WorldWideScience

Sample records for source imaging technique

  1. Time domain localization technique with sparsity constraint for imaging acoustic sources

    Science.gov (United States)

    Padois, Thomas; Doutres, Olivier; Sgard, Franck; Berry, Alain

    2017-09-01

    This paper addresses source localization technique in time domain for broadband acoustic sources. The objective is to accurately and quickly detect the position and amplitude of noise sources in workplaces in order to propose adequate noise control options and prevent workers hearing loss or safety risk. First, the generalized cross correlation associated with a spherical microphone array is used to generate an initial noise source map. Then a linear inverse problem is defined to improve this initial map. Commonly, the linear inverse problem is solved with an l2 -regularization. In this study, two sparsity constraints are used to solve the inverse problem, the orthogonal matching pursuit and the truncated Newton interior-point method. Synthetic data are used to highlight the performances of the technique. High resolution imaging is achieved for various acoustic sources configurations. Moreover, the amplitudes of the acoustic sources are correctly estimated. A comparison of computation times shows that the technique is compatible with quasi real-time generation of noise source maps. Finally, the technique is tested with real data.

  2. Distributed Source Coding Techniques for Lossless Compression of Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Barni Mauro

    2007-01-01

    Full Text Available This paper deals with the application of distributed source coding (DSC theory to remote sensing image compression. Although DSC exhibits a significant potential in many application fields, up till now the results obtained on real signals fall short of the theoretical bounds, and often impose additional system-level constraints. The objective of this paper is to assess the potential of DSC for lossless image compression carried out onboard a remote platform. We first provide a brief overview of DSC of correlated information sources. We then focus on onboard lossless image compression, and apply DSC techniques in order to reduce the complexity of the onboard encoder, at the expense of the decoder's, by exploiting the correlation of different bands of a hyperspectral dataset. Specifically, we propose two different compression schemes, one based on powerful binary error-correcting codes employed as source codes, and one based on simpler multilevel coset codes. The performance of both schemes is evaluated on a few AVIRIS scenes, and is compared with other state-of-the-art 2D and 3D coders. Both schemes turn out to achieve competitive compression performance, and one of them also has reduced complexity. Based on these results, we highlight the main issues that are still to be solved to further improve the performance of DSC-based remote sensing systems.

  3. A technique to consider mismatches between fMRI and EEG/MEG sources for fMRI-constrained EEG/MEG source imaging: a preliminary simulation study

    International Nuclear Information System (INIS)

    Im, Chang-Hwan; Lee, Soo Yeol

    2006-01-01

    fMRI-constrained EEG/MEG source imaging can be a powerful tool in studying human brain functions with enhanced spatial and temporal resolutions. Recent studies on the combination of fMRI and EEG/MEG have suggested that fMRI prior information could be readily implemented by simply imposing different weighting factors to cortical sources overlapping with the fMRI activations. It has been also reported, however, that such a hard constraint may cause severe distortions or elimination of meaningful EEG/MEG sources when there are distinct mismatches between the fMRI activations and the EEG/MEG sources. If one wants to obtain the actual EEG/MEG source locations and uses the fMRI prior information as just an auxiliary tool to enhance focality of the distributed EEG/MEG sources, it is reasonable to weaken the strength of fMRI constraint when severe mismatches between fMRI and EEG/MEG sources are observed. The present study suggests an efficient technique to automatically adjust the strength of fMRI constraint according to the mismatch level. The use of the proposed technique rarely affects the results of conventional fMRI-constrained EEG/MEG source imaging if no major mismatch between the two modalities is detected; while the new results become similar to those of typical EEG/MEG source imaging without fMRI constraint if the mismatch level is significant. A preliminary simulation study using realistic EEG signals demonstrated that the proposed technique can be a promising tool to selectively apply fMRI prior information to EEG/MEG source imaging

  4. Source-space ICA for MEG source imaging.

    Science.gov (United States)

    Jonmohamadi, Yaqub; Jones, Richard D

    2016-02-01

    One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  5. Future prospects of imaging at spallation neutron sources

    International Nuclear Information System (INIS)

    Strobl, M.

    2009-01-01

    The advent of state-of-the-art spallation neutron sources is a major step forward in efficient neutron production for most neutron scattering techniques. Although they provide lower time-averaged neutron flux than high flux reactor sources, advantage for different instrumental techniques can be derived from the pulsed time structure of the available flux, which can be translated into energy, respectively, wavelength resolution. Conventional neutron imaging on the other hand relies on an intense continuous beam flux and hence falls short in profiting from the new development. Nevertheless, some recently developed novel imaging techniques require and some can benefit from energy resolution. The impact of the emerging spallation sources on different imaging techniques has been investigated, ways to benefit will be identified (where possible) and prospects of future imaging instruments and possible options and layouts at a spallation neutron source will be discussed and outlined.

  6. Remote defect imaging for plate-like structures based on the scanning laser source technique

    Science.gov (United States)

    Hayashi, Takahiro; Maeda, Atsuya; Nakao, Shogo

    2018-04-01

    In defect imaging with a scanning laser source technique, the use of a fixed receiver realizes stable measurements of flexural waves generated by laser at multiple rastering points. This study discussed the defect imaging by remote measurements using a laser Doppler vibrometer as a receiver. Narrow-band burst waves were generated by modulating laser pulse trains of a fiber laser to enhance signal to noise ratio in frequency domain. Averaging three images obtained at three different frequencies suppressed spurious distributions due to resonance. The experimental system equipped with these newly-devised means enabled us to visualize defects and adhesive objects in plate-like structures such as a plate with complex geometries and a branch pipe.

  7. Appropriate electromagnetic techniques for imaging geothermal fracture zones

    Energy Technology Data Exchange (ETDEWEB)

    Groom, R; Walker, P [PetRos EiKon Incorporated, Ontario (Canada)

    1996-05-01

    Electromagnetic surface detection of fracture zones has often been approached by using the magnetotelluric method. This technique suffers greatly from the quantity and scale of the conductive inhomogeneities lying above the fracture zones. Additionally, it suffers from the inherent inability to focus the source on the target. There are no such source focusing capabilities in magnetotellurics. Accordingly, the quantity of magnetotelluric data required to resolve targets in such complex conditions can make the technique inefficient and insufficient from a cost perspective. When attempting to reveal a subsurface structure and image it, the basic physical responses at hand must be kept in mind, and the appropriate source must be utilized, which most effectively illuminates the target. A further advantage to controlled sources is that imaging techniques may be used to accentuate the response due to knowledge and control of the source.

  8. Stereoscopic radiographic images with gamma source encoding

    International Nuclear Information System (INIS)

    Strocovsky, S.G.; Otero, D

    2012-01-01

    Conventional radiography with X-ray tube has several drawbacks, as the compromise between the size of the focal spot and the fluence. The finite dimensions of the focal spot impose a limit to the spatial resolution. Gamma radiography uses gamma-ray sources which surpass in size, portability and simplicity to X-ray tubes. However, its low intrinsic fluence forces to use extended sources that also degrade the spatial resolution. In this work, we show the principles of a new radiographic technique that overcomes the limitations associated with the finite dimensions of X-ray sources, and that offers additional benefits to conventional techniques. The new technique called coding source imaging (CSI), is based on the use of extended sources, edge-encoding of radiation and differential detection. The mathematical principles and the method of images reconstruction with the new proposed technique are explained in the present work. Analytical calculations were made to determine the maximum spatial resolution and the variables on which it depends. The CSI technique was tested by means of Monte Carlo simulations with sets of spherical objects. We show that CSI has stereoscopic capabilities and it can resolve objects smaller than the source size. The CSI decoding algorithm reconstructs simultaneously four different projections from the same object, while conventional radiography produces only one projection per acquisition. Projections are located in separate image fields on the detector plane. Our results show it is possible to apply an extremely simple radiographic technique with extended sources, and get 3D information of the attenuation coefficient distribution for simple geometry objects in a single acquisition. The results are promising enough to evaluate the possibility of future research with more complex objects typical of medical diagnostic radiography and industrial gamma radiography (author)

  9. Optical Imaging of Ionizing Radiation from Clinical Sources.

    Science.gov (United States)

    Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan

    2016-11-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. A novel data processing technique for image reconstruction of penumbral imaging

    Science.gov (United States)

    Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin

    2011-06-01

    CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.

  11. Incorporating priors for EEG source imaging and connectivity analysis

    Directory of Open Access Journals (Sweden)

    Xu eLei

    2015-08-01

    Full Text Available Electroencephalography source imaging (ESI is a useful technique to localize the generators from a given scalp electric measurement and to investigate the temporal dynamics of the large-scale neural circuits. By introducing reasonable priors from other modalities, ESI reveals the most probable sources and communication structures at every moment in time. Here, we review the available priors from such techniques as magnetic resonance imaging (MRI, functional MRI (fMRI, and positron emission tomography (PET. The modality's specific contribution is analyzed from the perspective of source reconstruction. For spatial priors, such as EEG-correlated fMRI, temporally coherent networks and resting-state fMRI are systematically introduced in the ESI. Moreover, the fiber tracking (diffusion tensor imaging, DTI and neuro-stimulation techniques (transcranial magnetic stimulation, TMS are also introduced as the potential priors, which can help to draw inferences about the neuroelectric connectivity in the source space. We conclude that combining EEG source imaging with other complementary modalities is a promising approach towards the study of brain networks in cognitive and clinical neurosciences.

  12. An evolution of image source camera attribution approaches.

    Science.gov (United States)

    Jahanirad, Mehdi; Wahab, Ainuddin Wahid Abdul; Anuar, Nor Badrul

    2016-05-01

    Camera attribution plays an important role in digital image forensics by providing the evidence and distinguishing characteristics of the origin of the digital image. It allows the forensic analyser to find the possible source camera which captured the image under investigation. However, in real-world applications, these approaches have faced many challenges due to the large set of multimedia data publicly available through photo sharing and social network sites, captured with uncontrolled conditions and undergone variety of hardware and software post-processing operations. Moreover, the legal system only accepts the forensic analysis of the digital image evidence if the applied camera attribution techniques are unbiased, reliable, nondestructive and widely accepted by the experts in the field. The aim of this paper is to investigate the evolutionary trend of image source camera attribution approaches from fundamental to practice, in particular, with the application of image processing and data mining techniques. Extracting implicit knowledge from images using intrinsic image artifacts for source camera attribution requires a structured image mining process. In this paper, we attempt to provide an introductory tutorial on the image processing pipeline, to determine the general classification of the features corresponding to different components for source camera attribution. The article also reviews techniques of the source camera attribution more comprehensively in the domain of the image forensics in conjunction with the presentation of classifying ongoing developments within the specified area. The classification of the existing source camera attribution approaches is presented based on the specific parameters, such as colour image processing pipeline, hardware- and software-related artifacts and the methods to extract such artifacts. The more recent source camera attribution approaches, which have not yet gained sufficient attention among image forensics

  13. MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images.

    Science.gov (United States)

    Huang, Ming-Xiong; Huang, Charles W; Robb, Ashley; Angeles, AnneMarie; Nichols, Sharon L; Baker, Dewleen G; Song, Tao; Harrington, Deborah L; Theilmann, Rebecca J; Srinivasan, Ramesh; Heister, David; Diwakar, Mithun; Canive, Jose M; Edgar, J Christopher; Chen, Yu-Han; Ji, Zhengwei; Shen, Max; El-Gabalawy, Fady; Levy, Michael; McLay, Robert; Webb-Murphy, Jennifer; Liu, Thomas T; Drake, Angela; Lee, Roland R

    2014-01-01

    The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL's performance was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL's performance was then examined in the analysis of human median-nerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer's problems of signal leaking and distorted source time-courses. © 2013.

  14. Acoustical holographic Siamese image technique for imaging radial cracks in reactor piping

    International Nuclear Information System (INIS)

    Collins, H.D.; Gribble, R.P.

    1985-04-01

    This paper describes a unique technique (i.e., ''Siamese imaging'') for imaging quasi-vertical defects in reactor pipe weldments. The Siamese image is a bi-symmetrical view of the inner surface defect. Image construction geometry consists of two probes (i.e., source/receiver) operating either from opposite sides or the same side of the defect to be imaged. As the probes are scanned across a lower surface connected defect, they encounter two images - first the normal upright image and then the inverted image. The final integrated image consists of two images connected along their baselines, thus we call it a ''Siamese image.'' The experimental imaging results on simulated and natural cracks in reactor piping weldments graphically illustrate this unique technique. Excellent images of mechanical fatique and thermal cracks were obtained on ferritic and austenitic piping

  15. Quantitative phase imaging of living cells with a swept laser source

    Science.gov (United States)

    Chen, Shichao; Zhu, Yizheng

    2016-03-01

    Digital holographic phase microscopy is a well-established quantitative phase imaging technique. However, interference artifacts from inside the system, typically induced by elements whose optical thickness are within the source coherence length, limit the imaging quality as well as sensitivity. In this paper, a swept laser source based technique is presented. Spectra acquired at a number of wavelengths, after Fourier Transform, can be used to identify the sources of the interference artifacts. With proper tuning of the optical pathlength difference between sample and reference arms, it is possible to avoid these artifacts and achieve sensitivity below 0.3nm. Performance of the proposed technique is examined in live cell imaging.

  16. DEIMOS – an Open Source Image Database

    Directory of Open Access Journals (Sweden)

    M. Blazek

    2011-12-01

    Full Text Available The DEIMOS (DatabasE of Images: Open Source is created as an open-source database of images and videos for testing, verification and comparing of various image and/or video processing techniques such as enhancing, compression and reconstruction. The main advantage of DEIMOS is its orientation to various application fields – multimedia, television, security, assistive technology, biomedicine, astronomy etc. The DEIMOS is/will be created gradually step-by-step based upon the contributions of team members. The paper is describing basic parameters of DEIMOS database including application examples.

  17. Rapid development of medical imaging tools with open-source libraries.

    Science.gov (United States)

    Caban, Jesus J; Joshi, Alark; Nagy, Paul

    2007-11-01

    Rapid prototyping is an important element in researching new imaging analysis techniques and developing custom medical applications. In the last ten years, the open source community and the number of open source libraries and freely available frameworks for biomedical research have grown significantly. What they offer are now considered standards in medical image analysis, computer-aided diagnosis, and medical visualization. A cursory review of the peer-reviewed literature in imaging informatics (indeed, in almost any information technology-dependent scientific discipline) indicates the current reliance on open source libraries to accelerate development and validation of processes and techniques. In this survey paper, we review and compare a few of the most successful open source libraries and frameworks for medical application development. Our dual intentions are to provide evidence that these approaches already constitute a vital and essential part of medical image analysis, diagnosis, and visualization and to motivate the reader to use open source libraries and software for rapid prototyping of medical applications and tools.

  18. Micro-structural characterization of materials using synchrotron hard X-ray imaging techniques

    International Nuclear Information System (INIS)

    Agrawal, Ashish; Singh, Balwant; Kashyap, Yogesh; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2015-01-01

    X-ray imaging has been an important tool to study the materials microstructure with the laboratory based sources however the advent of third generation synchrotron sources has introduced new concepts in X-ray imaging such as phase contrast imaging, micro-tomography, fluorescence imaging and diffraction enhance imaging. These techniques are being used to provide information of materials about their density distribution, porosity, geometrical and morphological characteristics at sub-micron scalewith improved contrast. This paper discusses the development of various imaging techniques at synchrotron based imaging beamline Indus-2 and few recent experiments carried out at this facility

  19. Line-Scan Hyperspectral Imaging Techniques for Food Safety and Quality Applications

    Directory of Open Access Journals (Sweden)

    Jianwei Qin

    2017-01-01

    Full Text Available Hyperspectral imaging technologies in the food and agricultural area have been evolving rapidly over the past 15 years owing to tremendous interest from both academic and industrial fields. Line-scan hyperspectral imaging is a major method that has been intensively researched and developed using different physical principles (e.g., reflectance, transmittance, fluorescence, Raman, and spatially resolved spectroscopy and wavelength regions (e.g., visible (VIS, near infrared (NIR, and short-wavelength infrared (SWIR. Line-scan hyperspectral imaging systems are mainly developed and used for surface inspection of food and agricultural products using area or line light sources. Some of these systems can also be configured to conduct spatially resolved spectroscopy measurements for internal or subsurface food inspection using point light sources. This paper reviews line-scan hyperspectral imaging techniques, with introduction, demonstration, and summarization of existing and emerging techniques for food and agricultural applications. The main topics include related spectroscopy techniques, line-scan measurement methods, hardware components and systems, system calibration methods, and spectral and image analysis techniques. Applications in food safety and quality are also presented to reveal current practices and future trends of line-scan hyperspectral imaging techniques.

  20. Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique

    Science.gov (United States)

    Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.

    2010-01-01

    Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.

  1. Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics.

    Science.gov (United States)

    He, Bin; Sohrabpour, Abbas; Brown, Emery; Liu, Zhongming

    2018-06-04

    Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.

  2. Novel imaging techniques for the nuclear microprobe

    International Nuclear Information System (INIS)

    Saint, A.

    1998-01-01

    Many of the developments of the scanning electron microscope (SEM) have been paralleled during the development of the scanning nuclear microprobe. Secondary electrons were used in the early development of both devices to provide specimen imaging due to the large numbers of secondaries produced per incident charged particle. Other imaging contrast techniques have also been developed on both machines. These include X-ray analysis, scattering contrast, transmission microscopy, channelling induced charge and others. The 'cross-section dependent' imaging techniques such as PIXE, RBS, NRA, etc., rely on the beam current on target for a given resolution. This has prompted research and development of brighter ion sources to maintain probe resolution at high beam current. Higher beam current bring problems with beam damage to the specimen. Low beam current techniques however rely on high countrate data collection systems, but this is only for spectroscopy. To produce an image we can increase beam currents to produce live-time images for specimen manipulation and observation. The work presented here will focus on some developments in live-time imaging with a nuclear micro probe that have taken place recently at the School of Physics, Microanalytical Research Centre (MARC), University of Melbourne

  3. Development of phase-contrast imaging technique for material science and medical science applications

    International Nuclear Information System (INIS)

    Kashyap, Y.S.; Roy, Tushar; Sarkar, P.S; Shukla, Mayank; Yadav, P.S; Sinha, Amar; Verma, Vishnu; Ghosh, A.K.

    2007-07-01

    In-line phase contrast imaging technique is an emerging method for study of materials such as carbon fibres, carbon composite materials, polymers etc. These represent the class of materials for which x-ray attenuation cross-section is very small. Similarly, this technique is also well suited for imaging of soft materials such as tissues, distinguishing between tumour and normal tissue. Thus this method promises a far better contrast for low x-ray absorbing substances than the conventional radiography method for material and medical science applications. Though the conventional radiography technique has been carried out for decades, the phase-imaging technique is being demonstrated for the first time within, the country. We have set up an experimental facility for phase contrast imaging using a combination of x-ray CCD detector and a microfocus x-ray source. This facility is dedicated for micro-imaging experiments such as micro-tomography and high resolution phase contrast experiments. In this report, the results of phase contrast imaging using microfocus source and ELETTRA, synchrotron source are discussed. We have also discussed the basic design and heat load calculation for upcoming imaging beamline at Indus-II, RRCAT, Indore. (author)

  4. Intensity correlation imaging with sunlight-like source

    Science.gov (United States)

    Wang, Wentao; Tang, Zhiguo; Zheng, Huaibin; Chen, Hui; Yuan, Yuan; Liu, Jinbin; Liu, Yanyan; Xu, Zhuo

    2018-05-01

    We show a method of intensity correlation imaging of targets illuminated by a sunlight-like source both theoretically and experimentally. With a Faraday anomalous dispersion optical filter (FADOF), we have modulated the coherence time of a thermal source up to 0.167 ns. And we carried out measurements of temporal and spatial correlations, respectively, with an intensity interferometer setup. By skillfully using the even Fourier fitting on the very sparse sampling data, the images of targets are successfully reconstructed from the low signal-noise-ratio(SNR) interference pattern by applying an iterative phase retrieval algorithm. The resulting imaging quality is as well as the one obtained by the theoretical fitting. The realization of such a case will bring this technique closer to geostationary satellite imaging illuminated by sunlight.

  5. Presurgical mapping with magnetic source imaging. Comparisons with intraoperative findings

    International Nuclear Information System (INIS)

    Roberts, T.P.L.; Ferrari, P.; Perry, D.; Rowley, H.A.; Berger, M.S.

    2000-01-01

    We compare noninvasive preoperative mapping with magnetic source imaging to intraoperative cortical stimulation mapping. These techniques were directly compared in 17 patients who underwent preoperative and postoperative somatosensory mapping of a total of 22 comparable anatomic sites (digits, face). Our findings are presented in the context of previous studies that used magnetic source imaging and functional magnetic resonance imaging as noninvasive surrogates of intraoperative mapping for the identification of sensorimotor and language-specific brain functional centers in patients with brain tumors. We found that magnetic source imaging results were reasonably concordant with intraoperative mapping findings in over 90% of cases, and that concordance could be defined as 'good' in 77% of cases. Magnetic source imaging therefore provides a viable, if coarse, identification of somatosensory areas and, consequently, can guide and reduce the time taken for intraoperative mapping procedures. (author)

  6. Micro-seismic Imaging Using a Source Independent Waveform Inversion Method

    KAUST Repository

    Wang, Hanchen

    2016-04-18

    Micro-seismology is attracting more and more attention in the exploration seismology community. The main goal in micro-seismic imaging is to find the source location and the ignition time in order to track the fracture expansion, which will help engineers monitor the reservoirs. Conventional imaging methods work fine in this field but there are many limitations such as manual picking, incorrect migration velocity and low signal to noise ratio (S/N). In traditional surface survey imaging, full waveform inversion (FWI) is widely used. The FWI method updates the velocity model by minimizing the misfit between the observed data and the predicted data. Using FWI to locate and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. Use the FWI technique, and overcomes the difficulties of manual pickings and incorrect velocity model for migration. However, the technique of waveform inversion of micro-seismic events faces its own problems. There is significant nonlinearity due to the unknown source location (space) and function (time). We have developed a source independent FWI of micro-seismic events to simultaneously invert for the source image, source function and velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. To examine the accuracy of the inverted source image and velocity model the extended image for source wavelet in z-axis is extracted. Also the angle gather is calculated to check the applicability of the migration velocity. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity in the synthetic experiments with both parts of the Marmousi and the SEG

  7. Microfocus x-ray imaging of traceable pointlike {sup 22}Na sources for quality control

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Oda, K.; Sato, Y.; Ito, H.; Masuda, S.; Yamada, T.; Matsumoto, M.; Murayama, H.; Takei, H. [Allied Health Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan); Positron Medical Center, Tokyo Metropolitan Institute of Gerontology Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015 (Japan); Advanced Industrial Science and Technology (AIST) Central 2, Umezono 1-1-1, Tsukuba-shi, Ibaraki 305-8568 (Japan); Kanagawa Industrial Technology Center (KITC) Shimoimazumi 705-1, Ebina-shi, Kanagawa 243-0435 (Japan); Japan Radioisotope Association (JRIA) Komagome 2-28-45, Bunkyo-ku, Tokyo 113-8941 (Japan); Molecular Imaging Center, National Institute of Radiological Sciences Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Graduate School of Medical Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan)

    2012-07-15

    Purpose: The purpose of this study is to propose a microfocus x-ray imaging technique for observing the internal structure of small radioactive sources and evaluating geometrical errors quantitatively, and to apply this technique to traceable pointlike {sup 22}Na sources, which were designed for positron emission tomography calibration, for the purpose of quality control of the pointlike sources. Methods: A microfocus x-ray imaging system with a focus size of 0.001 mm was used to obtain projection x-ray images and x-ray CT images of five pointlike source samples, which were manufactured during 2009-2012. The obtained projection and tomographic images were used to observe the internal structure and evaluate geometrical errors quantitatively. Monte Carlo simulation was used to evaluate the effect of possible geometrical errors on the intensity and uniformity of 0.511 MeV annihilation photon pairs emitted from the sources. Results: Geometrical errors were evaluated with sufficient precision using projection x-ray images. CT images were used for observing the internal structure intuitively. As a result, four of the five examined samples were within the tolerance to maintain the total uncertainty below {+-}0.5%, given the source radioactivity; however, one sample was found to be defective. Conclusions: This quality control procedure is crucial and offers an important basis for using the pointlike {sup 22}Na source as a basic calibration tool. The microfocus x-ray imaging approach is a promising technique for visual and quantitative evaluation of the internal geometry of small radioactive sources.

  8. Phase contrast imaging using a micro focus x-ray source

    Science.gov (United States)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  9. Blind source separation of ex-vivo aorta tissue multispectral images.

    Science.gov (United States)

    Galeano, July; Perez, Sandra; Montoya, Yonatan; Botina, Deivid; Garzón, Johnson

    2015-05-01

    Blind Source Separation methods (BSS) aim for the decomposition of a given signal in its main components or source signals. Those techniques have been widely used in the literature for the analysis of biomedical images, in order to extract the main components of an organ or tissue under study. The analysis of skin images for the extraction of melanin and hemoglobin is an example of the use of BSS. This paper presents a proof of concept of the use of source separation of ex-vivo aorta tissue multispectral Images. The images are acquired with an interference filter-based imaging system. The images are processed by means of two algorithms: Independent Components analysis and Non-negative Matrix Factorization. In both cases, it is possible to obtain maps that quantify the concentration of the main chromophores present in aortic tissue. Also, the algorithms allow for spectral absorbance of the main tissue components. Those spectral signatures were compared against the theoretical ones by using correlation coefficients. Those coefficients report values close to 0.9, which is a good estimator of the method's performance. Also, correlation coefficients lead to the identification of the concentration maps according to the evaluated chromophore. The results suggest that Multi/hyper-spectral systems together with image processing techniques is a potential tool for the analysis of cardiovascular tissue.

  10. Coded aperture imaging of alpha source spatial distribution

    International Nuclear Information System (INIS)

    Talebitaher, Alireza; Shutler, Paul M.E.; Springham, Stuart V.; Rawat, Rajdeep S.; Lee, Paul

    2012-01-01

    The Coded Aperture Imaging (CAI) technique has been applied with CR-39 nuclear track detectors to image alpha particle source spatial distributions. The experimental setup comprised: a 226 Ra source of alpha particles, a laser-machined CAI mask, and CR-39 detectors, arranged inside a vacuum enclosure. Three different alpha particle source shapes were synthesized by using a linear translator to move the 226 Ra source within the vacuum enclosure. The coded mask pattern used is based on a Singer Cyclic Difference Set, with 400 pixels and 57 open square holes (representing ρ = 1/7 = 14.3% open fraction). After etching of the CR-39 detectors, the area, circularity, mean optical density and positions of all candidate tracks were measured by an automated scanning system. Appropriate criteria were used to select alpha particle tracks, and a decoding algorithm applied to the (x, y) data produced the de-coded image of the source. Signal to Noise Ratio (SNR) values obtained for alpha particle CAI images were found to be substantially better than those for corresponding pinhole images, although the CAI-SNR values were below the predictions of theoretical formulae. Monte Carlo simulations of CAI and pinhole imaging were performed in order to validate the theoretical SNR formulae and also our CAI decoding algorithm. There was found to be good agreement between the theoretical formulae and SNR values obtained from simulations. Possible reasons for the lower SNR obtained for the experimental CAI study are discussed.

  11. Review of advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2012-01-01

    Full Text Available Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies" at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  12. Multimodality imaging techniques.

    Science.gov (United States)

    Martí-Bonmatí, Luis; Sopena, Ramón; Bartumeus, Paula; Sopena, Pablo

    2010-01-01

    In multimodality imaging, the need to combine morphofunctional information can be approached by either acquiring images at different times (asynchronous), and fused them through digital image manipulation techniques or simultaneously acquiring images (synchronous) and merging them automatically. The asynchronous post-processing solution presents various constraints, mainly conditioned by the different positioning of the patient in the two scans acquired at different times in separated machines. The best solution to achieve consistency in time and space is obtained by the synchronous image acquisition. There are many multimodal technologies in molecular imaging. In this review we will focus on those multimodality image techniques more commonly used in the field of diagnostic imaging (SPECT-CT, PET-CT) and new developments (as PET-MR). The technological innovations and development of new tracers and smart probes are the main key points that will condition multimodality image and diagnostic imaging professionals' future. Although SPECT-CT and PET-CT are standard in most clinical scenarios, MR imaging has some advantages, providing excellent soft-tissue contrast and multidimensional functional, structural and morphological information. The next frontier is to develop efficient detectors and electronics systems capable of detecting two modality signals at the same time. Not only PET-MR but also MR-US or optic-PET will be introduced in clinical scenarios. Even more, MR diffusion-weighted, pharmacokinetic imaging, spectroscopy or functional BOLD imaging will merge with PET tracers to further increase molecular imaging as a relevant medical discipline. Multimodality imaging techniques will play a leading role in relevant clinical applications. The development of new diagnostic imaging research areas, mainly in the field of oncology, cardiology and neuropsychiatry, will impact the way medicine is performed today. Both clinical and experimental multimodality studies, in

  13. Artificial lateral-line system for imaging dipole sources using Beamforming techniques

    NARCIS (Netherlands)

    Dagamseh, A.M.K.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    In nature, fish have the ability to localize prey, school, navigate, etc. using the lateral-line organ [1]. Here we present the use of biomimetic artificial hair-based flow-sensors arranged as lateral-line system in combination with beamforming techniques for dipole source localization in air.

  14. A novel method for detecting light source for digital images forensic

    Science.gov (United States)

    Roy, A. K.; Mitra, S. K.; Agrawal, R.

    2011-06-01

    Manipulation in image has been in practice since centuries. These manipulated images are intended to alter facts — facts of ethics, morality, politics, sex, celebrity or chaos. Image forensic science is used to detect these manipulations in a digital image. There are several standard ways to analyze an image for manipulation. Each one has some limitation. Also very rarely any method tried to capitalize on the way image was taken by the camera. We propose a new method that is based on light and its shade as light and shade are the fundamental input resources that may carry all the information of the image. The proposed method measures the direction of light source and uses the light based technique for identification of any intentional partial manipulation in the said digital image. The method is tested for known manipulated images to correctly identify the light sources. The light source of an image is measured in terms of angle. The experimental results show the robustness of the methodology.

  15. A NOVEL TECHNIQUE TO IMPROVE PHOTOMETRY IN CONFUSED IMAGES USING GRAPHS AND BAYESIAN PRIORS

    International Nuclear Information System (INIS)

    Safarzadeh, Mohammadtaher; Ferguson, Henry C.; Lu, Yu; Inami, Hanae; Somerville, Rachel S.

    2015-01-01

    We present a new technique for overcoming confusion noise in deep far-infrared Herschel space telescope images making use of prior information from shorter λ < 2 μm wavelengths. For the deepest images obtained by Herschel, the flux limit due to source confusion is about a factor of three brighter than the flux limit due to instrumental noise and (smooth) sky background. We have investigated the possibility of de-confusing simulated Herschel PACS 160 μm images by using strong Bayesian priors on the positions and weak priors on the flux of sources. We find the blended sources and group them together and simultaneously fit their fluxes. We derive the posterior probability distribution function of fluxes subject to these priors through Monte Carlo Markov Chain (MCMC) sampling by fitting the image. Assuming we can predict the FIR flux of sources based on the ultraviolet-optical part of their SEDs to within an order of magnitude, the simulations show that we can obtain reliable fluxes and uncertainties at least a factor of three fainter than the confusion noise limit of 3σ c = 2.7 mJy in our simulated PACS-160 image. This technique could in principle be used to mitigate the effects of source confusion in any situation where one has prior information of positions and plausible fluxes of blended sources. For Herschel, application of this technique will improve our ability to constrain the dust content in normal galaxies at high redshift

  16. Photoacoustic imaging driven by an interstitial irradiation source

    Directory of Open Access Journals (Sweden)

    Trevor Mitcham

    2015-06-01

    Full Text Available Photoacoustic (PA imaging has shown tremendous promise in providing valuable diagnostic and therapy-monitoring information in select clinical procedures. Many of these pursued applications, however, have been relatively superficial due to difficulties with delivering light deep into tissue. To address this limitation, this work investigates generating a PA image using an interstitial irradiation source with a clinical ultrasound (US system, which was shown to yield improved PA signal quality at distances beyond 13 mm and to provide improved spectral fidelity. Additionally, interstitially driven multi-wavelength PA imaging was able to provide accurate spectra of gold nanoshells and deoxyhemoglobin in excised prostate and liver tissue, respectively, and allowed for clear visualization of a wire at 7 cm in excised liver. This work demonstrates the potential of using a local irradiation source to extend the depth capabilities of future PA imaging techniques for minimally invasive interventional radiology procedures.

  17. Point-source inversion techniques

    Science.gov (United States)

    Langston, Charles A.; Barker, Jeffrey S.; Pavlin, Gregory B.

    1982-11-01

    A variety of approaches for obtaining source parameters from waveform data using moment-tensor or dislocation point source models have been investigated and applied to long-period body and surface waves from several earthquakes. Generalized inversion techniques have been applied to data for long-period teleseismic body waves to obtain the orientation, time function and depth of the 1978 Thessaloniki, Greece, event, of the 1971 San Fernando event, and of several events associated with the 1963 induced seismicity sequence at Kariba, Africa. The generalized inversion technique and a systematic grid testing technique have also been used to place meaningful constraints on mechanisms determined from very sparse data sets; a single station with high-quality three-component waveform data is often sufficient to discriminate faulting type (e.g., strike-slip, etc.). Sparse data sets for several recent California earthquakes, for a small regional event associated with the Koyna, India, reservoir, and for several events at the Kariba reservoir have been investigated in this way. Although linearized inversion techniques using the moment-tensor model are often robust, even for sparse data sets, there are instances where the simplifying assumption of a single point source is inadequate to model the data successfully. Numerical experiments utilizing synthetic data and actual data for the 1971 San Fernando earthquake graphically demonstrate that severe problems may be encountered if source finiteness effects are ignored. These techniques are generally applicable to on-line processing of high-quality digital data, but source complexity and inadequacy of the assumed Green's functions are major problems which are yet to be fully addressed.

  18. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    Science.gov (United States)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  19. MCNP simulations of a new time-resolved Compton scattering imaging technique

    International Nuclear Information System (INIS)

    Ilan, Y.

    2004-01-01

    Medical images of human tissue can be produced using Computed Tomography (CT), Positron Emission Tomography (PET), Ultrasound or Magnetic Resonance Imaging (MRI). In all of the above techniques, in order to get a three-dimensional (3D) image, one has to rotate or move the source, the detectors or the scanned target. This procedure is complicated, time consuming and increases the cost and weight of the scanning equipment. Time resolved optical tomography has been suggested as an alternative to the above conventional methods. This technique implies near infrared light (NIR) and fast time-resolved detectors to obtain a 3D image of the scanned target. However, due to the limited penetration of the NIR light in the tissue, the application of this technique is limited to soft tissue like a female breast or a premature infant brain

  20. Advanced techniques for high resolution spectroscopic observations of cosmic gamma-ray sources

    International Nuclear Information System (INIS)

    Matteson, J.L.; Pelling, M.R.; Peterson, L.E.

    1985-08-01

    We describe an advanced gamma-ray spectrometer that is currently in development. It will obtain a sensitivity of -4 ph/cm -2 -sec in a 6 hour balloon observation and uses innovative techniques for background reduction and source imaging

  1. Composite Techniques Based Color Image Compression

    Directory of Open Access Journals (Sweden)

    Zainab Ibrahim Abood

    2017-03-01

    Full Text Available Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S, composite wavelet technique (W and composite multi-wavelet technique (M. For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM in M technique which has the highest values of energy (En and compression ratio (CR and least values of bit per pixel (bpp, time (T and rate distortion R(D. Also the values of the compression parameters of the color image are nearly the same as the average values of the compression parameters of the three bands of the same image.

  2. Analysis of two dimensional charged particle scintillation using video image processing techniques

    International Nuclear Information System (INIS)

    Sinha, A.; Bhave, B.D.; Singh, B.; Panchal, C.G.; Joshi, V.M.; Shyam, A.; Srinivasan, M.

    1993-01-01

    A novel method for video recording of individual charged particle scintillation images and their offline analysis using digital image processing techniques for obtaining position, time and energy information is presented . Results of an exploratory experiment conducted using 241 Am and 239 Pu alpha sources are presented. (author). 3 figs., 4 tabs

  3. Exploring three faint source detections methods for aperture synthesis radio images

    Science.gov (United States)

    Peracaula, M.; Torrent, A.; Masias, M.; Lladó, X.; Freixenet, J.; Martí, J.; Sánchez-Sutil, J. R.; Muñoz-Arjonilla, A. J.; Paredes, J. M.

    2015-04-01

    Wide-field radio interferometric images often contain a large population of faint compact sources. Due to their low intensity/noise ratio, these objects can be easily missed by automated detection methods, which have been classically based on thresholding techniques after local noise estimation. The aim of this paper is to present and analyse the performance of several alternative or complementary techniques to thresholding. We compare three different algorithms to increase the detection rate of faint objects. The first technique consists of combining wavelet decomposition with local thresholding. The second technique is based on the structural behaviour of the neighbourhood of each pixel. Finally, the third algorithm uses local features extracted from a bank of filters and a boosting classifier to perform the detections. The methods' performances are evaluated using simulations and radio mosaics from the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array. We show that the new methods perform better than well-known state of the art methods such as SEXTRACTOR, SAD and DUCHAMP at detecting faint sources of radio interferometric images.

  4. CMP reflection imaging via interferometry of distributed subsurface sources

    Science.gov (United States)

    Kim, D.; Brown, L. D.; Quiros, D. A.

    2015-12-01

    The theoretical foundations of recovering body wave energy via seismic interferometry are well established. However in practice, such recovery remains problematic. Here, synthetic seismograms computed for subsurface sources are used to evaluate the geometrical combinations of realistic ambient source and receiver distributions that result in useful recovery of virtual body waves. This study illustrates how surface receiver arrays that span a limited distribution suite of sources, can be processed to reproduce virtual shot gathers that result in CMP gathers which can be effectively stacked with traditional normal moveout corrections. To verify the feasibility of the approach in practice, seismic recordings of 50 aftershocks following the magnitude of 5.8 Virginia earthquake occurred in August, 2011 have been processed using seismic interferometry to produce seismic reflection images of the crustal structure above and beneath the aftershock cluster. Although monotonic noise proved to be problematic by significantly reducing the number of usable recordings, the edited dataset resulted in stacked seismic sections characterized by coherent reflections that resemble those seen on a nearby conventional reflection survey. In particular, "virtual" reflections at travel times of 3 to 4 seconds suggest reflector sat approximately 7 to 12 km depth that would seem to correspond to imbricate thrust structures formed during the Appalachian orogeny. The approach described here represents a promising new means of body wave imaging of 3D structure that can be applied to a wide array of geologic and energy problems. Unlike other imaging techniques using natural sources, this technique does not require precise source locations or times. It can thus exploit aftershocks too small for conventional analyses. This method can be applied to any type of microseismic cloud, whether tectonic, volcanic or man-made.

  5. [Application research of DEI technique based on synchrotron X-ray source in imaging rabbit eyeball in vitro].

    Science.gov (United States)

    Yin, Hong-xia; Huang, Zhi-feng; Wang, Zhen-chang; Liu, Zhao-hui; Li, Yong; Zhu, Pei-ping

    2010-03-23

    To study the application of DEI technique in imaging the small structures of rabbit eyeball. DEI technique was used to image the eyeball of New Zealand white rabbit in vitro. The experiments were performed using beamline 4W1A at the topography station of Beijing Synchrotron Radiation Facility (BSRF). DEI image showed clearly the fine structures of the rabbit eyeball, such as the transparent cornea, the sclera, the ciliaris, and the ciliary body. DEI is a new X-ray imaging modality which achieves high contrast and spatial resolution. It also showed obvious effect of edge enhancement. DEI has good potential in observing the micro-structures of eyeballs and other small organs.

  6. Transmission imaging with a coded source

    International Nuclear Information System (INIS)

    Stoner, W.W.; Sage, J.P.; Braun, M.; Wilson, D.T.; Barrett, H.H.

    1976-01-01

    The conventional approach to transmission imaging is to use a rotating anode x-ray tube, which provides the small, brilliant x-ray source needed to cast sharp images of acceptable intensity. Stationary anode sources, although inherently less brilliant, are more compatible with the use of large area anodes, and so they can be made more powerful than rotating anode sources. Spatial modulation of the source distribution provides a way to introduce detailed structure in the transmission images cast by large area sources, and this permits the recovery of high resolution images, in spite of the source diameter. The spatial modulation is deliberately chosen to optimize recovery of image structure; the modulation pattern is therefore called a ''code.'' A variety of codes may be used; the essential mathematical property is that the code possess a sharply peaked autocorrelation function, because this property permits the decoding of the raw image cast by th coded source. Random point arrays, non-redundant point arrays, and the Fresnel zone pattern are examples of suitable codes. This paper is restricted to the case of the Fresnel zone pattern code, which has the unique additional property of generating raw images analogous to Fresnel holograms. Because the spatial frequency of these raw images are extremely coarse compared with actual holograms, a photoreduction step onto a holographic plate is necessary before the decoded image may be displayed with the aid of coherent illumination

  7. Curved crystal x-ray optics for monochromatic imaging with a clinical source.

    Science.gov (United States)

    Bingölbali, Ayhan; MacDonald, C A

    2009-04-01

    Monochromatic x-ray imaging has been shown to increase contrast and reduce dose relative to conventional broadband imaging. However, clinical sources with very narrow energy bandwidth tend to have limited intensity and field of view. In this study, focused fan beam monochromatic radiation was obtained using doubly curved monochromator crystals. While these optics have been in use for microanalysis at synchrotron facilities for some time, this work is the first investigation of the potential application of curved crystal optics to clinical sources for medical imaging. The optics could be used with a variety of clinical sources for monochromatic slot scan imaging. The intensity was assessed and the resolution of the focused beam was measured using a knife-edge technique. A simulation model was developed and comparisons to the measured resolution were performed to verify the accuracy of the simulation to predict resolution for different conventional sources. A simple geometrical calculation was also developed. The measured, simulated, and calculated resolutions agreed well. Adequate resolution and intensity for mammography were predicted for appropriate source/optic combinations.

  8. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    Science.gov (United States)

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2018-01-01

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  9. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging

    International Nuclear Information System (INIS)

    Dunsby, C; French, P M W

    2003-01-01

    This article aims to review the panoply of techniques for realising optical imaging through turbid media such as biological tissue. It begins by briefly discussing optical scattering and outlines the various approaches that have been developed to image through scattering media including spatial filtering, time-gated imaging and coherence-based techniques. The discussion includes scanning and wide-field techniques and concentrates on techniques to discriminate in favour of unscattered ballistic light although imaging with scattered light is briefly reviewed. Wide-field coherence-gated imaging techniques are discussed in some detail with particular emphasis placed on techniques to achieve real-time high-resolution three-dimensional imaging including through turbid media, providing rapid whole-field acquisition and high depth and transverse spatial resolution images. (topical review)

  10. A technique for automatically extracting useful field of view and central field of view images.

    Science.gov (United States)

    Pandey, Anil Kumar; Sharma, Param Dev; Aheer, Deepak; Kumar, Jay Prakash; Sharma, Sanjay Kumar; Patel, Chetan; Kumar, Rakesh; Bal, Chandra Sekhar

    2016-01-01

    It is essential to ensure the uniform response of the single photon emission computed tomography gamma camera system before using it for the clinical studies by exposing it to uniform flood source. Vendor specific acquisition and processing protocol provide for studying flood source images along with the quantitative uniformity parameters such as integral and differential uniformity. However, a significant difficulty is that the time required to acquire a flood source image varies from 10 to 35 min depending both on the activity of Cobalt-57 flood source and the pre specified counts in the vendors protocol (usually 4000K-10,000K counts). In case the acquired total counts are less than the total prespecified counts, and then the vendor's uniformity processing protocol does not precede with the computation of the quantitative uniformity parameters. In this study, we have developed and verified a technique for reading the flood source image, remove unwanted information, and automatically extract and save the useful field of view and central field of view images for the calculation of the uniformity parameters. This was implemented using MATLAB R2013b running on Ubuntu Operating system and was verified by subjecting it to the simulated and real flood sources images. The accuracy of the technique was found to be encouraging, especially in view of practical difficulties with vendor-specific protocols. It may be used as a preprocessing step while calculating uniformity parameters of the gamma camera in lesser time with fewer constraints.

  11. A technique for automatically extracting useful field of view and central field of view images

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Param Dev; Aheer, Deepak; Kumar, Jay Prakash; Sharma, Sanjay Kumar; Patel, Chetan; Kumar, Rakesh; Bal, Chandra Sekhar

    2016-01-01

    It is essential to ensure the uniform response of the single photon emission computed tomography gamma camera system before using it for the clinical studies by exposing it to uniform flood source. Vendor specific acquisition and processing protocol provide for studying flood source images along with the quantitative uniformity parameters such as integral and differential uniformity. However, a significant difficulty is that the time required to acquire a flood source image varies from 10 to 35 min depending both on the activity of Cobalt-57 flood source and the pre specified counts in the vendors protocol (usually 4000K-10,000K counts). In case the acquired total counts are less than the total prespecified counts, and then the vendor's uniformity processing protocol does not precede with the computation of the quantitative uniformity parameters. In this study, we have developed and verified a technique for reading the flood source image, remove unwanted information, and automatically extract and save the useful field of view and central field of view images for the calculation of the uniformity parameters. This was implemented using MATLAB R2013b running on Ubuntu Operating system and was verified by subjecting it to the simulated and real flood sources images. The accuracy of the technique was found to be encouraging, especially in view of practical difficulties with vendor-specific protocols. It may be used as a preprocessing step while calculating uniformity parameters of the gamma camera in lesser time with fewer constraints

  12. Efficient image enhancement using sparse source separation in the Retinex theory

    Science.gov (United States)

    Yoon, Jongsu; Choi, Jangwon; Choe, Yoonsik

    2017-11-01

    Color constancy is the feature of the human vision system (HVS) that ensures the relative constancy of the perceived color of objects under varying illumination conditions. The Retinex theory of machine vision systems is based on the HVS. Among Retinex algorithms, the physics-based algorithms are efficient; however, they generally do not satisfy the local characteristics of the original Retinex theory because they eliminate global illumination from their optimization. We apply the sparse source separation technique to the Retinex theory to present a physics-based algorithm that satisfies the locality characteristic of the original Retinex theory. Previous Retinex algorithms have limited use in image enhancement because the total variation Retinex results in an overly enhanced image and the sparse source separation Retinex cannot completely restore the original image. In contrast, our proposed method preserves the image edge and can very nearly replicate the original image without any special operation.

  13. Survey Of Lossless Image Coding Techniques

    Science.gov (United States)

    Melnychuck, Paul W.; Rabbani, Majid

    1989-04-01

    Many image transmission/storage applications requiring some form of data compression additionally require that the decoded image be an exact replica of the original. Lossless image coding algorithms meet this requirement by generating a decoded image that is numerically identical to the original. Several lossless coding techniques are modifications of well-known lossy schemes, whereas others are new. Traditional Markov-based models and newer arithmetic coding techniques are applied to predictive coding, bit plane processing, and lossy plus residual coding. Generally speaking, the compression ratio offered by these techniques are in the area of 1.6:1 to 3:1 for 8-bit pictorial images. Compression ratios for 12-bit radiological images approach 3:1, as these images have less detailed structure, and hence, their higher pel correlation leads to a greater removal of image redundancy.

  14. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging.

    Science.gov (United States)

    Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun

    2013-11-05

    We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

  15. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  16. Image Improvement Techniques

    Science.gov (United States)

    Shine, R. A.

    1997-05-01

    Over the last decade, a repertoire of techniques have been developed and/or refined to improve the quality of high spatial resolution solar movies taken from ground based observatories. These include real time image motion corrections, frame selection, phase diversity measurements of the wavefront, and extensive post processing to partially remove atmospheric distortion. Their practical application has been made possible by the increasing availability and decreasing cost of large CCD's with fast digital readouts and high speed computer workstations with large memories. Most successful have been broad band (0.3 to 10 nm) filtergram movies which can use exposure times of 10 to 30 ms, short enough to ``freeze'' atmospheric motions. Even so, only a handful of movies with excellent image quality for more than a hour have been obtained to date. Narrowband filtergrams (about 0.01 nm), such as those required for constructing magnetograms and Dopplergrams, have been more challenging although some single images approach the quality of the best continuum images. Some promising new techniques and instruments, together with persistence and good luck, should continue the progress made in the last several years.

  17. Coded Aperture Nuclear Scintigraphy: A Novel Small Animal Imaging Technique

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    2002-10-01

    Full Text Available We introduce and demonstrate the utility of coded aperture (CA nuclear scintigraphy for imaging small animals. CA imaging uses multiple pinholes in a carefully designed mask pattern, mounted on a conventional gamma camera. System performance was assessed using point sources and phantoms, while several animal experiments were performed to test the usefulness of the imaging system in vivo, with commonly used radiopharmaceuticals. The sensitivity of the CA system for 99mTc was 4.2 × 103 cps/Bq (9400 cpm/μCi, compared to 4.4 × 104 cps/Bq (990 cpm/μCi for a conventional collimator system. The system resolution was 1.7 mm, as compared to 4–6 mm for the conventional imaging system (using a high-sensitivity low-energy collimator. Animal imaging demonstrated artifact-free imaging with superior resolution and image quality compared to conventional collimator images in several mouse and rat models. We conclude that: (a CA imaging is a useful nuclear imaging technique for small animal imaging. The advantage in signal-to-noise can be traded to achieve higher resolution, decreased dose or reduced imaging time. (b CA imaging works best for images where activity is concentrated in small volumes; a low count outline may be better demonstrated using conventional collimator imaging. Thus, CA imaging should be viewed as a technique to complement rather than replace traditional nuclear imaging methods. (c CA hardware and software can be readily adapted to existing gamma cameras, making their implementation a relatively inexpensive retrofit to most systems.

  18. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  19. Imaging Techniques in Endodontics: An Overview

    Science.gov (United States)

    Deepak, B. S.; Subash, T. S.; Narmatha, V. J.; Anamika, T.; Snehil, T. K.; Nandini, D. B.

    2012-01-01

    This review provides an overview of the relevance of imaging techniques such as, computed tomography, cone beam computed tomography, and ultrasound, to endodontic practice. Many limitations of the conventional radiographic techniques have been overcome by the newer methods. Advantages and disadvantages of various imaging techniques in endodontic practice are also discussed. PMID:22530184

  20. Multispectral fluorescence imaging techniques for nondestructive food safety inspection

    Science.gov (United States)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2004-03-01

    The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.

  1. Optimal wave focusing for seismic source imaging

    Science.gov (United States)

    Bazargani, Farhad

    In both global and exploration seismology, studying seismic sources provides geophysicists with invaluable insight into the physics of earthquakes and faulting processes. One way to characterize the seismic source is to directly image it. Time-reversal (TR) focusing provides a simple and robust solution to the source imaging problem. However, for recovering a well- resolved image, TR requires a full-aperture receiver array that surrounds the source and adequately samples the wavefield. This requirement often cannot be realized in practice. In most source imaging experiments, the receiver geometry, due to the limited aperture and sparsity of the stations, does not allow adequate sampling of the source wavefield. Incomplete acquisition and imbalanced illumination of the imaging target limit the resolving power of the TR process. The main focus of this thesis is to offer an alternative approach to source imaging with the goal of mitigating the adverse effects of incomplete acquisition on the TR modeling. To this end, I propose a new method, named Backus-Gilbert (BG) source imaging, to optimally focus the wavefield onto the source position using a given receiver geometry. I first introduce BG as a method for focusing waves in acoustic media at a desired location and time. Then, by exploiting the source-receiver reciprocity of the Green function and the linearity of the problem, I show that BG focusing can be adapted and used as a source-imaging tool. Following this, I generalize the BG theory for elastic waves. Applying BG formalism for source imaging requires a model for the wave propagation properties of the earth and an estimate of the source location. Using numerical tests, I next examine the robustness and sensitivity of the proposed method with respect to errors in the earth model, uncertainty in the source location, and noise in data. The BG method can image extended sources as well as point sources. It can also retrieve the source mechanism. These features of

  2. Design and development of the associated-particle three-dimensional imaging technique

    International Nuclear Information System (INIS)

    Ussery, L.E.; Hollas, C.L.

    1994-10-01

    The authors describe the development of the ''associated-particle'' imaging technique for producing low-resolution three-dimensional images of objects. Based on the t(d,n) 4 He reaction, the method requires access to only one side of the object being imaged and allows for the imaging of individual chemical elements in the material under observation. Studies were performed to (1) select the appropriate components of the system, including detectors, data-acquisition electronics, and neutron source, and (2) optimize experimental methods for collection and presentation of data. This report describes some of the development steps involved and provides a description of the complete final system that was developed

  3. Dual source CT imaging

    International Nuclear Information System (INIS)

    Seidensticker, Peter R.; Hofmann, Lars K.

    2008-01-01

    The introduction of Dual Source Computed Tomography (DSCT) in 2005 was an evolutionary leap in the field of CT imaging. Two x-ray sources operated simultaneously enable heart-rate independent temporal resolution and routine spiral dual energy imaging. The precise delivery of contrast media is a critical part of the contrast-enhanced CT procedure. This book provides an introduction to DSCT technology and to the basics of contrast media administration followed by 25 in-depth clinical scan and contrast media injection protocols. All were developed in consensus by selected physicians on the Dual Source CT Expert Panel. Each protocol is complemented by individual considerations, tricks and pitfalls, and by clinical examples from several of the world's best radiologists and cardiologists. This extensive CME-accredited manual is intended to help readers to achieve consistently high image quality, optimal patient care, and a solid starting point for the development of their own unique protocols. (orig.)

  4. Urologic imaging and interventional techniques

    International Nuclear Information System (INIS)

    Bush, W.H.

    1989-01-01

    This book provides an overview of all imaging modalities and invasive techniques of the genitourinary system. Three general chapters discuss ionic and nonionic contrast media, the management of reactions to contrast media, and radiation doses from various uroradiologic procedures. Chapters are devoted to intravenous pyelography, computed tomography, magnetic resonance imaging, ultrasound, nuclear medicine, lymphography, arteriography, and venography. Two chapters discuss the pediatric applications of uroradiology and ultrasound. Two chapters integrate the various imaging techniques of the upper and lower genitourinary systems into an algorithmic approach for various pathologic entities

  5. Open source tools for fluorescent imaging.

    Science.gov (United States)

    Hamilton, Nicholas A

    2012-01-01

    As microscopy becomes increasingly automated and imaging expands in the spatial and time dimensions, quantitative analysis tools for fluorescent imaging are becoming critical to remove both bottlenecks in throughput as well as fully extract and exploit the information contained in the imaging. In recent years there has been a flurry of activity in the development of bio-image analysis tools and methods with the result that there are now many high-quality, well-documented, and well-supported open source bio-image analysis projects with large user bases that cover essentially every aspect from image capture to publication. These open source solutions are now providing a viable alternative to commercial solutions. More importantly, they are forming an interoperable and interconnected network of tools that allow data and analysis methods to be shared between many of the major projects. Just as researchers build on, transmit, and verify knowledge through publication, open source analysis methods and software are creating a foundation that can be built upon, transmitted, and verified. Here we describe many of the major projects, their capabilities, and features. We also give an overview of the current state of open source software for fluorescent microscopy analysis and the many reasons to use and develop open source methods. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. An image-based search for pulsars among Fermi unassociated LAT sources

    Science.gov (United States)

    Frail, D. A.; Ray, P. S.; Mooley, K. P.; Hancock, P.; Burnett, T. H.; Jagannathan, P.; Ferrara, E. C.; Intema, H. T.; de Gasperin, F.; Demorest, P. B.; Stovall, K.; McKinnon, M. M.

    2018-03-01

    We describe an image-based method that uses two radio criteria, compactness, and spectral index, to identify promising pulsar candidates among Fermi Large Area Telescope (LAT) unassociated sources. These criteria are applied to those radio sources from the Giant Metrewave Radio Telescope all-sky survey at 150 MHz (TGSS ADR1) found within the error ellipses of unassociated sources from the 3FGL catalogue and a preliminary source list based on 7 yr of LAT data. After follow-up interferometric observations to identify extended or variable sources, a list of 16 compact, steep-spectrum candidates is generated. An ongoing search for pulsations in these candidates, in gamma rays and radio, has found 6 ms pulsars and one normal pulsar. A comparison of this method with existing selection criteria based on gamma-ray spectral and variability properties suggests that the pulsar discovery space using Fermi may be larger than previously thought. Radio imaging is a hitherto underutilized source selection method that can be used, as with other multiwavelength techniques, in the search for Fermi pulsars.

  7. Development and application of the analyzer-based imaging technique with hard synchrotron radiation

    International Nuclear Information System (INIS)

    Coan, P.

    2006-07-01

    The objective of this thesis is twofold: from one side the application of the analyser-based X-ray phase contrast imaging to study cartilage, bone and bone implants using ESRF synchrotron radiation sources and on the other to contribute to the development of the phase contrast techniques from the theoretical and experimental point of view. Several human samples have been studied in vitro using the analyser based imaging (ABI) technique. Examination included projection and computed tomography imaging and 3-dimensional volume rendering of hip, big toe and ankle articular joints. X-ray ABI images have been critically compared with those obtained with conventional techniques, including radiography, computed tomography, ultrasound, magnetic resonance and histology, the latter taken as gold standard. Results show that only ABI imaging was able to either visualize or correctly estimate the early pathological status of the cartilage. The status of the bone ingrowth in sheep implants have also been examined in vitro: ABI images permitted to correctly distinguish between good and incomplete bone healing. Pioneering in-vivo ABI on guinea pigs were also successfully performed, confirming the possible use of the technique to follow up the progression of joint diseases, the bone/metal ingrowth and the efficacy of drugs treatments. As part of the development of the phase contrast techniques, two objectives have been reached. First, it has been experimentally demonstrated for the first time that the ABI and the propagation based imaging (PBI) can be combined to create images with original features (hybrid imaging, HI). Secondly, it has been proposed and experimentally tested a new simplified set-up capable to produce images with properties similar to those obtained with the ABI technique or HI. Finally, both the ABI and the HI have been theoretically studied with an innovative, wave-based simulation program, which was able to correctly reproduce experimental results. (author)

  8. Novel technique for addressing streak artifact in gated dual-source MDCT angiography utilizing ECG-editing

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Laura T.; Boll, Daniel T. [Duke University Medical Center, Department of Radiology, Box 3808, Durham, NC (United States)

    2008-11-15

    Streak artifact is an important source of image degradation in computed tomographic imaging. In coronary MDCT angiography, streak artifact from pacemaker leads in the SVC can render segments of the right coronary artery uninterpretable. With current technology in clinical practice, there is no effective way to eliminate streak artifact in coronary MDCT angiography entirely. We propose a technique to minimize the impact of streak artifact in retrospectively gated coronary MDCT angiography by utilizing small shifts in the reconstruction window. In our experience, previously degraded portions of the coronary vasculature were able to be well evaluated using this technique. (orig.)

  9. Imaging techniques and investigation protocols in pediatric emergency imaging

    International Nuclear Information System (INIS)

    Scharitzer, M.; Hoermann, M.; Puig, S.; Prokop, M.

    2002-01-01

    Paediatric emergencies demand a quick and efficient radiological investigation with special attention to specific adjustments related to patient age and radiation protection. Imaging modalities are improving rapidly and enable to diagnose childhood diseases and injuries more quickly, accurately and safely. This article provides an overview of imaging techniques adjusted to the age of the child and an overview of imaging strategies of common paediatric emergencies. Optimising the imaging parameters (digital radiography, different screen-film systems, exposure specifications) allows for substantial reduction of radiation dose. Spiral- and multislice-CT reduce scan time and enable a considerable reduction of radiation exposure if scanning parameters (pitch setting, tube current) are properly adjusted. MRI is still mainly used for neurological or spinal emergencies despite the advent of fast imaging sequences. The radiologist's task is to select an appropriate imaging strategy according to expected differential diagnosis and to adjust the imaging techniques to the individual patient. (orig.) [de

  10. New neutron imaging using pulsed sources. Characteristics of a pulsed neutron source and principle of pulsed neutron imaging

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2012-01-01

    Neutron beam is one of important tools to obtain the transmission image of an object. Until now, steady state neutron sources such as reactors are mainly used for this imaging purpose. Recently, it has been demonstrated that pulsed neutron imaging based on accelerator neutron sources can provide a real-space distribution of physical information of materials such as crystallographic structure, element, temperature, hydrogen bound state, magnetic field and so on, by analyzing wavelength dependent transmission spectrum, which information cannot be observed or difficult to obtain with a traditional imaging method using steady state neutrons. Here, characteristics of the pulsed neutron source and principle of the pulsed neutron imaging are explained as a basic concept of the new method. (author)

  11. Cardiomagnetic source imaging

    OpenAIRE

    Pesola, Katja

    2000-01-01

    Magnetocardiographic (MCG) source imaging has received increasing interest in recent years. With a high enough localization accuracy of the current sources in the heart, valuable information can be provided, e.g., for the pre-ablative evaluation of arrhythmia patients. Furthermore, preliminary studies indicate that ischemic areas, i.e. areas which are suffering from lack of oxygen, and infarcted regions could be localized from multichannel MCG recordings. In this thesis, the accuracy of cardi...

  12. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  13. Phase-coded multi-pulse technique for ultrasonic high-order harmonic imaging of biological tissues in vitro

    International Nuclear Information System (INIS)

    Ma Qingyu; Zhang Dong; Gong Xiufen; Ma Yong

    2007-01-01

    Second or higher order harmonic imaging shows significant improvement in image clarity but is degraded by low signal-noise ratio (SNR) compared with fundamental imaging. This paper presents a phase-coded multi-pulse technique to provide the enhancement of SNR for the desired high-order harmonic ultrasonic imaging. In this technique, with N phase-coded pulses excitation, the received Nth harmonic signal is enhanced by 20 log 10 N dB compared with that in the single-pulse mode, whereas the fundamental and other order harmonic components are efficiently suppressed to reduce image confusion. The principle of this technique is theoretically discussed based on the theory of the finite amplitude sound waves, and examined by measurements of the axial and lateral beam profiles as well as the phase shift of the harmonics. In the experimental imaging for two biological tissue specimens, a plane piston source at 2 MHz is used to transmit a sequence of multiple pulses with equidistant phase shift. The second to fifth harmonic images are obtained using this technique with N = 2 to 5, and compared with the images obtained at the fundamental frequency. Results demonstrate that this technique of relying on higher order harmonics seems to provide a better resolution and contrast of ultrasonic images

  14. Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source

    International Nuclear Information System (INIS)

    Donath, Tilman; Bunk, Oliver; Groot, Waldemar; Bednarzik, Martin; Gruenzweig, Christian; David, Christian; Pfeiffer, Franz; Hempel, Eckhard; Popescu, Stefan; Hoheisel, Martin

    2009-01-01

    Phase-contrast imaging at laboratory-based x-ray sources using grating interferometers has been developed over the last few years for x-ray energies of up to 28 keV. Here, we show first phase-contrast projection and tomographic images recorded at significantly higher x-ray energies, produced by an x-ray tube source operated at 100 kV acceleration voltage. We find our measured tomographic phase images in good agreement with tabulated data. The extension of phase-contrast imaging to this significantly higher x-ray energy opens up many applications of the technique in medicine and industrial nondestructive testing.

  15. Image authentication using distributed source coding.

    Science.gov (United States)

    Lin, Yao-Chung; Varodayan, David; Girod, Bernd

    2012-01-01

    We present a novel approach using distributed source coding for image authentication. The key idea is to provide a Slepian-Wolf encoded quantized image projection as authentication data. This version can be correctly decoded with the help of an authentic image as side information. Distributed source coding provides the desired robustness against legitimate variations while detecting illegitimate modification. The decoder incorporating expectation maximization algorithms can authenticate images which have undergone contrast, brightness, and affine warping adjustments. Our authentication system also offers tampering localization by using the sum-product algorithm.

  16. Biometric image enhancement using decision rule based image fusion techniques

    Science.gov (United States)

    Sagayee, G. Mary Amirtha; Arumugam, S.

    2010-02-01

    Introducing biometrics into information systems may result in considerable benefits. Most of the researchers confirmed that the finger print is widely used than the iris or face and more over it is the primary choice for most privacy concerned applications. For finger prints applications, choosing proper sensor is at risk. The proposed work deals about, how the image quality can be improved by introducing image fusion technique at sensor levels. The results of the images after introducing the decision rule based image fusion technique are evaluated and analyzed with its entropy levels and root mean square error.

  17. Automated medical image segmentation techniques

    Directory of Open Access Journals (Sweden)

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  18. Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm

    OpenAIRE

    Jiang, Minshan; Liu, Tan; Liu, Xiaojing; Jiao, Shuliang

    2014-01-01

    We accomplished spectral domain optical coherence tomography and auto-fluorescence microscopy for imaging the retina with a single broadband light source centered at 480 nm. This technique is able to provide simultaneous structural imaging and lipofuscin molecular contrast of the retina. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. To test the capabilities of the technique we periodically imaged the retinas of the same ...

  19. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  20. [Demand for and the Development of Detection Techniques for Source of Schistosome Infection in China].

    Science.gov (United States)

    Wang, Shi-ping; He, Xin; Zhou, Yun-fei

    2015-12-01

    Schistosomiasis is a type of zoonotic parasitosis that severely impairs human health. Rapid detection of infection sources is a key to the control of schistosomiasis. With the effective control of schistosomiasis in China, the detection techniques for infection sources have also been developed. The rate and the intensity of infection among humans and livestocks have been significantly decreased in China, as the control program has entered the transmission control stage in most of the endemic areas. Under this situation, the traditional etiological diagnosing techniques and common immunological methods can not afford rapid detection of infection sources of schistosomiasis. Instead, we are calling for detection methods with higher sensitivity, specificity and stability while being less time-consuming, more convenient and less costing. In recent years, many improved or novel detection methods have been applied for the epidemiological surveillance of schistosomiasis, such as the automatic scanning microscopic image acquisition system, PCR-ELISA, immunosensors, loop-mediated isothermal amplification, etc. The development of new monitoring techniques can facilitate rapid detection of schistosome infection sources in endemic areas.

  1. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    Directory of Open Access Journals (Sweden)

    Yuri Álvarez López

    2017-01-01

    Full Text Available One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  2. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  3. Dual-energy chest imaging with the variable compensation technique

    International Nuclear Information System (INIS)

    Dobbins, J.T.; Powell, A.O.

    1988-01-01

    The authors reported on a new imaging algorithm, termed the variable compensation (VC) technique, that combines the signal-to-noise ratio (S/N) advantages of x-ray beam compensation with the ability to adjust retrospectively the amount of displayed image equalization. The VC technique acquires a compensated image of the patient and also an image of the modulated beam profile incident on the patient. A fraction of the beam profile image is then subtracted from the compensated image. A limitation of traditional dual-energy techniques is the significant S/N degradation in poorly penetrated regions. Their new VC technique permits improvement in image S/N before formation of the dual-energy image pair. Specifically, the authors subtract 100% of the beam image from the compensated image for both the high- and low-energy images and produce a pair of images that appear similar to the normal high- and low-energy pair, except for improved S/N in the mediastinum due to the beam compensator. S/N measurements in tissue-canceled chest phantom images show the improved S/N visualization of calcified squares in the mediastinum with our technique

  4. New techniques for resolution enhancement of 3D x-ray tomographic imaging from incomplete data

    International Nuclear Information System (INIS)

    Vengrinovich, V.; Zolotarev, S.; Denkevich, Y.; Tillack, G.-R.

    2004-01-01

    Accurate evaluation of dimensions directly from tomographic images, restored from only few x-ray projections, made in a limited observation sector, is considered exploiting pipes wall thickness assessment like a typical example. Both experiments and simulations are used to extract main errors sources. It is taken from as known, that neglecting of the scattered radiation and beam hardening effects results in image blurring, strong artifacts and finally inaccurate sizing. The computerized technique is developed to simulate the contribution of scattered radiation and beam hardening for the purpose of their further extraction from projected data. After those accompanying effects extraction the iterative Bayesian techniques are applied to reconstruct images from the projections, using volumetric and/or shell representation of the objects like pipes. The achieved error of virtual pipe wall thickness assessment from 3D images can be as small as 300μk comparing to 1mm provided by modern techniques. Finally the conclusion was drawn that standard projection techniques using X- or Gamma rays in combination with X-ray film or imaging plates can be applied for the data acquisition to reconstruct finally wall thickness profiles in an in-field environment. (author)

  5. In vivo quantitative imaging of point-like bioluminescent and fluorescent sources: Validation studies in phantoms and small animals post mortem

    Science.gov (United States)

    Comsa, Daria Craita

    2008-10-01

    There is a real need for improved small animal imaging techniques to enhance the development of therapies in which animal models of disease are used. Optical methods for imaging have been extensively studied in recent years, due to their high sensitivity and specificity. Methods like bioluminescence and fluorescence tomography report promising results for 3D reconstructions of source distributions in vivo. However, no standard methodology exists for optical tomography, and various groups are pursuing different approaches. In a number of studies on small animals, the bioluminescent or fluorescent sources can be reasonably approximated as point or line sources. Examples include images of bone metastases confined to the bone marrow. Starting with this premise, we propose a simpler, faster, and inexpensive technique to quantify optical images of point-like sources. The technique avoids the computational burden of a tomographic method by using planar images and a mathematical model based on diffusion theory. The model employs in situ optical properties estimated from video reflectometry measurements. Modeled and measured images are compared iteratively using a Levenberg-Marquardt algorithm to improve estimates of the depth and strength of the bioluminescent or fluorescent inclusion. The performance of the technique to quantify bioluminescence images was first evaluated on Monte Carlo simulated data. Simulated data also facilitated a methodical investigation of the effect of errors in tissue optical properties on the retrieved source depth and strength. It was found that, for example, an error of 4 % in the effective attenuation coefficient led to 4 % error in the retrieved depth for source depths of up to 12mm, while the error in the retrieved source strength increased from 5.5 % at 2mm depth, to 18 % at 12mm depth. Experiments conducted on images from homogeneous tissue-simulating phantoms showed that depths up to 10mm could be estimated within 8 %, and the relative

  6. A paper sheet phantom for scintigraphic planar imaging. Usefulness of pouch-laminated paper source

    International Nuclear Information System (INIS)

    Takaki, Akihiro; Soma, Tsutomu; Murase, Kenya; Teraoka, Satomi; Murakami, Tomonori; Kojima, Akihiro; Matsumoto, Masanori

    2007-01-01

    In order to perform experimental measurements for evaluation of imaging device's performance, data acquisition technique, and clinical images on scintigraphic imaging, many kinds of phantoms are employed. However, since these materials are acrylic and plastic, the thickness and quality of those materials cause attenuation and scatter in itself. We developed a paper sheet phantom sealed with a pouch laminator, which can be a true radioactive source in air. In this study, the paper sheet phantom was compared to the acrylic liver phantom, with the thickness of 2 cm, which is commercially available. The results showed that although some scatter counts were contained within the image of the acrylic liver phantom, there were few scattered photons in the paper sheet phantom image. Furthermore, this laminated paper sheet phantom made handling of the source and its waste easier. If the paper sheet phantom will be designed more sophisticatedly, it becomes a useful tool for planar imaging experiments. (author)

  7. Functional imaging of the pancreas. Image processing techniques and clinical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Fumiko

    1984-02-01

    An image processing technique for functional imaging of the pancreas was developed and is here reported. In this paper, clinical efficacy of the technique for detecting pancreatic abnormality is evaluated in comparison with conventional pancreatic scintigraphy and CT. For quantitative evaluation, functional rate, i.e. the rate of normal functioning pancreatic area, was calculated from the functional image and subtraction image. Two hundred and ninety-five cases were studied using this technique. Conventional image had a sensitivity of 65% and a specificity of 78%, while the use of functional imaging improved sensitivity to 88% and specificity to 88%. The mean functional rate in patients with pancreatic disease was significantly lower (33.3 +- 24.5 in patients with chronic pancreatitis, 28.1 +- 26.9 in patients with acute pancreatitis, 43.4 +- 22.3 in patients with diabetes mellitus, 20.4 +- 23.4 in patients with pancreatic cancer) than the mean functional rate in cases without pancreatic disease (86.4 +- 14.2). It is suggested that functional image of the pancreas reflecting pancreatic exocrine function and functional rate is a useful indicator of pancreatic exocrine function.

  8. Three dimensional imaging technique for laser-plasma diagnostics

    International Nuclear Information System (INIS)

    Jiang Shaoen; Zheng Zhijian; Liu Zhongli

    2001-01-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments

  9. Three dimensional imaging technique for laser-plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shaoen, Jiang; Zhijian, Zheng; Zhongli, Liu [China Academy of Engineering Physics, Chengdu (China)

    2001-04-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments.

  10. EU-FP7-iMARS: analysis of Mars multi-resolution images using auto-coregistration, data mining and crowd source techniques

    Science.gov (United States)

    Ivanov, Anton; Muller, Jan-Peter; Tao, Yu; Kim, Jung-Rack; Gwinner, Klaus; Van Gasselt, Stephan; Morley, Jeremy; Houghton, Robert; Bamford, Steven; Sidiropoulos, Panagiotis; Fanara, Lida; Waenlish, Marita; Walter, Sebastian; Steinkert, Ralf; Schreiner, Bjorn; Cantini, Federico; Wardlaw, Jessica; Sprinks, James; Giordano, Michele; Marsh, Stuart

    2016-07-01

    Understanding planetary atmosphere-surface and extra-terrestrial-surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 15 years, especially in 3D imaging of surface shape. This has led to the ability to be able to overlay different epochs back in time to the mid 1970s, to examine time-varying changes, such as the recent discovery of mass movement, tracking inter-year seasonal changes and looking for occurrences of fresh craters. Within the EU FP-7 iMars project, UCL have developed a fully automated multi-resolution DTM processing chain, called the Co-registration ASP-Gotcha Optimised (CASP-GO), based on the open source NASA Ames Stereo Pipeline (ASP), which is being applied to the production of planetwide DTMs and ORIs (OrthoRectified Images) from CTX and HiRISE. Alongside the production of individual strip CTX & HiRISE DTMs & ORIs, DLR have processed HRSC mosaics of ORIs and DTMs for complete areas in a consistent manner using photogrammetric bundle block adjustment techniques. A novel automated co-registration and orthorectification chain has been developed and is being applied to level-1 EDR images taken by the 4 NASA orbital cameras since 1976 using the HRSC map products (both mosaics and orbital strips) as a map-base. The project has also included Mars Radar profiles from Mars Express and Mars Reconnaissance Orbiter missions. A webGIS has been developed for displaying this time sequence of imagery and a demonstration will be shown applied to one of the map-sheets. Automated quality control techniques are applied to screen for suitable images and these are extended to detect temporal changes in features on the surface such as mass movements, streaks, spiders, impact craters, CO2 geysers and Swiss Cheese terrain. These data mining techniques are then being employed within a citizen science project within the Zooniverse family

  11. A new method for measurement of femoral anteversion using 3D imaging technique

    International Nuclear Information System (INIS)

    Kim, S.I.; Lee, Y.H.; Park, S.-B.; Lee, K.-M.

    1996-01-01

    Conventional methods that use cross-sectional computed tomography (CT) images to estimate femoral anteversion have several problems because of the complex 3 dimensional structure of the femur. These are the ambiguity of defining the femoral neck axis and condylar line, and the dependence on patient positioning. Especially, the femoral neck axis that is known as a major source of error is hard to determine from a single or multiple 2-dimensional transverse CT images. In this study, we are presenting a new method that we have devised form the measurement of femoral anteversion by utilizing the 3 dimensional imaging technique. Poster 176. (author)

  12. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: image reconstruction and assessment of image quality.

    Science.gov (United States)

    Flohr, Thomas G; Leng, Shuai; Yu, Lifeng; Aiimendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H

    2009-12-01

    To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. No significant differences in quantitative measures of image quality were found between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6 pitch 3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch = 3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving coronary artery phantom

  13. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    International Nuclear Information System (INIS)

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H.

    2009-01-01

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6≤pitch≤3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  14. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H. [Siemens Healthcare, Computed Tomography, 91301 Forchheim, Germany and Department of Diagnostic Radiology, Eberhard-Karls-Universitaet, 72076 Tuebingen (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Siemens Healthcare, Computed Tomography, 91301 Forchheim (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2009-12-15

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6{<=}pitch{<=}3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  15. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    Directory of Open Access Journals (Sweden)

    Anna Borisovna Cherednyakova

    2015-08-01

    Full Text Available Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marketing techniques manager: object-communicative categorical component, subject-activity categorical component of image, personality-oriented categorical component, value-acmeological categorical component of image.The aim is to identify and justify the image categorical components as a component of image culture of the marketing techniques manager.Method and methodology of work – a general scientific research approach reflecting scientific apparatus of research.Results. Categorical components of the image, as an image culture component of manager of marketing techniques were defined.Practical implication of the results. The theoretical part of «Imageology» course, special course «Image culture of manager of marketing techniques», the theoretical and methodological study and the formation of image culture.

  16. A dual-view digital tomosynthesis imaging technique for improved chest imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C., E-mail: cshaw@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054 (United States)

    2015-09-15

    Purpose: Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior–anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of the reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. Methods: With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values

  17. Static telescope aberration measurement using lucky imaging techniques

    Science.gov (United States)

    López-Marrero, Marcos; Rodríguez-Ramos, Luis Fernando; Marichal-Hernández, José Gil; Rodríguez-Ramos, José Manuel

    2012-07-01

    A procedure has been developed to compute static aberrations once the telescope PSF has been measured with the lucky imaging technique, using a nearby star close to the object of interest as the point source to probe the optical system. This PSF is iteratively turned into a phase map at the pupil using the Gerchberg-Saxton algorithm and then converted to the appropriate actuation information for a deformable mirror having low actuator number but large stroke capability. The main advantage of this procedure is related with the capability of correcting static aberration at the specific pointing direction and without the need of a wavefront sensor.

  18. A Blind High-Capacity Wavelet-Based Steganography Technique for Hiding Images into other Images

    Directory of Open Access Journals (Sweden)

    HAMAD, S.

    2014-05-01

    Full Text Available The flourishing field of Steganography is providing effective techniques to hide data into different types of digital media. In this paper, a novel technique is proposed to hide large amounts of image data into true colored images. The proposed method employs wavelet transforms to decompose images in a way similar to the Human Visual System (HVS for more secure and effective data hiding. The designed model can blindly extract the embedded message without the need to refer to the original cover image. Experimental results showed that the proposed method outperformed all of the existing techniques not only imperceptibility but also in terms of capacity. In fact, the proposed technique showed an outstanding performance on hiding a secret image whose size equals 100% of the cover image while maintaining excellent visual quality of the resultant stego-images.

  19. Ultrasonic imaging in LMFBRs using digital techniques

    International Nuclear Information System (INIS)

    Fothergill, J.R.; McKnight, J.A.; Barrett, L.M.

    Ultrasonic technology for providing images of components immersed in the opaque sodium of LMFBRs is being developed at RNL. For many years the application has been restricted by the unavailability of convenient ultrasonic sources and receivers capable of withstanding the reactor environment. Until recently, for example, important ultrasonic instrument design, such as for future sweep arms, had to be based on waveguided ultrasonics. RNL have developed an economic immersible transducer that can be deployed during reactor shut-down, when many demands for ultrasonic imaging are made. The transducer design is not suited at present to the sophisticated techniques of phased arrays; consequently image formation must depend on the physical scanning of a target using one or more transducers in pulse-echo mode. The difficulties of access into a fast reactor impose further restrictions. Some applications may involve easy scanning sequences, thus the sweep arm requires only a rotation to provide a map of the reactor core area. For a more detailed examination of the same area, however, special engineering solutions are needed to provide a more satisfactory scanning sequence. A compromise solution involving the rotating shield movement is being used for a PFR experiment to examine a limited area of the core. (author)

  20. Near-field three-dimensional radar imaging techniques and applications.

    Science.gov (United States)

    Sheen, David; McMakin, Douglas; Hall, Thomas

    2010-07-01

    Three-dimensional radio frequency imaging techniques have been developed for a variety of near-field applications, including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and nondestructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range, from less than 100 MHz to in excess of 350 GHz, with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.

  1. Scoping Study of Machine Learning Techniques for Visualization and Analysis of Multi-source Data in Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yonggang

    2018-05-07

    In implementation of nuclear safeguards, many different techniques are being used to monitor operation of nuclear facilities and safeguard nuclear materials, ranging from radiation detectors, flow monitors, video surveillance, satellite imagers, digital seals to open source search and reports of onsite inspections/verifications. Each technique measures one or more unique properties related to nuclear materials or operation processes. Because these data sets have no or loose correlations, it could be beneficial to analyze the data sets together to improve the effectiveness and efficiency of safeguards processes. Advanced visualization techniques and machine-learning based multi-modality analysis could be effective tools in such integrated analysis. In this project, we will conduct a survey of existing visualization and analysis techniques for multi-source data and assess their potential values in nuclear safeguards.

  2. Microseismic imaging using a source-independent full-waveform inversion method

    KAUST Repository

    Wang, Hanchen

    2016-09-06

    Using full waveform inversion (FWI) to locate microseismic and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, waveform inversion of microseismic events faces incredible nonlinearity due to the unknown source location (space) and function (time). We develop a source independent FWI of microseismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for source wavelet in z axis is extracted to check the accuracy of the inverted source image and velocity model. Also the angle gather is calculated to see if the velocity model is correct. By inverting for all the source image, source wavelet and the velocity model, the proposed method produces good estimates of the source location, ignition time and the background velocity for part of the SEG overthrust model.

  3. Microseismic imaging using a source-independent full-waveform inversion method

    KAUST Repository

    Wang, Hanchen

    2016-01-01

    Using full waveform inversion (FWI) to locate microseismic and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, waveform inversion of microseismic events faces incredible nonlinearity due to the unknown source location (space) and function (time). We develop a source independent FWI of microseismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for source wavelet in z axis is extracted to check the accuracy of the inverted source image and velocity model. Also the angle gather is calculated to see if the velocity model is correct. By inverting for all the source image, source wavelet and the velocity model, the proposed method produces good estimates of the source location, ignition time and the background velocity for part of the SEG overthrust model.

  4. Comparison of source moment tensor recovered by diffraction stacking migration and source time reversal imaging

    Science.gov (United States)

    Zhang, Q.; Zhang, W.

    2017-12-01

    Diffraction stacking migration is an automatic location methods and widely used in microseismic monitoring of the hydraulic fracturing. It utilizes the stacking of thousands waveform to enhance signal-to-noise ratio of weak events. For surface monitoring, the diffraction stacking method is suffered from polarity reverse among receivers due to radiation pattern of moment source. Joint determination of location and source mechanism has been proposed to overcome the polarity problem but needs significantly increased computational calculations. As an effective method to recover source moment tensor, time reversal imaging based on wave equation can locate microseismic event by using interferometry on the image to extract source position. However, the time reversal imaging is very time consuming compared to the diffraction stacking location because of wave-equation simulation.In this study, we compare the image from diffraction stacking and time reversal imaging to check if the diffraction stacking can obtain similar moment tensor as time reversal imaging. We found that image produced by taking the largest imaging value at each point along time axis does not exhibit the radiation pattern, while with the same level of calculation efficiency, the image produced for each trial origin time can generate radiation pattern similar to time reversal imaging procedure. Thus it is potential to locate the source position by the diffraction stacking method for general moment tensor sources.

  5. Developments in medical imaging techniques

    International Nuclear Information System (INIS)

    Kramer, Cornelis

    1979-01-01

    A review of the developments in medical imaging in the past 25 years shows a strong increase in the number of physical methods which have become available for obtaining images of diagnostic value. It is shown that despite this proliferation of methods the equipment used for obtaining the images can be based on a common structure. Also the resulting images can be characterized by a few relevant parameters which indicate their information content. On the basis of this common architecture a study is made of the potential capabilities of the large number of medical imaging techniques available now and in the future. Also the requirements and possibilities for handling the images obtained and for controlling the diagnostic systems are investigated [fr

  6. Secondary hypertension: Place of imaging techniques

    International Nuclear Information System (INIS)

    Marichez, M.; Jeunemaitre, X.; Despres, E.; Plouin, P.F.; Melki, J.P.; Taleb, A.

    1987-01-01

    To determine and illustrate the place of various imaging techniques in the diagnosis of arterial hypertension, a retrospective study of 4,530 patients examined during the past 2 years at Broussals and Saint Joseph Hospitals in Paris was undertaken. Between 1975 and 1984, only 20% of our patients underwent surgery, but in the past 2 years, 6% of patients with hypertension underwent either surgery or transluminal angioplasty. At our institution, imaging studies performed were Doppler US, excretory urography, CT, MR imaging, scintigraphy, adrenal venography, and arteriography. The authors encountered over 156 cases of renovascular hypertension, 23 Conn adenomas, 13 pheochromocytomas, four adrenal carcinomas, and 46 parenchymatous renal anomalies. This paper presents the modalities and the pitfalls of each imaging technique. The authors also indicate the strategies used in the diagnostic approach and the results the authors obtained

  7. Technique for image interpolation using polynomial transforms

    NARCIS (Netherlands)

    Escalante Ramírez, B.; Martens, J.B.; Haskell, G.G.; Hang, H.M.

    1993-01-01

    We present a new technique for image interpolation based on polynomial transforms. This is an image representation model that analyzes an image by locally expanding it into a weighted sum of orthogonal polynomials. In the discrete case, the image segment within every window of analysis is

  8. Pixel-based parametric source depth map for Cerenkov luminescence imaging

    International Nuclear Information System (INIS)

    Altabella, L.; Spinelli, A.E.; Boschi, F.

    2016-01-01

    Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5–6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure

  9. Multi-Detector Computed Tomography Imaging Techniques in Arterial Injuries

    Directory of Open Access Journals (Sweden)

    Cameron Adler

    2018-04-01

    Full Text Available Cross-sectional imaging has become a critical aspect in the evaluation of arterial injuries. In particular, angiography using computed tomography (CT is the imaging of choice. A variety of techniques and options are available when evaluating for arterial injuries. Techniques involve contrast bolus, various phases of contrast enhancement, multiplanar reconstruction, volume rendering, and maximum intensity projection. After the images are rendered, a variety of features may be seen that diagnose the injury. This article provides a general overview of the techniques, important findings, and pitfalls in cross sectional imaging of arterial imaging, particularly in relation to computed tomography. In addition, the future directions of computed tomography, including a few techniques in the process of development, is also discussed.

  10. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kiyanagi

    2018-03-01

    Full Text Available Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented.

  11. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    International Nuclear Information System (INIS)

    Kim, Joshua; Zhang, Tiezhi; Lu, Weiguo

    2014-01-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source–dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10–15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source–dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented. (paper)

  12. Review of Sealed Source Designs and Manufacturing Techniques Affecting Disused Source Management

    International Nuclear Information System (INIS)

    2012-10-01

    This publication presents an investigation on the influence of the design and technical features of sealed radioactive sources (SRSs) on predisposal and disposal activities when the sources become disused. The publication also addresses whether design modifications could contribute to safer and/or more efficient management of disused sources without compromising the benefits provided by the use of the sealed sources. This technical publication aims to collect information on the most typical design features and manufacturing techniques of sealed radioactive sources and examines how they affect the safe management of disused sealed radioactive sources (DSRS). The publication also aims to assist source designers and manufacturers by discussing design features that are important from the waste management point of view. It has been identified that most SRS manufacturers use similar geometries and materials for their designs and apply improved and reliable manufacturing techniques e.g. double- encapsulation. These designs and manufacturing techniques have been proven over time to reduce contamination levels in fabrication and handling, and improve source integrity and longevity. The current source designs and materials ensure as well as possible that SRSs will maintain their integrity in use and when they become disused. No significant improvement options to current designs have been identified. However, some design considerations were identified as important to facilitate source retrieval, to increase the possibility of re-use and to ensure minimal contamination risk and radioactive waste generation at recycling. It was also concluded that legible identifying markings on a source are critical for DSRS management. The publication emphasizes the need for a common understanding of the radioactive source's recommended working life (RWL) for manufacturers and regulators. The conditions of use (COU) are important for the determination of RWL. A formal system for specification

  13. Astronomical Image Compression Techniques Based on ACC and KLT Coder

    Directory of Open Access Journals (Sweden)

    J. Schindler

    2011-01-01

    Full Text Available This paper deals with a compression of image data in applications in astronomy. Astronomical images have typical specific properties — high grayscale bit depth, size, noise occurrence and special processing algorithms. They belong to the class of scientific images. Their processing and compression is quite different from the classical approach of multimedia image processing. The database of images from BOOTES (Burst Observer and Optical Transient Exploring System has been chosen as a source of the testing signal. BOOTES is a Czech-Spanish robotic telescope for observing AGN (active galactic nuclei and the optical transient of GRB (gamma ray bursts searching. This paper discusses an approach based on an analysis of statistical properties of image data. A comparison of two irrelevancy reduction methods is presented from a scientific (astrometric and photometric point of view. The first method is based on a statistical approach, using the Karhunen-Loeve transform (KLT with uniform quantization in the spectral domain. The second technique is derived from wavelet decomposition with adaptive selection of used prediction coefficients. Finally, the comparison of three redundancy reduction methods is discussed. Multimedia format JPEG2000 and HCOMPRESS, designed especially for astronomical images, are compared with the new Astronomical Context Coder (ACC coder based on adaptive median regression.

  14. A Novel Contrast Enhancement Technique on Palm Bone Images

    Directory of Open Access Journals (Sweden)

    Yung-Tsang Chang

    2014-09-01

    Full Text Available Contrast enhancement plays a fundamental role in image processing. Many histogram-based techniques are widely used for contrast enhancement of given images, due to their simple function and effectiveness. However, the conventional histogram equalization (HE methods result in excessive contrast enhancement, which causes natural looking and satisfactory results for a variety of low contrast images. To solve such problems, a novel multi-histogram equalization technique is proposed to enhance the contrast of the palm bone X-ray radiographs in this paper. For images, the mean-variance analysis method is employed to partition the histogram of the original grey scale image into multiple sub-histograms. These histograms are independently equalized. By using this mean-variance partition method, a proposed multi-histogram equalization technique is employed to achieve the contrast enhancement of the palm bone X-ray radiographs. Experimental results show that the multi-histogram equalization technique achieves a lower average absolute mean brightness error (AMBE value. The multi-histogram equalization technique simultaneously preserved the mean brightness and enhanced the local contrast of the original image.

  15. A computer code to simulate X-ray imaging techniques

    International Nuclear Information System (INIS)

    Duvauchelle, Philippe; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-01-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests

  16. A computer code to simulate X-ray imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, Philippe E-mail: philippe.duvauchelle@insa-lyon.fr; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-09-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests.

  17. Progress toward the development and testing of source reconstruction methods for NIF neutron imaging.

    Science.gov (United States)

    Loomis, E N; Grim, G P; Wilde, C; Wilson, D C; Morgan, G; Wilke, M; Tregillis, I; Merrill, F; Clark, D; Finch, J; Fittinghoff, D; Bower, D

    2010-10-01

    Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.

  18. Virtual ultrasound sources in high-resolution ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    beamforming procedure for 3D ultrasound imaging. The position of the virtual source, and the created waveform are investigated with simulation, and with pulse-echo measurements. There is good agreement between the estimated wavefront and the theoretically tted one. Several examples of the use of virtual...... source elements are considered. Using SAF on data acquired for a conventional linear array imaging improves the penetration depth for the particular imaging situation from 80 to 110 mm. The independent use of virtual source elements in the elevation plane decreases the respective size of the point spread...

  19. Fundamentals of functional imaging I: current clinical techniques.

    Science.gov (United States)

    Luna, A; Martín Noguerol, T; Mata, L Alcalá

    2018-05-01

    Imaging techniques can establish a structural, physiological, and molecular phenotype for cancer, which helps enable accurate diagnosis and personalized treatment. In recent years, various imaging techniques that make it possible to study the functional characteristics of tumors quantitatively and reproducibly have been introduced and have become established in routine clinical practice. Perfusion studies enable us to estimate the microcirculation as well as tumor angiogenesis and permeability using ultrafast dynamic acquisitions with ultrasound, computed tomography, or magnetic resonance (MR) imaging. Diffusion-weighted sequences now form part of state-of-the-art MR imaging protocols to evaluate oncologic lesions in any anatomic location. Diffusion-weighted imaging provides information about the occupation of the extracellular and extravascular space and indirectly estimates the cellularity and apoptosis of tumors, having demonstrated its relation with biologic aggressiveness in various tumor lines and its usefulness in the evaluation of the early response to systemic and local targeted therapies. Another tool is hydrogen proton MR spectroscopy, which is used mainly in the study of the metabolic characteristics of brain tumors. However, the complexity of the technique and its lack of reproducibility have limited its clinical use in other anatomic areas, although much experience with the use of this technique in the assessment of prostate and breast cancers as well as liver lesions has also accumulated. This review analyzes the imaging techniques that make it possible to evaluate the physiological and molecular characteristics of cancer that have already been introduced into clinical practice, such as techniques that evaluate angiogenesis through dynamic acquisitions after the administration of contrast material, diffusion-weighted imaging, or hydrogen proton MR spectroscopy, as well as their principal applications in oncology. Copyright © 2018 SERAM. Publicado

  20. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)

    2015-02-18

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  1. Jet-images: computer vision inspired techniques for jet tagging

    International Nuclear Information System (INIS)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel

    2015-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  2. Cellular imaging electron tomography and related techniques

    CERN Document Server

    2018-01-01

    This book highlights important techniques for cellular imaging and covers the basics and applications of electron tomography and related techniques. In addition, it considers practical aspects and broadens the technological focus by incorporating techniques that are only now becoming accessible (e.g. block face imaging).  The first part of the book describes the electron microscopy 3D technique available to scientists around the world, allowing them to characterize organelles, cells and tissues. The major emphasis is on new technologies like scanning transmission electron microscopy (STEM) tomography, though the book also reviews some of the more proven technologies like electron tomography. In turn, the second part is dedicated to the reconstruction of data sets, signal improvement and interpretation.

  3. Recent Advances in Techniques for Hyperspectral Image Processing

    Science.gov (United States)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  4. Automated thermal mapping techniques using chromatic image analysis

    Science.gov (United States)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  5. Dual-source cardiac computed tomography angiography (CCTA) in the follow-up of cardiac transplant: comparison of image quality and radiation dose using three different imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beitzke, D.; Berger-Kulemann, V.; Unterhumer, S.; Loewe, C.; Wolf, F. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Cardiovascular and Interventional Radiology, Vienna (Austria); Schoepf, V. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Vienna (Austria); Spitzer, E. [Bern University Hospital, Department of Cardiology, Bern (Switzerland); Feuchtner, G.M. [Innsbruck Medical University, Department of Radiology II, Innsbruck (Austria); Gyoengyoesi, M. [Medical University Vienna, Department of Cardiology, Vienna (Austria); Uyanik-Uenal, K.; Zuckermann, A. [Medical University Vienna, Department of Cardiac Surgery, Vienna (Austria)

    2015-08-15

    To prospectively evaluate image quality (IQ) and radiation dose of dual-source cardiac computed tomography (CCTA) using different imaging protocols. CCTA was performed in 150 patients using the retrospective ECG-gated spiral technique (rECG) the prospective ECG-gated technique (pECG), or the prospective ECG-gated technique with systolic imaging and automated tube voltage selection (pECGsys). IQ was rated using a 16-segment coronary artery model. Techniques were compared for overall IQ, IQ of the large and the small coronary artery segments. Effective dose was used for comparison of radiation dose. Overall IQ and IQ of the large segments showed no differences between the groups. IQ analysis of the small segments showed lowered IQ in pECGsys compared to rECG (p = 0.02), but not to pECG (p = 0.6). Effective dose did not differ significantly between rECG and pECG (p = 0.13), but was significantly lower for pECGsys (p < 0.001 vs. rECG and pECG). Radiation dose of dual-source CCTA in heart transplant recipients is significantly reduced by using prospective systolic scanning and automated tube voltage selection, while overall IQ and IQ of the large coronary segments are maintained. IQ appears to be lower compared to retrospective techniques with regard to small coronary segments. (orig.)

  6. Dual-source cardiac computed tomography angiography (CCTA) in the follow-up of cardiac transplant: comparison of image quality and radiation dose using three different imaging protocols

    International Nuclear Information System (INIS)

    Beitzke, D.; Berger-Kulemann, V.; Unterhumer, S.; Loewe, C.; Wolf, F.; Schoepf, V.; Spitzer, E.; Feuchtner, G.M.; Gyoengyoesi, M.; Uyanik-Uenal, K.; Zuckermann, A.

    2015-01-01

    To prospectively evaluate image quality (IQ) and radiation dose of dual-source cardiac computed tomography (CCTA) using different imaging protocols. CCTA was performed in 150 patients using the retrospective ECG-gated spiral technique (rECG) the prospective ECG-gated technique (pECG), or the prospective ECG-gated technique with systolic imaging and automated tube voltage selection (pECGsys). IQ was rated using a 16-segment coronary artery model. Techniques were compared for overall IQ, IQ of the large and the small coronary artery segments. Effective dose was used for comparison of radiation dose. Overall IQ and IQ of the large segments showed no differences between the groups. IQ analysis of the small segments showed lowered IQ in pECGsys compared to rECG (p = 0.02), but not to pECG (p = 0.6). Effective dose did not differ significantly between rECG and pECG (p = 0.13), but was significantly lower for pECGsys (p < 0.001 vs. rECG and pECG). Radiation dose of dual-source CCTA in heart transplant recipients is significantly reduced by using prospective systolic scanning and automated tube voltage selection, while overall IQ and IQ of the large coronary segments are maintained. IQ appears to be lower compared to retrospective techniques with regard to small coronary segments. (orig.)

  7. Self characterization of a coded aperture array for neutron source imaging

    Energy Technology Data Exchange (ETDEWEB)

    Volegov, P. L., E-mail: volegov@lanl.gov; Danly, C. R.; Guler, N.; Merrill, F. E.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N. [Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-12-15

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.

  8. BATMAN: Bayesian Technique for Multi-image Analysis

    Science.gov (United States)

    Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.

    2017-04-01

    This paper describes the Bayesian Technique for Multi-image Analysis (BATMAN), a novel image-segmentation technique based on Bayesian statistics that characterizes any astronomical data set containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (I.e. identical signal within the errors). We illustrate its operation and performance with a set of test cases including both synthetic and real integral-field spectroscopic data. The output segmentations adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. The quality of the recovered signal represents an improvement with respect to the input, especially in regions with low signal-to-noise ratio. However, the algorithm may be sensitive to small-scale random fluctuations, and its performance in presence of spatial gradients is limited. Due to these effects, errors may be underestimated by as much as a factor of 2. Our analysis reveals that the algorithm prioritizes conservation of all the statistically significant information over noise reduction, and that the precise choice of the input data has a crucial impact on the results. Hence, the philosophy of BaTMAn is not to be used as a 'black box' to improve the signal-to-noise ratio, but as a new approach to characterize spatially resolved data prior to its analysis. The source code is publicly available at http://astro.ft.uam.es/SELGIFS/BaTMAn.

  9. Advanced neutron imaging methods with a potential to benefit from pulsed sources

    International Nuclear Information System (INIS)

    Strobl, M.; Kardjilov, N.; Hilger, A.; Penumadu, D.; Manke, I.

    2011-01-01

    During the last decade neutron imaging has seen significant improvements in instrumentation, detection and spatial resolution. Additionally, a variety of new applications and methods have been explored. As a consequence of an outstanding development nowadays various techniques of neutron imaging go far beyond a two- and three-dimensional mapping of the attenuation coefficients for a broad range of samples. Neutron imaging has become sensitive to neutron scattering in the small angle scattering range as well as with respect to Bragg scattering. Corresponding methods potentially provide spatially resolved and volumetric data revealing microstructural inhomogeneities, texture variations, crystalline phase distributions and even strains in bulk samples. Other techniques allow for the detection of refractive index distribution through phase sensitive measurements and the utilization of polarized neutrons enables radiographic and tomographic investigations of magnetic fields and properties as well as electrical currents within massive samples. All these advanced methods utilize or depend on wavelength dependent signals, and are hence suited to profit significantly from pulsed neutron sources as will be discussed.

  10. Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm.

    Science.gov (United States)

    Jiang, Minshan; Liu, Tan; Liu, Xiaojing; Jiao, Shuliang

    2014-12-01

    We accomplished spectral domain optical coherence tomography and auto-fluorescence microscopy for imaging the retina with a single broadband light source centered at 480 nm. This technique is able to provide simultaneous structural imaging and lipofuscin molecular contrast of the retina. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. To test the capabilities of the technique we periodically imaged the retinas of the same rats for four weeks. The images successfully demonstrated lipofuscin accumulation in the retinal pigment epithelium with aging. The experimental results showed that the dual-modal imaging system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  11. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjae; Kim, Ho Sung [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  12. Large-scale User Facility Imaging and Scattering Techniques to Facilitate Basic Medical Research

    International Nuclear Information System (INIS)

    Miller, Stephen D.; Bilheux, Jean-Christophe; Gleason, Shaun Scott; Nichols, Trent L.; Bingham, Philip R.; Green, Mark L.

    2011-01-01

    Conceptually, modern medical imaging can be traced back to the late 1960's and into the early 1970's with the advent of computed tomography . This pioneering work was done by 1979 Nobel Prize winners Godfrey Hounsfield and Allan McLeod Cormack which evolved into the first prototype Computed Tomography (CT) scanner in 1971 and became commercially available in 1972. Unique to the CT scanner was the ability to utilize X-ray projections taken at regular angular increments from which reconstructed three-dimensional (3D) images could be produced. It is interesting to note that the mathematics to realize tomographic images was developed in 1917 by the Austrian mathematician Johann Radon who produced the mathematical relationships to derive 3D images from projections - known today as the Radon Transform . The confluence of newly advancing technologies, particularly in the areas of detectors, X-ray tubes, and computers combined with the earlier derived mathematical concepts ushered in a new era in diagnostic medicine via medical imaging (Beckmann, 2006). Occurring separately but at a similar time as the development of the CT scanner were efforts at the national level within the United States to produce user facilities to support scientific discovery based upon experimentation. Basic Energy Sciences within the United States Department of Energy currently supports 9 major user facilities along with 5 nanoscale science research centers dedicated to measurement sciences and experimental techniques supporting a very broad range of scientific disciplines. Tracing back the active user facilities, the Stanford Synchrotron Radiation Lightsource (SSRL) a SLAC National Accelerator Laboratory was built in 1974 and it was realized that its intense x-ray beam could be used to study protein molecular structure. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was commissioned in 1982 and currently has 60 x-ray beamlines optimized for a number of different

  13. Proximity gettering technology for advanced CMOS image sensors using carbon cluster ion-implantation technique. A review

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Kazunari; Kadono, Takeshi; Okuyama, Ryousuke; Shigemastu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Koga, Yoshihiro; Okuda, Hidehiko [SUMCO Corporation, Saga (Japan)

    2017-07-15

    A new technique is described for manufacturing advanced silicon wafers with the highest capability yet reported for gettering transition metallic, oxygen, and hydrogen impurities in CMOS image sensor fabrication processes. Carbon and hydrogen elements are localized in the projection range of the silicon wafer by implantation of ion clusters from a hydrocarbon molecular gas source. Furthermore, these wafers can getter oxygen impurities out-diffused to device active regions from a Czochralski grown silicon wafer substrate to the carbon cluster ion projection range during heat treatment. Therefore, they can reduce the formation of transition metals and oxygen-related defects in the device active regions and improve electrical performance characteristics, such as the dark current, white spot defects, pn-junction leakage current, and image lag characteristics. The new technique enables the formation of high-gettering-capability sinks for transition metals, oxygen, and hydrogen impurities under device active regions of CMOS image sensors. The wafers formed by this technique have the potential to significantly improve electrical devices performance characteristics in advanced CMOS image sensors. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Fast and improved examplar-based inpainting techniques for natural images

    NARCIS (Netherlands)

    Ma, L.; Do, Q.L.; With, de P.H.N.

    2012-01-01

    Image inpainting is an image completion technique that has a wide range of applications such as image restoration, object removal and occlusion lling in view synthesis. In this paper, two novel techniques are proposed to enhance the performance of Criminisi's algorithm, which inpaints images with an

  15. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  16. Retinal Imaging Techniques for Diabetic Retinopathy Screening

    Science.gov (United States)

    Goh, James Kang Hao; Cheung, Carol Y.; Sim, Shaun Sebastian; Tan, Pok Chien; Tan, Gavin Siew Wei; Wong, Tien Yin

    2016-01-01

    Due to the increasing prevalence of diabetes mellitus, demand for diabetic retinopathy (DR) screening platforms is steeply increasing. Early detection and treatment of DR are key public health interventions that can greatly reduce the likelihood of vision loss. Current DR screening programs typically employ retinal fundus photography, which relies on skilled readers for manual DR assessment. However, this is labor-intensive and suffers from inconsistency across sites. Hence, there has been a recent proliferation of automated retinal image analysis software that may potentially alleviate this burden cost-effectively. Furthermore, current screening programs based on 2-dimensional fundus photography do not effectively screen for diabetic macular edema (DME). Optical coherence tomography is becoming increasingly recognized as the reference standard for DME assessment and can potentially provide a cost-effective solution for improving DME detection in large-scale DR screening programs. Current screening techniques are also unable to image the peripheral retina and require pharmacological pupil dilation; ultra-widefield imaging and confocal scanning laser ophthalmoscopy, which address these drawbacks, possess great potential. In this review, we summarize the current DR screening methods using various retinal imaging techniques, and also outline future possibilities. Advances in retinal imaging techniques can potentially transform the management of patients with diabetes, providing savings in health care costs and resources. PMID:26830491

  17. Quantum correlated imaging is a promising new technique in medical imaging

    Institute of Scientific and Technical Information of China (English)

    Nan Zhang; Zhaohua Yang

    2017-01-01

    Cardio-cerebral vascular diseases are common and frequently occurring serious diseases that threaten humans. In recent years, Digital Subtraction Angiography (DSA) has played a vital role in the diagnosis and treatment of cardio-cerebral vascular diseases. However, DSA is not able to visualize intravascular structures in real time, and it is especially difficult to evaluate each layer of the vascular wall and the composition of atherosclerotic plaques with DSA. Quantum correlated imaging is a new technique that can be used to perform real-time online imaging of intravascular flow, vascular wall structure, and atherosclerotic plaque composition. Quantum correlated imaging is a promising new technique that will soon be used in the diagnosis and treatment of cardio-cerebral vascular diseases.

  18. Feasibility study on X-ray source with pinhole imaging method

    International Nuclear Information System (INIS)

    Qiu Rui; Li Junli

    2007-01-01

    In order to verify the feasibility of study on X-ray source with pinhole imaging method, and optimize the design of X-ray pinhole imaging system, an X-ray pinhole imaging equipment was set up. The change of image due to the change of the position and intensity of X-ray source was estimated with mathematical method and validated with experiment. The results show that the change of the spot position and gray of the spot is linearly related with the change of the position and intensity of X-ray source, so it is feasible to study X-ray source with pinhole imaging method in this application. The results provide some references for the design of X-ray pinhole imaging system. (authors)

  19. Three dimensional image presentation techniques in medical imaging

    International Nuclear Information System (INIS)

    Pizer, S.M.; Fuchs, H.

    1987-01-01

    Medical images can be presented three-dimensionally by techniques that either calculate the effect of reflections from surfaces predefined from slices or project a three-space of luminosities computed from voxel intensities onto the visual receptors. Sliced-based reflective displays are the most common type. Means of producing surface descriptions both via voxel sets and via slice contours are reviewed. Advantages of and means of transparent display to allow the appreciation of the 3D relationships among objects are set forth. Ways to produce additional depth cues by stereoscopy and the kinetic depth effect are discussed, and the importance of interactive modification of viewpoint, clipping plane, displayed objects, etc. are explained. A new device, UNC's Pixel-planes, for accomplishing this in real time are illustrated. Voxel intensity based display methods avoid the need for time-consuming predefinition of object surfaces and thus can allow exploration of 3D image data. Varifocal mirror hardware and fast computation of one or more projections based on object probabilities are two of the more important approaches. While 3D display provides important information about 3D relationships, it cannot provide the kind of appreciation of subtle grey-scale changes that 2D display can. Methods that can combine these two kinds of information by superimposing 2D grey-scale slices on or in the context of 3D displays are discussed. Applications of these techniques for both diagnosis and radiotherapy planning are used as illustrations and guides to the usefulness of these techniques with CT, MRI, and other 3D medical imaging modalities. 24 refs.; 5 figs

  20. In Vivo Imaging of Nitric Oxide by Magnetic Resonance Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Rakesh Sharma

    2014-01-01

    Full Text Available Nitric oxide (NO biosensors are novel tools for real-time bioimaging of tissue oxygen changes and physiological monitoring of tissue vasculature. Nitric oxide behavior further enhances its role in mapping signal transduction at the molecular level. Spectrometric electron paramagnetic resonance (EPR and fluorometric imaging are well known techniques with the potential for in vivo bioimaging of NO. In tissues, NO is a specific target of nitrosyl compounds for chemical reaction, which provides a unique opportunity for application of newly identified NO biosensors. However, the accuracy and sensitivity of NO biosensors still need to be improved. Another potential magnetic resonance technique based on short term NO effects on proton relaxation enhancement is magnetic resonance imaging (MRI, and some NO biosensors may be used as potent imaging contrast agents for measurement of tumor size by MRI combined with fluorescent imaging. The present review provides supporting information regarding the possible use of nitrosyl compounds as NO biosensors in MRI and fluorescent bioimaging showing their measurement limitations and quantitative accuracy. These new approaches open a perspective regarding bioimaging of NO and the in vivo elucidation of NO effects by magnetic resonance techniques.

  1. Backscatter absorption gas imaging systems and light sources therefore

    Science.gov (United States)

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  2. Opportunities and applications of medical imaging and image processing techniques for nondestructive testing

    International Nuclear Information System (INIS)

    Song, Samuel Moon Ho; Cho, Jung Ho; Son, Sang Rock; Sung, Je Jonng; Ahn, Hyung Keun; Lee, Jeong Soon

    2002-01-01

    Nondestructive testing (NDT) of structures strives to extract all relevant data regarding the state of the structure without altering its form or properties. The success enjoyed by imaging and image processing technologies in the field of modem medicine forecasts similar success of image processing related techniques both in research and practice of NDT. In this paper, we focus on two particular instances of such applications: a modern vision technique for 3-D profile and shape measurement, and ultrasonic imaging with rendering for 3-D visualization. Ultrasonic imaging of 3-D structures for nondestructive evaluation purposes must provide readily recognizable 3-D images with enough details to clearly show various faults that may or may not be present. As a step towards Improving conspicuity and thus detection of faults, we propose a pulse-echo ultrasonic imaging technique to generate a 3-D image of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. This three-dimensional processing and display improves conspicuity of faults and in addition, provides manipulation capabilities, such as pan and rotation of the 3-D structure. As a second application, we consider an image based three-dimensional shape determination system. The shape, and thus the three-dimensional coordinate information of the 3-D object, is determined solely from captured images of the 3-D object from a prescribed set of viewpoints. The approach is based on the shape from silhouette (SFS) technique and the efficacy of the SFS method is tested using a sample data set. This system may be used to visualize the 3-D object efficiently, or to quickly generate initial CAD data for reverse engineering purposes. The proposed system potentially may be used in three dimensional design applications such as 3-D animation and 3-D games.

  3. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    Science.gov (United States)

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  4. An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy

    International Nuclear Information System (INIS)

    Dunsby, C; Lanigan, P M P; McGinty, J; Elson, D S; Requejo-Isidro, J; Munro, I; Galletly, N; McCann, F; Treanor, B; Oenfelt, B; Davis, D M; Neil, M A A; French, P M W

    2004-01-01

    Fluorescence imaging is used widely in microscopy and macroscopic imaging applications for fields ranging from biomedicine to materials science. A critical component for any fluorescence imaging system is the excitation source. Traditionally, wide-field systems use filtered thermal or arc-generated white light sources, while point scanning confocal microscope systems require spatially coherent (point-like) laser sources. Unfortunately, the limited range of visible wavelengths available from conventional laser sources constrains the design and usefulness of fluorescent probes in confocal microscopy. A 'hands-off' laser-like source, electronically tunable across the visible spectrum, would be invaluable for fluorescence imaging and provide new opportunities, e.g. automated excitation fingerprinting and in situ measurement of excitation cross-sections. Yet more information can be obtained using fluorescence lifetime imaging (FLIM), which requires that the light source be pulsed or rapidly modulated. We show how a white light continuum, generated by injecting femtosecond optical radiation into a micro-structured optical fibre, coupled with a simple prism-based tunable filter arrangement, can fulfil all these roles as a continuously electronically tunable (435-1150 nm) visible ultrafast light source in confocal, wide-field and FLIM systems

  5. Improvement of temporal and dynamic subtraction images on abdominal CT using 3D global image matching and nonlinear image warping techniques

    International Nuclear Information System (INIS)

    Okumura, E; Sanada, S; Suzuki, M; Takemura, A; Matsui, O

    2007-01-01

    Accurate registration of the corresponding non-enhanced and arterial-phase CT images is necessary to create temporal and dynamic subtraction images for the enhancement of subtle abnormalities. However, respiratory movement causes misregistration at the periphery of the liver. To reduce these misregistration errors, we developed a temporal and dynamic subtraction technique to enhance small HCC by 3D global matching and nonlinear image warping techniques. The study population consisted of 21 patients with HCC. Using the 3D global matching and nonlinear image warping technique, we registered current and previous arterial-phase CT images or current non-enhanced and arterial-phase CT images obtained in the same position. The temporal subtraction image was obtained by subtracting the previous arterial-phase CT image from the warped current arterial-phase CT image. The dynamic subtraction image was obtained by the subtraction of the current non-enhanced CT image from the warped current arterial-phase CT image. The percentage of fair or superior temporal subtraction images increased from 52.4% to 95.2% using the new technique, while on the dynamic subtraction images, the percentage increased from 66.6% to 95.2%. The new subtraction technique may facilitate the diagnosis of subtle HCC based on the superior ability of these subtraction images to show nodular and/or ring enhancement

  6. Oncologic applications of diagnostic imaging techniques

    International Nuclear Information System (INIS)

    Forrest, L.J.; Thrall, D.E.

    1995-01-01

    Before appropriate therapy can be instituted for a cancer patient, the presence and extent of tumor must be evaluated. Deciding which imaging technique to use depends on tumor location, type, and biologic behavior. Conventional radiography provides important information at a relatively low cost compared with other imaging modalities. Ultrasound is a valuable adjunct to radiography, but does not replace it because both imaging modalities provide unique information. Nuclear medicine procedures contribute additional, unique data by providing physiological information, but specificity is lacking. Both CT and MRI provide images with exquisite anatomic detail, but availability and cost prohibit their general use

  7. Diagnosis of scaphoid fracture: optimal imaging techniques

    Directory of Open Access Journals (Sweden)

    Geijer M

    2013-07-01

    Full Text Available Mats Geijer Center for Medical Imaging and Physiology, Skåne University Hospital and Lund University, Lund, Sweden Abstract: This review aims to provide an overview of modern imaging techniques for evaluation of scaphoid fracture, with emphasis on occult fractures and an outlook on the possible evolution of imaging; it also gives an overview of the pathologic and anatomic basis for selection of techniques. Displaced scaphoid fractures detected by wrist radiography, with or without special scaphoid views, pose no diagnostic problems. After wrist trauma with clinically suspected scaphoid fracture and normal scaphoid radiography, most patients will have no clinically important fracture. Between 5% and 19% of patients (on average 16% in meta-analyses will, however, have an occult scaphoid fracture which, untreated, may lead to later, potentially devastating, complications. Follow-up imaging may be done with repeat radiography, tomosynthesis, computed tomography, magnetic resonance imaging (MRI, or bone scintigraphy. However, no method is perfect, and choice of imaging may be based on availability, cost, perceived accuracy, or personal preference. Generally, MRI and bone scintigraphy are regarded as the most sensitive modalities, but both are flawed by false positive results at various rates. Keywords: occult fracture, wrist, radiography, computed tomography, magnetic resonance imaging, radionuclide imaging

  8. EU-FP7-iMARS: Analysis of Mars Multi-Resolution Images Using Auto-Coregistration Data Mining and Crowd Source Techniques: Processed Results - a First Look

    Science.gov (United States)

    Muller, Jan-Peter; Tao, Yu; Sidiropoulos, Panagiotis; Gwinner, Klaus; Willner, Konrad; Fanara, Lida; Waehlisch, Marita; van Gasselt, Stephan; Walter, Sebastian; Steikert, Ralf; Schreiner, Bjoern; Ivanov, Anton; Cantini, Federico; Wardlaw, Jessica; Morley, Jeremy; Sprinks, James; Giordano, Michele; Marsh, Stuart; Kim, Jungrack; Houghton, Robert; Bamford, Steven

    2016-06-01

    Understanding planetary atmosphere-surface exchange and extra-terrestrial-surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 15 years, especially in 3D imaging of surface shape. This has led to the ability to overlay image data and derived information from different epochs, back in time to the mid 1970s, to examine changes through time, such as the recent discovery of mass movement, tracking inter-year seasonal changes and looking for occurrences of fresh craters. Within the EU FP-7 iMars project, we have developed a fully automated multi-resolution DTM processing chain, called the Coregistration ASP-Gotcha Optimised (CASP-GO), based on the open source NASA Ames Stereo Pipeline (ASP) [Tao et al., this conference], which is being applied to the production of planetwide DTMs and ORIs (OrthoRectified Images) from CTX and HiRISE. Alongside the production of individual strip CTX & HiRISE DTMs & ORIs, DLR [Gwinner et al., 2015] have processed HRSC mosaics of ORIs and DTMs for complete areas in a consistent manner using photogrammetric bundle block adjustment techniques. A novel automated co-registration and orthorectification chain has been developed by [Sidiropoulos & Muller, this conference]. Using the HRSC map products (both mosaics and orbital strips) as a map-base it is being applied to many of the 400,000 level-1 EDR images taken by the 4 NASA orbital cameras. In particular, the NASA Viking Orbiter camera (VO), Mars Orbiter Camera (MOC), Context Camera (CTX) as well as the High Resolution Imaging Science Experiment (HiRISE) back to 1976. A webGIS has been developed [van Gasselt et al., this conference] for displaying this time sequence of imagery and will be demonstrated showing an example from one of the HRSC quadrangle map-sheets. Automated quality control [Sidiropoulos & Muller, 2015] techniques are applied to screen for

  9. Evaluation of radiographic imaging techniques in lung nodule detection

    International Nuclear Information System (INIS)

    Ho, J.T.; Kruger, R.A.

    1989-01-01

    Dual-energy radiography appears to be the most effective technique to address bone superposition that compromises conventional chest radiography. A dual-energy, single-exposure, film-based technique was compared with a dual-energy, dual-exposure technique and conventional chest radiography in a simulated lung nodule detection study. Observers detected more nodules on images produced by dual-energy techniques than on images produced by conventional chest radiography. The difference between dual-energy and conventional chest radiography is statistically significant and the difference between dual-energy, dual-exposure and single-exposure techniques is statistically insignificant. The single-exposure technique has the potential to replace the dual-exposure technique in future clinical application

  10. New calibration technique for KCD-based megavoltage imaging

    Science.gov (United States)

    Samant, Sanjiv S.; Zheng, Wei; DiBianca, Frank A.; Zeman, Herbert D.; Laughter, Joseph S.

    1999-05-01

    In megavoltage imaging, current commercial electronic portal imaging devices (EPIDs), despite having the advantage of immediate digital imaging over film, suffer from poor image contrast and spatial resolution. The feasibility of using a kinestatic charge detector (KCD) as an EPID to provide superior image contrast and spatial resolution for portal imaging has already been demonstrated in a previous paper. The KCD system had the additional advantage of requiring an extremely low dose per acquired image, allowing for superior imaging to be reconstructed form a single linac pulse per image pixel. The KCD based images utilized a dose of two orders of magnitude less that for EPIDs and film. Compared with the current commercial EPIDs and film, the prototype KCD system exhibited promising image qualities, despite being handicapped by the use of a relatively simple image calibration technique, and the performance limits of medical linacs on the maximum linac pulse frequency and energy flux per pulse delivered. This image calibration technique fixed relative image pixel values based on a linear interpolation of extrema provided by an air-water calibration, and accounted only for channel-to-channel variations. The counterpart of this for area detectors is the standard flat fielding method. A comprehensive calibration protocol has been developed. The new technique additionally corrects for geometric distortions due to variations in the scan velocity, and timing artifacts caused by mis-synchronization between the linear accelerator and the data acquisition system (DAS). The role of variations in energy flux (2 - 3%) on imaging is demonstrated to be not significant for the images considered. The methodology is presented, and the results are discussed for simulated images. It also allows for significant improvements in the signal-to- noise ratio (SNR) by increasing the dose using multiple images without having to increase the linac pulse frequency or energy flux per pulse. The

  11. Three-dimensional display of magnetic source imaging (MSI)

    International Nuclear Information System (INIS)

    Morioka, Takato; Yamamoto, Tomoya; Nishio, Shunji; Hasuo, Kanehiro; Fujii, Kiyotaka; Fukui, Masashi; Nitta, Koichi.

    1995-01-01

    Magnetic source imaging (MSI) is a relatively new, noninvasive technique for defining the relationship between brain structure and function of individual patients, and to establish comparisons from one patient to another. This is achieved by combining detailed neurophysiological data derived via magnetoencephalography (MEG) with neuroimaging data such as computed tomographic scan and magnetic resonance imaging (MRI). The noninvasive presurgical mapping of cortical functional somatosensory activity and the direct mapping of epilepsy-associated activity are among the neurosurgical uses that are emerging for MSI. Although the procedure provides clinically useful data, there are still limitations to two-dimensional MSI. We employ three-dimensional (3-D) MSI, superimposing MSI localizations on 3-D volumetric reconstruction of MRI. 3-D MSI enhances the visualization of the entire sensory homunculus and clearly demonstrates the spatial relationship with structural lesions. The functional localization of the epileptic focus in spatial relation to the lesion provides important clues for preoperative planning and on the epileptogenicity of the lesion. 3-D MSI improves localization of the sensory cortex and generator areas of epileptic activity. (author)

  12. Laser sources and techniques for spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kung, A.H. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This program focuses on the development of novel laser and spectroscopic techniques in the IR, UV, and VUV regions for studying combustion related molecular dynamics at the microscopic level. Laser spectroscopic techniques have proven to be extremely powerful in the investigation of molecular processes which require very high sensitivity and selectivity. The authors approach is to use quantum electronic and non-linear optical techniques to extend the spectral coverage and to enhance the optical power of ultrahigh resolution laser sources so as to obtain and analyze photoionization, fluorescence, and photoelectron spectra of jet-cooled free radicals and of reaction products resulting from unimolecular and bimolecular dissociations. New spectroscopic techniques are developed with these sources for the detection of optically thin and often short-lived species. Recent activities center on regenerative amplification of high resolution solid-state lasers, development of tunable high power mid-IR lasers and short-pulse UV/VUV tunable lasers, and development of a multipurpose high-order suppressor crossed molecular beam apparatus for use with synchrotron radiation sources. This program also provides scientific and technical support within the Chemical Sciences Division to the development of LBL`s Combustion Dynamics Initiative.

  13. Volumetric image processing: A new technique for three-dimensional imaging

    International Nuclear Information System (INIS)

    Fishman, E.K.; Drebin, B.; Magid, D.; St Ville, J.A.; Zerhouni, E.A.; Siegelman, S.S.; Ney, D.R.

    1986-01-01

    Volumetric three-dimensional (3D) image processing was performed on CT scans of 25 normal hips, and image quality and potential diagnostic applications were assessed. In contrast to surface detection 3D techniques, volumetric processing preserves every pixel of transaxial CT data, replacing the gray scale with transparent ''gels'' and shading. Anatomically, accurate 3D images can be rotated and manipulated in real time, including simulated tissue layer ''peeling'' and mock surgery or disarticulation. This pilot study suggests that volumetric rendering is a major advance in signal processing of medical image data, producing a high quality, uniquely maneuverable image that is useful for fracture interpretation, soft-tissue analysis, surgical planning, and surgical rehearsal

  14. Influential sources affecting Bangkok adolescent body image perceptions.

    Science.gov (United States)

    Thianthai, Chulanee

    2006-01-01

    The study of body image-related problems in non-Western countries is still very limited. Thus, this study aims to identify the main influential sources and show how they affect the body image perceptions of Bangkok adolescents. The researcher recruited 400 Thai male and female adolescents in Bangkok, attending high school to freshmen level, ranging from 16-19 years, to participate in this study. Survey questionnaires were distributed to every student and follow-up interviews conducted with 40 students. The findings showed that there are eight main influential sources respectively ranked from the most influential to the least influential: magazines, television, peer group, familial, fashion trend, the opposite gender, self-realization and health knowledge. Similar to those studies conducted in Western countries, more than half of the total percentage was the influence of mass media and peer groups. Bangkok adolescents also internalized Western ideal beauty through these mass media channels. Alike studies conducted in the West, there was similarities in the process of how these influential sources affect Bangkok adolescent body image perception, with the exception of familial source. In conclusion, taking the approach of identifying the main influential sources and understanding how they affect adolescent body image perceptions can help prevent adolescents from having unhealthy views and taking risky measures toward their bodies. More studies conducted in non-Western countries are needed in order to build a cultural sensitive program, catered to the body image problems occurring in adolescents within that particular society.

  15. SIproc: an open-source biomedical data processing platform for large hyperspectral images.

    Science.gov (United States)

    Berisha, Sebastian; Chang, Shengyuan; Saki, Sam; Daeinejad, Davar; He, Ziqi; Mankar, Rupali; Mayerich, David

    2017-04-10

    There has recently been significant interest within the vibrational spectroscopy community to apply quantitative spectroscopic imaging techniques to histology and clinical diagnosis. However, many of the proposed methods require collecting spectroscopic images that have a similar region size and resolution to the corresponding histological images. Since spectroscopic images contain significantly more spectral samples than traditional histology, the resulting data sets can approach hundreds of gigabytes to terabytes in size. This makes them difficult to store and process, and the tools available to researchers for handling large spectroscopic data sets are limited. Fundamental mathematical tools, such as MATLAB, Octave, and SciPy, are extremely powerful but require that the data be stored in fast memory. This memory limitation becomes impractical for even modestly sized histological images, which can be hundreds of gigabytes in size. In this paper, we propose an open-source toolkit designed to perform out-of-core processing of hyperspectral images. By taking advantage of graphical processing unit (GPU) computing combined with adaptive data streaming, our software alleviates common workstation memory limitations while achieving better performance than existing applications.

  16. Computerized tomography using high resolution X-ray imaging system with a microfocus source

    International Nuclear Information System (INIS)

    Zaprazny, Z.; Korytar, D.; Konopka, P.; Ac, V.; Bielecki, J.

    2011-01-01

    In recent years there is an effort to image an internal structure of an object by using not only conventional 2D X-ray radiography but also using high resolution 3D tomography which is based on reconstruction of multiple 2D projections at various angular positions of the object. We have previously reported [1] the development and basic parameters of a high resolution x-ray imaging system with a microfocus source. We report the recent progress using this high resolution X-ray laboratory system in this work. These first findings show that our system is particularly suitable for light weight and nonmetallic objects such as biological objects, plastics, wood, paper, etc. where phase contrast helps to increase the visibility of the finest structures of the object. Phase-contrast X-ray Computerized Tomography is of our special interest because it is an emerging imaging technique that can be implemented at third generation synchrotron radiation sources and also in laboratory conditions using a microfocus X-ray tube or beam conditioning optics. (authors)

  17. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major ...

  18. Combined neutron imaging techniques for cultural heritage purpose

    International Nuclear Information System (INIS)

    Materna, T.

    2009-01-01

    This article presents the different new neutron techniques developed by the Ancient Charm collaboration to image objects of cultural heritage importance: Prompt-gamma-ray activation imaging (PGAI) coupled to cold/thermal neutron transmission tomography, Neutron Resonance Capture Imaging (NRCI) and Neutron Resonance Tomography.

  19. Video Multiple Watermarking Technique Based on Image Interlacing Using DWT

    Directory of Open Access Journals (Sweden)

    Mohamed M. Ibrahim

    2014-01-01

    Full Text Available Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  20. Video multiple watermarking technique based on image interlacing using DWT.

    Science.gov (United States)

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  1. A Stochastic Imaging Technique for Spatio-Spectral Characterization of Special Nuclear Material

    Science.gov (United States)

    Hamel, Michael C.

    Radiation imaging is advantageous for detecting, locating and characterizing special nuclear material (SNM) in complex environments. A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. The steady-state solution produced by this iterative method will have poor quality compared to solutions produced with fewer iterations. A stopping condition is required to achieve a better solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a good candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution that has image quality comparable to the best MLEM solution. The application of SOE to the DPI is presented in this work. SOE was originally applied in medical imaging applications with no mechanism to isolate spectral information based on location. This capability is critical for non-proliferation applications as complex radiation environments with multiple sources are often encountered. This dissertation extends the SOE algorithm to produce spatially dependent spectra and presents experimental result showing that the technique was effective for isolating a 4.1-kg mass of weapons grade plutonium (WGPu) when other neutron and gamma-ray sources were present. This work also demonstrates the DPI as an effective tool for localizing and characterizing highly enriched uranium (HEU). A series of experiments were performed with the DPI using a deuterium-deuterium (DD) and deuterium-tritium (DT) neutron generator, as well as

  2. Meniscal tears: comparison of half-Fourier technique and conventional MR imaging

    International Nuclear Information System (INIS)

    Shabana, Wael; Maeseneer, Michel de; Machiels, Freddy; Ridder, Filip de; Osteaux, Michel

    2003-01-01

    Purpose: To determine whether half-Fourier MR image acquisition technique can provide similar information to that of conventional MR acquisition technique for evaluation of meniscal tears. Materials and methods: We studied 101 menisci in 52 patients who were referred for evaluation of meniscal tears. Sagittal MR images of the knee were obtained for all patients by using proton density and T2-weighted SE sequences on a 1-T clinical system. The half-Fourier technique and conventional technique were used for all patients. All other imaging parameters were identical for both sequences (TR/TE=2400/20,70; 3 mm slice thickness; 200x256 matrix; field of view, 200; one signal acquired). Both sets of images were filmed with standard window and level settings. Images were randomised and interpreted independently by two radiologists for the presence of meniscal tears. Images were also subjectively assessed for image quality using a five-point grading scale. Results: On half-Fourier images, Reader 1 interpreted 23 menisci as torn, compared to 28 for Reader 2. On conventional images, Reader 1 interpreted 24 menisci as torn, compared to 26 for Reader 2. Agreement between interpretation of the conventional and that of the half-Fourier images was 99% for Reader 1, and 98% for Reader 2. Agreement between readers for the half-Fourier images was 95%, and for the conventional images 96%. No statistically significant difference was found in the subjective evaluation of image quality between the conventional and half-Fourier images. Conclusion: The half-Fourier acquisition technique compares favourably with the conventional technique for the evaluation of meniscal tears

  3. OSIRIX: open source multimodality image navigation software

    Science.gov (United States)

    Rosset, Antoine; Pysher, Lance; Spadola, Luca; Ratib, Osman

    2005-04-01

    The goal of our project is to develop a completely new software platform that will allow users to efficiently and conveniently navigate through large sets of multidimensional data without the need of high-end expensive hardware or software. We also elected to develop our system on new open source software libraries allowing other institutions and developers to contribute to this project. OsiriX is a free and open-source imaging software designed manipulate and visualize large sets of medical images: http://homepage.mac.com/rossetantoine/osirix/

  4. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tan, Sirui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lin, Youzuo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Kai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-10

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismic data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.

  5. LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images.

    Science.gov (United States)

    Wang, Li; Gao, Yaozong; Shi, Feng; Li, Gang; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2015-03-01

    Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination processes. In the first year of life, the image contrast between white and gray matters of the infant brain undergoes dramatic changes. In particular, the image contrast is inverted around 6-8months of age, and the white and gray matter tissues are isointense in both T1- and T2-weighted MR images and thus exhibit the extremely low tissue contrast, which poses significant challenges for automated segmentation. Most previous studies used multi-atlas label fusion strategy, which has the limitation of equally treating the different available image modalities and is often computationally expensive. To cope with these limitations, in this paper, we propose a novel learning-based multi-source integration framework for segmentation of infant brain images. Specifically, we employ the random forest technique to effectively integrate features from multi-source images together for tissue segmentation. Here, the multi-source images include initially only the multi-modality (T1, T2 and FA) images and later also the iteratively estimated and refined tissue probability maps of gray matter, white matter, and cerebrospinal fluid. Experimental results on 119 infants show that the proposed method achieves better performance than other state-of-the-art automated segmentation methods. Further validation was performed on the MICCAI grand challenge and the proposed method was ranked top among all competing methods. Moreover, to alleviate the possible anatomical errors, our method can also be combined with an anatomically-constrained multi-atlas labeling approach for further improving the segmentation accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Zone-plate coded imaging of thermonuclear burn

    International Nuclear Information System (INIS)

    Ceglio, N.M.

    1978-01-01

    The first high-resolution, direct images of the region of thermonuclear burn in laser fusion experiments have been produced using a novel, two-step imaging technique called zone-plate coded imaging. This technique is extremely versatile and well suited for the microscopy of laser fusion targets. It has a tomographic capability, which provides three-dimensional images of the source distribution. It is equally useful for imaging x-ray and particle emissions. Since this technique is much more sensitive than competing imaging techniques, it permits us to investigate low-intensity sources

  7. Image accuracy and representational enhancement through low-level, multi-sensor integration techniques

    International Nuclear Information System (INIS)

    Baker, J.E.

    1993-05-01

    Multi-Sensor Integration (MSI) is the combining of data and information from more than one source in order to generate a more reliable and consistent representation of the environment. The need for MSI derives largely from basic ambiguities inherent in our current sensor imaging technologies. These ambiguities exist as long as the mapping from reality to image is not 1-to-1. That is, if different 44 realities'' lead to identical images, a single image cannot reveal the particular reality which was the truth. MSI techniques can be divided into three categories based on the relative information content of the original images with that of the desired representation: (1) ''detail enhancement,'' wherein the relative information content of the original images is less rich than the desired representation; (2) ''data enhancement,'' wherein the MSI techniques axe concerned with improving the accuracy of the data rather than either increasing or decreasing the level of detail; and (3) ''conceptual enhancement,'' wherein the image contains more detail than is desired, making it difficult to easily recognize objects of interest. In conceptual enhancement one must group pixels corresponding to the same conceptual object and thereby reduce the level of extraneous detail. This research focuses on data and conceptual enhancement algorithms. To be useful in many real-world applications, e.g., autonomous or teleoperated robotics, real-time feedback is critical. But, many MSI/image processing algorithms require significant processing time. This is especially true of feature extraction, object isolation, and object recognition algorithms due to their typical reliance on global or large neighborhood information. This research attempts to exploit the speed currently available in state-of-the-art digitizers and highly parallel processing systems by developing MSI algorithms based on pixel rather than global-level features

  8. Advanced imaging techniques in pediatric body MRI

    Energy Technology Data Exchange (ETDEWEB)

    Courtier, Jesse [UCSF Benioff Children' s Hospital, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology, Charleston, SC (United States); Anupindi, Sudha A. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2017-05-15

    While there are many challenges specific to pediatric abdomino-pelvic MRI, many recent advances are addressing these challenges. It is therefore essential for radiologists to be familiar with the latest advances in MR imaging. Laudable efforts have also recently been implemented in many centers to improve the overall experience of pediatric patients, including the use of dedicated radiology child life specialists, MRI video goggles, and improved MR suite environments. These efforts have allowed a larger number of children to be scanned while awake, with fewer studies being done under sedation or anesthesia; this has resulted in additional challenges from patient motion and difficulties with breath-holding and tolerating longer scan times. In this review, we highlight common challenges faced in imaging the pediatric abdomen and pelvis and discuss the application of the newest techniques to address these challenges. Additionally, we highlight the newest advances in quantified imaging techniques, specifically in MR liver iron quantification. The techniques described in this review are all commercially available and can be readily implemented. (orig.)

  9. Random laser illumination: an ideal source for biomedical polarization imaging?

    Science.gov (United States)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.

    2016-03-01

    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  10. Reducing the absorbed dose in analogue radiography of infant chest images by improving the image quality, using image processing techniques

    International Nuclear Information System (INIS)

    Karimian, A.; Yazdani, S.; Askari, M. A.

    2011-01-01

    Radiographic inspection is one of the most widely employed techniques for medical testing methods. Because of poor contrast and high un-sharpness of radiographic image quality in films, converting radiographs to a digital format and using further digital image processing is the best method of enhancing the image quality and assisting the interpreter in their evaluation. In this research work, radiographic films of 70 infant chest images with different sizes of defects were selected. To digitise the chest images and employ image processing the two algorithms (i) spatial domain and (ii) frequency domain techniques were used. The MATLAB environment was selected for processing in the digital format. Our results showed that by using these two techniques, the defects with small dimensions are detectable. Therefore, these suggested techniques may help medical specialists to diagnose the defects in the primary stages and help to prevent more repeat X-ray examination of paediatric patients. (authors)

  11. Enhancement of SAR images using fuzzy shrinkage technique

    Indian Academy of Sciences (India)

    This paper presents speckle noise reduction in SAR images using a combination of curvelet and fuzzy logic technique to restore speckle-affected images. This method overcomes the limitation of discontinuity in hard threshold and permanent deviation in soft threshold. First, it decomposes noise image into different ...

  12. Preliminary Results of Nuclear Fluorescence Imaging of Alpha and Beta Emitting Sources

    International Nuclear Information System (INIS)

    Feener, Jessica S.; Charlton, William S.

    2013-06-01

    The preliminary results from a series of nuclear fluorescence imaging experiments using a variety of radioactive sources and shielding are given. These experiments were done as part of a proof of concept to determine if nuclear fluorescence imaging could be used as a safeguards measurements tool or for nuclear warhead verification for nuclear arms control treaties such as the New Strategic Arms Reduction Treaty and the Fissile Material Cut-Off Treaty. An off-the-shelf Princeton Instruments charged coupled device camera system was used to image the emission of fluorescence photons from the de-excitation of nitrogen molecules in air that have been excited by ionizing radiation. The fluorescence emissions are primarily in the near ultraviolet range; between the wavelengths of 300 and 400 nm. Fluorescent imaging techniques are currently being investigated in a number of applications. A French research team has successfully demonstrated this concept for remote imaging of alpha contamination. It has also been shown that the phenomenon can be seen through translucent materials and that alpha radiation can be seen in the presence of large gamma backgrounds. Additionally, fluorescence telescopes and satellites utilize the de-excitation of nitrogen molecules to observe cosmic ray showers in the atmosphere. In cosmic ray shower detection, electrons are the main contributor to the excitation of the of nitrogen molecules in air. The experiments presented in this paper were designed to determine if the imaging system could observe beta emitting sources, differentiate between beta emitters and alpha emitting materials such as uranium oxide and uranium metal, and to further investigate the phenomenon through translucent and non-translucent materials. The initial results show that differentiation can be made between beta and alpha emitting sources and that the device can observe the phenomenon through very thin non-transparent material. Additionally, information is given on the

  13. Absolute calibration technique for spontaneous fission sources

    International Nuclear Information System (INIS)

    Zucker, M.S.; Karpf, E.

    1984-01-01

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  14. Steganalysis Techniques for Documents and Images

    Science.gov (United States)

    2005-05-01

    steganography . We then illustrated the efficacy of our model using variations of LSB steganography . For binary images , we have made significant progress in...efforts have focused on two areas. The first area is LSB steganalysis for grayscale images . Here, as we had proposed (as a challenging task), we have...generalized our previous steganalysis technique of sample pair analysis to a theoretical framework for the detection of the LSB steganography . The new

  15. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance... and spatial co-ordinates into discrete components. The mathematical concepts involved are the sampling and transform theory. Two dimensional transforms are used for image enhancement, restoration, encoding and description too. The main objective of the image...

  16. Coronary imaging techniques with emphasis on CT and MRI

    International Nuclear Information System (INIS)

    Lederlin, Mathieu; Latrabe, Valerie; Corneloup, Olivier; Cochet, Hubert; Montaudon, Michel; Laurent, Francois; Thambo, Jean-Benoit

    2011-01-01

    Coronary artery imaging in children is challenging, with high demands both on temporal and spatial resolution due to high heart rates and smaller anatomy. Although invasive conventional coronary angiography remains the benchmark technique, over the past 10 years, CT and MRI have emerged in the field of coronary imaging. The choice of hardware is important. For CT, the minimum requirement is a 64-channel scanner. The temporal resolution of the scanner is most important for optimising image quality and minimising radiation dose. Manufacturers have developed several modes of electrocardiographic (ECG) triggering to facilitate dose reduction. Recent technical advances have opened new possibilities in MRI coronary imaging. As a non-ionising radiation technique, MRI is of great interest in paediatric imaging. It is currently recommended in centres with appropriate expertise for the screening of patients with suspected congenital coronary anomalies. However, MRI is still not feasible in infants. This review describes and discusses the technical requirements and the pros and cons of all three techniques. (orig.)

  17. A general technique for interstudy registration of multifunction and multimodality images

    International Nuclear Information System (INIS)

    Lin, K.P.; Huang, S.C.; Bacter, L.R.; Phelps, M.E.

    1994-01-01

    A technique that can register anatomic/structural brain images (e.g., MRI) with various functional images (e.g., PET-FDG and PET-FDOPA) of the same subject has been developed. The procedure of this technique includes the following steps: (1) segmentation of MRI brain images into gray matter (GM), white matter (WM), cerebral spinal fluid (CSF), and, muscle (MS) components, (2) assignment of appropriate radio-tracer concentrations to various components depending on the kind of functional image that is being registered, (3) generation of simulated functional images to have a spatial resolution that is comparable to that of the measured ones, (4) alignment of the measured functional images to the simulated ones that are based on MRI images. A self-organization clustering method is used to segment the MRI images. The image alignment is based on the criterion of least squares of the pixel-by-pixel differences between the two sets of images that are being matched and on the Powell's algorithm for minimization. The technique was applied successfully for registering the MRI, PET-FDG, and PET-FDOPA images. This technique offers a general solution to the registration of structural images to functional images and to the registration of different functional images of markedly different distributions

  18. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and

  19. An application of image processing techniques in computed tomography image analysis

    DEFF Research Database (Denmark)

    McEvoy, Fintan

    2007-01-01

    number of animals and image slices, automation of the process was desirable. The open-source and free image analysis program ImageJ was used. A macro procedure was created that provided the required functionality. The macro performs a number of basic image processing procedures. These include an initial...... process designed to remove the scanning table from the image and to center the animal in the image. This is followed by placement of a vertical line segment from the mid point of the upper border of the image to the image center. Measurements are made between automatically detected outer and inner...... boundaries of subcutaneous adipose tissue along this line segment. This process was repeated as the image was rotated (with the line position remaining unchanged) so that measurements around the complete circumference were obtained. Additionally, an image was created showing all detected boundary points so...

  20. TH-CD-202-04: Evaluation of Virtual Non-Contrast Images From a Novel Split-Filter Dual-Energy CT Technique

    International Nuclear Information System (INIS)

    Huang, J; Szczykutowicz, T; Bayouth, J; Miller, J

    2016-01-01

    Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between the acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials

  1. TH-CD-202-04: Evaluation of Virtual Non-Contrast Images From a Novel Split-Filter Dual-Energy CT Technique

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J; Szczykutowicz, T; Bayouth, J; Miller, J [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between the acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials

  2. Full field image reconstruction is suitable for high-pitch dual-source computed tomography.

    Science.gov (United States)

    Mahnken, Andreas H; Allmendinger, Thomas; Sedlmair, Martin; Tamm, Miriam; Reinartz, Sebastian D; Flohr, Thomas

    2012-11-01

    The field of view (FOV) in high-pitch dual-source computed tomography (DSCT) is limited by the size of the second detector. The goal of this study was to develop and evaluate a full FOV image reconstruction technique for high-pitch DSCT. For reconstruction beyond the FOV of the second detector, raw data of the second system were extended to the full dimensions of the first system, using the partly existing data of the first system in combination with a very smooth transition weight function. During the weighted filtered backprojection, the data of the second system were applied with an additional weighting factor. This method was tested for different pitch values from 1.5 to 3.5 on a simulated phantom and on 25 high-pitch DSCT data sets acquired at pitch values of 1.6, 2.0, 2.5, 2.8, and 3.0. Images were reconstructed with FOV sizes of 260 × 260 and 500 × 500 mm. Image quality was assessed by 2 radiologists using a 5-point Likert scale and analyzed with repeated-measure analysis of variance. In phantom and patient data, full FOV image quality depended on pitch. Where complete projection data from both tube-detector systems were available, image quality was unaffected by pitch changes. Full FOV image quality was not compromised at pitch values of 1.6 and remained fully diagnostic up to a pitch of 2.0. At higher pitch values, there was an increasing difference in image quality between limited and full FOV images (P = 0.0097). With this new image reconstruction technique, full FOV image reconstruction can be used up to a pitch of 2.0.

  3. An enhanced approach for biomedical image restoration using image fusion techniques

    Science.gov (United States)

    Karam, Ghada Sabah; Abbas, Fatma Ismail; Abood, Ziad M.; Kadhim, Kadhim K.; Karam, Nada S.

    2018-05-01

    Biomedical image is generally noisy and little blur due to the physical mechanisms of the acquisition process, so one of the common degradations in biomedical image is their noise and poor contrast. The idea of biomedical image enhancement is to improve the quality of the image for early diagnosis. In this paper we are using Wavelet Transformation to remove the Gaussian noise from biomedical images: Positron Emission Tomography (PET) image and Radiography (Radio) image, in different color spaces (RGB, HSV, YCbCr), and we perform the fusion of the denoised images resulting from the above denoising techniques using add image method. Then some quantive performance metrics such as signal -to -noise ratio (SNR), peak signal-to-noise ratio (PSNR), and Mean Square Error (MSE), etc. are computed. Since this statistical measurement helps in the assessment of fidelity and image quality. The results showed that our approach can be applied of Image types of color spaces for biomedical images.

  4. Imaging of Hip Pain: From Radiography to Cross-Sectional Imaging Techniques

    International Nuclear Information System (INIS)

    Ruiz Santiago, Fernando; Santiago Chinchilla, Alicia; Ansari, Afshin; Guzmán Álvarez, Luis; Castellano García, Maria del Mar; Martínez Martínez, Alberto; Tercedor Sánchez, Juan

    2016-01-01

    Hip pain can have multiple causes, including intra-articular, juxta-articular, and referred pain, mainly from spine or sacroiliac joints. In this review, we discuss the causes of intra-articular hip pain from childhood to adulthood and the role of the appropriate imaging techniques according to clinical suspicion and age of the patient. Stress is put on the findings of radiographs, currently considered the first imaging technique, not only in older people with degenerative disease but also in young people without osteoarthritis. In this case plain radiography allows categorization of the hip as normal or dysplastic or with impingement signs, pincer, cam, or a combination of both

  5. TOF-SIMS imaging technique with information entropy

    International Nuclear Information System (INIS)

    Aoyagi, Satoka; Kawashima, Y.; Kudo, Masahiro

    2005-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is capable of chemical imaging of proteins on insulated samples in principal. However, selection of specific peaks related to a particular protein, which are necessary for chemical imaging, out of numerous candidates had been difficult without an appropriate spectrum analysis technique. Therefore multivariate analysis techniques, such as principal component analysis (PCA), and analysis with mutual information defined by information theory, have been applied to interpret SIMS spectra of protein samples. In this study mutual information was applied to select specific peaks related to proteins in order to obtain chemical images. Proteins on insulated materials were measured with TOF-SIMS and then SIMS spectra were analyzed by means of the analysis method based on the comparison using mutual information. Chemical mapping of each protein was obtained using specific peaks related to each protein selected based on values of mutual information. The results of TOF-SIMS images of proteins on the materials provide some useful information on properties of protein adsorption, optimality of immobilization processes and reaction between proteins. Thus chemical images of proteins by TOF-SIMS contribute to understand interactions between material surfaces and proteins and to develop sophisticated biomaterials

  6. Analysis of the image of pion-emitting sources in the source center-of-mass frame

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yanyu; Feng, Qichun; Huo, Lei; Zhang, Jingbo; Liu, Jianli; Tang, Guixin [Harbin Institute of Technology, Department of Physics, Harbin, Heilongjiang (China); Zhang, Weining [Harbin Institute of Technology, Department of Physics, Harbin, Heilongjiang (China); Dalian University of Technology, School of Physics and Optoelectronic Technology, Dalian, Liaoning (China)

    2017-08-15

    In this paper, we try a method to extract the image of pion-emitting source function in the center-of-mass frame of the source (CMFS). We choose identical pion pairs according to the difference of their energy and use these pion pairs to build the correlation function. The purpose is to reduce the effect of ΔEΔt, thus the corresponding imaging result can tend to the real source function. We examine the effect of this method by comparing its results with real source functions extracted from models directly. (orig.)

  7. PySE: Python Source Extractor for radio astronomical images

    Science.gov (United States)

    Spreeuw, Hanno; Swinbank, John; Molenaar, Gijs; Staley, Tim; Rol, Evert; Sanders, John; Scheers, Bart; Kuiack, Mark

    2018-05-01

    PySE finds and measures sources in radio telescope images. It is run with several options, such as the detection threshold (a multiple of the local noise), grid size, and the forced clean beam fit, followed by a list of input image files in standard FITS or CASA format. From these, PySe provides a list of found sources; information such as the calculated background image, source list in different formats (e.g. text, region files importable in DS9), and other data may be saved. PySe can be integrated into a pipeline; it was originally written as part of the LOFAR Transient Detection Pipeline (TraP, ascl:1412.011).

  8. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  9. Panoramic dental radiography image intensification employing minification techniques

    International Nuclear Information System (INIS)

    Cushman, R.H.

    1981-01-01

    Panoramic dental x-ray machine wherein an x-ray source-camera assembly orbits a seated patient is described. A slot in the camera assembly collimates the x-rays which are continuously generated by the x-ray source, which x-rays are converted to light images of the patient's dental arch structure by only a single intensifying screen which remains stationary. This screen comprises about 1/40 the area of conventional intensifying screens and is made thicker for providing improved detection efficiency. A fiber optic minifying lens reduces the size of the image from the screen while proportionately increasing the light intensity of the image, thus making it possible to provide useable film images at reduced x-ray exposures due to non-linear film exposure versus optical density characteristics. The resultant minified, light-intensified image may now be recorded on 35 mm roll film, for example, as opposed to standard radiographic film of 5'' X 12'' size, or 12.70 cm X 30.48 cm

  10. Upright CBCT: A novel imaging technique

    Directory of Open Access Journals (Sweden)

    Xenia J Fave

    2014-03-01

    Full Text Available Purpose: We present a method for acquiring and correcting upright images using the on board CBCT imager. An upright imaging technique would allow for the introduction of upright radiation therapy treatments, which would benefit a variety of patients including those with thoracic cancers whose lung volumes are increased in an upright position and those who experience substantial discomfort during supine treatment positions.Methods: To acquire upright CBCT images, the linac head was positioned at 0 degrees, the KV imager and detector arms extended to their lateral positions, and the couch placed at 270 degrees. The KV imager was programmed to begin taking continuous fluoroscopic projections as the couch rotated from 270 to 90 degrees. The FOV was extended by performing this procedure twice, once with the detector shifted 14.5 cm towards the gantry and once with it shifted 14.5 cm away from the gantry. The two resulting sets of images were stitched together prior to reconstruction. The imaging parameters were chosen to deliver the some dose as that delivered during a simulation CT. A simulation CT was deformably registered to an upright CBCT reconstruction in order to evaluate the possibility of correcting the HU values via mapping.Results: Both spatial linearity and high contrast resolution were maintained in upright CBCT when compared to a simulation CT. Low contrast resolution and HU linearity decreased. Streaking artifacts were caused by the limited 180 degree arc angle and a sharp point artifact in the center of the axial slices resulted at the site of the stitching. A method for correcting the HUs was shown to be robust against these artifacts.Conclusion: Upright CBCT could be of great benefit to many patients. This study demonstrates its feasibility and presents solutions to some of its first hurdles before clinical implementation.--------------------------Cite this article as:Fave X, Yang J, Balter P, Court L. Upright CBCT: A novel imaging

  11. X-ray film digitization using a personal computer and hand-held scanner: a simple technique for storing images

    International Nuclear Information System (INIS)

    Munoz-Nunez, C. F.; Lloret-Alcaniz, A.

    1998-01-01

    To develop a simple, low-cost technique for the digitization of X-ray films for personal use. A 66-MHz 486 PC with 8 MB of RAM, a Logitech ScanMan 256 hand-held scanner and a standard negatoscope with the power source converted to direct current. Although the system was originally designed for the digitization of mammographies, it has also been used with computed tomography, magnetic resonance, digital angiography and ultrasonographic images, as well as plain X-rays. After a minimal training period, the system digitized X-ray films easily and rapidly. Although the scanning values vary depending on the type of image to be digitized, an input spatial resolution of 200 dpi and a contrast resolution of 256 levels of gray are generally adequate. Of the storage formats tested, JPEG presented the best quality/image size ratio. A simple, low-cost technique has been developed for the digitization of X-ray films. This technique enables the storage of images in a digital format, thus facilitating their presentation and transmission. (Author) 9 refs

  12. Comparison of mosaicking techniques for airborne images from consumer-grade cameras

    Science.gov (United States)

    Song, Huaibo; Yang, Chenghai; Zhang, Jian; Hoffmann, Wesley Clint; He, Dongjian; Thomasson, J. Alex

    2016-01-01

    Images captured from airborne imaging systems can be mosaicked for diverse remote sensing applications. The objective of this study was to identify appropriate mosaicking techniques and software to generate mosaicked images for use by aerial applicators and other users. Three software packages-Photoshop CC, Autostitch, and Pix4Dmapper-were selected for mosaicking airborne images acquired from a large cropping area. Ground control points were collected for georeferencing the mosaicked images and for evaluating the accuracy of eight mosaicking techniques. Analysis and accuracy assessment showed that Pix4Dmapper can be the first choice if georeferenced imagery with high accuracy is required. The spherical method in Photoshop CC can be an alternative for cost considerations, and Autostitch can be used to quickly mosaic images with reduced spatial resolution. The results also showed that the accuracy of image mosaicking techniques could be greatly affected by the size of the imaging area or the number of the images and that the accuracy would be higher for a small area than for a large area. The results from this study will provide useful information for the selection of image mosaicking software and techniques for aerial applicators and other users.

  13. Evaluation of the low dose cardiac CT imaging using ASIR technique

    Science.gov (United States)

    Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter

    2010-04-01

    Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.

  14. Computer technique for correction of nonhomogeneous distribution in radiologic images

    International Nuclear Information System (INIS)

    Florian, Rogerio V.; Frere, Annie F.; Schiable, Homero; Marques, Paulo M.A.; Marques, Marcio A.

    1996-01-01

    An image processing technique to provide a 'Heel' effect compensation on medical images is presented. It is reported that the technique can improve the structures detection due to background homogeneity and can be used for any radiologic system

  15. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques.

    Science.gov (United States)

    Wintermark, M; Sanelli, P C; Anzai, Y; Tsiouris, A J; Whitlow, C T

    2015-02-01

    Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge. © 2015 by American Journal of Neuroradiology.

  16. A tunable continuous wave (CW) and short-pulse optical source for THz brain imaging applications

    International Nuclear Information System (INIS)

    Bakopoulos, P; Karanasiou, I; Zakynthinos, P; Uzunoglu, N; Avramopoulos, H; Pleros, N

    2009-01-01

    We demonstrate recent advances toward the development of a novel 2D THz imaging system for brain imaging applications both at the macroscopic and at the bimolecular level. A frequency-synthesized THz source based on difference frequency generation between optical wavelengths is presented, utilizing supercontinuum generation in a highly nonlinear optical fiber with subsequent spectral carving by means of a fiber Fabry–Perot filter. Experimental results confirm the successful generation of THz radiation in the range of 0.2–2 THz, verifying the enhanced frequency tunability properties of the proposed system. Finally, the roadmap toward capturing functional brain information by exploiting THz imaging technologies is discussed, outlining the unique advantages offered by THz frequencies and their complementarity with existing brain imaging techniques

  17. Identification of Low Coronal Sources of “Stealth” Coronal Mass Ejections Using New Image Processing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Alzate, Nathalia; Morgan, Huw, E-mail: naa19@aber.ac.uk [Institute of Mathematics, Physics and Computer Science Prifysgol Aberystwyth Ceredigion, Cymru SY23 3BZ (United Kingdom)

    2017-05-10

    Coronal mass ejections (CMEs) are generally associated with low coronal signatures (LCSs), such as flares, filament eruptions, extreme ultraviolet (EUV) waves, or jets. A number of recent studies have reported the existence of stealth CMEs as events without LCSs, possibly due to observational limitations. Our study focuses on a set of 40 stealth CMEs identified from a study by D’Huys et al. New image processing techniques are applied to high-cadence, multi-instrument sets of images spanning the onset and propagation time of each of these CMEs to search for possible LCSs. Twenty-three of these events are identified as small, low-mass, unstructured blobs or puffs, often occurring in the aftermath of a large CME, but associated with LCSs such as small flares, jets, or filament eruptions. Of the larger CMEs, seven are associated with jets and eight with filament eruptions. Several of these filament eruptions are different from the standard model of an erupting filament/flux tube in that they are eruptions of large, faint flux tubes that seem to exist at large heights for a long time prior to their slow eruption. For two of these events, we see an eruption in Large Angle Spectrometric Coronagraph C2 images and the consequent changes at the bottom edge of the eruption in EUV images. All 40 events in our study are associated with some form of LCS. We conclude that stealth CMEs arise from observational and processing limitations.

  18. Detection of Glaucoma Using Image Processing Techniques: A Critique.

    Science.gov (United States)

    Kumar, B Naveen; Chauhan, R P; Dahiya, Nidhi

    2018-01-01

    The primary objective of this article is to present a summary of different types of image processing methods employed for the detection of glaucoma, a serious eye disease. Glaucoma affects the optic nerve in which retinal ganglion cells become dead, and this leads to loss of vision. The principal cause is the increase in intraocular pressure, which occurs in open-angle and angle-closure glaucoma, the two major types affecting the optic nerve. In the early stages of glaucoma, no perceptible symptoms appear. As the disease progresses, vision starts to become hazy, leading to blindness. Therefore, early detection of glaucoma is needed for prevention. Manual analysis of ophthalmic images is fairly time-consuming and accuracy depends on the expertise of the professionals. Automatic analysis of retinal images is an important tool. Automation aids in the detection, diagnosis, and prevention of risks associated with the disease. Fundus images obtained from a fundus camera have been used for the analysis. Requisite pre-processing techniques have been applied to the image and, depending upon the technique, various classifiers have been used to detect glaucoma. The techniques mentioned in the present review have certain advantages and disadvantages. Based on this study, one can determine which technique provides an optimum result.

  19. Development of flow velocity measurement techniques in visible images. Improvement of particle image velocimetry techniques on image process

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Nishimura, Motohiko; Kamide, Hideki; Hishida, Koichi

    1999-10-01

    Noise reduction system was developed to improve applicability of Particle Image Velocimetry (PIV) to complicated configure bounded flows. For fast reactor safety and thermal hydraulic studies, experiments are performed in scale models which usually have rather complicated geometry and structures such as fuel subassemblies, heat exchangers, etc. The structures and stuck dusts on the view window of the models obscure the particle image. Thus the image except the moving particles can be regarded as a noise. In the present study, two noise reduction techniques are proposed. The one is the Time-averaged Light Intensity Subtraction method (TIS) which subtracts the time-averaged light intensity of each pixel in the sequential images from the each corresponding pixel. The other one is the Minimum Light Intensity Subtraction method (MIS) which subtracts the minimum light intensity of each pixel in the sequential images from the each corresponding pixel. Both methods are examined on their capabilities of noise reduction. As for the original 'bench mark' image, the image made from Large Eddy Simulation was used. To the bench mark image, noises are added which are referred as sample images. Both methods reduce the rate of vector with the error of more than one pixel from 90% to less than 5%. Also, more than 50% of the vectors have the error of less than 0.2 pixel. The analysis of uncertainty shows that these methods enhances the accuracy of vector measurement 3 ∼ 12 times if the image with noise were processed, and the MIS method has 1.1 ∼ 2.1 times accuracy compared to the TIS. Thus the present noise reduction methods are quite efficient to enhance the accuracy of flow velocity fields measured with particle images including structures and deposits on the view window. (author)

  20. Signal-to-noise ratio analysis and evaluation of the Hadamard imaging technique

    Science.gov (United States)

    Jobson, D. J.; Katzberg, S. J.; Spiers, R. B., Jr.

    1977-01-01

    The signal-to-noise ratio performance of the Hadamard imaging technique is analyzed and an experimental evaluation of a laboratory Hadamard imager is presented. A comparison between the performances of Hadamard and conventional imaging techniques shows that the Hadamard technique is superior only when the imaging objective lens is required to have an effective F (focus) number of about 2 or slower.

  1. Advanced imaging technology using carbon nanotube x ray source

    International Nuclear Information System (INIS)

    Choi, Hae Young; Seol, Seung Kown; Kim, Jaehoon; Yoo, Seung Hoon; Kim, Jong Uk

    2008-01-01

    Recently, X ray imaging technology is a useful and leading medical diagnostic tool for healthcare professionals to diagnose disease in human body. CNTs(i.e. carbon nanotubes)are used in many applications like FED, Micro wave amplifier, X ray source, etc. because of its suitable electrical, chemical and physical properties. Specially, CNTs are well used electron emitters for x ray source. Conventionally, thermionic type of tungsten filament x ray tube is widely employed in the field of bio medical and industrial application fields. However, intrinsic problems such as, poor emission efficiency and low imaging resolution cause the limitation of use of the x ray tube. To fulfill the current market requirement specifically for medical diagnostic field, we have developed rather a portable and compact CNT based x ray source in which high imaging resolution is provided. Electron sources used in X ray tubes should be well focused to the anode target for generation of high quality x ray. In this study, Pierce type x ray generation module was tested based its simulation results using by OPERA 3D code. Pierce type module is composed of cone type electrical lens with its number of them and inner angles of them that shows different results with these parameters. And some preliminary images obtained using the CNT x ray source were obtained. The represented images are the finger bone and teeth in human body. It is clear that the trabeculation shape is observed in finger bone. To obtain the finger bone image, tube currents of 250A at 42kV tube voltage was applied. The human tooth image, however, is somewhat unclear because the supplied voltage to the tube was limited to max. 50kV in the system developed. It should be noted that normally 60∼70kV of tube voltage is supplied in dental imaging. Considering these it should be emphasized that if the tube voltage is over 60kV then clearer image is possible. In this paper, we are discussed comparing between these experiment results and

  2. Near infrared spectral imaging of explosives using a tunable laser source

    Energy Technology Data Exchange (ETDEWEB)

    Klunder, G L; Margalith, E; Nguyen, L K

    2010-03-26

    Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

  3. Comparative study of image restoration techniques in forensic image processing

    Science.gov (United States)

    Bijhold, Jurrien; Kuijper, Arjan; Westhuis, Jaap-Harm

    1997-02-01

    In this work we investigated the forensic applicability of some state-of-the-art image restoration techniques for digitized video-images and photographs: classical Wiener filtering, constrained maximum entropy, and some variants of constrained minimum total variation. Basic concepts and experimental results are discussed. Because all methods appeared to produce different results, a discussion is given of which method is the most suitable, depending on the image objects that are questioned, prior knowledge and type of blur and noise. Constrained minimum total variation methods produced the best results for test images with simulated noise and blur. In cases where images are the most substantial part of the evidence, constrained maximum entropy might be more suitable, because its theoretical basis predicts a restoration result that shows the most likely pixel values, given all the prior knowledge used during restoration.

  4. Comparison of de-noising techniques of scintigraphic images; Comparaison de techniques de debruitage des images scintigraphiques

    Energy Technology Data Exchange (ETDEWEB)

    Kirkove, M.; Seret, A. [Liege Univ., Imagerie Medicale Experimentale, Institut de Physique (Belgium)

    2007-05-15

    Scintigraphic images are strongly affected by Poisson noise. This article presents the results of a comparison between de-noising methods for Poisson noise according to different criteria: the gain in signal-to-noise ratio, the preservation of resolution and contrast. and the visual quality. The wavelet techniques recently developed to de-noise Poisson noise limited images are divided into two groups based on: (1) the Haar representation. 1 (2) the transformation of Poisson noise into white Gaussian noise by the Haar-Fisz transform followed by a de-noising. In this study, three variants of the first group and three variants of the second. including the adaptative Wiener filter, four types of wavelet thresholding and the Bayesian method of Pizurica were compared to Metz and Hanning filters and to Shine, a systematic noise elimination process. All these methods, except Shine, are parametric. For each of them, ranges of optimal values for the parameters were highlighted as a function of the aforementioned criteria. The intersection of ranges for the wavelet methods without thresholding was empty, and these methods were therefore not further compared quantitatively. The thresholding techniques and Shine gave the best results in resolution and contrast. The largest improvement in signal-to-noise ratio was obtained by the filters. Ideally, these filters should be accurately defined for each image. This is difficult in the clinical context. Moreover. they generate oscillation artefacts. In addition, the wavelet techniques did not bring significant improvements, and are rather slow. Therefore, Shine, which is fast and works automatically, appears to be an interesting alternative. (authors)

  5. Prognostic aspects on the development of imaging techniques

    International Nuclear Information System (INIS)

    Biehl, H.

    1985-01-01

    The development of imaging techniques designed for medical diagnostics and their application within the health service system are forecast up to the year 2000. The changes in the structure of the imaging methods that are to be expected in the GDR are outlined. Considering the users' needs and demands to be met by the manufacturers, in the long-term forecast it is dealt with more specifically with X-ray techniques, computer tomography, ultrasonic diagnostics, video endoscopy and the use of expert systems. (author)

  6. Dual-source CT cardiac imaging: initial experience

    International Nuclear Information System (INIS)

    Johnson, Thorsten R.C.; Nikolaou, Konstantin; Wintersperger, Bernd J.; Rist, Carsten; Buhmann, Sonja; Reiser, Maximilian F.; Becker, Christoph R.; Leber, Alexander W.; Ziegler, Franz von; Knez, Andreas

    2006-01-01

    The relation of heart rate and image quality in the depiction of coronary arteries, heart valves and myocardium was assessed on a dual-source computed tomography system (DSCT). Coronary CT angiography was performed on a DSCT (Somatom Definition, Siemens) with high concentration contrast media (Iopromide, Ultravist 370, Schering) in 24 patients with heart rates between 44 and 92 beats per minute. Images were reconstructed over the whole cardiac cycle in 10% steps. Two readers independently assessed the image quality with regard to the diagnostic evaluation of right and left coronary artery, heart valves and left ventricular myocardium for the assessment of vessel wall changes, coronary stenoses, valve morphology and function and ventricular function on a three point grading scale. The image quality ratings at the optimal reconstruction interval were 1.24±0.42 for the right and 1.09±0.27 for the left coronary artery. A reconstruction of diagnostic systolic and diastolic images is possible for a wide range of heart rates, allowing also a functional evaluation of valves and myocardium. Dual-source CT offers very robust diagnostic image quality in a wide range of heart rates. The high temporal resolution now also makes a functional evaluation of the heart valves and myocardium possible. (orig.)

  7. Measurement and Image Processing Techniques for Particle Image Velocimetry Using Solid-Phase Carbon Dioxide

    Science.gov (United States)

    2014-03-27

    stereoscopic PIV: the angular displacement configuration and the translation configuration. The angular displacement configuration is most commonly used today...images were processed using ImageJ, an open-source, Java -based image processing software available from the National Institute of Health (NIH). The

  8. HIGH-RESOLUTION IMAGING OF THE ATLBS REGIONS: THE RADIO SOURCE COUNTS

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, K.; Subrahmanyan, R.; Saripalli, L.; Ekers, R. D., E-mail: kshitij@rri.res.in [Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

    2013-01-01

    The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6'' angular resolution and 72 {mu}Jy beam{sup -1} rms noise. The images (centered at R.A. 00{sup h}35{sup m}00{sup s}, decl. -67 Degree-Sign 00'00'' and R.A. 00{sup h}59{sup m}17{sup s}, decl. -67 Degree-Sign 00'00'', J2000 epoch) cover 8.42 deg{sup 2} sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50''. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists-as opposed to component lists-and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.

  9. Techniques for combining isotopic images obtained at different energies

    International Nuclear Information System (INIS)

    Soussaline, F.; Di Paola, R.; Bazin, J.P.

    1976-01-01

    The technique described should be considered as a first step towards the classification of scintigraphic data where the energy is included. As in all such studies the interpretation of the resulting images is not necessarily at first evident, and certain experience needs to be established. This applies in particular to the images obtained with the higher factors. It is possible that the use of this technique may resolve, without requiring a priori information, the problem previously encountered using the other 'subtraction' type techniques [fr

  10. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    Science.gov (United States)

    Zhang, Yingchun; Wang, Dan; Timm, Gerald W.

    2010-11-01

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.

  11. A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities

    International Nuclear Information System (INIS)

    Li Guang; Xie Huchen; Ning, Holly; Capala, Jacek; Arora, Barbara C.; Coleman, C. Norman; Camphausen, Kevin; Miller, Robert W.

    2005-01-01

    Purpose: To provide more clinically useful image registration with improved accuracy and reduced time, a novel technique of three-dimensional (3D) volumetric voxel registration of multimodality images is developed. Methods and Materials: This technique can register up to four concurrent images from multimodalities with volume view guidance. Various visualization effects can be applied, facilitating global and internal voxel registration. Fourteen computed tomography/magnetic resonance (CT/MR) image sets and two computed tomography/positron emission tomography (CT/PET) image sets are used. For comparison, an automatic registration technique using maximization of mutual information (MMI) and a three-orthogonal-planar (3P) registration technique are used. Results: Visually sensitive registration criteria for CT/MR and CT/PET have been established, including the homogeneity of color distribution. Based on the registration results of 14 CT/MR images, the 3D voxel technique is in excellent agreement with the automatic MMI technique and is indicatory of a global positioning error (defined as the means and standard deviations of the error distribution) using the 3P pixel technique: 1.8 deg ± 1.2 deg in rotation and 2.0 ± 1.3 (voxel unit) in translation. To the best of our knowledge, this is the first time that such positioning error has been addressed. Conclusion: This novel 3D voxel technique establishes volume-view-guided image registration of up to four modalities. It improves registration accuracy with reduced time, compared with the 3P pixel technique. This article suggests that any interactive and automatic registration should be safeguarded using the 3D voxel technique

  12. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  13. Image processing techniques for digital orthophotoquad production

    Science.gov (United States)

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  14. Probabilistic images (PBIS): A concise image representation technique for multiple parameters

    International Nuclear Information System (INIS)

    Wu, L.C.; Yeh, S.H.; Chen, Z.; Liu, R.S.

    1984-01-01

    Based on m parametric images (PIs) derived from a dynamic series (DS), each pixel of DS is regarded as an m-dimensional vector. Given one set of normal samples (pixels) N and another of abnormal samples A, probability density functions (pdfs) of both sets are estimated. Any unknown sample is classified into N or A by calculating the probability of its being in the abnormal set using the Bayes' theorem. Instead of estimating the multivariate pdfs, a distance ratio transformation is introduced to map the m-dimensional sample space to one dimensional Euclidean space. Consequently, the image that localizes the regional abnormalities is characterized by the probability of being abnormal. This leads to the new representation scheme of PBIs. Tc-99m HIDA study for detecting intrahepatic lithiasis (IL) was chosen as an example of constructing PBI from 3 parameters derived from DS and such a PBI was compared with those 3 PIs, namely, retention ratio image (RRI), peak time image (TNMAX) and excretion mean transit time image (EMTT). 32 normal subjects and 20 patients with proved IL were collected and analyzed. The resultant sensitivity and specificity of PBI were 97% and 98% respectively. They were superior to those of any of the 3 PIs: RRI (94/97), TMAX (86/88) and EMTT (94/97). Furthermore, the contrast of PBI was much better than that of any other image. This new image formation technique, based on multiple parameters, shows the functional abnormalities in a structural way. Its good contrast makes the interpretation easy. This technique is powerful compared to the existing parametric image method

  15. Tracking brachytherapy sources using emission imaging with one flat panel detector

    International Nuclear Information System (INIS)

    Song Haijun; Bowsher, James; Das, Shiva; Yin Fangfang

    2009-01-01

    This work proposes to use the radiation from brachytherapy sources to track their dwell positions in three-dimensional (3D) space. The prototype device uses a single flat panel detector and a BB tray. The BBs are arranged in a defined pattern. The shadow of the BBs on the flat panel is analyzed to derive the 3D coordinates of the illumination source, i.e., the dwell position of the brachytherapy source. A kilovoltage x-ray source located 3.3 m away was used to align the center BB with the center pixel on the flat panel detector. For a test plan of 11 dwell positions, with an Ir-192 high dose rate unit, one projection was taken for each dwell point, and locations of the BB shadows were manually identified on the projection images. The 3D coordinates for the 11 dwell positions were reconstructed based on two BBs. The distances between dwell points were compared with the expected values. The average difference was 0.07 cm with a standard deviation of 0.15 cm. With automated BB shadow recognition in the future, this technique possesses the potential of tracking the 3D trajectory and the dwell times of a brachytherapy source in real time, enabling real time source position verification.

  16. High Resolution Radar Imaging using Coherent MultiBand Processing Techniques

    NARCIS (Netherlands)

    Dorp, Ph. van; Ebeling, R.P.; Huizing, A.G.

    2010-01-01

    High resolution radar imaging techniques can be used in ballistic missile defence systems to determine the type of ballistic missile during the boost phase (threat typing) and to discriminate different parts of a ballistic missile after the boost phase. The applied radar imaging technique is 2D

  17. Development and application of the analyzer-based imaging technique with hard synchrotron radiation; Developpement et application d'une technique d'imagerie par rayonnement synchrotron basee sur l'utilisation d'un cristal analyseur

    Energy Technology Data Exchange (ETDEWEB)

    Coan, P

    2006-07-15

    The objective of this thesis is twofold: from one side the application of the analyser-based X-ray phase contrast imaging to study cartilage, bone and bone implants using ESRF synchrotron radiation sources and on the other to contribute to the development of the phase contrast techniques from the theoretical and experimental point of view. Several human samples have been studied in vitro using the analyser based imaging (ABI) technique. Examination included projection and computed tomography imaging and 3-dimensional volume rendering of hip, big toe and ankle articular joints. X-ray ABI images have been critically compared with those obtained with conventional techniques, including radiography, computed tomography, ultrasound, magnetic resonance and histology, the latter taken as gold standard. Results show that only ABI imaging was able to either visualize or correctly estimate the early pathological status of the cartilage. The status of the bone ingrowth in sheep implants have also been examined in vitro: ABI images permitted to correctly distinguish between good and incomplete bone healing. Pioneering in-vivo ABI on guinea pigs were also successfully performed, confirming the possible use of the technique to follow up the progression of joint diseases, the bone/metal ingrowth and the efficacy of drugs treatments. As part of the development of the phase contrast techniques, two objectives have been reached. First, it has been experimentally demonstrated for the first time that the ABI and the propagation based imaging (PBI) can be combined to create images with original features (hybrid imaging, HI). Secondly, it has been proposed and experimentally tested a new simplified set-up capable to produce images with properties similar to those obtained with the ABI technique or HI. Finally, both the ABI and the HI have been theoretically studied with an innovative, wave-based simulation program, which was able to correctly reproduce experimental results. (author)

  18. Segmentation Technique for Image Indexing and Retrieval on Discrete Cosines Domain

    Directory of Open Access Journals (Sweden)

    Suhendro Yusuf Irianto

    2013-03-01

    Full Text Available This paper uses region growing segmentation technique to segment the Discrete Cosines (DC  image. The problem of content Based image retrieval (CBIR is the luck of accuracy in matching between image query and image in the database as it matches object and background in the same time.   This the reason previous CBIR techniques inaccurate and time consuming. The CBIR   based on the segmented region proposed in this work  separates object from background as CBIR need only match the object not the background.  By using region growing technique on DC image, it reduces the number of image       regions.    The proposed of recursive region growing is not new technique but its application on DC images to build    indexing keys is quite new and not yet presented by many     authors. The experimental results show  that the proposed methods on   segmented images present good precision which are higher than 0.60 on all classes . It can be concluded that  region growing segmented based CBIR more efficient    compare to DC images  in term of their precision 0.59 and 0.75, respectively. Moreover,  DC based CBIR  can save time and simplify algorithm compare to DCT images.

  19. Performance limits of ICA-based heart rate identification techniques in imaging photoplethysmography

    International Nuclear Information System (INIS)

    Mannapperuma, Kavan; Holton, Benjamin D; Lesniewski, Peter J; Thomas, John C

    2015-01-01

    Imaging photoplethysmography is a relatively new technique for extracting biometric information from video images of faces. This is useful in non-invasive monitoring of patients including neonates or the aged, with respect to sudden infant death syndrome, sleep apnoea, pulmonary disease, physical or mental stress and other cardio-vascular conditions. In this paper, we investigate the limits of detection of the heart rate (HR) while reducing the video quality. We compare the performance of three independent component analysis (ICA) methods (JADE, FastICA, RADICAL), autocorrelation with signal conditioning techniques and identify the most robust approach. We discuss sources of increasing error and other limiting conditions in three situations of reduced signal-to-noise ratio: one where the area of the analyzed face is decreased from 100 to 5%, another where the face area is progressively re-sampled down to a single RGB pixel and one where the HR signal is severely reduced with respect to the boundary noise. In most cases, the cardiac pulse rate can be reliably and accurately detected from videos containing only 5% facial area or from a face occupying just 4 pixels or containing only 5% of the facial HR modulation. (paper)

  20. Evaluation of a new image compression technique

    International Nuclear Information System (INIS)

    Algra, P.R.; Kroon, H.M.; Noordveld, R.B.; DeValk, J.P.J.; Seeley, G.W.; Westerink, P.H.

    1988-01-01

    The authors present the evaluation of a new image compression technique, subband coding using vector quantization, on 44 CT examinations of the upper abdomen. Three independent radiologists reviewed the original images and compressed versions. The compression ratios used were 16:1 and 20:1. Receiver operating characteristic analysis showed no difference in the diagnostic contents between originals and their compressed versions. Subjective visibility of anatomic structures was equal. Except for a few 20:1 compressed images, the observers could not distinguish compressed versions from original images. They conclude that subband coding using vector quantization is a valuable method for data compression in CT scans of the abdomen

  1. Micro-seismic imaging using a source function independent full waveform inversion method

    Science.gov (United States)

    Wang, Hanchen; Alkhalifah, Tariq

    2018-03-01

    At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.

  2. Micro-seismic imaging using a source function independent full waveform inversion method

    KAUST Repository

    Wang, Hanchen

    2018-03-26

    At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.

  3. Bit Plane Coding based Steganography Technique for JPEG2000 Images and Videos

    Directory of Open Access Journals (Sweden)

    Geeta Kasana

    2016-02-01

    Full Text Available In this paper, a Bit Plane Coding (BPC based steganography technique for JPEG2000 images and Motion JPEG2000 video is proposed. Embedding in this technique is performed in the lowest significant bit planes of the wavelet coefficients of a cover image. In JPEG2000 standard, the number of bit planes of wavelet coefficients to be used in encoding is dependent on the compression rate and are used in Tier-2 process of JPEG2000. In the proposed technique, Tier-1 and Tier-2 processes of JPEG2000 and Motion JPEG2000 are executed twice on the encoder side to collect the information about the lowest bit planes of all code blocks of a cover image, which is utilized in embedding and transmitted to the decoder. After embedding secret data, Optimal Pixel Adjustment Process (OPAP is applied on stego images to enhance its visual quality. Experimental results show that proposed technique provides large embedding capacity and better visual quality of stego images than existing steganography techniques for JPEG2000 compressed images and videos. Extracted secret image is similar to the original secret image.

  4. Red blood cell image enhancement techniques for cells with ...

    African Journals Online (AJOL)

    quality or challenging conditions of the images such as poor illumination of blood smear and most importantly overlapping RBC. The algorithm comprises of two RBC segmentation that can be selected based on the image quality, circle mask technique and grayscale blood smear image processing. Detail explanations ...

  5. PySE: Software for extracting sources from radio images

    Science.gov (United States)

    Carbone, D.; Garsden, H.; Spreeuw, H.; Swinbank, J. D.; van der Horst, A. J.; Rowlinson, A.; Broderick, J. W.; Rol, E.; Law, C.; Molenaar, G.; Wijers, R. A. M. J.

    2018-04-01

    PySE is a Python software package for finding and measuring sources in radio telescope images. The software was designed to detect sources in the LOFAR telescope images, but can be used with images from other radio telescopes as well. We introduce the LOFAR Telescope, the context within which PySE was developed, the design of PySE, and describe how it is used. Detailed experiments on the validation and testing of PySE are then presented, along with results of performance testing. We discuss some of the current issues with the algorithms implemented in PySE and their interaction with LOFAR images, concluding with the current status of PySE and its future development.

  6. A Novel Kernel-Based Regularization Technique for PET Image Reconstruction

    Directory of Open Access Journals (Sweden)

    Abdelwahhab Boudjelal

    2017-06-01

    Full Text Available Positron emission tomography (PET is an imaging technique that generates 3D detail of physiological processes at the cellular level. The technique requires a radioactive tracer, which decays and releases a positron that collides with an electron; consequently, annihilation photons are emitted, which can be measured. The purpose of PET is to use the measurement of photons to reconstruct the distribution of radioisotopes in the body. Currently, PET is undergoing a revamp, with advancements in data measurement instruments and the computing methods used to create the images. These computer methods are required to solve the inverse problem of “image reconstruction from projection”. This paper proposes a novel kernel-based regularization technique for maximum-likelihood expectation-maximization ( κ -MLEM to reconstruct the image. Compared to standard MLEM, the proposed algorithm is more robust and is more effective in removing background noise, whilst preserving the edges; this suppresses image artifacts, such as out-of-focus slice blur.

  7. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  8. The optimal algorithm for Multi-source RS image fusion.

    Science.gov (United States)

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  9. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-01-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  10. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-11-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  11. A new crossed molecular beam apparatus using time-sliced ion velocity imaging technique

    International Nuclear Information System (INIS)

    Wu Guorong; Zhang Weiqing; Pan Huilin; Shuai Quan; Jiang Bo; Dai Dongxu; Yang Xueming

    2008-01-01

    A new crossed molecular beam apparatus has been constructed for investigating polyatomic chemical reactions using the time-sliced ion velocity map imaging technique. A unique design is adopted for one of the two beam sources and allows us to set up the molecular beam source either horizontally or vertically. This can be conveniently used to produce versatile atomic or radical beams from photodissociation and as well as electric discharge. Intensive H-atom beam source with high speed ratio was produced by photodissociation of the HI molecule and was reacted with the CD 4 molecule. Vibrational-state resolved HD product distribution was measured by detecting the CD 3 product. Preliminary results were also reported on the F+SiH 4 reaction using the discharged F atom beam. These results demonstrate that this new instrument is a powerful tool for investigating chemical dynamics of polyatomic reactions.

  12. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review

    International Nuclear Information System (INIS)

    Woodfield, Julie; Kealey, Susan

    2015-01-01

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size. (orig.)

  13. Magnetic resonance imaging acquisition techniques intended to decrease movement artefact in paediatric brain imaging: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, Julie [University of Edinburgh, Child Life and Health, Edinburgh (United Kingdom); Kealey, Susan [Western General Hospital, Department of Neuroradiology, Edinburgh (United Kingdom)

    2015-08-15

    Attaining paediatric brain images of diagnostic quality can be difficult because of young age or neurological impairment. The use of anaesthesia to reduce movement in MRI increases clinical risk and cost, while CT, though faster, exposes children to potentially harmful ionising radiation. MRI acquisition techniques that aim to decrease movement artefact may allow diagnostic paediatric brain imaging without sedation or anaesthesia. We conducted a systematic review to establish the evidence base for ultra-fast sequences and sequences using oversampling of k-space in paediatric brain MR imaging. Techniques were assessed for imaging time, occurrence of movement artefact, the need for sedation, and either image quality or diagnostic accuracy. We identified 24 relevant studies. We found that ultra-fast techniques had shorter imaging acquisition times compared to standard MRI. Techniques using oversampling of k-space required equal or longer imaging times than standard MRI. Both ultra-fast sequences and those using oversampling of k-space reduced movement artefact compared with standard MRI in unsedated children. Assessment of overall diagnostic accuracy was difficult because of the heterogeneous patient populations, imaging indications, and reporting methods of the studies. In children with shunt-treated hydrocephalus there is evidence that ultra-fast MRI is sufficient for the assessment of ventricular size. (orig.)

  14. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    International Nuclear Information System (INIS)

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary

  15. Psoriatic arthritis: imaging techniques

    Directory of Open Access Journals (Sweden)

    E. Lubrano

    2012-06-01

    Full Text Available Imaging techniques to assess psoriatic arthritis (PsA include radiography, ultrasonography (US, magnetic resonance imaging (MRI, computed tomography (CT and bone scintigraphy. The radiographic hallmark of PsA is the combination of destructive changes (joint erosions, tuft resorption, osteolysis with bone proliferation (including periarticular and shaft periostitis, ankylosis, spur formation and non-marginal syndesmophytes. US has an increasing important role in the evaluation of PsA. In fact, power Doppler US is useful mainly for its ability to assess musculoskeletal (joints, tendons, entheses and cutaneous (skin and nails involvement, to monitor efficacy of therapy and to guide steroid injections at the level of inflamed joints, tendon sheaths and entheses. MRI allows direct visualization of inflammation in peripheral and axial joints, and peripheral and axial entheses, and has dramatically improved the possibilities for early diagnosis and objective monitoring of the disease process in PsA. MRI has allowed explaining the relationships among enthesitis, synovitis and osteitis in PsA, supporting a SpA pattern of inflammation where enthesitis is the primary target of inflammation. CT has little role in assessment of peripheral joints, but it may be useful in assessing elements of spine disease. CT accuracy is similar to MRI in assessment of erosions in sacroiliac joint involvement, but CT is not as effective in detecting synovial inflammation. Bone scintigraphy lacks specificity and is now supplanted with US and MRI techniques.

  16. Applications Of Binary Image Analysis Techniques

    Science.gov (United States)

    Tropf, H.; Enderle, E.; Kammerer, H. P.

    1983-10-01

    After discussing the conditions where binary image analysis techniques can be used, three new applications of the fast binary image analysis system S.A.M. (Sensorsystem for Automation and Measurement) are reported: (1) The human view direction is measured at TV frame rate while the subject's head is free movable. (2) Industrial parts hanging on a moving conveyor are classified prior to spray painting by robot. (3) In automotive wheel assembly, the eccentricity of the wheel is minimized by turning the tyre relative to the rim in order to balance the eccentricity of the components.

  17. An efficient similarity measure technique for medical image registration

    Indian Academy of Sciences (India)

    In this paper, an efficient similarity measure technique is proposed for medical image registration. The proposed approach is based on the Gerschgorin circles theorem. In this approach, image registration is carried out by considering Gerschgorin bounds of a covariance matrix of two compared images with normalized ...

  18. A New Technique to Identify Arbitrarily Shaped Noise Sources

    Directory of Open Access Journals (Sweden)

    Roberto A. Tenenbaum

    2006-01-01

    Full Text Available Acoustic intensity is one of the available tools for evaluating sound radiation from vibrating bodies. Active intensity may, in some situations, not give a faithful insight about how much energy is in fact carried into the far field. It was then proposed a new parameter, the supersonic acoustic intensity, which takes into account only the intensity generated by components having a smaller wavenumber than the acoustic one. However, the method is only efective for simple sources, such as plane plates, cylinders and spheres. This work presents a new technique, based on the Boundary Elements Method and the Singular Value Decomposition, to compute the supersonic acoustic intensity for arbitrarily shaped sources. The technique is based in the Kirchoff-Helmholtz equation in a discretized approach, leading to a radiation operator that relates the normal velocity on the source's surface mesh with the pressure at grid points located in the field. Then, the singular value decomposition technique is set to the radiation operator and a cutoff criterion is applied to remove non propagating components. Some numerical examples are presented.

  19. Special feature on imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would

  20. Radioactive source calibration technique for the CMS hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, E.; Lawlor, C.; Rohlf, J.W. E-mail: rohlf@bu.edu; Wu, S.X.; Baumbaugh, A.; Elias, J.E.; Freeman, J.; Green, D.; Lazic, D.; Los, S.; Ronzhin, A.; Sergueev, S.; Shaw, T.; Vidal, R.; Whitmore, J.; Zimmerman, T.; Adams, M.; Burchesky, K.; Qian, W.; Baden, A.; Bard, R.; Breden, H.; Grassi, T.; Skuja, A.; Fisher, W.; Mans, J.; Tully, C.; Barnes, V.; Laasanen, A.; Barbaro, P. de; Budd, H

    2003-10-01

    Relative calibration of the scintillator tiles used in the hadronic calorimeter for the Compact Muon Solenoid detector at the CERN Large Hadron Collider is established and maintained using a radioactive source technique. A movable source can be positioned remotely to illuminate each scintillator tile individually, and the resulting photo-detector current is measured to provide the relative calibration. The unique measurement technique described here makes use of the normal high-speed data acquisition system required for signal digitization at the 40 MHz collider frequency. The data paths for collider measurements and source measurements are then identical, and systematic uncertainties associated with having different signal paths are avoided. In this high-speed mode, the source signal is observed as a Poisson photo-electron distribution with a mean that is smaller than the width of the electronics noise (pedestal) distribution. We report demonstration of the technique using prototype electronics for the complete readout chain and show the typical response observed with a 144 channel test beam system. The electronics noise has a root-mean-square of 1.6 least counts, and a 1 mCi source produces a shift of the mean value of 0.1 least counts. Because of the speed of the data acquisition system, this shift can be measured to a statistical precision better than a fraction of a percent on a millisecond time scale. The result is reproducible to better than 2% over a time scale of 1 month.

  1. High speed imaging of dynamic processes with a switched source x-ray CT system

    International Nuclear Information System (INIS)

    Thompson, William M; Lionheart, William R B; Morton, Edward J; Cunningham, Mike; Luggar, Russell D

    2015-01-01

    Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data. (paper)

  2. Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.

    Science.gov (United States)

    Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig

    2017-06-01

    Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.

  3. Image Makers: Reporters or Sources.

    Science.gov (United States)

    Petruzzello, Marion C.

    To explore how news sources are used by media to create a social image of women during key suffrage events of 1858, 1920, and 1970, the front page stories of the "New York Times" were reviewed for 1 week prior to and 1 week following each of these events: May 14, 1858, the Eighth National Women's Rights Convention in New York City;…

  4. Improving Image Matching by Reducing Surface Reflections Using Polarising Filter Techniques

    Science.gov (United States)

    Conen, N.; Hastedt, H.; Kahmen, O.; Luhmann, T.

    2018-05-01

    In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results. However, the filter may influence the camera's orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002) using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (Δc ≤ 4 μm) with the polarising filter in use. Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.

  5. IMPROVING IMAGE MATCHING BY REDUCING SURFACE REFLECTIONS USING POLARISING FILTER TECHNIQUES

    Directory of Open Access Journals (Sweden)

    N. Conen

    2018-05-01

    Full Text Available In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results. However, the filter may influence the camera’s orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002 using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (Δc ≤ 4 μm with the polarising filter in use. Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.

  6. Performance evaluation of breast image compression techniques

    International Nuclear Information System (INIS)

    Anastassopoulos, G.; Lymberopoulos, D.; Panayiotakis, G.; Bezerianos, A.

    1994-01-01

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors)

  7. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

    Directory of Open Access Journals (Sweden)

    Gregor Strobbe

    2016-01-01

    Full Text Available Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time

  8. Carotid plaque signal differences among four kinds of T1-weighted magnetic resonance imaging techniques: A histopathological correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Ayumi; Narumi, Shinsuke; Ohba, Hideki; Yamaguchi, Mao; Terayama, Yasuo [Iwate Medical University, Department of Neurology and Gerontology, Morioka (Japan); Sasaki, Makoto; Kudo, Kohsuke [Iwate Medical University, Institute for Biomedical Sciences, Morioka (Japan); Ogasawara, Kuniaki; Kobayashi, Masakazu [Iwate Medical University, Department of Neurosurgery, Morioka (Japan); Hitomi, Jiro [Iwate Medical University, Department of Anatomy, Morioka (Japan)

    2012-11-15

    Several magnetic resonance (MR) imaging techniques are used to examine atherosclerotic plaque of carotid arteries; however, the best technique for visualizing intraplaque characteristics has yet to be determined. Here, we directly compared four kinds of T1-weighted (T1W) imaging techniques with pathological findings in patients with carotid stenosis. A total of 31 patients who were candidates for carotid endarterectomy were prospectively examined using a 1.5-T MRI scanner, which produced four kinds of T1W images, including non-gated spin echo (SE), cardiac-gated black-blood (BB) fast-SE (FSE), magnetization-prepared rapid acquisition with gradient echo (MPRAGE), and source image of three-dimensional time-of-flight MR angiography (SI-MRA). The signal intensity of the carotid plaque was manually measured, and the contrast ratio (CR) against the adjacent muscle was calculated. CRs from the four imaging techniques were compared to each other and correlated with histopathological specimens. CRs of the carotid plaques mainly containing fibrous tissue, lipid/necrosis, and hemorrhage were significantly different with little overlaps (range: 0.92-1.15, 1.22-1.52, and 1.55-2.30, respectively) on non-gated SE. However, BB-FSE showed remarkable overlaps among the three groups (0.89-1.10, 1.07-1.23, and 1.01-1.42, respectively). MPRAGE could discriminate fibrous plaques from hemorrhagic plaques but not from lipid/necrosis-rich plaques: (0.77-1.07, 1.45-2.43, and 0.85-1.42, respectively). SI-MRA showed the same tendencies (1.01-1.39, 1.45-2.57, and 1.12-1.39, respectively). Among T1W MR imaging techniques, non-gated SE images can more accurately characterize intraplaque components in patients who underwent CEA when compared with cardiac-gated BB-FSE, MPRAGE, and SI-MRA images. (orig.)

  9. An Image Registration Based Technique for Noninvasive Vascular Elastography

    OpenAIRE

    Valizadeh, Sina; Makkiabadi, Bahador; Mirbagheri, Alireza; Soozande, Mehdi; Manwar, Rayyan; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza

    2018-01-01

    Non-invasive vascular elastography is an emerging technique in vascular tissue imaging. During the past decades, several techniques have been suggested to estimate the tissue elasticity by measuring the displacement of the Carotid vessel wall. Cross correlation-based methods are the most prevalent approaches to measure the strain exerted in the wall vessel by the blood pressure. In the case of a low pressure, the displacement is too small to be apparent in ultrasound imaging, especially in th...

  10. Sparse Source EEG Imaging with the Variational Garrote

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Stahlhut, Carsten; Hansen, Lars Kai

    2013-01-01

    EEG imaging, the estimation of the cortical source distribution from scalp electrode measurements, poses an extremely ill-posed inverse problem. Recent work by Delorme et al. (2012) supports the hypothesis that distributed source solutions are sparse. We show that direct search for sparse solutions...

  11. IMAGE SEGMENTATION BASED ON MARKOV RANDOM FIELD AND WATERSHED TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K-means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.

  12. Enhanced EDX images by fusion of multimodal SEM images using pansharpening techniques.

    Science.gov (United States)

    Franchi, G; Angulo, J; Moreaud, M; Sorbier, L

    2018-01-01

    The goal of this paper is to explore the potential interest of image fusion in the context of multimodal scanning electron microscope (SEM) imaging. In particular, we aim at merging the backscattered electron images that usually have a high spatial resolution but do not provide enough discriminative information to physically classify the nature of the sample, with energy-dispersive X-ray spectroscopy (EDX) images that have discriminative information but a lower spatial resolution. The produced images are named enhanced EDX. To achieve this goal, we have compared the results obtained with classical pansharpening techniques for image fusion with an original approach tailored for multimodal SEM fusion of information. Quantitative assessment is obtained by means of two SEM images and a simulated dataset produced by a software based on PENELOPE. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  13. Currents trends in the application of IBA techniques to air pollution source fingerprinting and source apportionment

    International Nuclear Information System (INIS)

    Cohen, David; Stelcer, Ed.; Atanacio, Armand; Crawford, Jagoda

    2013-01-01

    Full text: IBA techniques have been used for many years to characterise fine particle air pollution. This is not new the techniques are well established. Typically 2-3 MeV protons are used to bombard thin filter papers and up to four simultaneous techniques like PIXE, PIGE, RBS and ERDA will be applied to obtain (μg/g) concentrations for elements from hydrogen to lead. Generally low volume samplers are used to sample between 20-30 m 3 of air over a 24 hour period, this together with IBA's sensitivity means that concentrations down to 1 ng/m 3 of air sampled can be readily achieved with only a few minutes of proton irradiation. With these short irradiation times and low sensitivities for a broad range of elements in the periodic table, large numbers of samples can be obtained and analysed very quickly and easily. At ANSTO we have used IBA methods to acquire a database of over 50,000 filters from 85 different sites through Australia and Asia, each filter has been analysed for more than 21 different chemical species. Large databases extending over many years means that modern statistical techniques like positive matrix factorisation (PMF) can be used to define well characterised source fingerprints and source contributions for a range of different fine particle air pollutants. In this paper we will discuss these PMF techniques and show how they identify both natural sources like sea spray and windblown soils as well as anthropogenic sources like automobiles, biomass burning, coal-fired power stations and industrial emissions. These data are particularly useful for Governments, EPA's and managers of pollution to better understanding pollution sources and their relative contributions and hence to better manage air pollution. Current trends are to take these IBA and PMF techniques a step further and to combine them with wind speed and back trajectory data to better pin point and identify emission sources. We show how this is now being applied on both a local

  14. Currents trends in the application of IBA techniques to air pollution source fingerprinting and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David; Stelcer, Ed.; Atanacio, Armand; Crawford, Jagoda [Australian Nuclear Science and Technology Organisation, Kirrawee DC (Australia)

    2013-07-01

    Full text: IBA techniques have been used for many years to characterise fine particle air pollution. This is not new the techniques are well established. Typically 2-3 MeV protons are used to bombard thin filter papers and up to four simultaneous techniques like PIXE, PIGE, RBS and ERDA will be applied to obtain (μg/g) concentrations for elements from hydrogen to lead. Generally low volume samplers are used to sample between 20-30 m{sup 3} of air over a 24 hour period, this together with IBA's sensitivity means that concentrations down to 1 ng/m{sup 3} of air sampled can be readily achieved with only a few minutes of proton irradiation. With these short irradiation times and low sensitivities for a broad range of elements in the periodic table, large numbers of samples can be obtained and analysed very quickly and easily. At ANSTO we have used IBA methods to acquire a database of over 50,000 filters from 85 different sites through Australia and Asia, each filter has been analysed for more than 21 different chemical species. Large databases extending over many years means that modern statistical techniques like positive matrix factorisation (PMF) can be used to define well characterised source fingerprints and source contributions for a range of different fine particle air pollutants. In this paper we will discuss these PMF techniques and show how they identify both natural sources like sea spray and windblown soils as well as anthropogenic sources like automobiles, biomass burning, coal-fired power stations and industrial emissions. These data are particularly useful for Governments, EPA's and managers of pollution to better understanding pollution sources and their relative contributions and hence to better manage air pollution. Current trends are to take these IBA and PMF techniques a step further and to combine them with wind speed and back trajectory data to better pin point and identify emission sources. We show how this is now being applied on both

  15. Silver nanoparticles (AgNPs) as a contrast agent for imaging of animal tissue using swept-source optical coherence tomography (SSOCT)

    Science.gov (United States)

    Mondal, Indranil; Raj, Shipra; Roy, Poulomi; Poddar, Raju

    2018-01-01

    We present noninvasive three-dimensional depth-resolved imaging of animal tissue with a swept-source optical coherence tomography system at 1064 nm center wavelength and silver nanoparticles (AgNPs) as a potential contrast agent. A swept-source laser light source is used to enable an imaging rate of 100 kHz (100 000 A-scans s-1). Swept-source optical coherence tomography is a new variant of the optical coherence tomography (OCT) technique, offering unique advantages in terms of sensitivity, reduction of motion artifacts, etc. To enhance the contrast of an OCT image, AgNPs are utilized as an exogeneous contrast agent. AgNPs are synthesized using a modified Tollens method and characterization is done by UV-vis spectroscopy, dynamic light scattering, scanning electron microscopy and energy dispersive x-ray spectroscopy. In vitro imaging of chicken breast tissue, with and without the application of AgNPs, is performed. The effect of AgNPs is studied with different exposure times. A mathematical model is also built to calculate changes in the local scattering coefficient of tissue from OCT images. A quantitative estimation of scattering coefficient and contrast is performed for tissues with and without application of AgNPs. Significant improvement in contrast and increase in scattering coefficient with time is observed.

  16. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Pešić, Z. D.; De Fanis, A.; Rau, C.

    2013-03-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  17. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    International Nuclear Information System (INIS)

    Wagner, U H; Pešić, Z D; Fanis, A De; Rau, C

    2013-01-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  18. Design of Programmable LED Controller with a Variable Current Source for 3D Image Display

    Directory of Open Access Journals (Sweden)

    Kyung-Ryang Lee

    2014-12-01

    Full Text Available Conventional fluorescent light sources, as well as incandescent light sources are gradually being replaced by Light Emitting Diodes (LEDs for reducing power consumption in the image display area for multimedia application. An LED light source requires a controller with a low-power operation. In this paper, a low-power technique using adiabatic operation is applied for the implementation of LED controller with a stable constant-current, a low-power and low-heat function. From the simulation result, the power consumption of the proposed LED controller using adiabatic operation was reduced to about 87% in comparison with conventional operation with a constant VDD. The proposed circuit is expected to be an alternative LED controller which is sensitive to external conditions such as heat.

  19. Imaging techniques for myocardial inflammation

    International Nuclear Information System (INIS)

    O'Connell, J.B.; Henkin, R.E.; Robinson, J.A.

    1986-01-01

    Dilated cardiomyopathy (DC) represents a heterogeneous group of disorders which results in morbidity and mortality in young individuals. Recent evidence suggests that a subset of these patients have histologic evidence of myocarditis which is potentially treatable with immunosuppression. The identification of myocardial inflammation may therefore lead to development of therapeutic regimens designed to treat the cause rather than the effect of the myocardial disease. Ultimately, this may result in improvement in the abysmal prognosis of DC. The currently accepted technique for identification of active myocardial inflammation is endomyocardial biopsy. This technique is not perfect, however, since pathologic standards for the diagnosis of myocarditis have not been established. Furthermore, focal inflammation may give rise to sampling error. The inflammation-avid radioisotope gallium-67 citrate has been used as an adjunct to biopsy improving the yield of myocarditis from 7 percent to 36 percent. Serial imaging correlates well to biopsy results. Future studies are designed to study the applicability of lymphocyte labelling techniques to myocardial inflammatory disease

  20. Image Harvest: an open-source platform for high-throughput plant image processing and analysis

    Science.gov (United States)

    Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal

    2016-01-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  1. Microvascular imaging: techniques and opportunities for clinical physiological measurements

    International Nuclear Information System (INIS)

    Allen, John; Howell, Kevin

    2014-01-01

    The microvasculature presents a particular challenge in physiological measurement because the vessel structure is spatially inhomogeneous and perfusion can exhibit high variability over time. This review describes, with a clinical focus, the wide variety of methods now available for imaging of the microvasculature and their key applications. Laser Doppler perfusion imaging and laser speckle contrast imaging are established, commercially-available techniques for determining microvascular perfusion, with proven clinical utility for applications such as burn-depth assessment. Nailfold capillaroscopy is also commercially available, with significant published literature that supports its use for detecting microangiopathy secondary to specific connective tissue diseases in patients with Raynaud's phenomenon. Infrared thermography measures skin temperature and not perfusion directly, and it has only gained acceptance for some surgical and peripheral microvascular applications. Other emerging technologies including imaging photoplethysmography, optical coherence tomography, photoacoustic tomography, hyperspectral imaging, and tissue viability imaging are also described to show their potential as techniques that could become established tools for clinical microvascular assessment. Growing interest in the microcirculation has helped drive the rapid development in perfusion imaging of the microvessels, bringing exciting opportunities in microvascular research. (topical review)

  2. Development of fuel number reader by ultrasonic imaging techniques

    International Nuclear Information System (INIS)

    Omote, T.; Yoshida, T.

    1991-01-01

    This paper reports on a spent fuel ID number reader using ultrasonic imaging techniques that has been developed to realize efficient and automatic verification of fuel numbers, thereby to reduce mental load and radiation exposure for operators engaged in the verification task. The ultrasonic imaging techniques for automatic fuel number recognition are described. High-speed and high reliability imaging of the spent fuel ID number are obtained by using linear array type ultrasonic probe. The ultrasonic wave is scanned by switching array probe in vertical direction, and scanned mechanically in horizontal direction. Time for imaging of spent fuel ID number on assembly was confirmed less than three seconds by these techniques. And it can recognize spent fuel ID number even if spent fuel ID number can not be visualized by an optical method because of depositing fuel number regions by soft card. In order to recognize spent fuel ID number more rapidly and more reliably, coded fuel number expressed by plural separate recesses form is developed. Every coded fuel number consists of six small holes (about 1 mm dia.) and can be marked adjacent to the existing fuel number expressed by letters and numbers

  3. Revisiting renovascular imaging for renal sympathetic denervation: current techniques and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pua, Uei; Tan, Cher Heng [Tan Tock Seng Hospital, Department of Diagnostic Radiology, Singapore (Singapore); Ho, Hee Hwa; Tan, Julian Ko Beng; Ong, Paul Jau Leong [Tan Tock Seng Hospital, Department of Cardiology, Singapore (Singapore)

    2014-08-28

    Renal sympathetic denervation (RDN) is an emerging technique in the treatment of resistant hypertension, most commonly performed using an endovascular approach. Clinical and anatomical criteria for RDN are well established and imaging plays an integral role in selecting patients with suitable anatomy, procedural planning and device selection. Nevertheless, the current body of literature surrounding imaging related to RDN remains limited. The purpose of this article is to illustrate the expectations and limitations of various imaging techniques, including Doppler ultrasound, CT angiography, MR angiography and newer techniques such as non-contrast MR angiography, in the context of RDN. (orig.)

  4. Revisiting renovascular imaging for renal sympathetic denervation: current techniques and applications

    International Nuclear Information System (INIS)

    Pua, Uei; Tan, Cher Heng; Ho, Hee Hwa; Tan, Julian Ko Beng; Ong, Paul Jau Leong

    2015-01-01

    Renal sympathetic denervation (RDN) is an emerging technique in the treatment of resistant hypertension, most commonly performed using an endovascular approach. Clinical and anatomical criteria for RDN are well established and imaging plays an integral role in selecting patients with suitable anatomy, procedural planning and device selection. Nevertheless, the current body of literature surrounding imaging related to RDN remains limited. The purpose of this article is to illustrate the expectations and limitations of various imaging techniques, including Doppler ultrasound, CT angiography, MR angiography and newer techniques such as non-contrast MR angiography, in the context of RDN. (orig.)

  5. Improvement in printing technique of spiral CT three-dimensional colour image

    International Nuclear Information System (INIS)

    Wang Yicheng; Liu Feng; Zhang Ling

    2005-01-01

    Objective: To investigate the printing technique of spiral CT three-dimensional (3D) colour image. Methods: The 3D colour images of 136 patients were printed, with the equipment of Marconi spiral CT, personnel computer, colour ink printer, and network switchboard. Results: All printed images were satisfied by this method. Conclusion: This technique is economic, simple, and useful, and can meet the need for clinical diagnosis and operation. (authors)

  6. Motion estimation of tagged cardiac magnetic resonance images using variational techniques

    Czech Academy of Sciences Publication Activity Database

    Carranza-Herrezuelo, N.; Bajo, A.; Šroubek, Filip; Santamarta, C.; Cristóbal, G.; Santos, A.; Ledesma-Carbayo, M.J.

    2010-01-01

    Roč. 34, č. 6 (2010), s. 514-522 ISSN 0895-6111 Institutional research plan: CEZ:AV0Z10750506 Keywords : medical imaging processing * motion estimation * variational techniques * tagged cardiac magnetic resonance images * optical flow Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.110, year: 2010 http://library.utia.cas.cz/separaty/2010/ZOI/sroubek- motion estimation of tagged cardiac magnetic resonance images using variational techniques.pdf

  7. Techniques necessary for multiple tracer quantitative small-animal imaging studies

    International Nuclear Information System (INIS)

    Sharp, Terry L.; Dence, Carmen S.; Engelbach, John A.; Herrero, Pilar; Gropler, Robert J.; Welch, Michael J.

    2005-01-01

    Introduction: An increasing number and variety of studies on rodent models are being conducted using small-animal positron emission tomography scanners. We aimed to determine if animal handling techniques could be developed to perform routine animal imaging in a timely and efficient manner and with minimal effect on animal physiology. These techniques need to be reproducible in the same animal while maintaining hemodynamic and physiological stability. Methods: The necessary techniques include (a) the use of inhalant anesthesia, (b) arterial and venous cannulation for multiple tracer administrations and blood sampling, (c) development of small-volume analytic columns and techniques and (d) measurement of the physiological environment during the imaging session. Results: We provide an example of a cardiac imaging study using four radiotracers ( 15 O-water, 1-[ 11 C]-acetate, 1-[ 11 C]-palmitate and 1-[ 11 C]-glucose) injected into normal rats. Plasma substrates, CO 2 production and total metabolites were measured. The animals remained anesthetized over the entire imaging session, and their physiological state was maintained. Conclusion: The intrastudy stability of the physiological measurements and substrate levels and interstudy reproducibility of the measurements are reported

  8. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Robert K. Henderson

    2012-05-01

    Full Text Available We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD-based cameras for fluorescence lifetime imaging microscopy (FLIM by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

  9. Fractal Image Compression Based on High Entropy Values Technique

    Directory of Open Access Journals (Sweden)

    Douaa Younis Abbaas

    2018-04-01

    Full Text Available There are many attempts tried to improve the encoding stage of FIC because it consumed time. These attempts worked by reducing size of the search pool for pair range-domain matching but most of them led to get a bad quality, or a lower compression ratio of reconstructed image. This paper aims to present a method to improve performance of the full search algorithm by combining FIC (lossy compression and another lossless technique (in this case entropy coding is used. The entropy technique will reduce size of the domain pool (i. e., number of domain blocks based on the entropy value of each range block and domain block and then comparing the results of full search algorithm and proposed algorithm based on entropy technique to see each of which give best results (such as reduced the encoding time with acceptable values in both compression quali-ty parameters which are C. R (Compression Ratio and PSNR (Image Quality. The experimental results of the proposed algorithm proven that using the proposed entropy technique reduces the encoding time while keeping compression rates and reconstruction image quality good as soon as possible.

  10. Performance evaluation of breast image compression techniques

    Energy Technology Data Exchange (ETDEWEB)

    Anastassopoulos, G; Lymberopoulos, D [Wire Communications Laboratory, Electrical Engineering Department, University of Patras, Greece (Greece); Panayiotakis, G; Bezerianos, A [Medical Physics Department, School of Medicine, University of Patras, Greece (Greece)

    1994-12-31

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors). 12 refs, 4 figs.

  11. Utilizing a Multi-Source Forest Inventory Technique, MODIS Data and Landsat TM Images in the Production of Forest Cover and Volume Maps for the Terai Physiographic Zone in Nepal

    Directory of Open Access Journals (Sweden)

    Kalle Eerikäinen

    2012-12-01

    Full Text Available An approach based on the nearest neighbors techniques is presented for producing thematic maps of forest cover (forest/non-forest and total stand volume for the Terai region in southern Nepal. To create the forest cover map, we used a combination of Landsat TM satellite data and visual interpretation data, i.e., a sample grid of visual interpretation plots for which we obtained the land use classification according to the FAO standard. These visual interpretation plots together with the field plots for volume mapping originate from an operative forest inventory project, i.e., the Forest Resource Assessment of Nepal (FRA Nepal project. The field plots were also used in checking the classification accuracy. MODIS satellite data were used as a reference in a local correction approach conducted for the relative calibration of Landsat TM images. This study applied a non-parametric k-nearest neighbor technique (k-NN to the forest cover and volume mapping. A tree height prediction approach based on a nonlinear, mixed-effects (NLME modeling procedure is presented in the Appendix. The MODIS image data performed well as reference data for the calibration approach applied to make the Landsat image mosaic. The agreement between the forest cover map and the field observed values of forest cover was substantial in Western Terai (KHAT 0.745 and strong in Eastern Terai (KHAT 0.825. The forest cover and volume maps that were estimated using the k-NN method and the inventory data from the FRA Nepal project are already appropriate and valuable data for research purposes and for the planning of forthcoming forest inventories. Adaptation of the methods and techniques was carried out using Open Source software tools.

  12. Copy-Move Forgery Detection Technique for Forensic Analysis in Digital Images

    Directory of Open Access Journals (Sweden)

    Toqeer Mahmood

    2016-01-01

    Full Text Available Due to the powerful image editing tools images are open to several manipulations; therefore, their authenticity is becoming questionable especially when images have influential power, for example, in a court of law, news reports, and insurance claims. Image forensic techniques determine the integrity of images by applying various high-tech mechanisms developed in the literature. In this paper, the images are analyzed for a particular type of forgery where a region of an image is copied and pasted onto the same image to create a duplication or to conceal some existing objects. To detect the copy-move forgery attack, images are first divided into overlapping square blocks and DCT components are adopted as the block representations. Due to the high dimensional nature of the feature space, Gaussian RBF kernel PCA is applied to achieve the reduced dimensional feature vector representation that also improved the efficiency during the feature matching. Extensive experiments are performed to evaluate the proposed method in comparison to state of the art. The experimental results reveal that the proposed technique precisely determines the copy-move forgery even when the images are contaminated with blurring, noise, and compression and can effectively detect multiple copy-move forgeries. Hence, the proposed technique provides a computationally efficient and reliable way of copy-move forgery detection that increases the credibility of images in evidence centered applications.

  13. Imaging of mass distribution in paper by electrography technique, (2)

    International Nuclear Information System (INIS)

    Tomimasu, Hiroshi; Luner, P.

    1991-01-01

    Four paper imaging techniques (β-radiography, electrography, light transmission, and soft x-radiography) were compared in terms of their process parameters and image characteristics (exposure time, spatial variation, contrast, spatial resolution, correlation with mass, and limitation in basis weight range) with the same newsprint sample and electron microscope film. As far as the imaging conditions chosen here are concerned, electrography gave a higher spatial resolution, shorter exposure time, and the wider basis weight range than β-radiography. Light transmission image could be obtained in a very short time, but gave the poorest spatial resolution and correlation with mass. Soft x-radiography gave the highest spatial resolution, but the poorest spatial variation and contrast. The proper imaging technique and conditions need to be selected depending on the specific paper property in question. (author)

  14. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    OpenAIRE

    Anna Borisovna Cherednyakova

    2015-01-01

    Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marke...

  15. Imaging phase holdup distribution of three phase flow systems using dual source gamma ray tomography

    International Nuclear Information System (INIS)

    Varma, Rajneesh; Al-Dahhan, Muthanna; O'Sullivan, Joseph

    2008-01-01

    Full text: Multiphase reaction and process systems are used in abundance in the chemical and biochemical industry. Tomography has been successfully employed to visualize the hydrodynamics of multiphase systems. Most of the tomography methods (gamma ray, x-ray and electrical capacitance and resistance) have been successfully implemented for two phase dynamic systems. However, a significant number of chemical and biochemical systems consists of dynamic three phases. Research effort directed towards the development of tomography techniques to image such dynamic system has met with partial successes for specific systems with applicability to limited operating conditions. A dual source tomography scanner has been developed that uses the 661 keV and 1332 keV photo peaks from the 137 Cs and 60 Co for imaging three phase systems. A new approach has been developed and applied that uses the polyenergetic Alternating Minimization (A-M) algorithm, developed by O'Sullivan and Benac (2007), for imaging the holdup distribution in three phases' dynamic systems. The new approach avoids the traditional post image processing approach used to determine the holdup distribution where the attenuation images of the mixed flow obtained from gamma ray photons of two different energies are used to determine the holdup of three phases. In this approach the holdup images are directly reconstructed from the gamma ray transmission data. The dual source gamma ray tomography scanner and the algorithm were validated using a three phase phantom. Based in the validation, three phase holdup studies we carried out in slurry bubble column containing gas liquid and solid phases in a dynamic state using the dual energy gamma ray tomography. The key results of the holdup distribution studies in the slurry bubble column along with the validation of the dual source gamma ray tomography system would be presented and discussed

  16. In-room CT techniques for image-guided radiation therapy

    International Nuclear Information System (INIS)

    Ma, C.-M. Charlie; Paskalev, Kamen M.S.

    2006-01-01

    Accurate patient setup and target localization are essential to advanced radiation therapy treatment. Significant improvement has been made recently with the development of image-guided radiation therapy, in which image guidance facilitates short treatment course and high dose per fraction radiotherapy, aiming at improving tumor control and quality of life. Many imaging modalities are being investigated, including x-ray computed tomography (CT), ultrasound imaging, positron emission tomography, magnetic resonant imaging, magnetic resonant spectroscopic imaging, and kV/MV imaging with flat panel detectors. These developments provide unique imaging techniques and methods for patient setup and target localization. Some of them are different; some are complementary. This paper reviews the currently available kV x-ray CT systems used in the radiation treatment room, with a focus on the CT-on-rails systems, which are diagnostic CT scanners moving on rails installed in the treatment room. We will describe the system hardware including configurations, specifications, operation principles, and functionality. We will review software development for image fusion, structure recognition, deformation correction, target localization, and alignment. Issues related to the clinical implementation of in-room CT techniques in routine procedures are discussed, including acceptance testing and quality assurance. Clinical applications of the in-room CT systems for patient setup, target localization, and adaptive therapy are also reviewed for advanced radiotherapy treatments

  17. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments.

    Science.gov (United States)

    Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H

    2012-10-01

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.

  18. On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM

    International Nuclear Information System (INIS)

    Jia, C.L.; Houben, L.; Thust, A.; Barthel, J.

    2010-01-01

    Employing an aberration corrector in a high-resolution transmission electron microscope, the spherical aberration C S can be tuned to negative values, resulting in a novel imaging technique, which is called the negative C S imaging (NCSI) technique. The image contrast obtained with the NCSI technique is compared quantitatively with the image contrast formed with the traditional positive C S imaging (PCSI) technique. For the case of thin objects negative C S images are superior to positive C S images concerning the magnitude of the obtained contrast, which is due to constructive rather than destructive superposition of fundamental contrast contributions. As a consequence, the image signal obtained with a negative spherical aberration is significantly more robust against noise caused by amorphous surface layers, resulting in a measurement precision of atomic positions which is by a factor of 2-3 better at an identical noise level. The quantitative comparison of the two alternative C S -corrected imaging modes shows that the NCSI mode yields significantly more precise results in quantitative high-resolution transmission electron microscopy of thin objects than the traditional PCSI mode.

  19. Seismic reflection imaging with conventional and unconventional sources

    Science.gov (United States)

    Quiros Ugalde, Diego Alonso

    This manuscript reports the results of research using both conventional and unconventional energy sources as well as conventional and unconventional analysis to image crustal structure using reflected seismic waves. The work presented here includes the use of explosions to investigate the Taiwanese lithosphere, the use of 'noise' from railroads to investigate the shallow subsurface of the Rio Grande rift, and the use of microearthquakes to image subsurface structure near an active fault zone within the Appalachian mountains. Chapter 1 uses recordings from the land refraction and wide-angle reflection component of the Taiwan Integrated Geodynamic Research (TAIGER) project. The most prominent reflection feature imaged by these surveys is an anomalously strong reflector found in northeastern Taiwan. The goal of this chapter is to analyze the TAIGER recordings and to place the reflector into a geologic framework that fits with the modern tectonic kinematics of the region. Chapter 2 uses railroad traffic as a source for reflection profiling within the Rio Grande rift. Here the railroad recordings are treated in an analogous way to Vibroseis recordings. These results suggest that railroad noise in general can be a valuable new tool in imaging and characterizing the shallow subsurface in environmental and geotechnical studies. In chapters 3 and 4, earthquakes serve as the seismic imaging source. In these studies the methodology of Vertical Seismic Profiling (VSP) is borrowed from the oil and gas industry to develop reflection images. In chapter 3, a single earthquake is used to probe a small area beneath Waterboro, Maine. In chapter 4, the same method is applied to multiple earthquakes to take advantage of the increased redundancy that results from multiple events illuminating the same structure. The latter study demonstrates how dense arrays can be a powerful new tool for delineating, and monitoring temporal changes of deep structure in areas characterized by significant

  20. Flame analysis using image processing techniques

    Science.gov (United States)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  1. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    Science.gov (United States)

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. A Systematic Review of Techniques and Sources of Big Data in the Healthcare Sector.

    Science.gov (United States)

    Alonso, Susel Góngora; de la Torre Díez, Isabel; Rodrigues, Joel J P C; Hamrioui, Sofiane; López-Coronado, Miguel

    2017-10-14

    The main objective of this paper is to present a review of existing researches in the literature, referring to Big Data sources and techniques in health sector and to identify which of these techniques are the most used in the prediction of chronic diseases. Academic databases and systems such as IEEE Xplore, Scopus, PubMed and Science Direct were searched, considering the date of publication from 2006 until the present time. Several search criteria were established as 'techniques' OR 'sources' AND 'Big Data' AND 'medicine' OR 'health', 'techniques' AND 'Big Data' AND 'chronic diseases', etc. Selecting the paper considered of interest regarding the description of the techniques and sources of Big Data in healthcare. It found a total of 110 articles on techniques and sources of Big Data on health from which only 32 have been identified as relevant work. Many of the articles show the platforms of Big Data, sources, databases used and identify the techniques most used in the prediction of chronic diseases. From the review of the analyzed research articles, it can be noticed that the sources and techniques of Big Data used in the health sector represent a relevant factor in terms of effectiveness, since it allows the application of predictive analysis techniques in tasks such as: identification of patients at risk of reentry or prevention of hospital or chronic diseases infections, obtaining predictive models of quality.

  3. Wear Detection of Drill Bit by Image-based Technique

    Science.gov (United States)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  4. Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography

    International Nuclear Information System (INIS)

    Wang Min; Qi Hengtao; Wang Ximing; Wang Tao; Chen, Jiu-Hong; Liu Cheng

    2009-01-01

    Objective: To evaluate dose performance and image quality of 64-slice dual source CT (DSCT) in comparison to 64-slice single source CT (SSCT) in cardiac CT angiography (CTA). Methods: 100 patients examined by DSCT and 60 patients scanned by SSCT were included in this study. Objective indices such as image noise, contrast-to-noise ratio and signal-to-noise ratio were analyzed. Subjective image quality was assessed by two cardiovascular radiologists in consensus using a four-point scale (1 = excellent to 4 = not acceptable). Estimation of effective dose was performed on the basis of dose length product (DLP). Results: At low heart rates ( 0.05), but, at high heart rates (>70 bpm), DSCT provided robust image quality (P 70 bpm), DSCT is able to provide robust diagnostic image quality at doses far below that of SSCT.

  5. A Review On Segmentation Based Image Compression Techniques

    Directory of Open Access Journals (Sweden)

    S.Thayammal

    2013-11-01

    Full Text Available Abstract -The storage and transmission of imagery become more challenging task in the current scenario of multimedia applications. Hence, an efficient compression scheme is highly essential for imagery, which reduces the requirement of storage medium and transmission bandwidth. Not only improvement in performance and also the compression techniques must converge quickly in order to apply them for real time applications. There are various algorithms have been done in image compression, but everyone has its own pros and cons. Here, an extensive analysis between existing methods is performed. Also, the use of existing works is highlighted, for developing the novel techniques which face the challenging task of image storage and transmission in multimedia applications.

  6. Acquisition and visualization techniques for narrow spectral color imaging.

    Science.gov (United States)

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  7. The application of IBA techniques to air pollution source fingerprinting and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D., E-mail: dcz@ansto.gov.au; Stelcer, E.; Atanacio, A.; Crawford, J.

    2014-01-01

    IBA techniques have been used to measure elemental concentrations of more than 20 different elements found in fine particle (PM2.5) air pollution. These data together with their errors and minimum detectable limits were used in Positive Matrix Factorisation (PMF) analyses to quantitatively determine source fingerprints and their contributions to the total measured fine mass. Wind speed and direction back trajectory data from the global HYSPLIT codes were then linked to these PMF fingerprints to quantitatively identify the location of the sources.

  8. Image processing techniques for quantification and assessment of brain MRI

    NARCIS (Netherlands)

    Kuijf, H.J.

    2013-01-01

    Magnetic resonance imaging (MRI) is a widely used technique to acquire digital images of the human brain. A variety of acquisition protocols is available to generate images in vivo and noninvasively, giving great opportunities to study the anatomy and physiology of the human brain. In my thesis,

  9. Adaptive differential correspondence imaging based on sorting technique

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2017-04-01

    Full Text Available We develop an adaptive differential correspondence imaging (CI method using a sorting technique. Different from the conventional CI schemes, the bucket detector signals (BDS are first processed by a differential technique, and then sorted in a descending (or ascending order. Subsequently, according to the front and last several frames of the sorted BDS, the positive and negative subsets (PNS are created by selecting the relative frames from the reference detector signals. Finally, the object image is recovered from the PNS. Besides, an adaptive method based on two-step iteration is designed to select the optimum number of frames. To verify the proposed method, a single-detector computational ghost imaging (GI setup is constructed. We experimentally and numerically compare the performance of the proposed method with different GI algorithms. The results show that our method can improve the reconstruction quality and reduce the computation cost by using fewer measurement data.

  10. A Document Imaging Technique for Implementing Electronic Loan Approval Process

    Directory of Open Access Journals (Sweden)

    J. Manikandan

    2015-04-01

    Full Text Available The image processing is one of the leading technologies of computer applications. Image processing is a type of signal processing, the input for image processor is an image or video frame and the output will be an image or subset of image [1]. Computer graphics and computer vision process uses an image processing techniques. Image processing systems are used in various environments like medical fields, computer-aided design (CAD, research fields, crime investigation fields and military fields. In this paper, we proposed a document image processing technique, for establishing electronic loan approval process (E-LAP [2]. Loan approval process has been tedious process, the E-LAP system attempts to reduce the complexity of loan approval process. Customers have to login to fill the loan application form online with all details and submit the form. The loan department then processes the submitted form and then sends an acknowledgement mail via the E-LAP to the requested customer with the details about list of documents required for the loan approval process [3]. The approaching customer can upload the scanned copies of all required documents. All this interaction between customer and bank take place using an E-LAP system.

  11. A graphical simulator for teaching basic and advanced MR imaging techniques

    DEFF Research Database (Denmark)

    Hanson, Lars G

    2007-01-01

    Teaching of magnetic resonance (MR) imaging techniques typically involves considerable handwaving, literally, to explain concepts such as resonance, rotating frames, dephasing, refocusing, sequences, and imaging. A proper understanding of MR contrast and imaging techniques is crucial for radiolog...... be visualized in an intuitive way. The cross-platform software is primarily designed for use in lectures, but is also useful for self studies and student assignments. Movies available at http://radiographics.rsnajnls.org/cgi/content/full/e27/DC1 ....

  12. Improving face image extraction by using deep learning technique

    Science.gov (United States)

    Xue, Zhiyun; Antani, Sameer; Long, L. R.; Demner-Fushman, Dina; Thoma, George R.

    2016-03-01

    The National Library of Medicine (NLM) has made a collection of over a 1.2 million research articles containing 3.2 million figure images searchable using the Open-iSM multimodal (text+image) search engine. Many images are visible light photographs, some of which are images containing faces ("face images"). Some of these face images are acquired in unconstrained settings, while others are studio photos. To extract the face regions in the images, we first applied one of the most widely-used face detectors, a pre-trained Viola-Jones detector implemented in Matlab and OpenCV. The Viola-Jones detector was trained for unconstrained face image detection, but the results for the NLM database included many false positives, which resulted in a very low precision. To improve this performance, we applied a deep learning technique, which reduced the number of false positives and as a result, the detection precision was improved significantly. (For example, the classification accuracy for identifying whether the face regions output by this Viola- Jones detector are true positives or not in a test set is about 96%.) By combining these two techniques (Viola-Jones and deep learning) we were able to increase the system precision considerably, while avoiding the need to manually construct a large training set by manual delineation of the face regions.

  13. Source-jerk analysis using a semi-explicit inverse kinetic technique

    International Nuclear Information System (INIS)

    Spriggs, G.D.; Pederson, R.A.

    1985-01-01

    A method is proposed for measuring the effective reproduction factor, k, in subcritical systems. The method uses the transient response of a subcritical system to the sudden removal of an extraneous neutron source (i.e., a source jerk). The response is analyzed using an inverse kinetic technique that least-squares fits the exact analytical solution corresponding to a source-jerk transient as derived from the point-reactor model. It has been found that the technique can provide an accurate means of measuring k in systems that are close to critical (i.e., 0.95 < k < 1.0). As a system becomes more subcritical (i.e., k << 1.0) spatial effects can introduce significant biases depending on the source and detector positions. However, methods are available that can correct for these biases and, hence, can allow measuring subcriticality in systems with k as low as 0.5. 12 refs., 3 figs

  14. Source-jerk analysis using a semi-explicit inverse kinetic technique

    International Nuclear Information System (INIS)

    Spriggs, G.D.; Pederson, R.A.

    1985-01-01

    A method is proposed for measuring the effective reproduction factor, k, in subcritical systems. The method uses the transient responses of a subcritical system to the sudden removal of an extraneous neutron source (i.e., a source jerk). The response is analyzed using an inverse kinetic technique that least-squares fits the exact analytical solution corresponding to a source-jerk transient as derived from the point-reactor model. It has been found that the technique can provide an accurate means of measuring k in systems that are close to critical (i.e., 0.95 < k < 1.0). As a system becomes more subcritical (i.e., k << 1.0) spatial effects can introduce significant biases depending on the source and detector positions. However, methods are available that can correct for these biases and, hence, can allow measuring subcriticality in systems with k as low as 0.5

  15. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  16. The VTTVIS line imaging spectrometer - principles, error sources, and calibration

    DEFF Research Database (Denmark)

    Jørgensen, R.N.

    2002-01-01

    work describing the basic principles, potential error sources, and/or adjustment and calibration procedures. This report fulfils the need for such documentationwith special focus on the system at KVL. The PGP based system has several severe error sources, which should be removed prior any analysis......Hyperspectral imaging with a spatial resolution of a few mm2 has proved to have a great potential within crop and weed classification and also within nutrient diagnostics. A commonly used hyperspectral imaging system is based on the Prism-Grating-Prism(PGP) principles produced by Specim Ltd...... in off-axis transmission efficiencies, diffractionefficiencies, and image distortion have a significant impact on the instrument performance. Procedures removing or minimising these systematic error sources are developed and described for the system build at KVL but can be generalised to other PGP...

  17. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.

    Science.gov (United States)

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades

    2015-01-01

    DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA

  18. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique

    Science.gov (United States)

    2015-01-01

    Background DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. Results We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. Conclusions This work presents an

  19. Three-dimensional tomosynthetic image restoration for brachytherapy source localization

    International Nuclear Information System (INIS)

    Persons, Timothy M.

    2001-01-01

    Tomosynthetic image reconstruction allows for the production of a virtually infinite number of slices from a finite number of projection views of a subject. If the reconstructed image volume is viewed in toto, and the three-dimensional (3D) impulse response is accurately known, then it is possible to solve the inverse problem (deconvolution) using canonical image restoration methods (such as Wiener filtering or solution by conjugate gradient least squares iteration) by extension to three dimensions in either the spatial or the frequency domains. This dissertation presents modified direct and iterative restoration methods for solving the inverse tomosynthetic imaging problem in 3D. The significant blur artifact that is common to tomosynthetic reconstructions is deconvolved by solving for the entire 3D image at once. The 3D impulse response is computed analytically using a fiducial reference schema as realized in a robust, self-calibrating solution to generalized tomosynthesis. 3D modulation transfer function analysis is used to characterize the tomosynthetic resolution of the 3D reconstructions. The relevant clinical application of these methods is 3D imaging for brachytherapy source localization. Conventional localization schemes for brachytherapy implants using orthogonal or stereoscopic projection radiographs suffer from scaling distortions and poor visibility of implanted seeds, resulting in compromised source tracking (reported errors: 2-4 mm) and dosimetric inaccuracy. 3D image reconstruction (using a well-chosen projection sampling scheme) and restoration of a prostate brachytherapy phantom is used for testing. The approaches presented in this work localize source centroids with submillimeter error in two Cartesian dimensions and just over one millimeter error in the third

  20. Application of magnetic resonance techniques for imaging tumour physiology

    International Nuclear Information System (INIS)

    Stubbs, M.

    1999-01-01

    Magnetic resonance (MR) techniques have the unique ability to measure in vivo the biochemical content of living tissue in the body in a dynamic, non-invasive and non-destructive manner. MR also permits serial investigations of steady-state tumour physiology and biochemistry, as well as the response of a tumour to treatment. Magnetic resonance imaging (MRI), Magnetic resonance spectroscopy (MRS) and a mixture of the two techniques (spectroscopic imaging) allow some physiological parameters, for example pH, to be 'imaged'. Using these methods, information on tissue bioenergetics and phospolipid membrane turnover, pH, hypoxia, oxygenation, and various aspects of vascularity including blood flow, angiogenesis, permeability and vascular volume can be obtained. In addition, MRS methods can be used for monitoring anticancer drugs (e.g. 5FU, ifosfamide) and their metabolites at their sites of action. The role of these state-of-the-art MR methods in imaging tumour physiology and their potential role in the clinic are discussed. (orig.)

  1. PLEIADES-HR INNOVATIVE TECHNIQUES FOR RADIOMETRIC IMAGE QUALITY COMMISSIONING

    Directory of Open Access Journals (Sweden)

    G. Blanchet

    2012-07-01

    Full Text Available The first Pleiades-HR satellite, part of a constellation of two, has been launched on December 17, 2011. This satellite produces high resolution optical images. In order to achieve good image quality, Pleiades-HR should first undergo an important 6 month commissioning phase period. This phase consists in calibrating and assessing the radiometric and geometric image quality to offer the best images to end users. This new satellite has benefited from technology improvements in various fields which make it stand out from other Earth observation satellites. In particular, its best-in-class agility performance enables new calibration and assessment techniques. This paper is dedicated to presenting these innovative techniques that have been tested for the first time for the Pleiades- HR radiometric commissioning. Radiometric activities concern compression, absolute calibration, detector normalization, and refocusing operations, MTF (Modulation Transfer Function assessment, signal-to-noise ratio (SNR estimation, and tuning of the ground processing parameters. The radiometric performances of each activity are summarized in this paper.

  2. New partially parallel acquisition technique in cerebral imaging: preliminary findings

    International Nuclear Information System (INIS)

    Tintera, Jaroslav; Gawehn, Joachim; Bauermann, Thomas; Vucurevic, Goran; Stoeter, Peter

    2004-01-01

    In MRI applications where short acquisition time is necessary, the increase of acquisition speed is often at the expense of image resolution and SNR. In such cases, the newly developed parallel acquisition techniques could provide images without mentioned limitations and in reasonably shortened measurement time. A newly designed eight-channel head coil array (i-PAT coil) allowing for parallel acquisition of independently reconstructed images (GRAPPA mode) has been tested for its applicability in neuroradiology. Image homogeneity was tested in standard phantom and healthy volunteers. BOLD signal changes were studied in a group of six volunteers using finger tapping stimulation. Phantom studies revealed an important drop of signal even after the use of a normalization filter in the center of the image and an important increase of artifact power with reduction of measurement time strongly depending on the combination of acceleration parameters. The additional application of a parallel acquisition technique such as GRAPPA decreases measurement time in the range of about 30%, but further reduction is often possible only at the expense of SNR. This technique performs best in conditions in which imaging speed is important, such as CE MRA, but time resolution still does not allow the acquisition of angiograms separating the arterial and venous phase. Significantly larger areas of BOLD activation were found using the i-PAT coil compared to the standard head coil. Being an eight-channel surface coil array, peripheral cortical structures profit from high SNR as high-resolution imaging of small cortical dysplasias and functional activation of cortical areas imaged by BOLD contrast. In BOLD contrast imaging, susceptibility artifacts are reduced, but only if an appropriate combination of acceleration parameters is used. (orig.)

  3. New partially parallel acquisition technique in cerebral imaging: preliminary findings

    Energy Technology Data Exchange (ETDEWEB)

    Tintera, Jaroslav [Institute for Clinical and Experimental Medicine, Prague (Czech Republic); Gawehn, Joachim; Bauermann, Thomas; Vucurevic, Goran; Stoeter, Peter [University Clinic Mainz, Institute of Neuroradiology, Mainz (Germany)

    2004-12-01

    In MRI applications where short acquisition time is necessary, the increase of acquisition speed is often at the expense of image resolution and SNR. In such cases, the newly developed parallel acquisition techniques could provide images without mentioned limitations and in reasonably shortened measurement time. A newly designed eight-channel head coil array (i-PAT coil) allowing for parallel acquisition of independently reconstructed images (GRAPPA mode) has been tested for its applicability in neuroradiology. Image homogeneity was tested in standard phantom and healthy volunteers. BOLD signal changes were studied in a group of six volunteers using finger tapping stimulation. Phantom studies revealed an important drop of signal even after the use of a normalization filter in the center of the image and an important increase of artifact power with reduction of measurement time strongly depending on the combination of acceleration parameters. The additional application of a parallel acquisition technique such as GRAPPA decreases measurement time in the range of about 30%, but further reduction is often possible only at the expense of SNR. This technique performs best in conditions in which imaging speed is important, such as CE MRA, but time resolution still does not allow the acquisition of angiograms separating the arterial and venous phase. Significantly larger areas of BOLD activation were found using the i-PAT coil compared to the standard head coil. Being an eight-channel surface coil array, peripheral cortical structures profit from high SNR as high-resolution imaging of small cortical dysplasias and functional activation of cortical areas imaged by BOLD contrast. In BOLD contrast imaging, susceptibility artifacts are reduced, but only if an appropriate combination of acceleration parameters is used. (orig.)

  4. Paediatric pelvic imaging: optimisation of dose and technique using digital grid-controlled pulsed fluoroscopy.

    Science.gov (United States)

    Waugh, R; McCallum, H M; McCarty, M; Montgomery, R; Aszkenasy, M

    2001-05-01

    An audit of paediatric pelvic radiographs identified deficiencies in gonad shield placement and radiographic technique. A technique using grid-controlled fluoroscopy (GCF), with hard copy images in frame grab and digital spot image (DSI) format was evaluated to optimise gonad shield placement and reduce the dose given to children with Perthes disease and Developmental Hip Dysplasia (DDH) attending for pelvic radiography. Phantom and patient dose surveys of conventional and fluoroscopic techniques were carried out. Image quality and radiation dose were compared for the frame grab and DSI techniques. Retrospective evaluation was undertaken to compare their clinical acceptability. Both fluoroscopic techniques gave considerably less radiation than conventional non-grid radiography (67-83%, P < 0.05). The frame grab technique gave less radiation than DSI (P < 0.05). There was no significant difference in the clinical acceptability scores of the DSI and frame grab images. Fluoroscopy acquired images are now used since the fluoroscopic techniques give much less dose than conventional radiography and provide images of sufficient quality for clinical assessment. Indeed, as there was no significant difference in clinical usefulness between the frame grab and DSI techniques, it is planned to use frame grab alone, thus gaining additional dose saving.

  5. An update on carbon nanotube-enabled X-ray sources for biomedical imaging.

    Science.gov (United States)

    Puett, Connor; Inscoe, Christina; Hartman, Allison; Calliste, Jabari; Franceschi, Dora K; Lu, Jianping; Zhou, Otto; Lee, Yueh Z

    2018-01-01

    A new imaging technology has emerged that uses carbon nanotubes (CNT) as the electron emitter (cathode) for the X-ray tube. Since the performance of the CNT cathode is controlled by simple voltage manipulation, CNT-enabled X-ray sources are ideal for the repetitive imaging steps needed to capture three-dimensional information. As such, they have allowed the development of a gated micro-computed tomography (CT) scanner for small animal research as well as stationary tomosynthesis, an experimental technology for large field-of-view human imaging. The small animal CT can acquire images at specific points in the respiratory and cardiac cycles. Longitudinal imaging therefore becomes possible and has been applied to many research questions, ranging from tumor response to the noninvasive assessment of cardiac output. Digital tomosynthesis (DT) is a low-dose and low-cost human imaging tool that captures some depth information. Known as three-dimensional mammography, DT is now used clinically for breast imaging. However, the resolution of currently-approved DT is limited by the need to swing the X-ray source through space to collect a series of projection views. An array of fixed and distributed CNT-enabled sources provides the solution and has been used to construct stationary DT devices for breast, lung, and dental imaging. To date, over 100 patients have been imaged on Institutional Review Board-approved study protocols. Early experience is promising, showing an excellent conspicuity of soft-tissue features, while also highlighting technical and post-acquisition processing limitations that are guiding continued research and development. Additionally, CNT-enabled sources are being tested in miniature X-ray tubes that are capable of generating adequate photon energies and tube currents for clinical imaging. Although there are many potential applications for these small field-of-view devices, initial experience has been with an X-ray source that can be inserted into the

  6. Characterization of sildenafil citrate tablets of different sources by near infrared chemical imaging and chemometric tools.

    Science.gov (United States)

    Sabin, Guilherme P; Lozano, Valeria A; Rocha, Werickson F C; Romão, Wanderson; Ortiz, Rafael S; Poppi, Ronei J

    2013-11-01

    The chemical imaging technique by near infrared spectroscopy was applied for characterization of formulations in tablets of sildenafil citrate of six different sources. Five formulations were provided by Brazilian Federal Police and correspond to several trademarks of prohibited marketing and one was an authentic sample of Viagra. In a first step of the study, multivariate curve resolution was properly chosen for the estimation of the distribution map of concentration of the active ingredient in tablets of different sources, where the chemical composition of all excipients constituents was not truly known. In such cases, it is very difficult to establish an appropriate calibration technique, so that only the information of sildenafil is considered independently of the excipients. This determination was possible only by reaching the second-order advantage, where the analyte quantification can be performed in the presence of unknown interferences. In a second step, the normalized histograms of images from active ingredient were grouped according to their similarities by hierarchical cluster analysis. Finally it was possible to recognize the patterns of distribution maps of concentration of sildenafil citrate, distinguishing the true formulation of Viagra. This concept can be used to improve the knowledge of industrial products and processes, as well as, for characterization of counterfeit drugs. Copyright © 2013. Published by Elsevier B.V.

  7. Statistical methods of evaluating and comparing imaging techniques

    International Nuclear Information System (INIS)

    Freedman, L.S.

    1987-01-01

    Over the past 20 years several new methods of generating images of internal organs and the anatomy of the body have been developed and used to enhance the accuracy of diagnosis and treatment. These include ultrasonic scanning, radioisotope scanning, computerised X-ray tomography (CT) and magnetic resonance imaging (MRI). The new techniques have made a considerable impact on radiological practice in hospital departments, not least on the investigational process for patients suspected or known to have malignant disease. As a consequence of the increased range of imaging techniques now available, there has developed a need to evaluate and compare their usefulness. Over the past 10 years formal studies of the application of imaging technology have been conducted and many reports have appeared in the literature. These studies cover a range of clinical situations. Likewise, the methodologies employed for evaluating and comparing the techniques in question have differed widely. While not attempting an exhaustive review of the clinical studies which have been reported, this paper aims to examine the statistical designs and analyses which have been used. First a brief review of the different types of study is given. Examples of each type are then chosen to illustrate statistical issues related to their design and analysis. In the final sections it is argued that a form of classification for these different types of study might be helpful in clarifying relationships between them and bringing a perspective to the field. A classification based upon a limited analogy with clinical trials is suggested

  8. A simple algorithm for estimation of source-to-detector distance in Compton imaging

    International Nuclear Information System (INIS)

    Rawool-Sullivan, Mohini W.; Sullivan, John P.; Tornga, Shawn R.; Brumby, Steven P.

    2008-01-01

    Compton imaging is used to predict the location of gamma-emitting radiation sources. The X and Y coordinates of the source can be obtained using a back-projected image and a two-dimensional peak-finding algorithm. The emphasis of this work is to estimate the source-to-detector distance (Z). The algorithm presented uses the solid angle subtended by the reconstructed image at various source-to-detector distances. This algorithm was validated using both measured data from the prototype Compton imager (PCI) constructed at the Los Alamos National Laboratory and simulated data of the same imager. Results show this method can be applied successfully to estimate Z, and it provides a way of determining Z without prior knowledge of the source location. This method is faster than the methods that employ maximum likelihood method because it is based on simple back projections of Compton scatter data

  9. Study of CT image texture using deep learning techniques

    Science.gov (United States)

    Dutta, Sandeep; Fan, Jiahua; Chevalier, David

    2018-03-01

    For CT imaging, reduction of radiation dose while improving or maintaining image quality (IQ) is currently a very active research and development topic. Iterative Reconstruction (IR) approaches have been suggested to be able to offer better IQ to dose ratio compared to the conventional Filtered Back Projection (FBP) reconstruction. However, it has been widely reported that often CT image texture from IR is different compared to that from FBP. Researchers have proposed different figure of metrics to quantitate the texture from different reconstruction methods. But there is still a lack of practical and robust method in the field for texture description. This work applied deep learning method for CT image texture study. Multiple dose scans of a 20cm diameter cylindrical water phantom was performed on Revolution CT scanner (GE Healthcare, Waukesha) and the images were reconstructed with FBP and four different IR reconstruction settings. The training images generated were randomly allotted (80:20) to a training and validation set. An independent test set of 256-512 images/class were collected with the same scan and reconstruction settings. Multiple deep learning (DL) networks with Convolution, RELU activation, max-pooling, fully-connected, global average pooling and softmax activation layers were investigated. Impact of different image patch size for training was investigated. Original pixel data as well as normalized image data were evaluated. DL models were reliably able to classify CT image texture with accuracy up to 99%. Results show that the deep learning techniques suggest that CT IR techniques may help lower the radiation dose compared to FBP.

  10. Visualization of brain surface structures by weighted summation technique using multislice MR images

    International Nuclear Information System (INIS)

    Machida, Yoshio; Hatanaka, Masahiko; Hagiwara, Masayuki; Sugimoto, Hiroshi; Yoshida, Tadatoki; Katada, Kazuhiro.

    1991-01-01

    Surface anatomy scanning (SAS) technique which visualizes brain surface structures has been developed since 1987. In this paper, we propose a modified method called 'multislice SAS', which also generates such surface structure images, and has several advantages compared with conventional SAS technique. The conventional SAS technique uses a very long echo time sequence (e.g. SE(3000, 250)) with a thick slice and a surface coil to enhance CSF on the brain surface. Our modified technique also uses a long echo time sequence. But, added multislice images, each appropriately weighted, are used in stead of a thick slice and a surface coil. Our basic studies have shown that this modified method has the following advantage: Several surface images with slightly different summation directions are obtained, and they are used for stereographic display and cine display. This is very useful for visualizing the spatial relationship of brain surface structures. By choosing appropriate weighting, we can obtain clinically legible surface images. This technique dose not require a surface coil. It means that flexibility of selecting imaging direction is high. We can make a lot of modifications, because the original multislice images of weighted summation are arbitrary. And we also clarify some limitation or disadvantage of this modified method. In conclusion, we think that this technique is one of the practical approaches for surface anatomy imaging. (author)

  11. Development and application of the analyzer-based imaging technique with hard synchrotron radiation; Developpement et application d'une technique d'imagerie par rayonnement synchrotron basee sur l'utilisation d'un cristal analyseur

    Energy Technology Data Exchange (ETDEWEB)

    Coan, P

    2006-07-15

    The objective of this thesis is twofold: from one side the application of the analyser-based X-ray phase contrast imaging to study cartilage, bone and bone implants using ESRF synchrotron radiation sources and on the other to contribute to the development of the phase contrast techniques from the theoretical and experimental point of view. Several human samples have been studied in vitro using the analyser based imaging (ABI) technique. Examination included projection and computed tomography imaging and 3-dimensional volume rendering of hip, big toe and ankle articular joints. X-ray ABI images have been critically compared with those obtained with conventional techniques, including radiography, computed tomography, ultrasound, magnetic resonance and histology, the latter taken as gold standard. Results show that only ABI imaging was able to either visualize or correctly estimate the early pathological status of the cartilage. The status of the bone ingrowth in sheep implants have also been examined in vitro: ABI images permitted to correctly distinguish between good and incomplete bone healing. Pioneering in-vivo ABI on guinea pigs were also successfully performed, confirming the possible use of the technique to follow up the progression of joint diseases, the bone/metal ingrowth and the efficacy of drugs treatments. As part of the development of the phase contrast techniques, two objectives have been reached. First, it has been experimentally demonstrated for the first time that the ABI and the propagation based imaging (PBI) can be combined to create images with original features (hybrid imaging, HI). Secondly, it has been proposed and experimentally tested a new simplified set-up capable to produce images with properties similar to those obtained with the ABI technique or HI. Finally, both the ABI and the HI have been theoretically studied with an innovative, wave-based simulation program, which was able to correctly reproduce experimental results. (author)

  12. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.

    Science.gov (United States)

    Hennig, Holger; Rees, Paul; Blasi, Thomas; Kamentsky, Lee; Hung, Jane; Dao, David; Carpenter, Anne E; Filby, Andrew

    2017-01-01

    Imaging flow cytometry (IFC) enables the high throughput collection of morphological and spatial information from hundreds of thousands of single cells. This high content, information rich image data can in theory resolve important biological differences among complex, often heterogeneous biological samples. However, data analysis is often performed in a highly manual and subjective manner using very limited image analysis techniques in combination with conventional flow cytometry gating strategies. This approach is not scalable to the hundreds of available image-based features per cell and thus makes use of only a fraction of the spatial and morphometric information. As a result, the quality, reproducibility and rigour of results are limited by the skill, experience and ingenuity of the data analyst. Here, we describe a pipeline using open-source software that leverages the rich information in digital imagery using machine learning algorithms. Compensated and corrected raw image files (.rif) data files from an imaging flow cytometer (the proprietary .cif file format) are imported into the open-source software CellProfiler, where an image processing pipeline identifies cells and subcellular compartments allowing hundreds of morphological features to be measured. This high-dimensional data can then be analysed using cutting-edge machine learning and clustering approaches using "user-friendly" platforms such as CellProfiler Analyst. Researchers can train an automated cell classifier to recognize different cell types, cell cycle phases, drug treatment/control conditions, etc., using supervised machine learning. This workflow should enable the scientific community to leverage the full analytical power of IFC-derived data sets. It will help to reveal otherwise unappreciated populations of cells based on features that may be hidden to the human eye that include subtle measured differences in label free detection channels such as bright-field and dark-field imagery

  13. Source position error influence on industry CT image quality

    International Nuclear Information System (INIS)

    Cong Peng; Li Zhipeng; Wu Haifeng

    2004-01-01

    Based on the emulational exercise, the influence of source position error on industry CT (ICT) image quality was studied and the valuable parameters were obtained for the design of ICT. The vivid container CT image was also acquired from the CT testing system. (authors)

  14. A new registration method with voxel-matching technique for temporal subtraction images

    Science.gov (United States)

    Itai, Yoshinori; Kim, Hyoungseop; Ishikawa, Seiji; Katsuragawa, Shigehiko; Doi, Kunio

    2008-03-01

    A temporal subtraction image, which is obtained by subtraction of a previous image from a current one, can be used for enhancing interval changes on medical images by removing most of normal structures. One of the important problems in temporal subtraction is that subtraction images commonly include artifacts created by slight differences in the size, shape, and/or location of anatomical structures. In this paper, we developed a new registration method with voxel-matching technique for substantially removing the subtraction artifacts on the temporal subtraction image obtained from multiple-detector computed tomography (MDCT). With this technique, the voxel value in a warped (or non-warped) previous image is replaced by a voxel value within a kernel, such as a small cube centered at a given location, which would be closest (identical or nearly equal) to the voxel value in the corresponding location in the current image. Our new method was examined on 16 clinical cases with MDCT images. Preliminary results indicated that interval changes on the subtraction images were enhanced considerably, with a substantial reduction of misregistration artifacts. The temporal subtraction images obtained by use of the voxel-matching technique would be very useful for radiologists in the detection of interval changes on MDCT images.

  15. Gamma-ray imaging of the Quinby sources

    International Nuclear Information System (INIS)

    Gregor, J.; Hensley, D.C.

    1996-01-01

    The Quinby sources are alumina cylinders 7 inches in diameter and 8 inches high doped with weapons grade plutonium. We describe a computer tomography system for reconstructing three-dimensional images of these sources. Each reconstruction maps the spatial distribution of the internal [sup 241]Am gamma ray activity and is computed using an iterative, expectation-maximization algorithm with detection efficiencies based both on geometric model of the experimental setup and attenuation corrections. Constructed about a decade ago, the Quinby sources were to contain uniformly distributed material. However, for some of the sources we have found regions where the plutonium solution, tends to be concentrated. The ultimate goal of this work is to provide the basis for self-shielding corrections when analyzing differential dieaway neutron measurements

  16. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Biren J; Longsine, Whitney; Han, Arum; Righetti, Raffaella [Department of Electrical and Computer Engineering, Dwight Look College of Engineering, Texas A and M University, College Station, TX (United States); Sabonghy, Eric P [OneOrtho Orthopedic Surgery Clinic, Houston, TX (United States); Tasciotti, Ennio; Ferrari, Mauro [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX (United States); Weiner, Bradley K, E-mail: righetti@ece.tamu.ed [Division of Spinal Surgery, Department of Orthopaedic Surgery, Methodist Hospital, Houston, TX 77030 (United States)

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 {mu}m to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  17. Cardiac CT for the assessment of chest pain: Imaging techniques and clinical results

    International Nuclear Information System (INIS)

    Becker, Hans-Christoph; Johnson, Thorsten

    2012-01-01

    Immediate and efficient risk stratification and management of patients with acute chest pain in the emergency department is challenging. Traditional management of these patients includes serial ECG, laboratory tests and further on radionuclide perfusion imaging or ECG treadmill testing. Due to the advances of multi-detector CT technology, dedicated coronary CT angiography provides the potential to rapidly and reliably diagnose or exclude acute coronary artery disease. Life-threatening causes of chest pain, such as aortic dissection and pulmonary embolism can simultaneously be assessed with a single scan, sometimes referred to as “triple rule out” scan. With appropriate patient selection, cardiac CT can accurately diagnose heart disease or other sources of chest pain, markedly decrease health care costs, and reliably predict clinical outcomes. This article reviews imaging techniques and clinical results for CT been used to evaluate patients with chest pain entering the emergency department.

  18. Tablet surface characterisation by various imaging techniques

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2003-01-01

    The aim of this study was to characterise tablet surfaces using different imaging and roughness analytical techniques including optical microscopy, scanning electron microscopy (SEM), laser profilometry and atomic force microscopy (AFM). The test materials compressed were potassium chloride (KCl......) and sodium chloride (NaCl). It was found that all methods used suggested that the KCl tablets were smoother than the NaCl tablets and higher compression pressure made the tablets smoother. Imaging methods like optical microscopy and SEM can give useful information about the roughness of the sample surface...

  19. USE OF IMAGE ENHANCEMENT TECHNIQUES FOR IMPROVING REAL TIME FACE RECOGNITION EFFICIENCY ON WEARABLE GADGETS

    Directory of Open Access Journals (Sweden)

    MUHAMMAD EHSAN RANA

    2017-01-01

    Full Text Available The objective of this research is to study the effects of image enhancement techniques on face recognition performance of wearable gadgets with an emphasis on recognition rate.In this research, a number of image enhancement techniques are selected that include brightness normalization, contrast normalization, sharpening, smoothing, and various combinations of these. Subsequently test images are obtained from AT&T database and Yale Face Database B to investigate the effect of these image enhancement techniques under various conditions such as change of illumination and face orientation and expression.The evaluation of data, collected during this research, revealed that the effect of image pre-processing techniques on face recognition highly depends on the illumination condition under which these images are taken. It is revealed that the benefit of applying image enhancement techniques on face images is best seen when there is high variation of illumination among images. Results also indicate that highest recognition rate is achieved when images are taken under low light condition and image contrast is enhanced using histogram equalization technique and then image noise is reduced using median smoothing filter. Additionally combination of contrast normalization and mean smoothing filter shows good result in all scenarios. Results obtained from test cases illustrate up to 75% improvement in face recognition rate when image enhancement is applied to images in given scenarios.

  20. Characterisation and application of a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    Graetz, M.

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm 2 onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained

  1. Characterisation and application of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, M

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm{sup 2} onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained 120 refs, figs, tabs

  2. Imaging of the hip and bony pelvis. Techniques and applications

    Energy Technology Data Exchange (ETDEWEB)

    Davies, A.M. [Royal Orthopaedic Hospital, Birmingham (United Kingdom). MRI Centre; Johnson, K.J. [Princess of Wales Birmingham Children' s Hospital (United Kingdom); Whitehouse, R.W. (eds.) [Manchester Royal Infirmary (United Kingdom). Dept. of Clinical Radiology

    2006-07-01

    This is a comprehensive textbook on imaging of the bony pelvis and hip joint that provides a detailed description of the techniques and imaging findings relevant to this complex anatomical region. In the first part of the book, the various techniques and procedures employed for imaging the pelvis and hip are discussed in detail. The second part of the book documents the application of these techniques to the diverse clinical problems and diseases encountered. Among the many topics addressed are congenital and developmental disorders including developmental dysplasia of the hip, irritable hip and septic arthritis, Perthes' disease and avascular necrosis, slipped upper femoral epiphysis, bony and soft tissue trauma, arthritis, tumours and hip prostheses. Each chapter is written by an acknowledged expert in the field, and a wealth of illustrative material is included. This book will be of great value to musculoskeletal and general radiologists, orthopaedic surgeons and rheumatologists. (orig.)

  3. Unsupervised color image segmentation using a lattice algebra clustering technique

    Science.gov (United States)

    Urcid, Gonzalo; Ritter, Gerhard X.

    2011-08-01

    In this paper we introduce a lattice algebra clustering technique for segmenting digital images in the Red-Green- Blue (RGB) color space. The proposed technique is a two step procedure. Given an input color image, the first step determines the finite set of its extreme pixel vectors within the color cube by means of the scaled min-W and max-M lattice auto-associative memory matrices, including the minimum and maximum vector bounds. In the second step, maximal rectangular boxes enclosing each extreme color pixel are found using the Chebychev distance between color pixels; afterwards, clustering is performed by assigning each image pixel to its corresponding maximal box. The two steps in our proposed method are completely unsupervised or autonomous. Illustrative examples are provided to demonstrate the color segmentation results including a brief numerical comparison with two other non-maximal variations of the same clustering technique.

  4. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    Science.gov (United States)

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  5. Singular value decomposition analysis of a photoacoustic imaging system and 3D imaging at 0.7 FPS.

    Science.gov (United States)

    Roumeliotis, Michael B; Stodilka, Robert Z; Anastasio, Mark A; Ng, Eldon; Carson, Jeffrey J L

    2011-07-04

    Photoacoustic imaging is a non-ionizing imaging modality that provides contrast consistent with optical imaging techniques while the resolution and penetration depth is similar to ultrasound techniques. In a previous publication [Opt. Express 18, 11406 (2010)], a technique was introduced to experimentally acquire the imaging operator for a photoacoustic imaging system. While this was an important foundation for future work, we have recently improved the experimental procedure allowing for a more densely populated imaging operator to be acquired. Subsets of the imaging operator were produced by varying the transducer count as well as the measurement space temporal sampling rate. Examination of the matrix rank and the effect of contributing object space singular vectors to image reconstruction were performed. For a PAI system collecting only limited data projections, matrix rank increased linearly with transducer count and measurement space temporal sampling rate. Image reconstruction using a regularized pseudoinverse of the imaging operator was performed on photoacoustic signals from a point source, line source, and an array of point sources derived from the imaging operator. As expected, image quality increased for each object with increasing transducer count and measurement space temporal sampling rate. Using the same approach, but on experimentally sampled photoacoustic signals from a moving point-like source, acquisition, data transfer, reconstruction and image display took 1.4 s using one laser pulse per 3D frame. With relatively simple hardware improvements to data transfer and computation speed, our current imaging results imply that acquisition and display of 3D photoacoustic images at laser repetition rates of 10Hz is easily achieved.

  6. A Fieldable-Prototype Large-Area Gamma-ray Imager for Orphan Source Search

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [ORNL; Fabris, Lorenzo [ORNL; Carr, Dennis [Lawrence Livermore National Laboratory (LLNL); Collins, Jeff [Lawrence Livermore National Laboratory (LLNL); Cunningham, Mark F [Lawrence Livermore National Laboratory (LLNL); Habte Ghebretatios, Frezghi [ORNL; Karnowski, Thomas Paul [ORNL; Marchant, William [University of California, Berkeley

    2008-01-01

    We have constructed a unique instrument for use in the search for orphan sources. The system uses gamma-ray imaging to "see through" the natural background variations that effectively limit the search range of normal devices to ~10 m. The imager is mounted in a 4.9- m-long trailer and can be towed by a large personal vehicle. Source locations are determined both in range and along the direction of travel as the vehicle moves. A fully inertial platform coupled to a Global Positioning System receiver is used to map the gamma-ray images onto overhead geospatial imagery. The resulting images provide precise source locations, allowing rapid follow-up work. The instrument simultaneously searches both sides of the street to a distance of 50 m (100-m swath) for milliCurieclass sources with near-perfect performance.

  7. Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws

    International Nuclear Information System (INIS)

    Gahleitner, Andre; Watzek, G.; Imhof, H.

    2003-01-01

    In addition to conventional imaging methods, dental CT has become an established method for anatomic imaging of the jaws prior to dental implant placement. More recently, this high-resolution imaging technique has gained importance in diagnosing dental-associated diseases of the mandible and maxilla. Since most radiologists have had little experience in these areas, many of the CT findings remain undescribed. The objective of this review article is to present the technique of dental CT, to illustrate the typical appearance of jaw anatomy and dental-related diseases of the jaws with dental CT, and to show where it can serve as an addition to conventional imaging methods in dental radiology. (orig.)

  8. Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws

    Energy Technology Data Exchange (ETDEWEB)

    Gahleitner, Andre [Department of Radiology/Osteology, Medical School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Department of Oral Surgery, Dental School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Watzek, G. [Department of Oral Surgery, Dental School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Imhof, H. [Department of Radiology/Osteology, Medical School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria)

    2003-02-01

    In addition to conventional imaging methods, dental CT has become an established method for anatomic imaging of the jaws prior to dental implant placement. More recently, this high-resolution imaging technique has gained importance in diagnosing dental-associated diseases of the mandible and maxilla. Since most radiologists have had little experience in these areas, many of the CT findings remain undescribed. The objective of this review article is to present the technique of dental CT, to illustrate the typical appearance of jaw anatomy and dental-related diseases of the jaws with dental CT, and to show where it can serve as an addition to conventional imaging methods in dental radiology. (orig.)

  9. Electromagnetic considerations for RF current density imaging [MRI technique].

    Science.gov (United States)

    Scott, G C; Joy, M G; Armstrong, R L; Henkelman, R M

    1995-01-01

    Radio frequency current density imaging (RF-CDI) is a recent MRI technique that can image a Larmor frequency current density component parallel to B(0). Because the feasibility of the technique was demonstrated only for homogeneous media, the authors' goal here is to clarify the electromagnetic assumptions and field theory to allow imaging RF currents in heterogeneous media. The complete RF field and current density imaging problem is posed. General solutions are given for measuring lab frame magnetic fields from the rotating frame magnetic field measurements. For the general case of elliptically polarized fields, in which current and magnetic field components are not in phase, one can obtain a modified single rotation approximation. Sufficient information exists to image the amplitude and phase of the RF current density parallel to B(0) if the partial derivative in the B(0) direction of the RF magnetic field (amplitude and phase) parallel to B(0) is much smaller than the corresponding current density component. The heterogeneous extension was verified by imaging conduction and displacement currents in a phantom containing saline and pure water compartments. Finally, the issues required to image eddy currents are presented. Eddy currents within a sample will distort both the transmitter coil reference system, and create measurable rotating frame magnetic fields. However, a three-dimensional electro-magnetic analysis will be required to determine how the reference system distortion affects computed eddy current images.

  10. Imaging XPS - a new technique

    International Nuclear Information System (INIS)

    Gurker, N.; Ebel, M.F.; Ebel, H.

    1983-01-01

    XPS imaging promises to be a powerful analytic tool because it enables specific information on both elements and bonding to be recorded on a two-dimensional distribution map. As far as the authors are aware, the only scanning XPS method to date which has been found to be practical is essentially a scanned-particle-beam method, like scanning AES, and it is only applicable to thin film specimens. This paper provides the basic ideas of a new imaging XPS technique based on a quite different concept. It will be applicable to any kind of specimen that can be analysed in a conventional XPS system. It makes use of the dispersion properties of a spherical condenser-type spectrometer and applies a two-dimensional electron detection device for decoding the energy and emission position of an analysed photoelectron. Experimental arrangement and theory of operation are presented. (author)

  11. Imaging of bone tumors and tumor-like lesions. Techniques and applications

    International Nuclear Information System (INIS)

    Davies, A. Mark; Sundaram, Murali; James, Steven L.J.

    2009-01-01

    This is a comprehensive textbook that provides a detailed description of the imaging techniques and findings in patients with benign and malignant bone tumors. In the first part of the book, the various techniques and procedures employed for imaging bone tumors are discussed in detail. Individual chapters are devoted to MRI, CT, nuclear medicine, and interventional procedures. The second part of the book gives an authoritative review of the role of these imaging techniques in diagnosis, surgical staging, biopsy, and assessment of response to therapy. The third part of the book covers the imaging features of each major tumor subtype, with separate chapters on osteogenic tumors, cartilaginous tumors, etc. The final part of the book reviews the imaging features of bone tumors at particular anatomical sites such as the spine, ribs, pelvis, and scapula. Each chapter is written by an acknowledged expert in the field, and a wealth of illustrative material is included. This book will be of great value to musculoskeletal and general radiologists, orthopedic surgeons, and oncologists. (orig.)

  12. Fiji: an open-source platform for biological-image analysis.

    Science.gov (United States)

    Schindelin, Johannes; Arganda-Carreras, Ignacio; Frise, Erwin; Kaynig, Verena; Longair, Mark; Pietzsch, Tobias; Preibisch, Stephan; Rueden, Curtis; Saalfeld, Stephan; Schmid, Benjamin; Tinevez, Jean-Yves; White, Daniel James; Hartenstein, Volker; Eliceiri, Kevin; Tomancak, Pavel; Cardona, Albert

    2012-06-28

    Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.

  13. Empirical gradient threshold technique for automated segmentation across image modalities and cell lines.

    Science.gov (United States)

    Chalfoun, J; Majurski, M; Peskin, A; Breen, C; Bajcsy, P; Brady, M

    2015-10-01

    New microscopy technologies are enabling image acquisition of terabyte-sized data sets consisting of hundreds of thousands of images. In order to retrieve and analyze the biological information in these large data sets, segmentation is needed to detect the regions containing cells or cell colonies. Our work with hundreds of large images (each 21,000×21,000 pixels) requires a segmentation method that: (1) yields high segmentation accuracy, (2) is applicable to multiple cell lines with various densities of cells and cell colonies, and several imaging modalities, (3) can process large data sets in a timely manner, (4) has a low memory footprint and (5) has a small number of user-set parameters that do not require adjustment during the segmentation of large image sets. None of the currently available segmentation methods meet all these requirements. Segmentation based on image gradient thresholding is fast and has a low memory footprint. However, existing techniques that automate the selection of the gradient image threshold do not work across image modalities, multiple cell lines, and a wide range of foreground/background densities (requirement 2) and all failed the requirement for robust parameters that do not require re-adjustment with time (requirement 5). We present a novel and empirically derived image gradient threshold selection method for separating foreground and background pixels in an image that meets all the requirements listed above. We quantify the difference between our approach and existing ones in terms of accuracy, execution speed, memory usage and number of adjustable parameters on a reference data set. This reference data set consists of 501 validation images with manually determined segmentations and image sizes ranging from 0.36 Megapixels to 850 Megapixels. It includes four different cell lines and two image modalities: phase contrast and fluorescent. Our new technique, called Empirical Gradient Threshold (EGT), is derived from this reference

  14. Rapid musculoskeletal magnetic resonance imaging using integrated parallel acquisition techniques (IPAT) - Initial experiences

    International Nuclear Information System (INIS)

    Romaneehsen, B.; Oberholzer, K.; Kreitner, K.-F.; Mueller, L.P.

    2003-01-01

    Purpose: To investigate the feasibility of using multiple receiver coil elements for time saving integrated parallel imaging techniques (iPAT) in traumatic musculoskeletal disorders. Material and methods: 6 patients with traumatic derangements of the knee, ankle and hip underwent MR imaging at 1.5 T. For signal detection of the knee and ankle, we used a 6-channel body array coil that was placed around the joints, for hip imaging two 4-channel body array coils and two elements of the spine array coil were combined for signal detection. All patients were investigated with a standard imaging protocol that mainly consisted of different turbo spin-echo sequences (PD-, T 2 -weighted TSE with and without fat suppression, STIR). All sequences were repeated with an integrated parallel acquisition technique (iPAT) using a modified sensitivity encoding (mSENSE) technique with an acceleration factor of 2. Overall image quality was subjectively assessed using a five-point scale as well as the ability for detection of pathologic findings. Results: Regarding overall image quality, there were no significant differences between standard imaging and imaging using mSENSE. All pathologies (occult fracture, meniscal tear, torn and interpositioned Hoffa's cleft, cartilage damage) were detected by both techniques. iPAT led to a 48% reduction of acquisition time compared with standard technique. Additionally, time savings with iPAT led to a decrease of pain-induced motion artifacts in two cases. Conclusion: In times of increasing cost pressure, iPAT using multiple coil elements seems to be an efficient and economic tool for fast musculoskeletal imaging with diagnostic performance comparable to conventional techniques. (orig.) [de

  15. Paediatric pelvic imaging: optimisation of dose and technique using digital grid-controlled pulsed fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, R.; McCarty, M. [Div. of Radiology, South Cleveland Hospital, South Tees Acute Hospitals NHS Trust, Marton Road, Middlesbrough, Cleveland (United Kingdom); McCallum, H.M. [Regional Medical Physics Dept., South Cleveland Hospital, Middlesbrough (United Kingdom); Montgomery, R. [Dept. of Orthopaedics, South Tees Hospitals NITS Trust, Middlesbrough (United Kingdom); Aszkenasy, M. [Tees and North East Yorkshire NHS Trust, West Lane Hospital, Middlesbrough (United Kingdom)

    2001-05-01

    Background. An audit of paediatric pelvic radiographs identified deficiencies in gonad shield placement and radiographic technique. Objective. A technique using grid-controlled fluoroscopy (GCF), with hard copy images in frame grab and digital spot image (DSI) format was evaluated to optimise gonad shield placement and reduce the dose given to children with Perthes disease and Developmental Hip Dysplasia (DDH) attending for pelvic radiography. Materials and methods. Phantom and patient dose surveys of conventional and fluoroscopic techniques were carried out. Image quality and radiation dose were compared for the frame grab and DSI techniques. Retrospective evaluation was undertaken to compare their clinical acceptability. Results. Both fluoroscopic techniques gave considerably less radiation than conventional non-grid radiography (67-83 %, P < 0.05). The frame grab technique gave less radiation than DSI (P < 0.05). There was no significant difference in the clinical acceptability scores of the DSI and frame grab images. Conclusion. Fluoroscopy acquired images are now used since the fluoroscopic techniques give much less dose than conventional radiography and provide images of sufficient quality for clinical assessment. Indeed, as there was no significant difference in clinical usefulness between the frame grab and DSI techniques, it is planned to use frame grab alone, thus gaining additional dose saving. (orig.)

  16. Paediatric pelvic imaging: optimisation of dose and technique using digital grid-controlled pulsed fluoroscopy

    International Nuclear Information System (INIS)

    Waugh, R.; McCarty, M.; McCallum, H.M.; Montgomery, R.; Aszkenasy, M.

    2001-01-01

    Background. An audit of paediatric pelvic radiographs identified deficiencies in gonad shield placement and radiographic technique. Objective. A technique using grid-controlled fluoroscopy (GCF), with hard copy images in frame grab and digital spot image (DSI) format was evaluated to optimise gonad shield placement and reduce the dose given to children with Perthes disease and Developmental Hip Dysplasia (DDH) attending for pelvic radiography. Materials and methods. Phantom and patient dose surveys of conventional and fluoroscopic techniques were carried out. Image quality and radiation dose were compared for the frame grab and DSI techniques. Retrospective evaluation was undertaken to compare their clinical acceptability. Results. Both fluoroscopic techniques gave considerably less radiation than conventional non-grid radiography (67-83 %, P < 0.05). The frame grab technique gave less radiation than DSI (P < 0.05). There was no significant difference in the clinical acceptability scores of the DSI and frame grab images. Conclusion. Fluoroscopy acquired images are now used since the fluoroscopic techniques give much less dose than conventional radiography and provide images of sufficient quality for clinical assessment. Indeed, as there was no significant difference in clinical usefulness between the frame grab and DSI techniques, it is planned to use frame grab alone, thus gaining additional dose saving. (orig.)

  17. Comparison of transaxial source images and 3-plane, thin-slab maximal intensity projection images for the diagnosis of coronary artery stenosis with using ECG-gated cardiac CT

    International Nuclear Information System (INIS)

    Choi, Jin Woo; Seo, Joon Beom; Do, Kyung Hyun

    2006-01-01

    We wanted to compare the transaxial source images with the optimized three plane, thin-slab maximum intensity projection (MIP) images from electrocardiographic (ECG)-gated cardiac CT for their ability to detect hemodynamically significant stenosis (HSS), and we did this by means of performing a receiver operating characteristic (ROC) analysis. Twenty-eight patients with a heart rate less than 66 beats per minute and who were undergoing both retrospective ECG-gated cardiac CT and conventional coronary angiography were included in this study. The contrast-enhanced CT scans were obtained with a collimation of 16 x 0.75-mm and a rotation time of 420 msec. The tranaxial images were reconstructed at the mid-diastolic phase with a 1-mm slice thickness and a 0.5-mm increment. Using the transaxial images, the slab MIP images were created with a 4-mm thickness and a 2-mm increment, and they covered the entire heart in the horizontal long axis (4 chamber view), in the vertical long axis (2 chamber view) and in the short axis. The transaxial images and MIP images were independently evaluated for their ability to detect HSS. Conventional coronary angiograms of the same study group served as the standard of reference. Four radiologists were requested to rank each image with using a five-point scale (1 = definitely negative, 2 = probably negative, 3 = indeterminate, 4 = probably positive, and 5 definitely positive) for the presence of HSS; the data were then interpreted using ROC analysis. There was no statistical difference in the area under the ROC curve between transaxial images and MIP images for the detection of HSS (0.8375 and 0.8708, respectively; ρ > 0.05). The mean reading time for the transaxial source images and the MIP images was 116 and 126.5 minutes, respectively. The diagnostic performance of the MIP images for detecting HSS of the coronary arteries is acceptable and this technique's ability to detect HSS is comparable to that of the transaxial source images

  18. Activity distribution of a cobalt-60 teletherapy source

    International Nuclear Information System (INIS)

    Jaffray, D.A.; Munro, P.; Battista, J.J.; Fenster, A.

    1991-01-01

    In the course of quantifying the effect of radiation source size on the spatial resolution of portal images, a concentric ring structure in the activity distribution of a Cobalt-60 teletherapy source has been observed. The activity distribution was measured using a strip integral technique and confirmed independently by a contact radiograph of an identical but inactive source replica. These two techniques suggested that this concentric ring structure is due to the packing configuration of the small 60Co pellets that constitute the source. The source modulation transfer function (MTF) showed that this ring structure has a negligible influence on the spatial resolution of therapy images when compared to the effect of the large size of the 60Co source

  19. Image reconstruction technique using projection data from neutron tomography system

    Directory of Open Access Journals (Sweden)

    Waleed Abd el Bar

    2015-12-01

    Full Text Available Neutron tomography is a very powerful technique for nondestructive evaluation of heavy industrial components as well as for soft hydrogenous materials enclosed in heavy metals which are usually difficult to image using X-rays. Due to the properties of the image acquisition system, the projection images are distorted by several artifacts, and these reduce the quality of the reconstruction. In order to eliminate these harmful effects the projection images should be corrected before reconstruction. This paper gives a description of a filter back projection (FBP technique, which is used for reconstruction of projected data obtained from transmission measurements by neutron tomography system We demonstrated the use of spatial Discrete Fourier Transform (DFT and the 2D Inverse DFT in the formulation of the method, and outlined the theory of reconstruction of a 2D neutron image from a sequence of 1D projections taken at different angles between 0 and π in MATLAB environment. Projections are generated by applying the Radon transform to the original image at different angles.

  20. COMPARISON OF RECURSIVE ESTIMATION TECHNIQUES FOR POSITION TRACKING RADIOACTIVE SOURCES

    International Nuclear Information System (INIS)

    Muske, K.; Howse, J.

    2000-01-01

    This paper compares the performance of recursive state estimation techniques for tracking the physical location of a radioactive source within a room based on radiation measurements obtained from a series of detectors at fixed locations. Specifically, the extended Kalman filter, algebraic observer, and nonlinear least squares techniques are investigated. The results of this study indicate that recursive least squares estimation significantly outperforms the other techniques due to the severe model nonlinearity

  1. Simulating the x-ray image contrast to setup techniques with desired flaw detectability

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  2. Time Reversal Migration for Passive Sources Using a Maximum Variance Imaging Condition

    KAUST Repository

    Wang, H.; Alkhalifah, Tariq Ali

    2017-01-01

    The conventional time-reversal imaging approach for micro-seismic or passive source location is based on focusing the back-propagated wavefields from each recorded trace in a source image. It suffers from strong background noise and limited acquisition aperture, which may create unexpected artifacts and cause error in the source location. To overcome such a problem, we propose a new imaging condition for microseismic imaging, which is based on comparing the amplitude variance in certain windows, and use it to suppress the artifacts as well as find the right location for passive sources. Instead of simply searching for the maximum energy point in the back-propagated wavefield, we calculate the amplitude variances over a window moving in both space and time axis to create a highly resolved passive event image. The variance operation has negligible cost compared with the forward/backward modeling operations, which reveals that the maximum variance imaging condition is efficient and effective. We test our approach numerically on a simple three-layer model and on a piece of the Marmousi model as well, both of which have shown reasonably good results.

  3. Time Reversal Migration for Passive Sources Using a Maximum Variance Imaging Condition

    KAUST Repository

    Wang, H.

    2017-05-26

    The conventional time-reversal imaging approach for micro-seismic or passive source location is based on focusing the back-propagated wavefields from each recorded trace in a source image. It suffers from strong background noise and limited acquisition aperture, which may create unexpected artifacts and cause error in the source location. To overcome such a problem, we propose a new imaging condition for microseismic imaging, which is based on comparing the amplitude variance in certain windows, and use it to suppress the artifacts as well as find the right location for passive sources. Instead of simply searching for the maximum energy point in the back-propagated wavefield, we calculate the amplitude variances over a window moving in both space and time axis to create a highly resolved passive event image. The variance operation has negligible cost compared with the forward/backward modeling operations, which reveals that the maximum variance imaging condition is efficient and effective. We test our approach numerically on a simple three-layer model and on a piece of the Marmousi model as well, both of which have shown reasonably good results.

  4. A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.

    Science.gov (United States)

    Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D

    2015-01-01

    X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.

  5. Ultra-realistic imaging advanced techniques in analogue and digital colour holography

    CERN Document Server

    Bjelkhagen, Hans

    2013-01-01

    Ultra-high resolution holograms are now finding commercial and industrial applications in such areas as holographic maps, 3D medical imaging, and consumer devices. Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography brings together a comprehensive discussion of key methods that enable holography to be used as a technique of ultra-realistic imaging.After a historical review of progress in holography, the book: Discusses CW recording lasers, pulsed holography lasers, and reviews optical designs for many of the principal laser types with emphasis on attaining th

  6. Diffusion weighted imaging demystified. The technique and potential clinical applications for soft tissue imaging

    International Nuclear Information System (INIS)

    Ahlawat, Shivani; Fayad, Laura M.

    2018-01-01

    Diffusion-weighted imaging (DWI) is a fast, non-contrast technique that is readily available and easy to integrate into an existing imaging protocol. DWI with apparent diffusion coefficient (ADC) mapping offers a quantitative metric for soft tissue evaluation and provides information regarding the cellularity of a region of interest. There are several available methods of performing DWI, and artifacts and pitfalls must be considered when interpreting DWI studies. This review article will review the various techniques of DWI acquisition and utility of qualitative as well as quantitative methods of image interpretation, with emphasis on optimal methods for ADC measurement. The current clinical applications for DWI are primarily related to oncologic evaluation: For the assessment of de novo soft tissue masses, ADC mapping can serve as a useful adjunct technique to routine anatomic sequences for lesion characterization as cyst or solid and, if solid, benign or malignant. For treated soft tissue masses, the role of DWI/ADC mapping in the assessment of treatment response as well as recurrent or residual neoplasm in the setting of operative management is discussed, especially when intravenous contrast medium cannot be given. Emerging DWI applications for non-neoplastic clinical indications are also reviewed. (orig.)

  7. Diffusion weighted imaging demystified. The technique and potential clinical applications for soft tissue imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Shivani [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Fayad, Laura M. [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Orthopaedic Surgery, Baltimore, MD (United States)

    2018-03-15

    Diffusion-weighted imaging (DWI) is a fast, non-contrast technique that is readily available and easy to integrate into an existing imaging protocol. DWI with apparent diffusion coefficient (ADC) mapping offers a quantitative metric for soft tissue evaluation and provides information regarding the cellularity of a region of interest. There are several available methods of performing DWI, and artifacts and pitfalls must be considered when interpreting DWI studies. This review article will review the various techniques of DWI acquisition and utility of qualitative as well as quantitative methods of image interpretation, with emphasis on optimal methods for ADC measurement. The current clinical applications for DWI are primarily related to oncologic evaluation: For the assessment of de novo soft tissue masses, ADC mapping can serve as a useful adjunct technique to routine anatomic sequences for lesion characterization as cyst or solid and, if solid, benign or malignant. For treated soft tissue masses, the role of DWI/ADC mapping in the assessment of treatment response as well as recurrent or residual neoplasm in the setting of operative management is discussed, especially when intravenous contrast medium cannot be given. Emerging DWI applications for non-neoplastic clinical indications are also reviewed. (orig.)

  8. Mobile depth profiling and sub-surface imaging techniques for historical paintings—A review

    International Nuclear Information System (INIS)

    Alfeld, Matthias; Broekaert, José A.C.

    2013-01-01

    Hidden, sub-surface paint layers and features contain valuable information for the art-historical investigation of a painting's past and for its conservation for coming generations. The number of techniques available for the study of these features has been considerably extended in the last decades and established techniques have been refined. This review focuses on mobile non-destructive subsurface imaging and depth profiling techniques, which allow for the in-situ investigation of easel paintings, i.e. paintings on a portable support. Among the techniques discussed are: X-ray radiography and infrared reflectography, which are long established methods and are in use for several decades. Their capabilities of element/species specific imaging have been extended by the introduction of energy/wavelength resolved measurements. Scanning macro-X-ray fluorescence analysis made it for the first time possible to acquire elemental distribution images in-situ and optical coherence tomography allows for the non-destructive study the surface paint layers in virtual cross-sections. These techniques and their variants are presented next to other techniques, such as Terahertz imaging, Nuclear Magnetic Resonance depth profiling and established techniques for non destructive testing (thermography, ultrasonic imaging and laser based interference methods) applied in the conservation of historical paintings. Next to selected case studies the capabilities and limitations of the techniques are discussed. - Highlights: • All mobile sub-surface and depth-profiling techniques for paintings are reviewed. • The number of techniques available has increased considerably in the last years. • X-ray radiography and infrared reflectography are still the most used techniques. • Scanning macro-XRF and optical coherence tomography begin to establish. • Industrial non destructive testing techniques support the preservation of paintings

  9. MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-05-01

    Full Text Available An important stage in microarray image analysis is gridding. Microarray image gridding is done to locate sub arrays in a microarray image and find co-ordinates of spots within each sub array. For accurate identification of spots, most of the proposed gridding methods require human intervention. In this paper a fully automatic gridding method which enhances spot intensity in the preprocessing step as per a histogram based threshold method is used. The gridding step finds co-ordinates of spots from horizontal and vertical profile of the image. To correct errors due to the grid line placement, a grid line refinement technique is proposed. The algorithm is applied on different image databases and results are compared based on spot detection accuracy and time. An average spot detection accuracy of 95.06% depicts the proposed method’s flexibility and accuracy in finding the spot co-ordinates for different database images.

  10. Aliasless fresnel transform image reconstruction in phase scrambling fourier transform technique by data interpolation

    International Nuclear Information System (INIS)

    Yamada, Yoshifumi; Liu, Na; Ito, Satoshi

    2006-01-01

    The signal in the Fresnel transform technique corresponds to a blurred one of the spin density image. Because the amplitudes of adjacent sampled signals have a high interrelation, the signal amplitude at a point between sampled points can be estimated with a high degree of accuracy even if the sampling is so coarse as to generate aliasing in the reconstructed images. In this report, we describe a new aliasless image reconstruction technique in the phase scrambling Fourier transform (PSFT) imaging technique in which the PSFT signals are converted to Fresnel transform signals by multiplying them by a quadratic phase term and are then interpolated using polynomial expressions to generate fully encoded signals. Numerical simulation using MR images showed that almost completely aliasless images are reconstructed by this technique. Experiments using ultra-low-field PSFT MRI were conducted, and aliasless images were reconstructed from coarsely sampled PSFT signals. (author)

  11. Indications and technique of fetal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Asenbaum, U.; Woitek, R.; Furtner, J.; Prayer, D.; Brugger, P.C.

    2013-01-01

    Evaluation and confirmation of fetal pathologies previously suspected or diagnosed with ultrasound. Ultrasound and magnetic resonance imaging (MRI). Technique for prenatal fetal examination. Fetal MRI is an established supplementary technique to prenatal ultrasound. Fetal MRI should only be used as an additional method in prenatal diagnostics and not for routine screening. Fetal MRI should only be performed in perinatal medicine centers after a previous level III ultrasound examination. (orig.) [de

  12. Image fusion techniques in permanent seed implantation

    Directory of Open Access Journals (Sweden)

    Alfredo Polo

    2010-10-01

    Full Text Available Over the last twenty years major software and hardware developments in brachytherapy treatment planning, intraoperative navigation and dose delivery have been made. Image-guided brachytherapy has emerged as the ultimate conformal radiation therapy, allowing precise dose deposition on small volumes under direct image visualization. In thisprocess imaging plays a central role and novel imaging techniques are being developed (PET, MRI-MRS and power Doppler US imaging are among them, creating a new paradigm (dose-guided brachytherapy, where imaging is used to map the exact coordinates of the tumour cells, and to guide applicator insertion to the correct position. Each of these modalities has limitations providing all of the physical and geometric information required for the brachytherapy workflow.Therefore, image fusion can be used as a solution in order to take full advantage of the information from each modality in treatment planning, intraoperative navigation, dose delivery, verification and follow-up of interstitial irradiation.Image fusion, understood as the visualization of any morphological volume (i.e. US, CT, MRI together with an additional second morpholo gical volume (i.e. CT, MRI or functional dataset (functional MRI, SPECT, PET, is a well known method for treatment planning, verification and follow-up of interstitial irradiation. The term image fusion is used when multiple patient image datasets are registered and overlaid or merged to provide additional information. Fused images may be created from multiple images from the same imaging modality taken at different moments (multi-temporalapproach, or by combining information from multiple modalities. Quality means that the fused images should provide additional information to the brachythe rapy process (diagnosis and staging, treatment planning, intraoperative imaging, treatment delivery and follow-up that cannot be obtained in other ways. In this review I will focus on the role of

  13. Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Menk, Ralf Hendrik

    2008-01-01

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift φ directly (using interference phenomena), the gradient ∇ φ , or the Laplacian ∇ 2 φ. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1,000-10,000 in the energy

  14. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Science.gov (United States)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  15. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  16. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    International Nuclear Information System (INIS)

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  17. Planar and SPECT Monte Carlo acceleration using a variance reduction technique in I131imaging

    International Nuclear Information System (INIS)

    Khosravi, H. R.; Sarkar, S.; Takavar, A.; Saghari, M.; Shahriari, M.

    2007-01-01

    Various variance reduction techniques such as forced detection (FD) have been implemented in Monte Carlo (MC) simulation of nuclear medicine in an effort to decrease the simulation time while keeping accuracy. However most of these techniques still result in very long MC simulation times for being implemented into routine use. Materials and Methods: Convolution-based forced detection (CFD) method as a variance reduction technique was implemented into the well known SlMlND MC photon simulation software. A variety of simulations including point and extended sources in uniform and non-uniform attenuation media, were performed to compare differences between FD and CFD versions of SlMlND modeling for I 131 radionuclide and camera configurations. Experimental measurement of system response function was compared to FD and CFD simulation data. Results: Different simulations using the CFD method agree very well with experimental measurements as well as FD version. CFD simulations of system response function and larger sources in uniform and non-uniform attenuated phantoms also agree well with FD version of SIMIND. Conclusion: CFD has been modeled into the SlMlND MC program and validated. With the current implementation of CFD, simulation times were approximately 10-15 times shorter with similar accuracy and image quality compared with FD MC

  18. Shack-Hartmann centroid detection method based on high dynamic range imaging and normalization techniques

    International Nuclear Information System (INIS)

    Vargas, Javier; Gonzalez-Fernandez, Luis; Quiroga, Juan Antonio; Belenguer, Tomas

    2010-01-01

    In the optical quality measuring process of an optical system, including diamond-turning components, the use of a laser light source can produce an undesirable speckle effect in a Shack-Hartmann (SH) CCD sensor. This speckle noise can deteriorate the precision and accuracy of the wavefront sensor measurement. Here we present a SH centroid detection method founded on computer-based techniques and capable of measurement in the presence of strong speckle noise. The method extends the dynamic range imaging capabilities of the SH sensor through the use of a set of different CCD integration times. The resultant extended range spot map is normalized to accurately obtain the spot centroids. The proposed method has been applied to measure the optical quality of the main optical system (MOS) of the mid-infrared instrument telescope smulator. The wavefront at the exit of this optical system is affected by speckle noise when it is illuminated by a laser source and by air turbulence because it has a long back focal length (3017 mm). Using the proposed technique, the MOS wavefront error was measured and satisfactory results were obtained.

  19. Can state-of-the-art HVS-based objective image quality criteria be used for image reconstruction techniques based on ROI analysis?

    Science.gov (United States)

    Dostal, P.; Krasula, L.; Klima, M.

    2012-06-01

    Various image processing techniques in multimedia technology are optimized using visual attention feature of the human visual system. Spatial non-uniformity causes that different locations in an image are of different importance in terms of perception of the image. In other words, the perceived image quality depends mainly on the quality of important locations known as regions of interest. The performance of such techniques is measured by subjective evaluation or objective image quality criteria. Many state-of-the-art objective metrics are based on HVS properties; SSIM, MS-SSIM based on image structural information, VIF based on the information that human brain can ideally gain from the reference image or FSIM utilizing the low-level features to assign the different importance to each location in the image. But still none of these objective metrics utilize the analysis of regions of interest. We solve the question if these objective metrics can be used for effective evaluation of images reconstructed by processing techniques based on ROI analysis utilizing high-level features. In this paper authors show that the state-of-the-art objective metrics do not correlate well with subjective evaluation while the demosaicing based on ROI analysis is used for reconstruction. The ROI were computed from "ground truth" visual attention data. The algorithm combining two known demosaicing techniques on the basis of ROI location is proposed to reconstruct the ROI in fine quality while the rest of image is reconstructed with low quality. The color image reconstructed by this ROI approach was compared with selected demosaicing techniques by objective criteria and subjective testing. The qualitative comparison of the objective and subjective results indicates that the state-of-the-art objective metrics are still not suitable for evaluation image processing techniques based on ROI analysis and new criteria is demanded.

  20. Assessment of biological leaf tissue using biospeckle laser imaging technique

    Science.gov (United States)

    Ansari, M. Z.; Mujeeb, A.; Nirala, A. K.

    2018-06-01

    We report on the application of an optical imaging technique, the biospeckle laser, as a potential tool to assess biological and medicinal plant leaves. The biospeckle laser technique is a non-invasive and non-destructive optical technique used to investigate biological objects. Just after their removal from plants, the torn leaves were used for biospeckle laser imaging. Quantitative evaluation of the biospeckle data using the inertia moment (IM) of the time history speckle pattern, showed that the IM can be utilized to provide a biospeckle signature to the plant leaves. It showed that leaves from different plants can have their own characteristic IM values. We further investigated the infected regions of the leaves that display a relatively lower biospeckle activity than the healthy tissue. It was easy to discriminate between the infected and healthy regions of the leaf tissue. The biospeckle technique can successfully be implemented as a potential tool for the taxonomy of quality leaves. Furthermore, the technique can help boost the quality of ayurvedic medicines.

  1. A rotating modulation imager for locating mid-range point sources

    International Nuclear Information System (INIS)

    Kowash, B.R.; Wehe, D.K.; Fessler, J.A.

    2009-01-01

    Rotating modulation collimators (RMC) are relatively simple indirect imaging devices that have proven useful in gamma ray astronomy (far field) and have more recently been studied for medical imaging (very near field). At the University of Michigan a RMC has been built to study the performance for homeland security applications. This research highlights the imaging performance of this system and focuses on three distinct regions in the RMC field of view that can impact the search for hidden sources. These regions are a blind zone around the axis of rotation, a two mask image zone that extends from the blind zone to the edge of the field of view, and a single mask image zone that occurs when sources fall outside the field of view of both masks. By considering the extent and impact of these zones, the size of the two mask region can be optimized for the best system performance.

  2. Gadgetron: An Open Source Framework for Medical Image Reconstruction

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild

    2013-01-01

    This work presents a new open source framework for medical image reconstruction called the “Gadgetron.” The framework implements a flexible system for creating streaming data processing pipelines where data pass through a series of modules or “Gadgets” from raw data to reconstructed images...... with a set of dedicated toolboxes in shared libraries for medical image reconstruction. This includes generic toolboxes for data-parallel (e.g., GPU-based) execution of compute-intensive components. The basic framework architecture is independent of medical imaging modality, but this article focuses on its...

  3. Sources of uncertainty in individual monitoring for photographic,TL and OSL dosimetry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Max S.; Silva, Everton R.; Mauricio, Claudia L.P., E-mail: max.das.ferreira@gmail.com, E-mail: everton@ird.gov.br, E-mail: claudia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The identification of the uncertainty sources and their quantification is essential to the quality of any dosimetric results. If uncertainties are not stated for all dose measurements informed in the monthly dose report to the monitored radiation facilities, they need to be known. This study aims to analyze the influence of different sources of uncertainties associated with photographic, TL and OSL dosimetric techniques, considering the evaluation of occupational doses of whole-body exposure for photons. To identify the sources of uncertainty it was conducted a bibliographic review in specific documents that deal with operational aspects of each technique and the uncertainties associated to each of them. Withal, technical visits to individual monitoring services were conducted to assist in this identification. The sources of uncertainty were categorized and their contributions were expressed in a qualitative way. The process of calibration and traceability are the most important sources of uncertainties, regardless the technique used. For photographic dosimetry, the remaining important uncertainty sources are due to: energy and angular dependence; linearity of response; variations in the films processing. For TL and OSL, the key process for a good performance is respectively the reproducibility of the thermal and optical cycles. For the three techniques, all procedures of the measurement process must be standardized, controlled and reproducible. Further studies can be performed to quantify the contribution of the sources of uncertainty. (author)

  4. Real-time earthquake source imaging: An offline test for the 2011 Tohoku earthquake

    Science.gov (United States)

    Zhang, Yong; Wang, Rongjiang; Zschau, Jochen; Parolai, Stefano; Dahm, Torsten

    2014-05-01

    In recent decades, great efforts have been expended in real-time seismology aiming at earthquake and tsunami early warning. One of the most important issues is the real-time assessment of earthquake rupture processes using near-field seismogeodetic networks. Currently, earthquake early warning systems are mostly based on the rapid estimate of P-wave magnitude, which contains generally large uncertainties and the known saturation problem. In the case of the 2011 Mw9.0 Tohoku earthquake, JMA (Japan Meteorological Agency) released the first warning of the event with M7.2 after 25 s. The following updates of the magnitude even decreased to M6.3-6.6. Finally, the magnitude estimate stabilized at M8.1 after about two minutes. This led consequently to the underestimated tsunami heights. By using the newly developed Iterative Deconvolution and Stacking (IDS) method for automatic source imaging, we demonstrate an offline test for the real-time analysis of the strong-motion and GPS seismograms of the 2011 Tohoku earthquake. The results show that we had been theoretically able to image the complex rupture process of the 2011 Tohoku earthquake automatically soon after or even during the rupture process. In general, what had happened on the fault could be robustly imaged with a time delay of about 30 s by using either the strong-motion (KiK-net) or the GPS (GEONET) real-time data. This implies that the new real-time source imaging technique is helpful to reduce false and missing warnings, and therefore should play an important role in future tsunami early warning and earthquake rapid response systems.

  5. Bayesian image processing of data from fuzzy pattern sources

    International Nuclear Information System (INIS)

    Liang, Z.; Hart, H.

    1986-01-01

    In some radioisotopic organ image applications, a priori or supplementary source information may exist and can be characterized in terms of probability density functions P (phi) of the source elements {phi/sub j/} = phi (where phi/sub j/ (j = 1,2,..α) is the estimated average photon emission in voxel j per unit time at t = 0). For example, in cardiac imaging studies it is possible to evaluate the radioisotope concentration of the blood filling the cardiac chambers independently as a function of time by peripheral measurement. The blood concentration information in effect serves to limit amplitude uncertainty to the chamber boundary voxels and thus reduces the extent of amplitude ambiguities in the overall cardiac imaging reconstruction. The a priori or supplementary information may more generally be spatial, amplitude-dependent probability distributions P(phi), fuzzy patterns superimposed upon a background

  6. Mobile depth profiling and sub-surface imaging techniques for historical paintings—A review

    Energy Technology Data Exchange (ETDEWEB)

    Alfeld, Matthias, E-mail: matthias.alfeld@desy.de [University of Hamburg, Department of Chemistry, Martin-Luther-King Platz 6, D-20146 Hamburg (Germany); University of Antwerp, Department of Chemistry, Groenenbrogerlaan 171, B-2020 Antwerp (Belgium); Broekaert, José A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [University of Hamburg, Department of Chemistry, Martin-Luther-King Platz 6, D-20146 Hamburg (Germany)

    2013-10-01

    Hidden, sub-surface paint layers and features contain valuable information for the art-historical investigation of a painting's past and for its conservation for coming generations. The number of techniques available for the study of these features has been considerably extended in the last decades and established techniques have been refined. This review focuses on mobile non-destructive subsurface imaging and depth profiling techniques, which allow for the in-situ investigation of easel paintings, i.e. paintings on a portable support. Among the techniques discussed are: X-ray radiography and infrared reflectography, which are long established methods and are in use for several decades. Their capabilities of element/species specific imaging have been extended by the introduction of energy/wavelength resolved measurements. Scanning macro-X-ray fluorescence analysis made it for the first time possible to acquire elemental distribution images in-situ and optical coherence tomography allows for the non-destructive study the surface paint layers in virtual cross-sections. These techniques and their variants are presented next to other techniques, such as Terahertz imaging, Nuclear Magnetic Resonance depth profiling and established techniques for non destructive testing (thermography, ultrasonic imaging and laser based interference methods) applied in the conservation of historical paintings. Next to selected case studies the capabilities and limitations of the techniques are discussed. - Highlights: • All mobile sub-surface and depth-profiling techniques for paintings are reviewed. • The number of techniques available has increased considerably in the last years. • X-ray radiography and infrared reflectography are still the most used techniques. • Scanning macro-XRF and optical coherence tomography begin to establish. • Industrial non destructive testing techniques support the preservation of paintings.

  7. Chest trauma in children: current imaging guidelines and techniques.

    LENUS (Irish Health Repository)

    Moore, Michael A

    2011-09-01

    Given the heterogeneous nature of pediatric chest trauma, the optimal imaging approach is tailored to the specific patient. Chest radiography remains the most important imaging modality for initial triage. The decision to perform a chest computed tomography scan should be based on the nature of the trauma, the child\\'s clinical condition, and the initial radiographic findings, taking the age-related pretest probabilities of serious injury into account. The principles of as low as reasonably achievable and Image Gently should be followed. The epidemiology and pathophysiology, imaging techniques, characteristic findings, and evidence-based algorithms for pediatric chest trauma are discussed.

  8. Characterization of European sword blades through neutron imaging techniques

    Science.gov (United States)

    Salvemini, F.; Grazzi, F.; Peetermans, S.; Gener, M.; Lehmann, E. H.; Zoppi, M.

    2014-09-01

    In the present work, we have studied two European rapier blades, dating back to the period ranging from the Late Renaissance to the Early Modern Age (about 17th to 18th century). In order to determine variation in quality and differences in technology, a study was undertaken with the purpose to observe variations in the blade microstructure (and consequently in the construction processes). The samples, which in the present case were expendable, have been investigated, preliminarily, through standard metallography and then by means of white beam and energy-selective neutron imaging. The comparison of the results, using the two techniques, turned out to be satisfactory, with a substantial quantitative agreement of the results obtained with the two techniques, and show the complementarity of the two methods. Metallography has been considered up to now the method of choice for metal material characterization. The correspondence between the two methods, as well as the non-invasive character of the neutron-based techniques and its possibility to obtain 3D reconstruction, candidate neutron imaging as an important and quantitatively reliable technique for metal characterization.

  9. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    Science.gov (United States)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  10. STUDY OF IMAGE SEGMENTATION TECHNIQUES ON RETINAL IMAGES FOR HEALTH CARE MANAGEMENT WITH FAST COMPUTING

    Directory of Open Access Journals (Sweden)

    Srikanth Prabhu

    2012-02-01

    Full Text Available The role of segmentation in image processing is to separate foreground from background. In this process, the features become clearly visible when appropriate filters are applied on the image. In this paper emphasis has been laid on segmentation of biometric retinal images to filter out the vessels explicitly for evaluating the bifurcation points and features for diabetic retinopathy. Segmentation on images is performed by calculating ridges or morphology. Ridges are those areas in the images where there is sharp contrast in features. Morphology targets the features using structuring elements. Structuring elements are of different shapes like disk, line which is used for extracting features of those shapes. When segmentation was performed on retinal images problems were encountered during image pre-processing stage. Also edge detection techniques have been deployed to find out the contours of the retinal images. After the segmentation has been performed, it has been seen that artifacts of the retinal images have been minimal when ridge based segmentation technique was deployed. In the field of Health Care Management, image segmentation has an important role to play as it determines whether a person is normal or having any disease specially diabetes. During the process of segmentation, diseased features are classified as diseased one’s or artifacts. The problem comes when artifacts are classified as diseased ones. This results in misclassification which has been discussed in the analysis Section. We have achieved fast computing with better performance, in terms of speed for non-repeating features, when compared to repeating features.

  11. A Novel Technique for Shape Feature Extraction Using Content Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    Dhanoa Jaspreet Singh

    2016-01-01

    Full Text Available With the advent of technology and multimedia information, digital images are increasing very quickly. Various techniques are being developed to retrieve/search digital information or data contained in the image. Traditional Text Based Image Retrieval System is not plentiful. Since it is time consuming as it require manual image annotation. Also, the image annotation differs with different peoples. An alternate to this is Content Based Image Retrieval (CBIR system. It retrieves/search for image using its contents rather the text, keywords etc. A lot of exploration has been compassed in the range of Content Based Image Retrieval (CBIR with various feature extraction techniques. Shape is a significant image feature as it reflects the human perception. Moreover, Shape is quite simple to use by the user to define object in an image as compared to other features such as Color, texture etc. Over and above, if applied alone, no descriptor will give fruitful results. Further, by combining it with an improved classifier, one can use the positive features of both the descriptor and classifier. So, a tryout will be made to establish an algorithm for accurate feature (Shape extraction in Content Based Image Retrieval (CBIR. The main objectives of this project are: (a To propose an algorithm for shape feature extraction using CBIR, (b To evaluate the performance of proposed algorithm and (c To compare the proposed algorithm with state of art techniques.

  12. High-Performance Region-of-Interest Image Error Concealment with Hiding Technique

    Directory of Open Access Journals (Sweden)

    Shih-Chang Hsia

    2010-01-01

    Full Text Available Recently region-of-interest (ROI based image coding is a popular topic. Since ROI area contains much more important information for an image, it must be prevented from error decoding while suffering from channel lost or unexpected attack. This paper presents an efficient error concealment method to recover ROI information with a hiding technique. Based on the progressive transformation, the low-frequency components of ROI are encoded to disperse its information into the high-frequency bank of original image. The capability of protection is carried out with extracting the ROI coefficients from the damaged image without increasing extra information. Simulation results show that the proposed method can efficiently reconstruct the ROI image when ROI bit-stream occurs errors, and the measurement of PSNR result outperforms the conventional error concealment techniques by 2 to 5 dB.

  13. Experimental and theoretical contributions to X-ray phase-contrast techniques for medical imaging

    International Nuclear Information System (INIS)

    Diemoz, P.C.

    2011-01-01

    Several X-ray phase-contrast techniques have recently been developed. Unlike conventional X-ray methods, which measure the absorption properties of the tissues, these techniques derive contrast also from the modulation of the phase produced by the sample. Since the phase shift can be significant even for small details characterized by weak or absent absorption, the achievable image contrast can be greatly increased, notably for the soft biological tissues. These methods are therefore very promising for applications in the medical domain. The aim of this work is to contribute to a deeper understanding of these techniques, in particular propagation-based imaging (PBI), analyzer-based imaging (ABI) and grating interferometry (GIFM), and to study their potential and the best practical implementation for medical imaging applications. An important part of this work is dedicated to the use of mathematical algorithms for the extraction, from the acquired images, of quantitative sample information (the absorption, refraction and scattering sample properties). In particular, five among the most known algorithms based on the geometrical optics approximation have been theoretically analysed and experimentally compared, in planar and tomographic modalities, by using geometrical phantoms and human bone-cartilage and breast samples. A semi-quantitative method for the acquisition and reconstruction of tomographic images in the ABI and GIFM techniques has also been proposed. The validity conditions are analyzed in detail and the method, enabling a considerable simplification of the imaging procedure, has been experimentally checked on phantoms and human samples. Finally, a theoretical and experimental comparison of the PBI, ABI and GIFM techniques is presented. The advantages and drawbacks of each of these techniques are discussed. The results obtained from this analysis can be very useful for determining the most adapted technique for a given application. (author)

  14. Imaging of fast-neutron sources using solid-state track-recorder pinhole radiography

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Gold, R.; Roberts, J.H.; Kaiser, B.J.; Preston, C.C.

    1983-08-01

    Pinhole imaging methods are being developed and tested for potential future use in imaging the intense neutron source of the Fusion Materials Irradiation Test (FMIT) Facility. Previously reported, extensive calibration measurements of the proton, neutron, and alpha particle response characteristics of CR-39 polymer solid state track recorders (SSTRs) are being used to interpret the results of imaging experiments using both charged particle and neutron pinhole collimators. High resolution, neutron pinhole images of a 252 Cf source have been obtained in the form of neutron induced proton recoil tracks in CR-39 polymer SSTR. These imaging experiments are described as well as their potential future applications to FMIT

  15. Fluorescence hyperspectral imaging technique for foreign substance detection on fresh-cut lettuce.

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Kim, Moon S; Lim, Jongguk; Cho, Hyunjeong; Barnaby, Jinyoung Yang; Cho, Byoung-Kwan

    2017-09-01

    Non-destructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed to detect worms on fresh-cut lettuce. The optimal wavebands for detecting the worms were investigated using the one-way ANOVA and correlation analyses. The worm detection imaging algorithms, RSI-I (492-626)/492 , provided a prediction accuracy of 99.0%. The fluorescence HSI techniques indicated that the spectral images with a pixel size of 1 × 1 mm had the best classification accuracy for worms. The overall results demonstrate that fluorescence HSI techniques have the potential to detect worms on fresh-cut lettuce. In the future, we will focus on developing a multi-spectral imaging system to detect foreign substances such as worms, slugs and earthworms on fresh-cut lettuce. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Segmentation techniques for extracting humans from thermal images

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-11-01

    Full Text Available A pedestrian detection system for underground mine vehicles is being developed that requires the segmentation of people from thermal images in underground mine tunnels. A number of thresholding techniques are outlined and their performance on a...

  17. Source distribution dependent scatter correction for PVI

    International Nuclear Information System (INIS)

    Barney, J.S.; Harrop, R.; Dykstra, C.J.

    1993-01-01

    Source distribution dependent scatter correction methods which incorporate different amounts of information about the source position and material distribution have been developed and tested. The techniques use image to projection integral transformation incorporating varying degrees of information on the distribution of scattering material, or convolution subtraction methods, with some information about the scattering material included in one of the convolution methods. To test the techniques, the authors apply them to data generated by Monte Carlo simulations which use geometric shapes or a voxelized density map to model the scattering material. Source position and material distribution have been found to have some effect on scatter correction. An image to projection method which incorporates a density map produces accurate scatter correction but is computationally expensive. Simpler methods, both image to projection and convolution, can also provide effective scatter correction

  18. Advantages and Limitations of Current Imaging Techniques for Characterizing Liposome Morphology

    Directory of Open Access Journals (Sweden)

    Annie-Louise Robson

    2018-02-01

    Full Text Available There are currently a number of imaging techniques available for evaluating the morphology of liposomes and other nanoparticles, with each having its own advantages and disadvantages that should be considered when interpreting data. Controlling and validating the morphology of nanoparticles is of key importance for the effective clinical translation of liposomal formulations. There are a number of physical characteristics of liposomes that determine their in vivo behavior, including size, surface characteristics, lamellarity, and homogeneity. Despite the great importance of the morphology of nanoparticles, it is generally not well-characterized and is difficult to control. Appropriate imaging techniques provide important details regarding the morphological characteristics of nanoparticles, and should be used in conjunction with other methods to assess physicochemical parameters. In this review, we will discuss the advantages and limitations of available imaging techniques used to evaluate liposomal formulations.

  19. A Kalman filter technique applied for medical image reconstruction

    International Nuclear Information System (INIS)

    Goliaei, S.; Ghorshi, S.; Manzuri, M. T.; Mortazavi, M.

    2011-01-01

    Medical images contain information about vital organic tissues inside of human body and are widely used for diagnoses of disease or for surgical purposes. Image reconstruction is essential for medical images for some applications such as suppression of noise or de-blurring the image in order to provide images with better quality and contrast. Due to vital rule of image reconstruction in medical sciences the corresponding algorithms with better efficiency and higher speed is desirable. Most algorithms in image reconstruction are operated on frequency domain such as the most popular one known as filtered back projection. In this paper we introduce a Kalman filter technique which is operated in time domain for medical image reconstruction. Results indicated that as the number of projection increases in both normal collected ray sum and the collected ray sum corrupted by noise the quality of reconstructed image becomes better in terms of contract and transparency. It is also seen that as the number of projection increases the error index decreases.

  20. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images.

    Science.gov (United States)

    Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep

    2017-04-01

    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Advanced imaging techniques II: using a compound microscope for photographing point-mount specimens

    Science.gov (United States)

    Digital imaging technology has revolutionized the practice photographing insects for scientific study. Herein described are lighting and mounting techniques designed for imaging micro Hymenoptera. Techniques described here are applicable to all small insects, as well as other invertebrates. The ke...

  2. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Science.gov (United States)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  3. Image-analysis techniques for investigation localized corrosion processes

    International Nuclear Information System (INIS)

    Quinn, M.J.; Bailey, M.G.; Ikeda, B.M.; Shoesmith, D.W.

    1993-12-01

    We have developed a procedure for determining the mode and depth of penetration of localized corrosion by combining metallography and image analysis of corroded coupons. Two techniques, involving either a face-profiling or an edge-profiling procedure, have been developed. In the face-profiling procedure, successive surface grindings and image analyses were performed until corrosion was no longer visible. In this manner, the distribution of corroded sites on the surface and the total area of the surface corroded were determined as a function of depth into the specimen. In the edge-profiling procedure, surface grinding exposed successive cross sections of the corroded region. Image analysis of the cross section quantified the distribution of depths across the corroded section, and a three-dimensional distribution of penetration depths was obtained. To develop these procedures, we used artificially creviced Grade-2 titanium specimens that were corroded in saline solutions containing various amounts of chloride maintained at various fixed temperatures (105 to 150 degrees C) using a previously developed galvanic-coupling technique. We discuss some results from these experiments to illustrate how the procedures developed can be applied to a real corroded system. (author). 6 refs., 4 tabs., 21 figs

  4. Automated synthesis of image processing procedures using AI planning techniques

    Science.gov (United States)

    Chien, Steve; Mortensen, Helen

    1994-01-01

    This paper describes the Multimission VICAR (Video Image Communication and Retrieval) Planner (MVP) (Chien 1994) system, which uses artificial intelligence planning techniques (Iwasaki & Friedland, 1985, Pemberthy & Weld, 1992, Stefik, 1981) to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing subprograms) in response to image processing requests made to the JPL Multimission Image Processing Laboratory (MIPL). The MVP system allows the user to specify the image processing requirements in terms of the various types of correction required. Given this information, MVP derives unspecified required processing steps and determines appropriate image processing programs and parameters to achieve the specified image processing goals. This information is output as an executable image processing program which can then be executed to fill the processing request.

  5. Metal Artifacts Reduction of Pedicle Screws on Spine Computed Tomography Images Using Variable Thresholding Technique

    International Nuclear Information System (INIS)

    Kaewlek, T.; Koolpiruck, D.; Thongvigitmanee, S.; Mongkolsuk, M.; Chiewvit, P.; Thammakittiphan, S.

    2012-01-01

    Metal artifacts are one of significant problems in computed tomography (CT). The streak lines and air gaps arise from metal implants of orthopedic patients, such as prosthesis, dental bucket, and pedicle screws that cause incorrect diagnosis and local treatment planning. A common technique to suppressed artifacts is by adjusting windows, but those artifacts still remain on the images. To improve the detail of spine CT images, the variable thresholding technique is proposed in this paper. Three medical cases of spine CT images categorized by the severity of artifacts (screws head, one full screw, and two full screws) were investigated. Metal regions were segmented by k-mean clustering, then transformed into a sinogram domain. The metal sinogram was identified by the variable thresholding method, and then replaced the new estimated values by linear interpolation. The modified sinogram was reconstructed by the filtered back- projection algorithm, and added the metal region back to the modified reconstructed image in order to reproduce the final image. The image quality of the proposed technique, the automatic thresholding (Kalender) technique, and window adjustment technique was compared in term of noise and signal to noise ratio (SNR). The propose method can reduce metal artifacts between pedicle screws. After processing by our proposed technique, noise in the modified images is reduced (screws head 121.15 to73.83, one full screw 160.88 to 94.04, and two full screws 199.73 to 110.05 from the initial image) and SNR is increased (screws head 0.87 to 1.88, one full screw 1.54 to 2.82, and two full screws 0.32 to 0.41 from the initial image). The variable thresholding technique can identify the suitable boundary for restoring the missing data. The efficiency of the metal artifacts reduction is indicated on the case of partial and full pedicle screws. Our technique can improve the detail of spine CT images better than automatic thresholding (Kalender) technique, and

  6. An image processing technique for the radiographic assessment of vertebral derangements

    Energy Technology Data Exchange (ETDEWEB)

    Breen, A.C. (Anglo-European Coll. of Chiropractic, Bournemouth (UK)); Allen, R. (Southampton Univ. (UK). Dept. of Mechanical Engineering); Morris, A. (Odstock Hospital, Salisbury (UK). Dept. of Radiology)

    1989-01-01

    A technique for measuring inter-vertebral motion by the digitization and processing of intensifier images is described. The technique reduces the time and X-ray dosage currently required to make such assessments. The errors associated with computing kinematic indices at increments of coronal plane rotations in the lumbar spine have been calculated using a calibration model designed to produce a facsimile of in vivo conditions in terms of image quality and geometric distortion. (author).

  7. Energy source perceptions and policy support: Image associations, emotional evaluations, and cognitive beliefs

    International Nuclear Information System (INIS)

    Barnes Truelove, Heather

    2012-01-01

    This paper represents the most in-depth effort conducted to date to assess affective, emotional and cognitive perceptions of coal, natural gas, nuclear, and wind energy and the relationship between these perceptions and support for the energy sources. U.S. residents, recruited from a consumer panel, completed surveys assessing image associations, emotional reactions, and cognitive beliefs about energy sources and support for increased reliance on energy sources and local siting of energy facilities. The content of images produced by participants when evaluating energy sources revealed several interesting findings. Additionally, analysis of the image evaluations, emotions, and beliefs about each energy source showed that coal and nuclear energy were viewed most negatively, with natural gas in the middle, and wind viewed most positively. Importantly, these affective, emotional, and cognitive perceptions explained significant amounts of variance in support for each of the energy sources. Implications for future researchers and policy makers are discussed. - Highlights: ► Image associations, emotions, and beliefs about energy sources were measured. ► A dual-process model of energy support was proposed and tested. ► Coal and nuclear were viewed most negatively and wind was viewed most positively. ► The cognitive-affective model predicted support for each energy source.

  8. A rapid compression technique for 4-D functional MRI images using data rearrangement and modified binary array techniques.

    Science.gov (United States)

    Uma Vetri Selvi, G; Nadarajan, R

    2015-12-01

    Compression techniques are vital for efficient storage and fast transfer of medical image data. The existing compression techniques take significant amount of time for performing encoding and decoding and hence the purpose of compression is not fully satisfied. In this paper a rapid 4-D lossy compression method constructed using data rearrangement, wavelet-based contourlet transformation and a modified binary array technique has been proposed for functional magnetic resonance imaging (fMRI) images. In the proposed method, the image slices of fMRI data are rearranged so that the redundant slices form a sequence. The image sequence is then divided into slices and transformed using wavelet-based contourlet transform (WBCT). In WBCT, the high frequency sub-band obtained from wavelet transform is further decomposed into multiple directional sub-bands by directional filter bank to obtain more directional information. The relationship between the coefficients has been changed in WBCT as it has more directions. The differences in parent–child relationships are handled by a repositioning algorithm. The repositioned coefficients are then subjected to quantization. The quantized coefficients are further compressed by modified binary array technique where the most frequently occurring value of a sequence is coded only once. The proposed method has been experimented with fMRI images the results indicated that the processing time of the proposed method is less compared to existing wavelet-based set partitioning in hierarchical trees and set partitioning embedded block coder (SPECK) compression schemes [1]. The proposed method could also yield a better compression performance compared to wavelet-based SPECK coder. The objective results showed that the proposed method could gain good compression ratio in maintaining a peak signal noise ratio value of above 70 for all the experimented sequences. The SSIM value is equal to 1 and the value of CC is greater than 0.9 for all

  9. Watermarking techniques for electronic delivery of remote sensing images

    Science.gov (United States)

    Barni, Mauro; Bartolini, Franco; Magli, Enrico; Olmo, Gabriella

    2002-09-01

    Earth observation missions have recently attracted a growing interest, mainly due to the large number of possible applications capable of exploiting remotely sensed data and images. Along with the increase of market potential, the need arises for the protection of the image products. Such a need is a very crucial one, because the Internet and other public/private networks have become preferred means of data exchange. A critical issue arising when dealing with digital image distribution is copyright protection. Such a problem has been largely addressed by resorting to watermarking technology. A question that obviously arises is whether the requirements imposed by remote sensing imagery are compatible with existing watermarking techniques. On the basis of these motivations, the contribution of this work is twofold: assessment of the requirements imposed by remote sensing applications on watermark-based copyright protection, and modification of two well-established digital watermarking techniques to meet such constraints. More specifically, the concept of near-lossless watermarking is introduced and two possible algorithms matching such a requirement are presented. Experimental results are shown to measure the impact of watermark introduction on a typical remote sensing application, i.e., unsupervised image classification.

  10. Accuracy of Dual-Energy Virtual Monochromatic CT Numbers: Comparison between the Single-Source Projection-Based and Dual-Source Image-Based Methods.

    Science.gov (United States)

    Ueguchi, Takashi; Ogihara, Ryota; Yamada, Sachiko

    2018-03-21

    To investigate the accuracy of dual-energy virtual monochromatic computed tomography (CT) numbers obtained by two typical hardware and software implementations: the single-source projection-based method and the dual-source image-based method. A phantom with different tissue equivalent inserts was scanned with both single-source and dual-source scanners. A fast kVp-switching feature was used on the single-source scanner, whereas a tin filter was used on the dual-source scanner. Virtual monochromatic CT images of the phantom at energy levels of 60, 100, and 140 keV were obtained by both projection-based (on the single-source scanner) and image-based (on the dual-source scanner) methods. The accuracy of virtual monochromatic CT numbers for all inserts was assessed by comparing measured values to their corresponding true values. Linear regression analysis was performed to evaluate the dependency of measured CT numbers on tissue attenuation, method, and their interaction. Root mean square values of systematic error over all inserts at 60, 100, and 140 keV were approximately 53, 21, and 29 Hounsfield unit (HU) with the single-source projection-based method, and 46, 7, and 6 HU with the dual-source image-based method, respectively. Linear regression analysis revealed that the interaction between the attenuation and the method had a statistically significant effect on the measured CT numbers at 100 and 140 keV. There were attenuation-, method-, and energy level-dependent systematic errors in the measured virtual monochromatic CT numbers. CT number reproducibility was comparable between the two scanners, and CT numbers had better accuracy with the dual-source image-based method at 100 and 140 keV. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  11. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    Science.gov (United States)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  12. Super-Resolution Enhancement From Multiple Overlapping Images: A Fractional Area Technique

    Science.gov (United States)

    Michaels, Joshua A.

    With the availability of large quantities of relatively low-resolution data from several decades of space borne imaging, methods of creating an accurate, higher-resolution image from the multiple lower-resolution images (i.e. super-resolution), have been developed almost since such imagery has been around. The fractional-area super-resolution technique developed in this thesis has never before been documented. Satellite orbits, like Landsat, have a quantifiable variation, which means each image is not centered on the exact same spot more than once and the overlapping information from these multiple images may be used for super-resolution enhancement. By splitting a single initial pixel into many smaller, desired pixels, a relationship can be created between them using the ratio of the area within the initial pixel. The ideal goal for this technique is to obtain smaller pixels with exact values and no error, yielding a better potential result than those methods that yield interpolated pixel values with consequential loss of spatial resolution. A Fortran 95 program was developed to perform all calculations associated with the fractional-area super-resolution technique. The fractional areas are calculated using traditional trigonometry and coordinate geometry and Linear Algebra Package (LAPACK; Anderson et al., 1999) is used to solve for the higher-resolution pixel values. In order to demonstrate proof-of-concept, a synthetic dataset was created using the intrinsic Fortran random number generator and Adobe Illustrator CS4 (for geometry). To test the real-life application, digital pictures from a Sony DSC-S600 digital point-and-shoot camera with a tripod were taken of a large US geological map under fluorescent lighting. While the fractional-area super-resolution technique works in perfect synthetic conditions, it did not successfully produce a reasonable or consistent solution in the digital photograph enhancement test. The prohibitive amount of processing time (up to

  13. Image processing techniques for thermal, x-rays and nuclear radiations

    International Nuclear Information System (INIS)

    Chadda, V.K.

    1998-01-01

    The paper describes image acquisition techniques for the non-visible range of electromagnetic spectrum especially thermal, x-rays and nuclear radiations. Thermal imaging systems are valuable tools used for applications ranging from PCB inspection, hot spot studies, fire identification, satellite imaging to defense applications. Penetrating radiations like x-rays and gamma rays are used in NDT, baggage inspection, CAT scan, cardiology, radiography, nuclear medicine etc. Neutron radiography compliments conventional x-rays and gamma radiography. For these applications, image processing and computed tomography are employed for 2-D and 3-D image interpretation respectively. The paper also covers main features of image processing systems for quantitative evaluation of gray level and binary images. (author)

  14. Wavelet techniques for reversible data embedding into images

    NARCIS (Netherlands)

    L. Kamstra; H.J.A.M. Heijmans (Henk)

    2004-01-01

    textabstractThe proliferation of digital information in our society has enticed a lot of research into data embedding techniques that add information to digital content like images, audio and video. This additional information can be used for various purposes and different applications place

  15. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques

    NARCIS (Netherlands)

    Signore, Alberto; Glaudemans, Andor W. J. M.

    2011-01-01

    Inflammatory and infectious diseases are a heterogeneous class of diseases that may be divided into infections, acute inflammation and chronic inflammation. Radiological imaging techniques have, with the exception of functional MRI, high sensitivity but lack in specificity. Nuclear medicine

  16. Full aperture imaging with stereoscopic properties in nuclear medicine

    International Nuclear Information System (INIS)

    Strocovsky, Sergio G.; Otero, D.

    2011-01-01

    The imaging techniques based on gamma camera (CG) and used in nuclear medicine have low spatial resolution and low sensitivity due to the use of the collimator. However, this element is essential for the formation of images in CG. The aim of this work is to show the principles of a new technique to overcome the limitations of existing techniques based on CG. Here, we present a Full Aperture Imaging (FAI) technique which is based on the edge-encoding of gamma radiation and differential detection. It takes advantage of the fact that gamma radiation is spatially incoherent. The mathematical principles and the method of images reconstruction with the new proposed technique are explained in detail. The FAI technique is tested by means of Monte Carlo simulations with filiform and spherical sources. The results show that FAI technique has greater sensitivity (>100 times) and greater spatial resolution (>2.6 times) than that of GC with LEHR collimator, in both cases, with and without attenuating material and long and short-distance configurations. The FAI decoding algorithm reconstructs simultaneously four different projections which are located in separate image fields on the detector plane, while GC produces only one projection per acquisition. Simulations have allowed comparison of both techniques under ideal identical conditions. Our results show it is possible to apply an extremely simple encoded imaging technique, and get three-dimensional radioactivity information for simplistic geometry sources. The results are promising enough to evaluate the possibility of future research with more complex sources typical of nuclear medicine imaging. (author)

  17. Techniques and software architectures for medical visualisation and image processing

    NARCIS (Netherlands)

    Botha, C.P.

    2005-01-01

    This thesis presents a flexible software platform for medical visualisation and image processing, a technique for the segmentation of the shoulder skeleton from CT data and three techniques that make contributions to the field of direct volume rendering. Our primary goal was to investigate the use

  18. MRI technique for the snapshot imaging of quantitative velocity maps using RARE

    Science.gov (United States)

    Shiko, G.; Sederman, A. J.; Gladden, L. F.

    2012-03-01

    A quantitative PGSE-RARE pulse sequence was developed and successfully applied to the in situ dissolution of two pharmaceutical formulations dissolving over a range of timescales. The new technique was chosen over other existing fast velocity imaging techniques because it is T2 weighted, not T2∗ weighted, and is, therefore, robust for imaging time-varying interfaces and flow in magnetically heterogeneous systems. The complex signal was preserved intact by separating odd and even echoes to obtain two phase maps which are then averaged in post-processing. Initially, the validity of the technique was shown when imaging laminar flow in a pipe. Subsequently, the dissolution of two drugs was followed in situ, where the technique enables the imaging and quantification of changes in the form of the tablet and the flow field surrounding it at high spatial and temporal resolution. First, the complete 3D velocity field around an eroding salicylic acid tablet was acquired at a resolution of 98 × 49 μm2, within 20 min, and monitored over ˜13 h. The tablet was observed to experience a heterogeneous flow field and, hence a heterogeneous shear field, which resulted in the non-symmetric erosion of the tablet. Second, the dissolution of a fast dissolving immediate release tablet was followed using one-shot 2D velocity images acquired every 5.2 s at a resolution of 390 × 390 μm2. The quantitative nature of the technique and fast acquisition times provided invaluable information on the dissolution behaviour of this tablet, which had not been attainable previously with conventional quantitative MRI techniques.

  19. MRI technique for the snapshot imaging of quantitative velocity maps using RARE.

    Science.gov (United States)

    Shiko, G; Sederman, A J; Gladden, L F

    2012-03-01

    A quantitative PGSE-RARE pulse sequence was developed and successfully applied to the in situ dissolution of two pharmaceutical formulations dissolving over a range of timescales. The new technique was chosen over other existing fast velocity imaging techniques because it is T(2) weighted, not T(2)(∗) weighted, and is, therefore, robust for imaging time-varying interfaces and flow in magnetically heterogeneous systems. The complex signal was preserved intact by separating odd and even echoes to obtain two phase maps which are then averaged in post-processing. Initially, the validity of the technique was shown when imaging laminar flow in a pipe. Subsequently, the dissolution of two drugs was followed in situ, where the technique enables the imaging and quantification of changes in the form of the tablet and the flow field surrounding it at high spatial and temporal resolution. First, the complete 3D velocity field around an eroding salicylic acid tablet was acquired at a resolution of 98×49 μm(2), within 20 min, and monitored over ∼13 h. The tablet was observed to experience a heterogeneous flow field and, hence a heterogeneous shear field, which resulted in the non-symmetric erosion of the tablet. Second, the dissolution of a fast dissolving immediate release tablet was followed using one-shot 2D velocity images acquired every 5.2 s at a resolution of 390×390 μm(2). The quantitative nature of the technique and fast acquisition times provided invaluable information on the dissolution behaviour of this tablet, which had not been attainable previously with conventional quantitative MRI techniques. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The Effect of Mental Imaging Technique on Idiom Comprehension in EFL Learners

    Directory of Open Access Journals (Sweden)

    Burcu AYDIN

    2017-12-01

    Full Text Available In an English Foreign Language learning context, where access to native like use of metaphorical language is limited, gaining this ability becomes challenging. For many years, foreign language educators didn’t pay much attention to idiomatic language and assumed that idioms could only be taught through rote learning. For this reason, they face with difficulties in using appropriate approaches to idiom instruction. Furthermore, learners struggle with comprehending and practicing idioms. To resolve the concern, linguists are trying to develop cognitive approaches to the teaching of idiomatic language. The purpose of this study is to provide educators with guidelines to choose the appropriate idiom teaching technique for English Foreign Language learners taking into account the learners’ metaphorical competence level and their cognitive style preferences. In evaluating the appropriate teaching technique, three different techniques (context out, context in and mental imaging technique were used. The participants were presented 50 idioms. As a first technique, context out, idioms were taught with their definitions in the dictionary without additional contextual support. As a second technique, context in, in an attempt to investigate the effect of contextual support, idioms were both presented in a sentence and with their definitions. As a third technique, mental imaging technique, in an attempt to investigate the effect of Dual Coding approach, both pictorial representations of a mapping of literal senses of each idiomatic expression and verbal support (the definition of the idiom and the sentence in which the idiom is used were used concurrently. The findings point that mental imaging technique has positive effect on learning and recalling of the idiomatic expressions as it provides simultaneous verbal information with mental image which creates a supplementary pathway for recollecting the verbal information. In contrast, the results indicate no

  1. Performance evaluation of cardiac MRI image denoising techniques

    NARCIS (Netherlands)

    AlAttar, M.A.; Mohamed, A.G.A.; Osman, N.F.; Fahmy, A.S.

    2008-01-01

    Black-blood cardiac magnetic resonance imaging (MRI) plays an important role in diagnosing a number of heart diseases. The technique suffers inherently from low contrast-to-noise ratio between the myocardium and the blood. In this work, we examined the performance of different classification

  2. Imaging techniques in clay sciences: a key tool to go a step further

    International Nuclear Information System (INIS)

    Robinet, J.C.; Michau, N.; Schaefer, T.

    2012-01-01

    Document available in extended abstract form only. Clay-rocks and clay based materials are greatly considered in nuclear waste geological repository due to their multiple favourable properties (low permeability, low diffusion coefficients, high retention capacity for radionuclides, swelling...). In this context, the study of clays and clay rocks covers a large variety of scientific disciplines such as geology, mineralogy, geomechanics, geochemistry or hydrodynamics. These disciplines are linked together by a common issue which is the understanding and the predicting of clay and clay-rock behaviors and properties under various thermal-hydrological-mechanical- chemical (THMC) conditions. Linking the fundamental forces to macroscopic (from millimeter to several meters) behaviors and properties is nevertheless not straightforward for porous media such as clay-rocks and clay based materials. Currently, it remains a key challenge for the scientific community. Imaging techniques offer solutions to face up this challenge by characterizing the internal microstructure of material and rocks at different levels of resolution. Due to the reactivity of clay minerals with water (swelling, mechanical deformation) or with repository components (mineral transformations at iron, copper or concrete interfaces) and the multi-scale distribution of pore and mineral sizes, classically ranged from nano-meter to millimeter, imaging clay based materials and clay-rocks itself is unanimously recognized as a challenging task. In the 80's, despite several constraints and limits, the microstructure of clays had been intensively imaged using conventional 2D imaging techniques such as optical microscopy, X-ray radiography, scanning electron microscopy or transmission electron microscopy [1]. The images acquired using these techniques have given us a pictorial frame of reference of the internal structures of clay rocks and clay based materials at various resolution levels. They have also highlighted

  3. Imaging x-ray sources at a finite distance in coded-mask instruments

    International Nuclear Information System (INIS)

    Donnarumma, Immacolata; Pacciani, Luigi; Lapshov, Igor; Evangelista, Yuri

    2008-01-01

    We present a method for the correction of beam divergence in finite distance sources imaging through coded-mask instruments. We discuss the defocusing artifacts induced by the finite distance showing two different approaches to remove such spurious effects. We applied our method to one-dimensional (1D) coded-mask systems, although it is also applicable in two-dimensional systems. We provide a detailed mathematical description of the adopted method and of the systematics introduced in the reconstructed image (e.g., the fraction of source flux collected in the reconstructed peak counts). The accuracy of this method was tested by simulating pointlike and extended sources at a finite distance with the instrumental setup of the SuperAGILE experiment, the 1D coded-mask x-ray imager onboard the AGILE (Astro-rivelatore Gamma a Immagini Leggero) mission. We obtained reconstructed images of good quality and high source location accuracy. Finally we show the results obtained by applying this method to real data collected during the calibration campaign of SuperAGILE. Our method was demonstrated to be a powerful tool to investigate the imaging response of the experiment, particularly the absorption due to the materials intercepting the line of sight of the instrument and the conversion between detector pixel and sky direction

  4. Comparing Four Touch-Based Interaction Techniques for an Image-Based Audience Response System

    NARCIS (Netherlands)

    Jorritsma, Wiard; Prins, Jonatan T.; van Ooijen, Peter M. A.

    2015-01-01

    This study aimed to determine the most appropriate touch-based interaction technique for I2Vote, an image-based audience response system for radiology education in which users need to accurately mark a target on a medical image. Four plausible techniques were identified: land-on, take-off,

  5. Automated image-matching technique for comparative diagnosis of the liver on CT examination

    International Nuclear Information System (INIS)

    Okumura, Eiichiro; Sanada, Shigeru; Suzuki, Masayuki; Tsushima, Yoshito; Matsui, Osamu

    2005-01-01

    When interpreting enhanced computer tomography (CT) images of the upper abdomen, radiologists visually select a set of images of the same anatomical positions from two or more CT image series (i.e., non-enhanced and contrast-enhanced CT images at arterial and delayed phase) to depict and to characterize any abnormalities. The same process is also necessary to create subtraction images by computer. We have developed an automated image selection system using a template-matching technique that allows the recognition of image sets at the same anatomical position from two CT image series. Using the template-matching technique, we compared several anatomical structures in each CT image at the same anatomical position. As the position of the liver may shift according to respiratory movement, not only the shape of the liver but also the gallbladder and other prominent structures included in the CT images were compared to allow appropriate selection of a set of CT images. This novel technique was applied in 11 upper abdominal CT examinations. In CT images with a slice thickness of 7.0 or 7.5 mm, the percentage of image sets selected correctly by the automated procedure was 86.6±15.3% per case. In CT images with a slice thickness of 1.25 mm, the percentages of correct selection of image sets by the automated procedure were 79.4±12.4% (non-enhanced and arterial-phase CT images) and 86.4±10.1% (arterial- and delayed-phase CT images). This automated method is useful for assisting in interpreting CT images and in creating digital subtraction images. (author)

  6. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  7. Technique Based on Image Pyramid and Bayes Rule for Noise Reduction in Unsupervised Change Detection

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-qiang; HUO hong; FANG Tao; ZHU Ju-lian; GE Wei-li

    2009-01-01

    In this paper, a technique based on image pyramid and Bayes rule for reducing noise effects in unsupervised change detection is proposed. By using Gaussian pyramid to process two multitemporal images respectively, two image pyramids are constructed. The difference pyramid images are obtained by point-by-point subtraction between the same level images of the two image pyramids. By resizing all difference pyramid images to the size of the original multitemporal image and then making product operator among them, a map being similar to the difference image is obtained. The difference image is generated by point-by-point subtraction between the two multitemporal images directly. At last, the Bayes rule is used to distinguish the changed pixels. Both synthetic and real data sets are used to evaluate the performance of the proposed technique. Experimental results show that the map from the proposed technique is more robust to noise than the difference image.

  8. Head and neck computed tomography virtual endoscopy: evaluation of a new imaging technique.

    Science.gov (United States)

    Gallivan, R P; Nguyen, T H; Armstrong, W B

    1999-10-01

    To evaluate a new radiographic imaging technique: computed tomography virtual endoscopy (CTVE) for head and neck tumors. Twenty-one patients presenting with head and neck masses who underwent axial computed tomography (CT) scan with contrast were evaluated by CTVE. Comparisons were made with video-recorded images and operative records to evaluate the potential utility of this new imaging technique. Twenty-one patients with aerodigestive head and neck tumors were evaluated by CTVE. One patient had a nasal cylindrical cell papilloma; the remainder, squamous cell carcinomas distributed throughout the upper aerodigestive tract. Patients underwent complete head and neck examination, flexible laryngoscopy, axial CT with contrast, CTVE, and in most cases, operative endoscopy. Available clinical and radiographic evaluations were compared and correlated to CTVE findings. CTVE accurately demonstrated abnormalities caused by intraluminal tumor, but where there was apposition of normal tissue against tumor, inaccurate depictions of surface contour occurred. Contour resolution was limited, and mucosal irregularity could not be defined. There was very good overall correlation between virtual images, flexible laryngoscopic findings, rigid endoscopy, and operative evaluation in cases where oncological resections were performed. CTVE appears to be most accurate in evaluation of subglottic and nasopharyngeal anatomy in our series of patients. CTVE is a new radiographic technique that provides surface-contour details. The technique is undergoing rapid technical evolution, and although the image quality is limited in situations where there is apposition of tissue folds, there are a number of potential applications for this new imaging technique.

  9. Fast damage imaging using the time-reversal technique in the frequency–wavenumber domain

    International Nuclear Information System (INIS)

    Zhu, R; Huang, G L; Yuan, F G

    2013-01-01

    The time-reversal technique has been successfully used in structural health monitoring (SHM) for quantitative imaging of damage. However, the technique is very time-consuming when it is implemented in the time domain. In this paper, we study the technique in the frequency–wavenumber (f–k) domain for fast real-time imaging of multiple damage sites in plates using scattered flexural plate waves. Based on Mindlin plate theory, the time reversibility of dispersive flexural waves in an isotropic plate is theoretically investigated in the f–k domain. A fast damage imaging technique is developed by using the cross-correlation between the back-propagated scattered wavefield and the incident wavefield in the frequency domain. Numerical simulations demonstrate that the proposed technique cannot only localize multiple damage sites but also potentially identify their sizes. Moreover, the time-reversal technique in the f–k domain is about two orders of magnitude faster than the method in the time domain. Finally, experimental testing of an on-line SHM system with a sparse piezoelectric sensor array is conducted for fast multiple damage identification using the proposed technique. (paper)

  10. Stratified source-sampling techniques for Monte Carlo eigenvalue analysis

    International Nuclear Information System (INIS)

    Mohamed, A.

    1998-01-01

    In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo ''Eigenvalue of the World'' problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. In this paper, stratified source-sampling techniques are generalized and applied to three different Eigenvalue of the World configurations which take into account real-world statistical noise sources not included in the model problem, but which differ in the amount of neutronic coupling among the constituents of each configuration. It is concluded that, in Monte Carlo eigenvalue analysis of loosely-coupled arrays, the use of stratified source-sampling reduces the probability of encountering an anomalous result over that if conventional source-sampling methods are used. However, this gain in reliability is substantially less than that observed in the model-problem results

  11. Magnetic resonance imaging of the elbow. Part I: Normal anatomy, imaging technique, and osseous abnormalities

    International Nuclear Information System (INIS)

    Kijowski, Richard; Tuite, Michael; Sanford, Matthew

    2004-01-01

    Part I of this comprehensive review on magnetic resonance imaging of the elbow discusses normal elbow anatomy and the technical factors involved in obtaining high-quality magnetic resonance images of the elbow. Part I also discusses the role of magnetic resonance imaging in evaluating patients with osseous abnormalities of the elbow. With proper patient positioning and imaging technique, magnetic resonance imaging can yield high-quality multiplanar images which are useful in evaluating the osseous structures of the elbow. Magnetic resonance imaging can detect early osteochondritis dissecans of the capitellum and can be used to evaluate the size, location, stability, and viability of the osteochondritis dissecans fragment. Magnetic resonance imaging can detect early stress injury to the proximal ulna in athletes. Magnetic resonance imaging can detect radiographically occult fractures of the elbow in both children and adults. Magnetic resonance imaging is also useful in children to further evaluate elbow fractures which are detected on plain-film radiographs. (orig.)

  12. A Novel Feature Extraction Technique Using Binarization of Bit Planes for Content Based Image Classification

    Directory of Open Access Journals (Sweden)

    Sudeep Thepade

    2014-01-01

    Full Text Available A number of techniques have been proposed earlier for feature extraction using image binarization. Efficiency of the techniques was dependent on proper threshold selection for the binarization method. In this paper, a new feature extraction technique using image binarization has been proposed. The technique has binarized the significant bit planes of an image by selecting local thresholds. The proposed algorithm has been tested on a public dataset and has been compared with existing widely used techniques using binarization for extraction of features. It has been inferred that the proposed method has outclassed all the existing techniques and has shown consistent classification performance.

  13. Evaluation of New Ultrasound Techniques for Clinical Imaging in selected Liver and Vascular Applications

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm

    blinded to information about the technique, which B-mode images they preferred, as well as detection of pathology. Evaluation showed that the techniques were preferred equally and tumor could be detected equally well. Study II deals with the ability of vector flow imaging (VFI) to monitor patients......This Ph.D. project is based on a longstanding collaboration between physicists and engineers from the Center of Fast Ultrasound Imaging (CFU) at the Technical University of Denmark and medical doctors from the department of Radiology at Rigshospitalet. The intent of this cooperation is to validate...... new ultrasonic methods for future clinical use. Study I compares two B-mode ultrasound methods: the new experimental technique Synthetic Aperture Sequential Beamforming combined with Tissue Harmonic Imaging (SASB-THI), and a conventional technique combined with THI. While SASB reduces the amount...

  14. A new combined technique for automatic contrast enhancement of digital images

    Directory of Open Access Journals (Sweden)

    Ismail A. Humied

    2012-03-01

    Full Text Available Some low contrast images have certain characteristics makes it difficult to use traditional methods to improve it. An example of these characteristics, that the amplitudes of images histogram components are very high at one location on the gray scale and very small in the rest of the gray scale. In the present paper, a new method is described. It can deal with such cases. The proposed method is a combination of Histogram Equalization (HE and Fast Gray-Level Grouping (FGLG. The basic procedure of this method is segments the original histogram of a low contrast image into two sub-histograms according to the location of the highest amplitude of the histogram components, and achieving contrast enhancement by equalizing the left segment of the histogram components using (HE technique and using (FGLG technique to equalize the right segment of this histogram components. The results have shown that the proposed method does not only produce better results than each individual contrast enhancement technique, but it is also fully automated. Moreover, it is applicable to a broad variety of images that satisfy the properties mentioned above and suffer from low contrast.

  15. Bolt-loosening identification of bolt connections by vision image-based technique

    Science.gov (United States)

    Nguyen, Tuan-Cuong; Huynh, Thanh-Canh; Ryu, Joo-Young; Park, Jae-Hyung; Kim, Jeong-Tae

    2016-04-01

    In this study, an algorithm using image processing techniques is proposed to identify bolt-loosening in bolted connections of steel structures. Its basic concept is to identify rotation angles of nuts from a pictured image, and is mainly consisted of the following 3 steps: (1) taking a picture for a bolt joint, (2) segmenting the images for each nut by image processing techniques, and (3) identifying rotation angle of each nut and detecting bolt-loosening. By using the concept, an algorithm is designed for continuous monitoring and inspection of the bolt connections. As a key imageprocessing technique, Hough transform is used to identify rotation angles of nuts, and then bolt-loosening is detected by comparing the angles before and after bolt-loosening. Then the applicability of the proposed algorithm is evaluated by experimental tests for two lab-scaled models. A bolted joint model which consists of a splice plate and 8 sets of bolts and nuts with 2×4 array is used to simulate inspection of bridge connections, and a model which is consisted of a ring flange and 32 sets of bolt and nut is used to simulate continuous monitoring of bolted connections in wind turbine towers.

  16. New approaches in intelligent image analysis techniques, methodologies and applications

    CERN Document Server

    Nakamatsu, Kazumi

    2016-01-01

    This book presents an Introduction and 11 independent chapters, which are devoted to various new approaches of intelligent image processing and analysis. The book also presents new methods, algorithms and applied systems for intelligent image processing, on the following basic topics: Methods for Hierarchical Image Decomposition; Intelligent Digital Signal Processing and Feature Extraction; Data Clustering and Visualization via Echo State Networks; Clustering of Natural Images in Automatic Image Annotation Systems; Control System for Remote Sensing Image Processing; Tissue Segmentation of MR Brain Images Sequence; Kidney Cysts Segmentation in CT Images; Audio Visual Attention Models in Mobile Robots Navigation; Local Adaptive Image Processing; Learning Techniques for Intelligent Access Control; Resolution Improvement in Acoustic Maps. Each chapter is self-contained with its own references. Some of the chapters are devoted to the theoretical aspects while the others are presenting the practical aspects and the...

  17. Specific radiography technique

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    Beside radiography testing using x-ray machine and gamma source, there are several technique that developed specifically to complete the testing that cannot be done with the two earlier. This technique was specific based on several factor, for the example, the advantages of neutron and electron using to show the image was unique compare to x-ray and gamma. Besides that, these special radiography techniques maybe differ in how to detect the radiation get through the object. These technique can used to inspect thin or specimen that contained radioactive material. There are several technique will discussed in this chapter such as neutron radiography, electron radiography, fluoroscopy and also autoradiography.

  18. Comparative study of low-energy neutral atom imaging techniques

    International Nuclear Information System (INIS)

    Funsten, H.O.; McComas, D.J.; Scime, E.E.

    1994-01-01

    Low-energy neutral atom (LENA) imaging promise to be a revolutionary tool for global imaging of space plasmas. The technical challenges of LENA detection include separating them from the intense ambient UV without losing information about their incident trajectories, quantifying their trajectories, and obtaining high-sensitivity measurements. Two techniques that have been proposed for this purpose are based on fundamentally different atomic interaction mechanisms between LENAs and a solid; LENA transmission through an ultra thin foil and LENA reflection from a solid surface. Both of these methods provide LENA ionization (for subsequent removal from the UV by electrostatic deflection) and secondary electron emission (for time-of-flight start pulse generation and/or coincidence). They present a comparative study of the transmission and reflection techniques based on differences in atomic interactions with solids and surfaces. Transmission methods are shown to be superior for secondary electron emission rather than reflection methods. Furthermore, transmission methods are shown to be a sufficient for LENA imaging at LENA energies of approximately 1 keV to greater than 30 keV. A hybrid instrument using reflection from a low work function surface for LENA ionization and transmission for secondary electron emission is optimal for imaging of LENAs with energies less than approximately 1 keV

  19. Prewarping techniques in imaging: applications in nanotechnology and biotechnology

    Science.gov (United States)

    Poonawala, Amyn; Milanfar, Peyman

    2005-03-01

    In all imaging systems, the underlying process introduces undesirable distortions that cause the output signal to be a warped version of the input. When the input to such systems can be controlled, pre-warping techniques can be employed which consist of systematically modifying the input such that it cancels out (or compensates for) the process losses. In this paper, we focus on the mask (reticle) design problem for 'optical micro-lithography', a process similar to photographic printing used for transferring binary circuit patterns onto silicon wafers. We use a pixel-based mask representation and model the above process as a cascade of convolution (aerial image formation) and thresholding (high-contrast recording) operations. The pre-distorted mask is obtained by minimizing the norm of the difference between the 'desired' output image and the 'reproduced' output image. We employ the regularization framework to ensure that the resulting masks are close-to-binary as well as simple and easy to fabricate. Finally, we provide insight into two additional applications of pre-warping techniques. First is 'e-beam lithography', used for fabricating nano-scale structures, and second is 'electronic visual prosthesis' which aims at providing limited vision to the blind by using a prosthetic retinally implanted chip capable of electrically stimulating the retinal neuron cells.

  20. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    Science.gov (United States)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  1. Automation of neutral beam source conditioning with artificial intelligence techniques

    International Nuclear Information System (INIS)

    Johnson, R.R.; Canales, T.W.; Lager, D.L.

    1985-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques. The architecture of the system is presented followed by a description of its performance

  2. Automation of neutral beam source conditioning with artificial intelligence techniques

    International Nuclear Information System (INIS)

    Johnson, R.R.; Canales, T.; Lager, D.

    1986-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques. The architecture of the system is presented followed by a description of its performance

  3. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence.

    Science.gov (United States)

    Robertson, Stephanie; Azizpour, Hossein; Smith, Kevin; Hartman, Johan

    2018-04-01

    Breast cancer is the most common malignant disease in women worldwide. In recent decades, earlier diagnosis and better adjuvant therapy have substantially improved patient outcome. Diagnosis by histopathology has proven to be instrumental to guide breast cancer treatment, but new challenges have emerged as our increasing understanding of cancer over the years has revealed its complex nature. As patient demand for personalized breast cancer therapy grows, we face an urgent need for more precise biomarker assessment and more accurate histopathologic breast cancer diagnosis to make better therapy decisions. The digitization of pathology data has opened the door to faster, more reproducible, and more precise diagnoses through computerized image analysis. Software to assist diagnostic breast pathology through image processing techniques have been around for years. But recent breakthroughs in artificial intelligence (AI) promise to fundamentally change the way we detect and treat breast cancer in the near future. Machine learning, a subfield of AI that applies statistical methods to learn from data, has seen an explosion of interest in recent years because of its ability to recognize patterns in data with less need for human instruction. One technique in particular, known as deep learning, has produced groundbreaking results in many important problems including image classification and speech recognition. In this review, we will cover the use of AI and deep learning in diagnostic breast pathology, and other recent developments in digital image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Mathematics and physics of emerging biomedical imaging

    International Nuclear Information System (INIS)

    1996-01-01

    Although the mathematical sciences were used in a general way for image processing, they were of little importance in biomedical work until the development in the 1970s of computed tomography (CT) for the imaging of x-rays and isotope emission tomography. In the 1980s, MRI eclipsed the other modalities in many ways as the most informative medical imaging methodology. Besides these well-established techniques, computer-based mathematical methods are being explored in applications to other well-known methods, such as ultrasound and electroencephalography, as well as new techniques of optical imaging, impedance tomography, and magnetic source imaging. It is worth pointing out that, while the final images of many of these techniques bear many similarities to each other, the technologies involved in each are completely different and the parameters represented in the images are very different in character as well as in medical usefulness. In each case, rather different mathematical or statistical models are used, with different equations. One common thread is the paradigm of reconstruction from indirect measurements--this is the unifying theme of this report. The imaging methods used in biomedical applications that this report discusses include: (1) x-ray projection imaging; (2) x-ray computed tomography (CT); (3) magnetic resonance imaging (MRI) and magnetic resonance spectroscopy; (4) single photon emission computed tomography (SPECT); (5) positron emission tomography (PET); (6) ultrasonics; (7) electrical source imaging (ESI); (8) electrical impedance tomography (EIT); (9) magnetic source imaging (MSI); and (10) medical optical imaging

  5. Nanox: a miniature mechanical stress rig designed for near-field X-ray diffraction imaging techniques.

    Science.gov (United States)

    Gueninchault, N; Proudhon, H; Ludwig, W

    2016-11-01

    Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al-Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment.

  6. Pseudo color ghost coding imaging with pseudo thermal light

    Science.gov (United States)

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  7. Agronomic evaluation of guano sources by means of isotope techniques

    International Nuclear Information System (INIS)

    Zapata, F.; Arrillaga, J.L.

    2002-01-01

    Many soils of the tropics and subtropics under continuous cultivation are very infertile, thus poor yields are obtained and little crop residues remain to protect the soils from degrading erosion. External nutrient inputs in the form of chemical fertilizers, organic materials and other nutrients sources are essential for developing sustainable agricultural production systems. As chemical fertilizers are costly for developing countries with insufficient foreign currency for their purchase and their supplies are limited and irregular for small landholders, alternative nutrient sources must be sought and evaluated for use in dominant agricultural production systems. Locally available organic materials of different origin are potential sources of nutrients. One such source with high agronomic potential is guano. The present study was carried out to evaluate the agronomic effectiveness of two guano materials of different origin (Zaire and Peru) as sources of nitrogen and phosphorus as compared to chemical fertilizers (ammonium sulfate and triple superphosphate) using isotopic ( 15 N and 32 P) techniques. Using the classical method of comparing dry matter weight and P uptake, no significant differences among the tested guano sources were found. The use of the isotopic techniques allowed a quantitative assessment of the N and P supply to crops. Both guano materials were found to be good sources of N but in contrast were poor sources of phosphorus. In addition, from the agronomic evaluation, it was found that the guano of Zaire and the ammonium sulfate were N sources of equivalent efficiency and the guano of Peru even slightly better than the ammonium sulfate. As expected, P in the single superphosphate was as available to the P in the triple superphosphate. However, the substitution ratios for the guano sources were relatively high. Thus, 1 kg P as single superphosphate was equivalent to 9.5 kg P as guano from Zaire or 12.5 kg P as guano from Peru. Further field trials in

  8. Authenticity techniques for PACS images and records

    Science.gov (United States)

    Wong, Stephen T. C.; Abundo, Marco; Huang, H. K.

    1995-05-01

    Along with the digital radiology environment supported by picture archiving and communication systems (PACS) comes a new problem: How to establish trust in multimedia medical data that exist only in the easily altered memory of a computer. Trust is characterized in terms of integrity and privacy of digital data. Two major self-enforcing techniques can be used to assure the authenticity of electronic images and text -- key-based cryptography and digital time stamping. Key-based cryptography associates the content of an image with the originator using one or two distinct keys and prevents alteration of the document by anyone other than the originator. A digital time stamping algorithm generates a characteristic `digital fingerprint' for the original document using a mathematical hash function, and checks that it has not been modified. This paper discusses these cryptographic algorithms and their appropriateness for a PACS environment. It also presents experimental results of cryptographic algorithms on several imaging modalities.

  9. Image Processing Techniques for Assessing Contractility in Isolated Adult Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Carlos Bazan

    2009-01-01

    The physiologic application of the methodology is evaluated by assessing overall contraction in enzymatically dissociated adult rat cardiocytes. Our results demonstrate the effectiveness of the proposed approach in characterizing the true, two-dimensional, “shortening” in the contraction process of adult cardiocytes. We compare the performance of the proposed method to that of a popular edge detection system in the literature. The proposed method not only provides a more comprehensive assessment of the myocyte contraction process but also can potentially eliminate historical concerns and sources of errors caused by myocyte rotation or translation during contraction. Furthermore, the versatility of the image processing techniques makes the method suitable for determining myocyte shortening in cells that usually bend or move during contraction. The proposed method can be utilized to evaluate changes in contractile behavior resulting from drug intervention, disease modeling, transgeneity, or other common applications to mammalian cardiocytes.

  10. DIGITAL IMAGE CORRELATION FROM COMMERCIAL TO FOS SOFTWARE: A MATURE TECHNIQUE FOR FULL-FIELD DISPLACEMENT MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    V. Belloni

    2018-05-01

    Full Text Available In the last few decades, there has been a growing interest in studying non-contact methods for full-field displacement and strain measurement. Among such techniques, Digital Image Correlation (DIC has received particular attention, thanks to its ability to provide these information by comparing digital images of a sample surface before and after deformation. The method is now commonly adopted in the field of civil, mechanical and aerospace engineering and different companies and some research groups implemented 2D and 3D DIC software. In this work a review on DIC software status is given at first. Moreover, a free and open source 2D DIC software is presented, named py2DIC and developed in Python at the Geodesy and Geomatics Division of DICEA of the University of Rome “La Sapienza”; its potentialities were evaluated by processing the images captured during tensile tests performed in the Structural Engineering Lab of the University of Rome “La Sapienza” and comparing them to those obtained using the commercial software Vic-2D developed by Correlated Solutions Inc, USA. The agreement of these results at one hundredth of millimetre level demonstrate the possibility to use this open source software as a valuable 2D DIC tool to measure full-field displacements on the investigated sample surface.

  11. Development and validation of a new virtual source model for portal image prediction and treatment quality control

    International Nuclear Information System (INIS)

    Chabert, Isabelle

    2015-01-01

    Intensity-Modulated Radiation Therapy (IMRT), require extensive verification procedures to ensure the correct dose delivery. Electronic Portal Imaging Devices (EPIDs) are widely used for quality assurance in radiotherapy, and also for dosimetric verifications. For this latter application, the images obtained during the treatment session can be compared to a pre-calculated reference image in order to highlight dose delivery errors. The quality control performance depends (1) on the accuracy of the pre-calculated reference image (2) on the ability of the tool used to compare images to detect errors. These two key points were studied during this PhD work. We chose to use a Monte Carlo (MC)-based method developed in the laboratory and based on the DPGLM (Dirichlet process generalized linear model) de-noising technique to predict high-resolution reference images. A model of the studied linear accelerator (linac Synergy, Elekta, Crawley, UK) was first developed using the PENELOPE MC codes, and then commissioned using measurements acquired in the Hopital Nord of Marseille. A 71 Go phase space file (PSF) stored under the flattening filter was then analyzed to build a new kind of virtual source model based on correlated histograms (200 Mo). This new and compact VSM is as much accurate as the PSF to calculate dose distributions in water if histogram sampling is based on adaptive method. The associated EPID modelling in PENELOPE suggests that hypothesis about linac primary source were too simple and should be reconsidered. The use of the VSM to predict high-resolution portal images however led to excellent results. The VSM associated to the linac and EPID MC models were used to detect errors in IMRT treatment plans. A preliminary study was conducted introducing on purpose treatment errors in portal image calculations (primary source parameters, phantom position and morphology changes). The γ-index commonly used in clinical routine appears to be less effective than the

  12. Free and open source software for the manipulation of digital images.

    Science.gov (United States)

    Solomon, Robert W

    2009-06-01

    Free and open source software is a type of software that is nearly as powerful as commercial software but is freely downloadable. This software can do almost everything that the expensive programs can. GIMP (gnu image manipulation program) is the free program that is comparable to Photoshop, and versions are available for Windows, Macintosh, and Linux platforms. This article briefly describes how GIMP can be installed and used to manipulate radiology images. It is no longer necessary to budget large amounts of money for high-quality software to achieve the goals of image processing and document creation because free and open source software is available for the user to download at will.

  13. Quantitation of structural distortion with gradient-echo imaging techniques

    International Nuclear Information System (INIS)

    Tien, R.D.; Schwaighofer, B.W.; Hesselink, J.R.; Chu, P.K.

    1990-01-01

    This paper determines the structural distortion and measurement error associated with fast MR imaging of the spinal neural foramina. Dry skeletal specimens and a thin cadaveric sagittal section through the neural foramina were placed in a water bath. MR images were obtained with a 1.5-T unit in different planes and with various pulse sequences. The size and shape of each neural foramen were carefully measured on the images and on the skeletal specimens. Gradient-echo (GRE) techniques (gradient recalled acquisition in a steady state, MPGR, three-dimensional volume acquisition) resulted in structural distortion in up to 10% on the fresh skeleton and 30% of the dry skeleton specimens when a small TE was used (the foramina appear narrower on the images)

  14. Muscle perfusion and metabolic heterogeneity: insights from noninvasive imaging techniques

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Scheede-Bergdahl, Celena; Kjaer, Michael

    2006-01-01

    Recent developments in noninvasive imaging techniques have enabled the study of local changes in perfusion and metabolism in skeletal muscle as well as patterns of heterogeneity in these variables in humans. In this review, the principles of these techniques along with some recent findings...... on functional heterogeneity in human skeletal muscle will be presented....

  15. WE-G-18C-08: Real Time Tumor Imaging Using a Novel Dynamic Keyhole MRI Reconstruction Technique

    International Nuclear Information System (INIS)

    Lee, D; Pollock, S; Whelan, B; Keall, P; Greer, P; Kim, T

    2014-01-01

    Purpose: To test the hypothesis that the novel Dynamic Keyhole MRI reconstruction technique can accelerate image acquisition whilst maintaining high image quality for lung cancer patients. Methods: 18 MRI datasets from 5 lung cancer patients were acquired using a 3T MRI scanner. These datasets were retrospectively reconstructed using (A) The novel Dynamic Keyhole technique, (B) The conventional keyhole technique and (C) the conventional zero filling technique. The dynamic keyhole technique in MRI refers to techniques in which previously acquired k-space data is used to supplement under sampled data obtained in real time. The novel Dynamic Keyhole technique utilizes a previously acquired a library of kspace datasets in conjunction with central k-space datasets acquired in realtime. A simultaneously acquired respiratory signal is utilized to sort, match and combine the two k-space streams with respect to respiratory displacement. Reconstruction performance was quantified by (1) comparing the keyhole size (which corresponds to imaging speed) required to achieve the same image quality, and (2) maintaining a constant keyhole size across the three reconstruction methods to compare the resulting image quality to the ground truth image. Results: (1) The dynamic keyhole method required a mean keyhole size which was 48% smaller than the conventional keyhole technique and 60% smaller than the zero filling technique to achieve the same image quality. This directly corresponds to faster imaging. (2) When a constant keyhole size was utilized, the Dynamic Keyhole technique resulted in the smallest difference of the tumor region compared to the ground truth. Conclusion: The dynamic keyhole is a simple and adaptable technique for clinical applications requiring real-time imaging and tumor monitoring such as MRI guided radiotherapy. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by a factor of five compared with full k

  16. Accommodating multiple illumination sources in an imaging colorimetry environment

    Science.gov (United States)

    Tobin, Kenneth W., Jr.; Goddard, James S., Jr.; Hunt, Martin A.; Hylton, Kathy W.; Karnowski, Thomas P.; Simpson, Marc L.; Richards, Roger K.; Treece, Dale A.

    2000-03-01

    Researchers at the Oak Ridge National Laboratory have been developing a method for measuring color quality in textile products using a tri-stimulus color camera system. Initial results of the Imaging Tristimulus Colorimeter (ITC) were reported during 1999. These results showed that the projection onto convex sets (POCS) approach to color estimation could be applied to complex printed patterns on textile products with high accuracy and repeatability. Image-based color sensors used for on-line measurement are not colorimetric by nature and require a non-linear transformation of the component colors based on the spectral properties of the incident illumination, imaging sensor, and the actual textile color. Our earlier work reports these results for a broad-band, smoothly varying D65 standard illuminant. To move the measurement to the on-line environment with continuously manufactured textile webs, the illumination source becomes problematic. The spectral content of these light sources varies substantially from the D65 standard illuminant and can greatly impact the measurement performance of the POCS system. Although absolute color measurements are difficult to make under different illumination, referential measurements to monitor color drift provide a useful indication of product quality. Modifications to the ITC system have been implemented to enable the study of different light sources. These results and the subsequent analysis of relative color measurements will be reported for textile products.

  17. Analytic sensing for multi-layer spherical models with application to EEG source imaging

    OpenAIRE

    Kandaswamy, Djano; Blu, Thierry; Van De Ville, Dimitri

    2013-01-01

    Source imaging maps back boundary measurements to underlying generators within the domain; e. g., retrieving the parameters of the generating dipoles from electrical potential measurements on the scalp such as in electroencephalography (EEG). Fitting such a parametric source model is non-linear in the positions of the sources and renewed interest in mathematical imaging has led to several promising approaches. One important step in these methods is the application of a sensing principle that ...

  18. Analysis of Cultural Heritage by Accelerator Techniques and Analytical Imaging

    Science.gov (United States)

    Ide-Ektessabi, Ari; Toque, Jay Arre; Murayama, Yusuke

    2011-12-01

    In this paper we present the result of experimental investigation using two very important accelerator techniques: (1) synchrotron radiation XRF and XAFS; and (2) accelerator mass spectrometry and multispectral analytical imaging for the investigation of cultural heritage. We also want to introduce a complementary approach to the investigation of artworks which is noninvasive and nondestructive that can be applied in situ. Four major projects will be discussed to illustrate the potential applications of these accelerator and analytical imaging techniques: (1) investigation of Mongolian Textile (Genghis Khan and Kublai Khan Period) using XRF, AMS and electron microscopy; (2) XRF studies of pigments collected from Korean Buddhist paintings; (3) creating a database of elemental composition and spectral reflectance of more than 1000 Japanese pigments which have been used for traditional Japanese paintings; and (4) visible light-near infrared spectroscopy and multispectral imaging of degraded malachite and azurite. The XRF measurements of the Japanese and Korean pigments could be used to complement the results of pigment identification by analytical imaging through spectral reflectance reconstruction. On the other hand, analysis of the Mongolian textiles revealed that they were produced between 12th and 13th century. Elemental analysis of the samples showed that they contained traces of gold, copper, iron and titanium. Based on the age and trace elements in the samples, it was concluded that the textiles were produced during the height of power of the Mongol empire, which makes them a valuable cultural heritage. Finally, the analysis of the degraded and discolored malachite and azurite demonstrates how multispectral analytical imaging could be used to complement the results of high energy-based techniques.

  19. Line x-ray source for diffraction enhanced imaging in clinical and industrial applications

    Science.gov (United States)

    Wang, Xiaoqin

    Mammography is one type of imaging modalities that uses a low-dose x-ray or other radiation sources for examination of breasts. It plays a central role in early detection of breast cancers. The material similarity of tumor-cell and health cell, breast implants surgery and other factors, make the breast cancers hard to visualize and detect. Diffraction enhanced imaging (DEI), first proposed and investigated by D. Chapman is a new x-ray radiographic imaging modality using monochromatic x-rays from a synchrotron source, which produced images of thick absorbing objects that are almost completely free of scatter. It shows dramatically improved contrast over standard imaging when applied to the same phantom. The contrast is based not only on attenuation but also on the refraction and diffraction properties of the sample. This imaging method may improve image quality of mammography, other medical applications, industrial radiography for non-destructive testing and x-ray computed tomography. However, the size, and cost, of a synchrotron source limits the application of the new modality to be applicable at clinical levels. This research investigates the feasibility of a designed line x-ray source to produce intensity compatible to synchrotron sources. It is composed of a 2-cm in length tungsten filament, installed on a carbon steel filament cup (backing plate), as the cathode and a stationary oxygen-free copper anode with molybdenum coating on the front surface serves as the target. Characteristic properties of the line x-ray source were computationally studied and the prototype was experimentally investigated. SIMIION code was used to computationally study the electron trajectories emanating from the filament towards the molybdenum target. A Faraday cup on the prototype device, proof-of-principle, was used to measure the distribution of electrons on the target, which compares favorably to computational results. The intensities of characteristic x-ray for molybdenum

  20. A review of the associated particle imaging technique

    International Nuclear Information System (INIS)

    Hurley, J.P.; Beyerle, A.; Durkee, R.; Headley, G.; Tunnell, L.

    1992-01-01

    Associated particle imaging (API) is a fast-neutron reaction imaging system. An object is illuminated with 14-MeV neutrons and these neutron interaction sites are imaged. The T(d,n) 4 He reaction is used to produce a neutron and an alpha particle which move apart in opposite directions. By detecting the alpha particle, the direction of travel of the neutron is known. When the neutron strikes any material (except hydrogen and helium) it causes the material to emit gamma radiation. If one of the gamma-rays is detected it is then known that a reaction has taken place. By measuring the time between alpha detection and gammadetection, it is known how long the neutron traveled before reacting. By constructing a tally (or histogram) of these reaction sites an image is constructed. By examining the gamma-ray spectra corresponding to each region of space, elemental analysis of that region can be performed. This technique and it's applications are discussed in this paper

  1. Feasibility and evaluation of dual-source transmit 3D imaging of the orbits: Comparison to high-resolution conventional MRI at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Achim, E-mail: achim.seeger@gmx.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Schulze, Maximilian, E-mail: maximilian.schulze@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Schuettauf, Frank, E-mail: fschuettauf@uni-tuebingen.de [University Eye Hospital, Department of Ophthalmology, Eberhard-Karls-University, Schleichstrasse 12, Tübingen 72076 (Germany); Klose, Uwe, E-mail: uwe.klose@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Ernemann, Ulrike, E-mail: ulrike.ernemann@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Hauser, Till-Karsten, E-mail: till-karsten.hauser@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany)

    2015-06-15

    Highlights: • Reduced FOV imaging enables a 3D approach for a very fast assessment of the orbits. • Conventional MRI exhibited higher eSNR values and consecutively higher scores for overall image quality in the subjective readers’ analysis. • All pathologies could be detected compared to high-resolution conventional MRI making 3D pTX SPACE to a potential alternative and fast imaging technique. - Abstract: Purpose: To prospectively compare the image quality and diagnostic performance of orbital MR images obtained by using a dual-source parallel transmission (pTX) 3D sequence (Sampling Perfection with Application optimized Contrasts using different flip angle Evolution, SPACE) with the image quality of conventional high-resolution standard protocol for clinical use in patients at 3T. Materials and methods: After obtaining institutional review board approval and patient consent, 32 patients with clinical indication for orbital MRI were examined using a high-resolution conventional sequences and 3D pTX SPACE sequences. Quantitative measurements, image quality of the healthy orbit, incidence of artifacts, and the subjective diagnostic performance to establish diagnosis was rated. Statistical significance was calculated by using a Student's t-test and nonparametric Wilcoxon signed rank test. Results: Length measurements were comparable in the two techniques, 3D pTX SPACE resulted in significant faster image acquisition with higher spatial resolution and less motion artifacts as well as better delineation of the optic nerve sheath. However, estimated contrast-to-noise and signal-to-noise and overall image quality as well as subjective scores of the conventional TSE imaging were rated significantly higher. The conventional MR sequences were the preferred techniques by the readers. Conclusion: This study demonstrates the feasibility of 3D pTX SPACE of the orbit resulting in a rapid acquisition of isotropic high-resolution images. Although no pathology was

  2. Fast in vivo bioluminescence tomography using a novel pure optical imaging technique

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    2017-05-01

    Full Text Available Bioluminescence tomography (BLT is a novel optical molecular imaging technique that advanced the conventional planar bioluminescence imaging (BLI into a quantifiable three-dimensional (3D approach in preclinical living animal studies in oncology. In order to solve the inverse problem and reconstruct tumor lesions inside animal body accurately, the prior structural information is commonly obtained from X-ray computed tomography (CT. This strategy requires a complicated hybrid imaging system, extensive post imaging analysis and involvement of ionizing radiation. Moreover, the overall robustness highly depends on the fusion accuracy between the optical and structural information. Here, we present a pure optical bioluminescence tomographic (POBT system and a novel BLT workflow based on multi-view projection acquisition and 3D surface reconstruction. This method can reconstruct the 3D surface of an imaging subject based on a sparse set of planar white-light and bioluminescent images, so that the prior structural information can be offered for 3D tumor lesion reconstruction without the involvement of CT. The performance of this novel technique was evaluated through the comparison with a conventional dual-modality tomographic (DMT system and a commercialized optical imaging system (IVIS Spectrum using three breast cancer xenografts. The results revealed that the new technique offered comparable in vivo tomographic accuracy with the DMT system (P>0.05 in much shorter data analysis time. It also offered significantly better accuracy comparing with the IVIS system (P<0.04 without sacrificing too much time.

  3. A rapid and robust gradient measurement technique using dynamic single-point imaging.

    Science.gov (United States)

    Jang, Hyungseok; McMillan, Alan B

    2017-09-01

    We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Column ratio mapping: a processing technique for atomic resolution high-angle annular dark-field (HAADF) images.

    Science.gov (United States)

    Robb, Paul D; Craven, Alan J

    2008-12-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  5. Column ratio mapping: A processing technique for atomic resolution high-angle annular dark-field (HAADF) images

    International Nuclear Information System (INIS)

    Robb, Paul D.; Craven, Alan J.

    2008-01-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [1 1 0]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 A-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  6. The parallel-sequential field subtraction technique for coherent nonlinear ultrasonic imaging

    Science.gov (United States)

    Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.

    2018-06-01

    Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage than was previously possible and have sensitivity to partially closed defects. This study explores a coherent imaging technique based on the subtraction of two modes of focusing: parallel, in which the elements are fired together with a delay law and sequential, in which elements are fired independently. In the parallel focusing a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded and post-processed to form an image. Under linear elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images and use this to characterise the nonlinearity of small closed fatigue cracks. In particular we monitor the change in relative phase and amplitude at the fundamental frequencies for each focal point and use this nonlinear coherent imaging metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g. back wall or large scatters) effectively when instrumentation noise compensation in applied, thereby allowing damage to be detected at an early stage (c. 15% of fatigue life) and reliably quantified in later fatigue life.

  7. Hyperspectral imaging using the single-pixel Fourier transform technique

    Science.gov (United States)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  8. Description and validation of a combination of acoustical radiosity and the image source method

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    A model that combines image source modelling and acoustical radiosity with complex boundary con- ditions, thus including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Model (PARISM). It has been developed in order to be able...... to model both specular and diffuse reflections with complex-valued acoustical descriptions of the surfaces. This paper mainly describes the combination of the two models and the implementation of the angle dependent surface descriptions both in the image source model and in acoustical radiosity...

  9. RESTORATION TECHNIQUE FOR PLEIADES-HR PANCHROMATIC IMAGES

    Directory of Open Access Journals (Sweden)

    C. Latry

    2012-07-01

    Full Text Available 17th of December 2011 from Kourou Space Centre, French Guyana. Like others high resolution optical satellites, it acquires both panchromatic images, with 70cm spatial resolution, and lower resolution multispectral images with 2.8m spatial resolution. Pleiades-HR is an optimized system, which means that the Modulation Transfer Function has a low value at Nyquist frequency, in order to reduce both the telescope diameter and aliasing effects. Shannon sampling condition is thus met at first order, which also makes classical ground processing, such as image matching or resampling, more justified for a mathematical point of view. Raw images are thus blurry which implies a deconvolution stage that restores sharpness but also increases the noise level in the high frequency domain. A denoising step, based upon wavelet packet coefficients thresholding/shrinkage technique, allows controlling the final noise level. Each of these methods includes numerous parameters that have to be assessed during the inflight commissioning period: deconvolution filter that depends on MTF assessment, instrumental noise model, noise level target for denoised images, wavelet packet decomposition level. This paper aims to precisely describe the deconvolution/denoising algorithms and how their main parameters have been set up during the inflight commissioning stage. Special attention will be given to structured noise induced by Pleiades-HR on board wavelet-based compression algorithm

  10. Application of magnetic resonance imaging (MRI) technique on monitoring flower bud differentiation of tulip

    International Nuclear Information System (INIS)

    Han Haojun; Yang Hongguang; Han Hongbin; Sun Xiaomei

    2009-01-01

    Magnetic resonance imaging (MRI) was used for observing morphogenesis process in the living specimen situation of tulip flower buds. Through a comparison of different MRI imaging formation technique (longitudinal relaxation-T1WI, transverse relaxation time weighted imaging-T2WI, proton density weighted imaging-PDWI), seeking for an accurate and practical MRI technique to observe tulip bulb and differentiation period of flower bud. The results showed that in the demonstration of the morphological characters as well as morphogenesis process of flower bud differentiation, the T1WI was completely consistent with the results of rough slice, PDWI and T1WI also had obviously higher map quality than the T2WI (P<0.05). It is indicated that the magnetic resonance imaging technique could monitor the development of flower bud differentiation in vivo. (authors)

  11. Study on Efficiency of Fusion Techniques for IKONOS Images

    International Nuclear Information System (INIS)

    Liu, Yanmei; Yu, Haiyang; Guijun, Yang; Nie, Chenwei; Yang, Xiaodong; Ren, Dong

    2014-01-01

    Many image fusion techniques have been proposed to achieve optimal resolution in the spatial and spectral domains. Six different merging methods were listed in this paper and the efficiency of fusion techniques was assessed in qualitative and quantitative aspect. Both local and global evaluation parameters were used in the spectral quality and a Laplace filter method was used in spatial quality assessment. By simulation, the spectral quality of the images merged by Brovery was demonstrated to be the worst. In contrast, GS and PCA algorithms, especially the Pansharpening provided higher spectral quality than the standard Brovery, wavelet and CN methods. In spatial quality assessment, the CN method represented best compared with that of others, while the Brovery algorithm was worst. The wavelet parameters that performed best achieved acceptable spectral and spatial quality compared to the others

  12. Point source search techniques in ultra high energy gamma ray astronomy

    International Nuclear Information System (INIS)

    Alexandreas, D.E.; Biller, S.; Dion, G.M.; Lu, X.Q.; Yodh, G.B.; Berley, D.; Goodman, J.A.; Haines, T.J.; Hoffman, C.M.; Horch, E.; Sinnis, C.; Zhang, W.

    1993-01-01

    Searches for point astrophysical sources of ultra high energy (UHE) gamma rays are plagued by large numbers of background events from isotropic cosmic rays. Some of the methods that have been used to estimate the expected number of background events coming from the direction of a possible source are found to contain biases. Search techniques that avoid this problem are described. There is also a discussion of how to optimize the sensitivity of a search to emission from a point source. (orig.)

  13. Improved Sectional Image Analysis Technique for Evaluating Fiber Orientations in Fiber-Reinforced Cement-Based Materials.

    Science.gov (United States)

    Lee, Bang Yeon; Kang, Su-Tae; Yun, Hae-Bum; Kim, Yun Yong

    2016-01-12

    The distribution of fiber orientation is an important factor in determining the mechanical properties of fiber-reinforced concrete. This study proposes a new image analysis technique for improving the evaluation accuracy of fiber orientation distribution in the sectional image of fiber-reinforced concrete. A series of tests on the accuracy of fiber detection and the estimation performance of fiber orientation was performed on artificial fiber images to assess the validity of the proposed technique. The validation test results showed that the proposed technique estimates the distribution of fiber orientation more accurately than the direct measurement of fiber orientation by image analysis.

  14. A sparsity-based iterative algorithm for reconstruction of micro-CT images from highly undersampled projection datasets obtained with a synchrotron X-ray source

    Science.gov (United States)

    Melli, S. Ali; Wahid, Khan A.; Babyn, Paul; Cooper, David M. L.; Gopi, Varun P.

    2016-12-01

    Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.

  15. Fast magnetic resonance imaging of the knee using a parallel acquisition technique (mSENSE): a prospective performance evaluation

    International Nuclear Information System (INIS)

    Kreitner, K.F.; Romaneehsen, Bernd; Oberholzer, Katja; Dueber, Christoph; Krummenauer, Frank; Mueller, L.P.

    2006-01-01

    The performance of a magnetic resonance (MR) imaging strategy that uses multiple receiver coil elements and integrated parallel imaging techniques (iPAT) in traumatic and degenerative disorders of the knee and to compare this technique with a standard MR imaging protocol was evaluated. Ninety patients with suspected internal derangements of the knee joint prospectively underwent MR imaging at 1.5 T. For signal detection, a 6-channel array coil was used. All patients were investigated with a standard imaging protocol consisting of different turbo spin-echo sequences proton density (PD), T 2 -weighted turbo spin echo (TSE) with and without fat suppression in three imaging planes. All sequences were repeated with an integrated parallel acquisition technique (iPAT) using the modified sensitivity encoding (mSENSE) algorithm with an acceleration factor of 2. Two radiologists independently evaluated and scored all images with regard to overall image quality, artefacts and pathologic findings. Agreement of the parallel ratings between readers and imaging techniques, respectively, was evaluated by means of pairwise kappa coefficients that were stratified for the area of evaluation. Agreement between the parallel readers for both the iPAT imaging and the conventional technique, respectively, as well as between imaging techniques was found encouraging with inter-observer kappa values ranging between 0.78 and 0.98 for both imaging techniques, and the inter-method kappa values ranging between 0.88 and 1.00 for both clinical readers. All pathological findings (e.g. occult fractures, meniscal and cruciate ligament tears, torn and interpositioned Hoffa's cleft, cartilage damage) were detected by both techniques with comparable performance. The use of iPAT lead to a 48% reduction of acquisition time compared with standard technique. Parallel imaging using mSENSE proved to be an efficient and economic tool for fast musculoskeletal MR imaging of the knee joint with comparable

  16. Reconstructing flaw image using dataset of full matrix capture technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Kim, Yong Sik; Lee, Jeong Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    A conventional phased array ultrasonic system offers the ability to steer an ultrasonic beam by applying independent time delays of individual elements in the array and produce an ultrasonic image. In contrast, full matrix capture (FMC) is a data acquisition process that collects a complete matrix of A-scans from every possible independent transmit-receive combination in a phased array transducer and makes it possible to reconstruct various images that cannot be produced by conventional phased array with the post processing as well as images equivalent to a conventional phased array image. In this paper, a basic algorithm based on the LLL mode total focusing method (TFM) that can image crack type flaws is described. And this technique was applied to reconstruct flaw images from the FMC dataset obtained from the experiments and ultrasonic simulation.

  17. Innovative Hyperspectral Imaging-Based Techniques for Quality Evaluation of Fruits and Vegetables: A Review

    Directory of Open Access Journals (Sweden)

    Yuzhen Lu

    2017-02-01

    Full Text Available New, non-destructive sensing techniques for fast and more effective quality assessment of fruits and vegetables are needed to meet the ever-increasing consumer demand for better, more consistent and safer food products. Over the past 15 years, hyperspectral imaging has emerged as a new generation of sensing technology for non-destructive food quality and safety evaluation, because it integrates the major features of imaging and spectroscopy, thus enabling the acquisition of both spectral and spatial information from an object simultaneously. This paper first provides a brief overview of hyperspectral imaging configurations and common sensing modes used for food quality and safety evaluation. The paper is, however, focused on the three innovative hyperspectral imaging-based techniques or sensing platforms, i.e., spectral scattering, integrated reflectance and transmittance, and spatially-resolved spectroscopy, which have been developed in our laboratory for property and quality evaluation of fruits, vegetables and other food products. The basic principle and instrumentation of each technique are described, followed by the mathematical methods for processing and extracting critical information from the acquired data. Applications of these techniques for property and quality evaluation of fruits and vegetables are then presented. Finally, concluding remarks are given on future research needs to move forward these hyperspectral imaging techniques.

  18. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, R. [Brigham and Women’s Hospital and Dana-Farber Cancer Institute (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  19. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Low, D. [University of California Los Angeles: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  20. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Keall, P. [University of Sydney (Australia)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  1. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    International Nuclear Information System (INIS)

    Low, D.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  2. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    International Nuclear Information System (INIS)

    Keall, P.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  3. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    International Nuclear Information System (INIS)

    Berbeco, R.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  4. VLSI ARCHITECTURE FOR IMAGE COMPRESSION THROUGH ADDER MINIMIZATION TECHNIQUE AT DCT STRUCTURE

    Directory of Open Access Journals (Sweden)

    N.R. Divya

    2014-08-01

    Full Text Available Data compression plays a vital role in multimedia devices to present the information in a succinct frame. Initially, the DCT structure is used for Image compression, which has lesser complexity and area efficient. Similarly, 2D DCT also has provided reasonable data compression, but implementation concern, it calls more multipliers and adders thus its lead to acquire more area and high power consumption. To contain an account of all, this paper has been dealt with VLSI architecture for image compression using Rom free DA based DCT (Discrete Cosine Transform structure. This technique provides high-throughput and most suitable for real-time implementation. In order to achieve this image matrix is subdivided into odd and even terms then the multiplication functions are removed by shift and add approach. Kogge_Stone_Adder techniques are proposed for obtaining a bit-wise image quality which determines the new trade-off levels as compared to the previous techniques. Overall the proposed architecture produces reduced memory, low power consumption and high throughput. MATLAB is used as a funding tool for receiving an input pixel and obtaining output image. Verilog HDL is used for implementing the design, Model Sim for simulation, Quatres II is used to synthesize and obtain details about power and area.

  5. Comparative study of quantitative phase imaging techniques for refractometry of optical fibers

    Science.gov (United States)

    de Dorlodot, Bertrand; Bélanger, Erik; Bérubé, Jean-Philippe; Vallée, Réal; Marquet, Pierre

    2018-02-01

    The refractive index difference profile of optical fibers is the key design parameter because it determines, among other properties, the insertion losses and propagating modes. Therefore, an accurate refractive index profiling method is of paramount importance to their development and optimization. Quantitative phase imaging (QPI) is one of the available tools to retrieve structural characteristics of optical fibers, including the refractive index difference profile. Having the advantage of being non-destructive, several different QPI methods have been developed over the last decades. Here, we present a comparative study of three different available QPI techniques, namely the transport-of-intensity equation, quadriwave lateral shearing interferometry and digital holographic microscopy. To assess the accuracy and precision of those QPI techniques, quantitative phase images of the core of a well-characterized optical fiber have been retrieved for each of them and a robust image processing procedure has been applied in order to retrieve their refractive index difference profiles. As a result, even if the raw images for all the three QPI methods were suffering from different shortcomings, our robust automated image-processing pipeline successfully corrected these. After this treatment, all three QPI techniques yielded accurate, reliable and mutually consistent refractive index difference profiles in agreement with the accuracy and precision of the refracted near-field benchmark measurement.

  6. Diagnostic accuracy of new imaging techniques in breast diseases

    Energy Technology Data Exchange (ETDEWEB)

    Gordenne, W; Bauduin, E [Liege Univ. (Belgium)

    1989-01-01

    During the last decade, the hypothetical carcinogenic effects of mammography have lead to new technical developments in X-ray diagnosis and to use of other imaging techniques such as ultrasonography (US), transillumination, magnetic resonance imaging (MRI). Many preliminary studies were published but few clinical trials are really convincing. According to the definition of a diagnostic tool, none of these new modalities is supposed to supplant mammography in the diagnosis of breast cancer. Improvements are expected by digital mammography in the near future. (Authors).

  7. Fresnel zone plate imaging of a 252Cf spontaneous fission source

    International Nuclear Information System (INIS)

    Stalker, K.T.; Hessel, K.R.

    1976-11-01

    The feasibility of coded aperture imaging for nuclear fuel motion monitoring is shown using Cf 252 spontaneous fission source. The theory of coded aperture imaging for Fresnel zone plate apertures is presented and design considerations for zone plate construction are discussed. Actual images are obtained which demonstrate a transverse resolution of 1.7 mm and a tomographic resolution of 1.5 millimeters. The capability of obtaining images through 12.7 mm of stainless steel is also shown

  8. Subgingival calculus imaging based on swept-source optical coherence tomography

    Science.gov (United States)

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Lu, Chih-Wei; Jiang, Cho-Pei; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei

    2011-07-01

    We characterized and imaged dental calculus using swept-source optical coherence tomography (SS-OCT). The refractive indices of enamel, dentin, cementum, and calculus were measured as 1.625 +/- 0.024, 1.534 +/- 0.029, 1.570 +/- 0.021, and 2.097 +/- 0.094, respectively. Dental calculus leads strong scattering properties, and thus, the region can be identified from enamel with SS-OCT imaging. An extracted human tooth with calculus is covered with gingiva tissue as an in vitro sample for tomographic imaging.

  9. Comparative study of image registration techniques for bladder video-endoscopy

    Science.gov (United States)

    Ben Hamadou, Achraf; Soussen, Charles; Blondel, Walter; Daul, Christian; Wolf, Didier

    2009-07-01

    Bladder cancer is widely spread in the world. Many adequate diagnosis techniques exist. Video-endoscopy remains the standard clinical procedure for visual exploration of the bladder internal surface. However, video-endoscopy presents the limit that the imaged area for each image is about nearly 1 cm2. And, lesions are, typically, spread over several images. The aim of this contribution is to assess the performance of two mosaicing algorithms leading to the construction of panoramic maps (one unique image) of bladder walls. The quantitative comparison study is performed on a set of real endoscopic exam data and on simulated data relative to bladder phantom.

  10. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    Science.gov (United States)

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  11. Image Quality of 3rd Generation Spiral Cranial Dual-Source CT in Combination with an Advanced Model Iterative Reconstruction Technique: A Prospective Intra-Individual Comparison Study to Standard Sequential Cranial CT Using Identical Radiation Dose.

    Science.gov (United States)

    Wenz, Holger; Maros, Máté E; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas

    2015-01-01

    To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (pspiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels.

  12. Ultra-high performance mirror systems for the imaging and coherence beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Alcock, S.; Ludbrook, G.; Wiatryzk, J.; Rau, C.

    2012-05-01

    I13L is a 250m long hard x-ray beamline (6 keV to 35 keV) currently under construction at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. To minimise the impact of thermal fluctuations and vibrations onto the beamline performance, we are developing a new generation of ultra-stable beamline instrumentation with highly repeatable adjustment mechanisms using low thermal expansion materials like granite and large piezo-driven flexure stages. For minimising the beam distortion we use very high quality optical components like large ion-beam polished mirrors. In this paper we present the first metrology results on a newly designed mirror system following this design philosophy.

  13. Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source

    Science.gov (United States)

    Kawarasaki, Tatsuo; Uchiyama, Kazuhiko; Hirao, Atsushi; Azuma, Sadahiro; Otake, Masayoshi; Shibata, Masatoshi; Tsuchiya, Seiko; Enosawa, Shin; Takeuchi, Koichi; Konno, Kenjiro; Hakamata, Yoji; Yoshino, Hiroyuki; Wakai, Takuya; Ookawara, Shigeo; Tanaka, Hozumi; Kobayashi, Eiji; Murakami, Takashi

    2009-09-01

    Animal imaging sources have become an indispensable material for biological sciences. Specifically, gene-encoded biological probes serve as stable and high-performance tools to visualize cellular fate in living animals. We use a somatic cell cloning technique to create new green fluorescent protein (GFP)-expressing Jinhua pigs with a miniature body size, and characterized the expression profile in various tissues/organs and ex vivo culture conditions. The born GFP-transgenic pig demonstrate an organ/tissue-dependent expression pattern. Strong GFP expression is observed in the skeletal muscle, pancreas, heart, and kidney. Regarding cellular levels, bone-marrow-derived mesenchymal stromal cells, hepatocytes, and islet cells of the pancreas also show sufficient expression with the unique pattern. Moreover, the cloned pigs demonstrate normal growth and fertility, and the introduced GFP gene is stably transmitted to pigs in subsequent generations. The new GFP-expressing Jinhua pigs may be used as new cellular/tissue light resources for biological imaging in preclinical research fields such as tissue engineering, experimental regenerative medicine, and transplantation.

  14. A new approach to electrical impedance imaging technique

    International Nuclear Information System (INIS)

    Afroj Quadir, K.; Nasir, F.; Rahman, M.; Rabbani, K.S.

    2004-09-01

    It is possible to obtain a 2 dimensional (2D) image of a volume conductor, to locate a few widely separated objects, by driving ac constant currents through two orthogonal pairs of electrodes and measuring the resulting potential differences between several diagonally placed electrodes at the centre and back-projecting their impedance values along equi-potential lines. This has been termed as Pigeon Hole Imaging (PHI). Experimental verification has been attempted using a small insulating object placed at different locations in a saline filled 2D phantom. For a 6 x 6 matrix, the image in 16 pixels in close proximity of the diagonal along which electrodes are arranged, coincide with the object positions, while they do nt for the remaining 20 pixels. We applied a new technique where image smearing patterns have been used to correct the images in 14 of these pixels while 6 pixels near the two opposite comers still remain uncertain. Thus 30 pixels out of 36 give the right object position which may be termed a success. The concept may be extended further to higher order matrices by increasing the number of diagonal electrodes. The present work mainly concentrates on the feasibility of localization of a single small object in one matrix position of the image. (author)

  15. MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform.

    Science.gov (United States)

    Robichaud, Guillaume; Garrard, Kenneth P; Barry, Jeremy A; Muddiman, David C

    2013-05-01

    During the past decade, the field of mass spectrometry imaging (MSI) has greatly evolved, to a point where it has now been fully integrated by most vendors as an optional or dedicated platform that can be purchased with their instruments. However, the technology is not mature and multiple research groups in both academia and industry are still very actively studying the fundamentals of imaging techniques, adapting the technology to new ionization sources, and developing new applications. As a result, there important varieties of data file formats used to store mass spectrometry imaging data and, concurrent to the development of MSi, collaborative efforts have been undertaken to introduce common imaging data file formats. However, few free software packages to read and analyze files of these different formats are readily available. We introduce here MSiReader, a free open source application to read and analyze high resolution MSI data from the most common MSi data formats. The application is built on the Matlab platform (Mathworks, Natick, MA, USA) and includes a large selection of data analysis tools and features. People who are unfamiliar with the Matlab language will have little difficult navigating the user-friendly interface, and users with Matlab programming experience can adapt and customize MSiReader for their own needs.

  16. Image Analysis Technique for Material Behavior Evaluation in Civil Structures

    Science.gov (United States)

    Moretti, Michele; Rossi, Gianluca

    2017-01-01

    The article presents a hybrid monitoring technique for the measurement of the deformation field. The goal is to obtain information about crack propagation in existing structures, for the purpose of monitoring their state of health. The measurement technique is based on the capture and analysis of a digital image set. Special markers were used on the surface of the structures that can be removed without damaging existing structures as the historical masonry. The digital image analysis was done using software specifically designed in Matlab to follow the tracking of the markers and determine the evolution of the deformation state. The method can be used in any type of structure but is particularly suitable when it is necessary not to damage the surface of structures. A series of experiments carried out on masonry walls of the Oliverian Museum (Pesaro, Italy) and Palazzo Silvi (Perugia, Italy) have allowed the validation of the procedure elaborated by comparing the results with those derived from traditional measuring techniques. PMID:28773129

  17. Source imaging of drums in the APNEA system

    International Nuclear Information System (INIS)

    Hensley, D.

    1995-01-01

    The APNea System is a neutron assay device utilizing both a passive mode and a differential-dieaway active mode. The total detection efficiency is not spatially uniform, even for an empty chamber, and a drum matrix in the chamber can severely distort this response. In order to achieve a response which is independent of the way the source material is distributed in a drum, an imaging procedure has been developed which treats the drum as a number of virtual (sub)volumes. Since each virtual volume of source material is weighted with the appropriate instrument parameters (detection efficiency and thermal flux), the final assay result is essentially independent of the actual distribution of the source material throughout the drum and its matrix

  18. Nanopositioning techniques development for synchrotron radiation instrumentation applications at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu Deming

    2010-01-01

    At modern synchrotron radiation sources and beamlines, high-precision positioning techniques present a significant opportunity to support state-of-the-art synchrotron radiation research. Meanwhile, the required instrument positioning performance and capabilities, such as resolution, dynamic range, repeatability, speed, and multiple axes synchronization are exceeding the limit of commercial availability. This paper presents the current nanopositioning techniques developed for the Argonne Center for Nanoscale Materials (CNM)/Advanced Photon Source (APS) hard x-ray nanoprobe and high-resolution x-ray monochromators and analyzers for the APS X-ray Operations and Research (XOR) beamlines. Future nanopositioning techniques to be developed for the APS renewal project will also be discussed.

  19. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    Science.gov (United States)

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  20. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Zhiwei Ye

    2015-01-01

    Full Text Available Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  1. Tooling Techniques Enhance Medical Imaging

    Science.gov (United States)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  2. Obtention of tumor volumes in PET images stacks using techniques of colored image segmentation

    International Nuclear Information System (INIS)

    Vieira, Jose W.; Lopes Filho, Ferdinand J.; Vieira, Igor F.

    2014-01-01

    This work demonstrated step by step how to segment color images of the chest of an adult in order to separate the tumor volume without significantly changing the values of the components R (Red), G (Green) and B (blue) of the colors of the pixels. For having information which allow to build color map you need to segment and classify the colors present at appropriate intervals in images. The used segmentation technique is to select a small rectangle with color samples in a given region and then erase with a specific color called 'rubber' the other regions of image. The tumor region was segmented into one of the images available and the procedure is displayed in tutorial format. All necessary computational tools have been implemented in DIP (Digital Image Processing), software developed by the authors. The results obtained, in addition to permitting the construction the colorful map of the distribution of the concentration of activity in PET images will also be useful in future work to enter tumors in voxel phantoms in order to perform dosimetric assessments

  3. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder

    Science.gov (United States)

    Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A.; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C.; Tenembaum, Silvia N.; Banwell, Brenda; Greenberg, Benjamin M.; Bennett, Jeffrey L.; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T.

    2016-01-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease. PMID:26010909

  4. 3D-TV System with Depth-Image-Based Rendering Architectures, Techniques and Challenges

    CERN Document Server

    Zhao, Yin; Yu, Lu; Tanimoto, Masayuki

    2013-01-01

    Riding on the success of 3D cinema blockbusters and advances in stereoscopic display technology, 3D video applications have gathered momentum in recent years. 3D-TV System with Depth-Image-Based Rendering: Architectures, Techniques and Challenges surveys depth-image-based 3D-TV systems, which are expected to be put into applications in the near future. Depth-image-based rendering (DIBR) significantly enhances the 3D visual experience compared to stereoscopic systems currently in use. DIBR techniques make it possible to generate additional viewpoints using 3D warping techniques to adjust the perceived depth of stereoscopic videos and provide for auto-stereoscopic displays that do not require glasses for viewing the 3D image.   The material includes a technical review and literature survey of components and complete systems, solutions for technical issues, and implementation of prototypes. The book is organized into four sections: System Overview, Content Generation, Data Compression and Transmission, and 3D V...

  5. 3D printing of intracranial artery stenosis based on the source images of magnetic resonance angiograph.

    Science.gov (United States)

    Xu, Wei-Hai; Liu, Jia; Li, Ming-Li; Sun, Zhao-Yong; Chen, Jie; Wu, Jian-Huang

    2014-08-01

    Three dimensional (3D) printing techniques for brain diseases have not been widely studied. We attempted to 'print' the segments of intracranial arteries based on magnetic resonance imaging. Three dimensional magnetic resonance angiography (MRA) was performed on two patients with middle cerebral artery (MCA) stenosis. Using scale-adaptive vascular modeling, 3D vascular models were constructed from the MRA source images. The magnified (ten times) regions of interest (ROI) of the stenotic segments were selected and fabricated by a 3D printer with a resolution of 30 µm. A survey to 8 clinicians was performed to evaluate the accuracy of 3D printing results as compared with MRA findings (4 grades, grade 1: consistent with MRA and provide additional visual information; grade 2: consistent with MRA; grade 3: not consistent with MRA; grade 4: not consistent with MRA and provide probable misleading information). If a 3D printing vessel segment was ideally matched to the MRA findings (grade 2 or 1), a successful 3D printing was defined. Seven responders marked "grade 1" to 3D printing results, while one marked "grade 4". Therefore, 87.5% of the clinicians considered the 3D printing were successful. Our pilot study confirms the feasibility of using 3D printing technique in the research field of intracranial artery diseases. Further investigations are warranted to optimize this technique and translate it into clinical practice.

  6. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement.

    Science.gov (United States)

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P histogram equalization technique in combination with some other postprocessing technique is useful.

  7. Image acquisition system using on sensor compressed sampling technique

    Science.gov (United States)

    Gupta, Pravir Singh; Choi, Gwan Seong

    2018-01-01

    Advances in CMOS technology have made high-resolution image sensors possible. These image sensors pose significant challenges in terms of the amount of raw data generated, energy efficiency, and frame rate. This paper presents a design methodology for an imaging system and a simplified image sensor pixel design to be used in the system so that the compressed sensing (CS) technique can be implemented easily at the sensor level. This results in significant energy savings as it not only cuts the raw data rate but also reduces transistor count per pixel; decreases pixel size; increases fill factor; simplifies analog-to-digital converter, JPEG encoder, and JPEG decoder design; decreases wiring; and reduces the decoder size by half. Thus, CS has the potential to increase the resolution of image sensors for a given technology and die size while significantly decreasing the power consumption and design complexity. We show that it has potential to reduce power consumption by about 23% to 65%.

  8. Magnetic resonance separation imaging using a divided inversion recovery technique (DIRT).

    Science.gov (United States)

    Goldfarb, James W

    2010-04-01

    The divided inversion recovery technique is an MRI separation method based on tissue T(1) relaxation differences. When tissue T(1) relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady-state free-precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water-fat or fluid separation. Example water-fat and fluid separation images of the head, heart, and abdomen are presented. The water-fat separation performance was investigated by comparing image intensities in short-axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities.

  9. Modeling susceptibility difference artifacts produced by metallic implants in magnetic resonance imaging with point-based thin-plate spline image registration.

    Science.gov (United States)

    Pauchard, Y; Smith, M; Mintchev, M

    2004-01-01

    Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.

  10. Electromagnetic diagnostics of ECR-Ion Sources plasmas: optical/X-ray imaging and spectroscopy

    Science.gov (United States)

    Mascali, D.; Castro, G.; Altana, C.; Caliri, C.; Mazzaglia, M.; Romano, F. P.; Leone, F.; Musumarra, A.; Naselli, E.; Reitano, R.; Torrisi, G.; Celona, L.; Cosentino, L. G.; Giarrusso, M.; Gammino, S.

    2017-12-01

    Magnetoplasmas in ECR-Ion Sources are excited from gaseous elements or vapours by microwaves in the range 2.45-28 GHz via Electron Cyclotron Resonance. A B-minimum, magnetohydrodynamic stable configuration is used for trapping the plasma. The values of plasma density, temperature and confinement times are typically ne= 1011-1013 cm-3, 01 eVSilicon Drift detectors with high energy resolution of 125 eV at 5.9 keV have been used for the characterization of plasma emission at 02technique has allowed space resolved X-ray spectroscopy with a spatial resolution down to 30 μm and an energy resolution down to 140 eV at 5.9 keV . In parallel, imaging in the optical range and spectroscopic measurements have been carried out. Relative abundances of H/H2 atoms/molecules in the plasmas have been measured for different values of neutral pressure, microwave power and magnetic field profile (they are critical for high-power proton sources).

  11. Improvements in image quality with pseudo-parallel imaging in the phase-scrambling fourier transform technique

    International Nuclear Information System (INIS)

    Ito, Satoshi; Kawawa, Yasuhiro; Yamada, Yoshifumi

    2010-01-01

    The signal obtained in the phase-scrambling Fourier transform (PSFT) imaging technique can be transformed to the signal described by the Fresnel transform of the objects, in which the amplitude of the PSFT presents some kind of blurred image of the objects. Therefore, the signal can be considered to exist in the object domain as well as the Fourier domain of the object. This notable feature makes it possible to assign weights to the reconstructed images by applying a weighting function to the PSFT signal after data acquisition, and as a result, pseudo-parallel image reconstruction using these aliased image data with different weights on the images is feasible. In this study, the improvements in image quality with such pseudo-parallel imaging were examined and demonstrated. The weighting function of the PSFT signal that provides a given weight on the image is estimated using the obtained image data and is iteratively updated after sensitivity encoding (SENSE)-based image reconstruction. Simulation studies showed that reconstruction errors were dramatically reduced and that the spatial resolution was also improved in almost all image spaces. The proposed method was applied to signals synthesized from MR image data with phase variations to verify its effectiveness. It was found that the image quality was improved and that images almost entirely free of aliasing artifacts could be obtained. (author)

  12. Imaging techniques and investigation protocols in pediatric emergency imaging; Aufnahmetechnik und Untersuchungsprotokolle beim paediatrischen Notfall

    Energy Technology Data Exchange (ETDEWEB)

    Scharitzer, M.; Hoermann, M.; Puig, S.; Prokop, M. [Universitaetsklinik fuer Radiodiagnostik, Wien (Austria)

    2002-03-01

    Paediatric emergencies demand a quick and efficient radiological investigation with special attention to specific adjustments related to patient age and radiation protection. Imaging modalities are improving rapidly and enable to diagnose childhood diseases and injuries more quickly, accurately and safely. This article provides an overview of imaging techniques adjusted to the age of the child and an overview of imaging strategies of common paediatric emergencies. Optimising the imaging parameters (digital radiography, different screen-film systems, exposure specifications) allows for substantial reduction of radiation dose. Spiral- and multislice-CT reduce scan time and enable a considerable reduction of radiation exposure if scanning parameters (pitch setting, tube current) are properly adjusted. MRI is still mainly used for neurological or spinal emergencies despite the advent of fast imaging sequences. The radiologist's task is to select an appropriate imaging strategy according to expected differential diagnosis and to adjust the imaging techniques to the individual patient. (orig.) [German] Das akut erkrankte Kind erfordert eine rasche radiologische Abklaerung mit besonderer Beruecksichtung der geaenderten Untersuchungsparameter bei gleichzeitig hohem Anspruch an den Strahlenschutz. Hochaufloesende Schallkoepfe, Multislice-CT und schnelle MR-Sequenzen erlauben eine bessere Anpassung der Untersuchungsmethoden an die Beduerfnisse in der Kinderradiologie. Ziel dieses Artikels ist eine Uebersicht ueber die verschiedenen radiologischen Untersuchungstechniken sowie deren Anpassung an kindliche Anforderungen und die Angabe von Untersuchungsalgorithmen der haeufigsten paediatrischen Notfaelle. In der Projektionsradiographie erlaubt die Optimierung der Aufnahmetechnik (digitale Radiographie, unterschiedliche Klassen von Film-Folien-Systemen, Belichtungsparameter) eine deutliche Reduktion der Strahlendosis bei diagnostisch ausreichender Qualitaet. Spiral- oder

  13. Radiological normal anatomy of the larynx and pharynx and imaging techniques

    International Nuclear Information System (INIS)

    Nemec, S.F.; Krestan, C.R.; Noebauer-Huhmann, I.M.; Fruehwald, J.; Peloschek, P.; Kainberger, F.; Czerny, C.; Formanek, M.

    2009-01-01

    The larynx and the pharynx represent anatomically as well as functionally a very complex organ which serves as an airway and a nutrition channel. Knowledge of anatomy and anatomical topography is therefore a fundamental basis for the evaluation of any pathological process. Beside the clinical examination and endoscopy performed by ear, nose and throat specialists, imaging techniques play a crucial role in pre-therapeutic and post-therapeutic diagnostics. The radiologist employs a conventional x-ray swallow examination, as well as contrast-enhanced multidetector computed tomography (MDCT), magnetic resonance imaging (MRI), positron emission tomography (PET) and positron emission tomography-computed tomography (PET-CT), depending on the medical problem in question. The following article demonstrates the functional and especially the structural anatomy of the larynx and the pharynx. Furthermore, the broad range of imaging techniques in clinical use is discussed. (orig.) [de

  14. A NEW TECHNIQUE BASED ON CHAOTIC STEGANOGRAPHY AND ENCRYPTION TEXT IN DCT DOMAIN FOR COLOR IMAGE

    Directory of Open Access Journals (Sweden)

    MELAD J. SAEED

    2013-10-01

    Full Text Available Image steganography is the art of hiding information into a cover image. This paper presents a new technique based on chaotic steganography and encryption text in DCT domain for color image, where DCT is used to transform original image (cover image from spatial domain to frequency domain. This technique used chaotic function in two phases; firstly; for encryption secret message, second; for embedding in DCT cover image. With this new technique, good results are obtained through satisfying the important properties of steganography such as: imperceptibility; improved by having mean square error (MSE, peak signal to noise ratio (PSNR and normalized correlation (NC, to phase and capacity; improved by encoding the secret message characters with variable length codes and embedding the secret message in one level of color image only.

  15. Clinical evaluation of left ventricular wall thickness by combined technique with gated planer 201Tl image and gated cardiac pool image

    International Nuclear Information System (INIS)

    Nakai, Kenji; Katsuragawa, Shigehiko; Takahashi, Tsuneo; Matsushita, Kazuo; Kawamura, Akiyoshi

    1983-01-01

    To evaluate the left ventricular (LV) wall thickness, combined technique with gated planer 201-Thallium image and gated cardiac pool image was applied to 6 patients with hypertrophic cardiomyopathy (HCM) and 4 patients with secondary hypertrophy due to hypertension (HHD) proven by electrocardiography and ultrasonic-echocardiography. Scintigraphic pattern of hypertrophy on reconstructed planer 201 Tl image showed diffuse or asymmetrical apical hypertrophy in HHD, asymmetrical septal hypertrophy in HCM. It was very interesting that abnormal perfusion was shown in 201 Tl image, despite symmetrical hypertrophy in echocardiography. This techniques provided useful information for evaluating the LV wall thickness and cardiac performance. (author)

  16. Osteonecrosis of the sesamoid bone: contribution of modern imaging techniques

    International Nuclear Information System (INIS)

    Leleu, J.P.; Heno, P.; Rispal, P.; Joullie, M.; Laurent, F.

    1990-01-01

    We report a case of osteonecrosis of the sesamoid bone or Renander disease in a young male serviceman. Modern imaging techniques proved useful for identifying the lesion. CT scan and above all magnetic resonance imaging established the accurate diagnosis. The combination of a hypointense signal from the sesamoid bone with an effusion in the first metatarsophalangeal joint should be considered as characteristic of osteonecrosis of the sesamoid bone [fr

  17. Comparative Study of Modulation Techniques for Two-Level Voltage Source Inverters

    Directory of Open Access Journals (Sweden)

    Barry W. Williams

    2016-06-01

    Full Text Available A detailed comparative study of modulation techniques for single and three phase dc-ac inverters is presented.  Sinusoidal Pulse Width Modulation, Triplen Sinusoidal Pulse Width Modulation, Space Vector Modulation, Selective Harmonic Elimination and Wavelet Modulation are assessed and compared in terms of maximum fundamental output, harmonic performance, switching losses and operational mode.  The presented modulation techniques are applied to single and three phase voltage source inverters and are simulated using SIMULINK.  The simulation results clarify the inverter performance achieved using the different modulations techniques.

  18. Primary study on image addition technique in CT measuring used to determine the malalignment of patellofemoral joints

    International Nuclear Information System (INIS)

    Huan Jian; Gong Jianping; Zhu Jianbing; Dong Qirong; Lu Zhian

    2000-01-01

    Objective: To evaluate the use of image addition technique in the field of CT measuring on patellofemoral joints. Method: In contractive condition and relaxant condition of quadriceps, 60 knee joints of 30 patients (47 knee joints accompanied with peri-patellar pain) were examined by CT scanning, and the CT image addition and single technique. Results: In contractive and relaxant condition of quadriceps in the normal group, the difference between index measured by image addition technique were not significant and it was found that demonstrated measurement error of image addition was smaller, but there was significant difference between index measured by single technique, and it suggests that its replication was bad. Conclusion: Use of image addition technique can decrease measurement error and play a important role on accurately determining the malalignment of patellofemoral joints

  19. Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system.

    Science.gov (United States)

    Mariampillai, Adrian; Standish, Beau A; Munce, Nigel R; Randall, Cristina; Liu, George; Jiang, James Y; Cable, Alex E; Vitkin, I A; Yang, Victor X D

    2007-02-19

    We report a Doppler optical cardiogram gating technique for increasing the effective frame rate of Doppler optical coherence tomography (DOCT) when imaging periodic motion as found in the cardiovascular system of embryos. This was accomplished with a Thorlabs swept-source DOCT system that simultaneously acquired and displayed structural and Doppler images at 12 frames per second (fps). The gating technique allowed for ultra-high speed visualization of the blood flow pattern in the developing hearts of African clawed frog embryos (Xenopus laevis) at up to 1000 fps. In addition, four-dimensional (three spatial dimensions + temporal) Doppler imaging at 45 fps was demonstrated using this gating technique, producing detailed visualization of the complex cardiac motion and hemodynamics in a beating heart.

  20. Earthquake source studies and seismic imaging in Alaska

    Science.gov (United States)

    Tape, C.; Silwal, V.

    2015-12-01

    Alaska is one of the world's most seismically and tectonically active regions. Its enhanced seismicity, including slab seismicity down to 180 km, provides opportunities (1) to characterize pervasive crustal faulting and slab deformation through the estimation of moment tensors and (2) to image subsurface structures to help understand the tectonic evolution of Alaska. Most previous studies of earthquakes and seismic imaging in Alaska have emphasized earthquake locations and body-wave travel-time tomography. In the past decade, catalogs of seismic moment tensors have been established, while seismic surface waves, active-source data, and potential field data have been used to improve models of seismic structure. We have developed moment tensor catalogs in the regions of two of the largest sedimentary basins in Alaska: Cook Inlet forearc basin, west of Anchorage, and Nenana basin, west of Fairbanks. Our moment tensor solutions near Nenana basin suggest a transtensional tectonic setting, with the basin developing in a stepover of a left-lateral strike-slip fault system. We explore the effects of seismic wave propagation from point-source and finite-source earthquake models by performing three-dimensional wavefield simulations using seismic velocity models that include major sedimentary basins. We will use our catalog of moment tensors within an adjoint-based, iterative inversion to improve the three-dimensional tomographic model of Alaska.