfering RNA (siRNA, microRNA and other small RNA transcripts are derived from distinct loci in the genome and play critical roles in RNA-mediated gene silencing mechanisms in plants and metazoa. They are approximately 22 nucleotides long; regulate mRNA stability through perfect or imperfect match to the targets. The biological activities of sncRNAs have been related to many biological events, from resistance to microbe infections to cellular differentiation. The development of the zoonotic parasite Schistosoma japonicum parasite includes multiple steps of morphological alterations and biological differentiations, which provide a unique model for studies on the functions of small RNAs. Characterization of the genome-wide transcription of the sncRNAs will be a major step in understanding of the parasite biology. The objective of this study is to investigate the transcriptional profile and potential function of the small non-coding RNAs in the development of S. japanicum. Results The endogenous siRNAs were found mainly derived from transposable elements (TE or transposons and the natural antisense transcripts (NAT. In contrast to other organisms, the TE-derived siRNAs in S. japonicum were more predominant than other sncRNAs including microRNAs (miRNAs. Further, there were distinct length and 3'end variations in the sncRNAs, which were associated with the developmental differentiation of the parasite. Among the identified miRNA transcripts, there were 38 unique to S. japonicum and 16 that belonged to 13 miRNA families are common to other metazoan lineages. These miRNAs were either ubiquitously expressed, or they exhibited specific expression patterns related to the developmental stages or sex. Genes that encoded miRNAs are mainly located in clusters within the genome of S. japonicum. However, genes within one cluster could be differentially transcribed, which suggested

  13. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro - A quantitative study

    NARCIS (Netherlands)

    Asgeirsdottir, Sigridur A.; Talman, Eduard G.; de Graaf, Inge A.; Kamps, Jan A. A. M.; Satchell, Simon C.; Mathieson, Peter W.; Ruiters, Marcel H. J.; Molema, Grietje

    2010-01-01

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic

  14. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer

    Science.gov (United States)

    Lei, Yifeng; Tang, Lixue; Xie, Yangzhouyun; Xianyu, Yunlei; Zhang, Lingmin; Wang, Peng; Hamada, Yoh; Jiang, Kai; Zheng, Wenfu; Jiang, Xingyu

    2017-01-01

    Pancreatic cancer is one of the deadliest human cancers, whose progression is highly dependent on the nervous microenvironment. The suppression of gene expression of nerve growth factor (NGF) may have great potential in pancreatic cancer treatment. Here we show that gold nanocluster-assisted delivery of siRNA of NGF (GNC–siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment. The GNC–siRNA complex increases the stability of siRNA in serum, prolongs the circulation lifetime of siRNA in blood and enhances the cellular uptake and tumour accumulation of siRNA. The GNC–siRNA complex potently downregulates the NGF expression in Panc-1 cells and in pancreatic tumours, and effectively inhibits the tumour progression in three pancreatic tumour models (subcutaneous model, orthotopic model and patient-derived xenograft model) without adverse effects. Our study constitutes a straightforward but effective approach to inhibit pancreatic cancer via NGF knockdown, suggesting a promising therapeutic direction for pancreatic cancer. PMID:28440296

  15. Oxidations of N-(3-indoleethyl) cyclic aliphatic amines by horseradish peroxidase: the indole ring binds to the enzyme and mediates electron-transfer amine oxidation.

    Science.gov (United States)

    Ling, Ke-Qing; Li, Wen-Shan; Sayre, Lawrence M

    2008-01-23

    Although oxidations of aromatic amines by horseradish peroxidase (HRP) are well-known, typical aliphatic amines are not substrates of HRP. In this study, the reactions of N-benzyl and N-methyl cyclic amines with HRP were found to be slow, but reactions of N-(3-indoleethyl) cyclic amines were 2-3 orders of magnitude faster. Analyses of pH-rate profiles revealed a dominant contribution to reaction by the amine-free base forms, the only species found to bind to the enzyme. A metabolic study on a family of congeneric N-(3-indoleethyl) cyclic amines indicated competition between amine and indole oxidation pathways. Amine oxidation dominated for the seven- and eight-membered azacycles, where ring size supports the change in hybridization from sp3 to sp2 that occurs upon one-electron amine nitrogen oxidation, whereas only indole oxidation was observed for the six-membered ring congener. Optical difference spectroscopic binding data and computational docking simulations suggest that all the arylalkylamine substrates bind to the enzyme through their aromatic termini with similar binding modes and binding affinities. Kinetic saturation was observed for a particularly soluble substrate, consistent with an obligatory role of an enzyme-substrate complexation preceding electron transfer. The significant rate enhancements seen for the indoleethylamine substrates suggest the ability of the bound indole ring to mediate what amounts to medium long-range electron-transfer oxidation of the tertiary amine center by the HRP oxidants. This is the first systematic investigation to document aliphatic amine oxidation by HRP at rates consistent with normal metabolic turnover, and the demonstration that this is facilitated by an auxiliary electron-rich aromatic ring.

  16. Risks and benefits of genetically modified foods | Amin | African ...

    African Journals Online (AJOL)

    There are claims that fear towards new technology has been caused by the lack of information and education on the subject to the public. Modern biotechnology and its applications have been receiving the same criticism. Thus, the objective of this study is to analyze the trends and coverage of genetically modified food ...

  17. siRNA inhibition of telomerase enhances the anti-cancer effect of doxorubicin in breast cancer cells

    International Nuclear Information System (INIS)

    Dong, Xuejun; Liu, Anding; Zer, Cindy; Feng, Jianguo; Zhen, Zhuan; Yang, Mingfeng; Zhong, Li

    2009-01-01

    Doxorubicin is an effective breast cancer drug but is hampered by a severe, dose-dependent toxicity. Concomitant administration of doxorubicin and another cancer drug may be able to sensitize tumor cells to the cytotoxicity of doxorubicin and lowers the therapeutic dosage. In this study, we examined the combined effect of low-dose doxorubicin and siRNA inhibition of telomerase on breast cancer cells. We found that when used individually, both treatments were rapid and potent apoptosis inducers; and when the two treatments were combined, we observed an enhanced and sustained apoptosis induction in breast cancer cells. siRNA targeting the mRNA of the protein component of telomerase, the telomerase reverse transcriptase (hTERT), was transfected into two breast cancer cell lines. The siRNA inhibition was confirmed by RT-PCR and western blot on hTERT mRNA and protein levels, respectively, and by measuring the activity level of telomerase using the TRAP assay. The effect of the hTERT siRNA on the tumorigenicity of the breast cancer cells was also studied in vivo by injection of the siRNA-transfected breast cancer cells into nude mice. The effects on cell viability, apoptosis and senescence of cells treated with hTERT siRNA, doxorubicin, and the combined treatment of doxorubicin and hTERT siRNA, were examined in vitro by MTT assay, FACS and SA-β-galactosidase staining. The hTERT siRNA effectively knocked down the mRNA and protein levels of hTERT, and reduced the telomerase activity to 30% of the untreated control. In vivo, the tumors induced by the hTERT siRNA-transfected cells were of reduced sizes, indicating that the hTERT siRNA also reduced the tumorigenic potential of the breast cancer cells. The siRNA treatment reduced cell viability by 50% in breast cancer cells within two days after transfection, while 0.5 μM doxorubicin treatment had a comparable effect but with a slower kinetics. The combination of hTERT siRNA and 0.5 μM doxorubicin killed twice as many

  18. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo

    Directory of Open Access Journals (Sweden)

    Hu Jim

    2006-02-01

    Full Text Available Abstract Background The cationic lipid Genzyme lipid (GL 67 is the current "gold-standard" for in vivo lung gene transfer. Here, we assessed, if GL67 mediated uptake of siRNAs and asODNs into airway epithelium in vivo. Methods Anti-lacZ and ENaC (epithelial sodium channel siRNA and asODN were complexed to GL67 and administered to the mouse airway epithelium in vivo Transfection efficiency and efficacy were assessed using real-time RT-PCR as well as through protein expression and functional studies. In parallel in vitro experiments were carried out to select the most efficient oligonucleotides. Results In vitro, GL67 efficiently complexed asODNs and siRNAs, and both were stable in exhaled breath condensate. Importantly, during in vitro selection of functional siRNA and asODN we noted that asODNs accumulated rapidly in the nuclei of transfected cells, whereas siRNAs remained in the cytoplasm, a pattern consistent with their presumed site of action. Following in vivo lung transfection siRNAs were only visible in alveolar macrophages, whereas asODN also transfected alveolar epithelial cells, but no significant uptake into conducting airway epithelial cells was seen. SiRNAs and asODNs targeted to β-galactosidase reduced βgal mRNA levels in the airway epithelium of K18-lacZ mice by 30% and 60%, respectively. However, this was insufficient to reduce protein expression. In an attempt to increase transfection efficiency of the airway epithelium, we increased contact time of siRNA and asODN using the in vivo mouse nose model. Although highly variable and inefficient, transfection of airway epithelium with asODN, but not siRNA, was now seen. As asODNs more effectively transfected nasal airway epithelial cells, we assessed the effect of asODN against ENaC, a potential therapeutic target in cystic fibrosis; no decrease in ENaC mRNA levels or function was detected. Conclusion This study suggests that although siRNAs and asODNs can be developed to inhibit

  19. Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in Vivo.

    Science.gov (United States)

    Ma, Da; Tian, Shaomin; Baryza, Jeremy; Luft, J Christopher; DeSimone, Joseph M

    2015-10-05

    To achieve the great potential of siRNA based gene therapy, safe and efficient systemic delivery in vivo is essential. Here we report reductively responsive hydrogel nanoparticles with highly uniform size and shape for systemic siRNA delivery in vivo. "Blank" hydrogel nanoparticles with high aspect ratio were prepared using continuous particle fabrication based on PRINT (particle replication in nonwetting templates). Subsequently, siRNA was conjugated to "blank" nanoparticles via a disulfide linker with a high loading ratio of up to 18 wt %, followed by surface modification to enhance transfection. This fabrication process could be easily scaled up to prepare large quantity of hydrogel nanoparticles. By controlling hydrogel composition, surface modification, and siRNA loading ratio, siRNA conjugated nanoparticles were highly tunable to achieve high transfection efficiency in vitro. FVII-siRNA conjugated nanoparticles were further stabilized with surface coating for in vivo siRNA delivery to liver hepatocytes, and successful gene silencing was demonstrated at both mRNA and protein levels.

  20. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    Science.gov (United States)

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  1. Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands

    Directory of Open Access Journals (Sweden)

    H. Herrmann

    2009-12-01

    Full Text Available Monomethylamine (MA, dimethylamine (DMA and diethylamine (DEA were detected at non-negligible concentrations in sub-micrometer particles at the Cap Verde Atmospheric Observatory (CVAO located on the island of São Vicente in Cape Verde during algal blooms in 2007. The concentrations of these amines in five stage impactor samples ranged from 0–30 pg m−3 for MA, 130–360 pg m−3 for DMA and 5–110 pg m−3 for DEA during the spring bloom in May 2007 and 2–520 pg m−3 for MA, 100–1400 pg m−3 for DMA and 90–760 pg m−3 for DEA during an unexpected winter algal bloom in December 2007. Anomalously high Saharan dust deposition and intensive ocean layer deepening were found at the Atmospheric Observatory and the associated Ocean Observatory during algal bloom periods. The highest amine concentrations in fine particles (impactor stage 2, 0.14–0.42 μm indicate that amines are likely taken up from the gas phase into the acidic sub-micrometer particles. The contribution of amines to the organic carbon (OC content ranged from 0.2–2.5% C in the winter months, indicating the importance of this class of compounds to the carbon cycle in the marine environment. Furthermore, aliphatic amines originating from marine biological sources likely contribute significantly to the nitrogen content in the marine atmosphere. The average contribution of the amines to the detected nitrogen species in sub-micrometer particles can be non-negligible, especially in the winter months (0.1% N–1.5% N in the sum of nitrate, ammonium and amines. This indicates that these smaller aliphatic amines can be important for the carbon and the nitrogen cycles in the remote marine environment.

  2. An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome.

    Science.gov (United States)

    Kang, Lin; Fan, Bo; Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Gao, Zhonggao

    2016-10-15

    Hypoxia is a feature of most solid tumors, targeting hypoxia is considered as the best validated yet not extensively exploited strategy in cancer therapy. Here, we reported a novel tumor-targeting strategy using a hypoxia-sensitive siRNA delivery system. In the study, 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazole (AI) through bioreduction under hypoxic conditions, was conjugated to the alkylated polyethyleneimine (bPEI1.8k-C6) to form amphiphilic bPEI1.8k-C6-NI polycations. bPEI1.8k-C6-NI could self-assemble into micelle-like aggregations in aqueous, which contributed to the improved stability of the bPEI1.8k-C6-NI/siRNA polyplexes, resulted in increased cellular uptake. After being transported into the hypoxic tumor cells, the selective nitro-to-amino reduction would cause structural change and elicit a relatively loose structure to facilitate the siRNA dissociation in the cytoplasm, for enhanced gene silencing efficiency ultimately. Therefore, the conflict between the extracellular stability and the intracellular siRNA release ability of the polyplexes was solved by introducing the hypoxia-responsive unit. Consequently, the survivin-targeted siRNA loaded polyplexes shown remarkable anti-tumor effect not only in hypoxic cells, but also in tumor spheroids and tumor-bearing mice, indicating that the hypoxia-sensitive siRNA delivery system had great potential for tumor-targeted therapy. Hypoxia is one of the most remarkable features of most solid tumors, and targeting hypoxia is considered as the best validated strategy in cancer therapy. However, in the past decades, there were few reports about using this strategy in the drug delivery system, especially in siRNA delivery system. Therefore, we constructed a hypoxia-sensitive siRNA delivery system utilizing a hypoxia-responsive unit, 2-nitroimidazole, by which the unavoidable conflict between improved extracellular stability and promoted intracellular siRNA

  3. Development of I-123-labeled amines for brain studies: localization of I-123 iodophenylalkyl amines in rat brain

    International Nuclear Information System (INIS)

    Winchell, H.S.; Baldwin, R.M.; Lin, T.H.

    1980-01-01

    Localization in rat brain of forty iodophenylalkyl amines labeled with I-123 was evaluated in an attempt to develop I-123-labeled amines useful for brain studies. For the amines studied, the highest activity in brain and the brain-to-blood activity ratios ranked p > m > o as related to iodine position on the benzene ring: for alkyl groups the rank order was α-methylethyl > ethyl > methyl > none; for N additions it was single lipophilic group > H > two lipophilic groups. It is suggested that introduction of a halogen into the ring structure of many amines results in greater concentration of the agent in brain than is seen with the nonhalogenated parent compound. The agent N-isopropyl-p-iodoamphetamine was chosen for further study because, in the rat, it showed high brain activity (1.57%/g) and brain-blood ratio (12.6) at 5 min

  4. New insights into controlling tube-bundle fouling using alternative amines

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Klimas, S.J.; Guzonas, D.A.; Fruzzetti, K. [Atomic Energy of Canada Ltd. (Canada); Frattini, P.L. [Electric Power Research Inst. (United States)

    2002-07-01

    A volatile amine is added to the secondary heat-transport system of a nuclear power plant to reduce the rate of corrosion and corrosion product transport in the feedwater and to protect steam generator (SG) crevices and materials exposed to steam condensate. Volatility and base strength of the amine at the SG operating temperature are two important considerations when choosing the optimum amine (or mixture of amines) for corrosion control in the steam cycle. The investigation has found that the rate of tube-bundle fouling is strongly dependent upon the surface chemistry of the corrosion products. For example, the fouling rates of fully oxidized iron oxides, such as hematite and lepidocrocite, are at least an order of magnitude greater than the fouling rate of magnetite under identical operating conditions. The difference is related to the sign of the surface charge on the corrosion products at temperature. The choice of amine for pH-control also influences the fouling rate. This was originally thought to be a surface-charge effect as well, but recent tests have suggested that it is related to the role that the amine plays in governing the rate of deposit consolidation on the heat-transfer surface. Amines that promote a high rate of deposit consolidation result in a low rate of deposit removal and a high fouling rate. Conversely, amines that tend to inhibit deposit consolidation produce a higher rate of deposit removal and a lower fouling rate. Dimethyl-amine and dodecyl-amine have been identified as two amines that inhibit the rate of deposit consolidation and, consequently, result in fouling rates that are up to 5 times lower than rates measured for amines that promote consolidation. A significant difference between morpholine (high fouling rate) and dimethyl-amine (low fouling rate) is that the latter desorbs more slowly from the surface of magnetite. How to account for a correlation between slow desorption kinetics and lower rate constants for deposition and

  5. New insights into controlling tube-bundle fouling using alternative amines

    International Nuclear Information System (INIS)

    Turner, C.W.; Klimas, S.J.; Guzonas, D.A.; Fruzzetti, K.; Frattini, P.L.

    2002-01-01

    A volatile amine is added to the secondary heat-transport system of a nuclear power plant to reduce the rate of corrosion and corrosion product transport in the feedwater and to protect steam generator (SG) crevices and materials exposed to steam condensate. Volatility and base strength of the amine at the SG operating temperature are two important considerations when choosing the optimum amine (or mixture of amines) for corrosion control in the steam cycle. The investigation has found that the rate of tube-bundle fouling is strongly dependent upon the surface chemistry of the corrosion products. For example, the fouling rates of fully oxidized iron oxides, such as hematite and lepidocrocite, are at least an order of magnitude greater than the fouling rate of magnetite under identical operating conditions. The difference is related to the sign of the surface charge on the corrosion products at temperature. The choice of amine for pH-control also influences the fouling rate. This was originally thought to be a surface-charge effect as well, but recent tests have suggested that it is related to the role that the amine plays in governing the rate of deposit consolidation on the heat-transfer surface. Amines that promote a high rate of deposit consolidation result in a low rate of deposit removal and a high fouling rate. Conversely, amines that tend to inhibit deposit consolidation produce a higher rate of deposit removal and a lower fouling rate. Dimethyl-amine and dodecyl-amine have been identified as two amines that inhibit the rate of deposit consolidation and, consequently, result in fouling rates that are up to 5 times lower than rates measured for amines that promote consolidation. A significant difference between morpholine (high fouling rate) and dimethyl-amine (low fouling rate) is that the latter desorbs more slowly from the surface of magnetite. How to account for a correlation between slow desorption kinetics and lower rate constants for deposition and

  6. BIOGENIC AMINES CONTENT IN DIFFERENT WINE SAMPLES

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2015-02-01

    Full Text Available Twenty-five samples of different Slovak wines before and after filtration were analysed in order to determine the content of eight biogenic amines (tryptamine, phenylalanine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine. The method involves extraction of biogenic amines from wine samples with used dansyl chloride. Ultra-high performance liquid chromatography (UHPLC was used for determination of biogenic amines equipped with a Rapid Resolution High Definition (RRHD, DAD detectors and Extend-C18 LC column (50 mm x 3.0 mm ID, 1.8 μm particle size. In this study the highest level of biogenic amine in all wine samples represent tryptamine (TRM with the highest content 170.9±5.3 mg/L in Pinot Blanc wine. Phenylalanine (PHE cadaverine (CAD, histamine (HIS and spermidine (SPD were not detected in all wines; mainly SPD was not detected in 16 wines, HIS not detected in 14 wines, PHE and CAD not detected in 2 wines. Tyramine (TYR, spermine (SPN and putrescine (PUT were detected in all wines, but PUT and SPN in very low concentration. The worst wine samples with high biogenic amine content were Saint Laurent (BF, Pinot Blanc (S and Pinot Noir (AF.

  7. Dendrimer-Stabilized Gold Nanostars as a Multifunctional Theranostic Nanoplatform for CT Imaging, Photothermal Therapy, and Gene Silencing of Tumors.

    Science.gov (United States)

    Wei, Ping; Chen, Jingwen; Hu, Yong; Li, Xin; Wang, Han; Shen, Mingwu; Shi, Xiangyang

    2016-12-01

    Development of versatile nanomaterials combining diagnostic and therapeutic functionalities within one single nanoplatform is extremely important for tumor theranostics. In this work, the authors report the synthesis of a gold nanostar (Au NS)-based theranostic platform stabilized with cyclic arginine-glycine-aspartic (Arg-Gly-Asp, RGD) peptide-modified amine-terminated generation 3 poly(amidoamine) dendrimers. The formed RGD-modified dendrimer-stabilized Au NSs (RGD-Au DSNSs) are used as a gene delivery vector to complex small interfering RNA (siRNA) for computed tomography (CT) imaging, thermal imaging, photothermal therapy (PTT), and gene therapy of tumors. The results show that the RGD-Au DSNSs are able to compact vascular endothelial growth factor siRNA and specifically deliver siRNA to cancer cells overexpressing α v β 3 integrin. Under near-infrared laser irradiation, the viability of cancer cells is only 20.2% after incubation with the RGD-Au DSNS/siRNA polyplexes, which is much lower than that of cells after single PTT or gene therapy treatment. Furthermore, in vivo results show that the RGD-Au DSNS/siRNA polyplexes enable tumor CT imaging, thermal imaging, PTT, and gene therapy after intratumoral injection. These results indicate that the developed multifunctional nanoconstruct is a promising platform for tumor imaging and combinational PTT and gene therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modified bitumen for embedding of radioactive wastes

    International Nuclear Information System (INIS)

    Bozkurt, C.

    1984-11-01

    This work describes new possibilities of using polymer modified bitumen as matrix material for embedding of low- and medium level radioactive wastes. Epoxy resins, polyurethane resins and styrene-butadiene-copolymers with 20-40 weight per cent are used as modifying agents. Penetration and softening point (ring and ball) of modified samples have been measured. Further the resistance to toluene and leaching rate in n-heptane have been determined. Within these polymer bitumen combinations investigated, the epoxy resins having a high epoxid equivalent weight with dicarbooxylic acid anhydrid hardeners and tertiary amin accelerators give the most dense network, highest thermodimensional stability and lowest leaching rate in organic solvents. 71 refs., 9 figs., 6 tabs

  9. Biogenic amine formation and bacterial contribution in Natto products.

    Science.gov (United States)

    Kim, Bitna; Byun, Bo Young; Mah, Jae-Hyung

    2012-12-01

    Twenty-one Natto products currently distributed in Korea were analysed for biogenic amine contents and tested to determine physicochemical and bacterial contributions to biogenic amine formation. Among them, nine products (about 43%) had β-phenylethylamine or tyramine contents greater than the toxic dose (30mg/kg and 100mg/kg, respectively) of each amine, although no products showed total amounts of biogenic amines above the harmful level (1000mg/kg), which indicates that the amounts of biogenic amines in some Natto products are not within the safe level for human health. From four different Natto products, that contained noticeable levels of β-phenylethylamine and tyramine, 80 bacterial strains were isolated. All the strains were identified to be Bacillus subtilis and highly capable of producing β-phenylethylamine and tyramine. Therefore, it seems likely that the remarkable contents of β-phenylethylamine and tyramine in Natto predominantly resulted from the strains highly capable of producing those amines present in the food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.

    Science.gov (United States)

    Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J

    2010-04-01

    Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.

  11. Sodium Perborate Oxidation of an Aromatic Amine

    Science.gov (United States)

    Juestis, Laurence

    1977-01-01

    Describes an experiment involving the oxidation of aromatic primary amines to the corresponding azo compound; suggests procedures for studying factors that influence the yield of such a reaction, including the choice of solvent and the oxidant-amine ratio. (MLH)

  12. Platinum Interference with siRNA Non-seed Regions Fine-Tunes Silencing Capacity

    DEFF Research Database (Denmark)

    Hedman, Hanna K; Kirpekar, Finn; Elmroth, Sofi K C

    2011-01-01

    expression, and the other one focused on the function of endogenous miRNAs. In both cases, the active molecule consists of a ∼20-nucleotide-long RNA duplex. In the siRNA case, improved systemic stability is of central interest for its further development toward clinical applications. With respect to mi......RNA processing and function, understanding its influence on mRNA targeting and the silencing ability of individual miRNAs, e.g., under pathological conditions, remains a scientific challenge. In the present study, a model system is presented where the influence of the two clinically used anticancer drugs......, cisplatin and oxaliplatin, on siRNA's silencing capacity has been evaluated. More specifically, siRNAs targeting the 3' UTR region of Wnt-5a mRNA (NM_003352) were constructed, and the biologically active antisense RNA strand was pre-platinated. Platinum adducts were detected and characterized...

  13. A Catalyst-Free Amination of Functional Organolithium Reagents by Flow Chemistry.

    Science.gov (United States)

    Kim, Heejin; Yonekura, Yuya; Yoshida, Jun-Ichi

    2018-04-03

    Reported is the electrophilic amination of functional organolithium intermediates with well-designed aminating reagents under mild reaction conditions using flow microreactors. The aminating reagents were optimized to achieve efficient C-N bond formation without using any catalyst. The electrophilic amination reactions of functionalized aryllithiums were successfully conducted under mild reaction conditions, within 1 minute, by using flow microreactors. The aminating reagent was also prepared by the flow method. Based on stopped-flow NMR analysis, the reaction time for the preparation of the aminating reagent was quickly optimized without the necessity of work-up. Integrated one-flow synthesis consisting of the generation of an aryllithium, the preparation of an aminating reagent, and their combined reaction was successfully achieved to give the desired amine within 5 minutes of total reaction time. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Method for the production of primary amines

    NARCIS (Netherlands)

    Baldenius, Kai-Uwe; Ditrich, Klaus; Breurer, Michael; Navickas, Vaidotas; Janssen, Dick; Crismaru, Ciprian; Bartsch, Sebastian

    2014-01-01

    The present invention relates to a novel enzymatically catalyzed method for the production of aliphatic primary amines, which method comprises the enzymatic oxidation of a primary aliphatic alcohol catalyzed by an alcohol dehydrogenase, amination of the resulting oxocompound catalyzed by a

  15. In Silico Design and Experimental Validation of siRNAs Targeting Conserved Regions of Multiple Hepatitis C Virus Genotypes.

    Directory of Open Access Journals (Sweden)

    Mahmoud ElHefnawi

    Full Text Available RNA interference (RNAi is a post-transcriptional gene silencing mechanism that mediates the sequence-specific degradation of targeted RNA and thus provides a tremendous opportunity for development of oligonucleotide-based drugs. Here, we report on the design and validation of small interfering RNAs (siRNAs targeting highly conserved regions of the hepatitis C virus (HCV genome. To aim for therapeutic applications by optimizing the RNAi efficacy and reducing potential side effects, we considered different factors such as target RNA variations, thermodynamics and accessibility of the siRNA and target RNA, and off-target effects. This aim was achieved using an in silico design and selection protocol complemented by an automated MysiRNA-Designer pipeline. The protocol included the design and filtration of siRNAs targeting highly conserved and accessible regions within the HCV internal ribosome entry site, and adjacent core sequences of the viral genome with high-ranking efficacy scores. Off-target analysis excluded siRNAs with potential binding to human mRNAs. Under this strict selection process, two siRNAs (HCV353 and HCV258 were selected based on their predicted high specificity and potency. These siRNAs were tested for antiviral efficacy in HCV genotype 1 and 2 replicon cell lines. Both in silico-designed siRNAs efficiently inhibited HCV RNA replication, even at low concentrations and for short exposure times (24h; they also exceeded the antiviral potencies of reference siRNAs targeting HCV. Furthermore, HCV353 and HCV258 siRNAs also inhibited replication of patient-derived HCV genotype 4 isolates in infected Huh-7 cells. Prolonged treatment of HCV replicon cells with HCV353 did not result in the appearance of escape mutant viruses. Taken together, these results reveal the accuracy and strength of our integrated siRNA design and selection protocols. These protocols could be used to design highly potent and specific RNAi-based therapeutic

  16. Lewis basicity, adhesion thermodynamic work and coordinating ability on aminated silicon surfaces

    International Nuclear Information System (INIS)

    Sánchez, M. Alejandra; Paniagua, Sergio A.; Borge, Ignacio; Viales, Christian; Montero, Mavis L.

    2014-01-01

    Highlights: • Silicon(1 0 0) surfaces with diamines followed by anchoring of copper complexes over the diamine layer, an approach that could be used for advanced functionalization of semiconducting surfaces. • Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. • Higher basicity and thermodynamic work correlate with selective copper acetate monolayer grow. The cyclic voltammetry studies confirm the confined copper redox activity. - Abstract: Silicon(1 0 0) surfaces have been modified with three different amines (aniline, benzylamine and dodecylamine) and diamines (4-aminopyridine, 4-aminomethylpyridine, 1,12-dodecyldiamine). The surface energy was measured by contact angle technique. For Si-diamine surfaces, Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. We related these data, the amine/diamine nature and their geometry on the surface (via DFT calculations) with the consequent ability to coordinate copper(II) acetate. Finally, copper(II) acetate monolayers behavior was studied by cyclic voltammetry

  17. siRNAs targeted to certain polyadenylation sites promote specific, RISC-independent degradation of messenger RNAs.

    Science.gov (United States)

    Vickers, Timothy A; Crooke, Stanley T

    2012-07-01

    While most siRNAs induce sequence-specific target mRNA cleavage and degradation in a process mediated by Ago2/RNA-induced silencing complex (RISC), certain siRNAs have also been demonstrated to direct target RNA reduction through deadenylation and subsequent degradation of target transcripts in a process which involves Ago1/RISC and P-bodies. In the current study, we present data suggesting that a third class of siRNA exist, which are capable of promoting target RNA reduction that is independent of both Ago and RISC. These siRNAs bind the target messenger RNA at the polyA signal and are capable of redirecting a small amount of polyadenylation to downstream polyA sites when present, however, the majority of the activity appears to be due to inhibition of polyadenylation or deadenylation of the transcript, followed by exosomal degradation of the immature mRNA.

  18. Development of Gold Nanoparticle towards Radioenhancement Therapy, Renal Clearance, siRNA Delivery and Light-Controlled Gene Silencing

    Science.gov (United States)

    Wang, Jianxin

    Gold nanoparticles (GNPs) have been widely studied and used in research for diagnostic, prophylactic or therapeutic purposes. However, they still face many technical challenges before they can be used to effectively address unmet biomedical needs. The theme of this dissertation is focused on addressing challenges of GNPs in clinical translation, and to improve their potential for application in radioenhancement therapy and siRNA delivery. We demonstrate the facile self-assembly of micellar gold nanocapsules using zwitterionic surfactants, with hydrodynamic diameters below 10 nm, which holds promise for good renal clearance to promote the excretion of GNPs in human body. We also prepared PEI- and PEG-coated GNPs and demonstrated their uptake into HeLa cells with exposure to soft X-rays (120 kVp), based on the consideration that the proximity of GNPs to nuclear DNA may be beneficial for enhancing low-energy ionizing radiotherapy. GNP-mediated siRNA delivery may be challenged by nonspecific siRNA desorption during circulation, which can cause off-target effects and immunogenicity. The use of gold nanorods (GNRs) for siRNA delivery also faces challenges like reduced dispersion stability during siRNA functionalization. We developed an effective way to load siRNA onto GNRs at high density, using oleylsulfobetaine (OSB) as an intermediate surfactant and dithiocarbamates (DTCs) as desorption-resistant anchors for siRNA. The GNR?siRNA complexes provided excellent control for laser-triggered gene silencing.

  19. Dual C-H functionalization of N-aryl amines: synthesis of polycyclic amines via an oxidative Povarov approach.

    Science.gov (United States)

    Min, Chang; Sanchawala, Abbas; Seidel, Daniel

    2014-05-16

    Iminium ions generated in situ via copper(I) bromide catalyzed oxidation of N-aryl amines readily undergo [4 + 2] cycloadditions with a range of dienophiles. This method involves the functionalization of both a C(sp(3))-H and a C(sp(2))-H bond and enables the rapid construction of polycyclic amines under relatively mild conditions.

  20. Direct electrochemical imidation of aliphatic amines via anodic oxidation.

    Science.gov (United States)

    Zhang, Li; Su, Ji-Hu; Wang, Sujing; Wan, Changfeng; Zha, Zhenggen; Du, Jiangfeng; Wang, Zhiyong

    2011-05-21

    Direct electrochemical synthesis of sulfonyl amidines from aliphatic amines and sulfonyl azides was realized with good to excellent yields. Traditional tertiary amine substrates were broadened to secondary and primary amines. The reaction intermediates were observed and a reaction mechanism was proposed and discussed. © The Royal Society of Chemistry 2011

  1. Screening nylon-3 polymers, a new class of cationic amphiphiles, for siRNA delivery.

    Science.gov (United States)

    Nadithe, Venkatareddy; Liu, Runhui; Killinger, Bryan A; Movassaghian, Sara; Kim, Na Hyung; Moszczynska, Anna B; Masters, Kristyn S; Gellman, Samuel H; Merkel, Olivia M

    2015-02-02

    Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-β-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, and their transfection efficacies were studied by luciferase knockdown in a cell line stably expressing luciferase (H1299/Luc). Endosomal release was determined by confocal laser scanning microscopy and colocalization with lysotracker. All polymers efficiently condensed siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected in hydrodynamic diameters smaller than that at N/P 1. Although several formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry. Luciferase knockdown (20-65%) was observed after transfection with polyplexes made of the high molecular weight polymers that were the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA intracellularly even at negative zeta potential implies that they mediate transport across cell membranes based on their amphiphilicity. The cellular uptake route was determined to strongly depend on the presence of cholesterol in the cell membrane. These polymers are, therefore, very promising for siRNA delivery at reduced surface charge and toxicity. Our study identified nylon-3 formulations at low N/P ratios for effective gene knockdown, indicating that nylon-3 polymers are a new, promising type of gene delivery agent.

  2. Screening Nylon-3 Polymers, a New Class of Cationic Amphiphiles, for siRNA Delivery

    Science.gov (United States)

    2015-01-01

    Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-β-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, and their transfection efficacies were studied by luciferase knockdown in a cell line stably expressing luciferase (H1299/Luc). Endosomal release was determined by confocal laser scanning microscopy and colocalization with lysotracker. All polymers efficiently condensed siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected in hydrodynamic diameters smaller than that at N/P 1. Although several formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry. Luciferase knockdown (20–65%) was observed after transfection with polyplexes made of the high molecular weight polymers that were the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA intracellularly even at negative zeta potential implies that they mediate transport across cell membranes based on their amphiphilicity. The cellular uptake route was determined to strongly depend on the presence of cholesterol in the cell membrane. These polymers are, therefore, very promising for siRNA delivery at reduced surface charge and toxicity. Our study identified nylon-3 formulations at low N/P ratios for effective gene knockdown, indicating that nylon-3 polymers are a new, promising type of gene delivery agent. PMID:25437915

  3. Inhibition of MMP-2 Expression with siRNA Increases Baseline Cardiomyocyte Contractility and Protects against Simulated Ischemic Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Han-Bin Lin

    2014-01-01

    Full Text Available Matrix metalloproteinases (MMPs significantly contribute to ischemia reperfusion (I/R injury, namely, by the degradation of contractile proteins. However, due to the experimental models adopted and lack of isoform specificity of MMP inhibitors, the cellular source and identity of the MMP(s involved in I/R injury remain to be elucidated. Using isolated adult rat cardiomyocytes, subjected to chemically induced I/R-like injury, we show that specific inhibition of MMP-2 expression and activity using MMP-2 siRNA significantly protected cardiomyocyte contractility from I/R-like injury. This was also associated with increased expression of myosin light chains 1 and 2 (MLC1/2 in comparison to scramble siRNA transfection. Moreover, the positive effect of MMP-2 siRNA transfection on cardiomyocyte contractility and MLC1/2 expression levels was also observed under control conditions, suggesting an important additional role for MMP-2 in physiological sarcomeric protein turnover. This study clearly demonstrates that intracellular expression of MMP-2 plays a significant role in sarcomeric protein turnover, such as MLC1 and MLC2, under aerobic (physiological conditions. In addition, this study identifies intracellular/autocrine, cardiomyocyte-produced MMP-2, rather than paracrine/extracellular, as responsible for the degradation of MLC1/2 and consequent contractile dysfunction in cardiomyocytes subjected to I/R injury.

  4. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng

    2017-03-15

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  5. Transition Metal Free C-N Bond Forming Dearomatizations and Aryl C-H Aminations by in Situ Release of a Hydroxylamine-Based Aminating Agent.

    Science.gov (United States)

    Farndon, Joshua J; Ma, Xiaofeng; Bower, John F

    2017-10-11

    We outline a simple protocol that accesses directly unprotected secondary amines by intramolecular C-N bond forming dearomatization or aryl C-H amination. The method is dependent on the generation of a potent electrophilic aminating agent released by in situ deprotection of O-Ts activated N-Boc hydroxylamines.

  6. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng; Guo, Lin; Liao, Hsuan-Hung; Cai, Yunfei; Zhu, Chen; Rueping, Magnus

    2017-01-01

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  7. Analysis of a Buchwald-Hartwig amination: reaction for pharmaceutical production

    DEFF Research Database (Denmark)

    Christensen, Henrik

    The Buchwald-Hartwig amination reaction is widely used in the production of N-arylated amines in the pharmaceutical industry. The reaction is betweenan aryl halogen and a primary or secondary amine in the presence of a base and a homogeneous catalyst giving the desired N-arylated amine. Due to mild...... is to increase the understanding of the chem­ical reaction mechanisms and kinetics for the Buchwald-Hartwig amination reaction. Also, to develop methods for application of these mechanisms and kinetics to optimize and scale up an organic synthesis to an industrial phar­maceutical production. The Buchwald...

  8. Analysis of a Buckwald-Hartwig amination: reaction for pharmaceutical production

    DEFF Research Database (Denmark)

    Christensen, Henrik; Kiil, Søren; Dam-Johansen, Kim

    The Buchwald-Hartwig amination reaction is widely used in the production of N-arylated amines in the pharmaceutical industry. The reaction is betweenan aryl halogen and a primary or secondary amine in the presence of a base and a homogeneous catalyst giving the desired N-arylated amine. Due to mild...... is to increase the understanding of the chem­ical reaction mechanisms and kinetics for the Buchwald-Hartwig amination reaction. Also, to develop methods for application of these mechanisms and kinetics to optimize and scale up an organic synthesis to an industrial phar­maceutical production. The Buchwald...

  9. Solvent-free functionalization of carbon nanotube buckypaper with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Ramírez-Calera, Itzel J.; Meza-Laguna, Victor; Abarca-Morales, Edgar; Pérez-Rey, Luis A.; Re, Marilena; Prete, Paola; Lovergine, Nico

    2015-01-01

    Graphical abstract: - Abstract: We demonstrate the possibility of fast and efficient solvent-free functionalization of buckypaper (BP) mats prefabricated from oxidized multiwalled carbon nanotubes (MWCNTs-ox), by using three representative amines of different structure: one monofunctional aliphatic amine, octadecylamine (ODA), one monofunctional aromatic amine, 1-aminopyrene (AP), and one aromatic diamine, 1,5-diaminonaphthalene (DAN). The functionalization procedure, which relies on the formation of amide bonds with carboxylic groups of MWCNTs-ox, is performed at 150–180 °C under reduced pressure and takes about 4 h including auxiliary degassing. The amine-treated BP samples (BP-ODA, BP-AP and BP-DAN, respectively) were characterized by means of a variety of analytical techniques such as Fourier-transform infrared and Raman spectroscopy, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, scanning helium ion microscopy, and atomic force microscopy. The highest amine content was found for BP-ODA, and the lowest one was observed for BP-DAN, with a possible contribution of non-covalently bonded amine molecules in all three cases. Despite of some differences in spectral and morphological characteristics for amine-functionalized BP samples, they have in common a dramatically increased stability in water as compared to pristine BP and, on the other hand, a relatively invariable electrical conductivity.

  10. IN VIVO SCREENING OF CHEMICAL MODIFICATIONS OF siRNAs FOR EFFECT ON THE INNATE IMMUNE RESPONSE IN FISH

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Schyth, Brian Dall; Bramsen, J. B.

    Abstract Due to their sequence specific gene silencing activity siRNAs are regarded as promising new active compounds in gene medicine and functional studies. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNAs duplexes. Cel...... of siRNAs into RISC for specific gene silencing....

  11. Utility of MicroRNAs and siRNAs in Cervical Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Sacnite del Mar Díaz-González

    2015-01-01

    Full Text Available MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3′-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer.

  12. Surfactant protein A (SP-A) inhibits agglomeration and macrophage uptake of toxic amine modified nanoparticles.

    Science.gov (United States)

    McKenzie, Zofi; Kendall, Michaela; Mackay, Rose-Marie; Whitwell, Harry; Elgy, Christine; Ding, Ping; Mahajan, Sumeet; Morgan, Cliff; Griffiths, Mark; Clark, Howard; Madsen, Jens

    2015-01-01

    The lung provides the main route for nanomaterial exposure. Surfactant protein A (SP-A) is an important respiratory innate immune molecule with the ability to bind or opsonise pathogens to enhance phagocytic removal from the airways. We hypothesised that SP-A, like surfactant protein D, may interact with inhaled nanoparticulates, and that this interaction will be affected by nanoparticle (NP) surface characteristics. In this study, we characterise the interaction of SP-A with unmodified (U-PS) and amine-modified (A-PS) polystyrene particles of varying size and zeta potential using dynamic light scatter analysis. SP-A associated with both 100 nm U-PS and A-PS in a calcium-independent manner. SP-A induced significant calcium-dependent agglomeration of 100 nm U-PS NPs but resulted in calcium-independent inhibition of A-PS self agglomeration. SP-A enhanced uptake of 100 nm U-PS into macrophage-like RAW264.7 cells in a dose-dependent manner but in contrast inhibited A-PS uptake. Reduced association of A-PS particles in RAW264.7 cells following pre-incubation of SP-A was also observed with coherent anti-Stokes Raman spectroscopy. Consistent with these findings, alveolar macrophages (AMs) from SP-A(-/-) mice were more efficient at uptake of 100 nm A-PS compared with wild type C57Bl/6 macrophages. No difference in uptake was observed with 500 nm U-PS or A-PS particles. Pre-incubation with SP-A resulted in a significant decrease in uptake of 100 nm A-PS in macrophages isolated from both groups of mice. In contrast, increased uptake by AMs of U-PS was observed after pre-incubation with SP-A. Thus we have demonstrated that SP-A promotes uptake of non-toxic U-PS particles but inhibits the clearance of potentially toxic A-PS particles by blocking uptake into macrophages.

  13. Fluorinated Amine Stereotriads via Allene Amination.

    Science.gov (United States)

    Liu, Lu; Gerstner, Nels C; Oxtoby, Lucas J; Guzei, Ilia A; Schomaker, Jennifer M

    2017-06-16

    The incorporation of fluorine into organic scaffolds often improves the bioactivity of pharmaceutically relevant compounds. C-F/C-N/C-O stereotriad motifs are prevalent in antivirals, neuraminidase inhibitors, and modulators of androgen receptors, but are challenging to install. An oxidative allene amination strategy using Selectfluor rapidly delivers triply functionalized triads of the form C-F/C-N/C-O, exhibiting good scope and diastereoselectivity for all syn products. The resulting stereotriads are readily transformed into fluorinated pyrrolidines and protected α-, β-, and γ-amino acids.

  14. Evaluation of amine inhibitors for suitability as crevice buffering agents

    International Nuclear Information System (INIS)

    Jayaweera, P.; Hettiarachchi, S.

    1994-03-01

    This report describes the results of a research effort to evaluate the suitability of some selected amines and amino acids as a crevice-buffering agents in pressurized water reactor (PWR) steam generators. The amines may be useful for buffering acid crevices, and the amino acids, because they contain both acidic and basic groups, may be useful for acidic and caustic crevices. Five commercially available amines and two amino acids were studied during this research. The study involved (1) the hydrolysis of these commercially available amines and amino acids, including measurement of their kinetics of decomposition, in simulated steam generator bulk water at 290 C, and (2) determination of their thermal stability in a simulated crevice environment. The study showed that, although the high-molecular-weight amines undergo hydrothermal decomposition, they have a better buffering capacity than their low-molecular-weight counterparts at 290 C. The amines provide effective crevice buffering by increasing the pH of the crevice solution by as much as 2.84 and to 4.24 units in the experimental setup used in this program. It was concluded that polyamines provide excellent buffering of the simulated crevice environment at 290 C and morpholine remains the best low-molecular-weight amine investigated. However, detailed volatility studies of the amines were not considered in this work. Such data would be needed before in-plant testing to ensure that the amines can concentrate in steam generator crevices to the levels assumed in this study

  15. Optimal Hydrophobicity in Ring-Opening Metathesis Polymerization-Based Protein Mimics Required for siRNA Internalization.

    Science.gov (United States)

    deRonde, Brittany M; Posey, Nicholas D; Otter, Ronja; Caffrey, Leah M; Minter, Lisa M; Tew, Gregory N

    2016-06-13

    Exploring the role of polymer structure for the internalization of biologically relevant cargo, specifically siRNA, is of critical importance to the development of improved delivery reagents. Herein, we report guanidinium-rich protein transduction domain mimics (PTDMs) based on a ring-opening metathesis polymerization scaffold containing tunable hydrophobic moieties that promote siRNA internalization. Structure-activity relationships using Jurkat T cells and HeLa cells were explored to determine how the length of the hydrophobic block and the hydrophobic side chain compositions of these PTDMs impacted siRNA internalization. To explore the hydrophobic block length, two different series of diblock copolymers were synthesized: one series with symmetric block lengths and one with asymmetric block lengths. At similar cationic block lengths, asymmetric and symmetric PTDMs promoted siRNA internalization in the same percentages of the cell population regardless of the hydrophobic block length; however, with 20 repeat units of cationic charge, the asymmetric block length had greater siRNA internalization, highlighting the nontrivial relationships between hydrophobicity and overall cationic charge. To further probe how the hydrophobic side chains impacted siRNA internalization, an additional series of asymmetric PTDMs was synthesized that featured a fixed hydrophobic block length of five repeat units that contained either dimethyl (dMe), methyl phenyl (MePh), or diphenyl (dPh) side chains and varied cationic block lengths. This series was further expanded to incorporate hydrophobic blocks consisting of diethyl (dEt), diisobutyl (diBu), and dicyclohexyl (dCy) based repeat units to better define the hydrophobic window for which our PTDMs had optimal activity. High-performance liquid chromatography retention times quantified the relative hydrophobicities of the noncationic building blocks. PTDMs containing the MePh, diBu, and dPh hydrophobic blocks were shown to have superior

  16. Systematic evaluation and optimization of modification reactions of oligonucleotides with amines and carboxylic acids for the synthesis of DNA-encoded chemical libraries.

    Science.gov (United States)

    Franzini, Raphael M; Samain, Florent; Abd Elrahman, Maaly; Mikutis, Gediminas; Nauer, Angela; Zimmermann, Mauro; Scheuermann, Jörg; Hall, Jonathan; Neri, Dario

    2014-08-20

    DNA-encoded chemical libraries are collections of small molecules, attached to DNA fragments serving as identification barcodes, which can be screened against multiple protein targets, thus facilitating the drug discovery process. The preparation of large DNA-encoded chemical libraries crucially depends on the availability of robust synthetic methods, which enable the efficient conjugation to oligonucleotides of structurally diverse building blocks, sharing a common reactive group. Reactions of DNA derivatives with amines and/or carboxylic acids are particularly attractive for the synthesis of encoded libraries, in view of the very large number of building blocks that are commercially available. However, systematic studies on these reactions in the presence of DNA have not been reported so far. We first investigated conditions for the coupling of primary amines to oligonucleotides, using either a nucleophilic attack on chloroacetamide derivatives or a reductive amination on aldehyde-modified DNA. While both methods could be used for the production of secondary amines, the reductive amination approach was generally associated with higher yields and better purity. In a second endeavor, we optimized conditions for the coupling of a diverse set of 501 carboxylic acids to DNA derivatives, carrying primary and secondary amine functions. The coupling efficiency was generally higher for primary amines, compared to secondary amine substituents, but varied considerably depending on the structure of the acids and on the synthetic methods used. Optimal reaction conditions could be found for certain sets of compounds (with conversions >80%), but multiple reaction schemes are needed when assembling large libraries with highly diverse building blocks. The reactions and experimental conditions presented in this article should facilitate the synthesis of future DNA-encoded chemical libraries, while outlining the synthetic challenges that remain to be overcome.

  17. New potential of the reductive alkylation of amines

    International Nuclear Information System (INIS)

    Gusak, K N; Ignatovich, Zh V; Koroleva, E V

    2015-01-01

    Available data on the reductive alkylation of amines with carbonyl compounds — a key method for the preparation of secondary and tertiary amines — are described systematically. The review provides information on the relevant reducing agents and catalysts and on the use of chiral catalysts in stereo- and enantiocontrolled reactions of amine synthesis. The effect of the reactant and catalyst structures on the reaction rates and chemo- and stereo(enantio)selectivity is considered. The bibliography includes 156 references

  18. Poly(Amido Amine)s Containing Agmatine and Butanol Side Chains as Efficient Gene Carriers.

    Science.gov (United States)

    Won, Young-Wook; Ankoné, Marc; Engbersen, Johan F J; Feijen, Jan; Kim, Sung Wan

    2016-04-01

    A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA-ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA-ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA-ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma.

    Science.gov (United States)

    Xie, Yuran; Kim, Na Hyung; Nadithe, Venkatareddy; Schalk, Dana; Thakur, Archana; Kılıç, Ayşe; Lum, Lawrence G; Bassett, David J P; Merkel, Olivia M

    2016-05-10

    Asthma is a worldwide health problem. Activated T cells (ATCs) in the lung, particularly T helper 2 cells (Th2), are strongly associated with inducing airway inflammatory responses and chemoattraction of inflammatory cells in asthma. Small interfering RNA (siRNA) as a promising anti-sense molecule can specifically silence inflammation related genes in ATCs, however, lack of safe and efficient siRNA delivery systems limits the application of siRNA as a therapeutic molecule in asthma. Here, we designed a novel pulmonary delivery system of siRNA, transferrin-polyethylenimine (Tf-PEI), to selectively deliver siRNA to ATCs in the lung. Tf-PEI polyplexes demonstrated optimal physicochemical properties such as size, distribution, zeta-potential, and siRNA condensation efficiency. Moreover, in vitro studies showed significantly enhanced cellular uptake and gene knockdown mediated by Tf-PEI polyplexes in human primary ATCs. Biodistribution of polyplexes in a murine asthmatic model confirmed that Tf-PEI polyplexes can efficiently and selectively deliver siRNA to ATCs. In conclusion, the present work proves the feasibility to target ATCs in asthma via Tf receptor. This strategy could potentially be used to design an efficient siRNA delivery system for asthma therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. siRNA as a tool to improve the treatment of brain diseases: Mechanism, targets and delivery.

    Science.gov (United States)

    Gomes, Maria João; Martins, Susana; Sarmento, Bruno

    2015-05-01

    As the population ages, brain pathologies such as neurodegenerative diseases and brain cancer increase their incidence, being the need to find successful treatments of upmost importance. Drug delivery to the central nervous system (CNS) is required in order to reach diseases causes and treat them. However, biological barriers, mainly blood-brain barrier (BBB), are the key obstacles that prevent the effectiveness of possible treatments due to their ability to strongly limit the perfusion of compounds into the brain. Over the past decades, new approaches towards overcoming BBB and its efflux transporters had been proposed. One of these approaches here reviewed is through small interfering RNA (siRNA), which is capable to specifically target one gene and silence it in a post-transcriptional way. There are different possible functional proteins at the BBB, as the ones responsible for transport or just for its tightness, which could be a siRNA target. As important as the effective silence is the way to delivery siRNA to its anatomical site of action. This is where nanotechnology-based systems may help, by protecting siRNA circulation and providing cell/tissue-targeting and intracellular siRNA delivery. After an initial overview on incidence of brain diseases and basic features of the CNS, BBB and its efflux pumps, this review focuses on recent strategies to reach brain based on siRNA, and how to specifically target these approaches in order to treat brain diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Fluorescence quenching of Rhodamine B base by two amines

    Science.gov (United States)

    Bakkialakshmi, S.; Selvarani, P.; Chenthamarai, S.

    2013-03-01

    Fluorescence quenching of Rhodamine B base (RhB) in DMF solution has been studied at different concentrations of the amine Triethyl amine (TEA) and n-butyl amine (NBA) at room temperature. It has been observed that the fluorescence intensity of RhB decrease with increase in the concentration of the TEA and NBA. It has been observed that the quenching due to amines proceeds via dynamic quenching process. The rate constants for the quenching process have been calculated using Stern-Volmer equation. Time resolved fluorescence study and 1H NMR spectral study have also been carried out and discussed.

  2. Catalyst- and Reagent-free Electrochemical Azole C-H Amination.

    Science.gov (United States)

    Qiu, Youai; Struwe, Julia; Meyer, Tjark H; Oliveira, Joao Carlos Agostinho Carlos Agostinho; Ackermann, Lutz

    2018-06-14

    Catalyst-, and chemical oxidant-free electrochemical azole C-H aminations were accomplished via cross-dehydrogenative C-H/N-H functionalization. The catalyst-free electrochemical C-H amination proved feasible on azoles with high levels of efficacy and selectivity, avoiding the use of stoichiometric oxidants under ambient conditions. Likewise, the C(sp3)-H nitrogenation proved viable under otherwise identical conditions. The dehydrogenative C-H amination featured ample scope, including cyclic and acyclic aliphatic amines as well as anilines, and employed sustainable electricity as the sole oxidant. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Characterization and vectorization of siRNA targeting RET/PTC1 in human papillary thyroid carcinoma cells

    Directory of Open Access Journals (Sweden)

    Massade L.

    2011-10-01

    Full Text Available RET/PTC1 fusion oncogene is the most common genetic alteration identified to date in thyroid papillary carcinomas (PTC and represents a good target for small interfering RNA (siRNA. Our aim was: i to target the RET/PTC1 oncogene by siRNAs, ii to assess the knockdown effects on cell growth and cell cycle regulation and iii to vectorize it in order to protect it from degradation. Methods. Human cell lines expressing RET/PTC1 were transfected by siRNA RET/PTC1, inhibition of the oncogene expression was assessed by qRT-PCR and by Western blot. Conjugation of siRNA RET/PTC1 to squalene was performed by coupling it to squalene. In vivo studies are performed in nude mice. Conclusion. In this short communication, we report the main published results obtained during last years.

  4. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery.

    Science.gov (United States)

    Thapa, Bindu; Bahadur Kc, Remant; Uludağ, Hasan

    2018-02-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in variety of cancer cells without affecting most normal cells, which makes it a promising agent for cancer therapy. However, TRAIL therapy is clinically not effective due to resistance induction. To identify novel regulators of TRAIL that can aid in therapy, protein targets whose silencing sensitized breast cancer cells against TRAIL were screened with an siRNA library against 446 human apoptosis-related proteins in MDA-231 cells. Using a cationic lipopolymer (PEI-αLA) for delivery of library members, 16 siRNAs were identified that sensitized the TRAIL-induced death in MDA-231 cells. The siRNAs targeting BCL2L12 and SOD1 were further evaluated based on the novelty and their ability to sensitize TRAIL induced cell death. Silencing both targets sensitized TRAIL-mediated cell death in MDA-231 cells as well as TRAIL resistant breast cancer cells, MCF-7. Combination of TRAIL and siRNA silencing BCL2L12 had no effect in normal human umbilical vein cells and human bone marrow stromal cell. The silencing of BCL2L12 and SOD1 enhanced TRAIL-mediated apoptosis in MDA-231 cells via synergistically activating capsase-3 activity. Hence, here we report siRNAs targeting BCL2L12 and SOD1 as a novel regulator of TRAIL-induced cell death in breast cancer cells, providing a new approach for enhancing TRAIL therapy for breast cancer. The combination of siRNA targeting BCL2L12 and TRAIL can be a highly effective synergistic pair in breast cancer cells with minimal effect on the non-transformed cells. © 2017 UICC.

  5. Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Liu, Meiying; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Huang, Hongye; Xu, Dazhuang; Zeng, Guangjian [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-09-15

    Adsorption has been well regarded as a promising and efficient method for the removal of low concentration heavy metal ions in aqueous solutions. And kaolin has been considered as a kind of low cost and environment-friendly adsorbent for its abundant in nature. But the low adsorption capacity to heavy metal ions and severe aggregation in solution restrains its application. In this work, an environment-friendly adsorbent (denoted as Kaolin-PDA-PEI) was prepared based on mussel inspired chemistry and Michael addition reaction between high reaction activity of polydopamine (PDA) and polyethyleneimine (PEI), which was possesses a number of amine groups. The amine groups have displayed strong adsorption affinity towards copper ions. The successful modification of Kaolin by PDA and PEI was confirmed by a series of analyses, such as Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetry analysis and X-ray photoelectron spectroscopy. The effects of various parameters such as contact time, pH, initial concentrations of copper ions and temperature on copper ion adsorption by Kaolin-PDA-PEI were investigated. Kaolin-PDA-PEI shows higher adsorption capacity as compared with the raw Kaolin. The kinetic adsorption data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The Langmuir isotherm and Freundlich isotherm equilibrium model were applied to adsorption isotherm data to find the better fit isotherm. The results showed that adsorption process was well fitted by Langmuir isotherm model. The values of thermodynamics constants such as entropy change (ΔS{sup 0}), enthalpy change (ΔH{sup 0}) and Gibbs free energy (ΔG{sup 0}) were also calculated. The results indicated that the adsorption process of Kaolin-PDA-PEI were endothermic and spontaneous. - Graphical abstract: Amino groups functionalized Kaolin was facilely prepared via mussel inspired chemistry. The modified Kaolin exhibited much

  6. Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions

    International Nuclear Information System (INIS)

    Huang, Qiang; Liu, Meiying; Deng, Fengjie; Wang, Ke; Huang, Hongye; Xu, Dazhuang; Zeng, Guangjian; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Adsorption has been well regarded as a promising and efficient method for the removal of low concentration heavy metal ions in aqueous solutions. And kaolin has been considered as a kind of low cost and environment-friendly adsorbent for its abundant in nature. But the low adsorption capacity to heavy metal ions and severe aggregation in solution restrains its application. In this work, an environment-friendly adsorbent (denoted as Kaolin-PDA-PEI) was prepared based on mussel inspired chemistry and Michael addition reaction between high reaction activity of polydopamine (PDA) and polyethyleneimine (PEI), which was possesses a number of amine groups. The amine groups have displayed strong adsorption affinity towards copper ions. The successful modification of Kaolin by PDA and PEI was confirmed by a series of analyses, such as Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetry analysis and X-ray photoelectron spectroscopy. The effects of various parameters such as contact time, pH, initial concentrations of copper ions and temperature on copper ion adsorption by Kaolin-PDA-PEI were investigated. Kaolin-PDA-PEI shows higher adsorption capacity as compared with the raw Kaolin. The kinetic adsorption data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The Langmuir isotherm and Freundlich isotherm equilibrium model were applied to adsorption isotherm data to find the better fit isotherm. The results showed that adsorption process was well fitted by Langmuir isotherm model. The values of thermodynamics constants such as entropy change (ΔS"0), enthalpy change (ΔH"0) and Gibbs free energy (ΔG"0) were also calculated. The results indicated that the adsorption process of Kaolin-PDA-PEI were endothermic and spontaneous. - Graphical abstract: Amino groups functionalized Kaolin was facilely prepared via mussel inspired chemistry. The modified Kaolin exhibited much enhanced adsorption

  7. Synthesis and characterization ligand tris-(2-thiosalicylamidoethyl)amine and its iron complexes and indium

    International Nuclear Information System (INIS)

    Guerra-Garcia, Pedro Pablo; Valle Bourrouet, Grettel

    2006-01-01

    The synthesis of coordination chemistry ligand tris-(2-tiosalicilamidoetil)amine is presented within the framework of study of tripod ligands, the corresponding complexes of iron and indium. Also, its spectroscopic characterization by proton magnetic resonance is showed; so the influence of ligand on a redox active metal and an inactive is compared. Electrochemical methods have been used. The presence of sulfur atoms modifies the redox and magnetic behavior of iron ion (III), as has been found in other similar ligands [es

  8. BIOGENIC AMINES CONTENT IN SELECTED WINES DURING WINEMAKING

    Directory of Open Access Journals (Sweden)

    Radka Flasarová

    2012-02-01

    Full Text Available The aim of this study was to describe the development of selected biogenic amines (histamine; tyramine; phenylethylamine; putrescine; agmatine; and cadaverine during the winemaking in 10 selected species grown in Central Europe in 2008. The analysis was performed using ion-exchange chromatography by the sodium-citrate buffers with the post-column ninhydrin derivatization and photometric detection. A comparison of the content of biogenic amines in red and wine varieties showed that red wines have higher concentrations of biogenic amines.

  9. Direct α-C-H bond functionalization of unprotected cyclic amines

    Science.gov (United States)

    Chen, Weijie; Ma, Longle; Paul, Anirudra; Seidel, Daniel

    2018-02-01

    Cyclic amines are ubiquitous core structures of bioactive natural products and pharmaceutical drugs. Although the site-selective abstraction of C-H bonds is an attractive strategy for preparing valuable functionalized amines from their readily available parent heterocycles, this approach has largely been limited to substrates that require protection of the amine nitrogen atom. In addition, most methods rely on transition metals and are incompatible with the presence of amine N-H bonds. Here we introduce a protecting-group-free approach for the α-functionalization of cyclic secondary amines. An operationally simple one-pot procedure generates products via a process that involves intermolecular hydride transfer to generate an imine intermediate that is subsequently captured by a nucleophile, such as an alkyl or aryl lithium compound. Reactions are regioselective and stereospecific and enable the rapid preparation of bioactive amines, as exemplified by the facile synthesis of anabasine and (-)-solenopsin A.

  10. Sponges with covalently tethered amines for high-efficiency carbon capture

    KAUST Repository

    Qi, Genggeng

    2014-12-12

    © 2014 Macmillan Publishers Limited. All rights reserved. Adsorption using solid amine sorbents is an attractive emerging technology for energy-efficient carbon capture. Current syntheses for solid amine sorbents mainly based on physical impregnation or grafting-to methods (for example, aminosilane-grafting) lead to limited sorbent performance in terms of stability and working capacity, respectively. Here we report a family of solid amine sorbents using a grafting-from synthesis approach and synthesized by cationic polymerization of oxazolines on mesoporous silica. The sorbent with high amount of covalently tethered amines shows fast adsorption rate, high amine efficiency and sorbent capacity well exceeding the highest value reported to date for lowerature carbon dioxide sorbents under simulated flue gas conditions. The demonstrated efficiency of the new amine-immobilization chemistry may open up new avenues in the development of advanced carbon dioxide sorbents, as well as other nitrogen-functionalized systems.

  11. Sequential metabolism of secondary alkyl amines to metabolic-intermediate complexes: opposing roles for the secondary hydroxylamine and primary amine metabolites of desipramine, (s)-fluoxetine, and N-desmethyldiltiazem.

    Science.gov (United States)

    Hanson, Kelsey L; VandenBrink, Brooke M; Babu, Kantipudi N; Allen, Kyle E; Nelson, Wendel L; Kunze, Kent L

    2010-06-01

    Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine > primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.

  12. Performance of a modified DuoPIGatron ion source for PLT neutral beam injectors

    International Nuclear Information System (INIS)

    Tsai, C.C.; Stirling, W.L.; Haselton, H.H.

    1978-09-01

    The performance of a modified duoPIGatron ion source for PLT neutral beam injectors is described. The 22-cm source has been operated to deliver beams of 70 A, up to 45 keV, and 0.5 sec. Following a brief review of source operation, the dominant reactions leading to an enhanced atomic ion fraction in the source plasma are emphasized. In addition to the high atomic ion species yield (about 85%), other important characteristics of the source such as high arc efficiency (about 1.1 A ion beam current per kW of arc power), long filament lifetime, high reliability, and scalability are also described

  13. Biogenic amines and radiosensitivity of solitary cells

    International Nuclear Information System (INIS)

    Goncharenko, E.N.

    1978-01-01

    Different stability of cells to ionizing radiation is considered from a position of the ''elevated biochemical radioresistance background'' concept. Experimental evidence presented indicates an important role of endogenic amines (serotonin and histamine) possessing radioprotector properties in the cell radioresistance formation. The concept about their effect as being solely a result of circulatory hypoxia is critically discussed. The experimental results favor the existence of a ''cellular'' component, along with the ''hypoxic'' one, in the mechanism of action of biogenic amines. These compounds can affect the initial stages of peroxide oxidation of lipids, thereby favoring a less intensive oxidation induced by radiation. Biogenic amines can also exert influence on the cyclic nucleotide system

  14. Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.

    Science.gov (United States)

    Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G

    2018-02-14

    This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.

  15. Rapid and clean amine functionalization of carbon nanotubes in a dielectric barrier discharge reactor for biosensor development

    International Nuclear Information System (INIS)

    Khodadadei, Fatemeh; Ghourchian, Hedayatollah; Soltanieh, Mansour; Hosseinalipour, Mohammad; Mortazavi, Yadollah

    2014-01-01

    Multiwalled carbon nanotubes (MWCNTs) were amine-functionalized using the process of dielectric barrier discharge (DBD) plasma treatment. The scanning electron microscope micrographs and Fourier transform infra-red spectroscopy clearly demonstrated that the carbon skeleton structure of the plasma-treated MWCNTs was preserved and amine groups were coupled to MWCNTs during this process. The amine-functionalized MWCNTs were then fixed on glassy carbon (GC) electrode and glucose oxidase (GO X ) as a model enzyme was immobilized on the modified GC electrode. Direct electron transfer between the redox active center of the immobilized GO X and the plasma-treated MWCNTs was investigated through cyclic voltammetry. The well-defined, quasi-reversible redox peaks of the immobilized GO X revealed that GO X retained its activity such that it could specifically catalyze the oxidation of glucose with great efficiency. The obtained enzyme electrode was used for glucose biosensing with the linear range from 17 to 646 μM and sensitivity of 12.3 μA/mM cm 2 . Based on the signal to noise ratio of 3, the detection limit was estimated to be 9 μM. The Michaelis–Menten constant for immobilized GO X was as low as 480 μM

  16. Hydrogel doped with nanoparticles for local sustained release of siRNA in breast cancer.

    Science.gov (United States)

    Segovia, Nathaly; Pont, Maria; Oliva, Nuria; Ramos, Victor; Borrós, Salvador; Artzi, Natalie

    2015-01-28

    Of all the much hyped and pricy cancer drugs, the benefits from the promising siRNA small molecule drugs are limited. Lack of efficient delivery vehicles that would release the drug locally, protect it from degradation, and ensure high transfection efficiency, precludes it from fulfilling its full potential. This work presents a novel platform for local and sustained delivery of siRNA with high transfection efficiencies both in vitro and in vivo in a breast cancer mice model. siRNA protection and high transfection efficiency are enabled by their encapsulation in oligopeptide-terminated poly(β-aminoester) (pBAE) nanoparticles. Sustained delivery of the siRNA is achieved by the enhanced stability of the nanoparticles when embedded in a hydrogel scaffold based on polyamidoamine (PAMAM) dendrimer cross-linked with dextran aldehyde. The combination of oligopeptide-terminated pBAE polymers and biodegradable hydrogels shows improved transfection efficiency in vivo even when compared with the most potent commercially available transfection reagents. These results highlight the advantage of using composite materials for successful delivery of these highly promising small molecules to combat cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Potential occupational risk of amines in carbon capture for power generation.

    Science.gov (United States)

    Gentry, P Robinan; House-Knight, Tamara; Harris, Angela; Greene, Tracy; Campleman, Sharan

    2014-08-01

    While CO2 capture and storage (CCS) technology has been well studied in terms of its efficacy and cost of implementation, there is limited available data concerning the potential for occupational exposure to amines, mixtures of amines, or degradation of by-products from the CCS process. This paper is a critical review of the available data concerning the potential effects of amines and CCS-degradation by-products. A comprehensive review of the occupational health and safety issues associated with exposure to amines and amine by-products at CCS facilities was performed, along with a review of the regulatory status and guidelines of amines, by-products, and CCS process vapor mixtures. There are no specific guidelines or regulations regarding permissible levels of exposure via air for amines and degradation products that could form atmospheric oxidation of amines released from post-combustion CO2 capture plants. While there has been a worldwide effort to develop legal and regulatory frameworks for CCS, none are directly related to occupational exposures. By-products of alkanolamine degradation may pose the most significant health hazard to workers in CCS facilities, with several aldehydes, amides, nitramines, and nitrosamines classified as either known or potential/possible human carcinogens. The absence of large-scale CCS facilities; absence and unreliability of reported data in the literature from pilot facilities; and proprietary amine blends make it difficult to estimate potential amine exposures and predict formation and exposure to degradation products.

  18. The C-Cat Wordnet Package: An Open Source Package for modifying andapplying Wordnet

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, K; Huang, T; Buttler, D

    2011-09-16

    We present the C-Cat Wordnet package, an open source library for using and modifying Wordnet. The package includes four key features: an API for modifying Synsets; implementations of standard similarity metrics, implementations of well known Word Sense Disambiguation algorithms, and an implementation of the Castanet algorithm. The library is easily extendible and usable in many runtime environments. We demonstrate it's use on two standard Word Sense Disambiguation tasks and apply the Castanet algorithm to a corpus.

  19. Fabrication and characterisation of gold nano-particle modified polymer monoliths for flow-through catalytic reactions and their application in the reduction of hexacyanoferrate

    International Nuclear Information System (INIS)

    Floris, Patrick; Twamley, Brendan; Nesterenko, Pavel N.; Paull, Brett; Connolly, Damian

    2014-01-01

    Polymer monoliths in capillary (100 μm i.d.) and polypropylene pipette tip formats (vol: 20 μL) were modified with gold nano-particles (AuNP) and subsequently used for flow-through catalytic reactions. Specifically, methacrylate monoliths were modified with amine-reactive monomers using a two-step photografting method and then reacted with ethylenediamine to provide amine attachment sites for the subsequent immobilisation of 4 nm, 7 nm or 16 nm AuNP. This was achieved by flushing colloidal suspensions of gold nano-particles through each aminated polymer monolith which resulted in a multi-point covalent attachment of gold via the lone pair of electrons on the nitrogen of the free amine groups. Field emission scanning electron microscopy and scanning capacitively coupled conductivity detection was used to characterise the surface coverage of AuNP on the monoliths. The catalytic activity of AuNP immobilised on the polymer monoliths in both formats was then demonstrated using the reduction of Fe(III) to Fe(II) by sodium borohydride as a model reaction by monitoring the reduction in absorbance of the hexacyanoferrate (III) complex at 420 nm. Catalytic activity was significantly enhanced on monoliths modified with smaller AuNP with almost complete reduction (95 %) observed when using monoliths agglomerated with 7 nm AuNPs. (author)

  20. The chemistry of amine radical cations produced by visible light photoredox catalysis

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2013-10-01

    Full Text Available Amine radical cations are highly useful reactive intermediates in amine synthesis. They have displayed several modes of reactivity leading to some highly sought-after synthetic intermediates including iminium ions, α-amino radicals, and distonic ions. One appealing method to access amine radical cations is through one-electron oxidation of the corresponding amines under visible light photoredox conditions. This approach and subsequent chemistries are emerging as a powerful tool in amine synthesis. This article reviews synthetic applications of amine radical cations produced by visible light photocatalysis.

  1. Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo.

    Science.gov (United States)

    Alexander-Bryant, Angela A; Zhang, Haiwen; Attaway, Christopher C; Pugh, William; Eggart, Laurence; Sansevere, Robert M; Andino, Lourdes M; Dinh, Lu; Cantini, Liliana P; Jakymiw, Andrew

    2017-09-01

    Despite significant advances in cancer treatment, the prognosis for oral cancer remains poor in comparison to other cancer types, including breast, skin, and prostate. As a result, more effective therapeutic modalities are needed for the treatment of oral cancer. Consequently, in the present study, we examined the feasibility of using a dual peptide carrier approach, combining an epidermal growth factor receptor (EGFR)-targeting peptide with an endosome-disruptive peptide, to mediate targeted delivery of small interfering RNAs (siRNAs) into EGFR-overexpressing oral cancer cells and induce silencing of the targeted oncogene, cancerous inhibitor of protein phosphatase 2A (CIP2A). Fluorescence microscopy, real-time PCR, Western blot analysis, and in vivo bioimaging of mice containing orthotopic xenograft tumors were used to examine the ability of the dual peptide carrier to mediate specific delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells/tissues. Co-complexation of the EGFR-targeting peptide, GE11R9, with the endosome-disruptive 599 peptide facilitated the specific uptake of siRNAs into oral cancer cells overexpressing EGFR in vitro with optimal gene silencing observed at a 60:30:1 (GE11R9:599:siRNA) molar ratio. Furthermore, when administered systemically to mice bearing xenograft oral tumors, this dual peptide complex mediated increased targeted delivery of siRNAs into tumor tissues in comparison to the 599 peptide alone and significantly enhanced CIP2A silencing. Herein we provide the first report demonstrating the clinical potential of a dual peptide strategy for siRNA-based therapeutics by synergistically mediating the effective targeting and delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mesoporous amine-bridged polysilsesquioxane for CO2 capture

    KAUST Repository

    Qi, Genggeng; Fu, Liling; Duan, Xiaonan; Choi, Brian Hyun; Abraham, Michael; Giannelis, Emmanuel P.

    2011-01-01

    A novel class of amine-supported sorbents based on amine-bridged mesoporous polysilsesquioxane was developed via a simple one-pot sol-gel process. The new sorbent allows the incorporation of a large amount of active groups without sacrificing

  3. Enantioselective catalytic syntheses of alpha-branched chiral amines

    DEFF Research Database (Denmark)

    Brase, S.; Baumann, T.; Dahmen, S.

    2007-01-01

    Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials.......Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials....

  4. Novel targeted therapy for neuroblastoma: silencing the MXD3 gene using siRNA.

    Science.gov (United States)

    Duong, Connie; Yoshida, Sakiko; Chen, Cathy; Barisone, Gustavo; Diaz, Elva; Li, Yueju; Beckett, Laurel; Chung, Jong; Antony, Reuben; Nolta, Jan; Nitin, Nitin; Satake, Noriko

    2017-09-01

    BackgroundNeuroblastoma is the second most common extracranial cancer in children. Current therapies for neuroblastoma, which use a combination of chemotherapy drugs, have limitations for high-risk subtypes and can cause significant long-term adverse effects in young patients. Therefore, a new therapy is needed. In this study, we investigated the transcription factor MXD3 as a potential therapeutic target in neuroblastoma.MethodsMXD3 expression was analyzed in five neuroblastoma cell lines by immunocytochemistry and quantitative real-time reverse transcription PCR, and in 18 primary patient tumor samples by immunohistochemistry. We developed nanocomplexes using siRNA and superparamagnetic iron oxide nanoparticles to target MXD3 in neuroblastoma cell lines in vitro as a single-agent therapeutic and in combination with doxorubicin, vincristine, cisplatin, or maphosphamide-common drugs used in current neuroblastoma treatment.ResultsMXD3 was highly expressed in neuroblastoma cell lines and in patient tumors that had high-risk features. Neuroblastoma cells treated in vitro with the MXD3 siRNA nanocomplexes showed MXD3 protein knockdown and resulted in cell apoptosis. Furthermore, on combining MXD3 siRNA nanocomplexes with each of the four drugs, all showed additive efficacy.ConclusionThese results indicate that MXD3 is a potential new target and that the use of MXD3 siRNA nanocomplexes is a novel therapeutic approach for neuroblastoma.

  5. Effects of dietary amines on the gut and its vasculature.

    Science.gov (United States)

    Broadley, Kenneth J; Akhtar Anwar, M; Herbert, Amy A; Fehler, Martina; Jones, Elen M; Davies, Wyn E; Kidd, Emma J; Ford, William R

    2009-06-01

    Trace amines, including tyramine and beta-phenylethylamine (beta-PEA), are constituents of many foods including chocolate, cheeses and wines and are generated by so-called 'friendly' bacteria such as Lactobacillus, Lactococcus and Enterococcus species, which are found in probiotics. We therefore examined whether these dietary amines could exert pharmacological effects on the gut and its vasculature. In the present study we examined the effects of tyramine and beta-PEA on the contractile activity of guinea-pig and rat ileum and upon the isolated mesenteric vasculature and other blood vessels. Traditionally, these amines are regarded as sympathomimetic amines, exerting effects through the release of noradrenaline from sympathetic nerve endings, which should relax the gut. A secondary aim was therefore to confirm this mechanism of action. However, contractile effects were observed in the gut and these were independent of noradrenaline, acetylcholine, histamine and serotonin receptors. They were therefore probably due to the recently described trace amine-associated receptors. These amines relaxed the mesenteric vasculature. In contrast, the aorta and coronary arteries were constricted, a response that was also independent of a sympathomimetic action. From these results, we propose that after ingestion, trace amines could stimulate the gut and improve intestinal blood flow. Restriction of blood flow elsewhere diverts blood to the gut to aid digestion. Thus, trace amines in the diet may promote the digestive process through stimulation of the gut and improved gastrointestinal circulation.

  6. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain.

    Science.gov (United States)

    Burchett, Scott A; Hicks, T Philip

    2006-08-01

    The trace amines are a structurally related group of amines and their isomers synthesized in mammalian brain and peripheral nervous tissues. They are closely associated metabolically with the dopamine, noradrenaline and serotonin neurotransmitter systems in mammalian brain. Like dopamine, noradrenaline and serotonin the trace amines have been implicated in a vast array of human disorders of affect and cognition. The trace amines are unique as they are present in trace concentrations, exhibit high rates of metabolism and are distributed heterogeneously in mammalian brain. While some are synthesized in their parent amine neurotransmitter systems, there is also evidence to suggest other trace amines may comprise their own independent neurotransmitter systems. A substantial body of evidence suggests that the trace amines may play very significant roles in the coordination of biogenic amine-based synaptic physiology. At high concentrations, they have well-characterized presynaptic "amphetamine-like" effects on catecholamine and indolamine release, reuptake and biosynthesis; at lower concentrations, they possess postsynaptic modulatory effects that potentiate the activity of other neurotransmitters, particularly dopamine and serotonin. The trace amines also possess electrophysiological effects that are in opposition to these neurotransmitters, indicating to some researchers the existence of receptors specific for the trace amines. While binding sites or receptors for a few of the trace amines have been advanced, the absence of cloned receptor protein has impeded significant development of their detailed mechanistic roles in the coordination of catecholamine and indolamine synaptic physiology. The recent discovery and characterization of a family of mammalian G protein-coupled receptors responsive to trace amines such as beta-phenylethylamine, tyramine, and octopamine, including socially ingested psychotropic drugs such as amphetamine, 3,4-methylenedioxymethamphetamine, N

  7. Carbon Dioxide-Mediated C(sp3)-H Arylation of Amine Substrates.

    Science.gov (United States)

    Kapoor, Mohit; Liu, Daniel; Young, Michael C

    2018-05-25

    Elaborating amines via C-H functionalization has been an important area of research over the past decade but has generally relied on an added directing group or sterically hindered amine approach. Since free-amine-directed C(sp 3 )-H activation is still primarily limited to cyclization reactions and to improve the sustainability and reaction scope of amine-based C-H activation, we present a strategy using CO 2 in the form of dry ice that facilitates intermolecular C-H arylation. This methodology has been used to enable an operationally simple procedure whereby 1° and 2° aliphatic amines can be arylated selectively at their γ-C-H positions. In addition to potentially serving as a directing group, CO 2 has also been demonstrated to curtail the oxidation of sensitive amine substrates.

  8. Decomposition of some amines and amino acids in steam generator environments

    International Nuclear Information System (INIS)

    Jayaweera, P.; Hettiarachchi, S.; Millett, P.J.

    1994-01-01

    Hydrothermal decomposition rate constants and high temperature pH values of some selected high-molecular weight amines and amino acids were measured under simulated steam generator conditions. These amines and amino acids were evaluated as potential crevice buffering agents for steam generator applications in pressurized water reactors. The study showed that, although the high molecular weight amines undergo hydrothermal decomposition, they have a better buffer capacity than their low molecular weight counterparts at 290 C. The amines provide effective crevice buffering by increasing the pH of the simulated crevice solution by as much as 2.84 to 4.24 units. However, volatility data for the amines and amino acids are needed before in-plant testing to ensure that amines can concentrate sufficiently in steam generator crevices to provide effective buffering

  9. Uranium diphosphonates templated by interlayer organic amines

    International Nuclear Information System (INIS)

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Albrecht-Schmitt, Thomas E.; Ewing, Rodney C.

    2013-01-01

    The hydrothermal treatment of uranium trioxide and methylenediphosphonic acid with a variety of amines (2,2-dipyridyl, triethylenediamine, ethylenediamine, and 1,10-phenanthroline) at 200 °C results in the crystallization of a series of layered uranium diphosphonate compounds, [C 10 H 9 N 2 ]{UO 2 (H 2 O)[CH 2 (PO 3 )(PO 3 H)]} (Ubip2), [C 6 H 14 N 2 ]{(UO 2 ) 2 [CH 2 (PO 3 )(PO 3 H)] 2 ·2H 2 O} (UDAB), [C 2 H 10 N 2 ] 2 {(UO 2 ) 2 (H 2 O) 2 [CH 2 (PO 3 ) 2 ] 2 ·0.5H 2 O} (Uethyl), and [C 12 H 9 N 2 ]{UO 2 (H 2 O)[CH 2 (PO 3 )(PO 3 H)]} (Uphen). The crystal structures of the compounds are based on UO 7 units linked by methylenediphosphonate molecules to form two-dimensional anionic sheets in Ubip2 and UDAB, and one-dimensional anionic chains in Uethyl and Uphen, which are charge balanced by protonated amine molecules. Interaction of the amine molecules with phosphonate oxygens and water molecules results in extensive hydrogen bonding in the interlayer. These amine molecules serve both as structure-directing agents and charge-balancing cations for the anionic uranium phosphonate sheets and chains in the formation of the different coordination geometries and topologies of each structure. Reported herein are the syntheses, structural and spectroscopic characterization of the synthesized compounds. - Graphical abstract: The Raman spectra of the synthesized compounds and an illustration of the stacking of the layers with the diprotonated triethylenediamine molecules in [C 6 H 14 N 2 ]{(UO 2 ) 2 [CH 2 (PO 3 )(PO 3 H)] 2 ·2H 2 O} UDAB. Solvent water molecules are removed for clarity. The corresponding Raman spectra for the complexes synthesized is also shown. The structure is constructed from UO 7 pentagonal bipyramids (yellow), oxygen=red, phosphorus=magenta, carbon=black, and nitrogen=blue. Highlights: ► Organic amines act both as charge-balancing and as structure-directing agents. ► Extensive hydrogen bonding interactions with solvent water molecules and amines

  10. A modified KdV equation with self-consistent sources in non-uniform media and soliton dynamics

    International Nuclear Information System (INIS)

    Zhang Dajun; Bi Jinbo; Hao Honghai

    2006-01-01

    Two non-isospectral modified KdV equations with self-consistent sources are derived, which correspond to the time-dependent spectral parameter λ satisfying λ t = λ and λ t = λ 3 , respectively. Gauge transformation between the first non-isospectral equation (corresponding to λ t = λ) and its isospectral counterpart is given, from which exact solutions and conservation laws for the non-isospectral one are easily listed. Besides, solutions to the two non-isospectral modified KdV equations with self-consistent sources are derived by means of the Hirota method and the Wronskian technique, respectively. Non-isospectral dynamics and source effects, including one-soliton characteristics in non-uniform media, two-solitons scattering and special behaviours related to sources (for example, the 'ghost' solitons in the degenerate two-soliton case), are investigated analytically

  11. Aqueous amine solution characterization for post-combustion CO_2 capture process

    International Nuclear Information System (INIS)

    El Hadri, Nabil; Quang, Dang Viet; Goetheer, Earl L.V.; Abu Zahra, Mohammad R.M.

    2017-01-01

    Highlights: • The CO_2 solubility of 30 aqueous amine solutions was measured at 30 wt% and 313.15 K. • The CO_2 loading of HMD is the highest, and that of TEA is the lowest. • 2DMAE, 3DMA1P, 1DMA2P, MDEA, TMPAD and 2EAE have a low heat of absorption with CO_2. • 2EAE can be used as an alternative to MEA in the CO_2 capture process. - Abstract: This article presents a thermodynamic and kinetic characterization of CO_2 absorption by 30 aqueous amine solutions. A solvent screening setup (S.S.S.) was used to find the CO_2 loading (α) for 30 different aqueous amine solutions (30 wt%) at a pressure of 1 bar with feed gas containing 15 vol% CO_2 and 85 vol% N_2 at 313.15 K to provide reliable absorber parameters. The structures of various amines (linear, non-linear, polyamines, sterically hindered, etc.) were tested and the S.S.S. results showed that hexamethylenediamine (HMD) has higher CO_2 loading at 1.35 moles of CO_2/mole of amine, and triethanolamine (TEA) has the lowest at 0.39 mole of CO_2/mole of amine. The heat of absorption indicates that MDEA has the lowest and HMD has the highest at −52.51 kJ/mole of CO_2 and −98.39 kJ/mole of CO_2, respectively. The combined data for the CO_2 loading and the absorption heat generated 6 amines that have good properties for the post-combustion CO_2 capture process in comparison with that of MEA. These amines are made up of one secondary amine (2-ethylaminoethanol, 2EAE) and 5 tertiary amines (N-methyldiethanolamine, MDEA, 1-dimethylamino-2-propanol, 1DMA2P, 2-dimethylaminoethanol, 2DMAE, 3-dimethylamino-1-propanol, 3DMA1P and N,N,N′,N′-tetramethyl-1,3-propanediamine, TMPDA). In comparison with the amine reference MEA (ΔH = −85.13 kJ/mole of CO_2 and α = 0.58 mole CO_2/mole of amine), the 6 amines have heats of absorption that are between −68.95 kJ/mole of CO_2 and −52.51 kJ/mole of CO_2, and their CO_2 loading is between 0.52 and 1.16 mole of CO_2/mole amine. The third important parameter, namely the

  12. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed; Guillerm, Vincent; Weselinski, Lukasz Jan; Alkordi, Mohamed H.; Mohideen, Mohamed Infas Haja; Belmabkhout, Youssef

    2015-01-01

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  13. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed

    2015-05-28

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  14. Monomers for thermosetting and toughening epoxy resins. [glycidyl amine derivatives, propargyl-containing amines, and mutagenic testing of aromatic diamines

    Science.gov (United States)

    Pratt, J. R.

    1981-01-01

    Eight glycidyl amines were prepared by alkylating the parent amine with epichlorohydrin to form chlorohydrin, followed by cyclization with aqueous NaOH. Three of these compounds contained propargyl groups with postcuring studies. A procedure for quantitatively estimating the epoxy content of these glycidyl amines was employed for purity determination. Two diamond carbonates and several model propargly compounds were prepared. The synthesis of three new diamines, two which contain propargyloxy groups, and another with a sec-butyl group is in progress. These materials are at the dinitro stage ready for the final hydrogenation step. Four aromatic diamines were synthesized for mutagenic testing purposes. One of these compounds rapidly decomposes on exposure to air.

  15. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy.

    Science.gov (United States)

    Xie, Ying; Qiao, Hongzhi; Su, Zhigui; Chen, Minglei; Ping, Qineng; Sun, Minjie

    2014-09-01

    Lack of safe and effective delivery vehicle is the main obstacle for siRNA mediated cancer therapy. In this study, we synthesized a pH-sensitive polymer of PEG grafted carboxymethyl chitosan (PEG-CMCS) and developed anionic-charged hybrid nanoparticles of PEG-CMCS and calcium phosphate (CaP) for siRNA delivery through a single-step self-assembly method in aqueous condition. The formed nanoparticles with charge of around -8.25 mv and average diameter of 102.1 nm exhibited efficient siRNA encapsulation and enhanced colloidal and serum stability. The test in vitro indicated that the nanoparticles entered into HepG2 cells by endocytosis, and achieved endosomal escape of siRNA effectively due to the pH-responsive disassembly of nanoparticles and dissolution of CaP in the endosome. Reporter gene silencing assay showed that luciferase siRNA delivered by the anionic nanoparticles could achieve gene silencing efficacy comparable to that of conventional Lipofectamine 2000. Additionally, dramatic hTERT knockdown mediated by the anionic nanoparticles transfection induced significant apoptosis of HepG2 cells in vitro. After intravenous injection in tumor-bearing BALB/c nude mice, the nanoparticles specifically accumulated into tumor regions by EPR effect, leading to efficient and specific gene silencing sequentially. Most importantly, the nanoparticles carrying hTERT siRNA inhibited tumor growth significantly via silencing hTERT expression and inducing cells apoptosis in HepG2 tumor xenograft. Moreover, comprehensive safety studies of the nanoparticles confirmed their superior safety both in vitro and in vivo. We concluded that the PEG-CMCS/CaP hybrid anionic nanoparticles possessed potential as a safe and effective siRNA delivery system for anticancer therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Topical treatment of herpes simplex virus infection with enzymatically created siRNA swarm.

    Science.gov (United States)

    Paavilainen, Henrik; Lehtinen, Jenni; Romanovskaya, Alesia; Nygårdas, Michaela; Bamford, Dennis H; Poranen, Minna M; Hukkanen, Veijo

    2017-01-01

    Herpes simplex virus (HSV) is a common human pathogen. Despite current antivirals, it causes a significant medical burden. Drug resistant strains exist and they are especially prevalent in immunocompromised patients and in HSV eye infections. New treatment modalities are needed. BALB/c mice were corneally infected with HSV and subsequently treated with a swarm of enzymatically created, Dicer-substrate small interfering RNA (siRNA) molecules that targeted the HSV gene UL29. Two infection models were used, one in which the infection was predominantly peripheral and another in which it spread to the central nervous system. Mouse survival, as well as viral spread, load, latency and peripheral shedding, was studied. The anti-HSV-UL29 siRNA swarm alleviated HSV infection symptoms, inhibited viral shedding and replication and had a favourable effect on mouse survival. Treatment with anti-HSV-UL29 siRNA swarm reduced symptoms and viral spread in HSV infection of mice and also inhibited local viral replication in mouse corneas.

  17. Inhibition of Hepatitis B virus cccDNA replication by siRNA

    International Nuclear Information System (INIS)

    Li Guiqiu; Gu Hongxi; Li Di; Xu Weizhen

    2007-01-01

    The development of an effective therapy for Hepatitis B virus (HBV) infection is still a challenge. Progress in RNA interference (RNAi) has shed slight on developing a new anti-HBV strategy. Here, we present a series of experiments showing a significant reduction in HBV transcripts and replication intermediates in HepG2.2.15 cells by vector-based siRNA targeted nuclear localization signal (NLS) region. More importantly, we showed that siRNA1 markedly inhibited HBV covalently closed circular DNA (cccDNA) replication. Our results indicated that HBV NLS may serve as a novel RNAi target to combat HBV infection, which can enhance anti-HBV efficacy and overcome the drawbacks of current therapies

  18. Nitrile-functionalized tertiary amines as highly efficient and reversible SO2 absorbents

    International Nuclear Information System (INIS)

    Hong, Sung Yun; Kim, Heehwan; Kim, Young Jin; Jeong, Junkyo; Cheong, Minserk; Lee, Hyunjoo; Kim, Hoon Sik; Lee, Je Seung

    2014-01-01

    Highlights: • Nitrile-functionalized tertiary amines physically and reversibly absorb SO 2 . • Tertiary alkanolamines chemically and irreversibly absorb SO 2 through OH group. • SO 2 absorption modes were studied by spectroscopy and computational calculations. -- Abstract: Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO 2 absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption–desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO 2 through oxygen atom, forming an ionic compound with a covalently bound -OSO 2 − group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO 2 through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities

  19. Production of biogenic amines in "Salamini italiani alla cacciatora PDO".

    Science.gov (United States)

    Coı X0308 Sson, Jean Daniel; Cerutti, Caterina; Travaglia, Fabiano; Arlorio, Marco

    2004-06-01

    Various fermented and seasoned foods such as cheese, sauerkraut, wine, beer and meat products may contain biogenic amines. The aim of this paper was to describe the presence of some biogenic amines (histamine, tyramine, tryptamine, 2-phenylethylamine) in "Salamini italiani alla cacciatora PDO", a typical fermented-ripened dry sausage widely consumed in Italy. Total level of biogenic amines in commercial samples ranged from 71 to 586 mg kg(-1). The amine recovered in higher concentrations was tyramine (372 mg kg(-1)) followed by histamine (165 mg kg(-1)). The second aim of this work was the quality control of the production in order to determine the parameters influencing the presence of biogenic amines in ripened salami. Sausages sampled for analysis during production, manipulation and ripening showed the presence of tyramine (64.4 mg kg(-1)) only after 15 days of fermentation. All investigated biogenic amines were detected in "Salamini" after 21 days of fermentation. We suggest the control of biogenic as important tool to establish the better condition of preservation of "Salamini italiani alla cacciatore PDO" during their shelf-life.

  20. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    Science.gov (United States)

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  1. Deep Sequencing Insights in Therapeutic shRNA Processing and siRNA Target Cleavage Precision.

    Science.gov (United States)

    Denise, Hubert; Moschos, Sterghios A; Sidders, Benjamin; Burden, Frances; Perkins, Hannah; Carter, Nikki; Stroud, Tim; Kennedy, Michael; Fancy, Sally-Ann; Lapthorn, Cris; Lavender, Helen; Kinloch, Ross; Suhy, David; Corbau, Romu

    2014-02-04

    TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034-encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5' RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).Molecular Therapy-Nucleic Acids (2014) 3, e145; doi:10.1038/mtna.2013.73; published online 4 February 2014.

  2. Intraventricular Delivery of siRNA Nanoparticles to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Rishab Shyam

    2015-01-01

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disease currently lacking effective treatment. Efficient delivery of siRNA via nanoparticles may emerge as a viable therapeutic approach to treat AD and other central nervous system disorders. We report here the use of a linear polyethyleneimine (LPEI-g-polyethylene glycol (PEG copolymer-based micellar nanoparticle system to deliver siRNA targeting BACE1 and APP, two therapeutic targets of AD. Using LPEI-siRNA nanoparticles against either BACE1 or APP in cultured mouse neuroblastoma (N2a cells, we observe selective knockdown, respectively, of BACE1 or APP. The encapsulation of siRNA by LPEI-g-PEG carriers, with different grafting degrees of PEG, leads to the formation of micellar nanoparticles with distinct morphologies, including worm-like, rod-like, or spherical nanoparticles. By infusing these shaped nanoparticles into mouse lateral ventricles, we show that rod-shaped nanoparticles achieved the most efficient knockdown of BACE1 in the brain. Furthermore, such knockdown is evident in spinal cords of these treated mice. Taken together, our findings indicate that the shape of siRNA-encapsulated nanoparticles is an important determinant for their delivery and gene knockdown efficiency in the central nervous system.

  3. Chimeric peptide-mediated siRNA transduction to inhibit HIV-1 infection.

    Science.gov (United States)

    Bivalkar-Mehla, Shalmali; Mehla, Rajeev; Chauhan, Ashok

    2017-04-01

    Persistent human immunodeficiency virus 1 (HIV-1) infection provokes immune activation and depletes CD4 +  lymphocytes, leading to acquired immunodeficiency syndrome. Uninterrupted administration of combination antiretroviral therapy (cART) in HIV-infected patients suppresses viral replication to below the detectable level and partially restores the immune system. However, cART-unresponsive residual HIV-1 infection and elusive transcriptionally silent but reactivatable viral reservoirs maintain a permanent viral DNA blue print. The virus rebounds within a few weeks after interruption of suppressive therapy. Adjunct gene therapy to control viral replication by ribonucleic acid interference (RNAi) is a post-transcriptional gene silencing strategy that could suppress residual HIV-1 burden and overcome viral resistance. Small interfering ribonucleic acids (siRNAs) are efficient transcriptional inhibitors, but need delivery systems to reach inside target cells. We investigated the potential of chimeric peptide (FP-PTD) to deliver specific siRNAs to HIV-1-susceptible and permissive cells. Chimeric FP-PTD peptide was designed with an RNA binding domain (PTD) to bind siRNA and a cell fusion peptide domain (FP) to enter cells. FP-PTD-siRNA complex entered and inhibited HIV-1 replication in susceptible cells, and could be a candidate for in vivo testing.

  4. Desorption Kinetics and Mechanisms of CO2 on Amine-Based Mesoporous Silica Materials

    Directory of Open Access Journals (Sweden)

    Yang Teng

    2017-01-01

    Full Text Available Tetraethylenepentamine (TEPA-based mesoporous MCM-41 is used as the adsorbent to determine the CO2 desorption kinetics of amine-modified materials after adsorption. The experimental data of CO2 desorption as a function of time are derived by zero-length column at different temperatures (35, 50, and 70 °C and analyzed by Avrami’s fractional-order kinetic model. A new method is used to distinguish the physical desorption and chemical desorption performance of surface-modified mesoporous MCM-41. The activation energy Ea of CO2 physical desorption and chemical desorption calculated from Arrhenius equation are 15.86 kJ/mol and 57.15 kJ/mol, respectively. Furthermore, intraparticle diffusion and Boyd’s film models are selected to investigate the mechanism of CO2 desorption from MCM-41 and surface-modified MCM-41. For MCM-41, there are three rate-limiting steps during the desorption process. Film diffusion is more prominent for the CO2 desorption rates at low temperatures, and pore diffusion mainly governs the rate-limiting process under higher temperatures. Besides the surface reaction, the desorption process contains four rate-limiting steps on surface-modified MCM-41.

  5. Thermodynamic study of (heptane + amine) mixtures. III: Excess and partial molar volumes in mixtures with secondary, tertiary, and cyclic amines at 298.15 K

    International Nuclear Information System (INIS)

    Lepori, Luciano; Gianni, Paolo; Spanedda, Andrea; Matteoli, Enrico

    2011-01-01

    Graphical abstract: Highlights: → Excess volumes of (sec., tert., or cyclic amines + heptane) mixtures. → Excess volumes are positive for small size amines and decrease as the size increases. → Group contributions to predict the partial molar volumes of amines in heptane. → The void volume is larger for sec. and tert. than for linear amines in heptane. → The void volume is much smaller for cyclic than for linear amines in heptane. - Abstract: Excess molar volumes V E at 298.15 K were determined by means of a vibrating tube densimeter for binary mixtures of {heptane + open chain secondary (diethyl to dibutyl) and tertiary (triethyl to tripentyl) amines} as well as for cyclic imines (C 2 , C 3 , C 4 , C 6 , and C 7 ) and primary cycloalkylamines (C 5 , C 6 , C 7 , and C 12 ). The V E values were found positive for mixtures involving small size amines, with V E decreasing as the size increases. Negative V E 's were found for tributyl- and tripentylamine, heptamethylenimine, and cyclododecylamine. Mixtures of heptane with cycloheptylamine showed an s-shaped curve. Partial molar volumes V 0 of amines at infinite dilution in heptane were obtained from V E and compared with V 0 of hydrocarbons and other classes of organic compounds taken from literature. An additivity scheme, based on the intrinsic volume approach, was applied to estimate group (CH 3 , CH 2 , CH, C, NH 2 , NH, N, OH, O, CO, and COO) contributions to V 0 . These contributions, the effect of cyclization on V 0 , and the limiting slope of the apparent excess molar volumes were discussed in terms of solute-solvent and solute-solute interactions.

  6. Amine bridges grafted mesoporous silica, as a prolonged/controlled drug release system for the enhanced therapeutic effect of short life drugs

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Fozia, E-mail: foziaics@yahoo.com [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084–971 Campinas, SP (Brazil); Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Ahmed, Khalid; Airoldi, Claudio [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084–971 Campinas, SP (Brazil); Gaisford, Simon; Buanz, Asma [UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom); Rahim, Abdur; Muhammad, Nawshad [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Volpe, Pedro L.O. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084–971 Campinas, SP (Brazil)

    2017-03-01

    Hybrid mesoporous silica SBA-15, with surface incorporated cross-linked long hydrophobic organic bridges was synthesized using stepwise synthesis. The synthesized materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-rays diffraction, thermogravimetry and scanning and transmission electron microscopy. The functionalized material showed highly ordered mesoporous network with a surface area of 629.0 m{sup 2} g{sup −1}. The incorporation of long hydrophobic amine chains on silica surface resulted in high drug loading capacity (21% Mass/Mass) and prolonged release of ibuprofen up till 75.5 h. The preliminary investigations suggests that the synthesized materials could be proposed as controlled release devices to prolong the therapeutic effect of short life drugs such as ibuprofen to increase its efficacy and to reduce frequent dosage. - Highlights: • Silica SBA-15 was synthesized and modified with long hydrophobic amine linkers. • These materials were characterized using different techniques. • The modified material showed high drug loading capacity and control ibuprofen release in biological fluids.

  7. Amine bridges grafted mesoporous silica, as a prolonged/controlled drug release system for the enhanced therapeutic effect of short life drugs

    International Nuclear Information System (INIS)

    Rehman, Fozia; Ahmed, Khalid; Airoldi, Claudio; Gaisford, Simon; Buanz, Asma; Rahim, Abdur; Muhammad, Nawshad; Volpe, Pedro L.O.

    2017-01-01

    Hybrid mesoporous silica SBA-15, with surface incorporated cross-linked long hydrophobic organic bridges was synthesized using stepwise synthesis. The synthesized materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-rays diffraction, thermogravimetry and scanning and transmission electron microscopy. The functionalized material showed highly ordered mesoporous network with a surface area of 629.0 m 2 g −1 . The incorporation of long hydrophobic amine chains on silica surface resulted in high drug loading capacity (21% Mass/Mass) and prolonged release of ibuprofen up till 75.5 h. The preliminary investigations suggests that the synthesized materials could be proposed as controlled release devices to prolong the therapeutic effect of short life drugs such as ibuprofen to increase its efficacy and to reduce frequent dosage. - Highlights: • Silica SBA-15 was synthesized and modified with long hydrophobic amine linkers. • These materials were characterized using different techniques. • The modified material showed high drug loading capacity and control ibuprofen release in biological fluids.

  8. New insights into controlling tube-bundle fouling using alternative amines

    International Nuclear Information System (INIS)

    Turner, C.W.; Klimas, S.J.; Guzonas, D.A.; Frattini, P.L.; Fruzzetti, K.

    2002-01-01

    A volatile amine is added to the secondary heat-transport system of a nuclear power plant to reduce the rate of corrosion and corrosion product transport in the feedwater and to protect steam generator (SG) crevices and materials exposed to steam condensate. Volatility and base strength of the amine at the SG operating temperature are two important considerations when choosing the optimum amine (or mixture of amines) for corrosion control in the steam cycle. Atomic Energy of Canada Limited (AECL) and Electric Power Research Institute (EPRI) have been collaborating in an extensive investigation of the effectiveness of amines at controlling the rate of tube-bundle fouling under SG operating conditions. Tests have been performed using a radiotracing technique in a high-temperature fouling loop facility at Chalk River Laboratories operated by AECL. This investigation has provided new insights into the role played by the amine in determining the rate of tube-bundle fouling in the SG. These insights are being used by AECL and EPRI to develop criteria for the selection of an amine that has optimum properties for both corrosion control and deposit control in the secondary heat transport system. The investigation has found that the rate of tube-bundle fouling is strongly dependent upon the surface chemistry of the corrosion products. For example, the fouling rates of fully oxidized iron oxides, such as hematite and lepidocrocite, are at least an order of magnitude greater than the fouling rate of magnetite under identical operating conditions. The difference is related to the sign of the surface charge on the corrosion products at temperature. The choice of amine for pH-control also influences the fouling rate. This was originally thought to be a surface-charge effect as well, but recent tests have suggested that it is related to the role that the amine plays in governing the rate of deposit consolidation on the heat-transfer surface. Amines that promote a high rate of

  9. A novel method of modifying immune responses by vaccination with lipiodol-siRNA mixtures

    Directory of Open Access Journals (Sweden)

    Yijian Li

    2006-01-01

    Full Text Available Abstract The dendritic cell (DC possesses the ability to stimulate both T helper 1 (Th1 and Th2 responses depending on activation stimuli. Although it is known that chemically or genetically modified DC can be used therapeutically to steer immune responses towards either Th1 or Th2, cellular therapy with ex vivo manipulated DC is clinically difficult. Here we demonstrate a novel method of switching immune responses from Th1 to Th2 through in vivo immune modulation by administration of siRNA. We demonstrate that siRNA targeting of the IL-12p35 gene leads to a Th2 bias in vitro through an IL-10 dependent mechanism. In vivo administration of siRNA admixed with the oil-based contrast agent lipiodol in the presence of antigen and adjuvant induced a deviation in recall response to reduced production of IFN-γ and augmented IL-4 response using either KLH or ovalbumin. This simple method of in vivo modification of immune response possesses therapeutic potential in Th1-mediated diseases such as multiple sclerosis and autoimmune diabetes.

  10. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.

    Science.gov (United States)

    Liang, Guanfeng; Wang, Aiqin; Li, Lin; Xu, Gang; Yan, Ning; Zhang, Tao

    2017-03-06

    Transformation of biomass into valuable nitrogen-containing compounds is highly desired, yet limited success has been achieved. Here we report an efficient catalyst system, partially reduced Ru/ZrO 2 , which could catalyze the reductive amination of a variety of biomass-derived aldehydes/ketones in aqueous ammonia. With this approach, a spectrum of renewable primary amines was produced in good to excellent yields. Moreover, we have demonstrated a two-step approach for production of ethanolamine, a large-market nitrogen-containing chemical, from lignocellulose in an overall yield of 10 %. Extensive characterizations showed that Ru/ZrO 2 -containing multivalence Ru association species worked as a bifunctional catalyst, with RuO 2 as acidic promoter to facilitate the activation of carbonyl groups and Ru as active sites for the subsequent imine hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Extraction separation studies of uranium(VI) by amine oxides

    International Nuclear Information System (INIS)

    Ejaz, M.

    1975-01-01

    The extraction of uranium(VI) by two amine oxides, 4-(5-nonyl)pyridine oxide and trioctylamine oxide has been studied. The extraction behavior of these two N-oxides is compared. The dependence of extraction on the type of amine oxide and acid, nature of organic diluent, and amine oxide concentration has been investigated. The influence of the concentration of the metal and salting-out agents is described. The possible mechanism of extraction is discussed in the light of the results of extraction isotherms, loading radiodata, and log-log plots of amine oxide concentration vs distribution ratio. The separation factors for a number of metal ions are reported, and the separation of uranium from some fission elements has also been achieved

  12. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    Science.gov (United States)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  13. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements.

    Science.gov (United States)

    Lin, Yi-Feng; Chen, Chien-Hua; Tung, Kuo-Lun; Wei, Te-Yu; Lu, Shih-Yuan; Chang, Kai-Shiun

    2013-03-01

    The use of a membrane contactor combined with a hydrophobic porous membrane and an amine absorbent has attracted considerable attention for the capture of CO2 because of its extensive use, low operational costs, and low energy consumption. The hydrophobic porous membrane interface prevents the passage of the amine absorbent but allows the penetration of CO2 molecules that are captured by the amine absorbent. Herein, highly porous SiO2 aerogels modified with hydrophobic fluorocarbon functional groups (CF3 ) were successfully coated onto a macroporous Al2 O3 membrane; their performance in a membrane contactor for CO2 absorption is discussed. The SiO2 aerogel membrane modified with CF3 functional groups exhibits the highest CO2 absorption flux and can be continuously operated for CO2 absorption for extended periods of time. This study suggests that a SiO2 aerogel membrane modified with CF3 functional groups could potentially be used in a membrane contactor for CO2 absorption. Also, the resulting hydrophobic SiO2 aerogel membrane contactor is a promising technology for large-scale CO2 absorption during the post-combustion process in power plants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of donor orientation on ultrafast intermolecular electron transfer in coumarin-amine systems

    International Nuclear Information System (INIS)

    Singh, P. K.; Nath, S.; Bhasikuttan, A. C.; Kumbhakar, M.; Mohanty, J.; Sarkar, S. K.; Mukherjee, T.; Pal, H.

    2008-01-01

    Effect of donor amine orientation on nondiffusive ultrafast intermolecular electron transfer (ET) reactions in coumarin-amine systems has been investigated using femtosecond fluorescence upconversion measurements. Intermolecular ET from different aromatic and aliphatic amines used as donor solvents to the excited coumarin-151 (C151) acceptor occurs with ultrafast rates such that the shortest fluorescence lifetime component (τ 1 ) is the measure of the fastest ET rate (τ 1 =τ ET fast =(k ET fast ) -1 ), assigned to the C151-amine contact pairs in which amine donors are properly oriented with respect to C151 to maximize the acceptor-donor electronic coupling (V el ). It is interestingly observed that as the amine solvents are diluted by suitable diluents (either keeping solvent dielectric constant similar or with increasing dielectric constant), the τ 1 remains almost in the similar range as long as the amine dilution does not cross a certain critical limit, which in terms of the amine mole fraction (x A ) is found to be ∼0.4 for aromatic amines and ∼0.8 for aliphatic amines. Beyond these dilutions in the two respective cases of the amine systems, the τ 1 values are seen to increase very sharply. The large difference in the critical x A values involving aromatic and aliphatic amine donors has been rationalized in terms of the largely different orientational restrictions for the ET reactions as imposed by the aliphatic (n-type) and aromatic (π-type) nature of the amine donors [A. K. Satpati et al., J. Mol. Struct. 878, 84 (2008)]. Since the highest occupied molecular orbital (HOMO) of the n-type aliphatic amines is mostly centralized at the amino nitrogen, only some specific orientations of these amines with respect to the close-contact acceptor dye [also of π-character; A. K. Satpati et al., J. Mol. Struct. 878, 84 (2008) and E. W. Castner et al., J. Phys. Chem. A 104, 2869 (2000)] can give suitable V el and thus ultrafast ET reaction. In contrary, the

  15. Nitrile-functionalized tertiary amines as highly efficient and reversible SO2 absorbents.

    Science.gov (United States)

    Hong, Sung Yun; Kim, Heehwan; Kim, Young Jin; Jeong, Junkyo; Cheong, Minserk; Lee, Hyunjoo; Kim, Hoon Sik; Lee, Je Seung

    2014-01-15

    Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO2 absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption-desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO2 through oxygen atom, forming an ionic compound with a covalently bound OSO2(-) group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO2 through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Metal-Mediated Couplings of Primary Alcohols with Amines and Carbohydrates

    DEFF Research Database (Denmark)

    Maggi, Agnese; Madsen, Robert

    . The reaction is proposed to proceed by initial dehydrogenation of the alcohol to the aldehyde, which stays coordinated to the ruthenium centre. Then, nucleophilic attack of the amine affords the hemiaminal, which is released from ruthenium and converted into the imine. Project 2: Tin-mediated regioselective 6...... from alcohols and amines catalyzed by a ruthenium N-heterocyclic carbene complex. The successful method development and application of a convenient and direct (one step) synthesis of imines from alcohols and amines is described. The developed method provides quick andextended access to structurally...... and amines have been coupled in the presence of the catalyst to afford the corresponding imines in moderate to good yields. Optically pure amines gave the corresponding imines without any sign of racemization. Moreover, the one-pot diastereoselective addition of different organometallic reagents to the imine...

  17. Chromosomal localization of the human vesicular amine transporter genes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, D.; Finn, P.; Liu, Y.; Roghani, A.; Edwards, R.H.; Klisak, I.; Kojis, T.; Heinzmann, C.; Sparkes, R.S. (UCLA School of Medicine, Los Angeles, CA (United States))

    1993-12-01

    The physiologic and behavioral effects of pharmacologic agents that interfere with the transport of monoamine neurotransmitters into vesicles suggest that vesicular amine transport may contribute to human neuropsychiatric disease. To determine whether an alteration in the genes that encode vesicular amine transport contributes to the inherited component of these disorders, the authors have isolated a human cDNA for the brain transporter and localized the human vesciular amine transporter genes. The human brain synaptic vesicle amine transporter (SVAT) shows unexpected conservation with rat SVAT in the regions that diverge extensively between rat SVAT and the rat adrenal chromaffin granule amine transporter (CGAT). Using the cloned sequences with a panel of mouse-human hybrids and in situ hybridization for regional localization, the adrenal CGAT gene (or VAT1) maps to human chromosome 8p21.3 and the brain SVAT gene (or VAT2) maps to chromosome 10q25. Both of these sites occur very close to if not within previously described deletions that produce severe but viable phenotypes. 26 refs., 3 figs., 1 tab.

  18. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    Science.gov (United States)

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-02

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.

  19. Characterization of particulate amines

    International Nuclear Information System (INIS)

    Gundel, L.A.; Chang, S.G.; Clemenson, M.S.; Markowitz, S.S.; Novakov, T.

    1979-01-01

    The reduced nitrogen compounds associated with ambient particulate matter are chemically characterized by means of ESCA and proton activation analysis. Ambient particulate samples collected on silver filters in Berkeley, California were washed with water and organic solvents, and ESCA and proton activation analysis were performed in order to determine the composition of various nitrogen compounds and the total nitrogen content. It is found that 85% of the amines originally present in ambient particulate matter can be removed by water extraction, whereas the ammonium and nitrate are completely removed. An observed increase in ammonium ion in the extract, compared with its concentration in the original sample, coupled with the commensurate decrease in amine concentration, is attributed to the hydrolysis of amide groups, which may cause analytical methods based on extraction to yield erroneous results

  20. Enantioseparation of linear and cyclic chiral bis(phenethyl)amines by means of cyclodextrin-modified capillary electrophoresis.

    Science.gov (United States)

    Wedig, M; Thunhorst, M; Laug, S; Decker, M; Lehmann, J; Holzgrabe, U

    2001-09-01

    For two years drugs introduced to the market have had- to be enantiomerically pure. Rapid and cheap methods of high reproducibility must, therefore, be available for evaluation of enantiomeric purity. Within the framework of a larger project dealing with chiral recognition of phenethylamines by means of native and derivatized cyclodextrins it was intended to find capillary electrophoresis methods suitable for separation of the enantiomers of chiral bis(phenethyl)amines and their corresponding cyclic analogues, within 10 min, using small amounts of a chiral selector, to save time and money. Heptakis(2,3-O-diacetyl-6-sulfato)beta-CD was found to be the most promising candidate most often fulfilling these requirements.

  1. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors.

    Science.gov (United States)

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong; Li, He; Li, Yaogang; Duan, Yourong

    2016-01-19

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately -16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy.

  2. A genome-wide siRNA screen to identify modulators of insulin sensitivity and gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Ruojing Yang

    Full Text Available BACKGROUND: Hepatic insulin resistance impairs insulin's ability to suppress hepatic glucose production (HGP and contributes to the development of type 2 diabetes (T2D. Although the interests to discover novel genes that modulate insulin sensitivity and HGP are high, it remains challenging to have a human cell based system to identify novel genes. METHODOLOGY/PRINCIPAL FINDINGS: To identify genes that modulate hepatic insulin signaling and HGP, we generated a human cell line stably expressing beta-lactamase under the control of the human glucose-6-phosphatase (G6PC promoter (AH-G6PC cells. Both beta-lactamase activity and endogenous G6PC mRNA were increased in AH-G6PC cells by a combination of dexamethasone and pCPT-cAMP, and reduced by insulin. A 4-gene High-Throughput-Genomics assay was developed to concomitantly measure G6PC and pyruvate-dehydrogenase-kinase-4 (PDK4 mRNA levels. Using this assay, we screened an siRNA library containing pooled siRNA targeting 6650 druggable genes and identified 614 hits that lowered G6PC expression without increasing PDK4 mRNA levels. Pathway analysis indicated that siRNA-mediated knockdown (KD of genes known to positively or negatively affect insulin signaling increased or decreased G6PC mRNA expression, respectively, thus validating our screening platform. A subset of 270 primary screen hits was selected and 149 hits were confirmed by target gene KD by pooled siRNA and 7 single siRNA for each gene to reduce G6PC expression in 4-gene HTG assay. Subsequently, pooled siRNA KD of 113 genes decreased PEPCK and/or PGC1alpha mRNA expression thereby demonstrating their role in regulating key gluconeogenic genes in addition to G6PC. Last, KD of 61 of the above 113 genes potentiated insulin-stimulated Akt phosphorylation, suggesting that they suppress gluconeogenic gene by enhancing insulin signaling. CONCLUSIONS/SIGNIFICANCE: These results support the proposition that the proteins encoded by the genes identified in

  3. Amine-selective bioconjugation using arene diazonium salts.

    Science.gov (United States)

    Diethelm, Stefan; Schafroth, Michael A; Carreira, Erick M

    2014-08-01

    A novel bioconjugation strategy is presented that relies on the coupling of diazonium terephthalates with amines in proteins. The diazonium captures the amine while the vicinal ester locks it through cyclization, ensuring no reversibility. The reaction is highly efficient and proceeds under mild conditions and short reaction times. Densely functionalized, complex natural products were directly coupled to proteins using low concentrations of coupling partners.

  4. Facile synthesis of amine-functional reduced graphene oxides as modified quick, easy, cheap, effective, rugged and safe adsorbent for multi-pesticide residues analysis of tea.

    Science.gov (United States)

    Ma, Guicen; Zhang, Minglu; Zhu, Li; Chen, Hongping; Liu, Xin; Lu, Chengyin

    2018-01-05

    Amine-functional reduced graphene oxide (amine-rGO) with different carbon chain length amino groups were successfully synthesized. The graphene oxides (GO) reduction as well as amino grafting were achieved simultaneously in one step via a facile solvothermal synthetic strategy. The obtained materials were characterized by X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy to confirm the modification of GO with different amino groups. The adsorption performance of catechins and caffeine from tea acetonitrile extracts on different amine functional rGO samples were evaluated. It was found that tributylamine-functional rGO (tri-BuA-rGO) exhibited the highest adsorption ability for catechins and caffeine compared to GO and other amino group functional rGO samples. It was worth to note that the adsorption capacity of catechins on tri-BuA-rGO was 11 times higher than that of GO (203.7mgg -1 vs 18.7mgg -1 ). Electrostatic interaction, π-π interaction and surface hydrophilic-hydrophobic properties of tri-BuA-rGO played important roles in the adsorption of catechins as well as caffeine. The gravimetric analysis confirmed that the tri-BuA-rGO achieved the highest efficient cleanup preformance compared with traditional dispersive solid phase extraction (dSPE) adsorbents like primary-secondary amine (PSA), graphitized carbon black (GCB) or C18. A multi-pesticides analysis method based on tri-BuA-rGO is validated on 33 representative pesticides in tea using gas chromatography coupled to tandem mass spectrometry or high-performance liquid chromatography coupled with tandem mass spectrometry. The analysis method gave a high coefficient of determination (r 2 >0.99) for each pesticide and satisfactory recoveries in a range of 72.1-120.5%. Our study demonstrated that amine functional rGO as a new type of QuEChERS adsorbent is expected to be widely applied for analysis of pesticides at trace levels. Copyright © 2017

  5. A Modified Droop Control Method for Parallel-Connected Current Source Inverters

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2016-01-01

    In this paper, a novel control method was proposed for current source inverters under the grid-connected working mode. The control scheme is based on a modified droop control method, with an additional current reference signal that will be generated instead of the voltage reference. Hence......, there is only a current control loop with droop control in the whole control scheme without voltage control loop. So it is very suitable for grid-connected current source inverter which will simplify the design of the control scheme and combine the advantage of droop control. The parallel configuration...... is widely used to acquire high power demand, but the circulating current problem is a key issue that should be considered. In this paper, a simulation based on parallel current source inverters using the proposed control scheme is provided. Simulation results showed that a good circulating current...

  6. Vacuum-spark metal ion source based on a modified Marx generator

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.G.; MacGill, R.A.; Dickinson, M.R.

    1996-04-01

    The plasma generating parts of ion sources including their power supplies are usually floated to high potential (ion extraction voltage), thus requiring great insulation efforts and high costs for high-energy ion beams. A new concept for pulsed ion sources is presented in which a single power supply is used to simultaneously produce the plasma and high extractor voltage via a modified Marx generator. Proof-of-principle experiments have been performed with high-current spark discharges in vacuum where multiply charged ions are produced with this Marx-generator based ion source (Magis). Using Magis, it has been demonstrated that pulsed ion beams of very high energies can be obtained with relatively low voltage. For copper, ion of charge states up to 7+ have been found whose energy was 112 keV for a charging voltage of only 10 kV

  7. Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles.

    Science.gov (United States)

    Kim, Hyun Jin; Takemoto, Hiroyasu; Yi, Yu; Zheng, Meng; Maeda, Yoshinori; Chaya, Hiroyuki; Hayashi, Kotaro; Mi, Peng; Pittella, Frederico; Christie, R James; Toh, Kazuko; Matsumoto, Yu; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2014-09-23

    For systemic delivery of siRNA to solid tumors, a size-regulated and reversibly stabilized nanoarchitecture was constructed by using a 20 kDa siRNA-loaded unimer polyion complex (uPIC) and 20 nm gold nanoparticle (AuNP). The uPIC was selectively prepared by charge-matched polyionic complexation of a poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) copolymer bearing ∼40 positive charges (and thiol group at the ω-end) with a single siRNA bearing 40 negative charges. The thiol group at the ω-end of PEG-PLL further enabled successful conjugation of the uPICs onto the single AuNP through coordinate bonding, generating a nanoarchitecture (uPIC-AuNP) with a size of 38 nm and a narrow size distribution. In contrast, mixing thiolated PEG-PLLs and AuNPs produced a large aggregate in the absence of siRNA, suggesting the essential role of the preformed uPIC in the formation of nanoarchitecture. The smart uPIC-AuNPs were stable in serum-containing media and more resistant against heparin-induced counter polyanion exchange, compared to uPICs alone. On the other hand, the treatment of uPIC-AuNPs with an intracellular concentration of glutathione substantially compromised their stability and triggered the release of siRNA, demonstrating the reversible stability of these nanoarchitectures relative to thiol exchange and negatively charged AuNP surface. The uPIC-AuNPs efficiently delivered siRNA into cultured cancer cells, facilitating significant sequence-specific gene silencing without cytotoxicity. Systemically administered uPIC-AuNPs showed appreciably longer blood circulation time compared to controls, i.e., bare AuNPs and uPICs, indicating that the conjugation of uPICs onto AuNP was crucial for enhancing blood circulation time. Finally, the uPIC-AuNPs efficiently accumulated in a subcutaneously inoculated luciferase-expressing cervical cancer (HeLa-Luc) model and achieved significant luciferase gene silencing in the tumor tissue. These results demonstrate the strong

  8. STUDIES ON VINYL POLYMERIZATION WITH INITIATION SYSTEM CONTAINING AMINE DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Jingyi; FENG Xinde(S. T. Voong)

    1983-01-01

    Two main types of amine-containing initiation systems were studied in this work. In the case of MMA polymerization initiated by BPO-amine (DMT, DHET, DMA) redox systems, it was found that the polymerization rate and colour stability of the polymer for different amine systems were in the following order: DMT≈DHET>DMA. Accordingly, BPO-DMT and BPO-DHET are effective initiators. In the case of MEMA polymerization by amine (DMT, DHET, DMA) alone, it was found that the polymerization rate and the percentage of conversion for these different amine systems were in the following order: DMT≥DHET>DMA. The polymerization rate and the percentage of conversion also increased with the increase of DMT concentration. From the kinetic investigation the rate equation of Rp=K [DMT]1/2 [MEMA]3/2 was obtained, and the overall activation energy of polymerization was calculated to be 34.3 KJ/mol (8.2 Kcal/mol). Moreover, the polymerization of MEMA in the presence of DMT was strongly inhibited by hydroquinone, indicating the polymerization being free radical in nature. From these results, the mechanism of MEMA polymerization initiated by amine was proposed.

  9. Redox self-sufficient whole cell biotransformation for amination of alcohols.

    Science.gov (United States)

    Klatte, Stephanie; Wendisch, Volker F

    2014-10-15

    Whole cell biotransformation is an upcoming tool to replace common chemical routes for functionalization and modification of desired molecules. In the approach presented here the production of various non-natural (di)amines was realized using the designed whole cell biocatalyst Escherichia coli W3110/pTrc99A-ald-adh-ta with plasmid-borne overexpression of genes for an l-alanine dehydrogenase, an alcohol dehydrogenase and a transaminase. Cascading alcohol oxidation with l-alanine dependent transamination and l-alanine dehydrogenase allowed for redox self-sufficient conversion of alcohols to the corresponding amines. The supplementation of the corresponding (di)alcohol precursors as well as amino group donor l-alanine and ammonium chloride were sufficient for amination and redox cofactor recycling in a resting buffer system. The addition of the transaminase cofactor pyridoxal-phosphate and the alcohol dehydrogenase cofactor NAD(+) was not necessary to obtain complete conversion. Secondary and cyclic alcohols, for example, 2-hexanol and cyclohexanol were not aminated. However, efficient redox self-sufficient amination of aliphatic and aromatic (di)alcohols in vivo was achieved with 1-hexanol, 1,10-decanediol and benzylalcohol being aminated best. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Le [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Zeng, Zhong [Safety Environment Quality Surveillance and Inspection Research Institute of CNPC Chuanqing Drilling & Exploration Corporation, Chengdu 618300 (China); Zou, Huawei, E-mail: hwzou@163.com [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Liang, Mei, E-mail: liangmeiww@163.com [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China)

    2015-08-20

    Highlights: • Functional graphite oxide with amine-rich surface was prepared and characterized. • Kinetic parameters were calculated by Kissinger method and autocatalytic model. • The incorporation of GO and DGO brings in an effect of inhibition on curing. • The inhibition effect weakens for its good compatibility and catalytic effect of DGO. - Abstract: Functional graphite oxide (DGO) with amine-rich surface was successfully prepared through the amidation reaction and characterized by X-ray diffraction analyses (XRD), Fourier transform infrared spectra (FTIR) and Raman spectra. The effects of functional graphite oxide on the curing kinetics of epoxy (EP) were investigated by means of differential scanning calorimetry (DSC). The curing kinetic parameters of EP, EP/graphite oxide (GO) and EP/functional graphite oxide were obtained. There was not much difference in total heat of reaction ΔH and peak temperature T{sub p} with the incorporation of GO or DGO. However, the activation energy, E{sub a}, and the overall order of reaction m + n were enhanced. Comprehensive kinetic analyses indicated that the incorporation of GO sheets brought in an effect of inhibition on curing process. While the inhibition effect weaken when the GO is modified with amine-rich surface. The possible curing mechanism and reaction pathways were proposed to provide a reasonable explanation.

  11. Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface

    International Nuclear Information System (INIS)

    Li, Le; Zeng, Zhong; Zou, Huawei; Liang, Mei

    2015-01-01

    Highlights: • Functional graphite oxide with amine-rich surface was prepared and characterized. • Kinetic parameters were calculated by Kissinger method and autocatalytic model. • The incorporation of GO and DGO brings in an effect of inhibition on curing. • The inhibition effect weakens for its good compatibility and catalytic effect of DGO. - Abstract: Functional graphite oxide (DGO) with amine-rich surface was successfully prepared through the amidation reaction and characterized by X-ray diffraction analyses (XRD), Fourier transform infrared spectra (FTIR) and Raman spectra. The effects of functional graphite oxide on the curing kinetics of epoxy (EP) were investigated by means of differential scanning calorimetry (DSC). The curing kinetic parameters of EP, EP/graphite oxide (GO) and EP/functional graphite oxide were obtained. There was not much difference in total heat of reaction ΔH and peak temperature T p with the incorporation of GO or DGO. However, the activation energy, E a , and the overall order of reaction m + n were enhanced. Comprehensive kinetic analyses indicated that the incorporation of GO sheets brought in an effect of inhibition on curing process. While the inhibition effect weaken when the GO is modified with amine-rich surface. The possible curing mechanism and reaction pathways were proposed to provide a reasonable explanation

  12. Layer-by-layer nanoparticles as an efficient siRNA delivery vehicle for SPARC silencing.

    Science.gov (United States)

    Tan, Yang Fei; Mundargi, Raghavendra C; Chen, Min Hui Averil; Lessig, Jacqueline; Neu, Björn; Venkatraman, Subbu S; Wong, Tina T

    2014-05-14

    Efficient and safe delivery systems for siRNA therapeutics remain a challenge. Elevated secreted protein, acidic, and rich in cysteine (SPARC) protein expression is associated with tissue scarring and fibrosis. Here we investigate the feasibility of encapsulating SPARC-siRNA in the bilayers of layer-by-layer (LbL) nanoparticles (NPs) with poly(L-arginine) (ARG) and dextran (DXS) as polyelectrolytes. Cellular binding and uptake of LbL NPs as well as siRNA delivery were studied in FibroGRO cells. siGLO-siRNA and SPARC-siRNA were efficiently coated onto hydroxyapatite nanoparticles. The multilayered NPs were characterized with regard to particle size, zeta potential and surface morphology using dynamic light scattering and transmission electron microscopy. The SPARC-gene silencing and mRNA levels were analyzed using ChemiDOC western blot technique and RT-PCR. The multilayer SPARC-siRNA incorporated nanoparticles are about 200 nm in diameter and are efficiently internalized into FibroGRO cells. Their intracellular fate was also followed by tagging with suitable reporter siRNA as well as with lysotracker dye; confocal microscopy clearly indicates endosomal escape of the particles. Significant (60%) SPARC-gene knock down was achieved by using 0.4 pmole siRNA/μg of LbL NPs in FibroGRO cells and the relative expression of SPARC mRNA reduced significantly (60%) against untreated cells. The cytotoxicity as evaluated by xCelligence real-time cell proliferation and MTT cell assay, indicated that the SPARC-siRNA-loaded LbL NPs are non-toxic. In conclusion, the LbL NP system described provides a promising, safe and efficient delivery platform as a non-viral vector for siRNA delivery that uses biopolymers to enhance the gene knock down efficiency for the development of siRNA therapeutics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Systems of cerium(3) nitrate-dimethyl amine nitrate-water and cerium(3) nitrate-dimethyl amine nitrate-water

    International Nuclear Information System (INIS)

    Mininkov, N.E.; Zhuravlev, E.F.

    1976-01-01

    Solubility of solid phases in the systems cerium(3)nitrate-water-dimethyl amine nitrate and cerium(3)nitrate-water-dimethyl amine nitrate has been st ed by the method of isothermal sections at 25 and 50 deo. C. It has been shown that one anhydrous compound is formed in each system with a ratio of cerium(3) nitrate to amine nitrate 1:5. The compounds formed in the systems have been separated from the corresponding solutions and studied by microcrystalloscopic, X-ray phase, thermal and infrared spectroscopic methods. On the basis of spectroscopic studies the following formula has been assigned to the compound: [(CH 3 ) 2 NH 2 + ] 5 x[Ce(NO 3 ) 8 ]. The thermal analysis of the compound has shown that its melting point is 106 deg C. The solubility isotherms in the system Ce(NO 3 ) 3 -H 2 O-(C 2 H 5 ) 2 NHxHNO 3 consist of three branches which intersect in two eutonic points

  14. Extraction of some acids using aliphatic amines

    International Nuclear Information System (INIS)

    Matutano, L.

    1964-06-01

    Hydrochloric, nitric, sulphuric, perchloric, phosphoric, acetic and formic acids in aqueous solution (0.05 to 10 M) are extracted by amberlite LA2 and trilaurylamine in solution, 5 per cent by volume, in kerosene and xylene respectively. The extraction process consists of: neutralization of the amine salt; a 'molecular extraction', i.e. an extraction using an excess of acid with respect to the stoichiometry of the amine salt. According to the behaviour of the acid during the extraction, three groups may be distinguished: completely dissociated acids, carboxylic acids, phosphoric acid. This classification is also valid for the extraction of the water which occurs simultaneously with that of the acid. An extraction mechanism is put forward for formic acid and the formation constant of its amine salt is calculated. (author) [fr

  15. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  16. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi.

    Directory of Open Access Journals (Sweden)

    Yusuke Ohnishi

    Full Text Available Allele-specific gene silencing by RNA interference (RNAi is therapeutically useful for specifically inhibiting the expression of disease-associated alleles without suppressing the expression of corresponding wild-type alleles. To realize such allele-specific RNAi (ASP-RNAi, the design and assessment of small interfering RNA (siRNA duplexes conferring ASP-RNAi is vital; however, it is also difficult. In a previous study, we developed an assay system to assess ASP-RNAi with mutant and wild-type reporter alleles encoding the Photinus and Renilla luciferase genes. In line with experiments using the system, we realized that it is necessary and important to enhance allele discrimination between mutant and corresponding wild-type alleles. Here, we describe the improvement of ASP-RNAi against mutant alleles carrying single nucleotide variations by introducing base substitutions into siRNA sequences, where original variations are present in the central position. Artificially mismatched siRNAs or short-hairpin RNAs (shRNAs against mutant alleles of the human Prion Protein (PRNP gene, which appear to be associated with susceptibility to prion diseases, were examined using this assessment system. The data indicates that introduction of a one-base mismatch into the siRNAs and shRNAs was able to enhance discrimination between the mutant and wild-type alleles. Interestingly, the introduced mismatches that conferred marked improvement in ASP-RNAi, appeared to be largely present in the guide siRNA elements, corresponding to the 'seed region' of microRNAs. Due to the essential role of the 'seed region' of microRNAs in their association with target RNAs, it is conceivable that disruption of the base-pairing interactions in the corresponding seed region, as well as the central position (involved in cleavage of target RNAs, of guide siRNA elements could influence allele discrimination. In addition, we also suggest that nucleotide mismatches at the 3'-ends of sense

  17. Decomposition of formic acid over silica encapsulated and amine functionalised gold nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Kunov-Kruse, Andreas Jonas; Kegnæs, Søren

    2017-01-01

    Formic acid has recently attracted considerable attention as a safe and convenient source of hydrogen for sustainable chemical synthesis and renewable energy storage. Here, we show that silica encapsulated and amine functionalised gold nanoparticles are highly active catalysts for the production...... of hydrogen by vapour phase decomposition of formic acid. The core-shell catalysts are prepared in a reverse micelle system that makes it possible to control the size of the Au nanoparticles and the thickness of the SiO2 shells, which has a large impact on the catalytic activity. The smallest gold...... nanoparticles are 2.2 ± 0.3 nm in diameter and have a turnover frequency (TOF) of up to 958 h−1 at a temperature of 130 °C. Based on detailed in situ ATR-FTIR studies and results from kinetic isotope labelling experiments we propose that the active site is a low-coordinated and amine functionalised Au atom...

  18. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    Science.gov (United States)

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enrichment of intersubtype HIV-1 recombinants in a dual infection system using HIV-1 strain-specific siRNAs

    Science.gov (United States)

    2011-01-01

    Background Intersubtype HIV-1 recombinants in the form of unique or stable circulating recombinants forms (CRFs) are responsible for over 20% of infections in the worldwide epidemic. Mechanisms controlling the generation, selection, and transmission of these intersubtype HIV-1 recombinants still require further investigation. All intersubtype HIV-1 recombinants are generated and evolve from initial dual infections, but are difficult to identify in the human population. In vitro studies provide the most practical system to study mechanisms, but the recombination rates are usually very low in dual infections with primary HIV-1 isolates. This study describes the use of HIV-1 isolate-specific siRNAs to enrich intersubtype HIV-1 recombinants and inhibit the parental HIV-1 isolates from a dual infection. Results Following a dual infection with subtype A and D primary HIV-1 isolates and two rounds of siRNA treatment, nearly 100% of replicative virus was resistant to a siRNA specific for an upstream target sequence in the subtype A envelope (env) gene as well as a siRNA specific for a downstream target sequence in the subtype D env gene. Only 20% (10/50) of the replicating virus had nucleotide substitutions in the siRNA-target sequence whereas the remaining 78% (39/50) harbored a recombination breakpoint that removed both siRNA target sequences, and rendered the intersubtype D/A recombinant virus resistant to the dual siRNA treatment. Since siRNAs target the newly transcribed HIV-1 mRNA, the siRNAs only enrich intersubtype env recombinants and do not influence the recombination process during reverse transcription. Using this system, a strong bias is selected for recombination breakpoints in the C2 region, whereas other HIV-1 env regions, most notably the hypervariable regions, were nearly devoid of intersubtype recombination breakpoints. Sequence conservation plays an important role in selecting for recombination breakpoints, but the lack of breakpoints in many conserved

  20. Investigation of chemical modifiers for phosphorus in a graphite furnace using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lepri, Fabio G.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Borges, Daniel L.G.; Welz, Bernhard; Heitmann, Uwe

    2006-01-01

    Phosphorus is not one of the elements that are typically determined by atomic absorption spectrometry, but this technique nevertheless offers several advantages that make it attractive, such as the relatively great freedom from interferences. As the main resonance lines for phosphorus are in the vacuum-ultraviolet, inaccessible by conventional atomic absorption spectrometry equipment, L'vov and Khartsyzov proposed to use the non-resonance doublet at 213.5 / 213.6 nm. Later it turned out that with conventional equipment it is necessary to use a chemical modifier in order to get reasonable sensitivity, and lanthanum was the first one suggested for that purpose. In the following years more than 30 modifiers have been proposed for the determination of this element, and there is no consensus about the best one. In this work high-resolution continuum source atomic absorption spectrometry has been used to investigate the determination of phosphorus without a modifier and with the addition of selected modifiers of very different nature, including the originally recommended lanthanum modifier, several palladium-based modifiers and sodium fluoride. As high-resolution continuum source atomic absorption spectrometry is revealing the spectral environment of the analytical line at high resolution, it became obvious that without the addition of a modifier essentially no atomic phosphorus is formed, even at 2700 deg. C . The absorption measured with line source atomic absorption spectrometry in this case is due to the PO molecule, the spectrum of which is overlapping with the atomic line. Palladium, with or without the addition of calcium or ascorbic acid, was found to be the only modifier to produce almost exclusively atomic phosphorus. Lanthanum and particularly sodium fluoride produced a mixture of P and PO, depending on the atomization temperature. This fact can explain at least some of the discrepancies found in the literature and some of the phenomena observed in the

  1. Comparison of different cationized proteins as biomaterials for nanoparticle-based ocular gene delivery.

    Science.gov (United States)

    Zorzi, Giovanni K; Párraga, Jenny E; Seijo, Begoña; Sanchez, Alejandro

    2015-11-01

    Cationized polymers have been proposed as transfection agents for gene therapy. The present work aims to improve the understanding of the potential use of different cationized proteins (atelocollagen, albumin and gelatin) as nanoparticle components and to investigate the possibility of modulating the physicochemical properties of the resulting nanoparticle carriers by selecting specific protein characteristics in an attempt to improve current ocular gene-delivery approaches. The toxicity profiles, as well as internalization and transfection efficiency, of the developed nanoparticles can be modulated by modifying the molecular weight of the selected protein and the amine used for cationization. The most promising systems are nanoparticles based on intermediate molecular weight gelatin cationized with the endogenous amine spermine, which exhibit an adequate toxicological profile, as well as effective association and protection of pDNA or siRNA molecules, thereby resulting in higher transfection efficiency and gene silencing than the other studied formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Coal-fired Power Plants with Flexible Amine-based CCS and Co-located Wind Power: Environmental, Economic and Reliability Outcomes

    Science.gov (United States)

    Bandyopadhyay, Rubenka

    Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant's ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator. (Abstract shortened by ProQuest.).

  3. Organically modified clay removes oil from water

    International Nuclear Information System (INIS)

    Alther, G.R.

    1995-01-01

    When bentonite or other clays and zeolites are modified with quaternary amines, they become organophilic. Such modified bentonites are used to remove mechanically emulsified oil and grease, and other sparingly soluble organics. If the organoclay is granulated, it is placed into a liquid phase carbon filter vessel to remove FOG's and chlorinated hydrocarbons. In this application the clay is mixed with anthrazite to prevent early plugging of the filter by oil or grease droplets. In batch systems a powered organoclay is employed. Types of oil found in water can include fats, lubricants, cutting fluids, heavy hydrocarbons such as tars, grease, crude oil, diesel oils; and light hydrocarbons such as kerosene, jet fuel, and gasoline

  4. Catalyst for hydrogen-amine D exchange

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Johnson, R.E.

    1976-01-01

    A process is claimed for deuterium isotopic enrichment (suitable for use in heavy water production) by amine-hydrogen exchange in which the exchange catalyst comprises a mixture of alkyl amides of two metals selected from the group consisting of the alkali metals. Catalyst mixtures comprising at least one of the alkali amides of lithium and potassium are preferred. At least one of the following benefits are obtained: decreased hydride formation, decreased thermal decomposition of alkyl amide, increased catalyst solubility in the amine phase, and increased exchange efficiency. 11 claims

  5. Influence of amine structure on the post-cured photo-yellowing of novel amine diacrylate terminated ultraviolet and electron beam cured coatings

    International Nuclear Information System (INIS)

    Allen, N.S.; Lo, D.

    1990-01-01

    The post ultraviolet (UV) and electron beam (EB) cured photo-yellowing of nine novel amine terminated diacrylate monomers has been compared with that of standard commercial diethylamine diacrylate monomer using second order derivative UV absorption spectroscopy. Whilst all the UV cured monomers exhibited an initial rapid growth in UV absorption followed by a rapid photo-bleaching, the EB cured monomers exhibited a very slow growth in absorption followed by a plateau and subsequent slow photo-bleaching. In the former case the residual benzophenone photo-initiator is sensitising the photo-yellowing reaction and its subsequent photo-bleaching. Differences in the rates may be determined by the nature of the exciplex between the terminal amine groups and the benzophenone initiator. With regard to the nature of the amine structure all the simple alkylamines exhibit the greatest degree of photo-yellowing whilst hydroxyl containing amines are generally lower. In the former case methylene hydrogen atoms alpha to the nitrogen atom are important for abstraction. Dicyclohexylamine provides the most stable monomer toward photo-yellowing due to the stability of the alpha methylene hydrogen atoms and steric hindrance by the two bulky cyclohexane rings towards the formation of conjugated chromophores. For the EB cured monomers the degree of photo-yellowing increases with increasing alkyl chain length of the amine group due to the increased possibility of the formation of conjugated chromophores. (author)

  6. Structure and activity of Aspergillus nidulans copper amine oxidase

    DEFF Research Database (Denmark)

    McGrath, Aaron P; Mithieux, Suzanne M; Collyer, Charles A

    2011-01-01

    Aspergillus nidulans amine oxidase (ANAO) has the unusual ability among the family of copper and trihydroxyphenylalanine quinone-containing amine oxidases of being able to oxidize the amine side chains of lysine residues in large peptides and proteins. We show here that in common with the related...... enzyme from the yeast Pichia pastoris, ANAO can promote the cross-linking of tropoelastin and oxidize the lysine residues in α-casein proteins and tropoelastin. The crystal structure of ANAO, the first for a fungal enzyme in this family, has been determined to a resolution of 2.4 Å. The enzyme is a dimer...... with the archetypal fold of a copper-containing amine oxidase. The active site is the most open of any of those of the structurally characterized enzymes in the family and provides a ready explanation for its lysine oxidase-like activity....

  7. Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery.

    Science.gov (United States)

    Wada, Shun-Ichi; Takesada, Anna; Nagamura, Yurie; Sogabe, Eri; Ohki, Rieko; Hayashi, Junsuke; Urata, Hidehito

    2017-12-15

    The conjugation of Aib-containing amphipathic helical peptide with cyclo(-Arg-Gly-Asp-d-Phe-Cys-) (cRGDfC) at the C-terminus of the helix peptide (PI) has been reported to be useful for constructing a carrier for targeted siRNA delivery into cells. In order to explore structure-activity relationships for the development of potential carriers for siRNA delivery, we synthesized conjugates of Aib-containing amphipathic helical peptide with cRGDfC at the N-terminus (PII) and both the N- and C-termini (PIII) of the helical peptide. Furthermore, to examine the influence of PI helical chain length on siRNA delivery, truncated peptides containing 16 (PIV), 12 (PV), and 8 (PVI) amino acid residues at the N-terminus of the helical chain were synthesized. PII and PIII, as well as PI, could deliver anti-luciferase siRNA into cells to induce the knockdown of luciferase stably expressed in cells. In contrast, all of the truncated peptides were unlikely to transport siRNA into cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    International Nuclear Information System (INIS)

    Jiang Shan; Zhang Yong; Lim, Kian Meng; Sim, Eugene K W; Ye Lei

    2009-01-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF 4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  9. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    Science.gov (United States)

    Jiang, Shan; Zhang, Yong; Lim, Kian Meng; Sim, Eugene K. W.; Ye, Lei

    2009-04-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  10. EDTA modified glassy carbon electrode: Preparation and characterization

    International Nuclear Information System (INIS)

    Ustuendag, Zafer; Solak, Ali Osman

    2009-01-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){2-[bis(carboxymethyl)amino]-ethyl}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb 2+ ions was investigated if this electrode could be used as a metal sensor.

  11. Construction and Biological Evaluation of a Novel Integrin ανβ3-Specific Carrier for Targeted siRNA Delivery In Vitro

    Directory of Open Access Journals (Sweden)

    Xueqi Chen

    2017-02-01

    Full Text Available (1 Background: The great potential of RNA interference (RNAi-based gene therapy is premised on the effective delivery of small interfering RNAs (siRNAs to target tissues and cells. Hence, we aimed at developing and examining a novel integrin αvβ3-specific delivery carrier for targeted transfection of siRNA to malignant tumor cells; (2 Methods: Arginine-glycine-aspartate motif (RGD was adopted as a tissue target for specific recognition of integrin αvβ3. To enable siRNA binding, a chimeric peptide was synthesized by adding nonamer arginine residues (9R at the carboxy terminus of cyclic-RGD dimer, designated as c(RGD2-9R. The efficiency of 9R peptide transferring siRNA was biologically evaluated in vitro by flow cytometry, confocal microscopy, and Western blot; (3 Results: An optimal 10:1 molar ratio of c(RGD2-9R to siRNA was confirmed by the electrophoresis on agarose gels. Both the flow cytometry and confocal microscopy results testified that transfection of c(RGD2-9R as an siRNA delivery carrier was obviously higher than the naked-siRNA group. The results of Western blot demonstrated that these 9R peptides were able to transduce siRNA to HepG2 cells in vitro, resulting in efficient gene silencing; and (4 Conclusion: The chimeric peptide of c(RGD2-9R can be developed as an effective siRNA delivery carrier and shows potential as a new strategy for RNAi-based gene therapy.

  12. SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES. 2. QSAR DEVELOPMENT

    Science.gov (United States)

    The fate of aromatic amines in soils and sediments is dominated by irreversible binding through nucleophilic addition and oxidative radical coupling. Despite the common occurrence of the aromatic amine functional group in organic chemicals, the molecular properties useful for pr...

  13. Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization.

    Science.gov (United States)

    Clark, Joseph R; Feng, Kaibo; Sookezian, Anasheh; White, M Christina

    2018-06-01

    Reactions that directly install nitrogen into C-H bonds of complex molecules are significant because of their potential to change the chemical and biological properties of a given compound. Although selective intramolecular C-H amination reactions are known, achieving high levels of reactivity while maintaining excellent site selectivity and functional-group tolerance remains a challenge for intermolecular C-H amination. Here, we report a manganese perchlorophthalocyanine catalyst [MnIII(ClPc)] for intermolecular benzylic C-H amination of bioactive molecules and natural products that proceeds with unprecedented levels of reactivity and site selectivity. In the presence of a Brønsted or Lewis acid, the [MnIII(ClPc)]-catalysed C-H amination demonstrates unique tolerance for tertiary amine, pyridine and benzimidazole functionalities. Mechanistic studies suggest that C-H amination likely proceeds through an electrophilic metallonitrene intermediate via a stepwise pathway where C-H cleavage is the rate-determining step of the reaction. Collectively, these mechanistic features contrast with previous base-metal-catalysed C-H aminations and provide new opportunities for tunable selectivities.

  14. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    Science.gov (United States)

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  15. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  16. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2005-01-01

    Full Text Available Abstract Background RNA interference (RNAi mediated by small interfering RNAs (siRNAs has proved to be a highly effective gene silencing mechanism with great potential for HIV/AIDS gene therapy. Previous work with siRNAs against cellular coreceptors CXCR4 and CCR5 had shown that down regulation of these surface molecules could prevent HIV-1 entry and confer viral resistance. Since monospecific siRNAs targeting individual coreceptors are inadequate in protecting against both T cell tropic (X4 and monocyte tropic (R5 viral strains simultaneously, bispecific constructs with dual specificity are required. For effective long range therapy, the bispecific constructs need to be stably transduced into HIV-1 target cells via integrating viral vectors. Results To achieve this goal, lentiviral vectors incorporating both CXCR4 and CCR5 siRNAs of short hairpin design were constructed. The CXCR4 siRNA was driven by a U6 promoter whereas the CCR5 siRNA was driven by an H1 promoter. A CMV promoter driven EGFP reporter gene is also incorporated in the bispecific construct. High efficiency transduction into coreceptor expressing Magi and Ghost cell lines with a concomitant down regulation of respective coreceptors was achieved with lentiviral vectors. When the siRNA expressing transduced cells were challenged with X4 and R5 tropic HIV-1, they demonstrated marked viral resistance. HIV-1 resistance was also observed in bispecific lentiviral vector transduced primary PBMCs. Conclusions Both CXCR4 and CCR5 coreceptors could be simultaneously targeted for down regulation by a single combinatorial lentiviral vector incorporating respective anti-coreceptor siRNAs. Stable down regulation of both the coreceptors protects cells against infection by both X4 and R5 tropic HIV-1. Stable down regulation of cellular molecules that aid in HIV-1 infection will be an effective strategy for long range HIV gene therapy.

  17. Gene silencing of HPV16 E6/E7 induced by promoter-targeting siRNA in SiHa cells

    OpenAIRE

    Hong, D; Lu, W; Ye, F; Hu, Y; Xie, X

    2009-01-01

    Background: Recently, transcriptional gene silencing induced by small interfering RNA (siRNA) was found in mammalian and human cells. However, previous studies focused on endogenous genes. Methods: In this study, we designed siRNA targeting the promoter of human papillomavirus 16 E6/E7 and transfected it into the cervical cancer cell line, SiHa. E6 and E7 mRNA and protein expression were detected in cells treated by promoter-targeting siRNA. Futhermore, cellular growth, proliferation, apoptos...

  18. 2'-O-methyl-modified RNAs act as TLR7 antagonists.

    Science.gov (United States)

    Robbins, Marjorie; Judge, Adam; Liang, Lisa; McClintock, Kevin; Yaworski, Ed; MacLachlan, Ian

    2007-09-01

    RNA molecules such as single-stranded RNA (ssRNA) and small interfering RNA (siRNA) duplexes induce Toll-like receptor (TLR)-mediated immune stimulation after intracellular delivery. We have previously shown that selective incorporation of 2'-O-methyl (2'OMe) residues into siRNA abrogates cytokine production without reduction of gene silencing activity. Here we show that 2'OMe-modified RNA acts as a potent inhibitor of RNA-mediated cytokine induction in both human and murine systems. This activity does not require the direct incorporation of 2'OMe nucleotides into the immunostimulatory RNA or that the 2'OMe nucleotide-containing RNA be annealed as a complementary strand to form a duplex. Our results indicate that 2'OMe RNA acts as a potent antagonist of immunostimulatory RNA. We further show that 2'OMe RNA is able significantly to reduce both interferon-alpha (IFN-alpha) and interleukin-6 (IL-6) induction by the small-molecule TLR7 agonist loxoribine in human peripheral blood mononuclear cells (human PBMCs), in murine Flt3L dendritic cells (Flt3L DCs), and in vivo in mice. These results indicate that 2'OMe-modified RNA may have utility as an inhibitor of TLR7 with potential applications in the treatment of inflammatory and autoimmune diseases that involve TLR7-mediated immune stimulation.

  19. Dicationic and zwitterionic catalysts for the amine-initiated, immortal ring-opening polymerisation of rac-lactide: facile synthesis of amine-terminated, highly heterotactic PLA

    NARCIS (Netherlands)

    Clark, L.; Cushion, M.G.; Dyer, H.E.; Schwarz, A.D.; Duchateau, R.; Mountford, P.

    2010-01-01

    Dicationic, zwitterionic and conventional yttrium compounds act as catalysts for the primary or secondary amine-initiated immortal ROP of rac-lactide; amine-terminated, highly heterotactic poly(rac-lactides) with narrow polydispersities and well-controlled molecular weights are prepared in this

  20. Astramol polypropyleneimine dendrimers as Norrish Type II amine synergists

    NARCIS (Netherlands)

    Jansen, J.F.G.A.; Dias, A.A.; Hartwig, H.; Janssen, R.A.J.

    2000-01-01

    UV-curable coatings for various applications . In most of these applications they serve a dual role ie as initiator and as oxygen scavenger. Dimethylethanolamine is one of the more frequently employed aliphatic amines. However, this amine is a highly volatile . AstramolTM polypropyleneimine

  1. Thermal properties of wood reacted with a phosphorus pentoxide–amine system

    Science.gov (United States)

    Hong-Lin Lee; George C. Chen; Roger M. Rowell

    2004-01-01

    The objective of this research was to improve the fire-retardant properties of wood in one treatment using a phosphorus pentoxide–amine system. Phosphorus pentoxide and 16 amines including alkyl, halophenyl, and phenyl amines were compounded in N,N-dimethylformamide and the resulting solutions containing phosphoramides were reacted with wood. The characteristics of...

  2. Bioinspired organocatalytic aerobic C-H oxidation of amines with an ortho-quinone catalyst.

    Science.gov (United States)

    Qin, Yan; Zhang, Long; Lv, Jian; Luo, Sanzhong; Cheng, Jin-Pei

    2015-03-20

    A simple bioinspired ortho-quinone catalyst for the aerobic oxidative dehydrogenation of amines to imines is reported. Without any metal cocatalysts, the identified optimal ortho-quinone catalyst enables the oxidations of α-branched primary amines and cyclic secondary amines. Mechanistic studies have disclosed the origins of different performances of ortho-quinone vs para-quinone in biomimetic amine oxidations.

  3. Nitrile-functionalized tertiary amines as highly efficient and reversible SO{sub 2} absorbents

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yun; Kim, Heehwan; Kim, Young Jin; Jeong, Junkyo; Cheong, Minserk [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Lee, Hyunjoo [Clean Energy Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Hoon Sik, E-mail: khs2004@khu.ac.kr [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Lee, Je Seung, E-mail: leejs70@khu.ac.kr [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2014-01-15

    Highlights: • Nitrile-functionalized tertiary amines physically and reversibly absorb SO{sub 2}. • Tertiary alkanolamines chemically and irreversibly absorb SO{sub 2} through OH group. • SO{sub 2} absorption modes were studied by spectroscopy and computational calculations. -- Abstract: Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO{sub 2} absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption–desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO{sub 2} through oxygen atom, forming an ionic compound with a covalently bound -OSO{sub 2}{sup −} group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO{sub 2} through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities.

  4. Impact of thiol and amine functionalization on photoluminescence properties of ZnO films

    International Nuclear Information System (INIS)

    Jayalakshmi, G.; Saravanan, K.; Balasubramanian, T.

    2013-01-01

    In the present study, we have investigated surface functionalization of ZnO films with dodecanethiol (Thiol) and trioctylamine (amine) by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact angle (CA) and photoluminescence (PL) measurements. The chemical bondings of thiol and amine with ZnO have been confirmed via the formation of Zn–S and Zn–N bonds by XPS measurements. AFM measurements on ZnO films before and after surface functionalization with thiol and amine provide evidence for the successful functionalization of thiol and amine on ZnO surfaces without any island formation. The CA measurements on ZnO films before and after surface functionalization with thiol and amine show the hydrophobic nature. PL measurements of thiol and amine functionalized ZnO show enhancements of UV emission and quenching of visible emission. The enhanced UV emissions in thiol and amine functionalized ZnO films suggest that the surface defects such as oxygen vacancies are passivated by thiol and amine functionalization. -- Highlights: ► Surface functionalization is a new approach to reduce surface dependent non-radiative process. ► Oxygen vacancies are passivated on surface functionalization. ► Thiol and amine functionalized ZnO show enhancements of UV emission

  5. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles

    DEFF Research Database (Denmark)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien

    2015-01-01

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA) nano...... of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix.......Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA......) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X...

  6. Study on synthesis, application and mechanism of benzophenone/amine initiator

    International Nuclear Information System (INIS)

    Xiong Wei; Liu Jinshui; Wen Yinjun; Wan Qizhong; Zhou Xianyan; Xiao Hanling; Yang Jianwen

    1999-01-01

    Through Michael addition reaction of trimethylolpropane triacrylate (TMPTA) with diethylamine (DEA), a new kind of tertiary amine derivative was synthesized and its structure was identified by 'H-NMR. When used in combination with benzophenone, this amine presented excellent curing speed and could be a substitute for initiator Darocur R 1173, which is effective but expensive. If so, the cost of UV-curable coatings can descend apparently. The functioning mechanism of benzophenone/amine bimolecular initiator was studied

  7. Decreases in Casz1 mRNA by an siRNA Complex Do not Alter Blood Pressure in Mice.

    Science.gov (United States)

    Ji, Su-Min; Shin, Young-Bin; Park, So-Yon; Lee, Hyeon-Ju; Oh, Bermseok

    2012-03-01

    Recent genomewide association studies of large samples have identified genes that are associated with blood pressure. The Global Blood Pressure Genetics (Global BPgen) and Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) consortiums identified 14 loci that govern blood pressure on a genomewide significance level, one of which is CASZ1 confirmed in both Europeans and Asians. CASZ1 is a zinc finger transcription factor that controls apoptosis and cell fate and suppresses neuroblastoma tumor growth by reprogramming gene expression, like a tumor suppressor. To validate the function of CASZ1 in blood pressure, we decreased Casz1 mRNA levels in mice by siRNA. Casz1 siRNA reduced mRNA levels by 59% in a mouse cell line. A polyethylenimine-mixed siRNA complex was injected into mouse tail veins, reducing Casz1 mRNA expression to 45% in the kidney. However, blood pressure in the treated mice was unaffected, despite a 55% reduction in Casz1 mRNA levels in the kidney on multiple siRNA injections daily. Even though Casz1 siRNA-treated mice did not experience any significant change in blood pressure, our study demonstrates the value of in vivo siRNA injection in analyzing the function of candidate genes identified by genomewide association studies.

  8. A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction.

    Science.gov (United States)

    Qiu, Shibin; Lane, Terran

    2009-01-01

    The cell defense mechanism of RNA interference has applications in gene function analysis and promising potentials in human disease therapy. To effectively silence a target gene, it is desirable to select appropriate initiator siRNA molecules having satisfactory silencing capabilities. Computational prediction for silencing efficacy of siRNAs can assist this screening process before using them in biological experiments. String kernel functions, which operate directly on the string objects representing siRNAs and target mRNAs, have been applied to support vector regression for the prediction and improved accuracy over numerical kernels in multidimensional vector spaces constructed from descriptors of siRNA design rules. To fully utilize information provided by string and numerical data, we propose to unify the two in a kernel feature space by devising a multiple kernel regression framework where a linear combination of the kernels is used. We formulate the multiple kernel learning into a quadratically constrained quadratic programming (QCQP) problem, which although yields global optimal solution, is computationally demanding and requires a commercial solver package. We further propose three heuristics based on the principle of kernel-target alignment and predictive accuracy. Empirical results demonstrate that multiple kernel regression can improve accuracy, decrease model complexity by reducing the number of support vectors, and speed up computational performance dramatically. In addition, multiple kernel regression evaluates the importance of constituent kernels, which for the siRNA efficacy prediction problem, compares the relative significance of the design rules. Finally, we give insights into the multiple kernel regression mechanism and point out possible extensions.

  9. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice

    Science.gov (United States)

    Wei, Liya; Gu, Lianfeng; Song, Xianwei; Cui, Xiekui; Lu, Zhike; Zhou, Ming; Wang, Lulu; Hu, Fengyi; Zhai, Jixian; Meyers, Blake C.; Cao, Xiaofeng

    2014-01-01

    Transposable elements (TEs) and repetitive sequences make up over 35% of the rice (Oryza sativa) genome. The host regulates the activity of different TEs by different epigenetic mechanisms, including DNA methylation, histone H3K9 methylation, and histone H3K4 demethylation. TEs can also affect the expression of host genes. For example, miniature inverted repeat TEs (MITEs), dispersed high copy-number DNA TEs, can influence the expression of nearby genes. In plants, 24-nt small interfering RNAs (siRNAs) are mainly derived from repeats and TEs. However, the extent to which TEs, particularly MITEs associated with 24-nt siRNAs, affect gene expression remains elusive. Here, we show that the rice Dicer-like 3 homolog OsDCL3a is primarily responsible for 24-nt siRNA processing. Impairing OsDCL3a expression by RNA interference caused phenotypes affecting important agricultural traits; these phenotypes include dwarfism, larger flag leaf angle, and fewer secondary branches. We used small RNA deep sequencing to identify 535,054 24-nt siRNA clusters. Of these clusters, ∼82% were OsDCL3a-dependent and showed significant enrichment of MITEs. Reduction of OsDCL3a function reduced the 24-nt siRNAs predominantly from MITEs and elevated expression of nearby genes. OsDCL3a directly targets genes involved in gibberellin and brassinosteroid homeostasis; OsDCL3a deficiency may affect these genes, thus causing the phenotypes of dwarfism and enlarged flag leaf angle. Our work identifies OsDCL3a-dependent 24-nt siRNAs derived from MITEs as broadly functioning regulators for fine-tuning gene expression, which may reflect a conserved epigenetic mechanism in higher plants with genomes rich in dispersed repeats or TEs. PMID:24554078

  10. Efficient delivery of Notch1 siRNA to SKOV3 cells by cationic cholesterol derivative-based liposome

    Directory of Open Access Journals (Sweden)

    Zhao Y

    2016-10-01

    Full Text Available Yun-Chun Zhao,1 Li Zhang,2 Shi-Sen Feng,3 Lu Hong,3 Hai-Li Zheng,3 Li-Li Chen,4 Xiao-Ling Zheng,1 Yi-Qing Ye,1 Meng-Dan Zhao,1 Wen-Xi Wang,3 Cai-Hong Zheng1 1Pharmacy Department, Women’s Hospital, 2Pharmacy Department, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China; 3Department of Pharmaceutic Preparation, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 4Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China Abstract: A novel cationic cholesterol derivative-based small interfering RNA (siRNA interference strategy was suggested to inhibit Notch1 activation in SKOV3 cells for the gene therapy of ovarian cancer. The cationic cholesterol derivative, N-(cholesterylhemisuccinoyl-amino-3-propyl-N, N-dimethylamine (DMAPA-chems liposome, was incubated with siRNA at different nitrogen-to-phosphate ratios to form stabilized, near-spherical siRNA/DMAPA-chems nanoparticles with sizes of 100–200 nm and zeta potentials of 40–50 mV. The siRNA/DMAPA-chems nanoparticles protected siRNA from nuclease degradation in 25% fetal bovine serum. The nanoparticles exhibited high cell uptake and Notch1 gene knockdown efficiency in SKOV3 cells at an nitrogen-to-phosphate ratio of 100 and an siRNA concentration of 50 nM. They also inhibited the growth and promoted the apoptosis of SKOV3 cells. These results may provide the potential for using cationic cholesterol derivatives as efficient nonviral siRNA carriers for the suppression of Notch1 activation in ovarian cancer cells. Keywords: siRNA, cationic cholesterol derivative, Notch1, ovarian cancer cells

  11. Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct.

    Science.gov (United States)

    Elraghy, Omaima; Baldwin, William S

    2015-01-01

    The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5× increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24 h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism.

  12. Intolerance to dietary biogenic amines: a review.

    Science.gov (United States)

    Jansen, Sophia C; van Dusseldorp, Marijke; Bottema, Kathelijne C; Dubois, Anthony E J

    2003-09-01

    To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allerg*, intoler*, and adverse. Additionally, the keywords histamine, tyramine, and phenylethylamine were combined with headache, migraine, urticaria, oral challenge, and oral provocation. Articles were also selected from references in relevant literature. Only oral challenge studies in susceptible patients were considered. Studies with positive results (ie, studies in which an effect was reported) were only eligible when a randomized, double-blind, placebo-controlled design was used. Eligible positive result studies were further evaluated according to a number of scientific criteria. Studies with negative results (ie, studies in which no effect was reported) were examined for factors in their design or methods that could be responsible for a false-negative outcome. Results of methodologically weak or flawed studies were considered inconclusive. A total of 13 oral challenge studies (5 with positive results and 8 with negative results) were found. Three of them (all with positive results) were considered ineligible. By further evaluation of the 10 eligible studies, 6 were considered inconclusive. The 4 conclusive studies all reported negative results. One conclusive study showed no relation between biogenic amines in red wine and wine intolerance. Two conclusive studies found no effect of tyramine on migraine. One conclusive study demonstrated no relation between the amount of phenylethylamine in chocolate and headache attacks in individuals with headache. The current scientific literature shows no relation between the oral ingestion of biogenic amines and food intolerance reactions. There is therefore no scientific basis for dietary recommendations concerning biogenic amines in such patients.

  13. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo

    DEFF Research Database (Denmark)

    Laursen, Maria B; Pakula, Malgorzata M; Gao, Shan

    2010-01-01

    Small interfering RNAs (siRNAs) are now established as a favourite tool to reduce gene expression by RNA interference (RNAi) in mammalian cell culture. However, limitations in potency, duration, delivery and specificity of the gene knockdown (KD) are still major obstacles that need further addres...... in a xenograft model of human pancreas cancer. Hereby UNA constitutes an important type of chemical modification for future siRNA designs....

  14. Determination of rate constants of N-alkylation of primary amines by 1H NMR spectroscopy.

    Science.gov (United States)

    Li, Chenghong

    2013-09-05

    Macromolecules containing N-diazeniumdiolates of secondary amines are proposed scaffolds for controlled nitrogen oxide (NO) release medical applications. Preparation of these compounds often involves converting primary amine groups to secondary amine groups through N-alkylation. However, N-alkylation results in not only secondary amines but tertiary amines as well. Only N-diazeniumdiolates of secondary amines are suitable for controlled NO release; therefore, the yield of secondary amines is crucial to the total NO load of the carrier. In this paper, (1)H NMR spectroscopy was used to estimate the rate constants for formation of secondary amine (k1) and tertiary amine (k2) for alkylation reagents such as propylene oxide (PO), methyl acrylate (MA), and acrylonitrile (ACN). At room temperature, the ratio of k2/k1 for the three reactions was found to be around 0.50, 0.026, and 0.0072.

  15. Composition of amino acids and bioactive amines in common wines of Brazil

    Directory of Open Access Journals (Sweden)

    Bruna Carla Agustini

    2014-10-01

    Full Text Available Since most consumed wines in Brazil are common wines and since their representativeness is not accounted for in scientific research, current study quantifies bioactive amines and their precursors in Brazilian sweet and dry common wines, correlates the formation of amines with physical and chemical parameters and clusters studied areas by their amine and amino acid contents. Forty-seven wine samples varying in type, color and origin were analyzed simultaneously for seventeen amino acids, ammonium ion and five bioactive amines by reversed-phase high performance liquid chromatography and ultraviolet detection after the derivation phase. Physical and chemical analyses comprised titratable acidity, pH, organic acids, sugar and alcohol contents. Sweet wines had lower concentrations of amino acids and bioactive amines. Dry white wines had higher amino acid contents when compared to those in dry red wines. Since multivariate data analysis confirmed similarities between the studied regions, their unity as potential viniculture area was reinforced. Amine levels in Brazilian common wines were reported for the first time and results reinforced the importance of bioactive amines quantification and the use of suitable vinification practices to reduce their formation.

  16. Analysis of primary aromatic amines using precolumn derivatization by HPLC fluorescence detection and online MS identification.

    Science.gov (United States)

    Zhao, Xianen; Suo, Yourui

    2008-03-01

    2-(2-phenyl-1H-phenanthro-[9,10-d]imidazole-1-yl)-acetic acid (PPIA) and 2-(9-acridone)-acetic acid (AAA), two novel precolumn fluorescent derivatization reagents, have been developed and compared for analysis of primary aromatic amines by high performance liquid chromatographic fluorescence detection coupled with online mass spectrometric identification. PPIA and AAA react rapidly and smoothly with the aromatic amines on the basis of a condensation reaction using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) as dehydrating catalyst to form stable derivatives with emission wavelengths at 380 and 440 nm, respectively. Taking six primary aromatic amines (aniline, 2-methylaniline, 2-methoxyaniline, 4-methylaniline, 4-chloroaniline, and 4-bromoaniline) as testing compounds, derivatization conditions such as coupling reagent, basic catalyst, reaction temperature and time, reaction solvent, and fluorescent labeling reagent concentration have also been investigated. With the better PPIA method, chromatographic separation of derivatized aromatic amines exhibited a good baseline resolution on an RP column. At the same time, by online mass spectrometric identification with atmospheric pressure chemical ionization (APCI) source in positive ion mode, the PPIA-labeled derivatives were characterized by easy-to-interpret mass spectra due to the prominent protonated molecular ion m/z [M + H](+) and specific fragment ions (MS/MS) m/z 335 and 295. The linear range is 24.41 fmol-200.0 pmol with correlation coefficients in the range of 0.9996-0.9999, and detection limits of PPIA-labeled aromatic amines are 0.12-0.21 nmol/L (S/N = 3). Method repeatability, precision, and recovery were evaluated and the results were excellent for the efficient HPLC analysis. The most important argument, however, was the high sensitivity and ease-of-handling of the PPIA method. Preliminary experiments with wastewater samples collected from the waterspout of a paper mill and its nearby soil where

  17. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.

    Science.gov (United States)

    Rawlings, Renata A; Krishnan, Vishalakshi; Walter, Nils G

    2011-04-29

    RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple-turnover

    Science.gov (United States)

    Rawlings, Renata A.; Krishnan, Vishalakshi; Walter, Nils G.

    2011-01-01

    RNA interference (RNAi) is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response against viruses and retrotransposons. During viral infection, the RNase III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs), 21–24 nucleotides in length, and helps load them into the RNA-induced silencing complex (RISC) to guide cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressor (RSS) proteins that tightly, and presumably quantitatively, bind siRNAs to thwart RNAi-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus (CIRV), as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding ((1.69 ± 0.07)×108 M−1s−1) and marked dissociation (koff = 0.062 ± 0.002 s−1). We also observe that p19 efficiently competes with recombinant Dicer and inhibits formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple-turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. PMID:21354178

  19. Conditions allowing the formation of biogenic amines in cheese

    NARCIS (Netherlands)

    Joosten, H.M.L.J.

    1988-01-01

    A study was undertaken to reveal the conditions that allow the formation of biogenic amines in cheese.

    The starters most commonly used in the Dutch cheese industry do not have decarboxylative properties. Only if the milk or curd is contaminated with non-starter bacteria, amine

  20. Blue Chitin columns for the extraction of heterocyclic amines from urine samples

    DEFF Research Database (Denmark)

    Bang, J.; Frandsen, Henrik Lauritz; Skog, K.

    2004-01-01

    During normal cooking of meat, a class of mutagenic/carcinogenic compounds called heterocyclic amines is formed. Heterocyclic amines are rapidly absorbed and metabolised in the human body, and for estimation of the intake of heterocyclic amines, it is useful to determinate their levels in the uri...

  1. Cell Adhesion and Proliferation on Sulfonated and Non-Modified Chitosan Films.

    Science.gov (United States)

    Martínez-Campos, Enrique; Civantos, Ana; Redondo, Juan Alfonso; Guzmán, Rodrigo; Pérez-Perrino, Mónica; Gallardo, Alberto; Ramos, Viviana; Aranaz, Inmaculada

    2017-05-01

    Three types of chitosan-based films have been prepared and evaluated: a non-modified chitosan film bearing cationizable aliphatic amines and two films made of N-sulfopropyl chitosan derivatives bearing both aliphatic amines and negative sulfonate groups at different ratios. Cell adhesion and proliferation on chitosan films of C2C12 pre-myoblastic cells and B16 cells as tumoral model have been tested. A differential cell behavior has been observed on chitosan films due to their different surface modification. B16 cells have shown lower vinculin expression when cultured on sulfonated chitosan films. This study shows how the interaction among cells and material surface can be modulated by physicochemical characteristics of the biomaterial surface, altering tumoral cell adhesion and proliferation processes.

  2. Analysis of Biogenic Amines by GC/FID and GC/MS

    OpenAIRE

    Nakovich, Laura

    2003-01-01

    Low levels of biogenic amines occur naturally, but high levels (FDA sets 50 ppm of histamine in fish as the maximum allowable level) can lead to scombroid poisoning. Amines in general are difficult to analyze by Gas Chromatography (GC) due to their lack of volatility and their interaction with the GC column, often leading to significant tailing and poor reproducibility. Biogenic amines need to be derivatized before both GC and HPLC analyses. The objective of this research was to devel...

  3. Electrochemical degradation of aromatic amines on BDD electrodes

    International Nuclear Information System (INIS)

    Pacheco, M.J.; Santos, V.; Ciriaco, L.; Lopes, A.

    2011-01-01

    The electrochemical oxidation of four aromatic amines, with different substituent groups, 3-amino-4-hydroxy-5-nitrobenzenesulfonic acid (A1), 5-amino-2-methoxybenzenesulfonic acid (A2), 2,4-dihydroxyaniline hydrochloride (A3) and benzene-1,4-diamine (A4), was performed using as anode a boron-doped diamond electrode, commercially available at Adamant Technologies. Tests were run at room temperature with model solutions of the different amines, with concentrations of 200 ppm, using as electrolyte 0.035 M Na 2 SO 4 aqueous solutions, in a batch cell with recirculation, at different current densities (200 and 300 A m -2 ). The following analyses were performed with the samples collected during the assays: UV-Vis spectrophotometry, chemical oxygen demand (COD), total organic carbon (TOC), total Kjeldahl nitrogen, ammonia nitrogen, nitrates and HPLC. Results have shown a good electrodegradation of all the amines tested, with COD removals, after 6 h assays, higher than 90% and TOC removals between 60 and 80%. Combustion efficiency (η C ), which measures the tendency to convert organic carbon to CO 2 , was also determined for all the amines, being η CA1 CA2 CA3 CA4 = 0.99.

  4. Solid-phase extraction of copper(II) in water and food samples using silica gel modified with bis(3-aminopropyl)amine and determination by flame atomic absorption spectrometry.

    Science.gov (United States)

    Cagirdi, Duygu; Altundag, Hüseyin; Imamoglu, Mustafa; Tuzen, Mustafa

    2014-01-01

    A simple and selective separation and preconcentration method was developed for the determination of Cu(ll) ions. This method is based on adsorption of Cu(ll) ions from aqueous solution on a bis(3-aminopropyl)amine modified silica gel column and flame atomic absorption spectrometric determination after desorption. Various analytical parameters such as pH, type of eluent solution and its volume, flow rate of sample and eluent, and sample volume were optimized. Effects of some cation, anion, and transition metal ions on the recoveries of Cu(ll) ions were also investigated. Cu(ll) ions were quantitatively recovered at pH 6; 5.0 mL of 2 M HCI was used as the eluent. The preconcentration factor was found to be 150. The LOD was 0.12 microg/L for Cu(ll). The accuracy of the method was confirmed by analysis of Tea Leaves (INCT-TL-1) and Fish Protein (DORM-3) certified reference materials. The optimized method was applied to various water and food samples for the determination of Cu(ll).

  5. Therapeutic Potency of Nanoformulations of siRNAs and shRNAs in Animal Models of Cancers

    Directory of Open Access Journals (Sweden)

    Md. Emranul Karim

    2018-05-01

    Full Text Available RNA Interference (RNAi has brought revolutionary transformations in cancer management in the past two decades. RNAi-based therapeutics including siRNA and shRNA have immense scope to silence the expression of mutant cancer genes specifically in a therapeutic context. Although tremendous progress has been made to establish catalytic RNA as a new class of biologics for cancer management, a lot of extracellular and intracellular barriers still pose a long-lasting challenge on the way to clinical approval. A series of chemically suitable, safe and effective viral and non-viral carriers have emerged to overcome physiological barriers and ensure targeted delivery of RNAi. The newly invented carriers, delivery techniques and gene editing technology made current treatment protocols stronger to fight cancer. This review has provided a platform about the chronicle of siRNA development and challenges of RNAi therapeutics for laboratory to bedside translation focusing on recent advancement in siRNA delivery vehicles with their limitations. Furthermore, an overview of several animal model studies of siRNA- or shRNA-based cancer gene therapy over the past 15 years has been presented, highlighting the roles of genes in multiple cancers, pharmacokinetic parameters and critical evaluation. The review concludes with a future direction for the development of catalytic RNA vehicles and design strategies to make RNAi-based cancer gene therapy more promising to surmount cancer gene delivery challenges.

  6. Comparing 2-nt 3' overhangs against blunt-ended siRNAs: a systems biology based study.

    Science.gov (United States)

    Ghosh, Preetam; Dullea, Robert; Fischer, James E; Turi, Tom G; Sarver, Ronald W; Zhang, Chaoyang; Basu, Kalyan; Das, Sajal K; Poland, Bradley W

    2009-07-07

    In this study, we formulate a computational reaction model following a chemical kinetic theory approach to predict the binding rate constant for the siRNA-RISC complex formation reaction. The model allowed us to study the potency difference between 2-nt 3' overhangs against blunt-ended siRNA molecules in an RNA interference (RNAi) system. The rate constant predicted by this model was fed into a stochastic simulation of the RNAi system (using the Gillespie stochastic simulator) to study the overall potency effect. We observed that the stochasticity in the transcription/translation machinery has no observable effects in the RNAi pathway. Sustained gene silencing using siRNAs can be achieved only if there is a way to replenish the dsRNA molecules in the cell. Initial findings show about 1.5 times more blunt-ended molecules will be required to keep the mRNA at the same reduced level compared to the 2-nt overhang siRNAs. However, the mRNA levels jump back to saturation after a longer time when blunt-ended siRNAs are used. We found that the siRNA-RISC complex formation reaction rate was 2 times slower when blunt-ended molecules were used pointing to the fact that the presence of the 2-nt overhangs has a greater effect on the reaction in which the bound RISC complex cleaves the mRNA.

  7. A surface-mediated siRNA delivery system developed with chitosan/hyaluronic acid-siRNA multilayer films through layer-by-layer self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lijuan [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Wu, Changlin, E-mail: Ph.Dclwu1314@sina.cn [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Liu, Guangwan [Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Liao, Nannan [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Zhao, Fang; Yang, Xuxia; Qu, Hongyuan [Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Peng, Bo [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Chen, Li [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Yang, Guang [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China)

    2016-12-15

    Highlights: • We prepared Chitosan/Hyaluronic acid-siRNA multilayer as carrier to effectively load and protect siRNAs. • The stability and integrity of the siRNA was verified in the siRNA-loaded films. • The siRNA-loaded films showed good cells adhesion and gene silencing effect in eGFP-HEK 293T cells. • This is a new type of surface-mediated non-viral multilayer films. - Abstract: siRNA delivery remains highly challenging because of its hydrophilic and anionic nature and its sensitivity to nuclease degradation. Effective siRNA loading and improved transfection efficiency into cells represents a key problem. In our study, we prepared Chitosan/Hyaluronic acid-siRNA multilayer films through layer-by-layer self-assembly, in which siRNAs can be effectively loaded and protected. The construction process was characterized by FTIR, {sup 13}C NMR (CP/MAS), UV–vis spectroscopy, and atomic force microscopy (AFM). We presented the controlled-release performance of the films during incubation in 1 M NaCl solution for several days through UV–vis spectroscopy and polyacrylamide gel electrophoresis (PAGE). Additionally, we verified the stability and integrity of the siRNA loaded on multilayer films. Finally, the biological efficacy of the siRNA delivery system was evaluated via cells adhesion and gene silencing analyses in eGFP-HEK 293T cells. This new type of surface-mediated non-viral multilayer films may have considerable potential in the localized and controlled-release delivery of siRNA in mucosal tissues, and tissue engineering application.

  8. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA.

    Science.gov (United States)

    Zhang, Haiyang; Wang, Yi; Bai, Ming; Wang, Junyi; Zhu, Kegan; Liu, Rui; Ge, Shaohua; Li, JiaLu; Ning, Tao; Deng, Ting; Fan, Qian; Li, Hongli; Sun, Wu; Ying, Guoguang; Ba, Yi

    2018-03-01

    Exosomes derived from cells have been found to mediate signal transduction between cells and to act as efficient carriers to deliver drugs and small RNA. Hepatocyte growth factor (HGF) is known to promote the growth of both cancer cells and vascular cells, and the HGF-cMET pathway is a potential clinical target. Here, we characterized the inhibitory effect of HGF siRNA on tumor growth and angiogenesis in gastric cancer. In addition, we showed that HGF siRNA packed in exosomes can be transported into cancer cells, where it dramatically downregulates HGF expression. A cell co-culture model was used to show that exosomes loaded with HGF siRNA suppress proliferation and migration of both cancer cells and vascular cells. Moreover, exosomes were able to transfer HGF siRNA in vivo, decreasing the growth rates of tumors and blood vessels. The results of our study demonstrate that exosomes have potential for use in targeted cancer therapy by delivering siRNA. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  9. EDTA modified glassy carbon electrode: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ustuendag, Zafer [Dumlupinar University, Faculty of Arts and Sciences, Department of Chemistry, Kuetahya (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, Degol Street, Tandogan, 06100 Ankara (Turkey)], E-mail: osolak@science.ankara.edu.tr

    2009-11-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){l_brace}2-[bis(carboxymethyl)amino]-ethyl{r_brace}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb{sup 2+} ions was investigated if this electrode could be used as a metal sensor.

  10. Consumer perception of genetically modified organisms and sources of information.

    Science.gov (United States)

    Wunderlich, Shahla; Gatto, Kelsey A

    2015-11-01

    Genetically modified organisms (GMOs) have been available for commercial purchase since the 1990s, allowing producers to increase crop yields through bioengineering that creates herbicide-resistant and insect-resistant varieties. However, consumer knowledge about GMOs has not increased at the same rate as the adoption of GMO crops. Consumers worldwide are displaying limited understanding, misconceptions, and even unfamiliarity with GMO food products. Many consumers report that they receive information about GMO food products from the media, Internet, and other news sources. These sources may be less reliable than scientific experts whom consumers trust more to present the facts. Although many in the United States support mandatory GMO labeling (similar to current European standards), consumer awareness of current GMO labeling is low. A distinction must also be made between GMO familiarity and scientific understanding, because those who are more familiar with it tend to be more resistant to bioengineering, whereas those with higher scientific knowledge scores tend to have less negative attitudes toward GMOs. This brings to question the relation between scientific literacy, sources of information, and overall consumer knowledge and perception of GMO foods. © 2015 American Society for Nutrition.

  11. Enrichment Mechanism of Semiconducting Single-walled Carbon Nanotubes by Surfactant Amines

    Science.gov (United States)

    Ju, Sang-Yong; Utz, Marcel; Papadimitrakopoulos, Fotios

    2009-01-01

    Utilization of single-walled carbon nanotubes (SWNTs) in high-end applications hinges on separating metallic (met-) from semiconducting (sem-) SWNTs. Surfactant amines, like octadecylamine (ODA) have proven instrumental for the selective extraction of sem-SWNTs from tetrahydrofuran (THF) nanotube suspensions. The chemical shift differences along the tail of an asymmetric, diacetylenic surfactant amine were used to probe the molecular dynamics in the presence and absence of nanotubes via NMR. The results suggest that the surfactant amine head is firmly immobilized onto the nanotube surface together with acidic water, while the aliphatic tail progressively gains larger mobility as it gets farther from the SWNT. X-ray and high-resolution TEM studies indicate that the sem-enriched sample is populated mainly by small nanotube bundles containing ca. three SWNTs. Molecular simulations in conjunction with previously determined HNO3/H2SO4 oxidation depths for met- and sem-SWNTs indicate that the strong pinning of the amine surfactants on the sem-enriched SWNTs bundles is a result of a well-ordered arrangement of nitrate/amine salts separated with a monomolecular layer of H2O. Such continuous 2D arrangement of nitrate/amine salts shields the local environment adjacent to sem-enriched SWNTs bundles and maintains an acidic pH that preserves nanotube oxidation (i.e. SWNTn+). This, in turn, results in strong interactions with charge-balancing NO3- counter ions that through their association with neutralized surfactant amines provide effective THF dispersion and consequent sem-enrichment. PMID:19397291

  12. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes

    Science.gov (United States)

    Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d

  13. General method for labeling siRNA by click chemistry with fluorine-18 for the purpose of PET imaging.

    Science.gov (United States)

    Mercier, Frédéric; Paris, Jérôme; Kaisin, Geoffroy; Thonon, David; Flagothier, Jessica; Teller, Nathalie; Lemaire, Christian; Luxen, André

    2011-01-19

    The alkyne-azide Cu(I)-catalyzed Huisgen cycloaddition, a click-type reaction, was used to label a double-stranded oligonucleotide (siRNA) with fluorine-18. An alkyne solid support CPG for the preparation of monostranded oligonucleotides functionalized with alkyne has been developed. Two complementary azide labeling agents (1-(azidomethyl)-4-[(18)F]fluorobenzene) and 1-azido-4-(3-[(18)F]fluoropropoxy)benzene have been produced with 41% and 35% radiochemical yields (decay-corrected), respectively. After annealing with the complementary strand, the siRNA was directly labeled by click chemistry with [(18)F]fluoroazide to produce the [(18)F]-radiolabeled siRNA with excellent radiochemical yield and purity.

  14. Tris{2-[(2-aminobenzylideneamino]ethyl}amine

    Directory of Open Access Journals (Sweden)

    Perla Elizondo Martínez

    2010-12-01

    Full Text Available The title Schiff base, C27H33N7, is a tripodal amine displaying C3 symmetry, with the central tertiary N atom lying on the threefold crystallographic axis. The N—CH2—CH2—N conformation of the pendant arms is gauche [torsion angle = 76.1 (3°], which results in a claw-like molecule, with the terminal aniline groups wrapped around the symmetry axis. The lone pair of the apical N atom is clearly oriented inwards towards the cavity, and should thus be chemically inactive. The amine NH2 substituents lie in the plane of the benzene ring to which they are bonded. With such an arrangement, one amine H atom forms an S(6 motif through a weak N—H...N hydrogen bond with the imine N atom, while the other is engaged in an intermolecular N—H...π contact involving the benzene ring of a neighbouring molecule related by inversion. The benzene rings also participate in an intramolecular C—H...π contact of similar strength. In the crystal structure, molecules are separated by empty voids (ca 5% of the crystal volume, although the crystal seems to be unsolvated.

  15. Clustering of amines and hydrazines in atmospheric nucleation

    Science.gov (United States)

    Li, Siyang; Qu, Kun; Zhao, Hailiang; Ding, Lei; Du, Lin

    2016-06-01

    It has been proved that the presence of amines in the atmosphere can enhance aerosol formation. Hydrazine (HD) and its substituted derivatives, monomethylhydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH), which are organic derivatives of amine and ammonia, are common trace atmospheric species that may contribute to the growth of nucleation clusters. The structures of the hydrazine and amine clusters containing one or two common nucleation molecules (ammonia, water, methanol and sulfuric acid) have been optimized using density functional theory (DFT) methods. The clusters growth mechanism has been explored from the thermochemistry by calculating the Gibbs free energies of adding an ammonia, water, methanol or sulfuric acid molecule step by step at room temperature, respectively. The results show that hydrazine and its derivatives could enhance heteromolecular homogeneous nucleation in the earth's atmosphere.

  16. Devulcanization of Waste Tire Rubber Using Amine Based Solvents and Ultrasonic Energy

    Directory of Open Access Journals (Sweden)

    Walvekar Rashmi

    2018-01-01

    Full Text Available This research project focuses on an alternative pathway of devulcanizing waste tire rubber by using amine based chemicals. Waste tire rubbers are known to be as toxic, non-degradable material due to their vulcanized crosslink carbon structure, and disposing of such waste could impose hazardous impacts on the environment. The current rubber recycling methods that are practiced today are rather uneconomical, non-environmentally friendly, and also producing recycled rubber with low quality due to the alteration in the main polymeric chains of waste rubber. This project aims to answer the question of whether the usage of amine can produce high quality rubber, where the properties of recycled rubber is almost the same as new/virgin rubber. With known potential of amine, it is a challenge for the chemical to selectively cleave the sulfur bonds without affecting the main carbon backbone chain in the rubber structure and diminishing much of the rubber properties. To study this research, amine-treated rubber must undergo devulcanisation process by applying heat and sonication energy. Then, the properties of the amine-treated rubber were determined through a set of characterization tests and analysis which are: gel content test to determine the weight of rubber before and after devulcanization, the thermogravimetric analysis (TGA to determine the thermal degradation and stability of rubber, and Fourier Transform Infrared Spectroscopy (FTIR to determine any structural change of the rubber. In this research so far, the first two preliminary analysis tests have been performed. The gel content test has shown that tertiary amine samples possessed a lower gel content (% of (77 – 63 %, compared to primary amine samples (falls within the range of 80%, as well as the TGA test in which tertiary amine samples degrade faster than primary amine samples (suggesting a higher degree of rubber structure breakdown. For each type of amine, the concertation of amine did

  17. Uranium diphosphonates templated by interlayer organic amines

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Anna-Gay D., E-mail: nelsoa@umich.edu [Department of Civil Engineering and Geological Sciences, University of Notre Dame, IN 46556 (United States); Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005 (United States); Alekseev, Evgeny V. [Institute of Energy and Climate Research (IEK-6), Forschungszentrum Juelich Wilhelm-Johnen-Strasse, 52428 Juelich (Germany); Institut fuer Kristallographie, RWTH Aachen University, D-52066 Aachen (Germany); Albrecht-Schmitt, Thomas E. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, IN 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556 (United States); Ewing, Rodney C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005 (United States)

    2013-02-15

    The hydrothermal treatment of uranium trioxide and methylenediphosphonic acid with a variety of amines (2,2-dipyridyl, triethylenediamine, ethylenediamine, and 1,10-phenanthroline) at 200 Degree-Sign C results in the crystallization of a series of layered uranium diphosphonate compounds, [C{sub 10}H{sub 9}N{sub 2}]{l_brace}UO{sub 2}(H{sub 2}O)[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{r_brace} (Ubip2), [C{sub 6}H{sub 14}N{sub 2}]{l_brace}(UO{sub 2}){sub 2}[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{sub 2}{center_dot}2H{sub 2}O{r_brace} (UDAB), [C{sub 2}H{sub 10}N{sub 2}]{sub 2}{l_brace}(UO{sub 2}){sub 2}(H{sub 2}O){sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{sub 2}{center_dot}0.5H{sub 2}O{r_brace} (Uethyl), and [C{sub 12}H{sub 9}N{sub 2}]{l_brace}UO{sub 2}(H{sub 2}O)[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{r_brace} (Uphen). The crystal structures of the compounds are based on UO{sub 7} units linked by methylenediphosphonate molecules to form two-dimensional anionic sheets in Ubip2 and UDAB, and one-dimensional anionic chains in Uethyl and Uphen, which are charge balanced by protonated amine molecules. Interaction of the amine molecules with phosphonate oxygens and water molecules results in extensive hydrogen bonding in the interlayer. These amine molecules serve both as structure-directing agents and charge-balancing cations for the anionic uranium phosphonate sheets and chains in the formation of the different coordination geometries and topologies of each structure. Reported herein are the syntheses, structural and spectroscopic characterization of the synthesized compounds. - Graphical abstract: The Raman spectra of the synthesized compounds and an illustration of the stacking of the layers with the diprotonated triethylenediamine molecules in [C{sub 6}H{sub 14}N{sub 2}]{l_brace}(UO{sub 2}){sub 2}[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{sub 2}{center_dot}2H{sub 2}O{r_brace} UDAB. Solvent water molecules are removed for clarity. The corresponding Raman spectra for the complexes synthesized is also

  18. The Caenorhabditis elegans RDE-10/RDE-11 complex regulates RNAi by promoting secondary siRNA amplification.

    Science.gov (United States)

    Zhang, Chi; Montgomery, Taiowa A; Fischer, Sylvia E J; Garcia, Susana M D A; Riedel, Christian G; Fahlgren, Noah; Sullivan, Christopher M; Carrington, James C; Ruvkun, Gary

    2012-05-22

    In nematodes, plants, and fungi, RNAi is remarkably potent and persistent due to the amplification of initial silencing signals by RNA-dependent RNA polymerases (RdRPs). In Caenorhabditis elegans (C. elegans), the interaction between the RNA-induced silencing complex (RISC) loaded with primary small interfering RNAs (siRNAs) and the target messenger RNA (mRNA) leads to the recruitment of RdRPs and synthesis of secondary siRNAs using the target mRNA as the template. The mechanism and genetic requirements for secondary siRNA accumulation are not well understood. From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10, and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, and other candidate RNAi factors. The RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage but sensitive to high dosage of double-stranded RNAs. We assessed the roles of rde-10, rde-11, and other dosage-sensitive RNAi-defective genes rsd-2, rsd-6, and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. The RDE-10/RDE-11 complex is essential for the amplification of RNAi in C. elegans by promoting secondary siRNA accumulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Factors influencing the regioselectivity of the oxidation of asymmetric secondary amines with singlet oxygen.

    Science.gov (United States)

    Ushakov, Dmitry B; Plutschack, Matthew B; Gilmore, Kerry; Seeberger, Peter H

    2015-04-20

    Aerobic amine oxidation is an attractive and elegant process for the α functionalization of amines. However, there are still several mechanistic uncertainties, particularly the factors governing the regioselectivity of the oxidation of asymmetric secondary amines and the oxidation rates of mixed primary amines. Herein, it is reported that singlet-oxygen-mediated oxidation of 1° and 2° amines is sensitive to the strength of the α-C-H bond and steric factors. Estimation of the relative bond dissociation energy by natural bond order analysis or by means of one-bond C-H coupling constants allowed the regioselectivity of secondary amine oxidations to be explained and predicted. In addition, the findings were utilized to synthesize highly regioselective substrates and perform selective amine cross-couplings to produce imines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Analysis of amines by pH-Metrie in organic media

    International Nuclear Information System (INIS)

    Hamidi, A.; Elias, Abdelhamid; Achache, M.; Didi, M.

    1999-01-01

    Amines with long hydro carbonic strength and principally Trioclkylamines, are characterised by an important complexation mechanism for certain metals. This is the case for trioctylamine (TOA) which is very used in purification and uranium recovery from certain ores (1,2). This substance is generally found mixed with mono and di-octyl amines in commercial products and in synthesis mixtures. The purpose of this work is to develop a pH titration method in an organic media for a mixture consisted of mono, di and tri octyl amines (MOA, DOA et TOA). Adequate operating analysis condition have been proposed, based on intrinsic chemical properties for each precipitated substances (3,4). The obtained results show that this technique is recommended for qualitative and quantitative analysis of precipitated amines mixtures. The method is reproducible and the detection limit can reach 0,0001 molar