WorldWideScience

Sample records for source physics project

  1. THE SPALLATION NEUTRON SOURCE PROJECT - PHYSICAL CHALLENGES.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.

    2002-06-03

    The Spallation Neutron Source (SNS) is designed to reach an average proton beam power of 1.4 MW for pulsed neutron production. This paper summarizes design aspects and physical challenges to the project.

  2. Project-based physics labs using low-cost open-source hardware

    Science.gov (United States)

    Bouquet, F.; Bobroff, J.; Fuchs-Gallezot, M.; Maurines, L.

    2017-03-01

    We describe a project-based physics lab, which we proposed to third-year university students. These labs are based on new open-source low-cost equipment (Arduino microcontrollers and compatible sensors). Students are given complete autonomy: they develop their own experimental setup and study the physics topic of their choice. The goal of these projects is to let students to discover the reality of experimental physics. Technical specifications of the acquisition material and case studies are presented for practical implementation in other universities.

  3. Observational constraints on the physical nature of submillimetre source multiplicity: chance projections are common

    Science.gov (United States)

    Hayward, Christopher C.; Chapman, Scott C.; Steidel, Charles C.; Golob, Anneya; Casey, Caitlin M.; Smith, Daniel J. B.; Zitrin, Adi; Blain, Andrew W.; Bremer, Malcolm N.; Chen, Chian-Chou; Coppin, Kristen E. K.; Farrah, Duncan; Ibar, Eduardo; Michałowski, Michał J.; Sawicki, Marcin; Scott, Douglas; van der Werf, Paul; Fazio, Giovanni G.; Geach, James E.; Gurwell, Mark; Petitpas, Glen; Wilner, David J.

    2018-05-01

    Interferometric observations have demonstrated that a significant fraction of single-dish submillimetre (submm) sources are blends of multiple submm galaxies (SMGs), but the nature of this multiplicity, i.e. whether the galaxies are physically associated or chance projections, has not been determined. We performed spectroscopy of 11 SMGs in six multicomponent submm sources, obtaining spectroscopic redshifts for nine of them. For an additional two component SMGs, we detected continuum emission but no obvious features. We supplement our observed sources with four single-dish submm sources from the literature. This sample allows us to statistically constrain the physical nature of single-dish submm source multiplicity for the first time. In three (3/7, { or} 43^{+39 }_{ -33} {per cent at 95 {per cent} confidence}) of the single-dish sources for which the nature of the blending is unambiguous, the components for which spectroscopic redshifts are available are physically associated, whereas 4/7 (57^{+33 }_{ -39} per cent) have at least one unassociated component. When components whose spectra exhibit continuum but no features and for which the photometric redshift is significantly different from the spectroscopic redshift of the other component are also considered, 6/9 (67^{+26 }_{ -37} per cent) of the single-dish sources are comprised of at least one unassociated component SMG. The nature of the multiplicity of one single-dish source is ambiguous. We conclude that physically associated systems and chance projections both contribute to the multicomponent single-dish submm source population. This result contradicts the conventional wisdom that bright submm sources are solely a result of merger-induced starbursts, as blending of unassociated galaxies is also important.

  4. Project X and its connection to neutrino physics

    International Nuclear Information System (INIS)

    Harris, Deborah; Jansson, Andreas

    2008-01-01

    Project X is a new high intensity proton source that is being planned at Fermilab to usher in a new era of high intensity physics. The high intensity frontier can provide a wealth of new measurements--the most voracious consumer of protons is the long baseline neutrino program, but with the proton source upgrades being planned there are even more protons available than current neutrino targets can withstand. Those protons can provide a rich program on their own of muon physics and neutrino scattering physics that is complimentary to the long baseline program. In this article we discuss the physics motivation for Project X that comes from these short baseline experiments, and also the status of the design of this new source and what it will take to move forward on that design

  5. Advanced neutron source project

    International Nuclear Information System (INIS)

    Gorynina, L.V.; Proskuryakov, S.F.; Tishchenko, V.A.; Uzhanova, V.V.

    1991-01-01

    The project of the ANS improved neutron source intended for fundamental researches in nuclear physics and materials testing is considered. New superhigh-flux heavy-water 350 MW reactor is used for the source creation. The standard fuel is uranium silicide (U 3 Si 2 ). Reactor core volume equals 67.4 l and average power density is 4.9 MW/l. Neutron flux density is 10 16 neutron/(cm 2 xs). The facility construction begin is planned for 1996. The first experiments should be accomplished in 2000

  6. Harvard Project Physics Newsletter 10. The Project Physics Course, Text.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    A short description of the availability of Harvard Project Physics course components is given as is a discussion of the growth of the use of Project Physics in schools, including some enrollment data and survey results. Locations of the 1970 and 1971 Summer Institutes are listed. Adaptations of Project Physics course outside the United States are…

  7. Open-Source Java for Teaching Computational Physics

    Science.gov (United States)

    Wolfgang, Christian; Gould, Harvey; Gould, Joshua; Tobochnik, Jan

    2001-11-01

    The switch from procedural to object-oriented (OO) programming has produced dramatic changes in professional software design. OO techniques have not, however, been widely adopted in computational physics. Although most physicists are familiar with procedural languages such as Fortran, few physicists have formal training in computer science and few therefore have made the switch to OO programming. The continued use of procedural languages in education is due, in part, to the lack of up-to-date curricular materials that combine current computational physics research topics with an OO framework. This talk describes an Open-Source curriculum development project to produce such material. Examples will be presented that show how OO techniques can be used to encapsulate the relevant Physics, the analysis, and the associated numerical methods.

  8. Final Report on DTRA Basic Research Project #BRCALL08-Per3-C-2-0006 "High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets"

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, Jeffrey D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-01

    This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies, the spectral energy range where current x-ray sources are weak. All project goals were met.

  9. Dispersal from deep ocean sources: physical and related scientific processes

    International Nuclear Information System (INIS)

    Robinson, A.R.; Kupferman, S.L.

    1985-02-01

    This report presents the results of the workshop ''Dispersal from Deep Ocean Sources: Physical and Related Scientific Processes,'' together with subsequent developments and syntheses of the material discussed there. The project was undertaken to develop usable predictive descriptions of dispersal from deep oceanic sources. Relatively simple theoretical models embodying modern ocean physics were applied, and observational and experimental data bases were exploited. All known physical processes relevant to the dispersal of passive, conservative tracers were discussed, and contact points for inclusion of nonconservative processes (biological and chemical) were identified. Numerical estimates of the amplitude, space, and time scales of dispersion were made for various mechanisms that control the evolution of the dispersal as the material spreads from a bottom point source to small-, meso-, and world-ocean scales. Recommendations for additional work are given. The volume is presented as a handbook of dispersion processes. It is intended to be updated as new results become available

  10. High stability power sources for bending and quadrupole magnets of TRISTAN project

    International Nuclear Information System (INIS)

    Kumagai, Noritaka; Ogawa, Shin-ichi; Koseki, Shoichiro; Nagasaka, Saburo.

    1985-01-01

    The excitation power sources for the main ring magnets of the TRISTAN project of the Ministry of Educations's National Laboratory for High Energy Physics requires strict performances of 10 -4 for both long time stability and the ripple factor of the DC output current to obtain a stable beam. To satisfy such specifications, a precision current detector, and active filter, and other such technologies are used for the power source. To verify the performance of this power source, a prototype was manufactured and a combined test was done with the magnets actually used at the National Laboratory. The results have proved that the output stability, ripple factor, current tracking, and other specifications are quite satisfactory and, at present, 80 sets have been manufactured for the TRISTAN project. This paper describes the project's power supply system and reports the results of performance tests on the prototype. (author)

  11. The SAMI2 Open Source Project

    Science.gov (United States)

    Huba, J. D.; Joyce, G.

    2001-05-01

    In the past decade, the Open Source Model for software development has gained popularity and has had numerous major achievements: emacs, Linux, the Gimp, and Python, to name a few. The basic idea is to provide the source code of the model or application, a tutorial on its use, and a feedback mechanism with the community so that the model can be tested, improved, and archived. Given the success of the Open Source Model, we believe it may prove valuable in the development of scientific research codes. With this in mind, we are `Open Sourcing' the low to mid-latitude ionospheric model that has recently been developed at the Naval Research Laboratory: SAMI2 (Sami2 is Another Model of the Ionosphere). The model is comprehensive and uses modern numerical techniques. The structure and design of SAMI2 make it relatively easy to understand and modify: the numerical algorithms are simple and direct, and the code is reasonably well-written. Furthermore, SAMI2 is designed to run on personal computers; prohibitive computational resources are not necessary, thereby making the model accessible and usable by virtually all researchers. For these reasons, SAMI2 is an excellent candidate to explore and test the open source modeling paradigm in space physics research. We will discuss various topics associated with this project. Research supported by the Office of Naval Research.

  12. Open Source Vulnerability Database Project

    Directory of Open Access Journals (Sweden)

    Jake Kouns

    2008-06-01

    Full Text Available This article introduces the Open Source Vulnerability Database (OSVDB project which manages a global collection of computer security vulnerabilities, available for free use by the information security community. This collection contains information on known security weaknesses in operating systems, software products, protocols, hardware devices, and other infrastructure elements of information technology. The OSVDB project is intended to be the centralized global open source vulnerability collection on the Internet.

  13. Project of positron source at the U-120 Cyclotron, Bucharest. Status report

    International Nuclear Information System (INIS)

    Racolta, P.M.; Popa Simil, L.; Voiculescu, Dana; Miron, N.

    1999-01-01

    To extend the applications with our U-120 Cyclotron we started a project of off-line and on-line positron sources produced at the cyclotron. This machine may be successfully used for producing positron sources with few day half-life for off-line positron studies (eg. 48 V), or a cyclotron on-line intense positron beam (eg. 27 Si) with a variable energy for various materials study experiments, enough to cover a depth range from few micrometers down to tens of nanometers. Until now, using a 48 V positron source we performed experiments for determination of the Doppler broadening of the 511 KeV peak for different materials (copper, lead, indium). This research is carrier out on a cooperation agreement between IFIN-HH Bucharest and LISES-Chisinau. The positron source project is now in its initial stage. This stage consists of the experiments on the off-line version using positron sources produced in the cyclotron (eg. 48 V, 22 Na), to develop experience with detection chains (Doppler broadening and positron annihilation lifetime spectroscopy), to choose proper experiments in order to select moderator materials (W, Mo, Pt, etc.) and to study and design the different versions for the on-line production of positrons with the cyclotron. Slow positrons are valuable tools in atomic physics, materials science and solid state physics research. The controlled energy beam facility can be used to probe defects in metals, to study Fermi surfaces and materials surfaces and interfaces and to obtain detailed information about the electronic structure of materials. The aim of this project is to perform applications in the semiconductor industry, for coating materials, polymers, biomaterials etc. (authors)

  14. Project of positron source at the U-120 cyclotron Bucharest status report

    International Nuclear Information System (INIS)

    Racolta, P.M.; Simil Popa, L.; Voiculescu, Dana; Miron, N.

    2000-01-01

    To extend the applications with our U-120 Cyclotron we started a project of off-line positron sources produced at the cyclotron. This machine may be successfully used for producing positron sources with few day half-life for off-line positron studies (e.g. 48 V), or a cyclotron on-line intense positron beam (e.g. 27 Si) with a variable energy for various materials study experiments, enough to cover a depth range from a few micrometers down to tens of nanometers. Until now, using a 48 V positron source we performed experiments for determination of the Doppler broadening of the 511 keV peak for different materials (copper, lead, indium). This research is carried out on a cooperation agreement between IFIN-HH Bucharest and LISES-Chisinau. The positron source project is now in its initial stage. This stage consists of the experiments on the off-line version using positron source produced in the cyclotron (e.g. 48 V, 22 Na), to develop experience with detection chains (Doppler broadening and positron annihilation lifetime spectroscopy) to choose proper experiments in order to select moderator materials (W, Mo, Pt, etc.) and to study and design the different versions for the on-line positron production by cyclotron. Slow positrons are valuable tools in atomic physics, materials science and solid state physics research. The controlled energy beam facility can be used to probe defects in metals, to study Fermi surfaces and materials surfaces and interfaces and to obtained detailed information about electronic structures of materials. The aim of this project is to perform applications in the semiconductor industry, for coating materials, polymers, biomaterials, etc. (authors)

  15. Open Source Approach to Project Management Tools

    Directory of Open Access Journals (Sweden)

    Romeo MARGEA

    2011-01-01

    Full Text Available Managing large projects involving different groups of people and complex tasks can be challenging. The solution is to use Project management software, which allows a more efficient management of projects. However, famous project management systems can be costly and may require expensive custom servers. Even if free software is not as complex as Microsoft Project, is noteworthy to think that not all projects need all the features, amenities and power of such systems. There are free and open source software alternatives that meet the needs of most projects, and that allow Web access based on different platforms and locations. A starting stage in adopting an OSS in-house is finding and identifying existing open source solution. In this paper we present an overview of Open Source Project Management Software (OSPMS based on articles, reviews, books and developers’ web sites, about those that seem to be the most popular software in this category.

  16. Physical Properties and Lung Deposition of Particles Emitted from Five Major Indoor Sources.

    Czech Academy of Sciences Publication Activity Database

    Tuan, V.Vu.; Ondráček, Jakub; Ždímal, Vladimír; Schwarz, Jaroslav; Delgado-Saborit, J.M.; Harrison, R. M.

    2016-01-01

    Roč. 10, č. 1 (2016), s. 1-14 ISSN 1873-9318 EU Projects: European Commission(XE) 315760 - HEXACOMM Institutional support: RVO:67985858 Keywords : indoor sources * particle size * hygroscopic growth Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.184, year: 2016

  17. 10 years and 20,000 sources: the offsite source recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, Julia R [Los Alamos National Laboratory; Abeyta, Cristy L [Los Alamos National Laboratory; Pearson, Michael W [Los Alamos National Laboratory

    2009-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources. This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Sealed source recovery was initially considered a waste management activity, as evidenced by its initial organization under the Department of Energy's (DOE's) Environmental Management (EM) program. After the terrorist attacks of 2001, however, the interagency community began to recognize the threat posed by excess and unwanted radiological material, particularly those that could not be disposed at the end of their useful life. After being transferred to the National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as Greater-than-Class-C (GTCC) when it became waste, but also any other materials that might be a 'national security consideration.' This paper discusses OSRP's history, recovery operations, expansion to accept high-activity beta-gamma-emitting sealed sources and devices and foreign-possessed sources, and more recent efforts such as cooperative projects with the Council on Radiation Control Program Directors (CRCPD) and involvement in GTRI's Search and Secure project. Current challenges and future work will also be discussed.

  18. Ion Source Physics and Technology (1/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    This series of lectures starts with an introduction in some aspects of atomic and plasma physics as base for the ion source physics. The main part covers aspects of ion source physics, technology and operation. Several source types are presented. Some information on infrastructure and supporting services (as high voltage, cooling, microwaves etc) are given to better understand the source environment. The last part on engineering aims to show that, in the field of ion sources, many different technologies are combined in a quite small environment, which is challenging and interesting at the same time.

  19. Ion Source Physics and Technology (2/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    This series of lectures starts with an introduction in some aspects of atomic and plasma physics as base for the ion source physics. The main part covers aspects of ion source physics, technology and operation. Several source types are presented. Some information on infrastructure and supporting services (as high voltage, cooling, microwaves etc) are given to better understand the source environment. The last part on engineering aims to show that, in the field of ion sources, many different technologies are combined in a quite small environment, which is challenging and interesting at the same time.

  20. Project as an education method in teaching of physics

    OpenAIRE

    ŽAHOUREK, Martin

    2011-01-01

    The diploma thesis ?Project as an educational method for teaching physics ?deals with the possibilities of using project-based method for teaching physics at primary schools. Not only does it contain the theoretical background of project-based teaching, but also deals with practical issues in the form of an implementation of a chosen project ?Physics and physical education?. The aim of said project was to evaluate the efficiency of project-based teaching as far as the knowledge of pupils and ...

  1. The SPARX Project R&D Activity towards X-rays FEL Sources

    CERN Document Server

    Alesini, David; Bertolucci, Sergio; Biagini, M E; Boni, R; Boscolo, Manuela; Castellano, Michele; Clozza, A; Di Pirro, G; Drago, A; Esposito, A; Ferrario, Massimo; Filippetto, D; Fusco, V; Gallo, A; Ghigo, A; Guiducci, Susanna; Incurvati, M; Ligi, C; Marcellini, F; Migliorati, Mauro; Mostacci, Andrea; Palumbo, Luigi; Pellegrino, L; Preger, Miro; Raimondi, Pantaleo; Ricci, R; Sanelli, C; Serio, Mario; Sgamma, F; Spataro, Bruno; Stecchi, A; Stella, A; Tazzioli, Franco; Vaccarezza, Cristina; Vescovi, Mario; Vicario, C

    2004-01-01

    SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Università di Roma Tor Vergata aiming at the construction of a FEL-SASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on the R&D activity on critical components and techniques for future X-ray facilities. The R&D plans for the FEL source will be developped along two lines: (a) use of the SPARC high brightness photo-injector to develop experimental test on RF compression techniques and other beam physics issues, like emittance degradation in magnetic compressors due to CSR; (b) development of new undulator design concepts and up-grading of the FEL SPARC source to enhance the non linear harmonic generation mechanism, design and test of e-beam conditioning, prebunching and seeding. A parallel program will be aimed at the development of high repetition rate S-band gun, high Quantum Efficiency cathodes, high gradient X-band RF acceleratin...

  2. 10 years and 20,000 sources: the GTRI offsite source recovery project

    International Nuclear Information System (INIS)

    Whitworth, Julia; Streeper, Charles; Cuthbertson, Abigail

    2009-01-01

    Full text: The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources. This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 ( 239 Pu) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Decades later, these sources began to exceed their design life or fall out of regular use. Sealed source recovery was initially considered a waste management activity, but after the terrorist attacks of 2001, the interagency community began to recognize the threat posed by excess and unwanted radiological materials, particularly those that could not be disposed at the end of their useful life. After being transferred to the U.S. National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as Greater-than-Class-C (GTCC) when it became waste, but also any other materials that might constitute a 'national security consideration'. This paper discusses OSRP's history, recovery operations, expansion to accept high-activity beta-gamma-emitting sealed sources and devices and foreign-possessed sources, and more recent efforts such as involvement in GTRI's Search and Secure project. Current challenges and future work will also be discussed

  3. Development of a cryogenic EOS capability for the Z Pulsed Radiation Source: Goals and accomplishments of FY97 LDRD project

    International Nuclear Information System (INIS)

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.

    1998-03-01

    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. This report describes progress during the period 2/97-11/97 on the FY97 LDRD project ''Cryogenic EOS Capabilities on Pulsed Radiation Sources (Z Pinch)''. The goal of this project is the development of a general purpose cryogenic target system for precision EOS and shock physics measurements at liquid helium temperatures on the Z accelerator Z-pinch pulsed radiation source. Activity during the FY97 LDRD phase of this project has focused on development of a conceptual design for the cryogenic target system based on consideration of physics, operational, and safety issues, design and fabrication of principal system components, construction and instrumentation of a cryogenic test facility for off-line thermal and optical testing at liquid helium temperatures, initial thermal testing of a cryogenic target assembly, and the design of a cryogenic system interface to the Z pulsed radiation source facility. The authors discuss these accomplishments as well as elements of the project that require further work

  4. High stabilized power sources for bending and quadrupole magnets of TRISTAN project

    International Nuclear Information System (INIS)

    Kumagai, Noritaka; Ogawa, Shin-ichi; Koseki, Shoichiro; Nagasaka, Saburo.

    1984-01-01

    In the power source exciting the electro-magnets for the electron ring of TRISTAN project being advanced in the National Laboratory for High Energy Physics, the performance as strict as 10 -4 is required for its long hour stability and pulsating rate of DC output current in order to maintain beam stably. For satisfying such specification, the structure of power source using a high accuracy current detector, an active filter and so on was adopted. In order to verify the performance of this power source, the trial manufacture was carried out independently, and the test combining with actual magnets was performed. As the results, it was confirmed that the power source had the sufficient performance about its output stability, pulsating rate, current-following property and so on. At present, the manufacture of 80 actual power sources is in progress. In this paper, the power source system and the results of performance test of the power source made for trial are reported. The power sources are divide into B power sources for exciting deflecting electro-magnets and Q power sources for exciting quadrupole electro-magnets. (Kako, I.)

  5. Open Source and Proprietary Project Management Tools for SMEs.

    Directory of Open Access Journals (Sweden)

    Veronika Abramova

    2017-05-01

    Full Text Available The dimensional growth and increasing difficulty in project management promoted the development of different tools that serve to facilitate project management and track project schedule, resources and overall progress. These tools offer a variety of features, from task and time management, up to integrated CRM (Customer Relationship Management and ERP (Enterprise Resource Planning modules. Currently, a large number of project management software is available, to assist project team during the entire project lifecycle. We present the main differences between open source and proprietary project management tools and how those could be important for SMEs, describing the key features and how those can assist the project manager and the development team. In this paper, we analyse four open-source project management tools: OpenProject, ProjectLibre, Redmine, LibrePlan and four proprietary tools: Bitrix24, JIRA, Microsoft Project and Asana.

  6. Physics from angular projection of rectangular grids

    International Nuclear Information System (INIS)

    Singh, Ashmeet

    2015-01-01

    In this paper, we present a mathematical model for the angular projection of a rectangular arrangement of points in a grid. This simple yet interesting, problem has both scholarly value and applications for data extraction techniques to study the physics of various systems. Our work may help undergraduate students to understand subtle points in the angular projection of a grid and describes various quantities of interest in the projection with completeness and sufficient rigour. We show that for certain angular ranges, the projection has non-distinctness, and calculate the details of such angles, and correspondingly, the number of distinct points and the total projected length. We focus on interesting trends obtained for the projected length of the grid elements and present a simple application of the model to determine the geometry of an unknown grid whose spatial extensions are known, using measurement of the grid projection at two angles only. Towards the end, our model is shown to have potential applications in various branches of physical sciences, including crystallography, astrophysics, and bulk properties of materials. (paper)

  7. Effective Teaching Methods--Project-based Learning in Physics

    Science.gov (United States)

    Holubova, Renata

    2008-01-01

    The paper presents results of the research of new effective teaching methods in physics and science. It is found out that it is necessary to educate pre-service teachers in approaches stressing the importance of the own activity of students, in competences how to create an interdisciplinary project. Project-based physics teaching and learning…

  8. Source localization using recursively applied and projected (RAP) MUSIC

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.C. [Los Alamos National Lab., NM (United States); Leahy, R.M. [Univ. of Southern California, Los Angeles, CA (United States). Signal and Image Processing Inst.

    1998-03-01

    A new method for source localization is described that is based on a modification of the well known multiple signal classification (MUSIC) algorithm. In classical MUSIC, the array manifold vector is projected onto an estimate of the signal subspace, but errors in the estimate can make location of multiple sources difficult. Recursively applied and projected (RAP) MUSIC uses each successively located source to form an intermediate array gain matrix, and projects both the array manifold and the signal subspace estimate into its orthogonal complement. The MUSIC projection is then performed in this reduced subspace. Using the metric of principal angles, the authors describe a general form of the RAP-MUSIC algorithm for the case of diversely polarized sources. Through a uniform linear array simulation, the authors demonstrate the improved Monte Carlo performance of RAP-MUSIC relative to MUSIC and two other sequential subspace methods, S and IES-MUSIC.

  9. Fundamental physics possibilities at the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Soldner, Torsten

    2016-01-01

    The construction of the European Spallation Source ESS is ongoing in Lund, Sweden. This new high power spallation source with its long-pulse structure opens up new possibilities for fundamental physics experiments. This paper focusses on two proposals for fundamental physics at the ESS: The ANNI...

  10. Offsite source recovery project - ten years of sealed source recovery and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, Julia Rose [Los Alamos National Laboratory; Pearson, Mike [Los Alamos National Laboratory; Witkowski, Ioana [Los Alamos National Laboratory; Wald - Hopkins, Mark [Los Alamos National Laboratory; Cuthbertson, A [NNSA

    2010-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources (this number has since increased to more than 23,000). This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Decades later, these sources began to exceed their special form certifications or fall out of regular use. As OSRP has collected and stored sealed sources, initially using 'No Path Forward' waste exemptions for storage within the Department of Energy (DOE) complex, it has consistently worked to create disposal pathways for the material it has recovered. The project was initially restricted to recovering sealed sources that would meet the definition of Greater-than-Class-C (GTCC) low-level radioactive waste, assisting DOE in meeting its obligations under the Low-level Radioactive Waste Policy Act Amendments (PL 99-240) to provide disposal for this type of waste. After being transferred from DOE-Environmental Management (EM) to the U.S. National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as GTCC when it became waste, but also any other materials that might constitute a 'national security consideration.' It was recognized at the time that the GTCC category was a waste designation having to do with environmental consequence, rather than the threat posed by deliberate or accidental misuse. The project faces barriers to recovery in many areas, but disposal continues to be one of the more difficult to overcome. This paper discusses OSRP's disposal efforts over its 10-year history. For sources

  11. Overview of physical safety of radiation sources in Brazil

    International Nuclear Information System (INIS)

    Lima, A.R.; Silva, F.C.A. da

    2017-01-01

    The threat of 'radiological terrorism' has been recognized worldwide after the event of September 11, 2001. Radioactive sources can be used for the development of DDR ('dirty bomb') devices. Studies show that the use of a DDR could cause health damage, psychosocial and economic and environmental damage. Brazil follows this worldwide concern, since it has a large medical-industrial park that uses radioactive sources. This paper presents an overview of the physical safety of radioactive sources in Brazil, based on the inventory of radiative facilities, regulatory aspects and international recommendations. For the preparation of the study, the database of radioactive sources of the regulatory body, the current normative status and the international recommendations were used. In Brazil there are approximately 2,500 radiative installations, with about 400 radioactive sources Category 1 and 2, which are the biggest concern in terms of physical safety. The Brazilian licensing standard addresses only some aspects of physical protection, not providing a clear orientation for the elaboration and implementation of physical protection systems, in accordance with international recommendations. For Brazil to be included in the world scenario of physical safety of radioactive sources, it is urgent to elaborate specific legislation with well-defined regulatory criteria. The lack of more detailed requirements makes it difficult to make a more careful regulatory assessment of the physical protection conditions of the facilities, either through the evaluation of plans and other physical protection documents or through regulatory inspections

  12. The Exercise: An Exercise Generator Tool for the SOURCe Project

    Science.gov (United States)

    Kakoyianni-Doa, Fryni; Tziafa, Eleni; Naskos, Athanasios

    2016-01-01

    The Exercise, an Exercise generator in the SOURCe project, is a tool that complements the properties and functionalities of the SOURCe project, which includes the search engine for the Searchable Online French-Greek parallel corpus for the UniveRsity of Cyprus (SOURCe) (Kakoyianni-Doa & Tziafa, 2013), the PENCIL (an alignment tool)…

  13. Teaching School Physics. A UNESCO Source Book.

    Science.gov (United States)

    Lewis, John L., Ed.

    This UNESCO source book on teaching physics in schools provides a synthesis of views and policies prevalent throughout the world with respect to physics education. The book's contents are contributed by educators from several nations who have been able to give an international outlook in the discussion of various aspects of physics education. The…

  14. Sustainability in Open Source Software Commons: Lessons Learned from an Empirical Study of SourceForge Projects

    Directory of Open Access Journals (Sweden)

    Charles M. Schweik

    2013-01-01

    Full Text Available In this article, we summarize a five-year US National Science Foundation funded study designed to investigate the factors that lead some open source projects to ongoing collaborative success while many others become abandoned. Our primary interest was to conduct a study that was closely representative of the population of open source software projects in the world, rather than focus on the more-often studied, high-profile successful cases. After building a large database of projects (n=174,333 and implementing a major survey of open source developers (n=1403, we were able to conduct statistical analyses to investigate over forty theoretically-based testable hypotheses. Our data firmly support what we call the conventional theory of open source software, showing that projects start small, and, in successful cases, grow slightly larger in terms of team size. We describe the “virtuous circle” supporting conventional wisdom of open source collaboration that comes out of this analysis, and we discuss two other interesting findings related to developer motivations and how team members find each other. Each of these findings is related to the sustainability of these projects.

  15. [Physical projects atelier: strategy for physical resources administration learning on nursing].

    Science.gov (United States)

    Draganov, Patricia Bover; Sanna, Maria Cristina

    2011-09-01

    The success of learning involves adequate strategies. Those inspired on andragogy, which is the science of teaching adults, seem to be ideal for the nursing undergraduate subject "projects", with a focus on the administration of physical resources for nursing. This study reports teaching strategies that try to estimulate the acquisition of competences that make the nurse capable of a dialogue on projects with a multiprofessional team. The strategy involved a workshop composed by four stages: reading of projects, health assistance institute (HAI) attributions, notions on physical scaling strategies and development of a glossary. The strategy, proposed by a graduate student in the subject "Strategies to the teaching of Administration", was tested through practical application, evaluated and approved by graduate students and teachers. The conditions for its implementation are working with few students, availability of proper classrooms and equipment, and partnership with HAIs.

  16. The physics of the Manhattan project

    International Nuclear Information System (INIS)

    Reed, B. Cameron

    2011-01-01

    The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This book, prepared by a gifted teacher of physics, explores the challenges that faced the members of the Manhattan project. In doing so it gives a clear introduction to fission weapons at the level of an upper-level undergraduate physics student. Details of nuclear reactions, their energy release, the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design are covered. An extensive list of references and a number of problems for self-study are included. Links are given to several spreadsheets with which users can run many of the calculations for themselves. (orig.)

  17. The physics of the Manhattan project

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B. Cameron [Alma Coll., MI (United States). Dept. of Physics

    2011-07-01

    The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This book, prepared by a gifted teacher of physics, explores the challenges that faced the members of the Manhattan project. In doing so it gives a clear introduction to fission weapons at the level of an upper-level undergraduate physics student. Details of nuclear reactions, their energy release, the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design are covered. An extensive list of references and a number of problems for self-study are included. Links are given to several spreadsheets with which users can run many of the calculations for themselves. (orig.)

  18. The Physics of the Manhattan Project

    CERN Document Server

    Reed, B. Cameron

    2011-01-01

    The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This book, prepared by a gifted teacher of physics, explores the challenges that faced the members of the Manhattan project. In doing so it gives a clear introduction to fission weapons at the level of an upper-level undergraduate physics student. Details of nuclear reactions, their energy release, the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design are covered. An extensive list of references and a number of problems for self-study are included. Links are given to several spreadsheets with which users can run many of the calculations for themselves.

  19. Sourcing Team Behavior in Project-Based MNE's

    DEFF Research Database (Denmark)

    Hansen, Anders Peder Lysholm

    2014-01-01

    across the three cases was characterized by conflict between departments represented in the category teams. This resulted in unfortunate sourcing team behaviour and unaligned performance management, which in turn had a number of adverse effects. Further research on how to create a holistic and balanced......This paper presents and discusses a multiple case study of three cross-functional category teams responsible for sourcing critical components within multi-national, project-based enterprises. The study focused on behaviour and management of the sourcing teams and found that the sourcing process...... team perspective in the sourcing teams is suggested....

  20. The physics and technology of ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.

    1989-01-01

    New applications call for ion beams of unprecedented energy, current, species, focus, uniformity, size, and charge states. This comprehensive, up-to-date review and reference for the rapidly evolving field of ion source technology relates improvements to traditional ion sources and describes the development of the new kinds of ion sources. Also provides background material on the physics of ion sources. Chapters are self-contained, making for easy reference

  1. Integrating HCI Specialists into Open Source Software Development Projects

    Science.gov (United States)

    Hedberg, Henrik; Iivari, Netta

    Typical open source software (OSS) development projects are organized around technically talented developers, whose communication is based on technical aspects and source code. Decision-making power is gained through proven competence and activity in the project, and non-technical end-user opinions are too many times neglected. In addition, also human-computer interaction (HCI) specialists have encountered difficulties in trying to participate in OSS projects, because there seems to be no clear authority and responsibility for them. In this paper, based on HCI and OSS literature, we introduce an extended OSS development project organization model that adds a new level of communication and roles for attending human aspects of software. The proposed model makes the existence of HCI specialists visible in the projects, and promotes interaction between developers and the HCI specialists in the course of a project.

  2. Project for the Institution of an Advanced Course in Physics

    Science.gov (United States)

    Teodorani, M.; Nobili, G.

    2006-06-01

    A project for an advanced course in physics at the master level, is presented in great detail. The goal of this project is to create a specific and rigorous training for those who want to carry out experimental and theoretical research on "anomalies" in physical science, especially from the point of view of atmospheric physics, plasma physics, photonic physics, biophysics, astronomy and astrophysics. A specific training in powering mental skills is planned as well. The planned teaching program is presented as a two-year course where the following subjects are intended to be taught: cognitive techniques (I and II), radiation physics (I and II), biophysics (I and II), bioastronomy (I and II), history of physics (I and II), didactics of physics, physics of atmospheric plasmas, physics of non-stationary photonic events, physics of non-linear processes, complements of quantum mechanics, quantum informatics, research methodology in physics and astronomy, computer science methods in physics and astronomy, optoelectronics, radioelectronics. Detailed teaching programs, didactics methods, and performance evaluation, are presented for each subject. The technical content of this project is preceded by an ample introduction that shows all the reasons of this kind of physics course, particularly aimed at innovation in physical science.

  3. Hands on CERN: A Well-Used Physics Education Project

    Science.gov (United States)

    Johansson, K. E.

    2006-01-01

    The "Hands on CERN" education project makes it possible for students and teachers to get close to the forefront of scientific research. The project confronts the students with contemporary physics at its most fundamental level with the help of particle collisions from the DELPHI particle physics experiment at CERN. It now exists in 14 languages…

  4. Synchrotron radiation sources and condensers for projection x-ray lithography

    International Nuclear Information System (INIS)

    Murphy, J.B.; MacDowell, A.A.; White, D.L.; Wood, O.R. II

    1992-01-01

    The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130 Angstrom photons for production line projection x-ray lithography is possible

  5. Two-step web-mining approach to study geology/geophysics-related open-source software projects

    Science.gov (United States)

    Behrends, Knut; Conze, Ronald

    2013-04-01

    Geology/geophysics is a highly interdisciplinary science, overlapping with, for instance, physics, biology and chemistry. In today's software-intensive work environments, geoscientists often encounter new open-source software from scientific fields that are only remotely related to the own field of expertise. We show how web-mining techniques can help to carry out systematic discovery and evaluation of such software. In a first step, we downloaded ~500 abstracts (each consisting of ~1 kb UTF-8 text) from agu-fm12.abstractcentral.com. This web site hosts the abstracts of all publications presented at AGU Fall Meeting 2012, the world's largest annual geology/geophysics conference. All abstracts belonged to the category "Earth and Space Science Informatics", an interdisciplinary label cross-cutting many disciplines such as "deep biosphere", "atmospheric research", and "mineral physics". Each publication was represented by a highly structured record with ~20 short data attributes, the largest authorship-record being the unstructured "abstract" field. We processed texts of the abstracts with the statistics software "R" to calculate a corpus and a term-document matrix. Using R package "tm", we applied text-mining techniques to filter data and develop hypotheses about software-development activities happening in various geology/geophysics fields. Analyzing the term-document matrix with basic techniques (e.g., word frequencies, co-occurences, weighting) as well as more complex methods (clustering, classification) several key pieces of information were extracted. For example, text-mining can be used to identify scientists who are also developers of open-source scientific software, and the names of their programming projects and codes can also be identified. In a second step, based on the intermediate results found by processing the conference-abstracts, any new hypotheses can be tested in another webmining subproject: by merging the dataset with open data from github

  6. Sustainability in Open Source Software Commons: Lessons Learned from an Empirical Study of SourceForge Projects

    OpenAIRE

    Charles M. Schweik

    2013-01-01

    In this article, we summarize a five-year US National Science Foundation funded study designed to investigate the factors that lead some open source projects to ongoing collaborative success while many others become abandoned. Our primary interest was to conduct a study that was closely representative of the population of open source software projects in the world, rather than focus on the more-often studied, high-profile successful cases. After building a large database of projects (n=174,33...

  7. Scientific projection paper for physics

    International Nuclear Information System (INIS)

    Inokuti, M.

    1980-01-01

    Thorough elucidation of the biological effects of ionizing radiation requires full participation of physical scientists, together with life scientists. Therefore, a key point in the federal research strategy will be to ensure involvement of all physicists actively engaged in radiation research and to recruit more physicists for work in this area. Many new developments in physics, both basic and applied, will occur in dosimetry, spectroscopy, and other physical techniques for studying radiations and their interactions with matter in general. Experiments in radiation biology will be made more precise and accurate in the near future, provided that the outcome of contemporary physical research is to be fully used. Likewise, physics research will continue to provide new kinds of radiation sources and other instrumentation, indispensable for progress in life sciences and their applications. Finally, and most importantly, physical research has provided, and will continue to provide, the soundest possible basis for elucidating detailed mechanisms of molecular and cellular processes that lead to the biological effects of radiation. Even from this point alone, it is amply clear that basic research in radiation physics should be a key element of the federal research strategy

  8. International Reactor Physics Experiment Evaluation (IRPhE) Project. IRPhE Handbook - 2015 edition

    International Nuclear Information System (INIS)

    Bess, John D.; Gullifor, Jim

    2015-03-01

    The purpose of the International Reactor Physics Experiment Evaluation (IRPhE) Project is to provide an extensively peer-reviewed set of reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. This work of the IRPhE Project is formally documented in the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments', a single source of verified and extensively peer-reviewed reactor physics benchmark measurements data. The evaluation process entails the following steps: Identify a comprehensive set of reactor physics experimental measurements data, Evaluate the data and quantify overall uncertainties through various types of sensitivity analysis to the extent possible, verify the data by reviewing original and subsequently revised documentation, and by talking with the experimenters or individuals who are familiar with the experimental facility, Compile the data into a standardized format, Perform calculations of each experiment with standard reactor physics codes where it would add information, Formally document the work into a single source of verified and peer reviewed reactor physics benchmark measurements data. The International Handbook of Evaluated Reactor Physics Benchmark Experiments contains reactor physics benchmark specifications that have been derived from experiments that were performed at nuclear facilities around the world. The benchmark specifications are intended for use by reactor designers, safety analysts and nuclear data evaluators to validate calculation techniques and data. Example calculations are presented; these do not constitute a validation or endorsement of the codes or cross-section data. The 2015 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments contains data from 143 experimental series that were

  9. The Impact and Promise of Open-Source Computational Material for Physics Teaching

    Science.gov (United States)

    Christian, Wolfgang

    2017-01-01

    A computer-based modeling approach to teaching must be flexible because students and teachers have different skills and varying levels of preparation. Learning how to run the ``software du jour'' is not the objective for integrating computational physics material into the curriculum. Learning computational thinking, how to use computation and computer-based visualization to communicate ideas, how to design and build models, and how to use ready-to-run models to foster critical thinking is the objective. Our computational modeling approach to teaching is a research-proven pedagogy that predates computers. It attempts to enhance student achievement through the Modeling Cycle. This approach was pioneered by Robert Karplus and the SCIS Project in the 1960s and 70s and later extended by the Modeling Instruction Program led by Jane Jackson and David Hestenes at Arizona State University. This talk describes a no-cost open-source computational approach aligned with a Modeling Cycle pedagogy. Our tools, curricular material, and ready-to-run examples are freely available from the Open Source Physics Collection hosted on the AAPT-ComPADRE digital library. Examples will be presented.

  10. Exploring quantum physics through hands-on projects

    CERN Document Server

    Prutchi, David

    2012-01-01

    Build an intuitive understanding of the principles behind quantum mechanics through practical construction and replication of original experiments With easy-to-acquire, low-cost materials and basic knowledge of algebra and trigonometry, Exploring Quantum Physics through Hands-on Projects takes readers step by step through the process of re-creating scientific experiments that played an essential role in the creation and development of quantum mechanics. From simple measurements of Planck's constant to testing violations of Bell's inequalities using entangled photons, Exploring Quantum Physics through Hands-on Projects not only immerses readers in the process of quantum mechanics, it provides insight into the history of the field--how the theories and discoveries apply to our world not only today, but also tomorrow. By immersing readers in groundbreaking experiments that can be performed at home, school, or in the lab, this first-ever, hands-on book successfully demystifies the world of quantum physics for...

  11. Student evaluation of research projects in a first-year physics laboratory

    International Nuclear Information System (INIS)

    Sharma, Manjula D; Mendez, Alberto; Sefton, Ian M; Khachan, Joe

    2014-01-01

    We describe the evaluation by students of a scheme of open-ended, research-based group project work which has become a standard component of first-year physics courses at the University of Sydney and is now in its 19th year of operation. Data were gathered from two sources: direct observations of the classes and a written survey. A summary of the classroom observations and the results from a detailed analysis of the survey responses are presented. The feedback from the cohort of approximately 800 students is largely positive but we identify a few discrepancies between stated course goals and the results from the survey. (paper)

  12. New neutron physics using spallation sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1988-01-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. The energy range of neutron research which is being explored with these sources extends from thermal energies to almost 800 MeV. The emphasis here is on prospective experiments below 100 keV neutron energy using the intense neutron bursts produced by the Proton Storage Ring (PSR) at Los Alamos. 30 refs., 10 figs

  13. Irreducible projective representations and their physical applications

    Science.gov (United States)

    Yang, Jian; Liu, Zheng-Xin

    2018-01-01

    An eigenfunction method is applied to reduce the regular projective representations (Reps) of finite groups to obtain their irreducible projective Reps. Anti-unitary groups are treated specially, where the decoupled factor systems and modified Schur’s lemma are introduced. We discuss the applications of irreducible Reps in many-body physics. It is shown that in symmetry protected topological phases, geometric defects or symmetry defects may carry projective Rep of the symmetry group; while in symmetry enriched topological phases, intrinsic excitations (such as spinons or visons) may carry projective Rep of the symmetry group. We also discuss the applications of projective Reps in problems related to spectrum degeneracy, such as in search of models without sign problem in quantum Monte Carlo simulations.

  14. FRG sealed isotopic heat sources project (C-229) project management plan

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1997-01-01

    This Project Management Plan defines the cost, scope, schedule, organizational responsibilities, and work breakdown structure for the removal of the Federal Republic of Germany (FRG) Sealed Isotopic Heat Sources from the 324 Building and placed in interim storage at the Central Waste Complex (CWC)

  15. Analysis and projections of physics in Chile

    International Nuclear Information System (INIS)

    Soto, Leopoldo; Zambra, Marcelo; Loewe, Marcelo; Gutierrez, Gonzalo; Molina, Mario; Barra, Felipe; Lund, Fernando; Saavedra, Carlos; Haberle, Patricio

    2008-01-01

    In the present work, an assessment of the Physics research capacity in Chile is presented. For this, the period between 2000 and June 2005 has been studied. In this period almost 200 physicists have contributed to scientific production in terms of ISI publications. Amongst these 200, ∼160 correspond to theoretical physicists and only ∼40 to experimental physicists; ∼178 are men and only ∼22 are women. A more detailed analysis shows that ∼160 physicists have at least one appearance in ISI publications per year considering the last 3 years. Ten years ago, a similar criteria (at least one appearance per year in ISI articles, considering mobile three-year periods), the number of active physicists in the Chilean community was estimated at 70. Therefore, the Chilean active physicists' community has doubled in 10 years. There exist 20 centres in which scientific research is developed: 18 university centres, a government institute and a private institute. As regards scientific productivity, both as related to disciplines or research areas, and well as in relation to research centres, it is found that, generally, scientific production, in a particular area in Physics or in a research centre, is directly related to the number of corresponding researchers; that is to say, the percentage of the national productivity in an area or research centre corresponds to its share in the total number of physicists in the country. A geographical analysis shows that 50% of the productivity corresponds to Santiago and 50% to the rest of the country. The impact of the different funds for research is assessed, also: FONDECYT, Presidential Chairs and large projects and centres of excellence. According to Physics researchers opinion, Fondo Nacional de Ciencia y TecnologIa (FONDECYT, National Fund fro Science and Technology) has become the best instrument to support researchi activities in Chile. However, the amount of projects awarded has practically not been increased, which is

  16. Analysis and projections of physics in Chile

    Science.gov (United States)

    Soto, Leopoldo; Zambra, Marcelo; Loewe, Marcelo; Gutiérrez, Gonzalo; Molina, Mario; Barra, Felipe; Lund, Fernando; Saavedra, Carlos; Haberle, Patricio

    2008-11-01

    In the present work, an assessment of the Physics research capacity in Chile is presented. For this, the period between 2000 and June 2005 has been studied. In this period almost 200 physicists have contributed to scientific production in terms of ISI publications. Amongst these 200, ~160 correspond to theoretical physicists and only ~40 to experimental physicists; ~178 are men and only ~22 are women. A more detailed analysis shows that ~160 physicists have at least one appearance in ISI publications per year considering the last 3 years. Ten years ago, a similar criteria (at least one appearance per year in ISI articles, considering mobile three-year periods), the number of active physicists in the Chilean community was estimated at 70. Therefore, the Chilean active physicists' community has doubled in 10 years. There exist 20 centres in which scientific research is developed: 18 university centres, a government institute and a private institute. As regards scientific productivity, both as related to disciplines or research areas, and well as in relation to research centres, it is found that, generally, scientific production, in a particular area in Physics or in a research centre, is directly related to the number of corresponding researchers; that is to say, the percentage of the national productivity in an area or research centre corresponds to its share in the total number of physicists in the country. A geographical analysis shows that 50% of the productivity corresponds to Santiago and 50% to the rest of the country. The impact of the different funds for research is assessed, also: FONDECYT, Presidential Chairs and large projects and centres of excellence. According to Physics researchers opinion, Fondo Nacional de Ciencia y Tecnología (FONDECYT, National Fund fro Science and Technology) has become the best instrument to support researchi activities in Chile. However, the amount of projects awarded has practically not been increased, which is insufficient

  17. SAGE as a Source for Undergraduate Research Projects

    Science.gov (United States)

    Hutz, Benjamin

    2017-01-01

    This article examines the use of the computer algebra system SAGE for undergraduate student research projects. After reading this article, the reader should understand the benefits of using SAGE as a source of research projects and how to commence working with SAGE. The author proposes a tiered working group model to allow maximum benefit to the…

  18. Project Physics Programmed Instruction, Waves 2.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    This is the second of two programmed instruction booklets on the topic of waves, developed by Harvard Project Physics. It covers the relationships among the frequency, period, wavelength, and speed of a periodic wave. For the first booklet in this series, see SE 015 552. (DT)

  19. The Earthquake‐Source Inversion Validation (SIV) Project

    KAUST Repository

    Mai, Paul Martin

    2016-04-27

    Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward-modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source-model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake-source imaging problem.

  20. The Earthquake‐Source Inversion Validation (SIV) Project

    KAUST Repository

    Mai, Paul Martin; Schorlemmer, Danijel; Page, Morgan; Ampuero, Jean‐Paul; Asano, Kimiyuki; Causse, Mathieu; Custodio, Susana; Fan, Wenyuan; Festa, Gaetano; Galis, Martin; Gallovic, Frantisek; Imperatori, Walter; Kä ser, Martin; Malytskyy, Dmytro; Okuwaki, Ryo; Pollitz, Fred; Passone, Luca; Razafindrakoto, Hoby; Sekiguchi, Haruko; Song, Seok Goo; Somala, Surendra N.; Thingbaijam, Kiran Kumar; Twardzik, Cedric; van Driel, Martin; Vyas, Jagdish Chandra; Wang, Rongjiang; Yagi, Yuji; Zielke, Olaf

    2016-01-01

    Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward-modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source-model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake-source imaging problem.

  1. Application of ECR ion source beams in atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.W.

    1987-01-01

    The availability of intense, high charge state ion beams from ECR ion sources has had significant impact not only on the upgrading of cyclotron and synchrotron facilities, but also on multicharged ion collision research, as evidenced by the increasing number of ECR source facilities used at least on a part time basis for atomic physics research. In this paper one such facility, located at the ORNL ECR source, and dedicated full time to the study of multicharged ion collisions, is described. Examples of applications of ECR ion source beams are given, based on multicharged ion collision physics studies performed at Oak Ridge over the last few years. 21 refs., 18 figs., 2 tabs.

  2. Directory of financing sources for foreign energy projects

    Energy Technology Data Exchange (ETDEWEB)

    La Ferla, L. [La Ferla Associates, Washington, DC (United States)

    1995-09-01

    The Office of National Security Policy has produced this Directory of Financing Sources for Foreign Energy Projects. The Directory reviews programs that offer financing from US government agencies, multilateral organizations, public, private, and quasi-private investment funds, and local commercial and state development banks. The main US government agencies covered are the US Agency for International Development (USAID), the Export-Import Bank of the US (EXIM Bank), Overseas Private Investment Corporation (OPIC), US Department of Energy, US Department of Defense, and the US Trade and Development Agency (TDA). Other US Government Sources includes market funds that have been in part capitalized using US government agency funds. Multilateral organizations include the World Bank, International Finance Corporation (IFC), Asian Development Bank (ADB), European Bank for Reconstruction and Development (EBRD), and various organizations of the United Nations. The Directory lists available public, private, and quasi-private sources of financing in key emerging markets in the Newly Independent States and other developing countries of strategic interest to the US Department of Energy. The sources of financing listed in this directory should be considered indicative rather than inclusive of all potential sources of financing. Initial focus is on the Russian Federation, Ukraine, india, China, and Pakistan. Separate self-contained sections have been developed for each of the countries to enable the user to readily access market-specific information and to support country-specific Departmental initiatives. For each country, the directory is organized to follow the project life cycle--from prefeasibility, feasibility, project finance, cofinancing, and trade finance, through to technical assistance and training. Programs on investment and export insurance are excluded.

  3. The Earthquake‐Source Inversion Validation (SIV) Project

    Science.gov (United States)

    Mai, P. Martin; Schorlemmer, Danijel; Page, Morgan T.; Ampuero, Jean-Paul; Asano, Kimiyuki; Causse, Mathieu; Custodio, Susana; Fan, Wenyuan; Festa, Gaetano; Galis, Martin; Gallovic, Frantisek; Imperatori, Walter; Käser, Martin; Malytskyy, Dmytro; Okuwaki, Ryo; Pollitz, Fred; Passone, Luca; Razafindrakoto, Hoby N. T.; Sekiguchi, Haruko; Song, Seok Goo; Somala, Surendra N.; Thingbaijam, Kiran K. S.; Twardzik, Cedric; van Driel, Martin; Vyas, Jagdish C.; Wang, Rongjiang; Yagi, Yuji; Zielke, Olaf

    2016-01-01

    Finite‐fault earthquake source inversions infer the (time‐dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake‐source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward‐modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source‐model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake‐source imaging problem.

  4. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    Science.gov (United States)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  5. Physics-Based Hazard Assessment for Critical Structures Near Large Earthquake Sources

    Science.gov (United States)

    Hutchings, L.; Mert, A.; Fahjan, Y.; Novikova, T.; Golara, A.; Miah, M.; Fergany, E.; Foxall, W.

    2017-09-01

    We argue that for critical structures near large earthquake sources: (1) the ergodic assumption, recent history, and simplified descriptions of the hazard are not appropriate to rely on for earthquake ground motion prediction and can lead to a mis-estimation of the hazard and risk to structures; (2) a physics-based approach can address these issues; (3) a physics-based source model must be provided to generate realistic phasing effects from finite rupture and model near-source ground motion correctly; (4) wave propagations and site response should be site specific; (5) a much wider search of possible sources of ground motion can be achieved computationally with a physics-based approach; (6) unless one utilizes a physics-based approach, the hazard and risk to structures has unknown uncertainties; (7) uncertainties can be reduced with a physics-based approach, but not with an ergodic approach; (8) computational power and computer codes have advanced to the point that risk to structures can be calculated directly from source and site-specific ground motions. Spanning the variability of potential ground motion in a predictive situation is especially difficult for near-source areas, but that is the distance at which the hazard is the greatest. The basis of a "physical-based" approach is ground-motion syntheses derived from physics and an understanding of the earthquake process. This is an overview paper and results from previous studies are used to make the case for these conclusions. Our premise is that 50 years of strong motion records is insufficient to capture all possible ranges of site and propagation path conditions, rupture processes, and spatial geometric relationships between source and site. Predicting future earthquake scenarios is necessary; models that have little or no physical basis but have been tested and adjusted to fit available observations can only "predict" what happened in the past, which should be considered description as opposed to prediction

  6. The Harvard Project Physics Film Program

    Science.gov (United States)

    Bork, Alfred M.

    1970-01-01

    States the philosophy behind the Harvard Project Physics (HPP) film program. Describes the three long HPP films. Lists the 48 color film loops covering six broad topics, primarily motion and energy. The 8-mm silent loops are synchronized with the text materials. Explains some of the pedagogical possibilities of these film loops. (RR)

  7. Breakthrough Propulsion Physics Project: Project Management Methods

    Science.gov (United States)

    Millis, Marc G.

    2004-01-01

    To leap past the limitations of existing propulsion, the NASA Breakthrough Propulsion Physics (BPP) Project seeks further advancements in physics from which new propulsion methods can eventually be derived. Three visionary breakthroughs are sought: (1) propulsion that requires no propellant, (2) propulsion that circumvents existing speed limits, and (3) breakthrough methods of energy production to power such devices. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify credible research that will make measurable progress toward these goals in the near-term. The management techniques to address this challenge are presented, with a special emphasis on the process used to review, prioritize, and select research tasks. This selection process includes these key features: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than the implications of the assertions, which includes the practice where the reviewers judge credibility rather than feasibility, and (c) total scores are obtained by multiplying the criteria scores rather than by adding. Lessons learned and revisions planned are discussed.

  8. Learning Physics through Project-Based Learning Game Techniques

    Science.gov (United States)

    Baran, Medine; Maskan, Abdulkadir; Yasar, Seyma

    2018-01-01

    The aim of the present study, in which Project and game techniques are used together, is to examine the impact of project-based learning games on students' physics achievement. Participants of the study consist of 34 9th grade students (N = 34). The data were collected using achievement tests and a questionnaire. Throughout the applications, the…

  9. Physics Challenges for ERL Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Lia Merminga

    2004-07-01

    We present an overview of the physics challenges encountered in the design and operation of Energy Recovering Linac (ERL) based light sources. These challenges include the generation and preservation of low emittance, high-average current beams, manipulating and preserving the transverse and longitudinal phase space, control of the multipass beam breakup instability, efficient extraction of higher order mode power and RF control and stability of the superconducting cavities. These key R&D issues drive the design and technology choices for proposed ERL light sources. Simulations and calculations of these processes will be presented and compared with experimental data obtained at the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in commissioning, and during a 1 GeV demonstration of energy recovery at CEBAF.

  10. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    International Nuclear Information System (INIS)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I ampersand C Research and Development; Design; and Safety

  11. Revisiting the physics education projects in a Bakhitinian perspective

    Directory of Open Access Journals (Sweden)

    José Ortega

    2017-12-01

    Full Text Available In this article, we point out correlations between the 1970s social-historical context and the of physics teaching sphere at the time, through the analysis of utterances expressed in two educational projects texts: The Physics Project at Harvard University and the Project of Physical Education at the University of Sao Paulo. Given the infinity and complexity of mediations between society and projects, we focus on mediations that refer to the broader spheres of social activity. We want to outline the socio-historical mediations that allow us to identify the social and historical limits to which they were submitted. Therefore, it is in this dialectical relationship between educational work and the historical horizon of a society that we take the bakhtinian concept of discursive genre, which allows representing the relations between history and discourse. Within this relationship social teleology, communicative intentions and the discursive choices of the subjects of human activity are established. Thus our discursive, social, and historical perspective of analysis indicates that the educational discourses they produced, is an expression of the needs, values and commitments of organized social groups of those societies, and that their ideological productions were reflected and refracted in the thematic content, composition and genre style produced within the teaching in that context.

  12. South American Source Removal Project

    International Nuclear Information System (INIS)

    Nader, Alejandro V.

    2017-01-01

    Main objective of the project: •Thanks to Canada funding and IAEA technical assistance the main objective is to remove 29 disused sealed radioactive sources (DSRS), from 5 member states in Latin America region (Bolivia - Ecuador - Paraguay – Peru – Uruguay) to an authorized recipient for their final management. •It includes packaging of the DSRS and the DU working shields, customs arrangement for the export from the respective countries and import to the final destination in the Authorized Recipient’s country, transportation, deposit and hand over to an Authorized Recipient

  13. Experiment on search for neutron-antineutron oscillations using a projected UCN source at the WWR-M reactor

    Science.gov (United States)

    Fomin, A. K.; Serebrov, A. P.; Zherebtsov, O. M.; Leonova, E. N.; Chaikovskii, M. E.

    2017-01-01

    We propose an experiment on search for neutron-antineutron oscillations based on the storage of ultracold neutrons (UCN) in a material trap. The sensitivity of the experiment mostly depends on the trap size and the amount of UCN in it. In Petersburg Nuclear Physics Institute (PNPI) a high-intensity UCN source is projected at the WWR-M reactor, which must provide UCN density 2-3 orders of magnitude higher than existing sources. The results of simulations of the designed experimental scheme show that the sensitivity can be increased by ˜ 10-40 times compared to sensitivity of previous experiment depending on the model of neutron reflection from walls.

  14. Health physics program for the Edgemont Uranium Mill decommissioning project

    International Nuclear Information System (INIS)

    Polehn, J.L.; Wallace, R.G.; Reed, R.P.; Wilson, G.T.

    1986-01-01

    The Tennessee Valley Authority (TVA) is actively involved in decommissioning a uranium mill located near the town of Edgemont, South Dakota. The Edgemont Mill Decommissioning Project, which is unique in many respects, will involve dismantlement of the old inactive mill building and excavation and transportation of several million tons of uranium mill tailings to a permanent disposal site. To ensure that workers are adequately protected from radiation exposure during decommissioning operations, a health physics program appropriate for the decommissioning situation was developed. The Edgemont Mill Decommissioning Project Health Physics Manual (HPM) gives the programmatic requirements for worker radiation protection. The requirements of the HPM are implemented by means of detailed onsite operating procedures. The Edgemont project health physics program was developed using currently available regulations and guidance for an operating uranium mill with appropriate modifications for decommissioning. This paper discusses the development, implementation, and documentation of that program

  15. National synchrotron light source basic design and project status

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1981-01-01

    A summary description and the basic design parameters of the National Synchrotron Light Source, a facility for the generation of intense synchrotron radiation in the vuv and x-ray range is presented, the parameters of the sources are given, the presently planned facility beam lines are tabulated and the status of the project is indicated

  16. Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.

    Science.gov (United States)

    Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua

    2018-02-01

    Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.

  17. A EU simulation platform for nuclear reactor safety: multi-scale and multi-physics calculations, sensitivity and uncertainty analysis (NURESIM project)

    International Nuclear Information System (INIS)

    Chauliac, Christian; Bestion, Dominique; Crouzet, Nicolas; Aragones, Jose-Maria; Cacuci, Dan Gabriel; Weiss, Frank-Peter; Zimmermann, Martin A.

    2010-01-01

    The NURESIM project, the numerical simulation platform, is developed in the frame of the NURISP European Collaborative Project (FP7), which includes 22 organizations from 14 European countries. NURESIM intends to be a reference platform providing high quality software tools, physical models, generic functions and assessment results. The NURESIM platform provides an accurate representation of the physical phenomena by promoting and incorporating the latest advances in core physics, two-phase thermal-hydraulics and fuel modelling. It includes multi-scale and multi-physics features, especially for coupling core physics and thermal-hydraulics models for reactor safety. Easy coupling of the different codes and solvers is provided through the use of a common data structure and generic functions (e.g., for interpolation between non-conforming meshes). More generally, the platform includes generic pre-processing, post-processing and supervision functions through the open-source SALOME software, in order to make the codes more user-friendly. The platform also provides the informatics environment for testing and comparing different codes. The contribution summarizes the achievements and ongoing developments of the simulation platform in core physics, thermal-hydraulics, multi-physics, uncertainties and code integration

  18. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    International Nuclear Information System (INIS)

    Cary, J.R.; Spentzouris, P.; Amundson, J.; McInnes, L.; Borland, M.; Mustapha, B.; Ostroumov, P.; Wang, Y.; Fischer, W.; Fedotov, A.; Ben-Zvi, I.; Ryne, R.; Esarey, E.; Geddes, C.; Qiang, J.; Ng, E.; Li, S.; Ng, C.; Lee, R.; Merminga, L.; Wang, H.; Bruhwiler, D.L.; Dechow, D.; Mullowney, P.; Messmer, P.; Nieter, C.; Ovtchinnikov, S.; Paul, K.; Stoltz, P.; Wade-Stein, D.; Mori, W.B.; Decyk, V.; Huang, C.K.; Lu, W.; Tzoufras, M.; Tsung, F.; Zhou, M.; Werner, G.R.; Antonsen, T.; Katsouleas, T.; Morris, B.

    2007-01-01

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction

  19. Forked and Integrated Variants In An Open-Source Firmware Project

    DEFF Research Database (Denmark)

    Stanciulescu, Stefan; Schulze, Sandro; Wasowski, Andrzej

    2015-01-01

    and interactive source management platforms such as Github. We study advantages and disadvantages of forking using the case of Marlin, an open source firmware for 3D printers. We find that many problems and advantages of cloning do translate to forking. Interestingly, the Marlin community uses both forking......Code cloning has been reported both on small (code fragments) and large (entire projects) scale. Cloning-in-the-large, or forking, is gaining ground as a reuse mechanism thanks to availability of better tools for maintaining forked project variants, hereunder distributed version control systems...

  20. Physical processes in EUV sources for microlithography

    International Nuclear Information System (INIS)

    Banine, V Y; Swinkels, G H P M; Koshelev, K N

    2011-01-01

    The source is an integral part of an extreme ultraviolet lithography (EUVL) tool. Such a source, as well as the EUVL tool, has to fulfil very high demands both technical and cost oriented. The EUVL tool operates at a wavelength of 13.5 nm, which requires the following new developments. - The light production mechanism changes from conventional lamps and lasers to relatively high-temperature emitting plasmas. - The light transport, mainly refractive for deep ultraviolet (DUV), should be reflective for EUV. - The source specifications as derived from the customer requirements on wafer throughput mean that the output EUV source power has to be hundreds of watts. This in its turn means that tens to hundreds of kilowatts of dissipated power has to be managed in a relatively small volume. - In order to keep lithography costs as low as possible, the lifetime of the components should be as long as possible and at least of the order of thousands of hours. This poses a challenge for the sources, namely how to design and manufacture components robust enough to withstand the intense environment of high heat dissipation, flows of several keV ions as well as the atomic and particular debris within the source vessel. - As with all lithography tools, the imaging requirements demand a narrow illumination bandwidth. Absorption of materials at EUV wavelengths is extreme with extinguishing lengths of the order of tens of nanometres, so the balance between high transmission and spectral purity requires careful engineering. All together, EUV lithography sources present technological challenges in various fields of physics such as plasma, optics and material science. These challenges are being tackled by the source manufacturers and investigated extensively in the research facilities around the world. An overview of the published results on the topic as well as the analyses of the physical processes behind the proposed solutions will be presented in this paper. (topical review)

  1. Advanced Neutron Source (ANS) Project

    International Nuclear Information System (INIS)

    Campbell, J.H.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts

  2. Housing projects in Trabzon: Marketting discourses and physical environmental features

    OpenAIRE

    AYDIN TÜRK, Yelda; KARADENİZ, Beyza

    2018-01-01

    Thehousing projects, that have turned into concept projects promoted as acommodity since last decade in Turkey. These projects, are marketed withdiscourses such as “the long-awaited life”, “ideal home” and are constructed onthe urban fringes. In this study, the housing projects that developed inTrabzon in recent years have been examined in this context. Marketing discourseand physical environmental characteristics of the projects have been analyzed.Thus, the study finds out to what extent the...

  3. The "Finding Physics" Project: Recognizing and Exploring Physics Outside the Classroom

    Science.gov (United States)

    Beck, Judith; Perkins, James

    2016-11-01

    Students in introductory physics classes often have difficulty recognizing the relevance of physics concepts outside the confines of the physics classroom, lab, and textbook. Even though textbooks and instructors often provide examples of physics applications from a wide array of areas, students have difficulty relating physics to their own lives. Encouraging students to apply physics to their own surroundings helps them develop the critical analysis skills of a scientifically literate and competent citizen. Fink, in his book Creating Significant Learning Experiences, emphasizes the importance of constructing opportunities to help students connect what they learn in their academic courses with past and current life experiences and link them to possible future life experiences. Several excellent papers in this journal have presented labs and activities that address this concern by encouraging teachers to bring real-world examples into the classroom or to take students into the field for data collection and observation. Alternatively, Smith suggests a writing exercise in which his students identify and explain an event in terms of their understanding of physics. In this paper we present a multiphase exercise that challenges students to find their own examples of physics from outside the classroom and analyze them using the conceptual understanding and quantitative skills which they are developing in the classroom. The ultimate goal of the "Finding Physics" project is to improve students' learning through enhancing their recognition that, to quote one participant's end-of-course survey, "Physics is everywhere!"

  4. HIE-ISOLDE, the project and the physics opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Borge, M.J.G. [ISOLDE, EP Department, CERN, Geneva 23 (Switzerland); Instituto de Estructura de la Materia, CSIC, Madrid (Spain); Riisager, K. [Aarhus University, Department of Physics and Astronomy, Aarhus C (Denmark)

    2016-11-15

    The ISOLDE facility at CERN offers the largest selection of ISOL beams today. The overall aim of the HIE-ISOLDE project is to enlarge the physics domains achievable with these beams, in particular by raising the maximum energy of post-accelerated beams to more than 10 MeV/u. An outline of the history of the project is followed by a succinct description of the superconducting linac chosen for acceleration and an overview of the parts of the project aiming to the improvement of the beam quality and intensity. Concrete examples are given of experiments that will be performed at HIE-ISOLDE. (orig.)

  5. Physics Projects for a Future CERN-LNGS Neutrino Programme

    OpenAIRE

    Picchi, P.; Pietropaolo, F.

    1998-01-01

    We present an overview of the future projects concerning the neutrino oscillation physics in Europe. Recently a joint CERN-LNGS scientific committee has reviewed several proposals both for the study of atmospheric neutrinos and for long (LBL) and short baseline (SBL) neutrino oscillation experiments. The committee has indicated the priority that the European high energy physics community should follows in the field of neutrino physics, namely a new massive, atmospheric neutrino detector and a...

  6. The ugly twins: Failed global sourcing projects and their substitutes

    NARCIS (Netherlands)

    Schiele, Holger; Horn, Philipp; Horn, Philipp; Werner, Welf

    2010-01-01

    Purpose of the paper and literature addressed: Analyzing the impact of failed global sourcing projects on the entire commodity group and exploring isomorphism as potential antecedent to the observed phenomenon. The paper is embedded in the global sourcing literature, as well as isomorphism and total

  7. Physics meets fine arts: a project-based learning path on infrared imaging

    Science.gov (United States)

    Bonanno, A.; Bozzo, G.; Sapia, P.

    2018-03-01

    Infrared imaging represents a noninvasive tool for cultural heritage diagnostics, based on the capability of IR radiation to penetrate the most external layers of different objects (as for example paintings), revealing hidden features of artworks. From an educational viewpoint, this diagnostic technique offers teachers the opportunity to address manifold topics pertaining to the physics and technology of electromagnetic radiation, with particular emphasis on the nature of color and its physical correlates. Moreover, the topic provides interesting interdisciplinary bridges towards the human sciences. In this framework, we present a hands-on learning sequence, suitable for both high school students and university freshmen, inspired by the project-based learning (PBL) paradigm, designed and implemented in the context of an Italian national project aimed at offering students the opportunity to participate in educational activities within a real working context. In a preliminary test we involved a group of 23 high school students while they were working as apprentices in the Laboratory of Applied Physics for Cultural Heritage (ArcheoLab) at the University of Calabria. Consistently with the PBL paradigm, students were given well-defined practical goals to be achieved. As final goals they were asked (i) to construct and to test a low cost device (based on a disused commercial camera) appropriate for performing educational-grade IR investigations on paintings, and (ii) to prepare a device working as a simple spectrometer (recycling the optical components of a disused video projector), suitable for characterizing various light sources in order to identify the most appropriate for infrared imaging. The proposed learning path has shown (in the preliminary test) to be effective in fostering students’ interest towards physics and its technological applications, especially because pupils perceived the context (i.e. physics applied to the protection and restoration of cultural

  8. Project Physics Tests 4, Light and Electromagnetism.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 4 are presented in this booklet. Included are 70 multiple-choice and 22 problem-and-essay questions. Concepts of light and electromagnetism are examined on charges, reflection, electrostatic forces, electric potential, speed of light, electromagnetic waves and radiations, Oersted's and Faraday's work,…

  9. CAS Accelerator Physics (Ion Sources) in Slovakia

    CERN Multimedia

    CAS School

    2012-01-01

    The CERN Accelerator School (CAS) and the Slovak University of Technology jointly organised a specialised course on ion sources, held at the Hotel Senec, Senec, Slovakia, from 29 May to 8 June, 2012.   Following some background lectures on accelerator physics and the fundamental processes of atomic and plasma physics, the course covered a wide range of topics related to ion sources and highlighted the latest developments in the field. Realistic case studies and topical seminars completed the programme. The school was very successful, with 69 participants representing 25 nationalities. Feedback from the participants was extremely positive, reflecting the high standard of the lectures. The case studies were performed with great enthusiasm and produced some excellent results. In addition to the academic programme, the participants were able to take part in a one-day excursion consisting of a guided tour of Bratislava and free time. A welcome event was held at the Hotel Senec, with s...

  10. Project Physics Tests 1, Concepts of Motion.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 1 are presented in this booklet, consisting of 70 multiple-choice and 20 problem-and-essay questions. Concepts of motion are examined with respect to velocities, acceleration, forces, vectors, Newton's laws, and circular motion. Suggestions are made for time consumption in answering some items. Besides…

  11. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  12. North Village Ground Source Heat Pump Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Redderson, Jeff

    2015-08-03

    This project demonstrated the feasibility of converting from a traditional direct exchange system to a ground source heat pump system on a large scale, multiple building apartment complex on a university campus. A total of ten apartment buildings were converted using vertical well fields and a ground source loop that connected the 24 apartments in each building into a common system. The system has yielded significant operational savings in both energy and maintenance and transformed the living environments of these residential buildings for our students.

  13. Crowd-sourced Archaeological Research: The MicroPasts Project

    Directory of Open Access Journals (Sweden)

    Chiara Bonacchi

    2014-10-01

    Full Text Available This paper offers a brief introduction to MicroPasts, a web-enabled crowd-sourcing and crowd-funding project whose overall goal is to promote the collection and use of high quality research data via institutional and community collaborations, both on- and off-line. In addition to introducing this initiative, the discussion below is a reflection of its lead author’s core contribution to the project and will dwell in more detail on one particular aspect of MicroPasts: its relevance to research and practice in public archaeology, cultural policy and heritage studies.

  14. A project-based course about outreach in a physics curriculum

    Science.gov (United States)

    Bobroff, Julien; Bouquet, Frédéric

    2016-07-01

    We describe an undergraduate course where physics students are asked to conceive an outreach project of their own. This project-based-learning course alternates between the project conception and teaching activities about outreach. It ends in a public show. Students decide the topic and format on their own. An analysis of the students’ productions over three years shows that all physics fields were equally covered, and various formats were used (experimental devices, animation or fiction movies, games, live events, photography). Some typical examples are described. We also analyse the benefits of this approach from the students’ perspective, through a survey done over three classes. Students showed an overall very good assessment of the course (average of 4.5(0.6) on an appreciation scale from 1 to 5) and recognised having developed outreach skills but also project-management and group-work know-how. They acknowledged this course to be a unique opportunity to share with an audience their interest in physics compared to other courses. They further mentioned that it served as an intermission in a classical academic curriculum. They also point out some challenges, especially the time-consuming issue. This survey together with the practical description of the course implementation should help other universities develop similar courses.

  15. Shippingport Station Decommissioning Project Start of Physical Decommissioning

    International Nuclear Information System (INIS)

    Crimi, F. P.

    1987-01-01

    The Shippingport Atomic Power Station consists of the nuclear steam supply system and associated radioactive waste processing systems, which are owned by the United States Department of Energy, and the turbine-generator and balance of plant, which is owned by the Duquesne Light Company. The station is located at Shippingport, Pennsylvania on seven acres of land leased by DOE from Duquesne Light Company. The Shippingport Station Decommissioning Project is being performed under contract to the DOE by the General Electric Company and its integrated subcontractor, Morrison-Knudsen Company. as the Decommissioning Operations Contractor. This paper describes the current status of the physical decommissioning work, which started September 1985. The preparations required to start a major decommissioning work effort in a safe and cost effective manner are discussed including the development and implementation of a cost/schedule control system. The detailed plan required to ensure that people, property, and procedures are ready in sufficient time to support the start of physical decommissioning is also discussed. The total estimated cost of the Shippingport Station Decommissioning Project should be $98.3 M, with the Project scheduled for completion in April 1990. As the decommissioning of the first commercial-scale nuclear power plant, the Shippingport Project is expected to set the standard for safe, cost-effective demolition of nuclear plants

  16. Open Source Projects in Software Engineering Education: A Mapping Study

    Science.gov (United States)

    Nascimento, Debora M. C.; Almeida Bittencourt, Roberto; Chavez, Christina

    2015-01-01

    Context: It is common practice in academia to have students work with "toy" projects in software engineering (SE) courses. One way to make such courses more realistic and reduce the gap between academic courses and industry needs is getting students involved in open source projects (OSP) with faculty supervision. Objective: This study…

  17. The creation of science projects in the physics teachers preparation

    Science.gov (United States)

    Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír

    2017-01-01

    Terms - project, projecting and the method of projecting - are nowadays frequently used in different relations. Those terms, especially as methods (of a cognitive process), are also transferred to the educational process. Before a new educational method comes to practice, the teacher should be familiar with it and preferably when it is done so during his university studies. An optional subject called Physics in a system of science subjects has been included into physics curricula for students of the fourth year of their studies at the Faculty of Science of Constantine the Philosopher University in Nitra. Its task is to make students aware of ways how to coordinate knowledge and instructions presented in these subjects through analysis of curricula and textbooks. As a part of their seminars students are asked to create integrated tasks and experiments which can be assessed from the point of view of either physics or chemistry or biology and which can motivate pupils and form their complex view on various phenomena in the nature. Therefore the article discusses theoretical and also practical questions related to experience that originates from placing the mentioned method and the subject Physics in a system of science subjects into the preparation of a natural sciences teacher in our workplace.

  18. Physics Analyses in the Design of the HFIR Cold Neutron Source

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1999-01-01

    Physics analyses have been performed to characterize the performance of the cold neutron source to be installed in the High Flux Isotope Reactor at the Oak Ridge National Laboratory in the near future. This paper provides a description of the physics models developed, and the resulting analyses that have been performed to support the design of the cold source. These analyses have provided important parametric performance information, such as cold neutron brightness down the beam tube and the various component heat loads, that have been used to develop the reference cold source concept

  19. Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology (invited)

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.

    2004-01-01

    Electron cyclotron resonance (ECR) ion sources are scientific instruments particularly useful for physics: they are extensively used in atomic, nuclear, and high energy physics, for the production of multicharged beams. Moreover, these sources are also of fundamental interest for plasma physics, because of the very particular properties of the ECR plasma. This article describes the state of the art on the physics of the ECR plasma related to multiply charged ion sources. In Sec. I, we describe the general aspects of ECR ion sources. Physics related to the electrons is presented in Sec. II: we discuss there the problems of heating and confinement. In Sec. III, the problem of ion production and confinement is presented. A numerical code is presented, and some particular and important effects, specific to ECR ion sources, are shown in Sec. IV. Eventually, in Sec. V, technological aspects of ECR are presented and different types of sources are shown

  20. A Comparison between Predicted and Observed Atmospheric States and their Effects on Infrasonic Source Time Function Inversion at Source Physics Experiment 6

    Science.gov (United States)

    Aur, K. A.; Poppeliers, C.; Preston, L. A.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of underground chemical explosions at the Nevada National Security Site (NNSS) designed to gain an improved understanding of the generation and propagation of physical signals in the near and far field. Characterizing the acoustic and infrasound source mechanism from underground explosions is of great importance to underground explosion monitoring. To this end we perform full waveform source inversion of infrasound data collected from the SPE-6 experiment at distances from 300 m to 6 km and frequencies up to 20 Hz. Our method requires estimating the state of the atmosphere at the time of each experiment, computing Green's functions through these atmospheric models, and subsequently inverting the observed data in the frequency domain to obtain a source time function. To estimate the state of the atmosphere at the time of the experiment, we utilize the Weather Research and Forecasting - Data Assimilation (WRF-DA) modeling system to derive a unified atmospheric state model by combining Global Energy and Water Cycle Experiment (GEWEX) Continental-scale International Project (GCIP) data and locally obtained sonde and surface weather observations collected at the time of the experiment. We synthesize Green's functions through these atmospheric models using Sandia's moving media acoustic propagation simulation suite (TDAAPS). These models include 3-D variations in topography, temperature, pressure, and wind. We compare inversion results using the atmospheric models derived from the unified weather models versus previous modeling results and discuss how these differences affect computed source waveforms with respect to observed waveforms at various distances. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear

  1. Navigating Earthquake Physics with High-Resolution Array Back-Projection

    Science.gov (United States)

    Meng, Lingsen

    Understanding earthquake source dynamics is a fundamental goal of geophysics. Progress toward this goal has been slow due to the gap between state-of-art earthquake simulations and the limited source imaging techniques based on conventional low-frequency finite fault inversions. Seismic array processing is an alternative source imaging technique that employs the higher frequency content of the earthquakes and provides finer detail of the source process with few prior assumptions. While the back-projection provides key observations of previous large earthquakes, the standard beamforming back-projection suffers from low resolution and severe artifacts. This thesis introduces the MUSIC technique, a high-resolution array processing method that aims to narrow the gap between the seismic observations and earthquake simulations. The MUSIC is a high-resolution method taking advantage of the higher order signal statistics. The method has not been widely used in seismology yet because of the nonstationary and incoherent nature of the seismic signal. We adapt MUSIC to transient seismic signal by incorporating the Multitaper cross-spectrum estimates. We also adopt a "reference window" strategy that mitigates the "swimming artifact," a systematic drift effect in back projection. The improved MUSIC back projections allow the imaging of recent large earthquakes in finer details which give rise to new perspectives on dynamic simulations. In the 2011 Tohoku-Oki earthquake, we observe frequency-dependent rupture behaviors which relate to the material variation along the dip of the subduction interface. In the 2012 off-Sumatra earthquake, we image the complicated ruptures involving orthogonal fault system and an usual branching direction. This result along with our complementary dynamic simulations probes the pressure-insensitive strength of the deep oceanic lithosphere. In another example, back projection is applied to the 2010 M7 Haiti earthquake recorded at regional distance. The

  2. The San Luis Project: An Attempt to Decentralize Physics in Mexico

    Science.gov (United States)

    Will, T. A.; Valladares, A. A.

    1976-01-01

    Described is a project being conducted by the Physics Institute of the University of San Luis Potori, Mexico, in order to avoid concentrating physics education and research activities in Mexico City. (SL)

  3. The physics of the Manhattan Project

    CERN Document Server

    Reed, Bruce Cameron

    2015-01-01

    The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This revised and updated 3rd edition explores the challenges that faced the scientists and engineers of the Manhattan Project. It gives a clear introduction to fission weapons at the level of an upper-year undergraduate physics student by examining the details of nuclear reactions, their energy release, analytic and numerical models of the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design. An extensive list of references and a number of exercises for self-study are included. Links are given to several freely-available spreadsheets which users can use to run many of the calculations for themselves.

  4. Kinetic parameters for source driven systems

    International Nuclear Information System (INIS)

    Dulla, S.; Ravetto, P.; Carta, M.; D'Angelo, A.

    2006-01-01

    The definition of the characteristic kinetic parameters of a subcritical source-driven system constitutes an interesting problem in reactor physics with important consequences for practical applications. Consistent and physically meaningful values of the parameters allow to obtain accurate results from kinetic simulation tools and to correctly interpret kinetic experiments. For subcritical systems a preliminary problem arises for the adoption of a suitable weighting function to be used in the projection procedure to derive a point model. The present work illustrates a consistent factorization-projection procedure which leads to the definition of the kinetic parameters in a straightforward manner. The reactivity term is introduced coherently with the generalized perturbation theory applied to the source multiplication factor ks, which is thus given a physical role in the kinetic model. The effective prompt lifetime is introduced on the assumption that a neutron generation can be initiated by both the fission process and the source emission. Results are presented for simplified configurations to fully comprehend the physical features and for a more complicated highly decoupled system treated in transport theory. (authors)

  5. Status of the National Synchrotron Light Source project

    International Nuclear Information System (INIS)

    Heese, R.N.

    1981-01-01

    The National Synchrotron Light Source is in its final stages of construction, and as the turn-on time for the 700 MeV vuv storage ring draws near, an overview of the project is presented. Emphasis is placed on the linac and booster synchrotron performance and the status of major subsystems

  6. Interdisciplinary physics research in the Japanese Hadron Project

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1990-09-01

    The Japanese Hadron Project (JHP) is a large future plan of interdisciplinary and international scope, aimed at basic physics research by creating and using various secondary unstable particle beams such as mesons, muons, neutrons and accelerated exotic nuclei. It comprises a high-intensity proton linac of 1 GeV, a compressor/stretcher ring and an ISOL/accelerator to deliver beams to MESON, NEUTRON and EXOTIC NUCLEI arena's. In addition, as the present ongoing project, we are pushing KAON arena based on the KEK 12 GeV proton synchrotron. The present paper describes the scientific motivation and technological bases for this future project as well as the presently going pre-JHP research activities. (author)

  7. Physics Mining of Multi-source Data Sets, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to implement novel physics mining algorithms with analytical capabilities to derive diagnostic and prognostic numerical models from multi-source...

  8. An Overview of the International Reactor Physics Experiment Evaluation Project

    International Nuclear Information System (INIS)

    Briggs, J. Blair; Gulliford, Jim

    2014-01-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties associated with advanced modeling and simulation accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Data provided by those two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades. An overview of the IRPhEP and a brief update of the ICSBEP are provided in this paper.

  9. Flowsheets and source terms for radioactive waste projections

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1985-03-01

    Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF 6 conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables

  10. Non-physical momentum sources in slab geometry gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We investigate momentum transport in the Hamiltonian electrostatic gyrokinetic formulation of Dubin et al (1983 Phys. Fluids 26 3524). We prove that the long wavelength electric field obtained from the gyrokinetic quasineutrality introduces a non-physical momentum source in the low flow ordering.

  11. Project Destiny: Initiating Physical Activity for Nonathletic Girls through Sport

    Science.gov (United States)

    Kyles, Carli; Lounsbery, Monica

    2004-01-01

    The purpose of this article is to emphasize the need to develop unique physical activity and sport programs that specifically target the participation of nonathletic and nonactive girls. In addition, the authors provide an overview of an example of one such program, Project Destiny. A description of Project Destiny is provided in terms of its…

  12. The Physical Basis of Lg Generation by Explosion Sources

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Stevens; G. E. Baker; H. Xu; T. J. Bennett; N. Rimer; S. D. Day

    2004-12-20

    The goal of this project has been to develop a quantitative predictive capability for explosion-generated Lg phases with a sound and unambiguous physical basis. The research program consisted of a theoretical investigation of explosion-generated Lg combined with an observational study. The specific question addressed by this research program is how the Lg phase is generated by underground nuclear explosions. This question is fundamental to how Lg phases are interpreted for use in explosion yield estimation and earthquake/explosion discrimination. To constrain modeling, we have extensively reviewed the existing literature and complemented that work with an examination of several explosion data sets, most notably: (1) Degelen Mountain explosions recorded between 7 and 57 km, with corresponding recordings at Borovoye, at approximately 650 km; (2) recordings from Russian deep seismic sounding experiments; (3) NTS explosion sources including the NPE and nuclear tests covering a range of source depths and media properties. A simple point explosion in an infinite medium generates no shear waves, so the Lg phase is generated entirely by non-spherical components of the source and conversions through reflections and scattering. We find that the most important contributors to the Lg phase are: (1) P to S conversion at the free surface and other near source interfaces, (2) S waves generated directly by a realistically distributed explosion source including nonlinear effects due to the free surface and gravity, and (3) Rg scattering to Lg. Additional effects that contribute significantly to Lg are scattering of converted S phases that traps more of the converted P-to-S in the crust, and randomization of the components of Lg. The pS phase from a spherically symmetric explosion source in media with P-wave velocity less than upper mantle S-wave velocity is trapped in the crust and can explain the observed radial and vertical Lg. The free surface pS converted phase from the same

  13. 3D Projection on Physical Objects: Design Insights from Five Real Life Cases

    DEFF Research Database (Denmark)

    Dalsgaard, Peter; Halskov, Kim

    2011-01-01

    3D projection on physical objects is a particular kind of Augmented Reality that augments a physical object by projecting digital content directly onto it, rather than by using a mediating device, such as a mobile phone or a head- mounted display. In this paper, we present five cases in which we...

  14. Nuclear and fundamental physics instrumentation for the ANS project

    International Nuclear Information System (INIS)

    Robinson, S.J.; Faust, H.; Piotrowski, A.E.

    1996-05-01

    This report summarizes work carried out during the period 1991-1995 in connection with the refinement of the concepts and detailed designs for nuclear and fundamental physics research instrumentation at the proposed Advanced Neutron source at Oak Ridge National Laboratory. Initially, emphasis was placed on refining the existing System Design Document (SDD-43) to detail more accurately the needs and interfaces of the instruments that are identified in the document. The conceptual designs of these instruments were also refined to reflect current thinking in the field of nuclear and fundamental physics. In particular, the on-line isotope separator (ISOL) facility design was reconsidered in the light of the development of interest in radioactive ion beams within the nuclear physics community. The second stage of this work was to define those instrument parameters that would interface directly with the reactor systems so that these parameters could be considered for the ISOL facility and particularly for its associated ion source. Since two of these options involved ion sources internal to the long slant beam tube, these were studied in detail. In addition, preliminary work was done to identify the needs for the target holder and changing facility to be located in the tangential through-tube. Because many of the planned nuclear and fundamental physics instruments have similar needs in terms of detection apparatus, some progress was also made in defining the parameters for these detectors. 21 refs., 32 figs., 2 tabs

  15. The state and profile of open source software projects in health and medical informatics.

    Science.gov (United States)

    Janamanchi, Balaji; Katsamakas, Evangelos; Raghupathi, Wullianallur; Gao, Wei

    2009-07-01

    Little has been published about the application profiles and development patterns of open source software (OSS) in health and medical informatics. This study explores these issues with an analysis of health and medical informatics related OSS projects on SourceForge, a large repository of open source projects. A search was conducted on the SourceForge website during the period from May 1 to 15, 2007, to identify health and medical informatics OSS projects. This search resulted in a sample of 174 projects. A Java-based parser was written to extract data for several of the key variables of each project. Several visually descriptive statistics were generated to analyze the profiles of the OSS projects. Many of the projects have sponsors, implying a growing interest in OSS among organizations. Sponsorship, we discovered, has a significant impact on project success metrics. Nearly two-thirds of the projects have a restrictive license type. Restrictive licensing may indicate tighter control over the development process. Our sample includes a wide range of projects that are at various stages of development (status). Projects targeted towards the advanced end user are primarily focused on bio-informatics, data formats, database and medical science applications. We conclude that there exists an active and thriving OSS development community that is focusing on health and medical informatics. A wide range of OSS applications are in development, from bio-informatics to hospital information systems. A profile of OSS in health and medical informatics emerges that is distinct and unique to the health care field. Future research can focus on OSS acceptance and diffusion and impact on cost, efficiency and quality of health care.

  16. Sources of innovation, their combinations and strengths – benefits at the NPD project level

    DEFF Research Database (Denmark)

    Tranekjer, Tina Lundø; Søndergaard, Helle Alsted

    2013-01-01

    External sourcing is increasingly seen as important for obtaining new and valuable knowledge and resources for new product development. However, when it comes to the specifics of choosing between sources and types of relationships, little is known on the NPD project level. This paper strengthens...... not only consider the potential benefits of collaboration with external sources but also the downsides, including higher cost and lengthier projects. Firms should look for opportunities in the combination of sources if they are to gain advantages of collaboration, as our analyses show that a mix of market...... and science sources is related to decreased costs. Additionally, if firms are looking for increased market performance, they should aim at collaborating with suppliers that have a similar knowledge base, whereas if the aim is lower project costs, collaboration with a customer with a similar knowledge base...

  17. Analysis of Paralleling Limited Capacity Voltage Sources by Projective Geometry Method

    Directory of Open Access Journals (Sweden)

    Alexandr Penin

    2014-01-01

    Full Text Available The droop current-sharing method for voltage sources of a limited capacity is considered. Influence of equalizing resistors and load resistor is investigated on uniform distribution of relative values of currents when the actual loading corresponds to the capacity of a concrete source. Novel concepts for quantitative representation of operating regimes of sources are entered with use of projective geometry method.

  18. Inverse Compton gamma-ray source for nuclear physics and related applications at the Duke FEL

    International Nuclear Information System (INIS)

    O'Shea, P.G.; Litvinenko, V.N.; Madey, J.M.J.

    1995-01-01

    In recent years the development of intense, short-wavelength FEL light sources has opened opportunities for the development new applications of high-energy Compton-backscattered photons. These applications range from medical imaging with X-ray photons to high-energy physics with γγ colliders. In this paper we discuss the possibilities for nuclear physics studies using polarized Compton backscattered γ-rays from the Duke storage-ring-driven UV-FEL. There are currently a number of projects that produce polarized γ-rays for nuclear physics studies. All of these facilities operate by scattering conventional laser-light against electrons circulating in a storage ring. In our scheme, intra-cavity scattering of the UV-FEL light will produce a γ-flux enhancement of approximately 10 3 over existing sources. The Duke ring can operate at energies up to 1.2 GeV and can produce FEL photons up to 12.5 eV. We plan to generate γ-rays up to 200 MeV in energy with an average flux in excess of 10 7 /s/MeV, using a modest scattering beam of 10-mA average stored current. The γ-ray energy may be tuned by varying the FEL wavelength or by adjusting the stored electron beam energy. Because of the intense flux, we can eliminate the need for photon energy tagging by collimating of the γ-ray beam. We will discuss the characteristics of the device and its research opportunities

  19. Project Physics Text 3, The Triumph of Mechanics.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Mechanical theories are presented in this unit of the Project Physics text for senior high students. Collisions, Newton's laws, isolated systems, and Leibniz' concept are discussed, leading to conservation of mass and momentum. Energy conservation is analyzed in terms of mechanical energy, heat energy, steam engines, Watt's engine, Joule's…

  20. Project Physics Tests 3, The Triumph of Mechanics.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 3 are presented in this booklet. Included are 70 multiple-choice and 20 problem-and-essay questions. Concepts of mechanics are examined on energy, momentum, kinetic theory of gases, pulse analyses, "heat death," water waves, power, conservation laws, normal distribution, thermodynamic laws, and…

  1. Projection of needs for gamma radiation sources and other radioisotopes and assessment of alternatives for providing radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.A.; Jensen, G.A.; Clark, L.L.; Eakin, D.E.; Jarrett, J.H.; Katayama, Y.B.; McKee, R.W.; Morgan, L.G.; Nealey, S.M.; Platt, A.M.; Tingey, G.L.

    1989-06-01

    Pacific Northwest Laboratory reviewed the projected uses and demands for a variety of nuclear byproducts. Because the major large-scale near-term demand is for gamma irradiation sources, this report concentrates on the needs for gamma sources and evaluates the options for providing the needed material. Projections of possible growth in the irradiation treatment industry indicate that there will be a need for 180 to 320 MCi of /sup 60/Co (including /sup 137/Cs equivalent) in service in the year 2000. The largest current and projected use of gamma irradiation is for the sterilization of medical devices and disposable medical supplies. Currently, 40% of US disposable medical products are treated by irradiation, and within 10 years it is expected that 90% will be treated in this manner. Irradiation treatment of food for destruction of pathogens or parasites, disinfestation, or extension of allowable storage periods is estimated to require an active inventory of 75 MCi of /sup 60/Co-equivalent gamma source in about a decade. 90 refs., 7 figs., 25 tabs.

  2. Projection of needs for gamma radiation sources and other radioisotopes and assessment of alternatives for providing radiation sources

    International Nuclear Information System (INIS)

    Ross, W.A.; Jensen, G.A.; Clark, L.L.

    1989-06-01

    Pacific Northwest Laboratory reviewed the projected uses and demands for a variety of nuclear byproducts. Because the major large-scale near-term demand is for gamma irradiation sources, this report concentrates on the needs for gamma sources and evaluates the options for providing the needed material. Projections of possible growth in the irradiation treatment industry indicate that there will be a need for 180 to 320 MCi of 60 Co (including 137 Cs equivalent) in service in the year 2000. The largest current and projected use of gamma irradiation is for the sterilization of medical devices and disposable medical supplies. Currently, 40% of US disposable medical products are treated by irradiation, and within 10 years it is expected that 90% will be treated in this manner. Irradiation treatment of food for destruction of pathogens or parasites, disinfestation, or extension of allowable storage periods is estimated to require an active inventory of 75 MCi of 60 Co-equivalent gamma source in about a decade. 90 refs., 7 figs., 25 tabs

  3. SPACE PHYSICS: Developing resources for astrophysics at A-level: the TRUMP Astrophysics project

    Science.gov (United States)

    Swinbank, Elizabeth

    1997-01-01

    After outlining the astrophysical options now available in A-level physics syllabuses, this paper notes some of the particular challenges facing A-level teachers and students who chose these options and describes a project designed to support them. The paper highlights some key features of the project that could readily be incorporated into other areas of physics curriculum development.

  4. Use of the project management methodology to establish physical protection system at nuclear facility

    International Nuclear Information System (INIS)

    Gramotkin, F.; Kuzmyak, I.; Kravtsov, V.

    2015-01-01

    The paper considers the possibility of using the project management methodology developed by the Project Management Institute (USA) in nuclear security in terms of modernization or development of physical protection system at nuclear facility. It was demonstrated that this methodology allows competent and flexible management of the projects on physical protection, ensuring effective control of their timely implementation in compliance with the planned budget and quality

  5. Present status and future project on hadron physics with KEK proton synchrotron

    International Nuclear Information System (INIS)

    Masaike, Akira

    1984-01-01

    Recent experimental results on hadron physics using a 12 GeV proton synchrotron at KEK are presented. Several future projects which have been proposed as a post-shutdown program from 1985 including hypernuclear physics, physics with polarized beam and heavy ion beam are also reported. (author)

  6. Moscow State University physics alumni and the Soviet Atomic Project

    International Nuclear Information System (INIS)

    Kiselev, Gennadii V

    2005-01-01

    In this paper, two closely related themes are addressed: (1) the role that M V Lomonosov Moscow State University (MSU) played in training specialists in physics for the Soviet Atomic Project, and (2) what its alumni contributed to the development of thermonuclear weapons. In its earlier stages, the Soviet Atomic Project was in acute need of qualified personnel, without whom building nuclear and thermonuclear weapons would be an impossible task, and MSU became a key higher educational institution grappled with the training problem. The first part of the paper discusses the efforts of the leading Soviet scientists and leaders of FMD (First Main Directorate) to organize the training of specialists in nuclear physics at the MSU Physics Department and, on the other hand, to create a new Physics and Technology Department at the university. As a result, a number of Soviet Government's resolutions were prepared and issued, part of which are presented in the paper and give an idea of the large-scale challenges this sphere of education was facing at the time. Information is presented for the first time on the early MSU Physics Department graduates in the structure of matter, being employed in the FMD organizations and enterprises from 1948 to 1951. The second part discusses the contribution to the development of thermonuclear weapons by the teams of scientists led by Academicians I E Tamm, A N Tikhonov, and I M Frank, and including MSU physics alumni. The paper will be useful to anyone interested in the history of Russian physics. (from the history of physics)

  7. Project Physics Tests 2, Motion in the Heavens.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 2 are presented in this booklet. Included are 70 multiple-choice and 22 problem-and-essay questions. Concepts of motion in the heavens are examined for planetary motions, heliocentric theory, forces exerted on the planets, Kepler's laws, gravitational force, Galileo's work, satellite orbits, Jupiter's…

  8. The High Flux Isotope Reactor (HFIR) cold source project at ORNL

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Chang, S.J.; Freels, J.D. . E-mail-yb2@ornl.gov

    1998-01-01

    Following the decision to cancel the Advanced Neutron Source (ANS) Project at Oak Ridge National Laboratory (ORNL), it was determined that a hydrogen cold source should be retrofitted into an existing beam tube of the High Flux Isotope Reactor (HFIR) at ORNL. The preliminary design of this system has been completed and an 'approval in principle' of the design has been obtained from the internal ORNL safety review committees and the U.S. Department of Energy (DOE) safety review committee. The cold source concept is basically a closed loop forced flow supercritical hydrogen system. The supercritical approach was chosen because of its enhanced stability in the proposed high heat flux regions. Neutron and gamma physics of the moderator have been analyzed using the 3D Monte Carlo code MCNP 1 A D structural analysis model of the moderator vessel, vacuum tube, and beam tube was completed to evaluate stress loadings and to examine the impact of hydrogen detonations in the beam tube. A detailed ATHENA 2 system model of the hydrogen system has been developed to simulate loop performance under normal and off-normal transient conditions. Semi-prototypic hydrogen loop tests of the system have been performed at the Arnold Engineering Design Center (AEDC) located in Tullahoma, Tennessee to verify the design and benchmark the analytical system model. A 3.5 kW refrigerator system has been ordered and is expected to be delivered to ORNL by the end of this calendar year. Our present schedule shows the assembling of the cold source loop on site during the fall of 1999 for final testing before insertion of the moderator plug assembly into the reactor beam tube during the end of the year 2000. (author)

  9. Full data consistency conditions for cone-beam projections with sources on a plane

    International Nuclear Information System (INIS)

    Clackdoyle, Rolf; Desbat, Laurent

    2013-01-01

    Cone-beam consistency conditions (also known as range conditions) are mathematical relationships between different cone-beam projections, and they therefore describe the redundancy or overlap of information between projections. These redundancies have often been exploited for applications in image reconstruction. In this work we describe new consistency conditions for cone-beam projections whose source positions lie on a plane. A further restriction is that the target object must not intersect this plane. The conditions require that moments of the cone-beam projections be polynomial functions of the source positions, with some additional constraints on the coefficients of the polynomials. A precise description of the consistency conditions is that the four parameters of the cone-beam projections (two for the detector, two for the source position) can be expressed with just three variables, using a certain formulation involving homogeneous polynomials. The main contribution of this work is our demonstration that these conditions are not only necessary, but also sufficient. Thus the consistency conditions completely characterize all redundancies, so no other independent conditions are possible and in this sense the conditions are full. The idea of the proof is to use the known consistency conditions for 3D parallel projections, and to then apply a 1996 theorem of Edholm and Danielsson that links parallel to cone-beam projections. The consistency conditions are illustrated with a simulation example. (paper)

  10. Tracking single dynamic MEG dipole sources using the projected Extended Kalman Filter.

    Science.gov (United States)

    Yao, Yuchen; Swindlehurst, A Lee

    2011-01-01

    This paper presents two new algorithms based on the Extended Kalman Filter (EKF) for tracking the parameters of single dynamic magnetoencephalography (MEG) dipole sources. We assume a dynamic MEG dipole source with possibly both time-varying location and dipole orientation. The standard EKF-based tracking algorithm performs well under the assumption that the dipole source components vary in time as a Gauss-Markov process, provided that the background noise is temporally stationary. We propose a Projected-EKF algorithm that is adapted to a more forgiving condition where the background noise is temporally nonstationary, as well as a Projected-GLS-EKF algorithm that works even more universally, when the dipole components vary arbitrarily from one sample to the next.

  11. Atomic physics at high brilliance synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    Berry, G.; Cowan, P.; Gemmell, D.

    1994-08-01

    This report contains papers on the following topics: present status of SPring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba + ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant raman scattering by synchrotron radiation; auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere

  12. The physics analysis tools project for the ATLAS experiment

    International Nuclear Information System (INIS)

    Lenzi, Bruno

    2012-01-01

    The Large Hadron Collider is expected to start colliding proton beams in 2009. The enormous amount of data produced by the ATLAS experiment (≅1 PB per year) will be used in searches for the Higgs boson and Physics beyond the standard model. In order to meet this challenge, a suite of common Physics Analysis Tools has been developed as part of the Physics Analysis software project. These tools run within the ATLAS software framework, ATHENA, covering a wide range of applications. There are tools responsible for event selection based on analysed data and detector quality information, tools responsible for specific physics analysis operations including data quality monitoring and physics validation, and complete analysis tool-kits (frameworks) with the goal to aid the physicist to perform his analysis hiding the details of the ATHENA framework. (authors)

  13. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

  14. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    International Nuclear Information System (INIS)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-01-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR-06 are highlighted, and the future of the two projects is discussed

  15. SPANDOM - source projection analytic nodal discrete ordinates method

    International Nuclear Information System (INIS)

    Kim, Tae Hyeong; Cho, Nam Zin

    1994-01-01

    We describe a new discrete ordinates nodal method for the two-dimensional transport equation. We solve the discrete ordinates equation analytically after the source term is projected and represented in polynomials. The method is applied to two fast reactor benchmark problems and compared with the TWOHEX code. The results indicate that the present method accurately predicts not only multiplication factor but also flux distribution

  16. The High Flux Isotope Reactor (HFIR) cold source project at ORNL

    International Nuclear Information System (INIS)

    Selby, D.

    1998-01-01

    The scope of this project includes the development, design, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube hole in the pressure vessel. All aspects of the cold source design will be based on demonstrated technology adapted to the HFIR design and operating conditions

  17. An international and interdisciplinary centre of experimental physics in the Alps-Danube-Adria region (the 'AUSTRON' project)

    International Nuclear Information System (INIS)

    Regler, M.

    1992-01-01

    The basic idea of the 'AUSTRON' Project is to create an international and interdisciplinary centre of excellence, devoted to fundamental and applied research in the field of experimental physics and related topics of high technology RandD. Three alternatives have been proposed as the basic facility of this centre: either an electron-positron ring collider for a tau-charm factory, or a smaller ring for a phi factory, or a proton accelerator for a spallation source. That should be complemented by a synchrotron radiation facility, constituting an important link between physics, biology, medicine and the industry. 'AUSTRON' should also include a test beam facility for radiation detector development, a RandD laboratory for micro-electronics, a scientific computing centre linked to international networks, and a centre of education. (author) 1 fig

  18. Strength and sources of self-efficacy beliefs by physical education student teachers

    Directory of Open Access Journals (Sweden)

    Roberto Tadeu Iaochite

    2014-06-01

    Full Text Available In the teaching domain, self-efficacy (SE is related to teachers' judgment about their own ability to achieve learning outcomes and student engagement. SE is formed by four sources of information: mastery experiences, vicarious experiences, social persuasion, and psychophysiological states. We measured and analyzed SE and its sources for teaching physical education. Student teachers (n = 114 from three universities responded to two Likert scales - Physical Education Teacher Self-Efficacy Scale and Teacher Self-Efficacy Scale Sources - and a social demographic questionnaire. SE for teaching was classified as moderate, and vicarious experiences and social persuasion were the main sources of information. Results were discussed for future researches related to teaching practices in undergraduate programs as well as in-service teacher training.

  19. OpenCMISS: a multi-physics & multi-scale computational infrastructure for the VPH/Physiome project.

    Science.gov (United States)

    Bradley, Chris; Bowery, Andy; Britten, Randall; Budelmann, Vincent; Camara, Oscar; Christie, Richard; Cookson, Andrew; Frangi, Alejandro F; Gamage, Thiranja Babarenda; Heidlauf, Thomas; Krittian, Sebastian; Ladd, David; Little, Caton; Mithraratne, Kumar; Nash, Martyn; Nickerson, David; Nielsen, Poul; Nordbø, Oyvind; Omholt, Stig; Pashaei, Ali; Paterson, David; Rajagopal, Vijayaraghavan; Reeve, Adam; Röhrle, Oliver; Safaei, Soroush; Sebastián, Rafael; Steghöfer, Martin; Wu, Tim; Yu, Ting; Zhang, Heye; Hunter, Peter

    2011-10-01

    The VPH/Physiome Project is developing the model encoding standards CellML (cellml.org) and FieldML (fieldml.org) as well as web-accessible model repositories based on these standards (models.physiome.org). Freely available open source computational modelling software is also being developed to solve the partial differential equations described by the models and to visualise results. The OpenCMISS code (opencmiss.org), described here, has been developed by the authors over the last six years to replace the CMISS code that has supported a number of organ system Physiome projects. OpenCMISS is designed to encompass multiple sets of physical equations and to link subcellular and tissue-level biophysical processes into organ-level processes. In the Heart Physiome project, for example, the large deformation mechanics of the myocardial wall need to be coupled to both ventricular flow and embedded coronary flow, and the reaction-diffusion equations that govern the propagation of electrical waves through myocardial tissue need to be coupled with equations that describe the ion channel currents that flow through the cardiac cell membranes. In this paper we discuss the design principles and distributed memory architecture behind the OpenCMISS code. We also discuss the design of the interfaces that link the sets of physical equations across common boundaries (such as fluid-structure coupling), or between spatial fields over the same domain (such as coupled electromechanics), and the concepts behind CellML and FieldML that are embodied in the OpenCMISS data structures. We show how all of these provide a flexible infrastructure for combining models developed across the VPH/Physiome community. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. SU-G-IeP2-15: Virtual Insertion of Digital Kidney Stones Into Dual-Source, Dual- Energy CT Projection Data

    International Nuclear Information System (INIS)

    Ferrero, A; Chen, B; Huang, A; Montoya, J; Yu, L; McCollough, C

    2016-01-01

    Purpose: In order to investigate novel methods to more accurately estimate the mineral composition of kidney stones using dual energy CT, it is desirable to be able to combine digital stones of known composition with actual phantom and patient scan data. In this work, we developed and validated a method to insert digital kidney stones into projection data acquired on a dual-source, dual-energy CT system. Methods: Attenuation properties of stones of different mineral composition were computed using tabulated mass attenuation coefficients, the chemical formula for each stone type, and the effective beam energy at each evaluated tube potential. A previously developed method to insert lesions into x-ray CT projection data was extended to include simultaneous dual-energy CT projections acquired on a dual-source gantry (Siemens Somatom Flash). Digital stones were forward projected onto both detectors and the resulting projections added to the physically acquired sinogram data. To validate the accuracy of the technique, digital stones were inserted into different locations in the ACR CT accreditation phantom; low and high contrast resolution, CT number accuracy and noise properties were compared before and after stone insertion. The procedure was repeated for two dual-energy tube potential pairs in clinical use on the scanner, 80/Sn140 kV and 100/Sn140 kV, respectively. Results: The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner. The largest average CT number difference for the 4 insert in the CT number accuracy module of the phantom was 3 HU. Conclusion: A framework was developed and validated for the creation of digital kidney stones of known mineral composition, and their projection-domain insertion into commercial dual-source, dual-energy CT projection data. This will allow a systematic investigation of the impact of scan and reconstruction parameters on stone attenuation and dual

  1. Social network analysis of a project-based introductory physics course

    Science.gov (United States)

    Oakley, Christopher

    2016-03-01

    Research suggests that students benefit from peer interaction and active engagement in the classroom. The quality, nature, effect of these interactions is currently being explored by Physics Education Researchers. Spelman College offers an introductory physics sequence that addresses content and research skills by engaging students in open-ended research projects, a form of Project-Based Learning. Students have been surveyed at regular intervals during the second semester of trigonometry-based course to determine the frequency of interactions in and out of class. These interactions can be with current or past students, tutors, and instructors. This line of inquiry focuses on metrics of Social Network analysis, such as centrality of participants as well as segmentation of groups. Further research will refine and highlight deeper questions regarding student performance in this pedagogy and course sequence.

  2. Accuracy of Dual-Energy Virtual Monochromatic CT Numbers: Comparison between the Single-Source Projection-Based and Dual-Source Image-Based Methods.

    Science.gov (United States)

    Ueguchi, Takashi; Ogihara, Ryota; Yamada, Sachiko

    2018-03-21

    To investigate the accuracy of dual-energy virtual monochromatic computed tomography (CT) numbers obtained by two typical hardware and software implementations: the single-source projection-based method and the dual-source image-based method. A phantom with different tissue equivalent inserts was scanned with both single-source and dual-source scanners. A fast kVp-switching feature was used on the single-source scanner, whereas a tin filter was used on the dual-source scanner. Virtual monochromatic CT images of the phantom at energy levels of 60, 100, and 140 keV were obtained by both projection-based (on the single-source scanner) and image-based (on the dual-source scanner) methods. The accuracy of virtual monochromatic CT numbers for all inserts was assessed by comparing measured values to their corresponding true values. Linear regression analysis was performed to evaluate the dependency of measured CT numbers on tissue attenuation, method, and their interaction. Root mean square values of systematic error over all inserts at 60, 100, and 140 keV were approximately 53, 21, and 29 Hounsfield unit (HU) with the single-source projection-based method, and 46, 7, and 6 HU with the dual-source image-based method, respectively. Linear regression analysis revealed that the interaction between the attenuation and the method had a statistically significant effect on the measured CT numbers at 100 and 140 keV. There were attenuation-, method-, and energy level-dependent systematic errors in the measured virtual monochromatic CT numbers. CT number reproducibility was comparable between the two scanners, and CT numbers had better accuracy with the dual-source image-based method at 100 and 140 keV. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  3. Innovative ion sources for accelerators: the benefits of the plasma technology

    Czech Academy of Sciences Publication Activity Database

    Gammino, S.; Ciavola, G.; Celona, L.; Torrisi, L.; Ando, L.; Presti, M.; Láska, Leoš; Krása, Josef; Wolowski, J.

    2004-01-01

    Roč. 54, Suppl. C (2004), s. C883-C888 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21./. Praha, 14.06.2004-17.06.2004] R&D Projects: GA AV ČR IAA1010405 Institutional research plan: CEZ:AV0Z1010921 Keywords : plasma sources * ion sources * proton sources * ECR Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  4. The European Spallation Source (ESS) project

    International Nuclear Information System (INIS)

    Clausen, K.N.

    2001-01-01

    The European Spallation Source (ESS) is a proposal for a next generation neutron source in Europe. The first phase of the project - establishing the scientific case and the technical feasibility - is now followed by an intensive period of R and D activities. Three target station options: l) a 5 MW 50 Hz short pulse station, 2) a 1 MW 10 Hz short pulse station and 3) a 4 to 5 MW 16 2/3 Hz 2.5 ms long pulse station, and the use of novel advanced cold moderators will be studied. A superconducting option for the accelerator will be investigated in a Europe-wide feasibility study for a multipurpose facility (CONCERT) with potential applications in areas such as neutron scattering, high power irradiation, R and D on transmutation and radioactive beams. It will explore possible synergies of such a facility compared with a standalone solution for the ESS. The milestones for the next three years are: June 2001 - Decision on neutron parameters and target station options, June 2002 - Conclusion of the Concert multipurpose accelerator study and June 2003 - Proposal ready for submission to funding agencies. The facility could be ready for operation around 2010. (author)

  5. Status of spallation neutron source program in High Intensity Proton Accelerator Project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    2001-01-01

    Japan Atomic Energy Research Institute and High Energy Accelerator Organization are jointly designing a 1 MW spallation neutron source as one of the research facilities planned in the High Intensity Proton Accelerator Project. The spallation neutron source is driven by 3 GeV proton beam with a mercury target and liquid hydrogen moderators. The present status of design for these spallation source and relevant facility is overviewed. (author)

  6. 10 years of engineering and physics achievements by the Large Helical Device project

    International Nuclear Information System (INIS)

    Yamada, H.; Imagawa, S.; Takeiri, Y.; Kaneko, O.; Mutoh, T.; Mito, T.; Chikaraishi, H.; Hamaguchi, S.; Ida, K.; Igami, H.; Ikeda, K.; Kasahara, H.; Kobayashi, M.; Kubo, S.; Kumazawa, R.; Maekawa, R.; Masuzaki, S.; Miyazawa, J.; Morisaki, T.; Morita, S.

    2009-01-01

    This article reviews 10 years of engineering and physics achievements by the Large Helical Device (LHD) project with emphasis on the latest results. The LHD is the largest magnetic confinement device among diversified helical systems and employs the world's largest superconducting coils. The cryogenic system has been operated for 50,000 h in total without any serious trouble and routinely provides a confining magnetic field up to 2.96 T in steady state. The heating capability to date is 23 MW of NBI, 2.9 MW of ICRF and 2.1 MW of ECH. Negative-ion-based ion sources with the accelerating voltage of 180 keV are used for a tangential NBI with the power of 16 MW. The ICRF system has full steady-state operational capability with 1.6 MW. In these 10 years, operational experience as well as a physics database have been accumulated and the advantages of stable and steady-state features have been demonstrated by the combination of advanced engineering and the intrinsic physical advantage of helical systems in LHD. Highlighted physical achievements are high beta (5% at the magnetic field of 0.425 T), high density (1.1 x 10 21 m -3 at the central temperature of 0.4 keV), high ion temperature (T i of 5.2 keV at 1.5 x 10 19 m -3 ), and steady-state operation (3200 s with 490 kW). These physical parameters have elucidated the potential of net-current free helical plasmas for an attractive fusion reactor. It also should be pointed out that a major part of these engineering and physics achievements is complementary to the tokamak approach and even contributes directly to ITER.

  7. The State of Open Source Electronic Health Record Projects: A Software Anthropology Study.

    Science.gov (United States)

    Alsaffar, Mona; Yellowlees, Peter; Odor, Alberto; Hogarth, Michael

    2017-02-24

    Electronic health records (EHR) are a key tool in managing and storing patients' information. Currently, there are over 50 open source EHR systems available. Functionality and usability are important factors for determining the success of any system. These factors are often a direct reflection of the domain knowledge and developers' motivations. However, few published studies have focused on the characteristics of free and open source software (F/OSS) EHR systems and none to date have discussed the motivation, knowledge background, and demographic characteristics of the developers involved in open source EHR projects. This study analyzed the characteristics of prevailing F/OSS EHR systems and aimed to provide an understanding of the motivation, knowledge background, and characteristics of the developers. This study identified F/OSS EHR projects on SourceForge and other websites from May to July 2014. Projects were classified and characterized by license type, downloads, programming languages, spoken languages, project age, development status, supporting materials, top downloads by country, and whether they were "certified" EHRs. Health care F/OSS developers were also surveyed using an online survey. At the time of the assessment, we uncovered 54 open source EHR projects, but only four of them had been successfully certified under the Office of the National Coordinator for Health Information Technology (ONC Health IT) Certification Program. In the majority of cases, the open source EHR software was downloaded by users in the United States (64.07%, 148,666/232,034), underscoring that there is a significant interest in EHR open source applications in the United States. A survey of EHR open source developers was conducted and a total of 103 developers responded to the online questionnaire. The majority of EHR F/OSS developers (65.3%, 66/101) are participating in F/OSS projects as part of a paid activity and only 25.7% (26/101) of EHR F/OSS developers are, or have been

  8. Evaluating Sources of Risks in Large Engineering Projects: The Roles of Equivocality and Uncertainty

    Directory of Open Access Journals (Sweden)

    Leena Pekkinen

    2015-11-01

    Full Text Available Contemporary project risk management literature introduces uncertainty, i.e., the lack of information, as a fundamental basis of project risks. In this study the authors assert that equivocality, i.e., the existence of multiple and conflicting interpretations, can also serve as a basis of risks. With an in-depth empirical investigation of a large complex engineering project the authors identified risk sources having their bases in the situations where uncertainty or equivocality was the predominant attribute. The information processing theory proposes different managerial practices for risk management based on the sources of risks in uncertainty or equivocality.

  9. Budget projections - 1991 through 1996 for research in high energy physics

    International Nuclear Information System (INIS)

    1991-05-01

    This research program in high energy physics is carried out under the general supervision of a committee which is composed of G.W. Brandenburg, G.J. Feldman, M.E. Franklin, R.J. Glauber, K. Kinoshita, F.M. Pipkin, K. Strauch, R. Wilson, and H. Yamamoto. Professor G.J. Feldman currently serves as chair of this committee. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. In the fall of 1991 S. Mishra will join this committee. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard's educational efforts are concentrated in graduate education, where they are currently supporting thirteen research students. In addition, undergraduate students work in projects at HEPL during the academic year and over summers. These budget projections cover all of the Harvard based high energy physics experimental activities. The open-quotes umbrellaclose quotes nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared proportionally by the experimental groups. Harvard financially supports this high energy physics research program in many ways

  10. Joint part-of-speech and dependency projection from multiple sources

    DEFF Research Database (Denmark)

    Johannsen, Anders Trærup; Agic, Zeljko; Søgaard, Anders

    2016-01-01

    for multiple tasks from multiple source languages, relying on parallel corpora available for hundreds of languages. When training POS taggers and dependency parsers on jointly projected POS tags and syntactic dependencies using our algorithm, we obtain better performance than a standard approach on 20...

  11. THE MEGAMASER COSMOLOGY PROJECT. VII. INVESTIGATING DISK PHYSICS USING SPECTRAL MONITORING OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pesce, D. W. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Braatz, J. A.; Condon, J. J.; Gao, F.; Lo, K. Y. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Henkel, C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Litzinger, E. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Emil-Fischer-Str. 31, D-97074 Würzburg (Germany); Reid, M. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-09-01

    We use single-dish radio spectra of known 22 GHz H{sub 2}O megamasers, primarily gathered from the large data set observed by the Megamaser Cosmology Project, to identify Keplerian accretion disks and to investigate several aspects of the disk physics. We test a mechanism for maser excitation proposed by Maoz and McKee (1998), whereby population inversion arises in gas behind spiral shocks traveling through the disk. Though the flux of redshifted features is larger on average than that of blueshifted features, in support of the model, the high-velocity features show none of the predicted systematic velocity drifts. We find rapid intra-day variability in the maser spectrum of ESO 558−G009 that is likely the result of interstellar scintillation, for which we favor a nearby (D ≈ 70 pc) scattering screen. In a search for reverberation in six well-sampled sources, we find that any radially propagating signal must be contributing ≲10% of the total variability. We also set limits on the magnetic field strengths in seven sources, using strong flaring events to check for the presence of Zeeman splitting. These limits are typically 200–300 mG (1σ), but our most stringent limits reach down to 73 mG for the galaxy NGC 1194.

  12. Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Bolozdynya, A. [Moscow Phys. Eng. Inst.; Cavanna, F. [INFN, Aquila; Efremenko, Y. [Tennessee U.; Garvey, G. T. [Los Alamos; Gudkov, V. [South Carolina U.; Hatzikoutelis, A. [Tennessee U.; Hix, W. R. [Oak Ridge; Louis, W. C. [Los Alamos; Link, J. M. [Virginia Tech.; Markoff, D. M. [North Carolina Central U.; Mills, G. B. [Los Alamos; Patton, K. [North Carolina State U.; Ray, H. [Florida U.; Scholberg, K. [Duke U.; Van de Water, R. G. [Los Alamos; Virtue, C. [Laurentian U.; White, D. H. [Los Alamos; Yen, S. [TRIUMF; Yoo, J. [Fermilab

    2012-11-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this document, the product of a workshop at the SNS in May 2012, we describe this free, high-quality stopped-pion neutrino source and outline various physics that could be done using it. We describe without prioritization some specific experimental configurations that could address these physics topics.

  13. Quality assurance program plan for FRG sealed isotopic heat sources project (C-229)

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This QAPP implements the Quality Assurance Program Plan for the FRG Sealed Isotopic Heat Sources Project (C-229). The heat source will be relocated from the 324 Building and placed in interim storage at the Central Waste Complex (CWC)

  14. Workforce Projections 2010-2020: Annual Supply and Demand Forecasting Models for Physical Therapists Across the United States.

    Science.gov (United States)

    Landry, Michel D; Hack, Laurita M; Coulson, Elizabeth; Freburger, Janet; Johnson, Michael P; Katz, Richard; Kerwin, Joanne; Smith, Megan H; Wessman, Henry C Bud; Venskus, Diana G; Sinnott, Patricia L; Goldstein, Marc

    2016-01-01

    Health human resources continue to emerge as a critical health policy issue across the United States. The purpose of this study was to develop a strategy for modeling future workforce projections to serve as a basis for analyzing annual supply of and demand for physical therapists across the United States into 2020. A traditional stock-and-flow methodology or model was developed and populated with publicly available data to produce estimates of supply and demand for physical therapists by 2020. Supply was determined by adding the estimated number of physical therapists and the approximation of new graduates to the number of physical therapists who immigrated, minus US graduates who never passed the licensure examination, and an estimated attrition rate in any given year. Demand was determined by using projected US population with health care insurance multiplied by a demand ratio in any given year. The difference between projected supply and demand represented a shortage or surplus of physical therapists. Three separate projection models were developed based on best available data in the years 2011, 2012, and 2013, respectively. Based on these projections, demand for physical therapists in the United States outstrips supply under most assumptions. Workforce projection methodology research is based on assumptions using imperfect data; therefore, the results must be interpreted in terms of overall trends rather than as precise actuarial data-generated absolute numbers from specified forecasting. Outcomes of this projection study provide a foundation for discussion and debate regarding the most effective and efficient ways to influence supply-side variables so as to position physical therapists to meet current and future population demand. Attrition rates or permanent exits out of the profession can have important supply-side effects and appear to have an effect on predicting future shortage or surplus of physical therapists. © 2016 American Physical Therapy

  15. The Project Physics Course (Modularized) for Grades 10-12.

    Science.gov (United States)

    Flint, William

    This report was produced by the Sedro-Woolley Project which has the goal of infusing environmental education into the whole curriculum of a school district. Included are assumptions which the author believes are appropriate to environmental education; a relating of these assumptions to some topics of chemistry and physics; an outline of specific…

  16. Evaluation on uncertainty sources in projecting hydrological changes over the Xijiang River basin in South China

    Science.gov (United States)

    Yuan, Fei; Zhao, Chongxu; Jiang, Yong; Ren, Liliang; Shan, Hongcui; Zhang, Limin; Zhu, Yonghua; Chen, Tao; Jiang, Shanhu; Yang, Xiaoli; Shen, Hongren

    2017-11-01

    Projections of hydrological changes are associated with large uncertainties from different sources, which should be quantified for an effective implementation of water management policies adaptive to future climate change. In this study, a modeling chain framework to project future hydrological changes and the associated uncertainties in the Xijiang River basin, South China, was established. The framework consists of three emission scenarios (ESs), four climate models (CMs), four statistical downscaling (SD) methods, four hydrological modeling (HM) schemes, and four probability distributions (PDs) for extreme flow frequency analyses. Direct variance method was adopted to analyze the manner by which uncertainty sources such as ES, CM, SD, and HM affect the estimates of future evapotranspiration (ET) and streamflow, and to quantify the uncertainties of PDs in future flood and drought risk assessment. Results show that ES is one of the least important uncertainty sources in most situations. CM, in general, is the dominant uncertainty source for the projections of monthly ET and monthly streamflow during most of the annual cycle, daily streamflow below the 99.6% quantile level, and extreme low flow. SD is the most predominant uncertainty source in the projections of extreme high flow, and has a considerable percentage of uncertainty contribution in monthly streamflow projections in July-September. The effects of SD in other cases are negligible. HM is a non-ignorable uncertainty source that has the potential to produce much larger uncertainties for the projections of low flow and ET in warm and wet seasons than for the projections of high flow. PD contributes a larger percentage of uncertainty in extreme flood projections than it does in extreme low flow estimates. Despite the large uncertainties in hydrological projections, this work found that future extreme low flow would undergo a considerable reduction, and a noticeable increase in drought risk in the Xijiang

  17. Atomic physics with high-brightness synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1985-11-01

    A description of atomic physics experiments that we intend to carry out at the National Synchrotron Light Source is given. Emphasis is given to work that investigates the properties of multiply charged ions. The use of a synchrotron storage ring for highly charged heavy ions is proposed as a way to produce high current beams which will make possible experiments to study the photoexcitation and ionization of multiply charged ions for the first time. Experiments along the same lines which are feasible at the proposed Advanced Light Source are considered briefly. 7 refs., 2 figs

  18. Fast Physics Testbed for the FASTER Project

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  19. EPA Office of Water (OW): Nonpoint Source Projects NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — GRTS locational data for nonpoint source projects. GRTS locations are coded onto NHDPlus v2.1 flowline features to create point and line events or coded onto NHDPlus...

  20. Analysis model for the physical dimension in the environmental studies of electric transmission projects

    International Nuclear Information System (INIS)

    Garcia Gomez; Maria Aleyda; Caballero Acosta, Humberto

    2001-01-01

    This study makes a description and analysis of the physical aspects of the environment, which are contemplated, in the environmental studies of the projects of high voltage for electric transmission lines. Its meaning and out reach are defined in this projects, in its different phases of implementation; that is in the stages of design, construction and operation, making proposals to improve the adequate incorporation of physical dimension in the environmental activities. A very important aspect, worked out in the investigation, has to do with the way as this dimension is described in the real terms of reference for EIA of the Ministry of Environment; that is why it is analysed and some elements are proposed which are to correct and to articulate properly the information in these studies, because some problems were found in the articulation and contents of the physical aspects in the studies of environmental impact (EIA). Another very important aspect, which was obtained with this research, is the methodological proposal for the integration of the components of the physical dimension in which s ynthesis units are defined in different scales for the integration of those components. These facts will facilitate a better understanding of the natural processes in the areas of influence of the projects and a better understanding of the reciprocal relations between the project and the physical surroundings. In the process of searching a methodology for integration of the components of the physical dimension it is hoped that the studies be more congruent from the environmental point of view

  1. Neutron physics entering the 21st century

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    2000-01-01

    The objectives of present-day neutron physics are neutron-aided investigations of fundamental interactions and symmetries, high excited states of nuclei, crystalline and magnetic structures, dynamic excitations in solids and liquids over a wide range of energies. The state-of-art and perspectives of the solution of most topical and principle problems of neutron physics are analyzed. The main conclusion is that neutron physics provides rich information for nuclear particle physics, physics of nucleus, condensed matter physics, chemistry, biology, materials science, and earth sciences. In the next century, however, new higher flux neutron sources must be created. By the year 2010 the number of nuclear reactors used for physical research will reduce to 10-15 reactors over the world. Trends in the development of neutron sources are analyzed. The possibilities of leading neutron research centers in the world are considered and most promising projects of neutron sources are discussed. (author)

  2. 42 CFR 137.338 - Must funds from other sources be incorporated into a construction project agreement?

    Science.gov (United States)

    2010-10-01

    ... SELF-GOVERNANCE Construction Project Assumption Process § 137.338 Must funds from other sources be... 42 Public Health 1 2010-10-01 2010-10-01 false Must funds from other sources be incorporated into a construction project agreement? 137.338 Section 137.338 Public Health PUBLIC HEALTH SERVICE...

  3. FREEWAT: an HORIZON 2020 project to build open source tools for water management.

    Science.gov (United States)

    Rossetto, Rudy; Borsi, Iacopo; Foglia, Laura

    2015-04-01

    FREEWAT is an HORIZON 2020 project financed by the EU Commission under the call WATER INNOVATION: BOOSTING ITS VALUE FOR EUROPE. FREEWAT main result will be an open source and public domain GIS integrated modelling environment for the simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and other EU water related Directives. Specific objectives of the FREEWAT project are: to coordinate previous EU and national funded research to integrate existing software modules for water management in a single environment into the GIS based FREEWAT and to support the FREEWAT application in an innovative participatory approach gathering technical staff and relevant stakeholders (in primis policy and decision makers) in designing scenarios for the proper application of water policies. The open source characteristics of the platform allow to consider this an initiative "ad includendum" (looking for inclusion of other entities), as further research institutions, private developers etc. may contribute to the platform development. The core of the FREEWAT platform will be the SID&GRID framework in its version ported to the QGIS desktop. SID&GRID (GIS integrated physically-based distributed numerical hydrological model based on a modified version of MODFLOW 2005; Rossetto et al. 2013) is an open source and public domain modelling platform firstly developed within the EU-POR FSE 2007-2013 Regione Toscana - Italy and then ported to the QGIS desktop through a dedicated fund by Regione Toscana. SID&GRID will be complemented by June 2015 with solute transport (also density dependent) capabilities in aquifers within the MARSOL (2014) EU FPVII project. Activities will be mainly carried out on two branches: (i) integration of modules, so that the software will fit the end-users requirements, including

  4. Neutron nuclear physics under the neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    The concept of fast neutron physics facility in the Neutron Science Research project is described. This facility makes use of an ultra-short proton pulse (width < 1 ns) for fast neutron time-of-flight works. The current design is based on an assumption of the maximum proton current of 100 {mu}A. Available neutron fluence and energy resolution are explained. Some of the research subjects to be performed at this facility are discussed. (author)

  5. Off-site source recovery project case study: disposal of high activity cobalt 60 sources at the Nevada test site 2008

    International Nuclear Information System (INIS)

    Cocina, Frank G.; Stewart, William C.; Wald-Hopkins, Mark; Hageman, John P.

    2009-01-01

    The Off-Site Source Recovery Project has been operating at Los Alamos National Laboratory since 1998 to address the U.S. Department of Energy responsibility for collection and management of orphaned or disused radioactive sealed sources which may represent a risk to public health and national security if not properly managed.

  6. A Requirements-Based Exploration of Open-Source Software Development Projects--Towards a Natural Language Processing Software Analysis Framework

    Science.gov (United States)

    Vlas, Radu Eduard

    2012-01-01

    Open source projects do have requirements; they are, however, mostly informal, text descriptions found in requests, forums, and other correspondence. Understanding such requirements provides insight into the nature of open source projects. Unfortunately, manual analysis of natural language requirements is time-consuming, and for large projects,…

  7. The physics of the Manhattan Project. 3. ed.

    International Nuclear Information System (INIS)

    Reed, Bruce Cameron

    2015-01-01

    The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This revised and updated 3rd edition explores the challenges that faced the scientists and engineers of the Manhattan Project. It gives a clear introduction to fission weapons at the level of an upper-year undergraduate physics student by examining the details of nuclear reactions, their energy release, analytic and numerical models of the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design. An extensive list of references and a number of exercises for self-study are included. Links are given to several freely-available spreadsheets which users can use to run many of the calculations for themselves.

  8. The physics of the Manhattan Project. 3. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Bruce Cameron [Alma College, MI (United States). Dept. of Physics

    2015-02-01

    The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This revised and updated 3rd edition explores the challenges that faced the scientists and engineers of the Manhattan Project. It gives a clear introduction to fission weapons at the level of an upper-year undergraduate physics student by examining the details of nuclear reactions, their energy release, analytic and numerical models of the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design. An extensive list of references and a number of exercises for self-study are included. Links are given to several freely-available spreadsheets which users can use to run many of the calculations for themselves.

  9. Studies of electron cyclotron resonance ion source plasma physics

    International Nuclear Information System (INIS)

    Tarvainen, O.

    2005-01-01

    This thesis consists of an introduction to the plasma physics of electron cyclotron resonance ion sources (ECRIS) and a review of the results obtained by the author and co-workers including discussion of related work by others. The thesis begins with a theoretical discussion dealing with plasma physics relevant for the production of highly charged ions in ECR ion source plasmas. This is followed by an overview of different techniques, such as gas mixing and double frequency heating, that can be used to improve the performance of this type of ion source. The experimental part of the work consists of studies related to ECRIS plasma physics. The effect of the gas mixing technique on the production efficiency of different ion beams was studied with both gaseous and solid materials. It was observed that gas mixing improves the confinement of the heavier element while the confinement of the lighter element is reduced. When the effect of gas mixing on MIVOC-plasmas was studied with several mixing gases it was observed that applying this technique can reduce the inevitable carbon contamination by a significant factor. In order to understand the different plasma processes taking place in ECRIS plasmas, a series of plasma potential and emittance measurements was carried out. An instrument, which can be used to measure the plasma potential in a single measurement without disturbing the plasma, was developed for this work. Studying the plasma potential of ECR ion sources is important not only because it helps to understand different plasma processes, but also because the information can be used as an input parameter for beam transport simulations and ion source extraction design. The experiments performed have revealed clear dependencies of the plasma potential on certain source parameters such as the amount of carbon contamination accumulated on the walls of the plasma chamber during a MIVOC-run. It was also observed that gas mixing affects not only the production efficiency

  10. Girls InSpace project: A new space physics outreach initiative.

    Science.gov (United States)

    Abe Pacini, A.; Tegbaru, D.; Max, A., Sr.

    2017-12-01

    We present here the concept and state-of-art of the new space physics youth education and outreach initiative called "Girls InSpace project". The project goal is to spread quality scientific information to underrepresented groups, motivate girls in STEM and promote gender equality in the Space Physics area. Initially, the "Girls InSpace project" will be available in two languages (Portuguese and English) aiming to reach out to the youth of Brazil, United States, Nigeria, South Africa, Ethiopia and Angola. Eventually, the material will be translated to French and Spanish, focusing on French-speaking countries in Africa and Latin America. The project spans a collection of four books about a group of young girls and their adventures (always related to the sky and simultaneously introducing earth and space science concepts). Ancillary content such as a webpage, mobile applications and lesson plans are also in development. The books were written by a Space Physicist PhD woman, illustrated by a Brazilian young artist and commented by senior female scientists, creating positive role models for the next generation of girls in STEM. The story lines were drawn around the selected topics of astronomy and space physics, introducing scientific information to the target readers (girls from 8-13 years old) and enhancing their curiosity and critical thinking. The books instill the readers to explore the available extra web-content (with images, videos, interviews with scientists, real space data, coding and deeper scientific information) and game apps (with Virtual Reality components and real space images). Moreover, for teachers K-12, a collection of lesson plans will be made available, aiming to facilitate scientific content discussed in the books and inside classroom environments. Gender bias in STEM reported earlier this year in Nature and based on a study of the American Geophysical Union's member database showed a competitive disadvantage for women in the Earth and Space

  11. The US spallation neutron source (SNS) project

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1999-01-01

    The SNS is a 1 MW pulsed spallation neutron source that will be sited at Oak Ridge. It will consist of a high-current, normal-conducting linac accelerating an H - beam to 1 GeV, an accumulator ring which compresses each 1 ms linac pulse into a 600 ns bunch which is then extracted in a single turn onto a liquid mercury target. Neutron pulses emerge at a 60 Hz rate from the two ambient, and two cryogenic moderators. Eighteen beam ports surrounding the target station are available for neutron-scattering instrumentation. Funds for ten instruments are included in the construction project; these instruments will provide basic measurement capability for the many and varied research activities at the SNS facility. The new spallation source is being built by a consortium of laboratories; the partners are LBNL, LANL, BNL, ANL and ORNL. The breadth and depth of experience and resources brought by such a wide-spread team offers very significant advantages. Construction will start in October of 1998, operation will begin in October, 2005. (J.P.N.)

  12. The SuperB Project: Status and the Physics Reach

    International Nuclear Information System (INIS)

    Neri, Nicola

    2012-01-01

    The SuperB experiment is a next generation Super Flavour Factory expected to accumulate 75 ab −1 of data at the Υ(4S) in five years of nominal running, and will be built at the recently established Cabibbo Laboratory on the outskirts of Rome. In addition to running data at the Υ(4S), SuperB will be able to accumulate data from the ψ(3770) up to the Υ(6S). A polarized electron beam enables unique physics opportunities at SuperB. The large samples of B, D and τ decays that will be recorded at SuperB can be used to provide both stringent constraints on new physics scenarios, and over-constraints on the Standard Model. We present the status of the project as well as the physics potential of SuperB.

  13. Department of Energy review of the National Spallation Neutron Source Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    A Department of Energy (DOE) review of the Conceptual Design Report (CDR) for the National Spallation Neutron Source (NSNS) was conducted. The NSNS will be a new high-power spallation neutron source; initially, it will operate at 1 megawatt (MW), but is designed to be upgradeable to significantly higher power, at lower cost, when accelerator and target technologies are developed for higher power. The 53-member Review Committee examined the projected cost, schedule, technical scope, and management structure described in the CDR. For each of the major components of the NSNS, the Committee determined that the project team had produced credible designs that can be expected to work well. What remains to be done is to integrate the design of these components. With the exception of the liquid mercury target, the NSNS Project will rely heavily on proven technologies and, thus, will face a relatively low risk to successful project completion. The Total Project Cost (TPC) presented to the Committee in the CDR was $1.266 billion in as-spent dollars. In general, the Committee felt that the laboratory consortium had presented a credible estimate for each of the major components but that value engineering might produce some savings. The construction schedule presented to the Committee covered six years beginning in FY 1999. The Committee questioned whether all parts of the project could be completed according to this schedule. In particular, the linac and the conventional facilities appeared to have overly optimistic schedules. The NSNS project team was encouraged to reexamine these activities and to consider a more conservative seven-year schedule. Another concern of the Committee was the management structure. In summary, the Committee felt that this Conceptual Design Report was a very credible proposal, and that there is a high probability for successful completion of this major project within the proposed budget, although the six-year proposed schedule may be optimistic.

  14. Department of Energy review of the National Spallation Neutron Source Project

    International Nuclear Information System (INIS)

    1997-06-01

    A Department of Energy (DOE) review of the Conceptual Design Report (CDR) for the National Spallation Neutron Source (NSNS) was conducted. The NSNS will be a new high-power spallation neutron source; initially, it will operate at 1 megawatt (MW), but is designed to be upgradeable to significantly higher power, at lower cost, when accelerator and target technologies are developed for higher power. The 53-member Review Committee examined the projected cost, schedule, technical scope, and management structure described in the CDR. For each of the major components of the NSNS, the Committee determined that the project team had produced credible designs that can be expected to work well. What remains to be done is to integrate the design of these components. With the exception of the liquid mercury target, the NSNS Project will rely heavily on proven technologies and, thus, will face a relatively low risk to successful project completion. The Total Project Cost (TPC) presented to the Committee in the CDR was $1.266 billion in as-spent dollars. In general, the Committee felt that the laboratory consortium had presented a credible estimate for each of the major components but that value engineering might produce some savings. The construction schedule presented to the Committee covered six years beginning in FY 1999. The Committee questioned whether all parts of the project could be completed according to this schedule. In particular, the linac and the conventional facilities appeared to have overly optimistic schedules. The NSNS project team was encouraged to reexamine these activities and to consider a more conservative seven-year schedule. Another concern of the Committee was the management structure. In summary, the Committee felt that this Conceptual Design Report was a very credible proposal, and that there is a high probability for successful completion of this major project within the proposed budget, although the six-year proposed schedule may be optimistic

  15. Authentic student research projects on physics and the human body

    NARCIS (Netherlands)

    Heck, A.; Ellermeijer, T.; Kędzierska, E.

    2010-01-01

    Students in Dutch senior secondary education are obliged to perform their own research project of approximately 80 hours. They are stimulated to choose the topic themselves (preferably with relations to two subjects, like physics and mathematics) and have a lot of freedom in the design of the

  16. Towards fusion energy as a sustainable energy source: Activities at DTU Physics

    DEFF Research Database (Denmark)

    Rasmussen, Jesper; Christensen, Alexander Simon; Dam, Magnus

    2014-01-01

    a fusion plasma) and to confine it within magnetic fields. Learning how such plasmas behave and can be controlled is a crucial step towards realizing fusion as a sustainable energy source.At the Plasma Physics and Fusion Energy (PPFE) section at DTU Physics, we are exploring these issues,focusing on areas...

  17. Global Radiological Source Sorting, Tracking, and Monitoring Project: Phase I Final Report

    International Nuclear Information System (INIS)

    Walker, Randy M.; Hill, David E.; Gorman, Bryan L.

    2010-01-01

    As a proof of concept tested in an operational context, the Global Radiological Source Sorting, Tracking, and Monitoring (GRadSSTraM) Project successfully demonstrated that radio frequency identification (RFID) and Web 2.0* technologies can be deployed to track controlled shipments between the United States and the European Union. Between November 2009 and May 2010, a total of 19 shipments were successfully shipped from Oak Ridge National Laboratory (ORNL) by the U.S. Postal Service (USPS) and tracked to their delivery at England's National Physical Laboratory (NPL) by the United Kingdom Royal Mail. However, the project can only be viewed as a qualified success as notable shortcomings were observed. Although the origin and terminus of all RFID-enabled shipments were recorded and no shipments were lost, not all the waypoints between ORNL and NPL were incorporated into the pilot. Given limited resources, the project team was able to install RFID listeners/actuators at three waypoints between the two endpoints. Although it is likely that all shipments followed the same route between ORNL and NPL, it cannot be determined beyond question that all 19 shipments were routed on identical itineraries past the same three waypoints. The pilot also raises the distinct possibility that unattended RFID tracking alone, without positive confirmation that a tagged item has been properly recorded by an RFID reader, does not meet a rigorous standard for shipping controlled items. Indeed, the proof of concept test strongly suggests that a multifaceted approach to tracking may be called for, including tracking methods that are capable of reading and accepting multiple inputs for individual items (e.g., carrier-provided tracking numbers, Universal Product Codes (UPCs), and RFID tags). For controlled items, another apparent requirement is a confirmation feature, human or otherwise, which can certify that an item's RFID tag, UPC, or tracking number has been recorded.

  18. Global Threat Reduction Initiative Fuel Thermo-Physical Characterization Project: Sample Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pereira, Mario M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steen, Franciska H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-01-01

    This sample management plan provides guidelines for sectioning, preparation, acceptance criteria, analytical path, and end-of-life disposal for the fuel element segments utilized in the Global Threat Reduction Initiative (GTRI), Fuel Thermo-Physical Characterization Project. The Fuel Thermo-Physical Characterization Project is tasked with analysis of irradiated Low Enriched Uranium (LEU) Molybdenum (U-Mo) fuel element samples to support the GTRI conversion program. Sample analysis may include optical microscopy (OM), scanning electron microscopy (SEM) fuel-surface interface analysis, gas pycnometry (density) measurements, laser flash analysis (LFA), differential scanning calorimetry (DSC), thermogravimetry and differential thermal analysis with mass spectroscopy (TG /DTA-MS), Inductively Coupled Plasma Spectrophotometry (ICP), alpha spectroscopy, and Thermal Ionization Mass Spectroscopy (TIMS). The project will utilize existing Radiochemical Processing Laboratory (RPL) operating, technical, and administrative procedures for sample receipt, processing, and analyses. Test instructions (TIs), which are documents used to provide specific details regarding the implementation of an existing RPL approved technical or operational procedure, will also be used to communicate to staff project specific parameters requested by the Principal Investigator (PI). TIs will be developed, reviewed, and issued in accordance with the latest revision of the RPL-PLN-700, RPL Operations Plan. Additionally, the PI must approve all project test instructions and red-line changes to test instructions.

  19. Social and Economic Impact of the Candle Light Source Project Candle project impact

    Science.gov (United States)

    Baghiryan, M.

    Social and economic progress related to the realization of the CANDLE synchrotron light source creation project in Armenia is discussed. CANDLE service is multidisciplinary and long-lasting. Its impacts include significant improvement in science capacities, education quality, industrial capabilities, investment climate, country image, international relations, health level, restraining the "brain-drain", new workplaces, etc. CANDLE will serve as a universal national infrastructure assuring Armenia as a country with knowledge-based economy, a place for doing high-tech business, and be a powerful tool in achieving the country's jump forward in general.

  20. Introduction to biomass energy project financing, funding sources and government strategies

    International Nuclear Information System (INIS)

    Nordlinger, D.E.; Shaw, F.C.

    1995-01-01

    Biomass projects can help developing countries to protect their environment as well as to build a modem infrastructure. However, such projects present, in addition to the more typical risks associated with fossil-fuel projects, certain risks relating to the unique technologies and fuels used in such projects. Further, their location in developing countries regularly creates enhanced political and credit risk as well. Biomass power projects, like any other power project, must be financed. To be financeable, a power project should allocate risk in the most efficient way, so as to maximize return on investment. This paper examines the way in which various project documents can be structured to allocate most efficiently the technology and fuel risks unique to biomass projects, as well as the more typical risks, such as construction risk, permitting risk, expropriation risk, currency risk, country risk, sovereign risks, operating risks and credit risk. In addition, this paper summarizes the public financing sources and support that are available to assist in meeting the unique risk profiles of biomass projects. Specifically, it examines some of the principal multilateral and export credit agencies having involvement in this area. Finally, it examines potential strategies available to the developer of a biomass project for soliciting the involvement of, and negotiating with, local governments and public financing agencies. (author)

  1. Introduction to biomass energy project financing, funding sources and government strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nordlinger, D E [Skadden, Arps, Slate, Meagher and Flom, London (United Kingdom); Shaw, F C [Skadden, Arps, Slate, Meagher and Flom, Washington, D.C. (United States)

    1995-12-01

    Biomass projects can help developing countries to protect their environment as well as to build a modem infrastructure. However, such projects present, in addition to the more typical risks associated with fossil-fuel projects, certain risks relating to the unique technologies and fuels used in such projects. Further, their location in developing countries regularly creates enhanced political and credit risk as well. Biomass power projects, like any other power project, must be financed. To be financeable, a power project should allocate risk in the most efficient way, so as to maximize return on investment. This paper examines the way in which various project documents can be structured to allocate most efficiently the technology and fuel risks unique to biomass projects, as well as the more typical risks, such as construction risk, permitting risk, expropriation risk, currency risk, country risk, sovereign risks, operating risks and credit risk. In addition, this paper summarizes the public financing sources and support that are available to assist in meeting the unique risk profiles of biomass projects. Specifically, it examines some of the principal multilateral and export credit agencies having involvement in this area. Finally, it examines potential strategies available to the developer of a biomass project for soliciting the involvement of, and negotiating with, local governments and public financing agencies. (author)

  2. Basic physics program for a low energy antiproton source in North America

    International Nuclear Information System (INIS)

    Bonner, B.E.; Nieto, M.M.

    1987-01-01

    We summarize much of the important science that could be learned at a North American low energy antiproton source. It is striking that there is such a diverse and multidisciplinary program that would be amenable to exploration. Spanning the range from high energy particle physics to nuclear physics, atomic physics, and condensed matter physics, the program promises to offer many new insights into these disparate branches of science. It is abundantly clear that the scientific case for rapidly proceeding towards such a capability in North America is both alluring and strong. 38 refs., 2 tabs

  3. Application of Open Source Software by the Lunar Mapping and Modeling Project

    Science.gov (United States)

    Ramirez, P.; Goodale, C. E.; Bui, B.; Chang, G.; Kim, R. M.; Law, E.; Malhotra, S.; Rodriguez, L.; Sadaqathullah, S.; Mattmann, C. A.; Crichton, D. J.

    2011-12-01

    The Lunar Mapping and Modeling Project (LMMP), led by the Marshall Space Flight center (MSFC), is responsible for the development of an information system to support lunar exploration, decision analysis, and release of lunar data to the public. The data available through the lunar portal is predominantly derived from present lunar missions (e.g., the Lunar Reconnaissance Orbiter (LRO)) and from historical missions (e.g., Apollo). This project has created a gold source of data, models, and tools for lunar explorers to exercise and incorporate into their activities. At Jet Propulsion Laboratory (JPL), we focused on engineering and building the infrastructure to support cataloging, archiving, accessing, and delivery of lunar data. We decided to use a RESTful service-oriented architecture to enable us to abstract from the underlying technology choices and focus on interfaces to be used internally and externally. This decision allowed us to leverage several open source software components and integrate them by either writing a thin REST service layer or relying on the API they provided; the approach chosen was dependent on the targeted consumer of a given interface. We will discuss our varying experience using open source products; namely Apache OODT, Oracle Berkley DB XML, Apache Solr, and Oracle OpenSSO (now named OpenAM). Apache OODT, developed at NASA's Jet Propulsion Laboratory and recently migrated over to Apache, provided the means for ingestion and cataloguing of products within the infrastructure. Its usage was based upon team experience with the project and past benefit received on other projects internal and external to JPL. Berkeley DB XML, distributed by Oracle for both commercial and open source use, was the storage technology chosen for our metadata. This decision was in part based on our use Federal Geographic Data Committee (FGDC) Metadata, which is expressed in XML, and the desire to keep it in its native form and exploit other technologies built on

  4. Accelerator Physics Challenges for the NSLS-II Project

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky,S.

    2009-05-04

    The NSLS-II is an ultra-bright synchrotron light source based upon a 3-GeV storage ring with a 30-cell (15 super-period) double-bend-achromat lattice with damping wigglers used to lower the emittance below 1 nm. In this paper, we discuss the accelerator physics challenges for the design including: optimization of dynamic aperture; estimation of Touschek lifetime; achievement of required orbit stability; and analysis of ring impedance and collective effects.

  5. The Earthquake Source Inversion Validation (SIV) - Project: Summary, Status, Outlook

    Science.gov (United States)

    Mai, P. M.

    2017-12-01

    Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, this kinematic source inversion is ill-posed and returns non-unique solutions, as seen for instance in multiple source models for the same earthquake, obtained by different research teams, that often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversions and to understand strengths and weaknesses of various methods, the Source Inversion Validation (SIV) project developed a set of forward-modeling exercises and inversion benchmarks. Several research teams then use these validation exercises to test their codes and methods, but also to develop and benchmark new approaches. In this presentation I will summarize the SIV strategy, the existing benchmark exercises and corresponding results. Using various waveform-misfit criteria and newly developed statistical comparison tools to quantify source-model (dis)similarities, the SIV platforms is able to rank solutions and identify particularly promising source inversion approaches. Existing SIV exercises (with related data and descriptions) and all computational tools remain available via the open online collaboration platform; additional exercises and benchmark tests will be uploaded once they are fully developed. I encourage source modelers to use the SIV benchmarks for developing and testing new methods. The SIV efforts have already led to several promising new techniques for tackling the earthquake-source imaging problem. I expect that future SIV benchmarks will provide further innovations and insights into earthquake source kinematics that will ultimately help to better understand the dynamics of the rupture process.

  6. Future opportunities with pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A D [Rutherford Appleton Lab., Chilton (United Kingdom)

    1996-05-01

    ISIS is the world`s most powerful pulsed spallation source and in the past ten years has demonstrated the scientific potential of accelerator-driven pulsed neutron sources in fields as diverse as physics, earth sciences, chemistry, materials science, engineering and biology. The Japan Hadron Project gives the opportunity to build on this development and to further realize the potential of neutrons as a microscopic probe of the condensed state. (author)

  7. Atomic physics at the Advanced Photon Source: Workshop report

    International Nuclear Information System (INIS)

    1990-10-01

    The first Workshop on Atomic Physics at the Advanced Photon Source was held at Argonne National Laboratory on March 29--30, 1990. The unprecedented brightness of the Advanced Photon Source (APS) in the hard X-ray region is expected to make possible a vast array of new research opportunities for the atomic-physics community. Starting with discussions of the history and current status of the field, presentations were made on various future directions for research with hard X-rays interacting with atoms, ions, clusters, and solids. Also important were the discussions on the design and status of the four next-generation rings coming on line during the 1990's: the ALS 1.6 GeV ring at Berkeley; the ESRF 6.0-GeV ring at Grenoble (1993); the APS 7.0-GeV ring at Argonne (1995); and the SPring-8 8.0-GeV ring in Japan (1998). The participation of more than one hundred scientists from domestic as well as foreign institutions demonstrated a strong interest in this field. We plan to organize follow-up workshops in the future emphasizing specific research topics

  8. Physical activity and social support in adolescents: analysis of different types and sources of social support.

    Science.gov (United States)

    Mendonça, Gerfeson; Júnior, José Cazuza de Farias

    2015-01-01

    Little is known about the influence of different types and sources of social support on physical activity in adolescents. The aim of this study was to analyse the association between physical activity and different types and sources of social support in adolescents. The sample consisted of 2,859 adolescents between 14-19 years of age in the city of João Pessoa, in Northeastern Brazil. Physical activity was measured with a questionnaire and social support from parents and friends using a 10-item scale five for each group (type of support: encouragement, joint participation, watching, inviting, positive comments and transportation). Multivariable analysis showed that the types of support provided by parents associated with physical activity in adolescents were encouragement for females (P genders (males: P = 0.009; females: P physical activity varies according to its source, as well as the gender and age of the adolescents.

  9. Teaching, Doing, and Sharing Project Management in a Studio Environment: The Development of an Instructional Design Open-Source Project Management Textbook

    Science.gov (United States)

    Randall, Daniel L.; Johnson, Jacquelyn C.; West, Richard E.; Wiley, David A.

    2013-01-01

    In this article, the authors present an example of a project-based course within a studio environment that taught collaborative innovation skills and produced an open-source project management textbook for the field of instructional design and technology. While innovation plays an important role in our economy, and many have studied how to teach…

  10. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections

    Science.gov (United States)

    Kopp, Robert E.; DeConto, Robert M.; Bader, Daniel A.; Hay, Carling C.; Horton, Radley M.; Kulp, Scott; Oppenheimer, Michael; Pollard, David; Strauss, Benjamin H.

    2017-12-01

    Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.

  11. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections

    Science.gov (United States)

    Kopp, Robert E.; DeConto, Robert M.; Bader, Daniel A.; Hay, Carling C.; Horton, Radley M.; Kulp, Scott; Oppenheimer, Michael; Pollard, David; Strauss, Benjamin

    2017-01-01

    Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.

  12. Visi—A VTK- and QT-Based Open-Source Project for Scientific Data Visualization

    Science.gov (United States)

    Li, Yiming; Chen, Cheng-Kai

    2009-03-01

    In this paper, we present an open-source project, Visi for high-dimensional engineering and scientific data visualization. Visi is with state-of-the-art interactive user interface and graphics kernels based upon Qt (a cross-platform GUI toolkit) and VTK (an object-oriented visualization library). For an initialization of Visi, a preliminary window will be activated by Qt, and the kernel of VTK is simultaneously embedded into the window, where the graphics resources are allocated. Representation of visualization is through an interactive interface so that the data will be rendered according to user's preference. The developed framework possesses high flexibility and extensibility for advanced functions (e.g., object combination, etc) and further applications. Application of Visi to data visualization in various fields, such as protein structure in bioinformatics, 3D semiconductor transistor, and interconnect of very-large scale integration (VLSI) layout is also illustrated to show the performance of Visi. The developed open-source project is available in our project website on the internet [1].

  13. Single-photon sources for quantum technologies - Results of the joint research project SIQUTE

    DEFF Research Database (Denmark)

    Kück, S.; López, M.; Rodiek, B.

    2017-01-01

    In this presentation, the results of the joint research project “Single-Photon Sources for Quantum Technologies” (SIQUTE) [1] will be presented. The focus will be on the development of absolutely characterized single-photon sources, on the realization of an efficient waveguide-based single-photon......-photon source at the telecom wavelengths of 1.3 µm and 1.55 µm, on the implementation of the quantum-enhanced resolution in confocal fluorescence microscopy and on the development of a detector for very low photon fluxes...

  14. The ALPS project release 2.0: open source software for strongly correlated systems

    International Nuclear Information System (INIS)

    Bauer, B; Gamper, L; Gukelberger, J; Hehn, A; Isakov, S V; Ma, P N; Mates, P; Carr, L D; Evertz, H G; Feiguin, A; Freire, J; Koop, D; Fuchs, S; Gull, E; Guertler, S; Igarashi, R; Matsuo, H; Parcollet, O; Pawłowski, G; Picon, J D

    2011-01-01

    We present release 2.0 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. The code development is centered on common XML and HDF5 data formats, libraries to simplify and speed up code development, common evaluation and plotting tools, and simulation programs. The programs enable non-experts to start carrying out serial or parallel numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), the density matrix renormalization group (DMRG) both in a static version and a dynamic time-evolving block decimation (TEBD) code, and quantum Monte Carlo solvers for dynamical mean field theory (DMFT). The ALPS libraries provide a powerful framework for programmers to develop their own applications, which, for instance, greatly simplify the steps of porting a serial code onto a parallel, distributed memory machine. Major changes in release 2.0 include the use of HDF5 for binary data, evaluation tools in Python, support for the Windows operating system, the use of CMake as build system and binary installation packages for Mac OS X and Windows, and integration with the VisTrails workflow provenance tool. The software is available from our web server at http://alps.comp-phys.org/

  15. A Novel Method Based on Oblique Projection Technology for Mixed Sources Estimation

    Directory of Open Access Journals (Sweden)

    Weijian Si

    2014-01-01

    Full Text Available Reducing the computational complexity of the near-field sources and far-field sources localization algorithms has been considered as a serious problem in the field of array signal processing. A novel algorithm caring for mixed sources location estimation based on oblique projection is proposed in this paper. The sources are estimated at two different stages and the sensor noise power is estimated and eliminated from the covariance which improve the accuracy of the estimation of mixed sources. Using the idea of compress, the range information of near-field sources is obtained by searching the partial area instead of the whole Fresnel area which can reduce the processing time. Compared with the traditional algorithms, the proposed algorithm has the lower computation complexity and has the ability to solve the two closed-spaced sources with high resolution and accuracy. The duplication of range estimation is also avoided. Finally, simulation results are provided to demonstrate the performance of the proposed method.

  16. A Project for High Fluence 14 MeV Neutron Source

    CERN Document Server

    Pillon, Mario; Pizzuto, Aldo; Pietropaolo, Antonino

    2014-01-01

    The international community agrees on the importance to build a large facility devoted to test and validate materials to be used in harsh neutron environments. Such a facility, proposed by ENEA , reconsiders a previous study known as “Sorgentina” but takes into account new technological development so far attained. The “New Sorgentina” Fusion Source (NSFS) project is based upon an intense D - T 14 MeV neutron source achievable with T and D ion beams impinging on 2 m radius rotating target s . NSFS produces about 1 x10 13 n cm - 2 s - 1 over about 50 cm 3 . The NSFS facility will use the ion source and accelerating system technology developed for the Positive Ion Injectors (PII) used to heat the plasma in the fusion experiments,. NSFS, to be intended as an European facility, may be realized in a few years, once provided a preliminary technological program devote to study the operation of the ion source in continuous mode, target h eat loading/ removal, target and tritium handling, inventory as well as ...

  17. Information Theoretic Characterization of Physical Theories with Projective State Space

    Science.gov (United States)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  18. Verification of Electromagnetic Physics Models for Parallel Computing Architectures in the GeantV Project

    Energy Technology Data Exchange (ETDEWEB)

    Amadio, G.; et al.

    2017-11-22

    An intensive R&D and programming effort is required to accomplish new challenges posed by future experimental high-energy particle physics (HEP) programs. The GeantV project aims to narrow the gap between the performance of the existing HEP detector simulation software and the ideal performance achievable, exploiting latest advances in computing technology. The project has developed a particle detector simulation prototype capable of transporting in parallel particles in complex geometries exploiting instruction level microparallelism (SIMD and SIMT), task-level parallelism (multithreading) and high-level parallelism (MPI), leveraging both the multi-core and the many-core opportunities. We present preliminary verification results concerning the electromagnetic (EM) physics models developed for parallel computing architectures within the GeantV project. In order to exploit the potential of vectorization and accelerators and to make the physics model effectively parallelizable, advanced sampling techniques have been implemented and tested. In this paper we introduce a set of automated statistical tests in order to verify the vectorized models by checking their consistency with the corresponding Geant4 models and to validate them against experimental data.

  19. Source term modelling parameters for Project-90

    International Nuclear Information System (INIS)

    Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.

    1992-04-01

    This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)

  20. Growth and Expansion of the International Criticality Safety Benchmark Evaluation Project and the Newly Organized International Reactor Physics Experiment Evaluation Project

    International Nuclear Information System (INIS)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-01-01

    Since ICNC 2003, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) has continued to expand its efforts and broaden its scope. Criticality-alarm/shielding type benchmarks and fundamental physics measurements that are relevant to criticality safety applications are not only included in the scope of the project, but benchmark data are also included in the latest version of the handbook. A considerable number of improvements have been made to the searchable database, DICE and the criticality-alarm/shielding benchmarks and fundamental physics measurements have been included in the database. There were 12 countries participating on the ICSBEP in 2003. That number has increased to 18 with recent contributions of data and/or resources from Brazil, Czech Republic, Poland, India, Canada, and China. South Africa, Germany, Argentina, and Australia have been invited to participate. Since ICNC 2003, the contents of the ''International Handbook of Evaluated Criticality Safety Benchmark Experiments'' have increased from 350 evaluations (28,000 pages) containing benchmark specifications for 3070 critical or subcritical configurations to 442 evaluations (over 38,000 pages) containing benchmark specifications for 3957 critical or subcritical configurations, 23 criticality-alarm-placement/shielding configurations with multiple dose points for each, and 20 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications in the 2006 Edition of the ICSBEP Handbook. Approximately 30 new evaluations and 250 additional configurations are expected to be added to the 2007 Edition of the Handbook. Since ICNC 2003, a reactor physics counterpart to the ICSBEP, The International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. Beginning in 1999, the IRPhEP was conducted as a pilot activity by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy Agency

  1. International Reactor Physics Experiment Evaluation (IRPhE) Project. IRPhE Handbook - 2017 edition

    International Nuclear Information System (INIS)

    2017-01-01

    The International Reactor Physics Evaluation (IRPhE) Project was initiated as a pilot in 1999 by the Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC). The project was endorsed as an official activity of the NSC in June 2003. While the NEA co-ordinates and administers the IRPhE Project at the international level, each participating country is responsible for the administration, technical direction and priorities of the project within their respective countries. The information and data included in this handbook are available to NEA member countries, to all contributing countries and to others on a case-by-case basis. The IRPhE Project is patterned after the International Criticality Safety Benchmark Evaluation Project (ICSBEP). It closely co-ordinates with the ICSBEP to avoid duplication of efforts and publication of conflicting information. Some benchmark data are applicable to both nuclear criticality safety and reactor physics technology. Some have already been evaluated and published by the ICSBEP, but have been extended to include other types of measurements in addition to the critical configuration. Through this effort, the IRPhE Project will be able to 1) consolidate and preserve the existing worldwide information base; 2) retrieve lost data; 3) identify areas where more data are needed; 4) draw upon the resources of the international reactor physics community to help fill knowledge gaps; 5) identify discrepancies between calculations and experiments due to deficiencies in reported experimental data, cross-section data, cross-section processing codes and neutronics codes; 6) eliminate a large amount of redundant research and processing of reactor physics experiment data, and 7) improve future experimental planning, execution and reporting. This handbook contains reactor physics benchmark specifications that have been derived from experiments performed at nuclear facilities around the world. The benchmark specifications are intended for use by

  2. Optic issues in ongoing ERL projects

    International Nuclear Information System (INIS)

    Smith, S.L.; Muratori, B.D.; Owen, H.L.; Hoffstaetter, G.H.; Litvinenko, V.N.; Ben-Zvi, I.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Calaga, R.; Fischer, W.; Chang, X.Y.; Kayran, D.; Kewisch, J.; MacKay, W.W.; Montag, C.; Parker, B.; Ptitsyn, V.; Roser, T.; Ruggiero, A.; Satogata, T.; Surrow, B.; Tepikian, S.; Trbojevic, D.; Yakimenko, V.; Zhang, S.Y.; Piot, Ph.

    2006-01-01

    A wide range of optics issues for energy recovery linac (ERL)-based projects are illustrated through the presentation of ongoing projects covering both light sources, at Cornell and Daresbury and high energy and nuclear physics accelerators at the Brookhaven National Laboratory. This presented range of projects demonstrates how the different designs teams see the challenges of studying and solving optics issues for their particular project's ERLs, with studies appropriate to the stage of maturity of the project. Finally, as an illustration of the complexity and detail behind a single aspect of ERL optics design we present an overview of the highly important generic topic of longitudinal phase space evolution in ERLs

  3. Current status of the IREN project

    International Nuclear Information System (INIS)

    Furman, W.I.

    1997-01-01

    A current status and a corrected time-schedule of the project of the new Intense Resonance Neutron pulsed source (IREN) realized in JINR (Dubna) for experiments dealing with fundamental and applied nuclear physics studies are discussed. This source is the upgraded variant of the existing IBR-30 pulsed booster. It consists of the 200 MeV electron linac and supplying by an electron beam the photo-neutron converter placed in the center of the very fast multiplying subcritical core. The existing buildings and beam infrastructure are planned to adopt for the new IREN source. The aim of the project is to improve essentially an energy resolution of the time-of-flight spectrometer and to increase twice (up to 10 15 n/sec) an integral neutron yield. An implementation of the IREN project has started in June 1994 with the planned end in December 1997. But due to mainly insufficient financing the approved time-schedule is shifted. Now most optimistic time of start-up of the neutron source is the end of 1999

  4. Final Report Sustained Spheromak Physics Project FY 1997 - FY 1999

    International Nuclear Information System (INIS)

    Hooper, E.B.; Hill, D.N.

    2000-01-01

    This is the final report on the LDRD SI-funded Sustained Spheromak Physics Project for the years FY1997-FY1999, during which the SSPX spheromak was designed, built, and commissioned for operation at LLNL. The specific LDRD project covered in this report concerns the development, installation, and operation of specialized hardware and diagnostics for use on the SSPX facility in order to study energy confinement in a sustained spheromak plasma configuration. The USDOE Office of Fusion Energy Science funded the construction and routine operation of the SSPX facility. The main distinctive feature of the spheromak is that currents in the plasma itself produce the confining toroidal magnetic field, rather than external coils, which necessarily thread the vacuum vessel. There main objective of the Sustained Spheromak Physics Project was to test whether sufficient energy confinement could be maintained in a spheromak plasma sustained by DC helicity injection. Achieving central electron temperatures of several hundred eV would indicate this. In addition, we set out to determine how the energy confinement scales with T c and to relate the confinement time to the level of internal magnetic turbulence. Energy confinement and its scaling are the central technical issues for the spheromak as a fusion reactor concept. Pending the outcome of energy confinement studies now under way, the spheromak could be the basis for an attractive fusion reactor because of its compact size, simply-connected magnetic geometry, and potential for steady-state current drive

  5. Hybrid TLC-pair meter for the Sphinx Project

    Science.gov (United States)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in THE SPHINX PROJECT are research of super lepton physics and new detector experiments. At the second phase of THE SPHINX PROJECT, a hybrid TLC-PAIR METER was designed for measuring high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV) and measuring muon group (E mu 1 TeV). The principle of PAIR METER has been already proposed. In this TLC-PAIR METER, electromagnetic shower induced by cosmic ray muons are detected using TL (Thermoluminescence) sheets with position counters.

  6. Hybrid TLC-pair meter for the Sphinx Project

    International Nuclear Information System (INIS)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in the Sphinx Project are research on super lepton physics and new detector experiments. In the second phase of the Sphinx Project, a hybrid TLC-pair meter was designed for measuring for high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV), and measuring muon groups (E mu 1 TeV). The principle of the pair meter has been already proposed. In this TLC pair meter, electromagnetic showers induced by cosmic ray muons are detected using thermoluminescene sheets with position counters

  7. International Reactor Physics Experiment Evaluation (IRPhE) Project

    International Nuclear Information System (INIS)

    2013-01-01

    The International Reactor Physics Experiment Evaluation (IRPhE) Project aims to provide the nuclear community with qualified benchmark data sets by collecting reactor physics experimental data from nuclear facilities, worldwide. More specifically the objectives of the expert group are as follows: - maintaining an inventory of the experiments that have been carried out and documented; - archiving the primary documents and data released in computer-readable form; - promoting the use of the format and methods developed and seek to have them adopted as a standard. For those experiments where interest and priority is expressed by member countries or working parties and executive groups within the NEA provide guidance or co-ordination in: - compiling experiments into a standard international agreed format; - verifying the data, to the extent possible, by reviewing original and subsequently revised documentation, and by consulting with the experimenters or individuals who are familiar with the experimenters or the experimental facility; - analysing and interpreting the experiments with current state-of-the-art methods; - publishing electronically the benchmark evaluations. The expert group will: - identify gaps in data and provide guidance on priorities for future experiments; - involve the young generation (Masters and PhD students and young researchers) to find an effective way of transferring know-how in experimental techniques and analysis methods; - provide a tool for improved exploitation of completed experiments for Generation IV reactors; - coordinate closely its work with other NSC experimental work groups in particular the International Criticality Safety Benchmark Evaluation Project (ICSBEP), the Shielding Integral Benchmark Experiment Data Base (SINBAD) and others, e.g. knowledge preservation in fast reactors of the IAEA, the ANS Joint Benchmark Activities; - keep a close link with the working parties on scientific issues of reactor systems (WPRS), the expert

  8. Accelerator Physics Branch annual technical report, 1989

    International Nuclear Information System (INIS)

    Hulbert, J.A.

    1990-08-01

    The report describes, in a series of separate articles, the achievements of the Accelerator Physics Branch for the calendar year 1989. Work in basic problems of accelerator physics including ion sources, high-duty-factor rf quadrupoles, coupling effects in standing wave linacs and laser acceleration is outlined. A proposal for a synchrotron light source for Canada is described. Other articles cover the principal design features of the IMPELA industrial electron linac prototype, the cavities developed for the HERA complex at DESY, Hamburg, West Germany, and further machine projects that have been completed

  9. Developing a project-based computational physics course grounded in expert practice

    Science.gov (United States)

    Burke, Christopher J.; Atherton, Timothy J.

    2017-04-01

    We describe a project-based computational physics course developed using a backwards course design approach. From an initial competency-based model of problem solving in computational physics, we interviewed faculty who use these tools in their own research to determine indicators of expert practice. From these, a rubric was formulated that enabled us to design a course intended to allow students to learn these skills. We also report an initial implementation of the course and, by having the interviewees regrade student work, show that students acquired many of the expert practices identified.

  10. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico

    International Nuclear Information System (INIS)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E.; Monroy G, F.; Lizcano C, D.

    2014-10-01

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  11. Coronal Physics and the Chandra Emission Line Project

    Science.gov (United States)

    Brickhouse, N. S.; Drake, J. J.

    2000-01-01

    With the launch of the Chandra X-ray Observatory, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources Capella, Procyon, and HR 1099 are providing not only invaluable calibration data, but also benchmarks for plasma spectral models. These models are needed to interpret data from stellar coronae, galaxies and clusters of galaxies, supernova, remnants and other astrophysical sources. They have been called into question in recent years as problems with understanding low resolution ASCA and moderate resolution Extreme Ultraviolet Explorer Satellite (EUVE) data have arisen. The Emission Line Project is a collaborative effort, to improve the models, with Phase I being the comparison of models with observed spectra of Capella, Procyon, and HR 1099. Goals of these comparisons are (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. A critical issue in exploiting the coronal data for these purposes is to understand the extent, to which common simplifying assumptions (coronal equilibrium, negligible optical depth) apply. We will discuss recent, advances in our understanding of stellar coronae, in this context.

  12. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    Trainor, T.A.; Weitkamp, W.G.

    1985-04-01

    Progress is reported in these areas: nuclear physics relevant to astrophysics and cosmology; nuclear structure of 14 N; the Cabibbo angle in Fermi matrix elements of high j states; giant resonances; heavy ion reactions; 0 + - 0 - isoscalar parity mixing in 14 N; parity mixing in hydrogen and deuterium; medium energy physics; and accelerator mass spectrometry. Accelerators and ion sources, nuclear instrumentation, and computer systems at the university are discussed, including the booster linac project

  13. Project 252Cf-D2O. The multisphere system of neutron dosimetry and spectrometry (M.S.-N.D.S.). Studies of applications to health physics

    International Nuclear Information System (INIS)

    Zaborowski, H.L.

    1976-10-01

    The project 252 Cf-D 2 O is articulated upon the utilization of a 200μg nominal 252 Cf spontaneous neutron fission source, used bare and under D 2 O spherical moderators, giving leakage neutron spectra experimentally known and/or calculated. This project has for objective the applications of those sources to Health Physics, in dosimetry (calibration of ''rad'' and ''rem-meters'') and in spectrometry, associated with the experimental system of measurements made by the generalization of the BONNER Spheres, known as ''the Multisphere System''. This communication describes the normalization method used and the results obtained leading to the adoption of a reference matrix called ''the Log-Normal Multisphere Matrix'' (LN-MM) giving the energies response functions of the generalized system for all the spheres diameters between 40 and 400 millimeters and for all the energies between 0.4eV and 15MeV [fr

  14. ProjectQ: An Open Source Software Framework for Quantum Computing

    OpenAIRE

    Steiger, Damian S.; Häner, Thomas; Troyer, Matthias

    2016-01-01

    We introduce ProjectQ, an open source software effort for quantum computing. The first release features a compiler framework capable of targeting various types of hardware, a high-performance simulator with emulation capabilities, and compiler plug-ins for circuit drawing and resource estimation. We introduce our Python-embedded domain-specific language, present the features, and provide example implementations for quantum algorithms. The framework allows testing of quantum algorithms through...

  15. Embracing Open Software Development in Solar Physics

    Science.gov (United States)

    Hughitt, V. K.; Ireland, J.; Christe, S.; Mueller, D.

    2012-12-01

    We discuss two ongoing software projects in solar physics that have adopted best practices of the open source software community. The first, the Helioviewer Project, is a powerful data visualization tool which includes online and Java interfaces inspired by Google Maps (tm). This effort allows users to find solar features and events of interest, and download the corresponding data. Having found data of interest, the user now has to analyze it. The dominant solar data analysis platform is an open-source library called SolarSoft (SSW). Although SSW itself is open-source, the programming language used is IDL, a proprietary language with licensing costs that are prohibative for many institutions and individuals. SSW is composed of a collection of related scripts written by missions and individuals for solar data processing and analysis, without any consistent data structures or common interfaces. Further, at the time when SSW was initially developed, many of the best software development processes of today (mirrored and distributed version control, unit testing, continuous integration, etc.) were not standard, and have not since been adopted. The challenges inherent in developing SolarSoft led to a second software project known as SunPy. SunPy is an open-source Python-based library which seeks to create a unified solar data analysis environment including a number of core datatypes such as Maps, Lightcurves, and Spectra which have consistent interfaces and behaviors. By taking advantage of the large and sophisticated body of scientific software already available in Python (e.g. SciPy, NumPy, Matplotlib), and by adopting many of the best practices refined in open-source software development, SunPy has been able to develop at a very rapid pace while still ensuring a high level of reliability. The Helioviewer Project and SunPy represent two pioneering technologies in solar physics - simple yet flexible data visualization and a powerful, new data analysis environment. We

  16. Smartphone applications as a source of motivation for engaging in physical activity

    Science.gov (United States)

    Kuska, Michalina; Żukowska, Hanna

    2017-11-01

    The aim of this article was to examine whether smartphone applications provide a source of motivation for engaging in physical activity by adult Poles. The study was conducted at the turn of January and February 2017 and included 500 people. The diagnostic survey was used as a research method and questionnaire as a research instrument. For the purpose of the study, only the correctly filled out forms, that is 420, were selected from 500 completed surveys. The study revealed a positive impact of modern technologies on physical activity of respondents. Ensuring greater access to modern technologies and creating application possibilities related to physical activity could contribute to increased interest in and greater motivation for undertaking physical activity.

  17. A Project in Thermal Physics Involving a Car Parked in Direct Sunlight

    Science.gov (United States)

    Lee, Wei; Gilley, Heidi L.; Caris, Joshua B.

    1997-05-01

    A research project for introductory physics students, involving an estimate of the surface temperature of the Sun using a parked car, was carried out in the Summer 1995 Research Apprenticeships in Science Program, sponsored by Edison Industrial Systems Center, for local-area high school students. This activity entails both outdoor quantitative observations and theoretical analysis, and yields a result within 12 percent of the accepted value. It was demonstrated that the use of everyday materials and outdoor observations, such as those in this project, is not only educational but also intriguing. The success of this experiment as a summer research project will be discussed.

  18. An archival study on the reacting plasma project (R-project) at the institute of plasma physics, Nagoya University. An interview with MATSUURA Kiyokata, professor emeritus at Nagoya University

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Y [Nagoya Univ., Nagoya, Aichi (Japan); Obayashi, H; Fujita, J; Namba, C; Kimura, K; Matsuoka, K; Hanaoka, S [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2006-01-15

    An interview record with MATSUURA Kiyokata, Professor Emeritus at Nagoya University, is given on the Reacting Plasma Project (R-project), which was proposed and investigated in 1980's by the Institute of Plasma Physics, Nagoya University (IPP Nagoya). The project was planned to aim at producing a DT reacting plasma in tokamak to explore its physics and technology. But after intensive studies on design work, together with some R and D efforts and related investigations, the project could not be realized. The circumstances of the R-Project at its initiation and termination stages are the major topics of the present interview, held as a round-table talk with Prof. Matsuura, the project leader. (author)

  19. REALIZATION OF INVESTMENT PROJECTS IN POWER GENERATION SECTOR AND DETERMINATION OF CAPITAL INVESTMENT SOURCES

    Directory of Open Access Journals (Sweden)

    V. N. Nagornov

    2008-01-01

    Full Text Available The paper contains information on the basic directions of an investment activity in the power generation sector of the Republic of Belarus and importance of the realization of planned actions at the present moment. The main sources for financing modernization of basic production funds of the Belarusian power generation system have been analyzed in the paper. The paper describes general problems and difficulties that the power industry is facing while realizing investment projects. The most important problem is a formation of sources for complete project financing due to sharp price rise for imported power resources. The paper considers various approaches to provision of the required sources for financing investment activity in the power sector. The paper shows the need for a tariff policy reform, which is to be aimed, first of all, at the reduction of the cross subsidizing in power tariffs.

  20. SPES: exotic beams for nuclear physics studies

    International Nuclear Information System (INIS)

    Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Vasquez, J.; Rossignoli, M.; Monetti, A.; Calderolla, M.; Prete, G.

    2014-01-01

    The SPES project at Laboratori di Legnaro of INFN (Italy) is concentrating on the production of neutron-rich radioactive nuclei for nuclear physics experiments using uranium fission at a rate of 10 13 fission/s. The emphasis on neutron-rich isotopes is justified by the fact that this vast territory has been little explored. The Radioactive Ion Beam (RIB) will be produced by the ISOL technique using proton induced fission on a direct target of UCx. The most critical element of the SPES project is the Multi-Foil Direct Target. Up to the present time, the proposed target represents an innovation in terms of its capability to sustain the primary beam power. This talk will present the status of the project financed by INFN, which is actually in the construction phase at Legnaro. In particular, developments related to the target and the ion-source activities using the surface ion source, plasma ion source, and laser ion source techniques will be reported. (author)

  1. The Physical/Chemical Closed-Loop Life Support Research Project

    Science.gov (United States)

    Bilardo, Vincent J., Jr.

    1990-01-01

    The various elements of the Physical/Chemical Closed-Loop Life Support Research Project (P/C CLLS) are described including both those currently funded and those planned for implementation at ARC and other participating NASA field centers. The plan addresses the entire range of regenerative life support for Space Exploration Initiative mission needs, and focuses initially on achieving technology readiness for the Initial Lunar Outpost by 1995-97. Project elements include water reclamation, air revitalization, solid waste management, thermal and systems control, and systems integration. Current analysis estimates that each occupant of a space habitat will require a total of 32 kg/day of supplies to live and operate comfortably, while an ideal P/C CLLS system capable of 100 percent reclamation of air and water, but excluding recycling of solid wastes or foods, will reduce this requirement to 3.4 kg/day.

  2. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    Science.gov (United States)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  3. Growth and Expansion of the International Criticality Safety Benchmark Evaluation Project and the Newly Organized International Reactor Physics Experiment Evaluation Project

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-05-01

    Since ICNC 2003, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) has continued to expand its efforts and broaden its scope. Criticality-alarm / shielding type benchmarks and fundamental physics measurements that are relevant to criticality safety applications are not only included in the scope of the project, but benchmark data are also included in the latest version of the handbook. A considerable number of improvements have been made to the searchable database, DICE and the criticality-alarm / shielding benchmarks and fundamental physics measurements have been included in the database. There were 12 countries participating on the ICSBEP in 2003. That number has increased to 18 with recent contributions of data and/or resources from Brazil, Czech Republic, Poland, India, Canada, and China. South Africa, Germany, Argentina, and Australia have been invited to participate. Since ICNC 2003, the contents of the “International Handbook of Evaluated Criticality Safety Benchmark Experiments” have increased from 350 evaluations (28,000 pages) containing benchmark specifications for 3070 critical or subcritical configurations to 442 evaluations (over 38,000 pages) containing benchmark specifications for 3957 critical or subcritical configurations, 23 criticality-alarm-placement / shielding configurations with multiple dose points for each, and 20 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications in the 2006 Edition of the ICSBEP Handbook. Approximately 30 new evaluations and 250 additional configurations are expected to be added to the 2007 Edition of the Handbook. Since ICNC 2003, a reactor physics counterpart to the ICSBEP, The International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. Beginning in 1999, the IRPhEP was conducted as a pilot activity by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy

  4. Removing a barrier to computer-based outbreak and disease surveillance--the RODS Open Source Project.

    Science.gov (United States)

    Espino, Jeremy U; Wagner, M; Szczepaniak, C; Tsui, F C; Su, H; Olszewski, R; Liu, Z; Chapman, W; Zeng, X; Ma, L; Lu, Z; Dara, J

    2004-09-24

    Computer-based outbreak and disease surveillance requires high-quality software that is well-supported and affordable. Developing software in an open-source framework, which entails free distribution and use of software and continuous, community-based software development, can produce software with such characteristics, and can do so rapidly. The objective of the Real-Time Outbreak and Disease Surveillance (RODS) Open Source Project is to accelerate the deployment of computer-based outbreak and disease surveillance systems by writing software and catalyzing the formation of a community of users, developers, consultants, and scientists who support its use. The University of Pittsburgh seeded the Open Source Project by releasing the RODS software under the GNU General Public License. An infrastructure was created, consisting of a website, mailing lists for developers and users, designated software developers, and shared code-development tools. These resources are intended to encourage growth of the Open Source Project community. Progress is measured by assessing website usage, number of software downloads, number of inquiries, number of system deployments, and number of new features or modules added to the code base. During September--November 2003, users generated 5,370 page views of the project website, 59 software downloads, 20 inquiries, one new deployment, and addition of four features. Thus far, health departments and companies have been more interested in using the software as is than in customizing or developing new features. The RODS laboratory anticipates that after initial installation has been completed, health departments and companies will begin to customize the software and contribute their enhancements to the public code base.

  5. Budget projections 1990, 1991, and 1992 for research in high energy nuclear physics

    International Nuclear Information System (INIS)

    1990-05-01

    Research programs in experimental high energy physics are carried out at Harvard under the general supervision of a departmental faculty committee on high energy physics. The committee members are: G.W. Brandenburg, M. Franklin, S. Geer, R. J. Glauber, K. Kinoshita, F. M. Pipkin, R. F. Schwitters, K. Strauch, M. E. Law, and R. Wilson. Of these individuals, Professors R.J. Glauber, F.M. Pipkin, R.F.Schwitters, K. Strauch, and R. Wilson are the principal investigators with whom a number of junior faculty members and post-doctoral research fellows are associated. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. Professor Schwitters is currently on leave of absence as Director of the Superconducting Super Collider project. In the fall of 1990 Professor G. Feldman, who is currently at SLAC, will join the Harvard faculty and become a principal investigator. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard's educational efforts are concentrated in graduate education. These budget projections cover all of the Harvard based high energy physics experimental activities. The open-quotes umbrellaclose quotes nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared equally by the experimental groups

  6. Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities

    International Nuclear Information System (INIS)

    Flemming, Jens; Hofmann, Bernd

    2011-01-01

    In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicate, also for constrained Tikhonov regularization. In this context, we extend the concept of projected source conditions already known in Hilbert spaces to Banach spaces, and we show in the main theorem that such projected source conditions are to some extent equivalent to certain variational inequalities. The derived variational inequalities immediately yield convergence rates measured by Bregman distances

  7. Making a Business out of Open Source

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Marc Fleury, a physicist by training, retired in his thirties after selling the company JBoss, which made an open-source application server, to Red Hat. He will talk about the various business models of open source software. From leveraging available open source software and casual contributions, to on-ramp models and subscription models, various business models have been explored and function. Not all models work for all software fields and business types. He will review those business models in context and survey "state-of-the-art" economic models for open source software production. Speaker Bio: Marc Fleury is the creator of JBoss, an open-source Java application server. Fleury holds a degree in mathematics and a Doctorate in physics from the École Polytechnique in Paris and a Master in Theoretical Physics from the École Normale. He worked in France for Sun Microsystems before moving to the United States where he has worked on various Java projects. Fleury's research interest focused on middleware, a...

  8. [Exercise-referral to a specialist in adapted physical activity (APA) : a pilot project].

    Science.gov (United States)

    Brugnerotto, Adeline; Cardinaux, Regula; Ueltschi, Yan; Bauwens, Marine; Nanchen, David; Cornuz, Jacques; Bize, Raphaël; Auer, Reto

    2016-11-02

    Family physicians have a key role in the promotion of physical activity, in particular in identifying and counseling persons who have a sedentary lifestyle. Some patients could benefit from intensive individual counseling. Physicians are often not aware of all physical activity promotion activities in the community that they could recommend their patients. In a pilot study, we have tested and adapted the referral of patients from family physicians to specialists in adapted physical activity (APAs). APAs are trained to assess and guide persons towards physical activities adapted to their needs and pathologies and thus towards an increase in physical activity. Pilot data suggest that, while few patients were oriented to the APAs in the pilot project, family physicians appreciate the possibility of collaborating with the APAs.

  9. Initial growth of physic nut as a function of sources and doses of organic fertilizers

    OpenAIRE

    Schulz,Deisinara Giane; Fey,Rubens; Ruppenthal,Viviane; Malavasi,Marlene de Matos; Malavasi,Ubirajara Contro

    2012-01-01

    Organic fertilization provides low cost, supplemental nutrition for plant production. This study aimed to determine the best source and dose of organic fertilizer on the growth of physic nut (Jatropha curcas L.), a potential biodiesel producer. Physic nut seedlings were transplanted to 18 dm³ black plastic pots filled with soil mixed with four sources of organic fertilizer (chicken, fish, cattle manure or urban waste compost) at four dose levels (50, 100, 200 or 400 L m-3). Fertilized and con...

  10. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5x10 19 m -2 ·sec -1 . Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities

  11. The GALAXIE all-optical FEL project

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O' Shea, B.; O' Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M. [Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); Dept. of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); and others

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  12. NRC source term assessment for incident response dose projections

    International Nuclear Information System (INIS)

    Easley, P.; Pasedag, W.

    1984-01-01

    The NRC provides advice and assistance to licensees and State and local authorities in responding to accidents. The TACT code supports this function by providing source term projections for two situations during early (15 to 60 minutes) accident response: (1) Core/containment damage is indicated, but there are no measured releases. Quantification of a predicted release permits emergency response before people are exposed. With TACT, response personnel can estimate releases based on fuel and cladding conditions, coolant boundary and containment integrity, and mitigative systems operability. For this type of estimate, TACT is intermediate between default assumptions and time-consuming mechanistic codes. (2) A combination of plant status and limited release data are available. For this situation, iterations between predictions based on known conditions which are compared to measured releases gives reasonable confidence in supplemental source term information otherwise unavailable: nuclide mix, releases not monitored, and trending or abrupt changes. The assumptions and models used in TACT, and examples of its use, are given in this paper

  13. An ultra-cold neutron source at the MLNSC

    International Nuclear Information System (INIS)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J.; Crow, L.; Serebrov, A.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science

  14. An ultra-cold neutron source at the MLNSC

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J. [Los Alamos National Lab., NM (United States); Crow, L. [Univ. of Rhode Island, Kingston, RI (United States); Serebrov, A. [Petersburg Nuclear Physics Inst. (Russian Federation)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science.

  15. Uncertainty Analyses for Back Projection Methods

    Science.gov (United States)

    Zeng, H.; Wei, S.; Wu, W.

    2017-12-01

    So far few comprehensive error analyses for back projection methods have been conducted, although it is evident that high frequency seismic waves can be easily affected by earthquake depth, focal mechanisms and the Earth's 3D structures. Here we perform 1D and 3D synthetic tests for two back projection methods, MUltiple SIgnal Classification (MUSIC) (Meng et al., 2011) and Compressive Sensing (CS) (Yao et al., 2011). We generate synthetics for both point sources and finite rupture sources with different depths, focal mechanisms, as well as 1D and 3D structures in the source region. The 3D synthetics are generated through a hybrid scheme of Direct Solution Method and Spectral Element Method. Then we back project the synthetic data using MUSIC and CS. The synthetic tests show that the depth phases can be back projected as artificial sources both in space and time. For instance, for a source depth of 10km, back projection gives a strong signal 8km away from the true source. Such bias increases with depth, e.g., the error of horizontal location could be larger than 20km for a depth of 40km. If the array is located around the nodal direction of direct P-waves the teleseismic P-waves are dominated by the depth phases. Therefore, back projections are actually imaging the reflection points of depth phases more than the rupture front. Besides depth phases, the strong and long lasted coda waves due to 3D effects near trench can lead to additional complexities tested here. The strength contrast of different frequency contents in the rupture models also produces some variations to the back projection results. In the synthetic tests, MUSIC and CS derive consistent results. While MUSIC is more computationally efficient, CS works better for sparse arrays. In summary, our analyses indicate that the impact of various factors mentioned above should be taken into consideration when interpreting back projection images, before we can use them to infer the earthquake rupture physics.

  16. Neutron Science Project at JAERI

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1998-01-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  17. Neutron Science Project at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  18. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and

  19. Scientific study in solar and plasma physics relative to rocket and balloon projects

    Science.gov (United States)

    Wu, S. T.

    1993-01-01

    The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.

  20. BlueSky ATC Simulator Project : An Open Data and Open Source Approach

    NARCIS (Netherlands)

    Hoekstra, J.M.; Ellerbroek, J.

    2016-01-01

    To advance ATM research as a science, ATM research results should be made more comparable. A possible way to do this is to share tools and data. This paper presents a project that investigates the feasibility of a fully open-source and open-data approach to air traffic simulation. Here, the first of

  1. The SuperB factory, physics potential and project status

    Directory of Open Access Journals (Sweden)

    Wiechczynski Jaroslaw

    2012-12-01

    Full Text Available The SuperB project is an international enterprise aiming at the construction of the high-luminosity asymmetric beam energy electron-positron accelerator, which would be located in the area of Rome. It would exploit several novel features allowing to achieve an unprecedented luminosities and to collect almost a hundred times more data than the current generation of ”B factories”. As for the leptonic colliders, it will maintain a clean, low-background experimental environment that is crucial for numerous measurements on the field of high energy physics

  2. High-power explosive magnetic energy sources for thermonuclear and physical applications (overview)

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, V K [All-Russian Scientific Institute of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    High-power energy sources unavailable up to now are needed to carry out any one project on inertially confined controlled thermonuclear fusion (CTF). Considerable advances have been made in the area of explosive magnetic generators (EGG) as for their output characteristics (high power combined with high energy content). To develop the concept of magnetic cumulation proposed by A.D. Sakharov in 1951, two new approaches to increasing EMC fast operation by two orders (from tens of microseconds to tenths of microseconds) and increasing at the same time the current pulse amplitude by more than one order, were proposed at VNIIEF in the early sixties. The concept aimed at solving the CTF problem by target magnetic compression (MACO) under the effect of an fast-increasing field was proposed (1972) based on VNIIEF achievements, discussed (1976) at the USSR Academy of Sciences and published (1979). The key physical questions are analyzed, the problems to be solved are posed and the results achieved in the experiments with fast-operating high-power EMGs, fast-opening switches, transmitting lines and insulation systems are discussed here. The results obtained in experiments on liner acceleration as well as those on preliminary plasma magnetization and heating, carried out at the constructed EMGs, are discussed briefly. The conclusion is reached that the MACO system is the most suitable one to provide the ignition because the designing of high-power energy sources to be used in this system is practically complete and the concept itself does not need any intermediate transformations of one type of energy into another always accompanied by a decrease in total efficiency. (author). 4 tabs., 14 figs., 21 refs.

  3. Overview of Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Mukaiyama, Takehiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, (1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, (2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and (3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  4. Overview of Neutron Science Project

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko

    1997-01-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, 1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, 2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and 3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  5. A statistical–mechanical view on source coding: physical compression and data compression

    International Nuclear Information System (INIS)

    Merhav, Neri

    2011-01-01

    We draw a certain analogy between the classical information-theoretic problem of lossy data compression (source coding) of memoryless information sources and the statistical–mechanical behavior of a certain model of a chain of connected particles (e.g. a polymer) that is subjected to a contracting force. The free energy difference pertaining to such a contraction turns out to be proportional to the rate-distortion function in the analogous data compression model, and the contracting force is proportional to the derivative of this function. Beyond the fact that this analogy may be interesting in its own right, it may provide a physical perspective on the behavior of optimum schemes for lossy data compression (and perhaps also an information-theoretic perspective on certain physical system models). Moreover, it triggers the derivation of lossy compression performance for systems with memory, using analysis tools and insights from statistical mechanics

  6. Sources of student engagement in Introductory Physics for Life Sciences

    Science.gov (United States)

    Geller, Benjamin D.; Turpen, Chandra; Crouch, Catherine H.

    2018-06-01

    We explore the sources of student engagement with curricular content in an Introductory Physics for Life Science (IPLS) course at Swarthmore College. Do IPLS students find some life-science contexts more interesting than others, and, if so, what are the sources of these differences? We draw on three sources of student data to answer this question: (1) quantitative survey data illustrating how interested students were in particular contexts from the curriculum, (2) qualitative survey data in which students describe the source of their interest in these particular contexts, and (3) interview data in which students reflect on the contexts that were and were not of interest to them. We find that examples that make interdisciplinary connections with students' other coursework in biology and chemistry, and examples that make connections to what students perceive to be the "real world," are particularly effective at fostering interest. More generally, students describe being deeply engaged with contexts that foster a sense of coherence or have personal meaning to them. We identify various "engagement pathways" by which different life-science students engage with IPLS content, and suggest that a curriculum needs to be flexible enough to facilitate these different pathways.

  7. The Education and Outreach Project of ATLAS - A New Participant in Physics Education

    International Nuclear Information System (INIS)

    Barnett, R. Michael; Johansson, K. Erik

    2006-01-01

    The ATLAS experiment at the Large Hadron Collider at CERN has a substantial collaborative Education and Outreach project. This article describes its activities and how it promotes physics to students around the world. With the extraordinary possibility to make groundbreaking discoveries, the ATLAS Experiment [1] at the Large Hadron Collider at CERN can play an important role in promoting contemporary physics at school. For many years ATLAS has had a substantial collaborative Education and Outreach (E and O) project in which physicists from various parts of the world take part. When the experiment begins in 2007, students from around the world will be analyzing data using cutting-edge technology. The unprecedented collision energies of the Large Hadron Collider allow ATLAS to decode the 'events' that unfold after the head-on collisions of protons (Fig. 1). The scientific results from these events will reveal much about the basic nature of matter, energy, space, and time. Students and others will be excited as they try to find events that may be signs for dark matter, extra dimensions of space, mini-black holes, string theory, and other fundamental discoveries. Science education and outreach and the promotion of awareness and appreciation of physics research have become important tasks for the research community and should be recognized as a natural and logical part of science research and as an important link between research and society. To be successful these activities have to be done in a systematic and professional way. Leading scientists together with multimedia experts can form a powerful team with teachers and educators in disseminating physics information to school and universities. The ATLAS collaboration has fully recognized the importance of education and outreach. The ATLAS E and O project can be a model for today's large science experiments in promoting science at schools and universities

  8. The Education and Outreach Project of ATLAS - A New Participant inPhysics Education

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, R. Michael; Johansson, K. Erik

    2006-04-15

    The ATLAS experiment at the Large Hadron Collider at CERN has a substantial collaborative Education and Outreach project. This article describes its activities and how it promotes physics to students around the world. With the extraordinary possibility to make groundbreaking discoveries, the ATLAS Experiment [1] at the Large Hadron Collider at CERN can play an important role in promoting contemporary physics at school. For many years ATLAS has had a substantial collaborative Education and Outreach (E&O) project in which physicists from various parts of the world take part. When the experiment begins in 2007, students from around the world will be analyzing data using cutting-edge technology. The unprecedented collision energies of the Large Hadron Collider allow ATLAS to decode the 'events' that unfold after the head-on collisions of protons (Fig. 1). The scientific results from these events will reveal much about the basic nature of matter, energy, space, and time. Students and others will be excited as they try to find events that may be signs for dark matter, extra dimensions of space, mini-black holes, string theory, and other fundamental discoveries. Science education and outreach and the promotion of awareness and appreciation of physics research have become important tasks for the research community and should be recognized as a natural and logical part of science research and as an important link between research and society. To be successful these activities have to be done in a systematic and professional way. Leading scientists together with multimedia experts can form a powerful team with teachers and educators in disseminating physics information to school and universities. The ATLAS collaboration has fully recognized the importance of education and outreach. The ATLAS E&O project can be a model for today's large science experiments in promoting science at schools and universities.

  9. First order error corrections in common introductory physics experiments

    Science.gov (United States)

    Beckey, Jacob; Baker, Andrew; Aravind, Vasudeva; Clarion Team

    As a part of introductory physics courses, students perform different standard lab experiments. Almost all of these experiments are prone to errors owing to factors like friction, misalignment of equipment, air drag, etc. Usually these types of errors are ignored by students and not much thought is paid to the source of these errors. However, paying attention to these factors that give rise to errors help students make better physics models and understand physical phenomena behind experiments in more detail. In this work, we explore common causes of errors in introductory physics experiment and suggest changes that will mitigate the errors, or suggest models that take the sources of these errors into consideration. This work helps students build better and refined physical models and understand physics concepts in greater detail. We thank Clarion University undergraduate student grant for financial support involving this project.

  10. Resource communication: ApkFor©, an Android Open-Source Project for research and technology transfer in forest management

    Directory of Open Access Journals (Sweden)

    Fernando Pérez-Rodríguez

    2018-01-01

    Full Text Available Aim of the study: To introduce and describe ApkFor©, an Android Open-Source Project to generate basic mobile applications to transfer forest growth and yield models for even-aged stands. Material and methods: ApkFor© was developed in Android Studio using Java and XML languages integrating  transition functions for dominant height and basal area, equations of tree and stand volume and structural models. The project was applied and validated for Pinus pinaster Ait. stands in Northeastern Portugal. Main results: ApkFor© is an Open-Source project freely available from the Source Force repository: https://sourceforge.net/projects/apkfor/, licensed under the GNU General Public License version 3.0 (GPLv3. Research highlights: This project has been designed and created to provide the code and promote its re-use and modification to develop simple growth and yield mobile applications in Android, and with it to transfer research results of forest modelling to forest managers. Moreover, an example of application of the compiled code is provided using the models of Pinus pinaster Ait. previously validated for the Northeastern Region of Portugal.

  11. Applied plasma physics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Applied Plasma Physics is a major sub-organizational unit of the Magnetic Fusion Energy (MFE) Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program we are developing a neutral-beam source, the intense, pulsed ion-neutral source (IPINS), for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of using certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  12. Californium source transfer

    International Nuclear Information System (INIS)

    Wallace, C.R.

    1995-01-01

    In early 1995, the receipt of four sealed californium-252 sources from Oak Ridge National Lab was successfully accomplished by a team comprised of Radiological Engineering, Radiological Operations and Health Physics Instrumentation personnel. A procedure was developed and walked-down by the participants during a Dry Run Evolution. Several special tools were developed during the pre-planning phases of the project which reduced individual and job dose to minimal levels. These included a mobile lifting device for attachment of a transfer ball valve assembly to the undercarriage of the Cannonball Carrier, a transfer tube elbow to ensure proper angle of the source transfer tube, and several tools used during emergency response for remote retrieval and handling of an unshielded source. Lessons were learned in the areas of contamination control, emergency preparedness, and benefits of thorough pre-planning, effectiveness of locally creating and designing special tools to reduce worker dose, and methods of successfully accomplishing source receipt evolutions during extreme or inclement weather

  13. Urban ninth-grade girls interactions with and outcomes from a design-oriented physics project

    Science.gov (United States)

    Higginbotham, Thomas Eric Miksad

    Past literature has documented a shrinking but persistent gap in physics and engineering for females, both in school and in the workforce. A commonly recommended strategy to invite girls into science at the school level is to have students work on design-projects in groups, which has been shown to increase all students' learning outcomes and attitudes towards science. Students (n=28) in a ninth-grade inner-city physics class participated in such a project, in which they built remotely operated underwater vehicles (ROV's) over the course of one month. Students (n=23) in a comparison classroom learned the same content using the Active Physics curriculum during the same time frame. Mixed methods were used to study the ROV classroom. Students in both classes were given pre- and post-physics content tests. Qualitative data collected during the project included field notes, video, and teacher interviews. Macro-level data analysis was done, which informed further micro-analysis. Macro-analysis revealed significantly higher learning outcomes for the ROV class than for the non-ROV class. Within the ROV class, girls, and in particular, girls in female-majority groups had increased learning outcomes and high levels of interest and engagement with the project, while girls in mixed-sex and male-majority groups did not. Qualitative macro-analysis revealed that in all of the female-majority groups, females took leadership roles within the groups, while in all of the non female-majority groups, males took leadership roles. The only groups in which girls completely disengaged from the project were mixed-sex or male majority groups. Case studies and cross case analysis suggested that girls foregrounded group process over product, and used the level of group unity as a metric of the groups' success. Groups led by girls were more cooperative and exhibited distributed leadership and participation. These findings were interpreted through lenses of expectation states theory and social

  14. Research in atomic and applied physics using a 6-GeV synchrotron source

    International Nuclear Information System (INIS)

    Jones, K.W.

    1985-12-01

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented

  15. Some successful financing mechanisms for energy efficiency projects (EE) and projects using renewable energy sources (RES) - the experience of Bulgaria

    International Nuclear Information System (INIS)

    Uzunova, Boriana

    2004-01-01

    The paper analysis some of the most promising financial mechanisms for energy efficiency (EE) and renewable energy sources (RES) projects in Bulgaria - the TPF mechanism, the KIDS Fund, delivered by the EBRD fund the EE fund of the WB, established on the floor of the EE act, as well as a number of some of the pre accession and European energy programs used for financing this area. All data its rich intensive international and in -home work in the are of energy efficiency and renewable energy sources. (Author)

  16. Project U-Turn: increasing active transportation in Jackson, Michigan.

    Science.gov (United States)

    TenBrink, David S; McMunn, Randall; Panken, Sarah

    2009-12-01

    Jackson, Michigan, is a medium-sized city suffering from a bad economy and obesity-related health issues. Nearly 20% of the 36,000 residents live below the poverty line. It is a relatively young city (median age of 30 years) with a mixed ethnicity (20% black, 73% white, 4% Hispanic). The city offers many structured, active recreational opportunities, but has not integrated physical activity into daily life. Project U-Turn aimed to increase active transportation (e.g., biking, walking, and transit use) through an integrated approach to Active Living by Design's community action model and the Michigan Safe Routes to School model. Resources were focused on active living promotions and programs; partnership meetings were the source of changes in policy and physical projects. Each initiative was designed to introduce each of the 5Ps (preparation, promotion, programs, policy, and physical projects) to build support for the partnership's overall work. The partnership collected snapshot data of community walking and biking behavior, percentage of students walking to school, participation in events and programs, and new physical projects. Jackson saw a vast improvement in physical infrastructure and policy and a related increase in walking and biking in the community. The project engaged in purposeful partnership building to implement effective programs and promotions that built support for policy and physical projects. Limited resources were best used by encouraging partners to contribute and coordinate activities using existing staff, funding, and resources. Jackson has seen a shift toward awareness of the benefits of active living on community health, economic development, and environmental awareness.

  17. OPTiM: Optical projection tomography integrated microscope using open-source hardware and software.

    Science.gov (United States)

    Watson, Thomas; Andrews, Natalie; Davis, Samuel; Bugeon, Laurence; Dallman, Margaret D; McGinty, James

    2017-01-01

    We describe the implementation of an OPT plate to perform optical projection tomography (OPT) on a commercial wide-field inverted microscope, using our open-source hardware and software. The OPT plate includes a tilt adjustment for alignment and a stepper motor for sample rotation as required by standard projection tomography. Depending on magnification requirements, three methods of performing OPT are detailed using this adaptor plate: a conventional direct OPT method requiring only the addition of a limiting aperture behind the objective lens; an external optical-relay method allowing conventional OPT to be performed at magnifications >4x; a remote focal scanning and region-of-interest method for improved spatial resolution OPT (up to ~1.6 μm). All three methods use the microscope's existing incoherent light source (i.e. arc-lamp) and all of its inherent functionality is maintained for day-to-day use. OPT acquisitions are performed on in vivo zebrafish embryos to demonstrate the implementations' viability.

  18. PRAMU. Contamination sources

    International Nuclear Information System (INIS)

    Asenjo, Armando R.

    2000-01-01

    Mining and milling activities have been carried out in Argentina during the last 40 years, and nowadays National Atomic Energy Commission (CNEA) of Argentina is undertaking the Uranium Mining Environmental Restoration Project (PRAMU). The aim of this project is to achieve that in all the places where uranium mining activities were developed, to restore the environment as much as it is possible, according to the legislation in force. The sites which are studied are: Malargue (Mendoza province), Cordoba (Cordoba province), Los Gigantes (Cordoba province), Huemul (Mendoza province), Pichinan (Chubut province), Tonco (Salta province), La Estela (San Luis province), Los Colorados (La Rioja province). In order to develop the restoration project in each site, one of the first task to be performed is to know quantities and the chemical, physicals and radiological characteristics of the contamination sources. In the present paper the activities of PRAMU in this field, are informed. (author)

  19. Future of family support: Projected living arrangements and income sources of older people in Hong Kong up to 2030.

    Science.gov (United States)

    Ng, Kok-Hoe

    2016-06-01

    The study aims to project future trends in living arrangements and access to children's cash contributions and market income sources among older people in Hong Kong. A cell-based model was constructed by combining available population projections, labour force projections, an extrapolation of the historical trend in living arrangements based on national survey datasets and a regression model on income sources. Under certain assumptions, the proportion of older people living with their children may decline from 59 to 48% during 2006-2030. Although access to market income sources may improve slightly, up to 20% of older people may have no access to either children's financial support or market income sources, and will not live with their children by 2030. Family support is expected to contract in the next two decades. Public pensions should be expanded to protect financially vulnerable older people. © 2015 AJA Inc.

  20. Reacting plasma project at IPP Japan

    International Nuclear Information System (INIS)

    Miyahara, A.; Momota, H.; Hamada, Y.; Kawamura, K.; Akimune, H.

    1981-01-01

    Contributed papers of the seminar on burning plasma held at UCLA are collected. Paper on ''overview of reacting plasma project'' described aim and philosophy of R-Project in Japan. Paper on ''Burning plasma and requirements for design'' gave theoretical aspect of reacting plasma physics while paper on ''plasma container, heating and diagnostics'' treated experimental aspect. Tritium handling is essential for the next step experiment; therefore, paper on ''Tritium problems in burning plasma experiments'' took an important part of this seminar. As appendix, paper on ''a new type of D - ion source using Si-semiconductor'' was added because such an advanced R and D work is essential for R-Project. (author)

  1. Improving back projection imaging with a novel physics-based aftershock calibration approach: A case study of the 2015 Gorkha earthquake

    Science.gov (United States)

    Meng, Lingsen; Zhang, Ailin; Yagi, Yuji

    2016-01-01

    The 2015 Mw 7.8 Nepal-Gorkha earthquake with casualties of over 9000 people was the most devastating disaster to strike Nepal since the 1934 Nepal-Bihar earthquake. Its rupture process was imaged by teleseismic back projections (BP) of seismograms recorded by three, large regional networks in Australia, North America, and Europe. The source images of all three arrays reveal a unilateral eastward rupture; however, the propagation directions and speeds differ significantly between the arrays. To understand the spatial uncertainties of the BP analyses, we analyze four moderate size aftershocks recorded by all three arrays exactly as had been conducted for the main shock. The apparent source locations inferred from BPs are systematically biased from the catalog locations, as a result of a slowness error caused by three-dimensional Earth structures. We introduce a physics-based slowness correction that successfully mitigates the source location discrepancies among the arrays. Our calibrated BPs are found to be mutually consistent and reveal a unilateral rupture propagating eastward at a speed of 2.7 km/s, localized in a relatively narrow and deep swath along the downdip edge of the locked Himalayan thrust zone. We find that the 2015 Gorkha earthquake was a localized rupture that failed to break the entire Himalayan décollement to the surface, which can be regarded as an intermediate event during the interseismic period of larger Himalayan ruptures that break the whole seismogenic zone width. Thus, our physics-based slowness correction is an important technical improvement of BP, mitigating spatial uncertainties and improving the robustness of single and multiarray studies.

  2. The Azimuth Project: an Open-Access Educational Resource

    Science.gov (United States)

    Baez, J. C.

    2012-12-01

    The Azimuth Project is an online collaboration of scientists, engineers and programmers who are volunteering their time to do something about a wide range of environmental problems. The project has several aspects: 1) a wiki designed to make reliable, sourced information easy to find and accessible to a technically literate nonexperts, 2) a blog featuring expository articles and news items, 3) a project to write programs that explain basic concepts of climate physics and illustrate principles of good open-source software design, and 4) a project to develop mathematical tools for studying complex networked systems. We discuss the progress so far and some preliminary lessons. For example, enlisting the help of experts outside academia highlights the problems with pay-walled journals and the benefits of open access, as well as differences between how software development is done commercially, in the free software community, and in academe.

  3. Enhancing Software Engineering Education through Open Source Projects: Four Years of Students' Perspectives

    NARCIS (Netherlands)

    Papadopoulos, P.M.; Stamelos, I.G.; Meiszner, A.

    2015-01-01

    This paper presents the results after four years of running of an instructional method that utilizes free/libre open source software (FLOSS) projects as tools for teaching software engineering in formal education. In the last four academic years, a total of 408 juniors majoring in Informatics (in a

  4. Data Release Report for Source Physics Experiment 1 (SPE-1), Nevada National Security Site

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Margaret [NSTec; Mercadente, Jennifer [NSTec

    2014-04-28

    The first Source Physics Experiment shot (SPE-1) was conducted in May 2011. The explosive source was a ~100-kilogram TNT-equivalent chemical set at a depth of 60 meters. It was recorded by an extensive set of instrumentation that includes sensors both at near-field (less than 100 meters) and far-field (more than 100 meters) distances. The near-field instruments consisted of three-component accelerometers deployed in boreholes around the shot and a set of singlecomponent vertical accelerometers on the surface. The far-field network comprised a variety of seismic and acoustic sensors, including short-period geophones, broadband seismometers, three-component accelerometers, and rotational seismometers at distances of 100 meters to 25 kilometers. This report coincides with the release of these data for analysts and organizations that are not participants in this program. This report describes the first Source Physics Experiment and the various types of near-field and far-field data that are available.

  5. Hard X-ray Sources for the Mexican Synchrotron Project

    International Nuclear Information System (INIS)

    Reyes-Herrera, Juan

    2016-01-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392). (paper)

  6. Hard X-ray Sources for the Mexican Synchrotron Project

    Science.gov (United States)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  7. Ion source requirements for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1996-01-01

    The neutron scattering community has endorsed the need for a high-power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor for a large class of experiments. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 kW source in the UK), and call for a high-current (approx. 100 mA peak) H - source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The 1 to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. A workshop held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H - source technologies, and identified necessary R ampersand D efforts to bridge the gap. copyright 1996 American Institute of Physics

  8. A Project-Based Learning Approach to Teaching Physics for Pre-Service Elementary School Teacher Education Students

    Science.gov (United States)

    Goldstein, Olzan

    2016-01-01

    This paper describes the impact of the project-based learning (PBL) approach on learning and teaching physics from the perspective of pre-service elementary school teacher education students and an instructor. This approach promoted meaningful learning (mainly in the scope of projects), higher motivation, and active involvement of students in…

  9. Open source drug discovery in practice: a case study.

    Science.gov (United States)

    Årdal, Christine; Røttingen, John-Arne

    2012-01-01

    Open source drug discovery offers potential for developing new and inexpensive drugs to combat diseases that disproportionally affect the poor. The concept borrows two principle aspects from open source computing (i.e., collaboration and open access) and applies them to pharmaceutical innovation. By opening a project to external contributors, its research capacity may increase significantly. To date there are only a handful of open source R&D projects focusing on neglected diseases. We wanted to learn from these first movers, their successes and failures, in order to generate a better understanding of how a much-discussed theoretical concept works in practice and may be implemented. A descriptive case study was performed, evaluating two specific R&D projects focused on neglected diseases. CSIR Team India Consortium's Open Source Drug Discovery project (CSIR OSDD) and The Synaptic Leap's Schistosomiasis project (TSLS). Data were gathered from four sources: interviews of participating members (n = 14), a survey of potential members (n = 61), an analysis of the websites and a literature review. Both cases have made significant achievements; however, they have done so in very different ways. CSIR OSDD encourages international collaboration, but its process facilitates contributions from mostly Indian researchers and students. Its processes are formal with each task being reviewed by a mentor (almost always offline) before a result is made public. TSLS, on the other hand, has attracted contributors internationally, albeit significantly fewer than CSIR OSDD. Both have obtained funding used to pay for access to facilities, physical resources and, at times, labor costs. TSLS releases its results into the public domain, whereas CSIR OSDD asserts ownership over its results. Technically TSLS is an open source project, whereas CSIR OSDD is a crowdsourced project. However, both have enabled high quality research at low cost. The critical success factors appear to be clearly

  10. Advanced Neutron Source (ANS) Project progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  11. Advanced Neutron Source (ANS) Project progress report, FY 1994

    International Nuclear Information System (INIS)

    Campbell, J.H.; King-Jones, K.H.; Thompson, P.B.

    1995-01-01

    The President's budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met

  12. Double radio sources and the new approach to cosmic plasma physics

    International Nuclear Information System (INIS)

    Alfven, H.

    1977-08-01

    The methodology of cosmic plasma physics is discussed. A summary is given of laboratory investigations of electric double layers, a phenomenon which is known to be very important in laboratory discharges. The importance of electric double layers in the Earth's surrounding is established. The scaling laws between laboratory and magnetospheric double layers are studied. A further extrapolation to galactic phenomena leads to a theory of double radio sources. From analogy with laboratory and magnetospheric current systems it is argued that the galactic current might produce double layers where a large energy dissipation takes place. This leads to a theory of the double radio sources which within the necessary wide limits of uncertainty is quantitatively reconcilable with observations. (author)

  13. Requirements for the register of physical persons for the preparation, use and handling radioactive sources

    International Nuclear Information System (INIS)

    1998-07-01

    This norm establishes the process for register of superior level profession nals enabled to the preparation, using, and handling of radioactive sources. This norm applies to the physical persons candidates applying to the register for preparation, use and handling of radioactive sources in radioactive installations at the industry, agriculture, teaching and researching

  14. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    Energy Technology Data Exchange (ETDEWEB)

    Gales, S., E-mail: sydney.gales@eli-np.ro; Zamfir, N. V., E-mail: sydney.gales@eli-np.ro [ELI-NP, Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Bucharest-Magurele (Romania)

    2015-02-24

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  15. Ukraine-Japanese-Swedish project: Upgrading of perimeter protection system at Kharkov Institute of Physics and Technology (KIPT)

    International Nuclear Information System (INIS)

    Mikahaylov, V.; Lapshin, V.; Ek, P.; Flyghed, L.; Nilsson, A.; Ooka, N.; Shimizu, K.; Tanuma, K.

    2001-01-01

    project a lot of equipment manufactured in Sweden, Japan, and partly in the USA, was procured by funding by Japan and delivered to KIPT. Completion of the work was scheduled to take place in about one year. However, despite the selfless work of the KIPT personnel and other exports, the upgrading of the perimeter initiated in October 1998 was completed, due to difficult weather conditions, custom problems etc., at the end of 2000. The project included installation of more than 6 kilometers of the standard external fencing along the perimeter of protected area of the nuclear facility, microwave and other for intrusion detection, system for cable TV alarm assessment and control (CCTV), diesel-generation to serve as an emergency power supply source for the entire physical protection system. The center alarm station (CAS) integrated the control equipment for the perimeter protection system provided by the Sweden and Japan as well as for the storage delivered by the USA. The CAS was tested and came into operation as an integral part of the entire physical protection system at KIPT in December 2000. The successful completion of the project has lead to a significant improvement of the protection level at KIPT. Thereby it has significantly reduced the possibility for unauthorised withdrawal of the special fissionable material that is available at KIPT in quantities and forms attractive for nuclear terrorists and saboteurs. The commissioning of a new modem physical protection system specially designed for KIPT point at some future problems, in particular, as regards training of operation and engineering personnel, providing service and maintenance, and providing necessary spare parts. The Japan Technical Secretariat and the Swedish Nuclear Power Inspectorate have undertaken to provide necessary support for service and maintenance, including spare parts, until the end of 2002. However, for a longer period of time the KIPT management needs to focus on this issue. (author)

  16. An Examination of Physical Education Data Sources and Collection Procedures during a Federally Funded Grant

    Science.gov (United States)

    Dauenhauer, Brian D.; Keating, Xiaofen D.; Lambdin, Dolly

    2018-01-01

    Purpose: This study aimed to conduct an in-depth investigation into physical education data sources and collection procedures in a district that was awarded a Physical Education Program (PEP) grant. Method: A qualitative, multi-site case study was conducted in which a single school district was the overarching case and eight schools served as…

  17. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the

  18. DEVELOPMENT OF SCIENCE PROCESS SKILLS STUDENTS WITH PROJECT BASED LEARNING MODEL- BASED TRAINING IN LEARNING PHYSICS

    Directory of Open Access Journals (Sweden)

    Ratna Malawati

    2016-06-01

    Full Text Available This study aims to improve the physics Science Process Skills Students on cognitive and psychomotor aspects by using model based Project Based Learning training.The object of this study is the Project Based Learning model used in the learning process of Computationa Physics.The method used is classroom action research through two learning cycles, each cycle consisting of the stages of planning, implementation, observation and reflection. In the first cycle of treatment with their emphasis given training in the first phase up to third in the model Project Based Learning, while the second cycle is given additional treatment with emphasis discussion is collaboration in achieving the best results for each group of products. The results of data analysis showed increased ability to think Students on cognitive and Science Process Skills in the psychomotor.

  19. Projecting species' vulnerability to climate change: Which uncertainty sources matter most and extrapolate best?

    Science.gov (United States)

    Steen, Valerie; Sofaer, Helen R; Skagen, Susan K; Ray, Andrea J; Noon, Barry R

    2017-11-01

    Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water

  20. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  1. Mitigating artifacts in back-projection source imaging with implications for frequency-dependent properties of the Tohoku-Oki earthquake

    Science.gov (United States)

    Meng, Lingsen; Ampuero, Jean-Paul; Luo, Yingdi; Wu, Wenbo; Ni, Sidao

    2012-12-01

    Comparing teleseismic array back-projection source images of the 2011 Tohoku-Oki earthquake with results from static and kinematic finite source inversions has revealed little overlap between the regions of high- and low-frequency slip. Motivated by this interesting observation, back-projection studies extended to intermediate frequencies, down to about 0.1 Hz, have suggested that a progressive transition of rupture properties as a function of frequency is observable. Here, by adapting the concept of array response function to non-stationary signals, we demonstrate that the "swimming artifact", a systematic drift resulting from signal non-stationarity, induces significant bias on beamforming back-projection at low frequencies. We introduce a "reference window strategy" into the multitaper-MUSIC back-projection technique and significantly mitigate the "swimming artifact" at high frequencies (1 s to 4 s). At lower frequencies, this modification yields notable, but significantly smaller, artifacts than time-domain stacking. We perform extensive synthetic tests that include a 3D regional velocity model for Japan. We analyze the recordings of the Tohoku-Oki earthquake at the USArray and at the European array at periods from 1 s to 16 s. The migration of the source location as a function of period, regardless of the back-projection methods, has characteristics that are consistent with the expected effect of the "swimming artifact". In particular, the apparent up-dip migration as a function of frequency obtained with the USArray can be explained by the "swimming artifact". This indicates that the most substantial frequency-dependence of the Tohoku-Oki earthquake source occurs at periods longer than 16 s. Thus, low-frequency back-projection needs to be further tested and validated in order to contribute to the characterization of frequency-dependent rupture properties.

  2. The SafeCOP ECSEL Project: Safe Cooperating Cyber-Physical Systems Using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Hansson, Hans

    2016-01-01

    This paper presents an overview of the ECSEL project entitled "Safe Cooperating Cyber-Physical Systems using Wireless Communication" (SafeCOP), which runs during the period 2016 -- 2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...... detection of abnormal behaviour, triggering if needed a safe degraded mode. SafeCOP will also develop methods and tools, which will be used to produce safety assurance evidence needed to certify cooperative functions. SafeCOP will extend current wireless technologies to ensure safe and secure cooperation...

  3. Gas projects surge in the Middle East as governments seek new revenue sources

    International Nuclear Information System (INIS)

    Williams, M.D.

    1997-01-01

    The rapid development of natural gas and condensate reserves in the Middle East results from a simple motivation: the desire of governments to earn revenues. For the past decade, Middle East governments have run budget deficits, which they funded by drawing down foreign assets and issuing debt. Now in the process of structural economic reform, they have begun to use an under-utilized resource--natural gas, of which Middle East governments own about one third of the world's reserves. Governments receive revenues from several sources in natural gas developments, which makes the projects very attractive. Revenue comes from the sale of the natural gas in the domestic market and, if exported, the international market; the sale of associated condensates; the additional exports of crude oil or refined products if natural gas is substituted for refined products in domestic markets; the increased sale of crude oil if natural gas is injected into reservoirs to maintain pressure; and the sale of petrochemicals where natural gas is used as feedstock. Large projects under way in the Middle East highlight the consequences of multiple revenue sources and interlinked costs of natural gas and condensate development. Other countries in the region are undertaking similar projects, so examples cited represent only a portion of what is occurring. The paper describes Abu Dhabi, Qatar, Saudi Arabia, and Iran

  4. The Cea multi-scale and multi-physics simulation project for nuclear applications

    International Nuclear Information System (INIS)

    Ledermann, P.; Chauliac, C.; Thomas, J.B.

    2005-01-01

    Full text of publication follows. Today numerical modelling is everywhere recognized as an essential tool of capitalization, integration and share of knowledge. For this reason, it becomes the central tool of research. Until now, the Cea developed a set of scientific software allowing to model, in each situation, the operation of whole or part of a nuclear installation and these codes are largely used in nuclear industry. However, for the future, it is essential to aim for a better accuracy, a better control of uncertainties and better performance in computing times. The objective is to obtain validated models allowing accurate predictive calculations for actual complex nuclear problems such as fuel behaviour in accidental situation. This demands to master a large and interactive set of phenomena ranging from nuclear reaction to heat transfer. To this end, Cea, with industrial partners (EDF, Framatome-ANP, ANDRA) has designed an integrated platform of calculation, devoted to the study of nuclear systems, and intended at the same time for industries and scientists. The development of this platform is under way with the start in 2005 of the integrated project NURESIM, with 18 European partners. Improvement is coming not only through a multi-scale description of all phenomena but also through an innovative design approach requiring deep functional analysis which is upstream from the development of the simulation platform itself. In addition, the studies of future nuclear systems are increasingly multidisciplinary (simultaneous modelling of core physics, thermal-hydraulics and fuel behaviour). These multi-physics and multi-scale aspects make mandatory to pay very careful attention to software architecture issues. A global platform is thus developed integrating dedicated specialized platforms: DESCARTES for core physics, NEPTUNE for thermal-hydraulics, PLEIADES for fuel behaviour, SINERGY for materials behaviour under irradiation, ALLIANCES for the performance

  5. Innovative approach for increasing physical activity among breast cancer survivors: protocol for Project MOVE, a quasi-experimental study.

    Science.gov (United States)

    Caperchione, Cristina M; Sabiston, Catherine M; Clark, Marianne I; Bottorff, Joan L; Toxopeus, Renee; Campbell, Kristin L; Eves, Neil D; Ellard, Susan L; Gotay, Carolyn

    2016-08-16

    Physical activity is a cost-effective and non-pharmaceutical strategy that can help mitigate the physical and psychological health challenges associated with breast cancer survivorship. However, up to 70% of women breast cancer survivors are not meeting minimum recommended physical activity guidelines. Project MOVE is an innovative approach to increase physical activity among breast cancer survivors through the use of Action Grants, a combination of microgrants (small amounts of money awarded to groups of individuals to support a physical activity initiative) and financial incentives. The purpose of this paper is to describe the rationale and protocol of Project MOVE. A quasi-experimental pre-post design will be used. Twelve groups of 8-12 adult women who are breast cancer survivors (N=132) were recruited for the study via face-to-face meetings with breast cancer-related stakeholders, local print and radio media, social media, and pamphlets and posters at community organisations and medical clinics. Each group submitted a microgrant application outlining their proposed physical activity initiative. Successful applicants were determined by a grant review panel and informed of a financial incentive on meeting their physical activity goals. An evaluation of feasibility will be guided by the reach, effectiveness, adoption, implementation, maintenance (RE-AIM) framework and assessed through focus groups, interviews and project-related reports. Physical activity will be assessed through accelerometry and by self-report. Quality of life, motivation to exercise and social connection will also be assessed through self-report. Assessments will occur at baseline, 6 months and 1 year. Ethical approval was obtained from the University of British Columbia's Behavioural Research Ethics Board (#H14-02502) and has been funded by the Canadian Cancer Society Research Institute (project number #702913). Study findings will be disseminated widely through peer-reviewed publications

  6. Experimental plasma research project summaries

    International Nuclear Information System (INIS)

    1992-06-01

    This is the latest in a series of Project Summary books going back to 1976 and is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma and innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into these three categories of plasma physics, diagnostic development and atomic physics

  7. Symposium on Highlights from 14 years of LEAR Physics : "AD Project" by S. Maury

    CERN Multimedia

    1998-01-01

    Symposium on Highlights from 14 years of LEAR Physics hold at CERN, commemorating the closure of LEAR and giving a topical review of the impact of experiments with low energy antiprotons in their respective fields: S. Maury "AD Project"

  8. Intense resonance neutron source (IREN) - new pulsed source for nuclear physical and applied investigations

    International Nuclear Information System (INIS)

    Anan'ev, V.D.; Furman, W.I.; Kobets, V.V.; Meshkov, I.N.; Pyataev, V.G.; Shirkov, G.D.; Shvets, V.A.; Sumbaev, A.P.; Kuatbekov, R.P.; Tret'yakov, I.T.; Frolov, A.R.; Gurov, S.M.; Logachev, P.V.; Pavlov, V.M.; Skarbo, B.A.

    2005-01-01

    An accelerator-driven subcritical system (200 MeV electron linac + metallic plutonium subcritical core) IREN is constructed at the Joint Institute for Nuclear Research (JINR). The new pulsed neutron source IREN is optimized for maximal yield of resonance neutrons (1-10 5 eV). The S-band electron linac with a pulse duration near 200 ns, repetition rate up to 150 Hz and the mean beam power 10 kW delivers 200-MeV electrons onto a specially designed tungsten target (an electron-neutron converter) situated in the center of a very compact and fast subcritical assembly with K eff 15 per second. A mean fission power of the multiplying target is planned to be near 15 kW. The current status of the project is presented

  9. Challenges and opportunities for atomic physics at FAIR: The new GSI accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, S. [Institut f. Kernphysik, University of Frankfurt (Germany) and GSI, Max Planckstr.1, Darmstadt (Germany)]. E-mail: s.hagmann@gsi.de; Beyer, H.F. [GSI, Max Planckstr.1, Darmstadt (Germany); Bosch, F. [GSI, Max Planckstr.1, Darmstadt (Germany); Braeuning-Demian, A. [GSI, Max Planckstr.1, Darmstadt (Germany); Kluge, H.-J. [GSI, Max Planckstr.1, Darmstadt (Germany); Kozhuharov, Ch. [GSI, Max Planckstr.1, Darmstadt (Germany); Kuehl, Th. [GSI, Max Planckstr.1, Darmstadt (Germany); Liesen, D. [GSI, Max Planckstr.1, Darmstadt (Germany); Stoehlker, Th. [GSI, Max Planckstr.1, Darmstadt (Germany); Ullrich, J. [Max Planck Inst. f. Kernphysik, Heidelberg (Germany); Moshammer, R. [Max Planck Inst. f. Kernphysik, Heidelberg (Germany); Mann, R. [GSI, Max Planckstr.1, Darmstadt (Germany); Mokler, P. [GSI, Max Planckstr.1, Darmstadt (Germany); Quint, W. [GSI, Max Planckstr.1, Darmstadt (Germany); Schuch, R. [Department of Physics, University of Stockholm (Sweden); Warczak, A. [Department of Physics, University of Cracow (Poland)

    2005-12-15

    We present a short overview of the current status of the new accelerator project FAIR at GSI with the new double synchrotron rings and the multi-storage rings. The key features of the new facility, which provides intense relativistic beams of stable and unstable nuclei, are introduced and their relation to the anticipated experimental programs in nuclear structure physics and antiproton physics is shown. The main emphasis in this overview is given to the atomic physics program with unique opportunities which will be provided e.g. by bare U{sup 92+} ions with kinetic energies continuously variable between relativistic energies corresponding to {gamma} up to {approx_equal}35 down to kinetic energies of such ions in traps corresponding to fractions of a Kelvin.

  10. Comparative assessment of nuclear power and other energy sources: the DECADES project

    International Nuclear Information System (INIS)

    Bennett, L.L.

    1996-01-01

    The environmental and health related impacts of different energy systems are emerging as significant issues. To promote international cooperation in this field, the inter-agency project on databases and methodologies for comparative assessment of different energy sources for electricity generation, called DECADES, was established at the end of 1992. In October 1995 was held the International Symposium on ''Electricity, Health and the Environment - Comparative Assessment in Support of Decision Making''. Through its programs and activities, the IAEA plays a leading role, in cooperation with other organizations, in the DECADES project, to examine areas in which international expertise and support can best be applied to assist national policy and decision makers in objectively and comprehensively assessing their energy systems and strategies

  11. Computer Hardware, Advanced Mathematics and Model Physics pilot project final report

    International Nuclear Information System (INIS)

    1992-05-01

    The Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP) Program was launched in January, 1990. A principal objective of the program has been to utilize the emerging capabilities of massively parallel scientific computers in the challenge of regional scale predictions of decade-to-century climate change. CHAMMP has already demonstrated the feasibility of achieving a 10,000 fold increase in computational throughput for climate modeling in this decade. What we have also recognized, however, is the need for new algorithms and computer software to capitalize on the radically new computing architectures. This report describes the pilot CHAMMP projects at the DOE National Laboratories and the National Center for Atmospheric Research (NCAR). The pilot projects were selected to identify the principal challenges to CHAMMP and to entrain new scientific computing expertise. The success of some of these projects has aided in the definition of the CHAMMP scientific plan. Many of the papers in this report have been or will be submitted for publication in the open literature. Readers are urged to consult with the authors directly for questions or comments about their papers

  12. Astro particle physics view on supersymmetry

    International Nuclear Information System (INIS)

    Fornengo, N.

    2010-01-01

    The particle physics interpretation of the missing-mass, or dark-matter, problem of cosmological and astrophysical nature is going to be posed under deep scrutiny in the next years. From the particle physics side, accelerator physics will deeply test theoretical ideas of new physics beyond the Standard Model, where a particle physics candidate to dark matter is often naturally obtained. From the astrophysical side, many probes are already providing a great deal of independent information on the signals which can be produced by the galactic or extra-galactic dark matter. The ultimate hope is in fact to be able to disentangle a dark matter signal from the various sources of backgrounds and to extract a coherent picture of new physics from the accelerator physics, astrophysics and cosmology side. A very ambitious and far-reaching project, indeed.

  13. CHINA SPALLATION NEUTRON SOURCE PROJECT: DESIGN ITERATIONS AND R AND D STATUS

    International Nuclear Information System (INIS)

    WEI, J.

    2006-01-01

    The China Spallation Neutron Source (CSNS) is an accelerator based high power project currently under preparation in China. The accelerator complex is based on an H - linear accelerator and a rapid cycling proton synchrotron. During the past year, the design of most accelerator systems went through major iterations, and initial research and developments were started on the prototyping of several key components. This paper summarizes major activities of the past year

  14. Optimisation of the neutron source based on gas dynamic trap for transmutation of radioactive wastes

    Science.gov (United States)

    Anikeev, Andrey V.

    2012-06-01

    The Budker Institute of Nuclear Physics in collaboration with the Russian and foreign organizations develop the project of 14 MeV neutron source, which can be used for fusion material studies and for other application. The projected neutron source of plasma type is based on the plasma Gas Dynamic Trap (GDT), which is a special magnetic mirror system for plasma confinement. Presented work continues the subject of development the GDT-based neutron source (GDT-NS) for hybrid fusion-fission reactors. The paper presents the results of recent numerical optimization of such neutron source for transmutation of the long-lives radioactive wastes in spent nuclear fuel.

  15. Project X: Accelerator Reference Design

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Stephen D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-06-20

    Project X is a high-intensity proton facility being developed to support a world-leading program of Intensity Frontier physics over the next two decades at Fermilab. Project X is an integral part of the U.S. Intensity Frontier Roadmap as described in the P5 report of May 2008 [1] and within the Fermilab Strategic Plan of November 2011 [2]. This document represents Part I of the “Project X Book” describing the Project X accelerator facility and the broad range of physics research opportunities enabled by Project X. Parts II and III provide in-depth descriptions of the physics research program, both within and beyond particle physics [3]. The primary elements of the U.S. program to be supported by Project X include: Neutrino Experiments: Experimental studies of neutrino oscillations and neutrino interaction physics with ultra-intense neutrino beams provided by a high-power proton source with energies up to 120 GeV, utilizing near detectors at the Fermilab site and massive detectors at distant underground laboratories. Goal: At least 2 MW of proton beam power at any energy between 60 to 120 GeV; several hundred kW of proton beam power on target at 8 GeV. Kaon, Muon, Nucleon, and Neutron Precision Experiments: World-leading experiments studying ultra-rare kaon decays, searching for muon-to-electron conversion and nuclear electron dipole moments (EDMs), and exploring neutron properties at very high precision. Goal: MW-class proton beams supporting multiple experiments at 1 and 3 GeV, with flexible capability for providing distinct beam formats to concurrent users while allowing simultaneous operations with the neutrino program. Material Science and Nuclear Energy Applications: High-intensity accelerator, spallation, target and transmutation technology demonstrations will provide critical input into the design of future energy systems, including next generation fission reactors, nuclear waste transmutation systems and future thorium fuel-cycle power systems. Possible

  16. Open-Source Development Experiences in Scientific Software: The HANDE Quantum Monte Carlo Project

    Directory of Open Access Journals (Sweden)

    J. S. Spencer

    2015-11-01

    Full Text Available The HANDE quantum Monte Carlo project offers accessible stochastic algorithms for general use for scientists in the field of quantum chemistry. HANDE is an ambitious and general high-performance code developed by a geographically-dispersed team with a variety of backgrounds in computational science. In the course of preparing a public, open-source release, we have taken this opportunity to step back and look at what we have done and what we hope to do in the future. We pay particular attention to development processes, the approach taken to train students joining the project, and how a flat hierarchical structure aids communication.

  17. Methodology and main results of seismic source characterization for the PEGASOS Project, Switzerland

    International Nuclear Information System (INIS)

    Coppersmith, K. J.; Youngs, R. R.; Sprecher, Ch.

    2009-01-01

    Under the direction of the National Cooperative for the Disposal of Radioactive Waste (NAGRA), a probabilistic seismic hazard analysis was conducted for the Swiss nuclear power plant sites. The study has become known under the name 'PEGASOS Project'. This is the first of a group of papers in this volume that describes the seismic source characterization methodology and the main results of the project. A formal expert elicitation process was used, including dissemination of a comprehensive database, multiple workshops for identification and discussion of alternative models and interpretations, elicitation interviews, feedback to provide the experts with the implications of their preliminary assessments, and full documentation of the assessments. A number of innovative approaches to the seismic source characterization methodology were developed by four expert groups and implemented in the study. The identification of epistemic uncertainties and treatment using logic trees were important elements of the assessments. Relative to the assessment of the seismotectonic framework, the four expert teams identified similar main seismotectonic elements: the Rhine Graben, the Jura / Molasse regions, Helvetic and crystalline subdivisions of the Alps, and the southern Germany region. In defining seismic sources, the expert teams used a variety of approaches. These range from large regional source zones having spatially-smoothed seismicity to smaller local zones, to account for spatial variations in observed seismicity. All of the teams discussed the issue of identification of feature-specific seismic sources (i.e. individual mapped faults) as well as the potential reactivation of the boundary faults of the Permo-Carboniferous grabens. Other important seismic source definition elements are the specification of earthquake rupture dimensions and the earthquake depth distribution. Maximum earthquake magnitudes were assessed for each seismic source using approaches that consider the

  18. Electric Motorboat Drag Racing: A Hands-On Physics Project that Motivates Students from Start to Finish

    Science.gov (United States)

    Barry, Reno

    2008-01-01

    Electric Motorboat Drag Racing is a culminating high school physics project designed to apply and bring to life many content standards for physics. Students need to be given several weeks at home to design and build their model-sized electric motorboats for the 5-meter drag racing competition down rain gutters. In the process, they are discussing…

  19. Reflection processing of the large-N seismic data from the Source Physics Experiment (SPE)

    Energy Technology Data Exchange (ETDEWEB)

    Paschall, Olivia C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-18

    The purpose of the SPE is to develop a more physics-based model for nuclear explosion identification to understand the development of S-waves from explosion sources in order to enhance nuclear test ban treaty monitoring.

  20. Existing and projected neutron sources and low-temperature irradiation facilities in Germany

    International Nuclear Information System (INIS)

    Boening, K.

    1984-01-01

    In this paper, a contribution given at the Kyoto University Research Reactor Institute to the temporal meeting on the design of the facilities for high flux, low temperature irradiation is summarized. The following five subjects were discussed. The project of modernizing the swimming pool type research reactor FRM with 4 MW power at Munich is to achieve relatively high thermal neutron flux, and an extremely compact core is designed. The existing low temperature irradiation facility (LTIF) of the FRM is the most powerful in the world, and has been successfully operated more than 20 years. The fast and thermal neutron fluxes are 2.9 x 10 13 and 3.5 x 10 13 /cm 2 sec, respectively. The experimental techniques in the LTIF of the FRM, such as a measuring cryostat, the mounting of irradiated samples and so on, are described. The installation of new LTIFs in connection with the projects of advanced neutron sources in Germany is likely to be made in the modernized FRM at Garching, in the spallation neutron source SNQ at KFA Juelich and so on. The interesting problems in fundamental and applied researches with LTIFs, and the unusual application of LTIFs are shown. (Kako, I.)

  1. Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays.

    Science.gov (United States)

    Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2017-07-07

    The determination of the injection composition of cosmic ray nuclei within astrophysical sources requires sufficiently accurate descriptions of the source physics and the propagation - apart from controlling astrophysical uncertainties. We therefore study the implications of nuclear data and models for cosmic ray astrophysics, which involves the photo-disintegration of nuclei up to iron in astrophysical environments. We demonstrate that the impact of nuclear model uncertainties is potentially larger in environments with non-thermal radiation fields than in the cosmic microwave background. We also study the impact of nuclear models on the nuclear cascade in a gamma-ray burst radiation field, simulated at a level of complexity comparable to the most precise cosmic ray propagation code. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions in cosmic ray sources and propagation.

  2. Overview of physical safety of radiation sources in Brazil; Panorama da segurança física de fontes radioativoas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, A.R.; Silva, F.C.A. da, E-mail: alexandre.lima@cnen.gov.br [Comissão Nacional de Energia Nuclear (DRS/CNEN), Rio de Janeiro, RJ (Brazil). Escritorio de Segurança Física; Filho, J.S.M.; Tavares, R.L.A. [Instituto de Radioproteção e Dosimetria (IRD/CNEN -RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The threat of 'radiological terrorism' has been recognized worldwide after the event of September 11, 2001. Radioactive sources can be used for the development of DDR ('dirty bomb') devices. Studies show that the use of a DDR could cause health damage, psychosocial and economic and environmental damage. Brazil follows this worldwide concern, since it has a large medical-industrial park that uses radioactive sources. This paper presents an overview of the physical safety of radioactive sources in Brazil, based on the inventory of radiative facilities, regulatory aspects and international recommendations. For the preparation of the study, the database of radioactive sources of the regulatory body, the current normative status and the international recommendations were used. In Brazil there are approximately 2,500 radiative installations, with about 400 radioactive sources Category 1 and 2, which are the biggest concern in terms of physical safety. The Brazilian licensing standard addresses only some aspects of physical protection, not providing a clear orientation for the elaboration and implementation of physical protection systems, in accordance with international recommendations. For Brazil to be included in the world scenario of physical safety of radioactive sources, it is urgent to elaborate specific legislation with well-defined regulatory criteria. The lack of more detailed requirements makes it difficult to make a more careful regulatory assessment of the physical protection conditions of the facilities, either through the evaluation of plans and other physical protection documents or through regulatory inspections.

  3. Beamspace dual signal space projection (bDSSP): a method for selective detection of deep sources in MEG measurements

    Science.gov (United States)

    Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K.; Cai, Chang; Nagarajan, Srikantan S.

    2018-06-01

    Objective. Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. Approach. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Main results. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. Significance. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.

  4. Speckle noise reduction on a laser projection display via a broadband green light source.

    Science.gov (United States)

    Yu, Nan Ei; Choi, Ju Won; Kang, Heejong; Ko, Do-Kyeong; Fu, Shih-Hao; Liou, Jiun-Wei; Kung, Andy H; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik; Peng, Lung-Han

    2014-02-10

    A broadband green light source was demonstrated using a tandem-poled lithium niobate (TPLN) crystal. The measured wavelength and temperature bandwidth were 6.5 nm and 100 °C, respectively, spectral bandwidth was 36 times broader than the periodically poled case. Although the conversion efficiency was smaller than in the periodic case, the TPLN device had a good figure of merit owing to the extremely large bandwidth for wavelength and temperature. The developed broadband green light source exhibited speckle noise approximately one-seventh of that in the conventional approach for a laser projection display.

  5. Crowdfunding, an alternative source of financing construction and real estate projects. Guideline for Developers on how to use this tool in medium size projects.

    OpenAIRE

    Sierra Mercado, David

    2017-01-01

    Real estate crowdfunding comprises the process of investing in a real estate projects using online platforms, specialized websites that can reach a large number of potential investors, changing in just few years the traditional approach of the real estate industry. This phenomenon has become a trend among small and medium project developers, which nowadays have this additional source of financing. However, many people still unfamiliar about this new business model. Therefore, it is relevant t...

  6. Evaluation guide for the international reactor physics experiments evaluation project (IRPhEP)

    International Nuclear Information System (INIS)

    Yamaji, Akifumi

    2013-01-01

    At present, there is an urgent need to preserve integral reactor physics experimental data including separate or special effects data for nuclear energy and technology applications and the knowledge and competence contained therein. The International Reactor Physics Evaluation Project (IRPhEP) was initiated as a pilot activity in 1999 by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC). The project was endorsed as an official activity of the NSC in June of 2003. While coordination and administration of the IRPhEP takes place at an international level, each participating country is responsible for the administration, technical direction, and priorities of the project within their respective countries. This document outlines the general presentation guidelines that evaluators should follow for the description of the experiments and all relevant experimental data in order to ensure the consistency between the evaluations published in the final Handbook. Publication templates will be used to ensure this consistency and will follow the general scheme below: 1 - Experiment identification number; 2- Date; 3 - Name of experiment (Purpose of experiment, Phenomena measured and scope); 4 - Name or designation of experimental programme; 5 - Description of facility; 6 - Description of test or experiment (Experimental configuration, Core life cycle, Experimental limitations or shortcomings); 7 - Phenomena measured (Description of results and analysis, Special features and characteristics of experiment, Measurement systems/methods and uncertainties); 8 - Duplicate or complementary experiments / other related experiments; 9 - Status of completion of the evaluation; 10 - References (pointer to evaluation, archive if available, otherwise generic bibliographic reference); 11 - Authors/ organisers 12 - Material available

  7. NATO Advanced Study Institute on Physics of New Laser Sources

    CERN Document Server

    Arecchi, F; Mooradian, Aram; Sona, Alberto

    1985-01-01

    This volume contains the lectures and seminars presented at the NATO Advanced Study Institute on "Physics of New Laser Sources", the twelfth course of the Europhysics School of Quantum Electronics, held under the supervision of the Quantum Electronics Division of the European Physical Society. The Institute was held at Centro "I Cappuccini" San Miniato, Tuscany, July 11-21, 1984. The Europhysics School of Quantum Electronics was started in 1970 with the aim of providing instruction for young researchers and advanced students already engaged in the area of quantum electronics or for those wishing to switch into this area after working previously in other areas. From the outset, the School has been under the direction of Prof. F. T. Arecchi, then at the University of Pavia, now at the University of Florence, and Dr. D. Roess of Heraeus, Hanau. In 1981, Prof. H. Walther, University of Munich and Max-Planck Institut fur Quantenoptik joined as co-director. Each year the Directors choose a subj~ct of particular int...

  8. Highly ionized physical vapor deposition plasma source working at very low pressure

    Czech Academy of Sciences Publication Activity Database

    Straňák, V.; Herrendorf, A.-P.; Drache, S.; Čada, Martin; Hubička, Zdeněk; Tichý, M.; Hippler, R.

    2012-01-01

    Roč. 100, č. 14 (2012), "141604-1"-"141604-3" ISSN 0003-6951 R&D Projects: GA TA ČR TA01010517; GA ČR(CZ) GAP205/11/0386; GA ČR GAP108/12/1941 Institutional research plan: CEZ:AV0Z10100522 Keywords : magnetron * ECWR * low-pressure * sputtering * plasma diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.794, year: 2012 http://dx.doi.org/10.1063/1.3699229

  9. MESA. An ERL project for particle physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hug, Florian [Institut fuer Kernphysik, Universitaet Mainz (Germany)

    2016-07-01

    The Mainz Energy-recovering Superconducting Accelerator (MESA) will be constructed at the Institut fuer Kernphysik of the Johannes Gutenberg University of Mainz. The accelerator is a low energy continuous wave (CW) recirculating electron linac for particle physics experiments. MESA will be operated in two different modes serving mainly two experiments: the first is the external beam (EB) mode, where the beam is dumped after being used with the external fixed target experiment P2, whose goal is the measurement of the weak mixing angle with highest accuracy. The required beam current for P2 is 150 μA with polarized electrons at 155 MeV. In the second operation mode MESA will be run as an energy recovery linac (ERL). In an ERL the energy of the electrons is recovered after their experimental use by decelerating them in the superconducting acceleration cavities. The experiment served in this mode is a (pseudo) internal fixed target experiment named MAGIX. It demands an unpolarized beam of 1 mA at 105 MeV. In a later construction stage of MESA the achievable beam current in ERL-mode shall be upgraded to 10 mA. Within this talk an overview of the MESA project will be given highlighting the challenges of operation with high density internal gas targets and the (*new*) physics applications.

  10. 76 FR 71082 - Strata Energy, Inc., Ross Uranium Recovery Project; New Source Material License Application...

    Science.gov (United States)

    2011-11-16

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 40-9091; NRC-2011-0148] Strata Energy, Inc., Ross Uranium Recovery Project; New Source Material License Application; Notice of Intent To Prepare a... intent to prepare a supplemental environmental impact statement. SUMMARY: Strata Energy, Inc. (Strata...

  11. Panorama 2012 - Marine renewable energy sources: their place in energy policy, projects and players

    International Nuclear Information System (INIS)

    Vinot, Simon

    2011-10-01

    Marine energy sources are now a reality in the scientific landscape and, from now on, will be an increasingly important feature of the industry. Driven by public policy and renewable energy development targets, projects are multiplying, and industry players are jostling for maximum advantage in the first bidding rounds. (author)

  12. Monte Carlo advances for the Eolus Asci Project

    International Nuclear Information System (INIS)

    Hendrick, J. S.; McKinney, G. W.; Cox, L. J.

    2000-01-01

    The Eolus ASCI project includes parallel, 3-D transport simulation for various nuclear applications. The codes developed within this project provide neutral and charged particle transport, detailed interaction physics, numerous source and tally capabilities, and general geometry packages. One such code is MCNPW which is a general purpose, 3-dimensional, time-dependent, continuous-energy Monte Carlo fully-coupled N-Particle transport code. Significant advances are also being made in the areas of modern software engineering and parallel computing. These advances are described in detail

  13. Sol-Gel Application for Consolidating Stone: An Example of Project-Based Learning in a Physical Chemistry Lab

    Science.gov (United States)

    de los Santos, Desiree´ M.; Montes, Antonio; Sa´nchez-Coronilla, Antonio; Navas, Javier

    2014-01-01

    A Project Based Learning (PBL) methodology was used in the practical laboratories of the Advanced Physical Chemistry department. The project type proposed simulates "real research" focusing on sol-gel synthesis and the application of the obtained sol as a stone consolidant. Students were divided into small groups (2 to 3 students) to…

  14. The EC CAST project (carbon-14 source term)

    International Nuclear Information System (INIS)

    Williams, S. J.

    2015-01-01

    Carbon-14 is a key radionuclide in the assessment of the safety of underground geological disposal facilities for radioactive wastes. It is possible for carbon-14 to be released from waste packages in a variety of chemical forms, both organic and inorganic, and as dissolved or gaseous species The EC CAST (CArbon-14 Source Term) project aims to develop understanding of the generation and release of carbon-14 from radioactive waste materials under conditions relevant to packaging and disposal. It focuses on the release of carbon-14 from irradiated metals (steels and zirconium alloys), from irradiated graphite and from spent ion-exchange resins. The CAST consortium brings together 33 partners. CAST commenced in October 2013 and this paper describes progress to March 2015. The main activities during this period were reviews of the current status of knowledge, the identification and acquisition of suitable samples and the design of experiments and analytical procedures. (authors)

  15. Madagascar: open-source software project for multidimensional data analysis and reproducible computational experiments

    Directory of Open Access Journals (Sweden)

    Sergey Fomel

    2013-11-01

    Full Text Available The Madagascar software package is designed for analysis of large-scale multidimensional data, such as those occurring in exploration geophysics. Madagascar provides a framework for reproducible research. By “reproducible research” we refer to the discipline of attaching software codes and data to computational results reported in publications. The package contains a collection of (a computational modules, (b data-processing scripts, and (c research papers. Madagascar is distributed on SourceForge under a GPL v2 license https://sourceforge.net/projects/rsf/. By October 2013, more than 70 people from different organizations around the world have contributed to the project, with increasing year-to-year activity. The Madagascar website is http://www.ahay.org/.

  16. The effects of topic choice in project-based instruction on undergraduate physical science students' interest, ownership, and motivation

    Science.gov (United States)

    Milner-Bolotin, Marina

    2001-07-01

    Motivating nonscience majors in science and mathematics studies became one of the most interesting and important challenges in contemporary science and mathematics education. Therefore, designing and studying a learning environment, which enhances students' motivation, is an important task. This experimental study sought to explore the implications of student autonomy in topic choice in a project-based Physical Science Course for nonscience majors' on students' motivational orientation. It also suggested and tested a model explaining motivational outcomes of project-based learning environment through increased student ownership of science projects. A project, How Things Work, was designed and implemented in this study. The focus of the project was application of physical science concepts learned in the classroom to everyday life situations. Participants of the study (N = 59) were students enrolled in three selected sections of a Physical Science Course, designed to fulfill science requirements for nonscience majors. These sections were taught by the same instructor over a period of an entire 16-week semester at a large public research university. The study focused on four main variables: student autonomy in choosing a project topic, their motivational orientation, student ownership of the project, and the interest in the project topic. Achievement Goal Orientation theory became the theoretical framework for the study. Student motivational orientation, defined as mastery or performance goal orientation, was measured by an Achievement Goal Orientation Questionnaire. Student ownership was measured using an original instrument, Ownership Measurement Questionnaire, designed and tested by the researchers. Repeated measures yoked design, ANOVA, ANCOVA, and multivariate regression analysis were implemented in the study. Qualitative analysis was used to complement and verify quantitative results. It has been found that student autonomy in the project choice did not make a

  17. Invited review, recent developments in brachytherapy source dosimetry

    International Nuclear Information System (INIS)

    Meigooni, A.S.

    2004-01-01

    Application of radioactive isotopes is the treatment of choice around the globe for many cancer sites. In this technique, the accuracy of the radiation delivery is highly dependent on the accuracy of radiation dosimetry around individual brachytherapy sources. Moreover, in order to have compatible clinical results, an identical method of source dosimetry must be employed across the world. This problem has been recently addressed by task group 43 from the American Association of Medical Physics with a protocol for dosimetric characterization of brachytherapy sources. This new protocol has been further updated using published data from international sources, by a new Task Group from the American Association of Medical Physics. This has resulted in an updated protocol known as TG43U1 that has been published in March 2004 issue of Medical Physics. The goal of this presentation is to review the original Task Group 43 protocol and associated algorithms for brachytherapy source dosimetry. In addition, the shortcomings of the original protocol that has been resolved in the updated recommendation will be highlighted. I am sure that this is not the end of the line and more work is needed to complete this task. I invite the scientists to join this task and complete the project, with the hope of much better clinical results for cancer patients

  18. Health physics source document for codes of practice

    International Nuclear Information System (INIS)

    Pearson, G.W.; Meggitt, G.C.

    1989-05-01

    Personnel preparing codes of practice often require basic Health Physics information or advice relating to radiological protection problems and this document is written primarily to supply such information. Certain technical terms used in the text are explained in the extensive glossary. Due to the pace of change in the field of radiological protection it is difficult to produce an up-to-date document. This document was compiled during 1988 however, and therefore contains the principle changes brought about by the introduction of the Ionising Radiations Regulations (1985). The paper covers the nature of ionising radiation, its biological effects and the principles of control. It is hoped that the document will provide a useful source of information for both codes of practice and wider areas and stimulate readers to study radiological protection issues in greater depth. (author)

  19. Open Source Drug Discovery in Practice: A Case Study

    Science.gov (United States)

    Årdal, Christine; Røttingen, John-Arne

    2012-01-01

    Background Open source drug discovery offers potential for developing new and inexpensive drugs to combat diseases that disproportionally affect the poor. The concept borrows two principle aspects from open source computing (i.e., collaboration and open access) and applies them to pharmaceutical innovation. By opening a project to external contributors, its research capacity may increase significantly. To date there are only a handful of open source R&D projects focusing on neglected diseases. We wanted to learn from these first movers, their successes and failures, in order to generate a better understanding of how a much-discussed theoretical concept works in practice and may be implemented. Methodology/Principal Findings A descriptive case study was performed, evaluating two specific R&D projects focused on neglected diseases. CSIR Team India Consortium's Open Source Drug Discovery project (CSIR OSDD) and The Synaptic Leap's Schistosomiasis project (TSLS). Data were gathered from four sources: interviews of participating members (n = 14), a survey of potential members (n = 61), an analysis of the websites and a literature review. Both cases have made significant achievements; however, they have done so in very different ways. CSIR OSDD encourages international collaboration, but its process facilitates contributions from mostly Indian researchers and students. Its processes are formal with each task being reviewed by a mentor (almost always offline) before a result is made public. TSLS, on the other hand, has attracted contributors internationally, albeit significantly fewer than CSIR OSDD. Both have obtained funding used to pay for access to facilities, physical resources and, at times, labor costs. TSLS releases its results into the public domain, whereas CSIR OSDD asserts ownership over its results. Conclusions/Significance Technically TSLS is an open source project, whereas CSIR OSDD is a crowdsourced project. However, both have enabled high quality

  20. Materials performance experience at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    There is a growing, but not yet substantial, data base for materials performance at spallation neutron sources. Specially designed experiments using medium energy protons (650 MeV) have been conducted at the Proton Irradiation Experiment (PIREX) facility at the Swiss Nuclear Institute accelerator (SIN). Specially designed experiments using 760-800 MeV copper target have been completed at the Los Alamos Spallation Radiation Effects Facility (LASREF) at Los Alamos Meson Physics Facility (LAMPF). An extensive material testing program was initiated at LASREF in support of the German spallation neutron source (SNQ) project, before it terminated in 1985.

  1. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project

    Energy Technology Data Exchange (ETDEWEB)

    Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller; Laura L. Glaser; Kathryn L. Hanson; Ross D. Hartleb; William R. Lettis; Scott C. Lindvall; Stephen M. McDuffie; Robin K. McGuire; Gerry L. Stirewalt; Gabriel R. Toro; Robert R. Youngs; David L. Slayter; Serkan B. Bozkurt; Randolph J. Cumbest; Valentina Montaldo Falero; Roseanne C. Perman' Allison M. Shumway; Frank H. Syms; Martitia (Tish) P. Tuttle

    2012-01-31

    This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic

  2. News Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

    Science.gov (United States)

    2010-05-01

    Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

  3. Health physics evaluation of an accident involving acute overexposure to a radiography source

    International Nuclear Information System (INIS)

    Basson, J.K.; Hanekom, A.P.; Coetzee, F.C.; Lloyd, D.C.

    1981-10-01

    An accident, involving the loss of an iridium-192 radiographic source and the subsequent serious overexposure of a third party, is described. Health physics aspects, particularly dosimetrical aspects are addressed and compared with results obtained by means of chromosome aberration dosimetry. Details are provided on the medical observations and treatment of the patient [af

  4. Point Pollution Sources Dimensioning

    Directory of Open Access Journals (Sweden)

    Georgeta CUCULEANU

    2011-06-01

    Full Text Available In this paper a method for determining the main physical characteristics of the point pollution sources is presented. It can be used to find the main physical characteristics of them. The main physical characteristics of these sources are top inside source diameter and physical height. The top inside source diameter is calculated from gas flow-rate. For reckoning the physical height of the source one takes into account the relation given by the proportionality factor, defined as ratio between the plume rise and physical height of the source. The plume rise depends on the gas exit velocity and gas temperature. That relation is necessary for diminishing the environmental pollution when the production capacity of the plant varies, in comparison with the nominal one.

  5. Dynamic rupture scenarios from Sumatra to Iceland - High-resolution earthquake source physics on natural fault systems

    Science.gov (United States)

    Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie

    2017-04-01

    Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake, the 1994 Northridge earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.

  6. Reactor physics experiments in PURNIMA sub critical facility coupled with 14 MeV neutron source

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Degweker, S.B.; Patel, Tarun; Bishnoi, Saroj; Adhikari, P.S.

    2011-01-01

    Accelerator Driven Sub-critical Systems (ADSS) are attracting increasing worldwide attention due to their superior safety characteristics and their potential for burning actinide and fission product waste and energy production. A number of countries around the world have drawn up roadmaps/programs for development of ADSS. Indian interest in ADSS has an additional dimension, which is related to the planned utilization of our large thorium reserves for future nuclear energy generation. A programme for development of ADSS is taken up at the Bhabha Atomic Research Centre (BARC) in India. This includes R and D activities for high current proton accelerator development, target development and Reactor Physics studies. As part of the ADSS Reactor Physics research programme, a sub-critical facility is coming up in BARC which will be coupled with an existing D-D/D-T neutron generator. Two types of cores are planned. In one of these, the sub-critical reactor assembly consists of natural uranium moderated by high density polyethylene (HDP) and reflected by BeO. The other consists of natural uranium moderated by light water. The maximum neutron yield of the neutron source with tritium target is around 10 10 neutron per sec. Various reactor physics experiments like measurement of the source strength, neutron flux distribution, buckling estimation and sub-critical source multiplication are planned. Apart from this, measurement of the total fission power and neutron spectrum will also be carried out. Mainly activation detectors will be used in all in-core neutron flux measurement. Measurement of the degree of sub-criticality by various deterministic and noise methods is planned. Helium detectors with advanced data acquisition card will be used for the neutron noise experiments. Noise characteristics of ADSS are expected to be different from that of traditional reactors due to the non-Poisson statistical features of the source. A new theory incorporating these features has been

  7. [Experimental and theoretical nuclear physics]: 1988 Annual report

    International Nuclear Information System (INIS)

    1988-05-01

    This paper describes the highlights of the past year of the Nuclear Physics Laboratory at the University of Washington. Particular topics discussed are: astrophysics, giant resonance, heavy ion induced reactions, fundamental symmetries, nuclear reactions, medium energy reactions, accelerator mass spectrometry, Van de Graaf and ion sources, the booster linac project, instrumentation and computer systems

  8. Open source projects as incubators of innovation: From niche phenomenon to integral part of the software industry

    OpenAIRE

    Schrape, Jan-Felix

    2017-01-01

    Over the last 20 years, open source development has become an integral part of the software industry and a key component of the innovation strategies of all major IT providers. Against this backdrop, this paper seeks to develop a systematic overview of open source communities and their socio-economic contexts. I begin with a reconstruction of the genesis of open source software projects and their changing relation- ships to established IT companies. This is followed by the identification of f...

  9. The Low Temperature Microgravity Physics Experiments Project

    Science.gov (United States)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  10. U.S.-China Radiological Source Security Project: Continuing And Expanding Bilateral Cooperation

    International Nuclear Information System (INIS)

    Zhu, Zhixuan; Zhou, Qifu; Yang, Yaoyun; Huang, Chaoyun; Lloyd, James; Williams, Adam; Feldman, Alexander; Streeper, Charles; Pope, Noah G.; Hawk, Mark; Rawl, Rick; Howell, Randy A.; Kennedy, Catherine

    2009-01-01

    The successful radiological security cooperation between the U.S. and China to secure at-risk sites near venues of the 2008 Beijing Summer Olympics has led to an expanded bilateral nonproliferation cooperation scope. The U.S. Department of Energy's National Nuclear Security Administration, the Chinese Atomic Energy Authority and the China Ministry of Environmental Protection are continuing joint efforts to secure radiological sources throughout China under the U.S.-China Peaceful Uses of Nuclear Technology (PUNT) Agreement. Joint cooperation activities include physical security upgrades of sites with International Atomic Energy Agency (IAEA) Category 1 radiological sources, packaging, recovery, and storage of high activity transuranic and beta gamma sources, and secure transportation practices for the movement of recovered sources. Expansion of cooperation into numerous provinces within China includes the use of integrated training workshops that will demonstrate methodologies and best practices between U.S. and Chinese radiological source security and recovery experts. The fiscal year 2009 expanded scope of cooperation will be conducted similar to the 2008 Olympic cooperation with the Global Threat Reduction Initiative taking the lead for the U.S., PUNT being the umbrella agreement, and Los Alamos, Sandia, and Oak Ridge National Laboratories operating as technical working groups. This paper outlines the accomplishments of the joint implementation and training efforts to date and discusses the possible impact on future U.S./China cooperation.

  11. U.S.-CHINA RADIOLOGICAL SOURCE SECURITY PROJECT: CONTINUING AND EXPANDING BILATERAL COOPERATION

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhixuan; Zhou, Qifu; Yang, Yaoyun; Huang, Chaoyun; Lloyd, James; Williams, Adam; Feldman, Alexander; Streeper, Charles; Pope, Noah G.; Hawk, Mark; Rawl, Rick; Howell, Randy A.; Kennedy, Catherine

    2009-10-07

    The successful radiological security cooperation between the U.S. and China to secure at-risk sites near venues of the 2008 Beijing Summer Olympics has led to an expanded bilateral nonproliferation cooperation scope. The U.S. Department of Energy’s National Nuclear Security Administration, the Chinese Atomic Energy Authority and the China Ministry of Environmental Protection are continuing joint efforts to secure radiological sources throughout China under the U.S.-China Peaceful Uses of Nuclear Technology (PUNT) Agreement. Joint cooperation activities include physical security upgrades of sites with International Atomic Energy Agency (IAEA) Category 1 radiological sources, packaging, recovery, and storage of high activity transuranic and beta gamma sources, and secure transportation practices for the movement of recovered sources. Expansion of cooperation into numerous provinces within China includes the use of integrated training workshops that will demonstrate methodologies and best practices between U.S. and Chinese radiological source security and recovery experts. The fiscal year 2009 expanded scope of cooperation will be conducted similar to the 2008 Olympic cooperation with the Global Threat Reduction Initiative taking the lead for the U.S., PUNT being the umbrella agreement, and Los Alamos, Sandia, and Oak Ridge National Laboratories operating as technical working groups. This paper outlines the accomplishments of the joint implementation and training efforts to date and discusses the possible impact on future U.S./China cooperation.

  12. Neutron spectrum determination of d(20)+Be source reaction by the dosimetry foils method

    Czech Academy of Sciences Publication Activity Database

    Štefánik, Milan; Bém, Pavel; Majerle, Mitja; Novák, Jan; Šimečková, Eva

    2017-01-01

    Roč. 140, NOV (2017), s. 466-470 ISSN 0969-806X R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : multi-foil activation technique * accelerator-based neutron source * neutron spectrometry * Gamma-ray spectrometry * reaction rate * charged particle accelerator Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.315, year: 2016

  13. Physics Division annual review, 1 April 1987--31 March 1988

    International Nuclear Information System (INIS)

    1988-06-01

    This paper contains a description of the research project at Argonne National Laboratory over the past year (4/11/87--3/31/88). The major sections of this report in nuclear physics are: research at ATLAS; operation and development of TLAS: medium-energy nuclear physics and weak interactions; and theoretical nuclei physics. The major sections in atomic physics are: high-resolution laser-rf spectroscopy with beams of atoms, molecules and ions; beam-foil research, ion-beam laser interactions, and collision dynamics of heavy ions; interactions of fast atomic and molecular ions with solid and gaseous target; theoretical atomic physics; atomic physics at ATLAS; atomic physics using a synchrotron light source; and molecular structures and dynamics from coulomb-explosion measurements

  14. Common characteristics of open source software development and applicability for drug discovery: a systematic review.

    Science.gov (United States)

    Ardal, Christine; Alstadsæter, Annette; Røttingen, John-Arne

    2011-09-28

    Innovation through an open source model has proven to be successful for software development. This success has led many to speculate if open source can be applied to other industries with similar success. We attempt to provide an understanding of open source software development characteristics for researchers, business leaders and government officials who may be interested in utilizing open source innovation in other contexts and with an emphasis on drug discovery. A systematic review was performed by searching relevant, multidisciplinary databases to extract empirical research regarding the common characteristics and barriers of initiating and maintaining an open source software development project. Common characteristics to open source software development pertinent to open source drug discovery were extracted. The characteristics were then grouped into the areas of participant attraction, management of volunteers, control mechanisms, legal framework and physical constraints. Lastly, their applicability to drug discovery was examined. We believe that the open source model is viable for drug discovery, although it is unlikely that it will exactly follow the form used in software development. Hybrids will likely develop that suit the unique characteristics of drug discovery. We suggest potential motivations for organizations to join an open source drug discovery project. We also examine specific differences between software and medicines, specifically how the need for laboratories and physical goods will impact the model as well as the effect of patents.

  15. EDF source term reduction project main outcomes and further developments

    International Nuclear Information System (INIS)

    Ranchoux, Gilles; Bonnefon, Julien; Benfarah, Moez; Wintergerst Matthieu; Gressier, Frederic; Leclercq, Stephanie

    2012-09-01

    The dose reduction is a strategic purpose for EDF in link with the stakes of, nuclear acceptability, respect of regulation and productivity gains. This consists not only in improving the reactor shutdown organization (time spent in control area, biological shielding,...) but also in improving the radiological state of the unit and the efficiency of the source term reduction operations. Since 2003, EDF has been running an innovative project called 'Source Term Reduction' federating the different EDF research and engineering centers in order to: - participate to the long term view about Radiological Protection issues (international feedback analyses), - develop contamination prediction tools (OSCAR software) suitable for the industrial needs (operating units and EPR design), - develop scientific models useful for the understanding of contamination mechanisms to support the strategic decision processes, - carry on with updating and analyzing of contamination measurements feedback in corrosion products (EMECC and CZT campaigns), - carry on with the operational support at short or middle term by optimizing startup and shutdown processes, pre-oxidation or and by improving purification efficiency or material characteristics. This paper will show in a first part the main 2011 results in occupational exposure (collective and individual dose, RCS index...). In a second part, an overview of the main EDF outcomes of the last 3 years in the field of source term reduction will be presented. Future developments extended to contamination issues in EDF NPPs will be also pointed out in this paper. (authors)

  16. Project research on nuclear physical and chemical characteristics of actinide nuclides

    International Nuclear Information System (INIS)

    Yamana, Hajimu; Nakagome, Yoshihiro; Shibata, Seiichi; Fujii, Toshiyuki; Uehara, Akihiro; Shirai, Osamu; Moriyama, Hirotake; Nagai, Takayuki; Yamanaka, Shinsuke; Shinohara, Atsushi; Kurata, Masaki; Myochin, Munetaka; Nakamura, Shoji; Matsuura, Haruaki

    2008-01-01

    The chemical and nuclear physical characteristics of actinide elements have been investigated using the experimental methods and instruments of this laboratory. This laboratory has a facility in which the transuranium elements (TRU) and the long-lived fission products (LLFP) can be dealt with. The utility of this facility has been expected. The investigation on the actinide elements and its fission products have been carried out as a project research from both view points of science and technology. The research reports during three years (2005-07) are described here. (M.H.)

  17. The "Finding Physics" Project: Recognizing and Exploring Physics outside the Classroom

    Science.gov (United States)

    Beck, Judith; Perkins, James

    2016-01-01

    Students in introductory physics classes often have difficulty recognizing the relevance of physics concepts outside the confines of the physics classroom, lab, and textbook. Even though textbooks and instructors often provide examples of physics applications from a wide array of areas, students have difficulty relating physics to their own lives.…

  18. Contemporary state and possibilities of improvement of local infrastructures for leisure-time physical activity from the aspect of national policy, planning, building, financing and management - the Impala project, part ii.

    Directory of Open Access Journals (Sweden)

    Filip Neuls

    2013-01-01

    Full Text Available BACKGROUND: The second part of the IMPALA project was based on a wide discussion dealing with the problem of improving the local infrastructure for leisure time physical activity (LTPA from practical and specific points of view that were represented by invited participants from all Czech regions. One of the results of the IMPALA project was the finding from some experts that physical environment mostly in adults contribute to an increase of physical activity. AIM: The main aim of this part of the IMPALA project is to present specifically discussed problems from the area of national policy, planning, building, financing and management of the infrastructure for LTPA. METHODS: A discussion was held during a national workshop that was organized in June 2010 at the Faculty of Physical Culture, Palacký University in Olomouc and had a strictly structured programme that was announced and prepared by the main project coordinator. A discussion took place firstly in small groups according to each section (planning, building, financing, and management toward the assessment of a contemporary state and later on proposals whether some improvements exist. RESULTS: The biggest problem connected with planning is the non-existence of external as well as an internal evaluation of a planning process. In the building area the main problem is the accessibility of infrastructures in small villages; social-spatial aspects are not taken into account and building is also influenced by land ownership. Financing of local infrastructures for LTPA is very diverse, from public sources to private and also in different business models. Existing financial models are secured by law contracts and taken into account by operating costs. Focusing on management of infrastructures differs according to the owner, to financial sources, and to the type of infrastructure. Overemphasizing of top sport means higher allocation of finance mostly into sport infrastructures that are not or

  19. Report of preliminary investigations on the next-generation large-scale synchrotron radiation facility projects

    International Nuclear Information System (INIS)

    1990-01-01

    The Special Committee for Future Project of the Japanese Society for Synchrotron Radiation Research investigated the construction-projects of the large-scaled synchrotron radiation facilities which are presently in progress in Japan. As a result, the following both projects are considered the very valuable research-project which will carry the development of Japan's next-generation synchrotron radiation science: 1. the 8 GeV synchrotron radiation facilities (SPring-8) projected to be constructed by Japan Atomic Energy Research Institute and the Institute of Physical and Chemical Research under the sponsorship of Science Technology Agency at Harima Science Park City, Hyogo Pref., Japan. 2. The project to utilize the Tristan Main Ring (MR) of the National Laboratory for High Energy Physics as the radiation source. Both projects are unique in research theme and technological approach, and complemental each other. Therefore it has been concluded that both projects should be aided and ratified by the Society. (M.T.)

  20. HTGR reactor physics, thermal-hydraulics and depletion uncertainty analysis: a proposed IAEA coordinated research project

    International Nuclear Information System (INIS)

    Tyobeka, Bismark; Reitsma, Frederik; Ivanov, Kostadin

    2011-01-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis and uncertainty analysis methods. In order to benefit from recent advances in modeling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Uncertainty and sensitivity studies are an essential component of any significant effort in data and simulation improvement. In February 2009, the Technical Working Group on Gas-Cooled Reactors recommended that the proposed IAEA Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling be implemented. In the paper the current status and plan are presented. The CRP will also benefit from interactions with the currently ongoing OECD/NEA Light Water Reactor (LWR) UAM benchmark activity by taking into consideration the peculiarities of HTGR designs and simulation requirements. (author)

  1. Preliminary evaluation of the physical impacts of a nearshore sand extraction project

    International Nuclear Information System (INIS)

    Anctil, F.; Ouellet, Y.

    1991-01-01

    A review is presented of the potential physical impacts of a nearshore sand extraction project in the Gulf of St. Lawrence. In Canada, sand extraction is mainly limited to the Beaufort Sea area, where in 1982 alone 15 million tonnes of aggregate was dredged to satisfy the requirements of offshore petroleum exploration; but there is much experience in nearshore dredging in Europe. Criteria related to impacts, developed for conditions prevailing in the North Sea (England) and the Gulf of Gascogne (France) are adapted to meet the more moderate hydrodynamic impacts of an extraction project in the Gulf of St. Lawrence. Potential impacts of extraction projects include destruction of sand bars or dunes, direct erosion resulting from beach drawdown or sedimentation interference, and impacts on littoral drift due to modified wave refraction patterns. Three schemes for the sand extraction are considered, and from the results, a fourth scheme is elaborated in such a way as to limit the negative impacts to the minor category. 17 refs., 5 figs., 4 tabs

  2. A school-based physical activity promotion intervention in children: rationale and study protocol for the PREVIENE Project

    Directory of Open Access Journals (Sweden)

    Pablo Tercedor

    2017-09-01

    Full Text Available Abstract Background The lack of physical activity and increasing time spent in sedentary behaviours during childhood place importance on developing low cost, easy-toimplement school-based interventions to increase physical activity among children. The PREVIENE Project will evaluate the effectiveness of five innovative, simple, and feasible interventions (active commuting to/from school, active Physical Education lessons, active school recess, sleep health promotion, and an integrated program incorporating all 4 interventions to improve physical activity, fitness, anthropometry, sleep health, academic achievement, and health-related quality of life in primary school children. Methods A total of 300 children (grade 3; 8-9 years of age from six schools in Granada (Spain will be enrolled in one of the 8-week interventions (one intervention per school; 50 children per school or a control group (no intervention school; 50 children. Outcomes will include physical activity (measured by accelerometry, physical fitness (assessed using the ALPHA fitness battery, and anthropometry (height, weight and waist circumference. Furthermore, they will include sleep health (measured by accelerometers, a sleep diary, and sleep health questionnaires, academic achievement (grades from the official school’s records, and health-related quality of life (child and parental questionnaires. To assess the effectiveness of the different interventions on objectively measured PA and the other outcomes, the generalized linear model will be used. Discussion The PREVIENE Project will provide the information about the effectiveness and implementation of different school-based interventions for physical activity promotion in primary school children.

  3. A school-based physical activity promotion intervention in children: rationale and study protocol for the PREVIENE Project.

    Science.gov (United States)

    Tercedor, Pablo; Villa-González, Emilio; Ávila-García, Manuel; Díaz-Piedra, Carolina; Martínez-Baena, Alejandro; Soriano-Maldonado, Alberto; Pérez-López, Isaac José; García-Rodríguez, Inmaculada; Mandic, Sandra; Palomares-Cuadros, Juan; Segura-Jiménez, Víctor; Huertas-Delgado, Francisco Javier

    2017-09-26

    The lack of physical activity and increasing time spent in sedentary behaviours during childhood place importance on developing low cost, easy-toimplement school-based interventions to increase physical activity among children. The PREVIENE Project will evaluate the effectiveness of five innovative, simple, and feasible interventions (active commuting to/from school, active Physical Education lessons, active school recess, sleep health promotion, and an integrated program incorporating all 4 interventions) to improve physical activity, fitness, anthropometry, sleep health, academic achievement, and health-related quality of life in primary school children. A total of 300 children (grade 3; 8-9 years of age) from six schools in Granada (Spain) will be enrolled in one of the 8-week interventions (one intervention per school; 50 children per school) or a control group (no intervention school; 50 children). Outcomes will include physical activity (measured by accelerometry), physical fitness (assessed using the ALPHA fitness battery), and anthropometry (height, weight and waist circumference). Furthermore, they will include sleep health (measured by accelerometers, a sleep diary, and sleep health questionnaires), academic achievement (grades from the official school's records), and health-related quality of life (child and parental questionnaires). To assess the effectiveness of the different interventions on objectively measured PA and the other outcomes, the generalized linear model will be used. The PREVIENE Project will provide the information about the effectiveness and implementation of different school-based interventions for physical activity promotion in primary school children.

  4. The Biome Project: Developing a Legitimate Parallel Curriculum for Physical Education and Life Sciences

    Science.gov (United States)

    Hastie, Peter Andrew

    2013-01-01

    The purpose of this article is to describe the outcomes of a parallel curriculum project between life sciences and physical education. Throughout a 6-week period, students in grades two through five became members of teams that represented different animal species and biomes, and concurrently participated in a season of gymnastics skills and…

  5. Physical models and primary design of reactor based slow positron source at CMRR

    Science.gov (United States)

    Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin

    2018-07-01

    Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109

  6. Technical Note: Insertion of digital lesions in the projection domain for dual-source, dual-energy CT.

    Science.gov (United States)

    Ferrero, Andrea; Chen, Baiyu; Li, Zhoubo; Yu, Lifeng; McCollough, Cynthia

    2017-05-01

    To compare algorithms performing material decomposition and classification in dual-energy CT, it is desirable to know the ground truth of the lesion to be analyzed in real patient data. In this work, we developed and validated a framework to insert digital lesions of arbitrary chemical composition into patient projection data acquired on a dual-source, dual-energy CT system. A model that takes into account beam-hardening effects was developed to predict the CT number of objects with known chemical composition. The model utilizes information about the x-ray energy spectra, the patient/phantom attenuation, and the x-ray detector energy response. The beam-hardening model was validated on samples of iodine (I) and calcium (Ca) for a second-generation dual-source, dual-energy CT scanner for all tube potentials available and a wide range of patient sizes. The seven most prevalent mineral components of renal stones were modeled and digital stones were created with CT numbers computed for each patient/phantom size and x-ray energy spectra using the developed beam-hardening model. Each digital stone was inserted in the dual-energy projection data of a water phantom scanned on a dual-source scanner and reconstructed with the routine algorithms in use in our practice. The geometry of the forward projection for dual-energy data was validated by comparing CT number accuracy and high-contrast resolution of simulated dual-energy CT data of the ACR phantom with experimentally acquired data. The beam-hardening model and forward projection method accurately predicted the CT number of I and Ca over a wide range of tube potentials and phantom sizes. The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner, and the CT number ratios for different kidney stone types were consistent with data in the literature. A sample application of the proposed tool was also demonstrated. A framework was developed and validated

  7. Modelling and optimisation of fs laser-produced K (alpha) sources

    Czech Academy of Sciences Publication Activity Database

    Gibbon, P.; Mašek, Martin; Teubner, U.; Lu, W.; Nicoul, M.; Shymanovich, U.; Tarasevitch, A.; Zhou, P.; Sokolowski-Tinten, K.; von der Linde, D.

    2009-01-01

    Roč. 96, č. 1 (2009), 23-31 ISSN 0947-8396 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : fs laser-plasma interaction * K (alpha) sources * 3D numerical modelling Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.595, year: 2009

  8. Inequalities in Open Source Software Development: Analysis of Contributor's Commits in Apache Software Foundation Projects.

    Science.gov (United States)

    Chełkowski, Tadeusz; Gloor, Peter; Jemielniak, Dariusz

    2016-01-01

    While researchers are becoming increasingly interested in studying OSS phenomenon, there is still a small number of studies analyzing larger samples of projects investigating the structure of activities among OSS developers. The significant amount of information that has been gathered in the publicly available open-source software repositories and mailing-list archives offers an opportunity to analyze projects structures and participant involvement. In this article, using on commits data from 263 Apache projects repositories (nearly all), we show that although OSS development is often described as collaborative, but it in fact predominantly relies on radically solitary input and individual, non-collaborative contributions. We also show, in the first published study of this magnitude, that the engagement of contributors is based on a power-law distribution.

  9. Teaching physics using project-based engineering curriculum with a theme of alternative energy

    Science.gov (United States)

    Tasior, Bryan

    The Next Generation Science Standards (NGSS) provide a new set of science standards that, if adopted, shift the focus from content knowledge-based to skill-based education. Students will be expected to use science to investigate the natural world and solve problems using the engineering design process. The world also is facing an impending crisis related to climate, energy supply and use, and alternative energy development. Education has an opportunity to help provide the much needed paradigm shift from our current methods of providing the energy needs of society. The purpose of this research was to measure the effectiveness of a unit that accomplishes the following objectives: uses project-based learning to teach the engineering process and standards of the NGSS, addresses required content expectations of energy and electricity from the HSCE's, and provides students with scientific evidence behind issues (both environmental and social/economic) relating to the energy crisis and current dependence of fossil fuels as our primary energy source. The results of the research indicate that a physics unit can be designed to accomplish these objectives. The unit that was designed, implemented and reported here also shows that it was highly effective at improving students' science content knowledge, implementing the engineering design standards of the NGSS, while raising awareness, knowledge and motivations relating to climate and the energy crisis.

  10. Physical Science-Supplement: Project Oriented.

    Science.gov (United States)

    Nederland Independent School District, TX.

    GRADES OR AGES: No mention; appears to be for secondary grades. SUBJECT MATTER: Physical sciences for slow learners. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 11 units, each of which is further subdivided into several chapters. Each chapter is laid out in three columns; column headings are concepts, content, and activities.…

  11. Physics of ionic and molecular interactions - 2006-2010 scientific report, 2012-2015 project

    International Nuclear Information System (INIS)

    Knoop, Martina; Champenois, Caroline; Hagel, Gaetan; Houssin, Marie; Morizot, Olivier; Pedregosa, Jofre; Vedel, Fernande; Vedel, Michel; Marciante, Mathieu; Calisti, A.; Calisti, Annette; Escarguel, Alexandre; Ferri, Sandrine; Godbert-Mouret, Laurence; Koubiti, Mohammed; Marandet, Yannick; Mosse, Caroline; Rosato, Joel; Stamm, Roland; Talin, Bernard; Boland, Denis; Mekkaoui, Abdessamad; Lefevre, Tony; Agullo, Olivier; Benkadda, S.; Beyer, P.; Dubuit, N.; Fuhr, G.; Futatani, S.; Guimarraes, Z.; Muraglia, M.; Pamela, Stanislas; Poye, Alexandre; Solminhac, F. de; Sugita, S.; Voslion, T.; Angot, Thierry; Bisson, Regis; Cartry, Gilles; Layet, Jean-Marc; Salomon, Eric; Areou, Etienne; Ahmad, Ahmad; Singh Katharria, Yashpal; Kumar, Pravin; Engeln, Richard; Abahazem, Alyen; Allouche, Alain; Bisson, R.; Borget, Fabien; Chiavassa, Thierry; Coussan, Stephane; Couturier-Tamburelli, Isabelle; Danger, Gregoire; Duvernay, Fabrice; Ferro, Yves; Marinelli, Francis; Martin, Celine; Morisset, Sabine; Pietri, Nathalie; Pardanaud, Cedric; Roubin, Pascale; Theule, Patrice; Bossa, Jean-Baptiste; Mispelaer, Florent; Ruffe, Remi; Arnas, Cecile; Cherigier-Kovacic, Laurence; Couedel, Lenaic; Claire, Nicolas; Doveil, Fabrice; Elskens, Yves; Escande, Dominique; Escarguel, Alexandre; Bernardi, Pierre; Lejeune, Aurelien

    2010-07-01

    The laboratory 'Physics of ionic and molecular interactions' (PIIM) is a mixed research unit (UMR6633) between the CNRS and the Provence University in Marseille. PIIM is in the Provence region the leading laboratory for the study of dilute matter, and brings together physicists and physico-chemists for studying gases and plasmas, and their interactions with matter and radiation. Our research activities are principally fundamental, and most often mobilize our interdisciplinary talent. They mainly belong to three research axis: atomic physics and radiation, plasma physics, and surface reactivity. The first axis corresponds to fundamental atomic physics experiments performed in ion traps, and to many studies using the atom and ion radiation for diagnosing the gases and plasmas. Experimental and theoretical researches of the dynamic and radiative properties of plasmas constitute the second research axis. The third axis concerns the analysis of reactivity on surfaces in a neutral or ionized environment. PIIM has a permanent staff of 14 CNRS researcher, 36 professors, and 19 engineers or technicians. Our flux of graduate students, postdoctoral fellows is of about twenty. The laboratory provides a management staff, and workshops for mechanics, electronics, instrumentation and computers. We are structured in six research teams developing 12 experiments. Ion confinement and laser manipulations (CIML): The research developed by this team consists in the confinement of ions in an electromagnetic trap. Experiments at the forefront of atomic physics master the confinement of a single ion. A metrology project aims to the achievement of a frequency standard in the optical range. Gas and plasma diagnosis (DGP): The modeling of radiative properties of different types of plasma is the main activity for this team. Numerous national and international collaborations result in the diagnostic of laboratory, astrophysical and thermonuclear fusion plasmas, and in the development of

  12. The Advanced Light Source: A new tool for research in atomic and molecular physics

    International Nuclear Information System (INIS)

    Schlachter, F.; Robinson, A.

    1991-04-01

    The Advanced Light Source at the Lawrence Berkeley Laboratory will be the world's brightest synchrotron radiation source in the extreme ultraviolet and soft x-ray regions of the spectrum when it begins operation in 1993. It will be available as a national user facility to researchers in a broad range of disciplines, including materials science, atomic and molecular physics, chemistry, biology, imaging, and technology. The high brightness of the ALS will be particularly well suited to high-resolution studies of tenuous targets, such as excited atoms, ions, and clusters. 13 figs., 4 tabs

  13. The TAC Radiation Source for Bremsstrahlung Application

    International Nuclear Information System (INIS)

    Demir, N.

    2008-01-01

    The TAC is a project for the first Turkish radiation source and currently design study is produced with funding from the DPT (State Planning Unity). Two main part of the project will be IR-FEL and Bremsstrahlung facility. Each LINAC will provide max. electron energy of 20 MeV. The Bremsstrahlung facility at TAC will consist two of the LINAC module and will be obtained 35 MeV photon energy. This would provide a chance to investigate nuclear structure at this energy range and also some application of photonuclear physics. In this work the main parameter and plans for those of facility will be detailed

  14. Synchrotron light sources in developing countries

    Science.gov (United States)

    Mtingwa, Sekazi K.; Winick, Herman

    2018-03-01

    We discuss the role that synchrotron light sources, such as SESAME, could play in improving the socioeconomic conditions in developing countries. After providing a brief description of a synchrotron light source, we discuss the important role that they played in the development of several economically emerging countries. Then we describe the state of synchrotron science in South Africa and that country’s leadership role in founding the African Light Source initiative. Next, we highlight a new initiative called Lightsources for Africa, the Americas & Middle East Project, which is a global initiative led by the International Union of Pure and Applied Physics and the International Union of Crystallography, with initial funding provided by the International Council for Science. Finally, we comment on a new technology called the multibend achromat that has launched a new paradigm for the design of synchrotron light sources that should be attractive for construction in developing countries.

  15. Sources and evolution of quantum physics

    International Nuclear Information System (INIS)

    Escoubes, B.

    2005-01-01

    The author has gathered in this book the founder articles of fundamental physics to illustrate the way how physics'ideas and concepts have emerged to form the modern physics we know today. The book is divided into 6 chapters: 1) from the Greek idea of matter to the discovery of radioactivity, 2) from relativity to quantification, 3) the devising of quantum mechanics, 4) from relativistic quantum mechanics to quantum field theory, 5) the great moments of particle physics, and 6) towards the great unification. 19 articles have been selected to illustrate the milestones of physics. Most are reproduced in full in their original texts. Among them we can find the article of Einstein about the existence of the photon, or the article of Pauli in which the exclusion principle is drafted or the article of Yukawa about the existence of the meson. The theoretical advances proposed in the articles are highlighted and put into perspective in discerning commentaries set in the different chapters. (A.C.)

  16. X-ray nanoprobe project at Taiwan Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Gung-Chian, E-mail: gcyin@nsrrc.org.tw; Chang, Shih-Hung; Chen, Bo-Yi; Chen, Huang-Yeh; Lin, Bi-Hsuan; Tseng, Shao-Chin; Lee, Chien-Yu; Wu, Jian-Xing; Tang, Mau-Tsu [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Wu, Shao-Yun [National Tsing-Hua University, Hsinchu 30076, Taiwan (China)

    2016-07-27

    The hard X-ray nanoprobe facility at Taiwan Photon Source (TPS) provides versatile X-ray analysis techniques, with tens of nanometer resolution, including XRF, XAS, XEOL, projection microscope, CDI, etc. Resulting from the large numerical aperture obtained by utilizing Montel KB mirrors, the beamline with a moderate length 75 meters can conduct similar performance with those beamlines longer than 100 meters. The two silica-made Montel mirrors are 45 degree cut and placed in a V-shape to eliminate the gap loss and the deformation caused by gravity. The slope error of the KB mirror pair is less than 0.04 µrad accomplished by elastic emission machining (EEM) method. For the beamline, a horizontal DCM and two-stage focusing in horizontal direction is applied. For the endstation, a combination of SEM for quickly positioning the sample, a fly scanning system with laser interferometers, a precise temperature control system, and a load lock transfer system will be implemented. In this presentation, the design and construction progress of the beamline and endstation is reported. The endstation is scheduled to be in commissioning phase in 2016.

  17. WE-AB-213-02: Status of Medical Physics Collaborations, and Projects in Latin America

    International Nuclear Information System (INIS)

    Guzman, S.

    2015-01-01

    AAPM projects and collaborations in Africa Adam Shulman (AA-SC Chair) The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such as Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab, Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to

  18. WE-AB-213-02: Status of Medical Physics Collaborations, and Projects in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, S.

    2015-06-15

    AAPM projects and collaborations in Africa Adam Shulman (AA-SC Chair) The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such as Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab, Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to

  19. ProjectQ: an open source software framework for quantum computing

    Directory of Open Access Journals (Sweden)

    Damian S. Steiger

    2018-01-01

    Full Text Available We introduce ProjectQ, an open source software effort for quantum computing. The first release features a compiler framework capable of targeting various types of hardware, a high-performance simulator with emulation capabilities, and compiler plug-ins for circuit drawing and resource estimation. We introduce our Python-embedded domain-specific language, present the features, and provide example implementations for quantum algorithms. The framework allows testing of quantum algorithms through simulation and enables running them on actual quantum hardware using a back-end connecting to the IBM Quantum Experience cloud service. Through extension mechanisms, users can provide back-ends to further quantum hardware, and scientists working on quantum compilation can provide plug-ins for additional compilation, optimization, gate synthesis, and layout strategies.

  20. Two Web-GIS Projects on Russian Historical Sources of the 15-19th Centuries

    Science.gov (United States)

    Frolov, Aleksei A.; Golubinskiy, Aleksei A.

    2018-05-01

    The paper describes an experience of online-publication of Russian archival materials by means of two web-GIS projects. The first project is devoted to publication of the collection of the earliest Russian cartographic drawings (mainly 2nd half of the 17th century), which cover a significant part of Russian territory, mainly the European part (http://rgada.info/geos2). Most of them have never been published and were not easily accessible for scholars and users due to poor physical condition. We tried to combine opportunities of geocoding of the picture with capacity to use an authentic image. The second project offers the results of localization of toponyms and land parcels from various documents (15-19th cc.) connected with one region of the Russian State called Bezhetsk Upland (http://rgada.info/bezheck/popup.html). These results were arranged in the set of layers which may be combined by the user.

  1. The Effect of Project Based Learning With Virtual Media Assistance on Student’s Creativity in Physics

    Directory of Open Access Journals (Sweden)

    Gunawan Gunawan

    2017-06-01

    Full Text Available Abstract: Physics learning should be able to provide opportunities for learners to be creative in understanding the things that learned. One of the efforts made to improve the quality of physics learning was to apply the model of project based learning with virtual media. This study aimed to examine the effect of virtual media-aided model toward students’ creativity. This quasi experimental study used pretest-posttest control group design. The research instrument used a verbal and figural creativity test which had been validated by experts. Hypothesis test used employed variance test. The increase in creativity was determined based on the results of the N-gain test. The results showed that there was an increase of students' creativity in both classes. The experiment class had a higher creativity increase than the control class. Verbal and figural creativity improved in both classes. Verbal creativity increased higher than figural creativity. This shows that the model of project based learning with virtual media that applied successfully improve the students’ creativity in physics learning. EFEKTIVITAS PENERAPAN MODEL PROJECT BASED LEARNING BERBANTUAN MEDIA VIRTUAL TERHADAP KREATIVITAS FISIKA PESERTA DIDIK Abstrak: Pembelajaran fisika seharusnya mampu memberikan peluang bagi peserta didik untuk berkreasi dalam memahami hal yang dipelajari. Salah satu upaya yang dilakukan untuk meningkatkan kualitas pembelajaran fisika adalah dengan menerapkan model project based learning berbantuan media virtual. Penelitian ini bertujuan menguji pengaruh model berbantuan media virtual terhadap kreativitas peserta didik. Penelitian kuasi eksperimen ini menggunakan pretest-posttest control group design. Instrumen penelitian menggunakan tes kreativitas verbal dan figural yang telah divalidasi oleh para ahli. Uji hipotesis menggunakan uji t polled varian. Peningkatan kreativitas ditentukan berdasarkan hasil uji N-gain. Hasil penelitian menunjukkan adanya

  2. Sexuality and Physical Contact in National Social Life, Health, and Aging Project Wave 2

    OpenAIRE

    Adena M. Galinsky; Martha K. McClintock; Linda J. Waite

    2014-01-01

    Introduction. Wave 2 of the National Social Life, Health, and Aging Project (NSHAP) includes new measures of sexual interest and behavior, as well as new measures of the context of sexual experience and the frequency and appeal of physical contact. This is the first time many of these constructs have been measured in a nationally representative sample.

  3. On quantifying uncertainty for project selection: the case of renewable energy sources' investment

    International Nuclear Information System (INIS)

    Kirytopoulos, Konstantinos; Rentizelas, Athanassios; Tziralis, Georgios

    2006-01-01

    The selection of a project among different alternatives, considering the limited resources of a company (organisation), is an added value process that determines the prosperity of an undertaken project (investment). This applies also to the 'boming' Renewable Energy Sector, especially under the circumstances established by the recent activation of the Kyoto protocal and by the plethora of available choices for renewable energy sources (RES) projjects. The need for a reliable project selection method among the various alternatives is, therefore, highlighted and, in this context, the paper proposes the NPV function as one of possible criteria for the selection of a RES project. Furthermore, it differentiates from the typical NPV calculation process by adding the concept of a probabilistic NPV approach through Monte Carlo simulation. Reality is non-deterministic, so any attempt of modelling it by using a deterministic approach is by definition erroneous. The paper ultimately proposes a process of substituting the point with a range estimation, capable of quantifying the various uncertainty factors and in this way elucidate the accomplishment possibilities of eligible scenarious. The paper is enhanced by case study showing how the proposed method can be practically applied to support the investment decision, thus enabling the decision makers to judge its effectiveness and usefulness.(Author)

  4. Physical and cognitive stimulation in Alzheimer Disease. the GAIA Project: a pilot study.

    Science.gov (United States)

    Maci, Tiziana; Pira, Francesco Le; Quattrocchi, Graziella; Nuovo, Santo Di; Perciavalle, Vincenzo; Zappia, Mario

    2012-03-01

    Several data suggest that physical activity and cognitive stimulation have a positive effect on the quality of life (QoL) of people with Alzheimer's disease (AD), slowing the decline due to the disease. A pilot project was undertaken to assess the effect of cognitive stimulation, physical activity, and socialization on patients with AD and their informal caregiver's QoL and mood. Fourteen patients with AD were randomly divided into active treatment group and control group. At the end of treatment, a significant improvement in apathy, anxiety, depression, and QoL in the active treatment group was found. Considering caregivers, those of the active treatment group exhibited a significant improvement in their mood and in their perception of patients' QoL. This study provides evidence that a combined approach based on cognitive stimulation, physical activity, and socialization is a feasible tool to improve mood and QoL in patients with AD and their caregivers.

  5. Physics Division annual review, 1 April 1987--31 March 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This paper contains a description of the research project at Argonne National Laboratory over the past year (4/11/87--3/31/88). The major sections of this report in nuclear physics are: research at ATLAS; operation and development of TLAS: medium-energy nuclear physics and weak interactions; and theoretical nuclei physics. The major sections in atomic physics are: high-resolution laser-rf spectroscopy with beams of atoms, molecules and ions; beam-foil research, ion-beam laser interactions, and collision dynamics of heavy ions; interactions of fast atomic and molecular ions with solid and gaseous target; theoretical atomic physics; atomic physics at ATLAS; atomic physics using a synchrotron light source; and molecular structures and dynamics from coulomb-explosion measurements. (LSP)

  6. Atomic physics at the Argonne PII ECR [electron cyclotron resonance] Ion Source

    International Nuclear Information System (INIS)

    Dunford, R.W.; Berry, H.G.; Billquist, P.J.; Pardo, R.C.; Zabransky, B.J.; Bakke, E.; Groeneveld, K.O.; Hass, M.; Raphaelian, M.L.A.

    1987-01-01

    An atomic physics beam line has been set up at the Argonne PII ECR Ion Source. The source is on a 350-kV high-voltage platform which is a unique feature of particular interest in work on atomic collisions. We describe our planned experimental program which includes: measurement of state-selective electron-capture cross sections, studies of doubly-excited states, precision spectroscopy of few-electron ions, tests of quantum electrodynamics, and studies of polarization transfer using optically pumped polarized alkali targets. The first experiments will be measurements of cross sections for electron capture into specific nl subshells in ion-atom collisions. Our method is to observe the characteristic radiation emitted after capture using a VUV spectrometer. Initial data from these experiments are presented. 12 refs., 4 figs

  7. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.

    Science.gov (United States)

    Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L; Cococcioni, Matteo; Dabo, Ismaila; Dal Corso, Andrea; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M

    2009-09-30

    QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

  8. Multi-Array Back-Projections of The 2015 Gorkha Earthquake With Physics-Based Aftershock Calibrations

    Science.gov (United States)

    Meng, L.; Zhang, A.; Yagi, Y.

    2015-12-01

    The 2015 Mw 7.8 Nepal-Gorkha earthquake with casualties of over 9,000 people is the most devastating disaster to strike Nepal since the 1934 Nepal-Bihar earthquake. Its rupture process is well imaged by the teleseismic MUSIC back-projections (BP). Here, we perform independent back-projections of high-frequency recordings (0.5-2 Hz) from the Australian seismic network (AU), the North America network (NA) and the European seismic network (EU), located in complementary orientations. Our results of all three arrays show unilateral linear rupture path to the east of the hypocenter. But the propagating directions and the inferred rupture speeds differ significantly among different arrays. To understand the spatial uncertainties of the BP analysis, we image four moderate-size (M5~6) aftershocks based on the timing correction derived from the alignment of the initial P-wave of the mainshock. We find that the apparent source locations inferred from BP are systematically biased along the source-array orientation, which can be explained by the uncertainty of the 3D velocity structure deviated from the 1D reference model (e.g. IASP91). We introduced a slowness error term in travel time as a first-order calibration that successfully mitigates the source location discrepancies of different arrays. The calibrated BP results of three arrays are mutually consistent and reveal a unilateral rupture propagating eastward at a speed of 2.7 km/s along the down-dip edge of the locked Himalaya thrust zone over ~ 150 km, in agreement with a narrow slip distribution inferred from finite source inversions.

  9. Summer Student Project: Collecting and disseminating CDS KPIs

    CERN Document Server

    Alvarez Perez, Carmen

    2010-01-01

    CDS (CERN Document Server) stores over 900,000 bibliographic records, including 360,000 fulltext documents, of interest to people working in particle physics and related areas. My project consisted on extracting KPIs (Key Performance Indicators) from it and feeding them to a central IT KPI system. To achieve this, I learned the CDS-Invenio open source digital library software, and worked with its statistic module.

  10. Informal proposal for an Atomic Physics Facility at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1986-01-01

    An Atomic Physics Facility (APF) for experiments that will use radiation from a superconducting wiggler on the NSLS X-13 port is described. The scientific justification for the APF is given and the elements of the facility are discussed. It is shown that it will be possible to conduct a uniquely varied set of experiments that can probe most aspects of atomic physics. A major component of the proposal is a heavy-ion storage ring capable of containing ions with energies of about 10 MeV/nucleon. The ring can be filled with heavy ions produced at the BNL MP Tandem Laboratory or from independent ion-source systems. A preliminary cost estimate for the facility is presented.

  11. "Teaching Physics as one of the humanities": The history of (harvard) project Physics, 1961-1970

    Science.gov (United States)

    Meshoulam, David

    In the United States after World War II, science had come to occupy a central place in the minds of policy makers, scientists, and the public. Negotiating different views between these groups proved a difficult task and spilled into debates over the role and scope of science education. To examine this process, this dissertation traces the history of Harvard Project Physics (HPP), a high-school physics curriculum from the 1960s that incorporated a humanistic and historical approach to teaching science. The narrative begins with the rise of General Education in the 1940s. Under the leadership of Harvard president James Conant, faculty at Harvard developed several Natural Science courses that connected science to history as a way to teach students about science and its relationship to culture. By the late 1950s this historical approach faced resistance from scientists who viewed it as misrepresenting their disciplines and called for students to learn specialized subject matter. With the support of the National Science Foundation (NSF), in the early 1960s scientists' vision of science education emerged in high-school classrooms across the country. By the mid 1960s, with the passage of the Civil Rights Act, the Elementary and Secondary Education Act, and the Daddario Amendment to the NSF, the political and education landscape began to change. These laws transformed the goals of two of the NSF and the Office of Education (USOE). These organizations faced demands to work together to develop projects that would speak to domestic concerns over equity and diversity. Their first joint educational venture was HPP. In order to succeed, HPP had to speak to the needs of disciplinary-minded scientists at the NSF, equity-minded educators at the USOE, and results-focused politicians in Congress. This work argues that HPP succeeded because it met the needs of these various stakeholders regarding the roles of science and education in American society.

  12. Site Characterization of the Source Physics Experiment Phase II Location Using Seismic Reflection Data

    Science.gov (United States)

    Sexton, E. A.; Snelson, C. M.; Chipman, V.; Emer, D. F.; White, R. L.; Emmitt, R.; Wright, A. A.; Drellack, S.; Huckins-Gang, H.; Mercadante, J.; Floyd, M.; McGowin, C.; Cothrun, C.; Bonal, N.

    2013-12-01

    An objective of the Source Physics Experiment (SPE) is to identify low-yield nuclear explosions from a regional distance. Low-yield nuclear explosions can often be difficult to discriminate among the clutter of natural and man-made explosive events (e.g., earthquakes and mine blasts). The SPE is broken into three phases. Phase I has provided the first of the physics-based data to test the empirical models that have been used to discriminate nuclear events. The Phase I series of tests were placed within a highly fractured granite body. The evolution of the project has led to development of Phase II, to be placed within the opposite end member of geology, an alluvium environment, thereby increasing the database of waveforms to build upon in the discrimination models. Both the granite and alluvium sites have hosted nearby nuclear tests, which provide comparisons for the chemical test data. Phase III of the SPE is yet to be determined. For Phase II of the experiment, characterization of the location is required to develop the geologic/geophysical models for the execution of the experiment. Criteria for the location are alluvium thickness of approximately 170 m and a water table below 170 m; minimal fracturing would be ideal. A P-wave mini-vibroseis survey was conducted at a potential site in alluvium to map out the subsurface geology. The seismic reflection profile consisted of 168 geophone stations, spaced 5 m apart. The mini-vibe was a 7,000-lb peak-force source, starting 57.5 m off the north end of the profile and ending 57.5 m past the southern-most geophone. The length of the profile was 835 m. The source points were placed every 5 m, equally spaced between geophones to reduce clipping. The vibroseis sweep was from 20 Hz down to 180 Hz over 8 seconds, and four sweeps were stacked at each shot location. The shot gathers show high signal-to-noise ratios with clear first arrivals across the entire spread and the suggestion of some shallow reflectors. The data were

  13. Fighting organized crime through open source intelligence: regulatory strategies of the CAPER Project

    OpenAIRE

    Casanovas, Pompeu

    2014-01-01

    OSINT stands for Open Source Intelligence. The CAPER project has built an OSINT solution oriented to the prevention of organised crime. We offer in this paper an overall view of some results, embedding into the system legal and ethical issues raised by the General Data Reform Package (GDRP) in Europe. We briefly describe CAPER architecture, workflow, functionalities, modules and ontologies (European LEAs Interoperability ELIO, and Multi-Lingual Crime Ontology MCO). This paper is focused on th...

  14. Physics Division semiannual report, July 1-December 31, 1982

    International Nuclear Information System (INIS)

    Trela, W.J.

    1983-09-01

    The Physics Division is organized into three major research areas: Fusion Physics, Weapons Physics, and Basic Research. In Fusion Physics, the KrF laser project reached two important milestones: successful testing of a 1-m 2 electron diode for KrF gas excitation and completion of a combined aperture demonstration showing the feasibility of accurate alignment of spherical mirrors. In the CO 2 program, the 5-kJ Helios lasers were used to evaluate many physics issues concerning the use of 10-μm light for inertial fusion and the 30- to 40-kJ Antares laser construction projects is on schedule for completion in October 1983. In Weapons Physics, significant progress was made on developing continuous time-dependent imaging systems using tomographic techniques with 400-ps shuttering capability, fiber-optic Cerenkov detector systems for fast fusion measurements, and iron-doped indium-phosphide detectors with 70-ps impulse response. A proposal to build x-ray beam lines at the National Synchrotron Light Source was approved and we expect funding in 1984. In Basic Physics Research, we have begun new initiatives to study biomagnetism in collaboration with the Life Sciences Division and to develop a neutrino physics program. During this period numerous significant experiments were completed in our nuclear physics, condensed matter physics, and thermal physics programs

  15. Data Release Report for Source Physics Experiments 2 and 3 (SPE-2 and SPE-3) Nevada National Security Site

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Margaret [National Security Technologies, LLC, Las Vegas, NV (United States). Nevada Test Site; Obi, Curtis [National Security Technologies, LLC, Las Vegas, NV (United States). Nevada Test Site

    2015-01-26

    The second Source Physics Experiment shot (SPE-2) was conducted in Nevada on October 25, 2011, at 1900:00.011623 Greenwich Mean Time (GMT). The explosive source was 997 kilograms (kg) trinitrotoluene (TNT) equivalent of sensitized heavy ammonium fuel oil (SHANFO) detonated at a depth of 45.7 meters (m). The third Source Physics Experiment shot (SPE-3) was conducted in Nevada on July 24, 2012, at 1800:00.44835 GMT. The explosive source was 905 kg TNT equivalent of SHANFO detonated at a depth of 45.8 m. Both shots were recorded by an extensive set of instrumentation that includes sensors both at near-field (less than 100 m) and far-field (100 m or greater) distances. The near-field instruments consisted of three-component accelerometers deployed in boreholes at 15, 46, and 55 m depths around the shot and a set of single-component vertical accelerometers on the surface. The far-field network was composed of a variety of seismic and acoustic sensors, including short-period geophones, broadband seismometers, three-component accelerometers, and rotational seismometers at distances of 100 m to 25 kilometers. This report coincides with the release of these data for analysts and organizations that are not participants in this program. This report describes the second and third Source Physics Experiment shots and the various types of near-field and far-field data that are available.

  16. Development of nuclear design criteria for neutron spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Sordo, F.; Abanades, A. [E.T.S. Industriales, Madrid Polytechnic University, UPM, J.Gutierrez Abascal, 2 -28006 Madrid (Spain)

    2008-07-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  17. Development of nuclear design criteria for neutron spallation sources

    International Nuclear Information System (INIS)

    Sordo, F.; Abanades, A.

    2008-01-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  18. Variability in physical contamination assessment of source segregated biodegradable municipal waste derived composts.

    Science.gov (United States)

    Echavarri-Bravo, Virginia; Thygesen, Helene H; Aspray, Thomas J

    2017-01-01

    Physical contaminants (glass, metal, plastic and 'other') and stones were isolated and categorised from three finished commercial composts derived from source segregated biodegradable municipal waste (BMW). A subset of the identified physical contaminant fragments were subsequently reintroduced into the cleaned compost samples and sent to three commercial laboratories for testing in an inter-laboratory trial using the current PAS100:2011 method (AfOR MT PC&S). The trial showed that the 'other' category caused difficulty for all three laboratories with under reporting, particularly of the most common 'other' contaminants (paper and cardboard) and, over-reporting of non-man-made fragments. One laboratory underreported metal contaminant fragments (spiked as silver foil) in three samples. Glass, plastic and stones were variably underreported due to miss-classification or over reported due to contamination with compost (organic) fragments. The results are discussed in the context of global physical contaminant test methods and compost quality assurance schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Applied plasma physics

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Applied Plasma Physics is a major sub-organizational unit of the MFE Program. It includes Fusion Plasma Theory and Experimental Plasma Research. The Fusion Plasma Theory group has the responsibility for developing theoretical-computational models in the general areas of plasma properties, equilibrium, stability, transport, and atomic physics. This group has responsibility for giving guidance to the mirror experimental program. There is a formal division of the group into theory and computational; however, in this report the efforts of the two areas are not separated since many projects have contributions from members of both. Under the Experimental Plasma Research Program, we are developing the intense, pulsed neutral-beam source (IPINS) for the generation of a reversed-field configuration on 2XIIB. We are also studying the feasibility of utilizing certain neutron-detection techniques as plasma diagnostics in the next generation of thermonuclear experiments

  20. Identifying bio-physical, social and political challenges to catchment governance for sustainable freshwater fisheries in West Africa: Systems overview through scenario development in the SUSFISH project.

    Science.gov (United States)

    Sendzimir, Jan; Slezak, Gabriele; Melcher, Andreas

    2015-04-01

    Chronic and episodic water scarcity prompted construction of 1400 reservoirs in Burkina Faso since 1950, greatly expanding fisheries production. These fisheries provided an increasingly important protein source for a population that has risen 600% since 1920, but production has plateaued, and dramatic declines in adult fish size suggest these fisheries are not sustainable. The SUSFISH project joined Austrian and Burkinabe scientists to increase local capacities to manage fisheries sustainably. SUSFISH has successfully increased capacity to monitor fish populations, identify endangered species, and use specific fish and macroinvertebrate species as bio-indicators of water and habitat quality as well as anthropogenic pressures. But projects to support sustainable development in Africa have a long history of failure if only based on transfer of technology and theory based on bio-physical sciences. This paper describes the processes and products of knowledge elicitation, scenario development and systems analysis to identify barriers and bridges to long-term sustainable fisheries development that arise from bio-physical, social, political and cultural causes, and, especially, interactions between them. Lessons learned and important on-going research questions are identified for both the natural and social sciences as they apply to managing catchments at multiple scales of governance, from local to national.

  1. 23 CFR 661.43 - Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds?

    Science.gov (United States)

    2010-04-01

    ... PROGRAM § 661.43 Can other sources of funds be used to finance a queued project in advance of receipt of... project that has been approved for funding and placed on the queue and then be reimbursed when IRRBP funds... 23 Highways 1 2010-04-01 2010-04-01 false Can other sources of funds be used to finance a queued...

  2. The MACHO Project HST Follow-Up: The Large Magellanic Cloud Microlensing Source Stars

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.A.; /LLNL, Livermore /UC, Berkeley; Drake, A.J.; /Caltech; Cook, K.H.; /LLNL, Livermore /UC, Berkeley; Bennett, D.P.; /Caltech /Notre Dame U.; Popowski, P.; /Garching, Max Planck Inst.; Dalal, N.; /Toronto U.; Nikolaev, S.; /LLNL, Livermore; Alcock, C.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.; Axelrod, T.S.; /Arizona U.; Becker, A.C. /Washington U., Seattle; Freeman, K.C.; /Res. Sch. Astron. Astrophys., Weston Creek; Geha, M.; /Yale U.; Griest, K.; /UC, San Diego; Keller, S.C.; /LLNL, Livermore; Lehner, M.J.; /Harvard-Smithsonian Ctr. Astrophys. /Taipei, Inst. Astron. Astrophys.; Marshall, S.L.; /SLAC; Minniti, D.; /Rio de Janeiro, Pont. U. Catol. /Vatican Astron. Observ.; Pratt, M.R.; /Aradigm, Hayward; Quinn, P.J.; /Western Australia U.; Stubbs, C.W.; /UC, Berkeley /Harvard U.; Sutherland, W.; /Oxford U. /Oran, Sci. Tech. U. /Garching, Max Planck Inst. /McMaster U.

    2009-06-25

    We present Hubble Space Telescope (HST) WFPC2 photometry of 13 microlensed source stars from the 5.7 year Large Magellanic Cloud (LMC) survey conducted by the MACHO Project. The microlensing source stars are identified by deriving accurate centroids in the ground-based MACHO images using difference image analysis (DIA) and then transforming the DIA coordinates to the HST frame. None of these sources is coincident with a background galaxy, which rules out the possibility that the MACHO LMC microlensing sample is contaminated with misidentified supernovae or AGN in galaxies behind the LMC. This supports the conclusion that the MACHO LMC microlensing sample has only a small amount of contamination due to non-microlensing forms of variability. We compare the WFPC2 source star magnitudes with the lensed flux predictions derived from microlensing fits to the light curve data. In most cases the source star brightness is accurately predicted. Finally, we develop a statistic which constrains the location of the Large Magellanic Cloud (LMC) microlensing source stars with respect to the distributions of stars and dust in the LMC and compare this to the predictions of various models of LMC microlensing. This test excludes at {approx}> 90% confidence level models where more than 80% of the source stars lie behind the LMC. Exotic models that attempt to explain the excess LMC microlensing optical depth seen by MACHO with a population of background sources are disfavored or excluded by this test. Models in which most of the lenses reside in a halo or spheroid distribution associated with either the Milky Way or the LMC are consistent which these data, but LMC halo or spheroid models are favored by the combined MACHO and EROS microlensing results.

  3. Relations of didactics of physics and projects of education in physics

    Science.gov (United States)

    Zelenický, Ľubomír; Rakovská, Mária

    2017-01-01

    Deepening interest in didactical problems of teaching physics can be from the beginning associated with the creation of the subject of physics, especially at secondary schools. In the 20th century it was no longer possible to ignore the rapid development of physical science and application of its results in practice. The subject of physics required the definition of its content, development of textbooks and, amongst others, new ways of teaching in comparison with the past. The interest of teachers focused mainly on increasing the clarity of explanation - the creation of experiments and teaching aids. Since 1926 Association of Mathematicians and Physicists in the first Czechoslovak Republic issued a didactic-methodological annex to the Journal of Mathematics and Physics, as a discussion in order to increase the quality of teaching. However, this action was spontaneous and subjective. In the second half of the 20th century didactics of physics became a study discipline, part of the training of future secondary school teachers and the development of scientific work in the field of Theory of teaching physics started.

  4. Development and implementation of the regulatory control of sources in Latin American Model Project countries

    International Nuclear Information System (INIS)

    Ferruz Cruz, P.

    2001-01-01

    After a general assessment of the situation regarding radiation safety and the radiation protection infrastructure in Latin American countries, several of them were invited to participate in a Model Project oriented, in some cases, towards establishing a mechanism for national regulatory control of radiation sources, and in others, towards upgrading their national control programme. All these activities aimed at reaching an effective and sustainable radiation protection infrastructure based on international basic safety standards. The paper presents a general overview of the current situation with regard to radiation protection within the Model Project countries in Latin America after almost five years of activities. It includes: the implementation of regulatory issues; the control of occupational, medical and public exposures; emergency response and waste safety issues. The paper also presents some lessons learned during implementation concerning the numerous activities involved in this interregional project. (author)

  5. Subatomic Physics and Cosmology Laboratory - LPSC Grenoble. Activity report 2014-2015

    International Nuclear Information System (INIS)

    Bouly, Frederic; Combet, Celine; Gomez Martinez, Yolanda; Smith, Christopher; Dauvergne, Denis; Delorieux, Colette; Derome, Laurent; Furget, Christophe; Lacoste, Ana; Lamy, Thierry; Lamberterie, Pierre de; Ledroit, Fabienne; Lucotte, Arnaud; Macias Perez, Juan Francisco; Montanet, Francois; Rebreyend, Dominique; Sage, Christophe; Santos, Daniel; Simpson, Gary; Vernay, Emmanuelle; Favro, Christian

    2016-06-01

    seek answers to the existence of dark matter and dark energy in the universe. The locations of the experiments are very diverse: ground-based, underground-based or even satellite-based. LPSC also studies artificially created short-lived particles (created by accelerators which our laboratory helps to design) or cosmic particles that were produced at different epochs of the history of the universe. These activities require the development of sophisticated, state-of-the-art instrumentation. A close collaboration between physicists, engineers and technicians is required to achieve the required performance. In addition, a strong theoretical research activity supports the experiments during the preparatory stages and during the data analysis. This report presents the activities of the laboratory during the years 2014-2015: 1 - Forewords, Presentation of the laboratory; 2 - Research activities: From particles to nuclei (ATLAS experiment at LHC, Future colliders, ALICE experiment at LHC, Physics of theoretical particles, 6+ isomeric states of "1"3"6","1"3"8Sn, Exploration of collective excitations with Bohr's collective algebraic model, Ultra-cold Neutrons (UCN)); 3 - Astro-particles, Cosmology and neutrinos (Pierre Auger Observatory, High energy cosmic radiation, LSST Large Synoptic Survey Telescope and theoretical cosmology, Directional detection of dark matter with MIMAC (MIcro-tpc MAtrix of Chambers), STEREO neutrino experiment, fossil radiation study with PLANCK, NIKA and NIKA2 dual band millimeter wave polarised cameras); 4 - Physics for energy and health (nuclear data, Physics of experimental reactors (FREYA (FP7) project), Molten salt reactors (MSRs) concept study, Simulation, analysis and prospective, Development of the Transparent Detector for Radiotherapy (TraDeRa), Accelerator Based - Neutron Capture Therapies (AB-NCT), MoniDiam project for the online beam-monitoring with polycrystalline diamond detectors in hadron-therapy); 5 - Accelerators and ion sources

  6. Inequalities in Open Source Software Development: Analysis of Contributor’s Commits in Apache Software Foundation Projects

    Science.gov (United States)

    2016-01-01

    While researchers are becoming increasingly interested in studying OSS phenomenon, there is still a small number of studies analyzing larger samples of projects investigating the structure of activities among OSS developers. The significant amount of information that has been gathered in the publicly available open-source software repositories and mailing-list archives offers an opportunity to analyze projects structures and participant involvement. In this article, using on commits data from 263 Apache projects repositories (nearly all), we show that although OSS development is often described as collaborative, but it in fact predominantly relies on radically solitary input and individual, non-collaborative contributions. We also show, in the first published study of this magnitude, that the engagement of contributors is based on a power-law distribution. PMID:27096157

  7. Constraints on equivalent elastic source models from near-source data

    International Nuclear Information System (INIS)

    Stump, B.

    1993-01-01

    A phenomenological based seismic source model is important in quantifying the important physical processes that affect the observed seismic radiation in the linear-elastic regime. Representations such as these were used to assess yield effects on seismic waves under a Threshold Test Ban Treaty and to help transport seismic coupling experience at one test site to another. These same characterizations in a non-proliferation environment find applications in understanding the generation of the different types of body and surface waves from nuclear explosions, single chemical explosions, arrays of chemical explosions used in mining, rock bursts and earthquakes. Seismologists typically begin with an equivalent elastic representation of the source which when convolved with the propagation path effects produces a seismogram. The Representation Theorem replaces the true source with an equivalent set of body forces, boundary conditions or initial conditions. An extension of this representation shows the equivalence of the body forces, boundary conditions and initial conditions and replaces the source with a set of force moments, the first degree moment tensor for a point source representation. The difficulty with this formulation, which can completely describe the observed waveforms when the propagation path effects are known, is in the physical interpretation of the actual physical processes acting in the source volume. Observational data from within the source region, where processes are often nonlinear, linked to numerical models of the important physical processes in this region are critical to a unique physical understanding of the equivalent elastic source function

  8. Automatic exposure system for radioactive source at teaching laboratory

    International Nuclear Information System (INIS)

    Seren, Maria Emilia G.; Gaal, Vladmir; Morais, Sergio Luiz de; Rodrigues, Varlei

    2013-01-01

    The development of Compton Scattering experiment, studied by undergraduate students of the Medical Physics course at the Universidade Estadual de Campinas (UNICAMP), takes place in the Medical Physics Teaching Laboratory, belonging to the Gleb Wataghin Physics Institute (IFGW/UNICAMP). The experiment consists of a fixed 137 Cs radioactive source, with current activity of 610.5 MBq and a scintillation detector that turns around the center of the system whose function is to detect the scattered photons spectrum by a scatter object (target). The 137 Cs source is stored in a lead shield with a collimating window for the gamma radiation emitted with energy of 0.662 MeV. This source is exposed only when an attenuation barrier protecting the collimating window is opened. The process of opening and closing the attenuation barrier may deliver a radiation dose to users when done manually. Considering the stochastic harmful effects of ionizing radiation, the goal of this project was to develop an automatic exposure system of the radioactive source, in order to reduce the radiation dose received during the Compton Scattering experiment. The developed system is micro controlled and performs standard operating routines, responding to emergencies. Furthermore, an electromagnetic lock enables quick closing of the barrier by gravity, in case of interruption of the electrical current circuit. Besides reducing the total dose to lab users, the system adds more security to the routine, since it limits the access to the radioactive source and prevents accidental exposure. (author)

  9. Five-dimensional projective unified theory and the principle of equivalence

    International Nuclear Information System (INIS)

    De Sabbata, V.; Gasperini, M.

    1984-01-01

    We investigate the physical consequences of a new five-dimensional projective theory unifying gravitation and electromagnetism. Solving the field equations in the linear approximation and in the static limit, we find that a celestial body would act as a source of a long-range scalar field, and that macroscopic test bodies with different internal structure would accelerate differently in the solar gravitational field; this seems to be in disagreement with the equivalence principle. To avoid this contradiction, we suggest a possible modification of the geometrical structure of the five-dimensional projective space

  10. Synchrotron radiation sources: general features and vacuum system

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1985-01-01

    In the last years the electron or positron storage rings, which were until 1970 only used for high energy physics experiments, begun to be built in several countries exclusively as electromagnetic radiation source (synchrotron radiation). The sources are generally made up by injector (linear accelerator or microtron), 'booster' (synchrotron), storage ring, insertions ('Wigglers' and ondulators) and light lines. The interest by these sources are due to the high intensity, large spectrum (from infrared to the X-rays), polarization and pulsed structure of the produced radiation. For the ultra-vacuum obtainement, necessary for the functioning storage rings (p=10 -9 Torr), several special procedures are used. In Brazil the Synchrotron Radiation National Laboratory of the CNPq worked out a conceptual project of synchrotron radiation source, whose execution should begin by the construction of the several components prototypes. (L.C.) [pt

  11. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections

    Science.gov (United States)

    Aryal, Anil; Shrestha, Sangam; Babel, Mukand S.

    2018-01-01

    The objective of this paper is to quantify the various sources of uncertainty in the assessment of climate change impact on hydrology in the Tamakoshi River Basin, located in the north-eastern part of Nepal. Multiple climate and hydrological models were used to simulate future climate conditions and discharge in the basin. The simulated results of future climate and river discharge were analysed for the quantification of sources of uncertainty using two-way and three-way ANOVA. The results showed that temperature and precipitation in the study area are projected to change in near- (2010-2039), mid- (2040-2069) and far-future (2070-2099) periods. Maximum temperature is likely to rise by 1.75 °C under Representative Concentration Pathway (RCP) 4.5 and by 3.52 °C under RCP 8.5. Similarly, the minimum temperature is expected to rise by 2.10 °C under RCP 4.5 and by 3.73 °C under RCP 8.5 by the end of the twenty-first century. Similarly, the precipitation in the study area is expected to change by - 2.15% under RCP 4.5 and - 2.44% under RCP 8.5 scenarios. The future discharge in the study area was projected using two hydrological models, viz. Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center's Hydrologic Modelling System (HEC-HMS). The SWAT model projected discharge is expected to change by small amount, whereas HEC-HMS model projected considerably lower discharge in future compared to the baseline period. The results also show that future climate variables and river hydrology contain uncertainty due to the choice of climate models, RCP scenarios, bias correction methods and hydrological models. During wet days, more uncertainty is observed due to the use of different climate models, whereas during dry days, the use of different hydrological models has a greater effect on uncertainty. Inter-comparison of the impacts of different climate models reveals that the REMO climate model shows higher uncertainty in the prediction of precipitation and

  12. Project financing

    International Nuclear Information System (INIS)

    Cowan, A.

    1998-01-01

    Project financing was defined ('where a lender to a specific project has recourse only to the cash flow and assets of that project for repayment and security respectively') and its attributes were described. Project financing was said to be particularly well suited to power, pipeline, mining, telecommunications, petro-chemicals, road construction, and oil and gas projects, i.e. large infrastructure projects that are difficult to fund on-balance sheet, where the risk profile of a project does not fit the corporation's risk appetite, or where higher leverage is required. Sources of project financing were identified. The need to analyze and mitigate risks, and being aware that lenders always take a conservative view and gravitate towards the lowest common denominator, were considered the key to success in obtaining project financing funds. TransAlta Corporation's project financing experiences were used to illustrate the potential of this source of financing

  13. Planned Positron Factory project

    International Nuclear Information System (INIS)

    Okada, Sohei

    1990-01-01

    The Japan Atomic Energy Research Institute, JAERI, has started, drafting a construction plan for the 'Positron Factory', in which intense energy-controllable monoenergetic positron beams are produced from pair-production reactions caused by high-energy electrons from a linac. The JAERI organized a planning committee to provide a basic picture for the Positron Factory. This article presents an overview of the interactions of positrons, intense positron sources and the research program and facilities planned for the project. The interactions of positrons and intense positron sources are discussed focusing on major characteristics of positrons in different energy ranges. The research program for the Positron Factory is then outlined, focusing on advanced positron annihilation techniques, positron spectroscopy (diffraction, scattering, channeling, microscopy), basic positron physics (exotic particle science), and positron beam technology. Discussion is also made of facilities required for the Positron Factory. (N.K.)

  14. Presentation of the International Building Physics Toolbox for Simulink

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Sasic Kalagasidis, Angela; Nielsen, Toke Rammer

    2003-01-01

    The international building physics toolbox (IBPT) is a software library specially constructed for HAM system analysis in building physics. The toolbox is constructed as a modular structure of the standard building elements using the graphical programming language Simulink. Two research groups have...... participated in this project. In order to enable the development of the toolbox, a common modelling platform was defined: a set of unique communication signals, material database and documentation protocol. The IBPT is open source and publicly available on the Internet. Any researcher and student can use...

  15. Spin in hadron physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The following topics were ealt with: Hadron physics with proton and deuteron probes, physics projects with Georgian participation, spin physics with antiprotons and leptons, spin filtering experiments, ISTC projects, technical issues for FAIR. (HSI)

  16. Sheath physics and materials science results from recent plasma source ion implantation experiments

    International Nuclear Information System (INIS)

    Conrad, J.R.; Radtke, J.L.; Dodd, R.A.; Worzala, F.J.

    1987-01-01

    Plasma Source Ion Implantation (PSII) is a surface modification technique which has been optimized for ion-beam processing of materials. PSII departs radically from conventional implantation by circumventing the line of sight restriction inherent in conventional ion implantation. The authors used PSII to implant cutting tools and dies and have demonstrated substantial improvements in lifetime. Recent results on plasma physics scaling laws, microstructural, mechanical, and tribological properties of PSII-implanted materials are presented

  17. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1979-12-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed hear are of a continuing nature. Results and conclusions described may change as the work continues

  18. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    1999-01-01

    The activities of the Health Physics Laboratory at the Institute of Nuclear Physics in Cracow are principally research in the general area of radiation physics, and radiation protection of the employees of the Institute of Nuclear Physics. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti for medical applications in conventional and hadron radiotherapy, and of LiF:Mg, Cu, P for low-level natural external ionising radiation. Environmental radiation measurements (radon in dwellings and in soil air) are also performed using track detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, monitoring and supervision of radiation safety on INP premises, and advising other INP laboratories on all matters pertaining to radiation safety. The year 1998 was another eventful year for the Health Physics Laboratory. In retrospective, the main effort in 1998 has been directed towards preparation and participation in the 12th International Conference on Solid State Dosimetry in Burgos, Spain. One of the research projects is aimed at developing novel miniature TLD detectors with improved LET and dose characteristics for precise phantom measurements in eye cancer radiotherapy with proton beams. The second project concerns the application of ultra-sensitive LiF:Mg, Cu, P (MCP-N) TLD detectors in environmental monitoring of gamma ionising radiation. The main objective of this last project is to develop and to test a system for rapid, short-term monitoring of environmental radiation

  19. Transition to a Source with Modified Physical Parameters by Energy Supply or Using an External Force

    Science.gov (United States)

    Kucherov, A. N.

    2017-11-01

    A study has been made of the possibility for the physical parameters of a source/sink, i.e., for the enthalpy, temperature, total pressure, maximum velocity, and minimum dimension, at a constant radial Mach number to be changed by energy or force action on the gas in a bounded zone. It has been shown that the parameters can be controlled at a subsonic, supersonic, and transonic (sonic in the limit) radial Mach number. In the updated source/sink, all versions of a vortex-source combination can be implemented: into a vacuum, out of a vacuum, into a submerged space, and out of a submerged space, partially or fully.

  20. Report of the design study on the proton linac of the Japanese Hadron Project, 2

    International Nuclear Information System (INIS)

    1990-06-01

    The design study on the proton linac of the Japanese Hadron Project began in May 1987, in the collaboration of Institute for Nuclear Study, University of Tokyo and National Laboratory for High Energy Physics. This is the second report of the design study on the 1-GeV proton linac, which includes the developments of the ion source, RFQ, DTL, CCL and RF sources. (author)

  1. EXPERIENCE SANITARY-EPIDEMIOLOGICAL EXAMINATION PROJECT OF PLACING A SOURCE OF IONIZING RADIATION (GENERATING) IN HEALTH CARE INSTITUTIONS

    OpenAIRE

    I. A. Rakitin; A. L. Zel’din; V. B. Karpov

    2015-01-01

    The article reviews the results of long-term sanitary-epidemiological examination of projects of placing of ionizing radiation (generating) sources in health care institutions of Saint-Petersburg. The majority among the placed sources presented for examination was X-ray diagnostic units and sets – 35.7%, dentist X-rays – 39.4% and fluorography units – 10.8%. Mammography units and computer tomographs made 6.7% each, accelerants – 0.7%.The most frequent reasons of primary refusals to accept des...

  2. EXPERIENCE SANITARY-EPIDEMIOLOGICAL EXAMINATION PROJECT OF PLACING A SOURCE OF IONIZING RADIATION (GENERATING IN HEALTH CARE INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    I. A. Rakitin

    2015-01-01

    Full Text Available The article reviews the results of long-term sanitary-epidemiological examination of projects of placing of ionizing radiation (generating sources in health care institutions of Saint-Petersburg. The majority among the placed sources presented for examination was X-ray diagnostic units and sets – 35.7%, dentist X-rays – 39.4% and fluorography units – 10.8%. Mammography units and computer tomographs made 6.7% each, accelerants – 0.7%.The most frequent reasons of primary refusals to accept design documentation were: absence of calculations of protection against all placed diagnostic X-ray devices (23.6% – at placing of diagnostic X-ray sets, 16.2% – at placing of dentist devices, absence of the upper floors layouts (26.5% – at placing of dentist X-rays and absence of permitting documentation for X-ray devices (at placing of dentist X-ray devices – 22.2%.At carrying out of design activity of special importance is creation of medical and technical projects which were absent in 22.9% of presented projects and in 34.6% were replaced with technical projects. Significant drawbacks of the projects were ignoring the necessity to consider the distance from the personnel workplaces and the width of technical passes (34.0%. That was caused by the absence of corresponding documentation from suppliers of equipment for X-ray rooms.At calculation of protection against X-ray radiation in 11.3% of projects of placing X-ray diagnostic devices (sets and in 7.7% of projects of placing dentist X-ray devices, radiation directivity factors (N were determined incorrectly.Of importance is the issue of adequate choice of building and finishing materials. In 50.0% of projects of placing of diagnostic X-ray devices (sets and 37.6% of projects of placing dentist X-ray devices there were no sanitary-epidemiological conclusions regarding the building and finishing materials to confirming their feasibility for healthcare institutions.Analysis of the main stages

  3. Source term experiments project (STEP): aerosol characterization system

    International Nuclear Information System (INIS)

    Schlenger, B.J.; Dunn, P.F.

    1985-01-01

    A series of four experiments has been conducted at Argonne National Laboratory's TREAT Reactor. These experiments, which are sponsored by an international consortium organized by the Electric Power Research Institute, are designed to investigate the source term, i.e., the type, quantity and timing of release of radioactive fission products from a light water reactor to the environment in the event of a severe accident in which the core is insufficiently cooled. The STEP tests have been designed to provide some of the necessary data regarding the magnitude and release rates of volatile fission products from degraded fuel pins, their physical and chemical characteristics, and aerosol formation and transport phenomena of those fission products that condense to form particles in the cooler regions of the reactor beyond the core. These are inpile experiments, whereby the test fuels are heated in a nuclear test reactor by neutron induced fission and subsequent cladding oxidation in steam environments that simulate as closely as practical predicted severe reactor accident conditions. The test sequences cover a range of pressure and fuel heatup rate, and include the effect of Ag/In/Cd control rod material. 1 ref., 8 figs., 1 tab

  4. Physics and national socialism an anthology of primary sources

    CERN Document Server

    1996-01-01

    This anthology of primary sources is a collection of 121 documents in English translation portraying the role of physics, both perceived and actual, in the Nazi state. These texts were written predominantly by influential German scientists, particularly physicists, both inside and outside Germany in the period from 1933 to 1945. The semipopular articles, private correspondence, and official memoranda selected for the volume reflect the contemporary developments in science as well as the change in political climate and working conditions after the National Socialists' rise to power. The extensive annotation is clearly distinguished from the original text, and the appendix provides an aid to the reader with biographical information on the more important figures and brief outlines of frequently mentioned institutions, journals and companies. The introduction surveys the latest results in the secondary literature.   ------    (…) the envisaged audience includes not only scholars and students of science, hist...

  5. Project MOHAVE data analysis plan

    International Nuclear Information System (INIS)

    Watson, J.G.; Green, M.; Hoffer, T.E.; Lawson, D.R.; Pitchford, M.; Eatough, D.J.; Farber, R.J.; Malm, W.C.; McDade, C.E.

    1993-01-01

    Project MOHAVE is intended to develop ambient and source emissions data for use with source models, receptor models, and data analysis methods in order to explain the nature and causes of visibility degradation in the Grand Canyon. Approximately 50% of the modeling and data analysis effort will be directed toward understanding the contributions from the Mohave Power Project to haze in the Grand Canyon and other nearby Class areas; the remaining resources will be used to understand the contribution from other sources. The major goals of Project MOHAVE and data analysis are: to evaluate the measurement for applicability to modeling and data analysis activities; to describe the visibility, air quality and meteorology during the field study period and to determine the degree to which these measurements represent typical visibility events at the Grand Canyon; to further develop conceptual models of physical and chemical processes which affect visibility impairment at the Grand Canyon; to estimate the contributions from different emission sources to visibility impairment at the Grand Canyon, and to quantitatively evaluate the uncertainties of those estimates; to reconcile different scientific interpretations of the same data and to present this reconciliation to decision-makers. Several different approaches will be applied. Each approach will involve explicit examination of measurement uncertainties, compliance with implicit and explicit assumptions, and representativeness of the measurements. Scientific disagreements will be sought, expressed, explained, quantified, and presented. Data which can be used to verify methods will be withheld for independent evaluation of the validity of those methods. All assumptions will be stated and evaluated against reality. Data analysis results not supporting hypotheses will be presented with those results supporting the hypotheses. Uncertainty statements will be quantitative and consistent with decision-making needs

  6. Social Sciences, Art and Physical Activity in Leisure Environments. An Inter-Disciplinary Project for Teacher Training

    Directory of Open Access Journals (Sweden)

    María Belén San Pedro Veledo

    2018-05-01

    Full Text Available Factors such as social change and increasing urbanization processes in the early years of the 21st century have caused a reduction in the amount of time that children devote to leisure activities in the open-air, resulting in more sedentary lifestyles than children in previous decades. An education in healthy habits from early ages to increase children’s physical and mental well-being together with their level of cultural knowledge contributes to the acquisition of a Leisure Culture that allows children to perceive the close environment as a scene for learning and enjoyment. It is thus be necessary for schools to foster pedagogical experiences, taking the physical and cultural environment as teaching resources. An innovation project is proposed which will be implemented with 25 university students from the School of Teacher Training and Education at the University of Oviedo (Oviedo, Spain. The project will consist of the proposal of educational itineraries through the city of Oviedo and Mount Naranco. As teachers-to-be, students must combine knowledge of the related areas and generate inter-disciplinary activities throughout the routes that will foster respect for the environment and leisure based on culture and physical activity, attitudes that they will transmit to their own students in the future.

  7. The fundamental particles and interactions wall chart, the teaching of contemporary physics, and the future of the SSC

    International Nuclear Information System (INIS)

    Aubrecht, G.J. II

    1991-01-01

    The students of the current generation lack knowledge of science in general and physics in particular. Incorporation of contemporary topics can motivate students' interest in physics as well as help produce the new physics teachers who will be needed in the next generation. More importantly for 'big science' projects such as the SSC, such education can help provide a constituency recognizing the worth of the endeavors. Teachers who wish to incorporate new physics ideas have few sources of information or inspiration to which to turn. The Contemporary Physics Education Project has developed a 'wall chart' for particle physics, which provides aid to teachers interested in particles, and is colorful and attractive enough to entice students' into showing some interest in the subject. The development of chart is described and the current version is shown

  8. GENII-LIN: a Multipurpose Health Physics Code Built on GENII-1.485

    Directory of Open Access Journals (Sweden)

    Marco Sumini

    2006-10-01

    Full Text Available The aim of the GENII-LIN project was to develop an open source multipurpose health physics code running on Linux platform, for calculating radiation dose and risk from radionuclides released to the environment. The general features of the GENII-LIN system include [1] capabilities for calculating radiation dose both for acute and chronic releases, with options for annual dose, committed dose and accumulated dose [2] capabilities for evaluating exposure pathways including direct exposure via water (swimming, boating, fishing, soil (buried and surface sources and air (semi-infinite cloud and finite cloud model, inhalation pathways and ingestion pathways. The release scenarios considered are: - acute release to air, from ground level or elevated sources, or to water; - chronic release to air, from ground level or elevated sources, or to water; - initial contamination of soil or surfaces. Keywords: radiation protection, Linux, health physics, risk analysis.

  9. Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects

    Science.gov (United States)

    Murray, Sophie A.; Guerra, Jordan A.; Zucca, Pietro; Park, Sung-Hong; Carley, Eoin P.; Gallagher, Peter T.; Vilmer, Nicole; Bothmer, Volker

    2018-04-01

    Coronal mass ejections (CMEs) and other solar eruptive phenomena can be physically linked by combining data from a multitude of ground-based and space-based instruments alongside models; however, this can be challenging for automated operational systems. The EU Framework Package 7 HELCATS project provides catalogues of CME observations and properties from the Heliospheric Imagers on board the two NASA/STEREO spacecraft in order to track the evolution of CMEs in the inner heliosphere. From the main HICAT catalogue of over 2,000 CME detections, an automated algorithm has been developed to connect the CMEs observed by STEREO to any corresponding solar flares and active-region (AR) sources on the solar surface. CME kinematic properties, such as speed and angular width, are compared with AR magnetic field properties, such as magnetic flux, area, and neutral line characteristics. The resulting LOWCAT catalogue is also compared to the extensive AR property database created by the EU Horizon 2020 FLARECAST project, which provides more complex magnetic field parameters derived from vector magnetograms. Initial statistical analysis has been undertaken on the new data to provide insight into the link between flare and CME events, and characteristics of eruptive ARs. Warning thresholds determined from analysis of the evolution of these parameters is shown to be a useful output for operational space weather purposes. Parameters of particular interest for further analysis include total unsigned flux, vertical current, and current helicity. The automated method developed to create the LOWCAT catalogue may also be useful for future efforts to develop operational CME forecasting.

  10. Microgrids project. Part 2. Design of an electrification kit with high content of renewable energy sources in Senegal

    Energy Technology Data Exchange (ETDEWEB)

    Alzola, J.A.; Santos, M. [Robotiker Tecnalia, Parque Tecnologico, Edificio 202, 48170 Zamudio (Spain); Vechiu, I. [ESTIA Recherche Technopole Izarbel, 64210 Bidart (France); Camblong, H. [ESTIA Recherche Technopole Izarbel, 64210 Bidart (France); Electrical Engineering Department, University of the Basque Country (E.U.P.-D), Europa Plaza 1, 20018 Donostia - San Sebastian (Spain); Sall, M. [Centre d' Etudes et de Recherches sur les Energies Renouvelables (UCAD) (Senegal); Sow, G. [Laboratoire des Energies Renouvelables (LER), Ecole Sup. Polytechnique, Dakar (Senegal)

    2009-10-15

    Senegal is one of the less developed countries in the world (position 158 in a list of 174 countries). 85% of its rural population does not have access to electricity and there's no doubt that this is an important barrier for socio-economic development. In this context, the project Microgrids aims at contributing to solve this problem. This project is part of the Intelligent Energy - Europe Programme supported by the European Commission. Its objective is the promotion and dissemination of the use of micro-grids with high content of Renewable Energy Sources (RES) for the electrification of villages far away from the grid in Senegal. One of the results of the project was the analysis of rural electrification needs, which is described in another paper [Camblong H, Sarr J, Niang AT, Curea O, Alzola JA, Sylla EH, Santos M. Microgrids project, part 1: analysis of rural electrification with high content of renewable energy sources in Senegal. Renewable Energy, submitted for publication.]. This paper presents the design of an electrification kit based on the information provided by that analysis [Analyse des besoins locaux pour l'electrification de zones rurales au Senegal. Technical report of Microgrids project; 2007. Available from: http://www.microgrids-eie.com.]. After identifying necessary previous conditions for the sustainability of any electrification project, a methodology is proposed for the design of the electrification kit. This methodology is applied to a typical village and results are extended to differently sized villages in the areas of Thies, Fatick and Kaolack. Economic considerations are also included to establish the relationship between electrification costs and paying capability of the communities. Now the Microgrids' consortium hopes to set-up a new project to apply the designed kit on some rural non-electrified villages. (author)

  11. The German SNQ-project and its research options

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1983-06-01

    Some of the current ideas of applying accelerators in the nuclear fuel cycle for fuel breeding and waste management are reviewed with respect to physics feasibility and energy efficiency. While fertile-to-fissile conversion and actinide burning seem possible from a physics and energy economy point of view, fission product transmutation is more difficult to assess. R+D-work required for a more detailed assessment and a design study that could be used in an overall systems analysis is briefly summarized. A short description of the German project for a high power spallation neutron source is given and further possible fields of research at the facility are outlined. (AF)

  12. A biotechnological project with a gamma radiation source of 100,000 Ci

    International Nuclear Information System (INIS)

    Lombardo, J.H.; Smolko, E.E.

    1990-01-01

    A project for the production of radiovaccines and other bio-medical products is presented which includes a radiation facility provided with a gamma ray source equivalent to 100,000 Ci of Co-60. The whole process incorporates novel basic features in virus production and inactivation steps. The former is carried out in animals previously subjected to immunodepression through electromagnetic radiation. The latter is obtained at low temperatures by using either electromagnetic or particle radiations. A vaccine manufacture process is shown to illustrate the utilization of ionizing radiations to obtain a foot and mouth disease virus (FMDV) vaccine with good antigenic quality and low cost. (author)

  13. Physics and nuclear power

    International Nuclear Information System (INIS)

    Buttery, N E

    2008-01-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors

  14. Stealing from Physics: Modeling with Mathematical Functions in Data-Rich Contexts

    Science.gov (United States)

    Erickson, Tim

    2006-01-01

    In the course of a project to create physics education materials for secondary schools in the USA we have, not surprisingly, had insights into how students develop certain mathematical understandings. Some of these translate directly into the mathematics classroom. With our materials, students get data from a variety of sources, data that arise in…

  15. Final report of the inter institutional project ININ-CNSNS 'Source Terms specific for the CNLV'

    International Nuclear Information System (INIS)

    Anaya M, R.A.

    1991-02-01

    The purpose of the project inter institutional ININ-CNSNS 'Source Terms Specifies for the CNLV' it is the one of implanting in the computer CYBER (CDC 180-830) of the ININ, the 'Source Term Code Package' (STCP) and to make the operation tests and corresponding operation using the data of the sample problem, for finally to liberate the package, all time that by means of the analysis of the results it is consider appropriate. In this report the results of the are presented simulation of the sequence 'Energy Losses external' (Station blackout) and 'Lost total of CA with failure of the RCIC and success of the HPCS' both with data of the Laguna Verde Central. (Author)

  16. LNLS: a Brazilian project for technological development, scientific investigation and manpower formation

    International Nuclear Information System (INIS)

    Craievich, Aldo

    1996-01-01

    Full text: The process of the Brazilian Synchrotron Light National Laboratory creation, growth and consolidation is described. This institute aims he project and construction of a electron accelerators group for utilization as high intensity and wide spectrum light source, from the infrared to X-rays for application in physics, chemistry, biology and material science

  17. A quality improvement project sustainably decreased time to onset of active physical therapy intervention in patients with acute lung injury.

    Science.gov (United States)

    Dinglas, Victor D; Parker, Ann M; Reddy, Dereddi Raja S; Colantuoni, Elizabeth; Zanni, Jennifer M; Turnbull, Alison E; Nelliot, Archana; Ciesla, Nancy; Needham, Dale M

    2014-10-01

    Rehabilitation started early during an intensive care unit (ICU) stay is associated with improved outcomes and is the basis for many quality improvement (QI) projects showing important changes in practice. However, little evidence exists regarding whether such changes are sustainable in real-world practice. To evaluate the sustained effect of a quality improvement project on the timing of initiation of active physical therapy intervention in patients with acute lung injury (ALI). This was a pre-post evaluation using prospectively collected data involving consecutive patients with ALI admitted pre-quality improvement (October 2004-April 2007, n = 120) versus post-quality improvement (July 2009-July 2012, n = 123) from a single medical ICU. The primary outcome was time to first active physical therapy intervention, defined as strengthening, mobility, or cycle ergometry exercises. Among ICU survivors, more patients in the post-quality improvement versus pre-quality improvement group received physical therapy in the ICU (89% vs. 24%, P quality improvement versus pre-quality improvement group, there was a shorter median (interquartile range) time to first physical therapy (4 [2, 6] vs. 11 d [6, 29], P quality improvement period was associated with shorter time to physical therapy (adjusted hazard ratio [95% confidence interval], 8.38 [4.98, 14.11], P quality improvement period. The following variables were independently associated with a longer time to physical therapy: higher Sequential Organ Failure Assessment score (0.93 [0.89, 0.97]), higher FiO2 (0.86 [0.75, 0.99] for each 10% increase), use of an opioid infusion (0.47 [0.25, 0.89]), and deep sedation (0.24 [0.12, 0.46]). In this single-site, pre-post analysis of patients with ALI, an early rehabilitation quality improvement project was independently associated with a substantial decrease in the time to initiation of active physical therapy intervention that was sustained over 5 years. Over the entire pre

  18. Data Release Report for Source Physics Experiments 2 and 3 (SPE-2 and SPE-3) Nevada National Security Site

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Margaret [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States); Obi, Curtis [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States)

    2015-04-30

    The second Source Physics Experiment shot (SPE-2) was conducted in Nevada on October 25, 2011, at 1900:00.011623 Greenwich Mean Time (GMT). The explosive source was 997 kilograms (kg) trinitrotoluene (TNT) equivalent of sensitized heavy ammonium fuel oil (SHANFO) detonated at a depth of 45.7 meters (m). The third Source Physics Experiment shot (SPE-3) was conducted in Nevada on July 24, 2012, at 1800:00.44835 GMT. The explosive source was 905 kg TNT equivalent of SHANFO detonated at a depth of 45.8 m. Both shots were recorded by an extensive set of instrumentation that includes sensors both at near-field (less than 100 m) and far-field (100 m or greater) distances. The near-field instruments consisted of three-component accelerometers deployed in boreholes at 15, 46, and 55 m depths around the shot and a set of single-component vertical accelerometers on the surface. The far-field network was composed of a variety of seismic and acoustic sensors, including short-period geophones, broadband seismometers, three-component accelerometers, and rotational seismometers at distances of 100 m to 25 kilometers. This report coincides with the release of these data for analysts and organizations that are not participants in this program. This report describes the second and third Source Physics Experiment shots and the various types of near-field and farfield data that are available.This revised document includes reports on baseline shift corrections for the SPE-2 and SPE-3 shots that were missing from the original January 2015 version.

  19. Use of a high density lead glass tubing projection chamber in positron emission tomography and in high energy physics

    International Nuclear Information System (INIS)

    Conti, M.; Guerra, A.D.; Habel, R.; Mulera, T.; Perez-Mendez, V.; Schwartz, G.

    1985-10-01

    We describe the principle of operation of a high density Projection Chamber, in which the converter/radiator and drift field shaping structures are combined in the form of high density (5 to 6 g/cm 3 ) lead glass tubing. The main applications of this type of detector to Medical Physics (Positron Emission Tomography) and High Energy Physics (Electromagnetic Calorimetry) are discussed

  20. Physics in Brazil in the next decade: atomic, molecular and optical physics, biological, chemical and medical physics, physics teaching and plasma physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is an overview of physics in Brazil in the next decade. It is specially concerned with atomic, molecular and optical physics, biological chemical and medical physics, and also teaching of physics and plasma physics. It presents the main research groups in Brazil in the above mentioned areas. It talks as well, about financing new projects and the costs involved to improve these areas. (A.C.A.S.)

  1. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    Whitaker, J.S.

    1990-01-01

    This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: Colliding Beams Physics; Accelerator Design Physics; MACRO Project; Proton Decay Project; Theoretical Particle Physics; Muon G-2 Project; and Hadron Collider Physics. The scope of each of these projects is presented in detail in this paper

  2. Status of the Short-Pulse X-ray Project (SPX) at the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Nassiri, R.; Arnold, N.D.; Berenc, G.; Borland, M.; Bromberek, D.J.; Chae, Y.-C.; Decker, G.; Emery, L.; Fuerst, J.D.; Grelick, A.E.; Horan, D.; Lenkszus, F.; Lill, R.M.; Sajaev, V.; Smith, T.L.; Waldschmidt, G.J.; Wu, G.; Yang, B.X.; Zholents, A.; Byrd, J.M.; Doolittle, L.R.; Huang, G.; Cheng, G.; Ciovati, G.; Henry, J.; Kneisel, P.; Mammosser, J.D.; Rimmer, R.A.; Turlington, L.; Wang, H.

    2011-01-01

    The Advanced Photon Source Upgrade project (APS-U) at Argonne includes implementation of Zholents deflecting cavity scheme for production of short x-ray pulses. This is a joint project between Argonne National Laboratory, Thomas Jefferson National Laboratory, and Lawrence Berkeley National Laboratory. This paper describes performance characteristics of the proposed source and technical issues related to its realization. Ensuring stable APS storage ring operation requires reducing quality factors of these modes by many orders of magnitude. These challenges reduce to those of the design of a single-cell SC cavity that can achieve the desired operating deflecting fields while providing needed damping of all these modes. The project team is currently prototyping and testing several promising designs for single-cell cavities with the goal of deciding on a winning design in the near future. Here we describe the approach undertaken and report the preliminary results. The concept of using transverse superconducting rf deflecting cavities to produce high-repetition-rate picoseconds x-rays with the APS has been previously described. Briefly, two cavities are required: the first cavity to impose a chirp on the electron beam and a second cavity to cancel the effects on the electron beam of the first cavity. The cavities must have a deflecting mode frequency that is a harmonic h of the APS storage ring rf frequency, 352 MHz A workable choice of h=8 corresponds to a deflecting cavity frequency of 2815 MHz. R and D activities include design and prototyping of superconducting deflecting cavities and components, cryomodule, low-level rf, particle/optical beam diagnostics, and timing/synchronization.

  3. Advanced Neutron Source (ANS) Project progress report

    International Nuclear Information System (INIS)

    McBee, M.R.; Chance, C.M.

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I ampersand C research and development; facility concepts; design; and safety

  4. Radiological Threat Reduction (RTR) program: implementing physical security to protect large radioactive sources worldwide

    International Nuclear Information System (INIS)

    Lowe, Daniel L.

    2004-01-01

    The U.S. Department of Energy's Radiological Threat Reduction (RTR) Program strives to reduce the threat of a Radiological Dispersion Device (RDD) incident that could affect U.S. interests worldwide. Sandia National Laboratories supports the RTR program on many different levels. Sandia works directly with DOE to develop strategies, including the selection of countries to receive support and the identification of radioactive materials to be protected. Sandia also works with DOE in the development of guidelines and in training DOE project managers in physical protection principles. Other support to DOE includes performing rapid assessments and providing guidance for establishing foreign regulatory and knowledge infrastructure. Sandia works directly with foreign governments to establish cooperative agreements necessary to implement the RTR Program efforts to protect radioactive sources. Once necessary agreements are in place, Sandia works with in-country organizations to implement various security related initiatives, such as installing security systems and searching for (and securing) orphaned radioactive sources. The radioactive materials of interest to the RTR program include Cobalt 60, Cesium 137, Strontium 90, Iridium 192, Radium 226, Plutonium 238, Americium 241, Californium 252, and Others. Security systems are implemented using a standardized approach that provides consistency through out the RTR program efforts at Sandia. The approach incorporates a series of major tasks that overlap in order to provide continuity. The major task sequence is to: Establish in-country contacts - integrators, Obtain material characterizations, Perform site assessments and vulnerability assessments, Develop upgrade plans, Procure and install equipment, Conduct acceptance testing and performance testing, Develop procedures, and Conduct training. Other tasks are incorporated as appropriate and commonly include such as support of reconfiguring infrastructure, and developing security

  5. Ambient PM2.5 Exposure in India: Burden, Source-Apportionment and Projection Under Climate Change

    Science.gov (United States)

    Dey, S.; Chowdhury, S.; Upadhyay, A. K.; Smith, K. R.

    2017-12-01

    Air pollution has been identified as one of the leading factors of premature death in India. Absence of adequate in-situ monitors led us to use satellite retrieved aerosol optical depth (AOD) data to infer surface fine particulate matter (PM2.5). Annual premature mortality burden due to ambient PM2.5 exposure is estimated to be 1.17 (0.42-2.7) million for India. A chemical transport model WRF-Chem is utilized to estimate source-apportioned PM2.5 exposure. We estimate the exposure for four major sources - transport, residential, energy and industrial and found that the largest contribution to ambient PM2.5 exposure in India is contributed by residential sources. We estimate that if all the solid fuel use at households is replaced by clean fuel, ambient PM2.5 exposure would reduce by 30-45%, leading to 170,000 (14.5% of total burden) averted premature deaths annually. To understand how the air quality is projected to change under climate change scenarios, we analyze 13 CMIP5 models. We calculate the relative changes in PM2.5 (ensemble mean) in future relative to the baseline period (2001-2005) and apply the factor to satellite-derived PM2.5 exposure in baseline period to project future PM2.5 exposure. Ambient PM2.5 is expected to reach a maxima in 2030 under RCP4.5 (15.5% rise from baseline period) and in 2040 (25.5% rise) under RCP8.5 scenario. The projected exposure under RCP4.5 and RCP8.5 scenarios are further used to estimate premature mortality burden till the end of the century by considering population distribution projections from five shared socio-economic pathways (SSP) scenarios. We separate the burden due to ambient PM2.5 exposure in future attributable to change in meteorology due to climate change and change in demographic and epidemiological transitions. If all-India average PM2.5 exposure meets WHO interim target 1 (35 µg/m3) by 2031-40, 28000-38000 and 41100-60100 premature deaths can be averted every year under RCP4.5 and RCP8.5 respectively. Even

  6. THE COMPACT, TIME-VARIABLE RADIO SOURCE PROJECTED INSIDE W3(OH): EVIDENCE FOR A PHOTOEVAPORATED DISK?

    International Nuclear Information System (INIS)

    Dzib, Sergio A.; Rodríguez-Garza, Carolina B.; Rodríguez, Luis F.; Kurtz, Stan E.; Loinard, Laurent; Zapata, Luis A.; Lizano, Susana

    2013-01-01

    We present new Karl G. Jansky Very Large Array (VLA) observations of the compact (∼0.''05), time-variable radio source projected near the center of the ultracompact H II region W3(OH). The analysis of our new data as well as of VLA archival observations confirms the variability of the source on timescales of years and for a given epoch indicates a spectral index of α = 1.3 ± 0.3 (S ν ∝ν α ). This spectral index and the brightness temperature of the source (∼6500 K) suggest that we are most likely detecting partially optically thick free-free radiation. The radio source is probably associated with the ionizing star of W3(OH), but an interpretation in terms of an ionized stellar wind fails because the detected flux densities are orders of magnitude larger than expected. We discuss several scenarios and tentatively propose that the radio emission could arise in a static ionized atmosphere around a fossil photoevaporated disk

  7. Final report of the project Encapsulated Sources

    International Nuclear Information System (INIS)

    Kops, J.A.M.M.; Kicken, P.J.H.

    2003-11-01

    Literature dealing with risks and quality assurance of sealed radioactive sources, as welt as internationally used exemption levels (radiation exposure below which regulatory control is considered to be not needed) has been studied. The achieved views are compared with the Dutch practice by means of interviews with some users and suppliers of sealed sources. It appears that the risks of sealed sources occur mainly in the period after use. Often, disposal is postponed, which may result into loss of radiological management. Due to negligence or theft, disused sources can disappear in municipal waste or scrap, causing unwanted exposure of members of the public. Internationally, also fear is growing for misuse of radioactive sources by terrorists for the production of dirty bombs. In ISO 2919 adequate quality criteria and corresponding tests are described. Mostly, sealed sources have a quality certificate in accordance with ISO 2919. However, suppliers nor users are aware of any quality assurance during the total supply chain. Because the supply chain is complex and international, it is recommended to stimulate a European approach to achieve a quality assurance system. Guidelines, based on internationally used exemption levels, are proposed for unlicensed use of sealed sources with radio-activity levels above the release levels given in the Ionising Radiation Regulations of June 2001 (Besluit stralingsbescherming). The recommended levels are coupled with the level of quality assurance in the supply chain. This approach will stimulate suppliers to improve the quality assurance. As a result, a reduction of administrative costs can be coupled to an improvement of radiological conditions [nl

  8. The desktop muon detector: A simple, physics-motivated machine- and electronics-shop project for university students

    Science.gov (United States)

    Axani, S. N.; Conrad, J. M.; Kirby, C.

    2017-12-01

    This paper describes the construction of a desktop muon detector, an undergraduate-level physics project that develops machine-shop and electronics-shop technical skills. The desktop muon detector is a self-contained apparatus that employs a plastic scintillator as the detection medium and a silicon photomultiplier for light collection. This detector can be battery powered and is used in conjunction with the provided software. The total cost per detector is approximately 100. We describe physics experiments we have performed, and then suggest several other interesting measurements that are possible, with one or more desktop muon detectors.

  9. Open Source and Proprietary Project Management Tools for SMEs.

    OpenAIRE

    Veronika Abramova; Francisco Pires; Jorge Bernardino

    2017-01-01

    The dimensional growth and increasing difficulty in project management promoted the development of different tools that serve to facilitate project management and track project schedule, resources and overall progress. These tools offer a variety of features, from task and time management, up to integrated CRM (Customer Relationship Management) and ERP (Enterprise Resource Planning) modules. Currently, a large number of project management software is available, to assist project team during t...

  10. Using open source accelerometer analysis to assess physical activity and sedentary behaviour in overweight and obese adults.

    Science.gov (United States)

    Innerd, Paul; Harrison, Rory; Coulson, Morc

    2018-04-23

    Physical activity and sedentary behaviour are difficult to assess in overweight and obese adults. However, the use of open-source, raw accelerometer data analysis could overcome this. This study compared raw accelerometer and questionnaire-assessed moderate-to-vigorous physical activity (MVPA), walking and sedentary behaviour in normal, overweight and obese adults, and determined the effect of using different methods to categorise overweight and obesity, namely body mass index (BMI), bioelectrical impedance analysis (BIA) and waist-to-hip ratio (WHR). One hundred twenty adults, aged 24-60 years, wore a raw, tri-axial accelerometer (Actigraph GT3X+), for 3 days and completed a physical activity questionnaire (IPAQ-S). We used open-source accelerometer analyses to estimate MVPA, walking and sedentary behaviour from a single raw accelerometer signal. Accelerometer and questionnaire-assessed measures were compared in normal, overweight and obese adults categorised using BMI, BIA and WHR. Relationships between accelerometer and questionnaire-assessed MVPA (Rs = 0.30 to 0.48) and walking (Rs = 0.43 to 0.58) were stronger in normal and overweight groups whilst sedentary behaviour were modest (Rs = 0.22 to 0.38) in normal, overweight and obese groups. The use of WHR resulted in stronger agreement between the questionnaire and accelerometer than BMI and BIA. Finally, accelerometer data showed stronger associations with BMI, BIA and WHR (Rs = 0.40 to 0.77) than questionnaire data (Rs = 0.24 to 0.37). Open-source, raw accelerometer data analysis can be used to estimate MVPA, walking and sedentary behaviour from a single acceleration signal in normal, overweight and obese adults. Our data supports the use of WHR to categorise overweight and obese adults. This evidence helps researchers obtain more accurate measures of physical activity and sedentary behaviour in overweight and obese populations.

  11. EMF Rapid Program Engineering Projects, Project 1, Development of Recommendations for Guidelines for Field Source Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Electric Research and Management, Inc.

    1997-03-11

    The goal of this project is to develop a protocol for measuring the electric and magnetic fields around sources. Data from these measurements may help direct future biological effects research by better defining the complexity of magnetic and electric fields to which humanity is exposed, as well asprovide the basis for rigorous field exposure analysis and risk assessment once the relationship between field exposure and biological response. is better understood. The data base also should have sufficient spatial and temporal characteristics to guide electric and magnetic field management. The goal of Task A is to construct a set of characteristics that would be ideal to have for guiding and interpreting biological studies and for focusing any future effort at field management. This ideal set will then be quantified and reduced according to the availability (or possible development of) instrumentation to measure the desired characteristics. Factors that also will be used to define pragmatic data sets will be the cost of collecting the data, the cost of developing an adequate data base, and the needed precision in measuring specific characteristics. A field, electric or magnetic, will always be ,some function of time and space. The first step in this section of the protocol development will be to determine what span of time and what portion of space are required to quantify the electric and magnetic fields around sources such as appliances and electrical apparatus. Constraints on time will be set by examining measurement limitations and biological data requirements.

  12. Radiological Protection Experience with natural sources of radiation

    International Nuclear Information System (INIS)

    Quindos, L. S.; Fernandez, P. L.; Vinuela, J.; Arteche, J.; Sainz, G.; Gomez, J.; Matarranz

    2003-01-01

    During the last twenty five years the research Radon Group of the Medical Physics Unit of the University of Cantabria has been involved in projects concerning the measurement of natural radiation, in special that coming from radon gas. At this moment we have available for this field a lot of information in different formats, as paper, video and CD, interesting not only for public in general but also for professionals interested in the evaluation of doses coming from natural sources of radiation. (Author)

  13. Considering sport participation as a source for physical activity among adolescents.

    Science.gov (United States)

    Pharr, Jennifer; Lough, Nancy L

    2014-07-01

    Studies have shown participation in sport is lower among girls than boys, decreases as students matriculate through high school, is lowest among Black and Hispanic girls and has a positive relationship with SES. With sport recognized as a contributor to physical activity and health in adolescents, consideration of diminishing rates of participation appears warranted. The purpose of this study was to identify patterns related to differences in self-reported sport participation between genders, ethnic groups, grades and SES. This study was a cross-sectional, secondary analysis of data collected for a sport interest survey. All students in grades 8-11 attending middle and high schools were provided an opportunity to participate in the survey. Data from 49,832 students were analyzed. Among the participants, Black girls participated more and White girls participated less than expected. Black boys participated more while White and Asian boys participated less than expected. Reported sport participation was high compared with national data when analyzed by gender and ethnic group. Sport participation was higher in low SES schools compared with high SES schools. The importance of sport as a source of physical activity in underserved groups is significant.

  14. Physical and mechanical properties of LDPE incorporated with different starch sources

    Science.gov (United States)

    Kormin, Shaharuddin; Kormin, Faridah; Dalour Hossen Beg, Mohammad; Bijarimi Mat Piah, Mohd

    2017-08-01

    In this study it was investigated the incorporation of different starches, such as sago starch, corn starch, potato starch, tapioca starch and wheat starch, in low-density polyethylene matrix (LDPE) to enhanced mechanical properties and to obtain partially biodegradable product with the aim to reduce the plastics wastes in the environment. For comparison, virgin LDPE, LDPE with different sources of starch blends were prepared and characterized under the same conditions. The starches were mixed to the LDPE using a twin screw extruder to guarantee the homogeneity of the formulations. The compound were shaping processed by injection moulding. The characterization of those compounds was done by physical (density, MFI), mechanical (Universal tensile machine). The addition of starch to LDPE reduced the MFI values, the tensile strength, elongation at break and impact strength, whereas the elastic modulus, flexural modulus and flexural strength increased. LDPE/SS show the good mechanical behavior compared to other formulation. The physical and mechanical properties were evident when 5 and 30 wt% were added. Water uptake increased with increased starch content and immersion time. The time taken for the composites to equilibrate was about one month even when they were immersed completely in water.

  15. Study of surface ionization and LASER ionization processes using the SOMEIL ion source: application to the Spiral 2 laser ion source development

    Energy Technology Data Exchange (ETDEWEB)

    Bajeat, O., E-mail: bajeat@ganil.fr; Lecesne, N.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M. [GANIL (France); Maitre, A.; Pradeilles, N. [Laboratoire Science des Procedes Ceramiques et de Traitements de Surface (SPCTS) 12 (France)

    2013-04-15

    SPIRAL2 is the new project under construction at GANIL to provide radioactive ion beams to the Nuclear Physics Community and in particular neutron rich ion beams. For the production of condensable radioactive elements, a resonant ionization laser ion source is under development at GANIL. In order to generate the ions of interest with a good selectivity and purity, our group is studying the way to minimize surface ionization process by using refractory materials with low work function as ionizer tube. To do those investigations a dedicated ion source, called SOMEIL (Source Optimisee pour les Mesures d'Efficacite d'Ionisation Laser) is used. Numerous types of ionizer tubes made in various materials and geometry are tested. Surface ionization and laser ionization efficiencies can be measured for each of them.

  16. Report on the engineering test of the LBL 30 second neutral beam source for the MFTF-B project

    International Nuclear Information System (INIS)

    Vella, M.C.; Pincosy, P.A.; Hauck, C.A.; Pyle, R.V.

    1984-08-01

    Positive ion based neutral beam development in the US has centered on the long pulse, Advanced Positive Ion Source (APIS). APIS eventually focused on development of 30 second sources for MFTF-B. The Engineering Test was part of competitive testing of the LBL and ORNL long pulse sources carried out for the MFTF-B Project. The test consisted of 500 beam shots with 80 kV, 30 second deuterium, and was carried out on the Neutral Beam Engineering Test Facility (NBETF). This report summarizes the results of LBL testing, in which the LBL APIS demonstrated that it would meet the requirements for MFTF-B 30 second sources. In part as a result of this test, the LBL design was found to be suitable as the baseline for a Common Long Pulse Source design for MFTF-B, TFTR, and Doublet Upgrade

  17. The South African isotope facility project

    Science.gov (United States)

    Bark, R. A.; Barnard, A. H.; Conradie, J. L.; de Villiers, J. G.; van Schalkwyk, P. A.

    2018-05-01

    The South African Isotope Facility (SAIF) is a project in which iThemba LABS plans to build a radioactive-ion beam (RIB) facility. The project is divided into the Accelerator Centre of Exotic Isotopes (ACE Isotopes) and the Accelerator Centre for Exotic Beams (ACE Beams). For ACE Isotopes, a high-current, 70 MeV cyclotron will be acquired to take radionuclide production off the existing Separated Sector Cyclotron (SSC). A freed up SSC will then be available for an increased tempo of nuclear physics research and to serve as a driver accelerator for the ACE Beams project, in which protons will be used for the direct fission of Uranium, producing beams of fission fragments. The ACE Beams project has begun with "LeRIB" - a Low Energy RIB facility, now under construction. In a collaboration with INFN Legnaro, the target/ion-source "front-end" will be a copy of the front-end developed for the SPES project. A variety of targets may be inserted into the SPES front-end; a uranium-carbide target has been designed to produce up to 2 × 1013 fission/s using a 70 MeV proton beam of 150 µA intensity.

  18. Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment

    Czech Academy of Sciences Publication Activity Database

    Valerius, K.; Hein, H.; Baumeister, H.; Beck, M.; Bokeloh, K.; Bonn, J.; Gluck, F.; Ortjohann, H.W.; Ostrick, B.; Zbořil, Miroslav; Weinheimer, Ch.

    2011-01-01

    Roč. 6, - (2011), P01002/1-P01002/11 ISSN 1748-0221 R&D Projects: GA MŠk LA318; GA MŠk LC07050 Institutional research plan: CEZ:AV0Z10480505 Keywords : Spectrometers * Photoemission * Detector alignment and calibration methods (lasers, sources, particle-beams) Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.869, year: 2011

  19. A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling

    Science.gov (United States)

    Greenwood, Eric, II; Schmitz, Fredric H.

    2010-01-01

    A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.

  20. Sources of radioactive waste from light-water reactors and their physical and chemical properties

    International Nuclear Information System (INIS)

    Bell, M.J.; Collins, J.T.

    1979-01-01

    The general physical and chemical properties of waste streams in light-water reactors (LWRs) are described. The principal mechanisms for release and the release pathways to the environment are discussed. The calculation of liquid and gaseous source terms using one of the available models is presented. These calculated releases are compared with observed releases from operating LWRs. The computerized mathematical model used is the GALE Code which is the Nuclear Regulatory Commission (NRC) staff's model for calculating source terms for effluents from LWRs (USNRC76a, USNRC76b). Programs currently being conducted at operating reactors by the NRC, Electric Power Research Institute, and various utilities to better define the characteristics of waste streams and the performance of radwaste process equipment are described

  1. Validation of Material Models For Automotive Carbon Fiber Composite Structures Via Physical And Crash Testing (VMM Composites Project)

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, Anthony [General Motors Company, Flint, MI (United States); Faruque, Omar [Ford Motor Company, Dearborn, MI (United States); Truskin, James F [FCA US LLC, Auburn Hills, MI (United States); Board, Derek [Ford Motor Company, Dearborn, MI (United States); Jones, Martin [Ford Motor Company, Dearborn, MI (United States); Tao, Jian [FCA US LLC, Auburn Hills, MI (United States); Chen, Yijung [Ford Motor Company, Dearborn, MI (United States); Mehta, Manish [M-Tech International LLC, Dubai (United Arab Emirates)

    2017-09-27

    advances in order to assess the correlation of the predicted results to the physical tests. The FBCC was developed to meet a goal of 30-35% mass reduction while aiming for equivalent energy absorption as a steel component for which baseline experimental results were obtained from testing in the same crash modes. The project also evaluated crash performance of thermoplastic composite structures fabricated from commercial prepreg materials and low cost carbon fiber sourced from Oak Ridge National Laboratory. The VMM Project determined that no set of predictions from a CAE supplier were found to be universally accurate among all the six crash modes evaluated. In general, crash modes that were most dependent on the properties of the prepreg were more accurate than those that were dependent on the behavior of the joints. The project found that current CAE modeling methods or best practices for carbon fiber composites have not achieved standardization, and accuracy of CAE is highly reliant on the experience of its users. Coupon tests alone are not sufficient to develop an accurate material model, but it is necessary to bridge the gap between the coupon data and performance of the actual structure with a series of subcomponent level tests. Much of the unreliability of the predictions can be attributed to shortcomings in our ability to mathematically link the effects of manufacturing and material variability into the material models. This is a subject of ongoing research in the industry. The final report is organized by key technical tasks to describe how the validation project developed, modeled and compared crash data obtained on the composite FBCC to the multiple sets of CAE predictions. Highlights of the report include a discussion of the quantitative comparison between predictions and experimental data, as well as an in-depth discussion of remaining technological gaps that exist in the industry, which are intended to spur innovations and improvements in CAE technology.

  2. EPOS-An intense positron beam project at the ELBE radiation source in Rossendorf

    International Nuclear Information System (INIS)

    Krause-Rehberg, R.; Sachert, S.; Brauer, G.; Rogov, A.; Noack, K.

    2006-01-01

    EPOS, the acronym of ELBE Positron Source, describes a running project to build an intense pulsed beam of mono-energetic positrons (0.2-40 keV) for materials research. Positrons will be created via pair production at a tungsten target using the pulsed 40 MeV electron beam of the superconducting linac electron linac with high brilliance and low emittance (ELBE) at Forschungszentrum Rossendorf (near Dresden, Germany). The chosen design of the system under construction is described and results of calculations simulating the interaction of the electron beam with the target are presented, and positron beam formation and transportation is also discussed

  3. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Nishioka, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  4. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Nishioka, S.; Hatayama, A.

    2013-01-01

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H − extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases

  5. Practicum in adapted physical activity: a Dewey-inspired action research project.

    Science.gov (United States)

    Standal, Øyvind; Rugseth, Gro

    2014-07-01

    The purpose of this study was to investigate what adapted physical activity (APA) students learn from their practicum experiences. One cohort of APA students participated, and data were generated from an action research project that included observations, reflective journals, and a focus group interview. The theoretical framework for the study was Dewey's and Wackerhausen's theories of reflections. The findings show the objects of students' reflections, the kind of conceptual resources they draw on while reflecting, and their knowledge interests. In addition, two paradoxes are identified: the tension between reflecting from and on own values, and how practicum as a valued experience of reality can become too difficult to handle. In conclusion, we reflect on how practicum learning can be facilitated.

  6. Systems analysis and engineering of the X-1 Advanced Radiation Source

    International Nuclear Information System (INIS)

    Rochau, G.E.; Hands, J.A.; Raglin, P.S.; Ramirez, J.J.

    1998-01-01

    The X-1 Advanced Radiation Source, which will produce ∼ 16 MJ in x-rays, represents the next step in providing US Department of Energy's Stockpile Stewardship program with the high-energy, large volume, laboratory x-ray sources needed for the Radiation Effects Science and Simulation (RES), Inertial Confinement Fusion (ICF), and Weapon Physics (WP) Programs. Advances in fast pulsed power technology and in z-pinch hohlraums on Sandia National Laboratories' Z Accelerator in 1997 provide sufficient basis for pursuing the development of X-1. This paper will introduce the X-1 Advanced Radiation Source Facility Project, describe the systems analysis and engineering approach being used, and identify critical technology areas being researched

  7. Elementary particle physics in early physics education

    CERN Document Server

    Wiener, Gerfried

    2017-01-01

    Current physics education research is faced with the important question of how best to introduce elementary particle physics in the classroom early on. Therefore, a learning unit on the subatomic structure of matter was developed, which aims to introduce 12-year-olds to elementary particles and fundamental interactions. This unit was iteratively evaluated and developed by means of a design-based research project with grade-6 students. In addition, dedicated professional development programmes were set up to instruct high school teachers about the learning unit and enable them to investigate its didactical feasibility. Overall, the doctoral research project led to successful results and showed the topic of elementary particle physics to be a viable candidate for introducing modern physics in the classroom. Furthermore, thanks to the design-based research methodology, the respective findings have implications for both physics education and physics education research, which will be presented during the PhD defen...

  8. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  9. Automatic opening system for radioactive source in teaching laboratory

    International Nuclear Information System (INIS)

    Seren, Maria Emilia Gibin; Gaal, Vladimir; Rodrigues, Varlei; Morais, Sergio Luiz de

    2013-01-01

    Compton scattering phenomenon is experimentally studied during the medical physics laboratory course at the University of Campinas (UNICAMP). The Teaching Laboratory of Medical Physics from IFGW/UNICAMP has a structure for its development: a fixed 137 Cs sealed source with activity 610.5MBq, whose emitted radiation collides on a target, and a scintillation detector that turns around the target and detects scattered photons spectrum. 137 Cs source is stored in a lead shield with a collimating window for the gamma radiation emitted with energy of 0.662MeV. This source is exposed only when attenuation barrier protecting the collimating window is opened. The process of opening and closing the attenuation barrier may deliver radiation dose to users when done manually. Taking into account the stochastic harmful effects of ionizing radiation, the objective of this project was to develop an automatic exposure system of the radioactive source in order to reduce the dose during the Compton scattering experiment. The developed system is micro controlled and performs standard operating routines and responds to emergencies. Electromagnetic lock enables quick closing barrier by gravity in case of interruption of electrical current circuit. Besides reducing the total dose of lab users, the system adds more security in the routine since it limits access to the source and prevents accidental exposure. (author)

  10. The User Community and a Multi-Mission Data Project: Services, Experiences and Directions of the Space Physics Data Facility

    Science.gov (United States)

    Fung, Shing F.; Bilitza, D.; Candey, R.; Chimiak, R.; Cooper, John; Fung, Shing; Harris, B.; Johnson R.; King, J.; Kovalick, T.; hide

    2008-01-01

    From a user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer a unique range of important data and services highly complementary to other services presently available or now evolving in the international heliophysics data environment. The VSP (Virtual Space Physics Observatory) service is an active portal to a wide range of distributed data sources. CDAWeb (Coordinate Data Analysis Web) enables plots, listings and file downloads for current data cross the boundaries of missions and instrument types (and now including data from THEMIS and STEREO). SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently important to heliophysics science. OMNIWeb with its new extension to 1- and 5-minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. SPDF also maintains NASA's CDF (common Data Format) standard and a range of associated tools including translation services. These capabilities are all now available through webservices-based APIs as well as through our direct user interfaces. In this paper, we will demonstrate the latest data and capabilities now supported in these multi-mission services, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  11. Progress report - physical sciences - physics division 1990 July 01 - December 31

    International Nuclear Information System (INIS)

    1991-05-01

    A completely new administrative structure of AECL Research was implemented on 1990 July 1. All of the basic physics programs, together with accelerator physics, radiation applications and most of the chemistry programs of AECL, have been placed in a new organizational unit called Physical Sciences. This unit also includes the management of the National Fusion Program. The research programs of Physical Sciences are grouped into three divisions: Chemistry, Physics and TASCC. Progress in each division will henceforth be reported on a twice-yearly basis. This report is the first of the new series to be issued by the Physics Division. Of special note within the period covered by this report was the successful acceleration of over 75 mA of protons to 600 keV in RFQ1 making it the highest current RFQ in the world. Our electron accelerator expertise has been recognized by the award of one of the R and D 100 awards for the IMPELA (10 MeV 50 kW) machine. Considerable activity was associated with bringing the new dual beam neutron spectrometer DUALSPEC to completion. This instrument has been jointly funded by AECL and NSERC through McMaster University and will be a central component of the national neutron scattering facility at NRU in the 1990's. A major effort was made with the writing of a Project Definition Document for installation of a cold neutron source at the most opportune time

  12. The A4 project: physics data processing using the Google protocol buffer library

    International Nuclear Information System (INIS)

    Ebke, Johannes; Waller, Peter

    2012-01-01

    In this paper, we present the High Energy Physics data format, processing toolset and analysis library A4, providing fast I/O of structured data using the Google protocol buffer library. The overall goal of A4 is to provide physicists with tools to work efficiently with billions of events, providing not only high speeds, but also automatic metadata handling, a set of UNIX-like tools to operate on A4 files, and powerful and fast histogramming capabilities. At present, A4 is an experimental project, but it has already been used by the authors in preparing physics publications. We give an overview of the individual modules of A4, provide examples of use, and supply a set of basic benchmarks. We compare A4 read performance with the common practice of storing unstructured data in ROOT trees. For the common case of storing a variable number of floating-point numbers per event, speedups in read speed of up to a factor of six are observed.

  13. Case Report: Rhabdomyolysis in Service Member Following SERE Physical Training

    Science.gov (United States)

    2017-09-19

    hour per response, including the time tor reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of...Member following SERE physical training. Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Capt Matthew A Pombo Se. TASK

  14. Physics and technology of spallation neutron sources

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1998-08-01

    Next to fission and fusion, spallation is an efficient process for releasing neutrons from nuclei. Unlike the other two reactions, it is an endothermal process and can, therefore, not be used per se in energy generation. In order to sustain a spallation reaction, an energetic beam of particles, most commonly protons, must be supplied onto a heavy target. Spallation can, however, play an important role as a source of neutrons whose flux can be easily controlled via the driving beam. Up to a few GeV of energy, the neutron production is roughly proportional to the beam power. Although sophisticated Monte Carlo codes exist to compute all aspects of a spallation facility, many features can be understood on the basis of simple physics arguments. Technically a spallation facility is very demanding, not only because a reliable and economic accelerator of high power is needed to drive the reaction, but also, and in particular, because high levels of radiation and heat are generated in the target which are difficult to cope with. Radiation effects in a spallation environment are different from those commonly encountered in a reactor and are probably even more temperature dependent than the latter because of the high gas production rate. A commonly favored solution is the use of molten heavy metal targets. While radiation damage is not a problem in this case, except for the container, a number of other issues are discussed. (author)

  15. Analysis on Physical Characteristics of Rural Solid Waste in Dongjiang River Source Area, China

    Directory of Open Access Journals (Sweden)

    WANG Tao

    2014-06-01

    Full Text Available Dongjiang river is the source of drinking water of Guangdong Province and Hongkong, and the source area includes three counties in Ganzhou city of Jiangxi Province: Xunwu, Anyuan and Dingnan. Three typical villages were chosen in Dongjiang river source area to investigate the producing quantity and physical characteristics of rural solid waste. Results of investigation showed that the dominant ingredient in rural solid waste in Dongjiang river source area was kitchen waste, taking over 60%, followed by dust, reaching 12%, while other components took less than 10%. The per-capita producing quantity of solid waste of county-level village was 0.2~0.47 kg·d -1 and averaged by 0.36 kg·d -1, while that of town-level village was 0.18~0.35 kg· d -1, averaged by 0.29 kg· d -1 and that of hamlet was 0.07~0.33 kg· d -1, averaged by 0.17 kg· d -1. Water content in rural mixed solid waste of investigated area was significantly linear with percentage of kitchen waste in the mixed waste(R 2 =0.626, P=0.019. The average calorie wasaround 2 329 kJ·kg -1, which indicated that the rural solid waste in Dongjiang river source area was not suitable for incineration disposal directly.

  16. The Radiation Source ELBE and its Research Program in Nuclear Physics

    International Nuclear Information System (INIS)

    Lehnert, U.; Michel, P.; Schwengner, R.

    2005-01-01

    The new radiation source 'Strahlungsquelle ELBE' at the Forschungszentrum Rossendorf (FZR) near Dresden, Germany, is a user facility that utilizes a superconducting linear accelerator to produce various secondary beams for experiments in nuclear science, solid state physics, materials research, environmental chemistry and in the life sciences. The high brilliance electron beam of up to 40 MeV and 1 mA (cw) is mainly used to drive free electron lasers producing infrared light in the 5-150 μm wavelength region. Additionally, polarized MeV-Bremsstrahlung and X-rays from electron channeling are available, facilities for neutron and positron production are under construction. The talk outlines the ongoing research activities at ELBE with special attention to the nuclear resonance fluorescence experiments

  17. THE COMPACT, TIME-VARIABLE RADIO SOURCE PROJECTED INSIDE W3(OH): EVIDENCE FOR A PHOTOEVAPORATED DISK?

    Energy Technology Data Exchange (ETDEWEB)

    Dzib, Sergio A.; Rodriguez-Garza, Carolina B.; Rodriguez, Luis F.; Kurtz, Stan E.; Loinard, Laurent; Zapata, Luis A.; Lizano, Susana, E-mail: s.dzib@crya.unam.mx [Centro de Radiostronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia 58089 (Mexico)

    2013-08-01

    We present new Karl G. Jansky Very Large Array (VLA) observations of the compact ({approx}0.''05), time-variable radio source projected near the center of the ultracompact H II region W3(OH). The analysis of our new data as well as of VLA archival observations confirms the variability of the source on timescales of years and for a given epoch indicates a spectral index of {alpha} = 1.3 {+-} 0.3 (S{sub {nu}}{proportional_to}{nu}{sup {alpha}}). This spectral index and the brightness temperature of the source ({approx}6500 K) suggest that we are most likely detecting partially optically thick free-free radiation. The radio source is probably associated with the ionizing star of W3(OH), but an interpretation in terms of an ionized stellar wind fails because the detected flux densities are orders of magnitude larger than expected. We discuss several scenarios and tentatively propose that the radio emission could arise in a static ionized atmosphere around a fossil photoevaporated disk.

  18. Max-Planck-Institute for Nuclear Physics. Annual report 1986

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1987-01-01

    This annual report contains short descriptions of the research performed at the given institute together with an extensive list of publications. The research in nuclear physics is concerned with developments in accelerators and ion sources, radiation detectors, solid-state studies by nuclear methods, counting circuits, data processing, target preparation, fission, fusion, and nuclear friction, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics and interaction of charged particles with matter, medium and high energy physics. The research in cosmophysics works on meteorites and lunar rocks, the gallium-solar-neutrino experiment (project GALLEX), problems of Halley's comet, interplanetary and interstellar dust, planetary atmospheres, interstellar medium and cosmic rays, molecular collision processes in the gas phase, nuclear geology and geochemistry, and archaeometry. (GG)

  19. Acceptability and satisfaction of project MOVE: A pragmatic feasibility trial aimed at increasing physical activity in female breast cancer survivors.

    Science.gov (United States)

    Pullen, Tanya; Sharp, Paul; Bottorff, Joan L; Sabiston, Catherine M; Campbell, Kristin L; Ellard, Susan L; Gotay, Carolyn; Fitzpatrick, Kayla; Caperchione, Cristina M

    2018-04-01

    Despite the physical and psychological health benefits associated with physical activity (PA) for breast cancer (BC) survivors, up to 70% of female BC survivors are not meeting minimum recommended PA guidelines. The objective of this study was to evaluate acceptability and satisfaction with Project MOVE, an innovative approach to increase PA among BC survivors through the combination of microgrants and financial incentives. A mixed-methods design was used. Participants were BC survivors and support individuals with a mean age of 58.5 years. At 6-month follow-up, participants completed a program evaluation questionnaire (n = 72) and participated in focus groups (n = 52) to explore their experience with Project MOVE. Participants reported that they were satisfied with Project MOVE (86.6%) and that the program was appropriate for BC survivors (96.3%). Four main themes emerged from focus groups: (1) acceptability and satisfaction of Project MOVE, detailing the value of the model in developing tailored group-base PA programs; (2) the importance of Project MOVE leaders, highlighting the value of a leader that was organized and a good communicator; (3) breaking down barriers with Project MOVE, describing how the program helped to address common BC related barriers; and (4) motivation to MOVE, outlining how the microgrants enabled survivors to be active, while the financial incentive motivated them to increase and maintain their PA. The findings provide support for the acceptability of Project MOVE as a strategy for increasing PA among BC survivors. © 2018 The Authors. Psycho-Oncology Published by John Wiley & Sons Ltd.

  20. The AAPT/ComPADRE Digital Library: Supporting Physics Education at All Levels

    Science.gov (United States)

    Mason, Bruce

    For more than a decade, the AAPT/ComPADRE Digital Library has been providing online resources, tools, and services that support broad communities of physics faculty and physics education researchers. This online library provides vetted resources for teachers and students, an environment for authors and developers to share their work, and the collaboration tools for a diverse set of users. This talk will focus on the recent collaborations and developments being hosted on or developed with ComPADRE. Examples include PhysPort, making the tools and resources developed by physics education researchers more accessible, the Open Source Physics project, expanding the use of numerical modeling at all levels of physics education, and PICUP, a community for those promoting computation in the physics curriculum. NSF-0435336, 0532798, 0840768, 0937836.

  1. Continuing education in physical education at school: principals and challenges for a critical education project

    Directory of Open Access Journals (Sweden)

    Marina Ferreira de Souza Antunes

    2017-06-01

    Full Text Available The theme of teacher's formation has gained a spotlight in academic research, especially in the context of the researches conducted in the perspective of the "researcher professor", and in the consolidation of the partnerships between universities and educational systems by promoting programs of continuing education. The Laboratory of Studies about School, Curriculum and Physical Education of the Faculty of Physical Education at the Federal University of Uberlândia (LECEF/FAEFI/UFU is constituted as a unifying space for teachers and students whose aim is the further study on issues related to school, teaching and curriculum planning for physical education as a curriculum component as well as providing space for continuing education to promote qualitative changes in teaching practice. This article presents a model of educational planning held on the curricular component of physical education, developed in a collective planning context, under an extension project offered by LECEF. We underline the principles and assumptions leading the planning process adopted. We emphasize that the collective work gives us dialogue, exchange of experience, inclination to listen, overcoming the difficulties of individualism and isolation presents in the organization and realization of pedagogical work routine.

  2. Plasma Physics Network Newsletter. No. 4

    International Nuclear Information System (INIS)

    1991-08-01

    This, fourth, issue of the Newsletter contains a (i) contribution in the series of reports on national fusion programmes from Algeria; (ii) a letter from Dr J.A.M. de Villiers, manager: fusion studies, at the Atomic Energy Corporation of South Africa Limited, informing about the close-down of the small tokamak project there, and soliciting ways to use some manpower and supportive sources to salvage the wealth of information still left behind in the project, and offering, in the possible absence of such manpower and supportive sources, the entire facility for sale (specifications of the Tokoloshe Tokamak plus diagnostic systems are enclosed); (iii) the e-mail address of the Third World Plasma Research Network (TWPRN), namely: ''PLASNET.NERUS.PFC.MIT.EDU''; (iv) minutes of the TWPRN Steering Committee Meeting held in May 1991, at the I.C.T.P., Trieste, Italy; (v) a news item on the ITER Tokamak project; (vi) a reiteration of the announcement of the 14th IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research, to be held in Wuerzburg, Germany, September 30 - October 7, 1992; (vii) a list of IAEA Technical Committee Meetings during 1991; (viii) the First Announcement of the V Latin American Workshop on Plasma Physics, to be held in Mexico City, July 21-30, 1992, accompanied with a call for papers; all correspondence on this conference should be addressed to: Dr. Julio Herrera, V LAWPP, ICN-UNAM, Apdo. Postal 70-543, Delegacion Coyoacan, 04510 Mexico, D.F. Mexico (e-mail: ''HERRE.UNAMVM1.BITNET''); (ix) the announcement for the Second South North International Workshop on Fusion Theory, Lisbon, Portugal, March 1993 (contact: Pr. Tito Mendonca, Centro de Electrodinamica, Instituto Superio Tecnico, 1096 Lisbon Codex, Portugal)

  3. Projective relativity, cosmology and gravitation

    International Nuclear Information System (INIS)

    Arcidiacono, G.

    1986-01-01

    This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation

  4. Computerized transportation model for the NRC Physical Protection Project. Versions I and II

    International Nuclear Information System (INIS)

    Anderson, G.M.

    1978-01-01

    Details on two versions of a computerized model for the transportation system of the NRC Physical Protection Project are presented. The Version I model permits scheduling of all types of transport units associated with a truck fleet, including truck trailers, truck tractors, escort vehicles and crews. A fixed-fleet itinerary construction process is used in which iterations on fleet size are required until the service requirements are satisfied. The Version II model adds an aircraft mode capability and provides for a more efficient non-fixed-fleet itinerary generation process. Test results using both versions are included

  5. Process of establishing JHP project

    International Nuclear Information System (INIS)

    Ishihara, Masayasu

    2013-01-01

    Institute for Nuclear Study, University of Tokyo was a Japanese central research institute as regards to nuclear physics, high energy physics, and cosmic ray physics. After the foundations of National Laboratory for High Energy Physics, KEK, and Institute for Cosmic Ray Research, University of Tokyo, in early 1970s, the nuclear physics community worked out so-called NUMATRON project, which involved building a large heavy-ion synchrotron. It was, however, not successful in competition with TRISTAN project which was proposed by KEK to build a 30 GeV electron-positron collider. Alternative project of the nuclear physics community was so-called JHP (Japanese Hadron Project), to build 1 GeV proton linac in KEK site in collaboration with KEK, which included that the Institute for Nuclear Study should be consolidated to KEK leaving from The University of Tokyo. The reorganized KEK proposed in collaboration with JAEA, Japan Atomic Energy Agency, to build a big proton accelerator facility in JAEA site. This plan was realized as J-PARC, Japanese Proton Accelerator Research Complex, operating 50 GeV proton synchrotron. (author)

  6. Sources of pulsed radiation

    International Nuclear Information System (INIS)

    Sauer, M.C. Jr.

    1981-01-01

    Characteristics of various sources of pulsed radiation are examined from the viewpoint of their importance to the radiation chemist, and some examples of uses of such sources are mentioned. A summary is given of the application of methods of physical dosimetry to pulsed sources, and the calibration of convenient chemical dosimeters by physical dosimetry is outlined. 7 figures, 1 table

  7. Soil-biological, soil-chemical and soil-physical parameters along a pollutant gradient on grassland sites in the vicinity o Brixlegg (Tyrol) - a pilot project

    International Nuclear Information System (INIS)

    Pohla, H.; Palzenberger, M.; Krassnigg, F.; Kandeler, E.; Schwarz, S.; Kasperowski, E.

    1992-01-01

    It was the main aim of this pilot project to check the indicator value of soil organisms by means of distinct pollutant gradients - heavy metals, organic compounds (PCB, dioxins) -. On the basis of available results (1/2/3/), 4 grassland sites at increasing distances from a local emission source (copper production from scrap metal) were selected. Physical and chemical analyses as well as the quantification of habitat structures were used for the characterization of the sites. The following analyses were carried out accompanyingly: The performances of soil microorganisms under pollutant load, the accumulation of pollutants, and the structures of plants and animal communities (macro, meso and microfauna). The investigation area and the examined parameters are introduced, as well as first result on soil chemistry and enzymatics as well as for the accumulation of heavy metals in an earthworm species are introduced. (orig.) [de

  8. MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics

    Energy Technology Data Exchange (ETDEWEB)

    Pater, P; Vallieres, M; Seuntjens, J [McGill University, Montreal, Quebec (Canada)

    2014-06-15

    Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dose deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges

  9. MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics

    International Nuclear Information System (INIS)

    Pater, P; Vallieres, M; Seuntjens, J

    2014-01-01

    Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dose deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges

  10. How Healthy Is My Project? Open Source Project Attributes as Indicators of Success

    NARCIS (Netherlands)

    Piggot, James; Amrit, Chintan Amrit; Petrinja, Etiel; Succi, Giancarlo; El Ioini, Nabil; Sillitti, Alberto

    2013-01-01

    Determining what factors can influence the successful outcome of a software project has been labeled by many scholars and software engineers as a difficult problem. In this paper we use machine learning to create a model that can determine the stage a software project has obtained with some

  11. Towards a Framework for Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Falck, Hans William

    2013-01-01

    Projection installations are part of Spatially Augmented Reality, where the projection medium is used to enrich a fixed, bounded physical space with digital content. Projection technology enables us to turn many kinds of physical objects into displays. In this paper we develop and present...... a conceptual framework that addresses three aspects of a projection installation: the contentassociated with the object, the digital content, and the relation between the two. We conclude the paper with a set of strategies commonly used in projection installations: Enhancing or emphasizing physical aspects......; Transforming materiality; Adding virtual objects; 3D effects; Complex content on simple objects or simple content on complex; Strong versus loose connections between the physical object and the digital content. This paper is based on four cases, two of which concern cultural heritage installations, the others...

  12. Nuclear physics and fundamental physics explored with neutrons

    International Nuclear Information System (INIS)

    Masuda, Yasuhiro

    1995-08-01

    This Japan Hadron Project workshop was held on May 19 and 20, 1995, at Institute for Nuclear Study, University of Tokyo. The Neutron Arena planned in JHP is the facility that uses the spallation neutrons generated by high energy protons, and its utilization is planned in wide research fields. On the other hand, in the neutron scattering facility in the booster utilization facility of National Laboratory for High Energy Physics, the researches of verifying parity nonconservation and time reversal break have been carried out so far. It is necessary to accurately measure the reaction cross section of neutrons in low energy region. This workshop was planned for examining the Neutron Arena by the researchers related to elementary particles and atomic nuclei. In the workshop, lectures were given on the break of the reversal symmetry of time and space in neutron-atomic nucleus reaction, neutrino physics, neutron capture and celestial nuclear physics, neutron-induced nucleosynthesis, development and utilization of very cold neutron interferometer using multi-layer film mirror, research on gravity using neutron interferometer, electric polarizability of neutrons, β decay of neutrons, possibility of research on basic symmetry problem at E-arena, β decay in storage ring, neutron electric dipole moment using ultracold neutrons, magnetic confinement and control of ultracold neutrons, and outline of JHP neutron source. (K.I.)

  13. Equivalent physical models and formulation of equivalent source layer in high-resolution EEG imaging

    International Nuclear Information System (INIS)

    Yao Dezhong; He Bin

    2003-01-01

    In high-resolution EEG imaging, both equivalent dipole layer (EDL) and equivalent charge layer (ECL) assumed to be located just above the cortical surface have been proposed as high-resolution imaging modalities or as intermediate steps to estimate the epicortical potential. Presented here are the equivalent physical models of these two equivalent source layers (ESL) which show that the strength of EDL is proportional to the surface potential of the layer when the outside of the layer is filled with an insulator, and that the strength of ECL is the normal current of the layer when the outside is filled with a perfect conductor. Based on these equivalent physical models, closed solutions of ECL and EDL corresponding to a dipole enclosed by a spherical layer are given. These results provide the theoretical basis of ESL applications in high-resolution EEG mapping

  14. Equivalent physical models and formulation of equivalent source layer in high-resolution EEG imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yao Dezhong [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu City, 610054, Sichuan Province (China); He Bin [The University of Illinois at Chicago, IL (United States)

    2003-11-07

    In high-resolution EEG imaging, both equivalent dipole layer (EDL) and equivalent charge layer (ECL) assumed to be located just above the cortical surface have been proposed as high-resolution imaging modalities or as intermediate steps to estimate the epicortical potential. Presented here are the equivalent physical models of these two equivalent source layers (ESL) which show that the strength of EDL is proportional to the surface potential of the layer when the outside of the layer is filled with an insulator, and that the strength of ECL is the normal current of the layer when the outside is filled with a perfect conductor. Based on these equivalent physical models, closed solutions of ECL and EDL corresponding to a dipole enclosed by a spherical layer are given. These results provide the theoretical basis of ESL applications in high-resolution EEG mapping.

  15. Effect of physical form and protein source of starter feed on growth and development of dairy calves

    Directory of Open Access Journals (Sweden)

    E. Yavuz

    2015-06-01

    Full Text Available Abstract. The objective of this paper was to review the literature on effects of different methods of processing of grain fraction of the starter feeds for young dairy calves, as well as providing another part of starter which is a source of protein, minerals and vitamins in different physical forms. The second aim was to discus the impact of the main protein sources for starter feeds on performance of preweaning and posteweaning dairy calves. The main criteria for assessment of physical form effect and sources of protein in the starter feeds were intake of dry feeds, daily live weight gain and frame size growth of calves, morphological and functional development of forestomachs, digestibility of feeds and health status of young calves. Data show big variations and lack of consistency of experimental results. Good results were achieved when calves were fed whole, ground, dry-rolled, pelleted and steam-flaked grains. It seemed that fineness of grinding and quantities of fine fraction were important for starter intake. Steam-flaking and grinding improved digestibility to the same extent, but whole grain stimulated chewing and improved rumen environment for bacteria growth. Soybean meal was the most palatable and ensured best performance of calves. Evidently, it is possible to replace soybean meal with rape seed, canola type meal, dry distillers grain with solubles (DDGS and other protein sources which contain more fiber and are less digestible. However, it is difficult to appraise how much and at what conditions is it possible to replace completely or a maximum possible portion of soybean meal. Additional studies are needed to clarify interactions between physical form of starters, rumen fermentation environments and age of calves. Information for composition of diets is needed allowing inclusion of maximum amounts of canola meal, DDGS and sunflower meal, which are produced locally and are cheaper than soybean meal, without decreasing live weight

  16. Interaction between the physical forms of starter and forage source on growth performance and blood metabolites of Holstein dairy calves.

    Science.gov (United States)

    Omidi-Mirzaei, H; Azarfar, A; Kiani, A; Mirzaei, M; Ghaffari, M H

    2018-04-11

    The objective of this study was to investigate the effects of the physical forms of starter and forage sources on feed intake, growth performance, rumen pH, and blood metabolites of dairy calves. Forty male Holstein calves (41.3 ± 3.5 kg of body weight) were used (n = 10 calves per treatment) in a 2 × 2 factorial arrangement of treatments with the factors being physical forms of starter (coarse mash and texturized) and forage source [alfalfa hay (AH) and wheat straw (WS)]. Individually housed calves were randomly assigned to 1 of the 4 dietary treatments, including (1) coarsely mashed (CM; coarse ground grains combined with a mash supplement) starter feed with AH (CM-AH), (2) coarsely mashed starter feed with WS (CM-WS), (3) texturized feed starter (TF; includes steam-flaked corn, steam-rolled barley combined with a pelleted supplement) with AH (TF-AH), and (4) TF with WS (TF-WS). Both starters had the same ingredients and nutrient compositions but differed in their physical forms. Calves were weaned on d 56 and remained in the study until d 70. All calves had free access to drinking water and the starter feeding at all times. No interaction was detected between the physical forms of starter feeds and forage source concerning starter intake, dry matter intake, metabolizable energy (ME) intake, average daily gain (ADG)/ME intake, ADG, and feed efficiency (FE). The preweaning and overall starter feed intake, dry matter intake, and ME intake were greater for calves fed TF starter diets than those fed CM starter diets. The ADG/ME intake was greater for calves fed TF starter diets than that fed CM starter. The FE was greater for calves fed TF starter diets compared with those fed CM starter during the preweaning, postweaning, and overall periods. The WS improved FE during the postweaning period compared with AH. The physical form of starter, forage source, and their interaction did not affect plasma glucose, triglycerides, and very low-density lipoprotein

  17. CLIC: Overview of applications using high-gradient acceleration, from photon sources to medical physics

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  18. Projects of SR sources including research and development for insertion devices in the USSR

    International Nuclear Information System (INIS)

    Kulipanov, G.

    1990-01-01

    Some technical information on the electron and positron storage rings - SR sources that are being constructed, used or developed at the Novosibirsk Institute of Nuclear Physics (INP), is given. The parameters and construction of wigglers and undulators (electromagnetic, superconducting, and based on permanent magnets) that are intended to be used at such storage rings are described. Various schemes of installation of wigglers, undulators and FEL at storage rings is considered. The ways of minimizing the influence of their magnetic fields on particle motion in storage rings are treated. (author)

  19. Reactivity studies on the advanced neutron source

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Redmond, E.L. II; Fletcher, C.D.

    1990-01-01

    An Advanced Neutron Source (ANS) with a peak thermal neutron flux of about 8.5 x 10 19 m -2 s -1 is being designed for condensed matter physics, materials science, isotope production, and fundamental physics research. The ANS is a new reactor-based research facility being planned by Oak Ridge National Laboratory (ORNL) to meet the need for an intense steady-state source of neutrons. The design effort is currently in the conceptual phase. A reference reactor design has been selected in order to examine the safety, performance, and costs associated with this one design. The ANS Project has an established, documented safety philosophy, and safety-related design criteria are currently being established. The purpose of this paper is to present analyses of safety aspects of the reference reactor design that are related to core reactivity events. These analyses include control rod worth, shutdown rod worth, heavy water voiding, neutron beam tube flooding, light water ingress, and single fuel element criticality. Understanding these safety aspects will allow us to make design modifications that improve the reactor safety and achieve the safety related design criteria. 8 refs., 3 tabs

  20. IRPhEP-handbook, International Handbook of Evaluated Reactor Physics Benchmark Experiments

    International Nuclear Information System (INIS)

    Sartori, Enrico; Blair Briggs, J.

    2008-01-01

    1 - Description: The purpose of the International Reactor Physics Experiment Evaluation Project (IRPhEP) is to provide an extensively peer-reviewed set of reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. This work of the IRPhEP is formally documented in the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments,' a single source of verified and extensively peer-reviewed reactor physics benchmark measurements data. The IRPhE Handbook is available on DVD. You may request a DVD by completing the DVD Request Form available at: http://irphep.inl.gov/handbook/hbrequest.shtml The evaluation process entails the following steps: 1. Identify a comprehensive set of reactor physics experimental measurements data, 2. Evaluate the data and quantify overall uncertainties through various types of sensitivity analysis to the extent possible, verify the data by reviewing original and subsequently revised documentation, and by talking with the experimenters or individuals who are familiar with the experimental facility, 3. Compile the data into a standardized format, 4. Perform calculations of each experiment with standard reactor physics codes where it would add information, 5. Formally document the work into a single source of verified and peer reviewed reactor physics benchmark measurements data. The International Handbook of Evaluated Reactor Physics Benchmark Experiments contains reactor physics benchmark specifications that have been derived from experiments that were performed at various nuclear experimental facilities around the world. The benchmark specifications are intended for use by reactor physics personal to validate calculational techniques. The 2008 Edition of the International Handbook of Evaluated Reactor Physics Experiments contains data from 25 different

  1. The NICT projects: The company's source of performance ...

    African Journals Online (AJOL)

    To highlight aspects bound to the organization and to the management based on a strategy to be adopted to face any NITC project, while identifying and measuring the advantages and cost of such projects. To develop the culture and the rules of management of organizations according to the new necessities engendered ...

  2. Argonne National Laboratory Physics Division annual report, January--December 1996

    International Nuclear Information System (INIS)

    Thayer, K.J.

    1997-08-01

    The past year has seen several of the Physics Division's new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed and used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne's massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year

  3. Argonne National Laboratory Physics Division annual report, January--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1997-08-01

    The past year has seen several of the Physics Division`s new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed and used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne`s massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year.

  4. Meeting the challenges of developing LED-based projection displays

    Science.gov (United States)

    Geißler, Enrico

    2006-04-01

    The main challenge in developing a LED-based projection system is to meet the brightness requirements of the market. Therefore a balanced combination of optical, electrical and thermal parameters must be reached to achieve these performance and cost targets. This paper describes the system design methodology for a digital micromirror display (DMD) based optical engine using LEDs as the light source, starting at the basic physical and geometrical parameters of the DMD and other optical elements through characterization of the LEDs to optimizing the system performance by determining optimal driving conditions. LEDs have a luminous flux density which is just at the threshold of acceptance in projection systems and thus only a fully optimized optical system with a matched set of LEDs can be used. This work resulted in two projection engines, one for a compact pocket projector and the other for a rear projection television, both of which are currently in commercialization.

  5. Lepton accelerators and radiation sources: R and D investment at BNL

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Fernow, R.; Gallardo, J.; Hart, M.; Hastings, J.; Johnson, E.; Krinsky, S.; Palmer, R.; Yu, L.H.

    1997-03-01

    Brookhaven National Laboratory (BNL) has shown its determination to remain at the forefront of accelerator based science through its continued investment in long range accelerator R and D. The laboratory has a broad program in accelerator technology development including projects such as high T c magnets at RHIC, Siberian Snakes at the AGS, brightness upgrades on the NSLS storage ring, and spallation source R and D in several departments. This report focuses on a segment of the overall program: the lepton accelerator and coherent radiation source R and D at the laboratory. These efforts are aimed at (1) development of high brightness electron beams, (2) novel acceleration techniques, (3) seeded Free Electron Laser (FEL) development, and (4) R and D for a muon collider. To pursue these objectives, BNL ha over the past decade introduced new organizational arrangements. The BNL Center for Accelerator Physics (CAP) is an interdepartmental unit dedicated to promoting R and D which, cannot be readily conducted within the programs of operating facilities. The Accelerator Test Facility (ATF) is managed by CAP and NSLS as a user facility dedicated to accelerator and beam physics problems of interest to both the High Energy Physics and Basic Energy Sciences programs of the DOE. Capitalizing on these efforts, the Source Development Laboratory (SDL) was established by the NSLS to facilitate coordinated development of sources and experiments to produce and utilize coherent sub-picosecond synchrotron radiation. This White Paper describes the programs being pursued at CAP, ATF and SDL aimed at advancing basic knowledge of lepton accelerators and picosecond radiation sources

  6. The Trick Simulation Toolkit: A NASA/Open source Framework for Running Time Based Physics Models

    Science.gov (United States)

    Penn, John M.; Lin, Alexander S.

    2016-01-01

    This paper describes the design and use at of the Trick Simulation Toolkit, a simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes Trick's design goals and how the development environment attempts to achieve those goals. It describes how Trick is used in some of the many training and engineering simulations at NASA. Finally it describes the Trick NASA/Open source project on Github.

  7. From Project Management to Process Management - Effectively Organising Transdisciplinary Projects

    OpenAIRE

    Moschitz, Heidrun

    2013-01-01

    In transdisciplinary projects, the roles of researchers change. In addition to being a source of knowledge, they are required to engage in knowledge exchange processes. This results in an alteration at project level: researchers need to creatively manage projects as group processes.

  8. Student Projects as a Funding Source

    Science.gov (United States)

    Henson, Kerry L.

    2010-01-01

    Prompted by restricted funding for a lab which supported student software development work on real-world projects, a contribution program was established to facilitate monetary support from the external clients. The paper explores the relationships between instructor, students and client and how a funding component can affect these ties.…

  9. The Nuclotron-based Ion Collider Facility Project. The Physics Programme for the Multi-Purpose Detector

    Science.gov (United States)

    Geraksiev, N. S.; MPD Collaboration

    2018-05-01

    The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at the Joint Institute for Nuclear Research (JINR). The general objective of the project is to provide beams for the experimental study of hot and dense strongly interacting QCD matter. The heavy ion programme includes two planned detectors: BM@N (Baryonic Matter at Nuclotron) a fixed target experiment with extracted Nuclotron beams; and MPD (MultiPurpose Detector) a collider mode experiment at NICA. The accelerated particles can range from protons and light nuclei to gold ions. Beam energies will span\\sqrt{s}=12-27 GeV with luminosity L ≥ 1 × 1030 cm‑2s‑1 and \\sqrt{{s}NN}=4-11 GeV and average luminosity L = 1 × 1027cm‑2 s ‑1(for 197Au79+), respectively. A third experiment for spin physics is planned with the SPD (Spin Physics Detector) at the NICA collider in polarized beams mode. A brief overview of the MPD is presented along with several observables in the MPD physics programme.

  10. Electron Storage Ring Development for ICS Sources

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, Roderick [Lyncean Technologies, Inc., Palo Alto, CA (United States)

    2015-09-30

    There is an increasing world-wide interest in compact light sources based on Inverse Compton Scattering. Development of these types of light sources includes leveraging the investment in accelerator technology first developed at DOE National Laboratories. Although these types of light sources cannot replace the larger user-supported synchrotron facilities, they offer attractive alternatives for many x-ray science applications. Fundamental research at the SLAC National Laboratory in the 1990’s led to the idea of using laser-electron storage rings as a mechanism to generate x-rays with many properties of the larger synchrotron light facilities. This research led to a commercial spin-off of this technology. The SBIR project goal is to understand and improve the performance of the electron storage ring system of the commercially available Compact Light Source. The knowledge gained from studying a low-energy electron storage ring may also benefit other Inverse Compton Scattering (ICS) source development. Better electron storage ring performance is one of the key technologies necessary to extend the utility and breadth of applications of the CLS or related ICS sources. This grant includes a subcontract with SLAC for technical personnel and resources for modeling, feedback development, and related accelerator physics studies.

  11. LESM: a laser-driven sub-MeV electron source delivering ultra-high dose rate on thin biological samples

    Czech Academy of Sciences Publication Activity Database

    Labate, L.; Andreassi, M.G.; Baffigi, F.; Bizzarri, B.M.; Borghini, A.; Bussolino, G.C.; Fulgentini, L.; Ghetti, F.; Giulietti, A.; Köster, P.; Lamia, D.; Levato, Tadzio; Oishi, Y.; Pulignani, S.; Russo, G.; Sgarbossa, A.; Gizzi, L.A.

    2016-01-01

    Roč. 49, č. 27 (2016), s. 1-9, č. článku 275401. ISSN 0022-3727 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : laser-driven electron accelerators * sub-MeV electron sources * ultrahigh dose rate * radiobiology * cell radiation damage Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics ) Impact factor: 2.588, year: 2016

  12. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine

    Science.gov (United States)

    Laroussi, M.; Lu, X.; Keidar, M.

    2017-07-01

    Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.

  13. Attenuation Model Using the Large-N Array from the Source Physics Experiment

    Science.gov (United States)

    Atterholt, J.; Chen, T.; Snelson, C. M.; Mellors, R. J.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. SPE seeks to better characterize the influence of subsurface heterogeneities on seismic wave propagation and energy dissipation from explosions. As a part of this experiment, SPE-5, a 5000 kg TNT equivalent chemical explosion, was detonated in 2016. During the SPE-5 experiment, a Large-N array of 996 geophones (half 3-component and half z-component) was deployed. This array covered an area that includes loosely consolidated alluvium (weak rock) and weathered granite (hard rock), and recorded the SPE-5 explosion as well as 53 weight drops. We use these Large-N recordings to develop an attenuation model of the area to better characterize how geologic structures influence source energy partitioning. We found a clear variation in seismic attenuation for different rock types: high attenuation (low Q) for alluvium and low attenuation (high Q) for granite. The attenuation structure correlates well with local geology, and will be incorporated into the large simulation effort of the SPE program to validate predictive models. (LA-UR-17-26382)

  14. Implications of Using Corn Stalks as a Biofuel Source: A Joint ARS and DOE Project

    Science.gov (United States)

    Wilhelm, W. W.; Cushman, J.

    2003-12-01

    Corn stover is a readily source of biomass for cellulosic ethanol production, and may provide additional income for growers. Published research shows that residue removal changes the rate of soil physical, chemical, and biological processes, and in turn, crop growth. Building a sustainable cellulosic ethanol industry based on corn residue requires residue management practices that do not reduce long-term productivity. To develop such systems, impacts of stover removal on the soil and subsequent crops must be quantified. The ARS/DOE Biofuel Project is the cooperative endeavor among scientists from six western Corn Belt US Dept. of Agriculture, Agricultural Research Service (ARS) locations and US Dept. of Energy. The objectives of the project are to determine the influence of stover removal on crop productivity, soil aggregation, quality, carbon content, and seasonal energy balance, and carbon sequestration. When residue is removed soil temperatures fluctuate more and soil water evaporation is greater. Residue removal reduces the amount of soil organic carbon (SOC), but the degree of reduction is highly dependent on degree of tillage, quantity of stover removed, and frequency of stover removal. Of the three cultural factors (stover removal, tillage, and N fertilization) tillage had the greatest effect on amount of corn-derived SOC. No tillage tends to increase the fraction of aggregates in the 2.00 to 0.25 mm size range at all removal rates. Stover harvest reduces corn-derived SOC by 35% compared to retaining stover on the soil averaged over all tillage systems. Corn stover yield has not differed across stover removal treatments in these studies. In the irrigated study, grain yield increased with stover removal. In the rain-fed studies, grain yield has not differed among residue management treatments. Incorporating the biomass ethanol fermentation by-product into a soil with low SOC showed a positive relationship between the amount of lignin added and the subsequent

  15. The effectiveness of worksite physical activity programs on physical activity, physical fitness, and health

    NARCIS (Netherlands)

    Proper, K.I.; Koning, M.; Beek, A.J. van der; Hildebrandt, V.H.; Bosscher, R.J.; Mechelen, W. van

    2003-01-01

    Objective: To critically review the literature with respect to the effectiveness of worksite physical activity programs on physical activity, physical fitness, and health. Data Sources: A search for relevant English-written papers published between 1980 and 2000 was conducted using MEDLINE, EMBASE,

  16. The FORO Project on Safety Culture in Organizations, Facilities and Activities With Sources of Ionizing Radiation

    International Nuclear Information System (INIS)

    Bomben, A. M.; Ferro Fernández, R.; Arciniega Torres, J.; Ordoñez Gutiérrez, E.; Blanes Tabernero, A.; Cruz Suárez, R.; Da Silva Silveira, C.; Perera Meas, J.; Ramírez Quijada, R.; Videla Valdebenito, R.

    2016-01-01

    The aim of this paper is to present the Ibero-American Forum of Nuclear and Radiological Regulatory Authorities’ (FORO) Project on Safety Culture in organizations, facilities and activities with sources of ionizing radiation developed by experts from the Regulatory Authorities of Argentina, Brazil, Chile, Cuba, Spain, Mexico, Peru and Uruguay, under the scientific coordination of the International Atomic Energy Agency (IAEA). Taking into account that Safety Culture problems have been widely recognised as one of the major contributors to many radiological events, several international and regional initiatives are being carried out to foster and develop a strong Safety Culture. One of these initiatives is the two-year project sponsored by the FORO with the purpose to prepare a document to allow its member states understanding, promoting and achieving a higher level of Safety Culture.

  17. From Open Source to Open Collaboration

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Open source is the right to modify, not the right to contribute. Are external contributions absent from your project? Have you ever thought about what is it like to be a new contributor on your project? I challenge you to transform your project from Open Source to an Open Collaboration.

  18. ANL/Star project: a new architecture for large scale theoretical physics computations

    International Nuclear Information System (INIS)

    Rushton, A.M.

    1985-01-01

    The project reported consists of two phases, each of which has goals of substantial physics content on its own. In Phase 1, we have selected Star Technologies' ST-100 as the array processor for the prototype coupled system and have installed one on a Vax 11/750 host. Our goals with this system are to institute a substantial program in computational physics at Argonne based on the power provided by this system and thereby to gain experience with both the hardware and software architecture of the ST-100. In Phase II, we propose to build a prototype consisting of two coupled array processors with shared memory to prove that this design can achieve high speed and efficiency in a readily extensible and cost-effective manner. This will implement all of the hardware and software modifications necessary to extend this design to as many as 64 (or more) nodes. In our design, we seek to minimize the changes made in the standard system hardware and software; this drastically reduces the effort required by our group to implement such a design and enables us to more readily incorporate the companies' upgrades to the array processor. It should be emphasized that our design is intended as a special purpose system for theoretical calculations; however it can be efficiently applied to a surprisingly broad class of problems. I shall discuss first the architecture of the ST-100 and then the physics program being currently implemented on a single system. Finally the proposed design of the coupled system is presented

  19. ANL/Star project: a new architecture for large scale theoretical physics computations

    Energy Technology Data Exchange (ETDEWEB)

    Rushton, A.M.

    1985-01-01

    The project reported consists of two phases, each of which has goals of substantial physics content on its own. In Phase 1, we have selected Star Technologies' ST-100 as the array processor for the prototype coupled system and have installed one on a Vax 11/750 host. Our goals with this system are to institute a substantial program in computational physics at Argonne based on the power provided by this system and thereby to gain experience with both the hardware and software architecture of the ST-100. In Phase II, we propose to build a prototype consisting of two coupled array processors with shared memory to prove that this design can achieve high speed and efficiency in a readily extensible and cost-effective manner. This will implement all of the hardware and software modifications necessary to extend this design to as many as 64 (or more) nodes. In our design, we seek to minimize the changes made in the standard system hardware and software; this drastically reduces the effort required by our group to implement such a design and enables us to more readily incorporate the companies' upgrades to the array processor. It should be emphasized that our design is intended as a special purpose system for theoretical calculations; however it can be efficiently applied to a surprisingly broad class of problems. I shall discuss first the architecture of the ST-100 and then the physics program being currently implemented on a single system. Finally the proposed design of the coupled system is presented.

  20. CTA-A project for a new generation of Cherenkov telescopes

    International Nuclear Information System (INIS)

    Doro, Michele

    2011-01-01

    Gamma-rays provide a powerful insight into the non-thermal universe and perhaps a unique probe for new physics beyond the standard model. Current experiments are already giving results in the physics of acceleration of cosmic rays in supernova remnants, pulsar and active galactic nuclei with a 100 sources detected at very-high-energies so far. Despite its relatively recent appearance, very high-energy gamma-ray astronomy has proven to have reached a mature technology with fast assembling, relatively cheap and reliable telescopes. The goal of future installation is to increase the sensitivity by a factor 10 compared to current installations, and enlarge the energy domain from few 10s of GeV to a 100 TeV. Gamma-ray spectra of astrophysical origin are rather soft thus hardly one single size telescope can cover more than 1.5 decades in energy, therefore an array of telescopes of 2-3 different sizes is required. Hereafter, we present design considerations for a Cherenkov Telescope Array (CTA), a project for a new generation of highly automated telescopes for gamma-ray astronomy. The status of the project, technical solutions and an insight in the involved physics will be presented.