WorldWideScience

Sample records for source goddard space

  1. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1993-01-01

    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  2. Goddard Technology Efforts to Improve Space Borne Laser Reliability

    Science.gov (United States)

    Heaps, William S.

    2006-01-01

    In an effort to reduce the risk, perceived and actual, of employing instruments containing space borne lasers NASA initiated the Laser Risk Reduction Program (LRRP) in 2001. This program managed jointly by NASA Langley and NASA Goddard and employing lasers researchers from government, university and industrial labs is nearing the conclusion of its planned 5 year duration. This paper will describe some of the efforts and results obtained by the Goddard half of the program.

  3. The 1988 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James (Editor); Hughes, Peter (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies.

  4. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1994-01-01

    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  5. NASA Goddard Space Flight Center Supply Chain Management Program

    Science.gov (United States)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  6. Research & Technology Report Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  7. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  8. R and T report: Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  9. CCSDS telemetry systems experience at the Goddard Space Flight Center

    Science.gov (United States)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  10. Positron-Electron Pairs in Astrophysics (Goddard Space Flight Center, 1983)

    International Nuclear Information System (INIS)

    Burns, M.L.; Harding, A.K.; Ramaty, R.

    1983-01-01

    A workshop on Position-Electron Pairs in Astrophysics was held in 1983 at the Goddard Space Flight Center. This workshop brought together observers and theorists actively engaged in the study of astrophysical sites, as well as physical processes therein where position-electron pairs have a profound influence on both the overall dynamics of the source region and the properties of the emitted radiation. This volume consists of the workshop proceedings

  11. The NASA Goddard Group's Source Monitoring Database and Program

    Science.gov (United States)

    Gipson, John; Le Bail, Karine; Ma, Chopo

    2014-12-01

    Beginning in 2003, the Goddard VLBI group developed a program to purposefully monitor when sources were observed and to increase the observations of ``under-observed'' sources. The heart of the program consists of a MySQL database that keeps track of, on a session-by-session basis: the number of observations that are scheduled for a source, the number of observations that are successfully correlated, and the number of observations that are used in a session. In addition, there is a table that contains the target number of successful sessions over the last twelve months. Initially this table just contained two categories. Sources in the geodetic catalog had a target of 12 sessions/year; the remaining ICRF-1 defining sources had a target of two sessions/year. All other sources did not have a specific target. As the program evolved, different kinds of sources with different observing targets were added. During the scheduling process, the scheduler has the option of automatically selecting N sources which have not met their target. We discuss the history and present some results of this successful program.

  12. An evaluation of the Goddard Space Flight Center Library

    Science.gov (United States)

    Herner, S.; Lancaster, F. W.; Wright, N.; Ockerman, L.; Shearer, B.; Greenspan, S.; Mccartney, J.; Vellucci, M.

    1979-01-01

    The character and degree of coincidence between the current and future missions, programs, and projects of the Goddard Space Flight Center and the current and future collection, services, and facilities of its library were determined from structured interviews and discussions with various classes of facility personnel. In addition to the tabulation and interpretation of the data from the structured interview survey, five types of statistical analyses were performed to corroborate (or contradict) the survey results and to produce useful information not readily attainable through survey material. Conclusions reached regarding compatability between needs and holdings, services and buildings, library hours of operation, methods of early detection and anticipation of changing holdings requirements, and the impact of near future programs are presented along with a list of statistics needing collection, organization, and interpretation on a continuing or longitudinal basis.

  13. The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1995-01-01

    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  14. Robust, Radiation Tolerant Command and Data Handling and Power System Electronics from NASA Goddard Space Flight Center

    Science.gov (United States)

    Nguyen, Hanson C.; Fraction, James; Ortiz-Acosta, Melyane; Dakermanji, George; Kercheval, Bradford P.; Hernandez-Pellerano, Amri; Kim, David S.; Jung, David S.; Meyer, Steven E.; Mallik, Udayan; hide

    2016-01-01

    The Goddard Modular Smallsat Architecture (GMSA) is developed at NASA Goddard Space Flight Center (GSFC) to address future reliability along with minimizing cost and schedule challenges for NASA Cubesat and Smallsat missions.

  15. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    Science.gov (United States)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  16. 1988 Goddard Conference on Space Applications of Artificial Intelligence, Greenbelt, MD, May 24, 1988, Proceedings

    Science.gov (United States)

    Rash, James L. (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools methodologies.

  17. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    Science.gov (United States)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  18. The 1992 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1992-01-01

    The purpose of this conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers fall into the following areas: planning and scheduling, control, fault monitoring/diagnosis and recovery, information management, tools, neural networks, and miscellaneous applications.

  19. The 1991 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1991-01-01

    The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications.

  20. Space applications of artificial intelligence; 1990 Goddard Conference, Greenbelt, MD, May 1, 2, 1990, Selected Papers

    Science.gov (United States)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  1. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    Science.gov (United States)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  2. Dreams, Hopes, Realities: NASA's Goddard Space Flight Center, the First Forty Years

    Science.gov (United States)

    Wallace, Lane E.

    1999-01-01

    Throughout history, the great achievements of civilizations and cultures have been recorded in lists of dates and events. But to look only at the machinery, discoveries, or milestones is to miss the value of these achievements. Each goal achieved or discovery or made represents a supreme effort on the part of individual people who came and worked together for a purpose greater than themselves. Driven by an innate curiosity of the spirit, we have built civilizations and discovered new worlds, always reaching out beyond what we knew or thought was possible. These efforts may have used ships or machinery, but the achievement was that of the humans who made those machines possible- remarkable people willing to endure discomfort, frustration, fatigue, and the risk of failure in the hope of finding out something new. This is the case with the history of the Goddard Space Flight Center. This publication traces the legacy of successes, risks, disappointments and internationally recognized triumphs of the Center's first 40 years. It is a story of technological achievement and scientific discovery; of reaching back to the dawn of time and opening up a new set of eyes on our own planet Earth. In the end, it is not a story about machinery or discoveries, but a story about ourselves. If we were able to step off our planet, and if we continue to discover new mysteries and better technology, it is because the people who work at Goddard always had a passion for exploration and the dedication to make it happen. The text that follows is a testimony to the challenges people at the Goddard Space Flight Center have faced and overcome over almost half a century. Today, we stand on the threshold of a new and equally challenging era. It will once again test our ingenuity, skills, and flexibility as we find new ways of working with our colleagues in industry, government, and academia. Doing more with less is every bit as ambitious as designing the first science instrument to study the

  3. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    Science.gov (United States)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  4. Storage Information Management System (SIMS) Spaceflight Hardware Warehousing at Goddard Space Flight Center

    Science.gov (United States)

    Kubicko, Richard M.; Bingham, Lindy

    1995-01-01

    Goddard Space Flight Center (GSFC) on site and leased warehouses contain thousands of items of ground support equipment (GSE) and flight hardware including spacecraft, scaffolding, computer racks, stands, holding fixtures, test equipment, spares, etc. The control of these warehouses, and the management, accountability, and control of the items within them, is accomplished by the Logistics Management Division. To facilitate this management and tracking effort, the Logistics and Transportation Management Branch, is developing a system to provide warehouse personnel, property owners, and managers with storage and inventory information. This paper will describe that PC-based system and address how it will improve GSFC warehouse and storage management.

  5. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    Science.gov (United States)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  6. A Unique Outside Neutron and Gamma Ray Instrumentation Development Test Facility at NASA's Goddard Space Flight Center

    Science.gov (United States)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration

  7. Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center

    Science.gov (United States)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn; hide

    2016-01-01

    Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.

  8. Computations on the massively parallel processor at the Goddard Space Flight Center

    Science.gov (United States)

    Strong, James P.

    1991-01-01

    Described are four significant algorithms implemented on the massively parallel processor (MPP) at the Goddard Space Flight Center. Two are in the area of image analysis. Of the other two, one is a mathematical simulation experiment and the other deals with the efficient transfer of data between distantly separated processors in the MPP array. The first algorithm presented is the automatic determination of elevations from stereo pairs. The second algorithm solves mathematical logistic equations capable of producing both ordered and chaotic (or random) solutions. This work can potentially lead to the simulation of artificial life processes. The third algorithm is the automatic segmentation of images into reasonable regions based on some similarity criterion, while the fourth is an implementation of a bitonic sort of data which significantly overcomes the nearest neighbor interconnection constraints on the MPP for transferring data between distant processors.

  9. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    Science.gov (United States)

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  10. Production and quality assurance automation in the Goddard Space Flight Center Flight Dynamics Facility

    Science.gov (United States)

    Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.

    1994-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.

  11. Using microsoft excel applications in the graduate intern program at Goddard Space Flight Center. M.S. Thesis

    Science.gov (United States)

    Antoine, Lisa

    1992-01-01

    An outline of the Project Operations Branch at Goddard Space Flight Center is presented that describes the management of the division and each subgroup's responsibility. The paper further describes the development of software tools for the Macintosh personal computer, and their impending implementation. A detailed step by step procedure is given for using these software tools.

  12. ASTEC and MODEL: Controls software development at Goddard Space Flight Center

    Science.gov (United States)

    Downing, John P.; Bauer, Frank H.; Surber, Jeffrey L.

    1993-01-01

    The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at the Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. In the last three years the ASTEC (Analysis and Simulation Tools for Engineering Controls) software has been under development. ASTEC is meant to be an integrated collection of controls analysis tools for use at the desktop level. MODEL (Multi-Optimal Differential Equation Language) is a translator that converts programs written in the MODEL language to FORTRAN. An upgraded version of the MODEL program will be merged into ASTEC. MODEL has not been modified since 1981 and has not kept with changes in computers or user interface techniques. This paper describes the changes made to MODEL in order to make it useful in the 90's and how it relates to ASTEC.

  13. Refurbishment and Automation of the Thermal/Vacuum Facilities at the Goddard Space Flight Center

    Science.gov (United States)

    Donohue, John T.; Johnson, Chris; Ogden, Rick; Sushon, Janet

    1998-01-01

    The thermal/vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the 11 facilities, currently 10 of the systems are scheduled for refurbishment and/or replacement as part of a 5-year implementation. Expected return on investment includes the reduction in test schedules, improvements in the safety of facility operations, reduction in the complexity of a test and the reduction in personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering and for the automation of thermal/vacuum facilities and thermal/vacuum tests. Automation of the thermal/vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs) and the use of Supervisory Control and Data Acquisition (SCADA) systems. These components allow the computer control and automation of mechanical components such as valves and pumps. In some cases, the chamber and chamber shroud require complete replacement while others require only mechanical component retrofit or replacement. The project of refurbishment and automation began in 1996 and has resulted in the computer control of one Facility (Facility #225) and the integration of electronically controlled devices and PLCs within several other facilities. Facility 225 has been successfully controlled by PLC and SCADA for over one year. Insignificant anomalies have occurred and were resolved with minimal impact to testing and operations. The amount of work remaining to be performed will occur over the next four to five years. Fiscal year 1998 includes the complete refurbishment of one facility, computer control of the thermal systems in two facilities, implementation of SCADA and PLC systems to support multiple facilities and the implementation of a Database server to allow efficient test management and data analysis.

  14. Proceedings of the Goddard Space Flight Center Workshop on Robotics for Commercial Microelectronic Processes in Space

    Science.gov (United States)

    1987-01-01

    Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.

  15. The 30th AAS Goddard Memorial Symposium. World space programs and fiscal reality: Synopsis

    Science.gov (United States)

    1992-01-01

    A full proceedings of the symposium will be issued later in the year. This synopsis consists of summations of three sessions by appointed rapporteurs. International figures in space and in politics spoke at the sessions. Themes of international cooperation and fiscal reality pervaded the conference. International speakers from Canada, the European Space Agency, Russia, Japan and China and other countries addressed the topic of the symposium. American representation included Senator Barbara Mikulski, former NASA administrator James Beggs and other speakers.

  16. NASA Goddard Space Flight Center Robotic Processing System Program Automation Systems, volume 2

    Science.gov (United States)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form. Some of the areas covered include: (1) mission requirements; (2) automation management system; (3) Space Transportation System (STS) Hitchhicker Payload; (4) Spacecraft Command Language (SCL) scripts; (5) SCL software components; (6) RoMPS EasyLab Command & Variable summary for rack stations and annealer module; (7) support electronics assembly; (8) SCL uplink packet definition; (9) SC-4 EasyLab System Memory Map; (10) Servo Axis Control Logic Suppliers; and (11) annealing oven control subsystem.

  17. Constraint based scheduling for the Goddard Space Flight Center distributed Active Archive Center's data archive and distribution system

    Science.gov (United States)

    Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications

  18. The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope Control Center System

    Science.gov (United States)

    Lehtonen, Ken

    1999-01-01

    This is a report to the Third Annual International Virtual Company Conference, on The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope (HST) Control Center System. It begins with a HST Science "Commercial": Brief Tour of Our Universe showing various pictures taken from the Hubble Space Telescope. The presentation then reviews the project background and goals. Evolution of the Control Center System ("CCS Inc.") is then reviewed. Topics of Interest to "virtual companies" are reviewed: (1) "How To Choose A Team" (2) "Organizational Model" (3) "The Human Component" (4) "'Virtual Trust' Among Teaming Companies" (5) "Unique Challenges to Working Horizontally" (6) "The Cultural Impact" (7) "Lessons Learned".

  19. The human quest in space; Proceedings of the Twenty-fourth Goddard Memorial Symposium, Greenbelt, MD, Mar. 20, 21, 1986

    Science.gov (United States)

    Burdett, Gerald L. (Editor); Soffen, Gerald A. (Editor)

    1987-01-01

    Papers are presented on the Space Station, materials processing in space, the status of space remote sensing, the evolution of space infrastructure, and the NASA Teacher Program. Topics discussed include visionary technologies, the effect of intelligent machines on space operations, future information technology, and the role of nuclear power in future space missions. Consideration is given to the role of humans in space exploration; medical problems associated with long-duration space flights; lunar and Martian settlements, and Biosphere II (the closed ecology project).

  20. The Generalized Support Software (GSS) Domain Engineering Process: An Object-Oriented Implementation and Reuse Success at Goddard Space Flight Center

    Science.gov (United States)

    Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren

    1997-01-01

    The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions

  1. Space applications of artificial intelligence; Proceedings of the Annual Goddard Conference, Greenbelt, MD, May 16, 17, 1989

    Science.gov (United States)

    Rash, James L. (Editor); Dent, Carolyn P. (Editor)

    1989-01-01

    Theoretical and implementation aspects of AI systems for space applications are discussed in reviews and reports. Sections are devoted to planning and scheduling, fault isolation and diagnosis, data management, modeling and simulation, and development tools and methods. Particular attention is given to a situated reasoning architecture for space repair and replace tasks, parallel plan execution with self-processing networks, the electrical diagnostics expert system for Spacelab life-sciences experiments, diagnostic tolerance for missing sensor data, the integration of perception and reasoning in fast neural modules, a connectionist model for dynamic control, and applications of fuzzy sets to the development of rule-based expert systems.

  2. Early Opportunities Research Partnership Between Howard University, University of Maryland Baltimore County and NASA Goddard for Engaging Underrepresented STEM Students in Earth and Space Sciences

    Science.gov (United States)

    Misra, P.; Venable, D. D.; Hoban, S.; Demoz, B.; Bleacher, L.; Meeson, B. W.; Farrell, W. M.

    2017-12-01

    Howard University, University of Maryland Baltimore County and NASA Goddard Space Flight Center (GSFC) are collaborating to engage underrepresented STEM students and expose them to an early career pathway in NASA-related Earth & Space Science research. The major goal is to instill interest in Earth and Space Science to STEM majors early in their academic careers, so that they become engaged in ongoing NASA-related research, motivated to pursue STEM careers, and perhaps become part of the future NASA workforce. The collaboration builds on a program established by NASA's Dynamic Response of the Environments of Asteroids, the Moon and the moons of Mars (DREAM2) team to engage underrepresented students from Howard in summer internships. Howard leveraged this program to expand via NASA's Minority University Research and Education Project (MUREP) funding. The project pairs Howard students with GSFC mentors and engages them in cutting-edge Earth and Space Science research throughout their undergraduate tenure. The project takes a multi-faceted approach, with each year of the program specifically tailored to each student's strengths and addressing their weaknesses, so that they experience a wide array of enriching research and professional development activities that help them grow both academically and professionally. During the academic year, the students are at Howard taking a full load of courses towards satisfying their degree requirements and engaging in research with their GSFC mentors via regular telecons, e-mail exchanges, video chats & on an average one visit per semester to GSFC for an in-person meeting with their research mentor. The students extend their research with full-time summer internships at GSFC, culminating in a Capstone Project and Senior Thesis. As a result, these Early Opportunities Program students, who have undergone rigorous training in the Earth and Space Sciences, are expected to be well-prepared for graduate school and the NASA workforce.

  3. Source-space ICA for MEG source imaging.

    Science.gov (United States)

    Jonmohamadi, Yaqub; Jones, Richard D

    2016-02-01

    One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  4. Chemistry-Climate Interactions in the Goddard Institute for Space Studies General Circulation Model. 2; New Insights into Modeling the Pre-Industrial Atmosphere

    Science.gov (United States)

    Grenfell, J. Lee; Shindell, D. T.; Koch, D.; Rind, D.; Hansen, James E. (Technical Monitor)

    2002-01-01

    We investigate the chemical (hydroxyl and ozone) and dynamical response to changing from present day to pre-industrial conditions in the Goddard Institute for Space Studies General Circulation Model (GISS GMC). We identify three main improvements not included by many other works. Firstly, our model includes interactive cloud calculations. Secondly we reduce sulfate aerosol which impacts NOx partitioning hence Ox distributions. Thirdly we reduce sea surface temperatures and increase ocean ice coverage which impact water vapor and ground albedo respectively. Changing the ocean data (hence water vapor and ozone) produces a potentially important feedback between the Hadley circulation and convective cloud cover. Our present day run (run 1, control run) global mean OH value was 9.8 x 10(exp 5) molecules/cc. For our best estimate of pre-industrial conditions run (run 2) which featured modified chemical emissions, sulfate aerosol and sea surface temperatures/ocean ice, this value changed to 10.2 x 10(exp 5) molecules/cc. Reducing only the chemical emissions to pre-industrial levels in run 1 (run 3) resulted in this value increasing to 10.6 x 10(exp 5) molecules/cc. Reducing the sulfate in run 3 to pre-industrial levels (run 4) resulted in a small increase in global mean OH (10.7 x 10(exp 5) molecules/cc). Changing the ocean data in run 4 to pre-industrial levels (run 5) led to a reduction in this value to 10.3 x 10(exp 5) molecules/cc. Mean tropospheric ozone burdens were 262, 181, 180, 180, and 182 Tg for runs 1-5 respectively.

  5. Visualizing spikes in source-space

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Duez, Lene; Scherg, Michael

    2016-01-01

    OBJECTIVE: Reviewing magnetoencephalography (MEG) recordings is time-consuming: signals from the 306 MEG-sensors are typically reviewed divided into six arrays of 51 sensors each, thus browsing each recording six times in order to evaluate all signals. A novel method of reconstructing the MEG...... signals in source-space was developed using a source-montage of 29 brain-regions and two spatial components to remove magnetocardiographic (MKG) artefacts. Our objective was to evaluate the accuracy of reviewing MEG in source-space. METHODS: In 60 consecutive patients with epilepsy, we prospectively...... evaluated the accuracy of reviewing the MEG signals in source-space as compared to the classical method of reviewing them in sensor-space. RESULTS: All 46 spike-clusters identified in sensor-space were also identified in source-space. Two additional spike-clusters were identified in source-space. As 29...

  6. An application of the Multi-Purpose System Simulation /MPSS/ model to the Monitor and Control Display System /MACDS/ at the National Aeronautics and Space Administration /NASA/ Goddard Space Flight Center /GSFC/

    Science.gov (United States)

    Mill, F. W.; Krebs, G. N.; Strauss, E. S.

    1976-01-01

    The Multi-Purpose System Simulator (MPSS) model was used to investigate the current and projected performance of the Monitor and Control Display System (MACDS) at the Goddard Space Flight Center in processing and displaying launch data adequately. MACDS consists of two interconnected mini-computers with associated terminal input and display output equipment and a disk-stored data base. Three configurations of MACDS were evaluated via MPSS and their performances ascertained. First, the current version of MACDS was found inadequate to handle projected launch data loads because of unacceptable data backlogging. Second, the current MACDS hardware with enhanced software was capable of handling two times the anticipated data loads. Third, an up-graded hardware ensemble combined with the enhanced software was capable of handling four times the anticipated data loads.

  7. Thulium heat sources for space power applications

    International Nuclear Information System (INIS)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems

  8. Spaces of Open-source Politics

    DEFF Research Database (Denmark)

    Husted, Emil; Plesner, Ursula

    2017-01-01

    . Inspired by the literature on organizational space, the analysis explores how different organizational spaces configure the party’s process of policy development, thereby adding to our understanding of the relationship between organizational space and political organization. We analyze three different....... Curiously, it seems that physical spaces open up the political process, while digital spaces close it down by fixing meaning. Accordingly, we argue that open-source politics should not be equated with online politics but may be highly dependent on physical spaces. Furthermore, digital spaces may provide......The recent proliferation of Web 2.0 applications and their role in contemporary political life have inspired the coining of the term ‘open-source politics’. This article analyzes how open-source politics is organized in the case of a radical political party in Denmark called The Alternative...

  9. Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is the home (archive) of Precipitation, Atmospheric Chemistry and Dynamics, and...

  10. Goddard Robotic Telescope (GRT)

    Data.gov (United States)

    National Aeronautics and Space Administration — Since it is not possible to predict when a Gamma-Ray Burst (GRB) occurs, the follow-up ground telescopes must be distributed as uniform as possible all over the...

  11. Humans and machines in space: The vision, the challenge, the payoff; Proceedings of the 29th Goddard Memorial Symposium, Washington, Mar. 14, 15, 1991

    Science.gov (United States)

    Johnson, Bradley; May, Gayle L.; Korn, Paula

    The present conference discusses the currently envisioned goals of human-machine systems in spacecraft environments, prospects for human exploration of the solar system, and plausible methods for meeting human needs in space. Also discussed are the problems of human-machine interaction in long-duration space flights, remote medical systems for space exploration, the use of virtual reality for planetary exploration, the alliance between U.S. Antarctic and space programs, and the economic and educational impacts of the U.S. space program.

  12. Geoengineering by stratospheric SO2 injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE

    Directory of Open Access Journals (Sweden)

    B. Kravitz

    2010-07-01

    Full Text Available We examine the response of the Met Office Hadley Centre's HadGEM2-AO climate model to simulated geoengineering by continuous injection of SO2 into the lower stratosphere, and compare the results with those from the Goddard Institute for Space Studies ModelE. Despite the differences between the models, we find a broadly similar geographic distribution of the response to geoengineering in both models in terms of near-surface air temperature and mean June–August precipitation. The simulations also suggest that significant changes in regional climate would be experienced even if geoengineering was successful in maintaining global-mean temperature near current values, and both models indicate rapid warming if geoengineering is not sustained.

  13. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and Selected NASA Electronic Parts and Packaging Program

    Science.gov (United States)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Mondy, Timothy K.; hide

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  14. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and NASA Electronic Parts and Packaging Program

    Science.gov (United States)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; Label, Kenneth A.; Ladbury, Raymond L.; Mondy, Timothy K.; O'Bryan, Martha V.; hide

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices. Displacement Damage, Optoelectronics, Proton Damage, Single Event Effects, and Total Ionizing Dose.

  15. NASA Goddard Space Flight Center presents Enhancing Standards Based Science Curriculum through NASA Content Relevancy: A Model for Sustainable Teaching-Research Integration Dr. Robert Gabrys, Raquel Marshall, Dr. Evelina Felicite-Maurice, Erin McKinley

    Science.gov (United States)

    Marshall, R. H.; Gabrys, R.

    2016-12-01

    NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.

  16. Goddard's Astrophysics Science Division Annual Report 2013

    Science.gov (United States)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  17. Goddard's Astrophysics Science Division Annual Report 2011

    Science.gov (United States)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  18. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Yearly Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  19. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Seasonal Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  20. The Spaces of Open-Source Politics

    DEFF Research Database (Denmark)

    Husted, Emil; Plesner, Ursula

    The recent proliferation of Web 2.0 technologies and their role in contemporary political life has inspired the coining of the term ‘open-source politics’. This article analyzes how open-source politics is organized in the case of a young radical political party called The Alternative. Inspired...... processes, but may provide both closure and disconnection between the party’s universal body and its particular body. In conclusion, we propose that such a disconnection might be a precondition for success when institutionalizing radical politics, as it allows parties like The Alternative to maintain...

  1. Goddard's Astrophysics Science Divsion Annual Report 2014

    Science.gov (United States)

    Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2015-01-01

    The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS

  2. Open source IPSEC software in manned and unmanned space missions

    Science.gov (United States)

    Edwards, Jacob

    Network security is a major topic of research because cyber attackers pose a threat to national security. Securing ground-space communications for NASA missions is important because attackers could endanger mission success and human lives. This thesis describes how an open source IPsec software package was used to create a secure and reliable channel for ground-space communications. A cost efficient, reproducible hardware testbed was also created to simulate ground-space communications. The testbed enables simulation of low-bandwidth and high latency communications links to experiment how the open source IPsec software reacts to these network constraints. Test cases were built that allowed for validation of the testbed and the open source IPsec software. The test cases also simulate using an IPsec connection from mission control ground routers to points of interest in outer space. Tested open source IPsec software did not meet all the requirements. Software changes were suggested to meet requirements.

  3. MEG source localization using invariance of noise space.

    Directory of Open Access Journals (Sweden)

    Junpeng Zhang

    Full Text Available We propose INvariance of Noise (INN space as a novel method for source localization of magnetoencephalography (MEG data. The method is based on the fact that modulations of source strengths across time change the energy in signal subspace but leave the noise subspace invariant. We compare INN with classical MUSIC, RAP-MUSIC, and beamformer approaches using simulated data while varying signal-to-noise ratios as well as distance and temporal correlation between two sources. We also demonstrate the utility of INN with actual auditory evoked MEG responses in eight subjects. In all cases, INN performed well, especially when the sources were closely spaced, highly correlated, or one source was considerably stronger than the other.

  4. Source reconstruction using phase space beam summation technique

    International Nuclear Information System (INIS)

    Graubart, Gideon.

    1990-10-01

    In this work, the phase-space beam summation technique (PSBS), is applied to back propagation and inverse source problems. The PSBS expresses the field as a superposition of shifted and tilted beams. This phase space spectrum of beams is matched to the source distribution via an amplitude function which expresses the local spectrum of the source function in terms of a local Fourier transform. In this work, the emphasis is on the phase space processing of the data, on the information content of this data and on the back propagation scheme. More work is still required to combine this back propagation approach in a full, multi experiment inverse scattering scheme. It is shown that the phase space distribution of the data, computed via the local spectrum transform, is localized along lines that define the local arrival direction of the wave data. We explore how the choice of the beam width affects the compactification of this distribution, and derive criteria for choosing a window that optimizes this distribution. It should be emphasized that compact distribution implies fewer beams in the back propagation scheme and therefore higher numerical efficiency and better physical insight. Furthermore it is shown how the local information property of the phase space representation can be used to improve the performance of this simple back propagation problem, in particular with regard to axial resolution; the distance to the source can be determined by back propagating only the large angle phase space beams that focus on the source. The information concerning transverse distribution of the source, on the other hand, is contained in the axial phase space region and can therefore be determined by the corresponding back propagating beams. Because of the global nature of the plane waves propagators the conventional plane wave back propagation scheme does not have the same 'focusing' property, and therefore suffers from lack of information localization and axial resolution. The

  5. Study of localized photon source in space of measures

    International Nuclear Information System (INIS)

    Lisi, M.

    2010-01-01

    In this paper we study a three-dimensional photon transport problem in an interstellar cloud, with a localized photon source inside. The problem is solved indirectly, by defining the adjoint of an operator acting on an appropriate space of continuous functions. By means of sun-adjoint semi groups theory of operators in a Banach space of regular Borel measures, we prove existence and uniqueness of the solution of the problem. A possible approach to identify the localization of the photon source is finally proposed.

  6. Open-Source RTOS Space Qualification: An RTEMS Case Study

    Science.gov (United States)

    Zemerick, Scott

    2017-01-01

    NASA space-qualification of reusable off-the-shelf real-time operating systems (RTOSs) remains elusive due to several factors notably (1) The diverse nature of RTOSs utilized across NASA, (2) No single NASA space-qualification criteria, lack of verification and validation (V&V) analysis, or test beds, and (3) different RTOS heritages, specifically open-source RTOSs and closed vendor-provided RTOSs. As a leader in simulation test beds, the NASA IV&V Program is poised to help jump-start and lead the space-qualification effort of the open source Real-Time Executive for Multiprocessor Systems (RTEMS) RTOS. RTEMS, as a case-study, can be utilized as an example of how to qualify all RTOSs, particularly the reusable non-commercial (open-source) ones that are gaining usage and popularity across NASA. Qualification will improve the overall safety and mission assurance of RTOSs for NASA-agency wide usage. NASA's involvement in space-qualification of an open-source RTOS such as RTEMS will drive the RTOS industry toward a more qualified and mature open-source RTOS product.

  7. PHARAO space atomic clock: new developments on the laser source

    Science.gov (United States)

    Saccoccio, Muriel; Loesel, Jacques; Coatantiec, Claude; Simon, Eric; Laurent, Philippe; Lemonde, Pierre; Maksimovic, I.; Abgrall, M.

    2017-11-01

    The PHARAO project purpose is to open the way for a new atomic clock generation in space, where laser cooling techniques and microgravity allow high frequency stability and accuracy. The French space agency, CNES is funding and managing the clock construction. The French SYRTE and LKB laboratories are scientific and technical advisers for the clock requirements and the follow-up of subsystem development in industrial companies. EADS SODERN is developing two main subsystems of the PHARAO clock: the Laser Source and the Cesium Tube where atoms are cooled, launched, selected and detected by laser beams. The Laser Source includes an optical bench and electronic devices to generate the laser beams required. This paper describes PHARAO and the role laser beams play in its principle of operation. Then we present the Laser Source design, the technologies involved, and the status of development. Lastly, we focus of a key equipment to reach the performances expected, which is the Extended Cavity Laser Diode.

  8. Safety Framework for Nuclear Power Source Applications in Outer Space

    International Nuclear Information System (INIS)

    2009-01-01

    Nuclear power sources (NPS) for use in outer space have been developed and used in space applications where unique mission requirements and constraints on electrical power and thermal management precluded the use of non-nuclear power sources. Such missions have included interplanetary missions to the outer limits of the Solar System, for which solar panels were not suitable as a source of electrical power because of the long duration of these missions at great distances from the Sun. According to current knowledge and capabilities, space NPS are the only viable energy option to power some space missions and significantly enhance others. Several ongoing and foreseeable missions would not be possible without the use of space NPS. Past, present and foreseeable space NPS applications include radioisotope power systems (for example, radioisotope thermoelectric generators and radioisotope heater units) and nuclear reactor systems for power and propulsion. The presence of radioactive materials or nuclear fuels in space NPS and their consequent potential for harm to people and the environment in Earth's biosphere due to an accident require that safety should always be an inherent part of the design and application of space NPS. NPS applications in outer space have unique safety considerations compared with terrestrial applications. Unlike many terrestrial nuclear applications, space applications tend to be used infrequently and their requirements can vary significantly depending upon the specific mission. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. For some applications, space NPS must operate autonomously at great distances from Earth in harsh environments. Potential accident conditions resulting from launch failures and inadvertent re-entry could expose NPS to extreme physical conditions. These and other unique safety considerations for the use of

  9. Coworking Spaces: A Source of Social Support for Independent Professionals.

    Science.gov (United States)

    Gerdenitsch, Cornelia; Scheel, Tabea E; Andorfer, Julia; Korunka, Christian

    2016-01-01

    Coworking spaces are shared office environments for independent professionals. Such spaces have been increasing rapidly throughout the world, and provide, in addition to basic business infrastructure, the opportunity for social interaction. This article explores social interaction in coworking spaces and reports the results of two studies. Study 1 (N = 69 coworkers) finds that social interaction in coworking spaces can take the form of social support. Study 2 further investigates social support among coworkers (N = 154 coworkers) and contrasts these results with those of social support among colleagues in traditional work organizations (N = 609). A moderated mediation model using time pressure and self-efficacy, based on the conservation of resources theory, is tested. Social support from both sources was positively related to performance satisfaction. Self-efficacy mediated this relationship in the employee sample, while in the coworking sample, self-efficacy only mediated the relationship between social support and performance satisfaction if time pressure was high. Thus, a mobilization of social support seems necessary in coworking spaces. We conclude that coworking spaces, as modern social work environments, should align flexible work infrastructure with well-constructed opportunities for social support.

  10. Coworking Spaces: A Source of Social Support for Independent Professionals

    Directory of Open Access Journals (Sweden)

    Cornelia eGerdenitsch

    2016-04-01

    Full Text Available Coworking spaces are shared office environments for independent professionals. Such spaces have been increasing rapidly throughout the world, and provide, in addition to basic business infrastructure, the opportunity for social interaction. This article explores social interaction in coworking spaces and reports the results of two studies. Study 1 (N = 69 coworkers finds that social interaction in coworking spaces can take the form of social support. Study 2 further investigates social support among coworkers (N = 154 coworkers and contrasts these results with those of social support among colleagues in traditional work organizations (N = 609. A moderated mediation model using time pressure and self-efficacy, based on the conservation of resources theory, is tested. Social support from both sources was positively related to performance satisfaction. Self-efficacy mediated this relationship in the employee sample, while in the coworking sample, self-efficacy only mediated the relationship between social support and performance satisfaction if time pressure was high. Thus, a mobilization of social support seems necessary in coworking spaces. We conclude that coworking spaces, as modern social work environments, should align flexible work infrastructure with well-constructed opportunities for social support.

  11. Strategies for source space limitation in tomographic inverse procedures

    International Nuclear Information System (INIS)

    George, J.S.; Lewis, P.S.; Schlitt, H.A.; Kaplan, L.; Gorodnitsky, I.; Wood, C.C.

    1994-01-01

    The use of magnetic recordings for localization of neural activity requires the solution of an ill-posed inverse problem: i.e. the determination of the spatial configuration, orientation, and timecourse of the currents that give rise to a particular observed field distribution. In its general form, this inverse problem has no unique solution; due to superposition and the existence of silent source configurations, a particular magnetic field distribution at the head surface could be produced by any number of possible source configurations. However, by making assumptions concerning the number and properties of neural sources, it is possible to use numerical minimization techniques to determine the source model parameters that best account for the experimental observations while satisfying numerical or physical criteria. In this paper the authors describe progress on the development and validation of inverse procedures that produce distributed estimates of neuronal currents. The goal is to produce a temporal sequence of 3-D tomographic reconstructions of the spatial patterns of neural activation. Such approaches have a number of advantages, in principle. Because they do not require estimates of model order and parameter values (beyond specification of the source space), they minimize the influence of investigator decisions and are suitable for automated analyses. These techniques also allow localization of sources that are not point-like; experimental studies of cognitive processes and of spontaneous brain activity are likely to require distributed source models

  12. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    Science.gov (United States)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  13. Generalized space vector control for current source inverters and rectifiers

    Directory of Open Access Journals (Sweden)

    Roseline J. Anitha

    2016-06-01

    Full Text Available Current source inverters (CSI is one of the widely used converter topology in medium voltage drive applications due to its simplicity, motor friendly waveforms and reliable short circuit protection. The current source inverters are usually fed by controlled current source rectifiers (CSR with a large inductor to provide a constant supply current. A generalized control applicable for both CSI and CSR and their extension namely current source multilevel inverters (CSMLI are dealt in this paper. As space vector pulse width modulation (SVPWM features the advantages of flexible control, faster dynamic response, better DC utilization and easy digital implementation it is considered for this work. This paper generalizes SVPWM that could be applied for CSI, CSR and CSMLI. The intense computation involved in framing a generalized space vector control are discussed in detail. The algorithm includes determination of band, region, subregions and vectors. The algorithm is validated by simulation using MATLAB /SIMULINK for CSR 5, 7, 13 level CSMLI and for CSR fed CSI.

  14. Constrained Null Space Component Analysis for Semiblind Source Separation Problem.

    Science.gov (United States)

    Hwang, Wen-Liang; Lu, Keng-Shih; Ho, Jinn

    2018-02-01

    The blind source separation (BSS) problem extracts unknown sources from observations of their unknown mixtures. A current trend in BSS is the semiblind approach, which incorporates prior information on sources or how the sources are mixed. The constrained independent component analysis (ICA) approach has been studied to impose constraints on the famous ICA framework. We introduced an alternative approach based on the null space component (NCA) framework and referred to the approach as the c-NCA approach. We also presented the c-NCA algorithm that uses signal-dependent semidefinite operators, which is a bilinear mapping, as signatures for operator design in the c-NCA approach. Theoretically, we showed that the source estimation of the c-NCA algorithm converges with a convergence rate dependent on the decay of the sequence, obtained by applying the estimated operators on corresponding sources. The c-NCA can be formulated as a deterministic constrained optimization method, and thus, it can take advantage of solvers developed in optimization society for solving the BSS problem. As examples, we demonstrated electroencephalogram interference rejection problems can be solved by the c-NCA with proximal splitting algorithms by incorporating a sparsity-enforcing separation model and considering the case when reference signals are available.

  15. Planets as background noise sources in free space optical communications

    Science.gov (United States)

    Katz, J.

    1986-01-01

    Background noise generated by planets is the dominant noise source in most deep space direct detection optical communications systems. Earlier approximate analyses of this problem are based on simplified blackbody calculations and can yield results that may be inaccurate by up to an order of magnitude. Various other factors that need to be taken into consideration, such as the phase angle and the actual spectral dependence of the planet albedo, in order to obtain a more accurate estimate of the noise magnitude are examined.

  16. Complex space source theory of partially coherent light wave.

    Science.gov (United States)

    Seshadri, S R

    2010-07-01

    The complex space source theory is used to derive a general integral expression for the vector potential that generates the extended full Gaussian wave in terms of the input value of the vector potential of the corresponding paraxial beam. The vector potential and the fields are assumed to fluctuate on a time scale that is large compared to the wave period. The Poynting vector in the propagation direction averaged over a wave period is expressed in terms of the cross-spectral density of the fluctuating vector potential across the input plane. The Schell model is assumed for the cross-spectral density. The radiation intensity distribution and the power radiated are determined. The effect of spatial coherence on the radiation intensity distribution and the radiated power are investigated for different values of the physical parameters. Illustrative numerical results are provided to bring out the effect of spatial coherence on the propagation characteristics of the fluctuating light wave.

  17. Investigation of radiofrequency plasma sources for space travel

    International Nuclear Information System (INIS)

    Charles, C; Boswell, R W; Takahashi, K

    2012-01-01

    Optimization of radiofrequency (RF) plasma sources for the development of space thrusters differs from other applications such as plasma processing of materials since power efficiency, propellant usage, particle acceleration or heating become driving parameters. The development of two RF (13.56 MHz) plasma sources, the high-pressure (∼1 Torr) capacitively coupled ‘pocket rocket’ plasma micro-thruster and the low-pressure (∼1 mTorr) inductively coupled helicon double layer thruster (HDLT), is discussed within the context of mature and emerging electric propulsion devices. The density gradient in low-pressure expanding RF plasmas creates an electric field that accelerates positive ions out of the plasma. Generally, the total potential drop is similar to that of a wall sheath allowing the plasma electrons to neutralize the ion beam. A high-pressure expansion with no applied magnetic field can result in large dissociation rates and/or a collimated beam of ions of small area and a flowing heated neutral beam (‘pocket rocket’). A low-pressure expansion dominated by a magnetic field can result in the formation of electric double layers which produce a very directed neutralized beam of ions of large area (HDLT). (paper)

  18. Investigation of radiofrequency plasma sources for space travel

    Science.gov (United States)

    Charles, C.; Boswell, R. W.; Takahashi, K.

    2012-12-01

    Optimization of radiofrequency (RF) plasma sources for the development of space thrusters differs from other applications such as plasma processing of materials since power efficiency, propellant usage, particle acceleration or heating become driving parameters. The development of two RF (13.56 MHz) plasma sources, the high-pressure (˜1 Torr) capacitively coupled ‘pocket rocket’ plasma micro-thruster and the low-pressure (˜1 mTorr) inductively coupled helicon double layer thruster (HDLT), is discussed within the context of mature and emerging electric propulsion devices. The density gradient in low-pressure expanding RF plasmas creates an electric field that accelerates positive ions out of the plasma. Generally, the total potential drop is similar to that of a wall sheath allowing the plasma electrons to neutralize the ion beam. A high-pressure expansion with no applied magnetic field can result in large dissociation rates and/or a collimated beam of ions of small area and a flowing heated neutral beam (‘pocket rocket’). A low-pressure expansion dominated by a magnetic field can result in the formation of electric double layers which produce a very directed neutralized beam of ions of large area (HDLT).

  19. Designing localized electromagnetic fields in a source-free space

    International Nuclear Information System (INIS)

    Borzdov, George N.

    2002-01-01

    An approach to characterizing and designing localized electromagnetic fields, based on the use of differentiable manifolds, differentiable mappings, and the group of rotation, is presented. By way of illustration, novel families of exact time-harmonic solutions to Maxwell's equations in the source-free space - localized fields defined by the rotation group - are obtained. The proposed approach provides a broad spectrum of tools to design localized fields, i.e., to build-in symmetry properties of oscillating electric and magnetic fields, to govern the distributions of their energy densities (both size and form of localization domains), and to set the structure of time-average energy fluxes. It is shown that localized fields can be combined as constructive elements to obtain a complex field structure with desirable properties, such as one-, two-, or three-dimensional field gratings. The proposed approach can be used in designing localized electromagnetic fields to govern motion and state of charged and neutral particles. As an example, motion of relativistic electrons in one-dimensional and three-dimensional field gratings is treated

  20. Goddard Satellite-Based Surface Turbulent Fluxes, 0.25x0.25 deg, Daily Grid, V3, (GSSTF_F14) V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version 3 (GSSTF3) Dataset recently produced through a MEaSURES funded project led by Dr....

  1. NASA Goddard Thermal Technology Overview 2018

    Science.gov (United States)

    Butler, Dan; Swanson, Ted

    2018-01-01

    This presentation summarizes the current plans and efforts at NASA/Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently submitted NASA budget will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of thermal control coatings, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  2. NASA Goddard Thermal Technology Overview 2017

    Science.gov (United States)

    Butler, Dan; Swanson, Ted

    2017-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 17 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for CubeSat mission development will also be addressed. Many of these technologies also have broad applicability to DOD (Dept. of Defense), DOE (Dept. of the Environment), and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  3. NASA Goddard Thermal Technology Overview 2016

    Science.gov (United States)

    Butler, Dan; Swanson, Ted

    2016-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 16 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  4. Ferroelectric plasma source for heavy ion beam space charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik P.; Davidson, Ronald C.; Grisham, Larry; Grant Logan, B.; Seidl, Peter A.; Waldron, William; Yu, Simon S.

    2007-01-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to allow them to focus to a small spot size and compress their axial pulse length. The plasma source should be able to operate at low neutral pressures and without strong externally applied electric or magnetic fields. To produce 1 m-long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients are being developed. The sources utilize the ferroelectric ceramic BaTiO 3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic material, and high voltage (∼7 kV) will be applied between the drift tube and the front surface of the ceramics. A prototype ferroelectric source, 20 cm in length, has produced plasma densities of 5x10 11 cm -3 . It was integrated into the Neutralized Transport Experiment (NTX), and successfully charge neutralized the K + ion beam. A 1 m-long source comprised of five 20-cm-long sources has been tested. Simply connecting the five sources in parallel to a single pulse forming network power supply yielded non-uniform performance due to the time-dependent nature of the load that each of the five plasma sources experiences. Other circuit combinations have been considered, including powering each source by its own supply. The 1-m-long source has now been successfully characterized, producing relatively uniform plasma over the 1 m length of the source in the mid-10 10 cm -3 density range. This source will be integrated into the NDCX device for charge neutralization and beam compression experiments

  5. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  6. Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space.

    Science.gov (United States)

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2009-12-07

    The polarization characteristics of an artificial laser source in space were measured through space-to-ground atmospheric transmission paths. An existing Japanese laser communication satellite and optical ground station were used to measure Stokes parameters and the degree of polarization of the laser beam transmitted from the satellite. As a result, the polarization was preserved within an rms error of 1.6 degrees, and the degree of polarization was 99.4+/-4.4% through the space-to-ground atmosphere. These results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography worldwide in the future.

  7. An improved gravity model for Mars: Goddard Mars Model 1

    Science.gov (United States)

    Smith, D. E.; Lerch, F. J.; Nerem, R. S.; Zuber, M. T.; Patel, G. B.; Fricke, S. K.; Lemoine, F. G.

    1993-01-01

    Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, Goddard Mars Model 1 (GMM-1). This model employs nearly all available data, consisting of approximately 1100 days of S band tracking data collected by NASA's Deep Space Network from the Mariner 9 and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half-wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of otpimum weighting and least squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X band tracking data from the 379-km altitude, nnear-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolve the gravitational signature of the planet.

  8. Possibility of using sources of vacuum ultraviolet irradiation to solve problems of space material science

    Science.gov (United States)

    Verkhoutseva, E. T.; Yaremenko, E. I.

    1974-01-01

    An urgent problem in space materials science is simulating the interaction of vacuum ultraviolet (VUV) of solar emission with solids in space conditions, that is, producing a light source with a distribution that approximates the distribution of solar energy. Information is presented on the distribution of the energy flux of VUV of solar radiation. Requirements that must be satisfied by the VUV source used for space materials science are formulated, and a critical evaluation is given of the possibilities of using existing sources for space materials science. From this evaluation it was established that none of the sources of VUV satisfies the specific requirements imposed on the simulator of solar radiation. A solution to the problem was found to be in the development of a new type of source based on exciting a supersonic gas jet flowing into vacuum with a sense electron beam. A description of this gas-jet source, along with its spectral and operation characteristics, is presented.

  9. Stray light suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    Science.gov (United States)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-09-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8x16 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimétrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  10. Crowd-Sourced Radio Science at Marshall Space Flight Center

    Science.gov (United States)

    Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.

    2018-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.

  11. Observations of the Hubble Deep Field with the Infrared Space Observatory .2. Source detection and photometry

    DEFF Research Database (Denmark)

    Goldschmidt, P.; Oliver, S.J.; Serjeant, S.B.G.

    1997-01-01

    We present positions and fluxes of point sources found in the Infrared Space Observatory (ISO) images of the Hubble Deep Field (HDF) at 6.7 and 15 mu m. We have constructed algorithmically selected 'complete' flux-limited samples of 19 sources in the 15-mu m image, and seven sources in the 6.7-mu m...

  12. Welding iridium heat-source capsules for space missions

    International Nuclear Information System (INIS)

    Kanne, W.R. Jr.

    1982-03-01

    A remote computer-controlled welding station was developed to encapsulate radioactive PuO 2 in iridium. Weld quench cracking caused an interruption in production of capsules for upcoming space missions. Hot crack sensitivity of the DOP-26 iridium alloy was associated with low melting constituents in the grain boundaries. The extent of cracking was reduced but could not be eliminated by changes to the welding operation. An ultrasonic test was developed to detect underbead cracks exceeding a threshold size. Production was continued using the ultrasonic test to reject capsules with detectable cracks

  13. Space distribution of extragalactic sources - Cosmology versus evolution

    International Nuclear Information System (INIS)

    Cavaliere, A.; Maccacaro, T.

    1990-01-01

    Alternative cosmologies have been recurrently invoked to explain in terms of global spacetime structure the apparent large increase, with increasing redshift, in the average luminosity of active galactic nuclei. These models interestingly seek to avoid the complexities of the canonical interpretation in terms of intrinsic population evolutions in a Friedmann universe. However, a problem of consistency for these cosmologies is pointed out, since they have to include also other classes of extragalactic sources, such as clusters of galaxies and BL Lac objects, for which there is preliminary evidence of a different behavior. 40 refs

  14. Proposed principles on the use of nuclear power sources in space

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1988-01-01

    Since the 1978 reentry of the Soviet satellite Cosmos 954, the United Nations has been discussing the use of nuclear power sources in outer space. Most of these deliberations have taken place in the U.N. Committee on the Peaceful Uses of Outer Space, its two subcommittees (Scientific and Technical Subcommittee and Legal Subcommittee) and their associated working groups. This paper focuses on the technical agreements reached by the Working Group on the Use of Nuclear Power Sources in Outer Space (WGNPS), the legal principles agreed to by the Legal Subcommittee, and relevant treaties on the use of outer space and the use of nuclear power. To date the conclusion reached by the WGNPS in its 1981 report represents a succinct statement of U.N. consensus and of the U.S. position: The Working Group reaffirmed its previous conclusion that nuclear power sources can be used safely in outer space, provided that all necessary safety precautions are met

  15. Polarization entangled photon pair source for space-based quantum communication, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this NASA effort is to develop and deliver efficient, single-pass quantum optical waveguide sources generating high purity hyper-entangled photon...

  16. Direct and inverse source problems for a space fractional advection dispersion equation

    KAUST Repository

    Aldoghaither, Abeer; Laleg-Kirati, Taous-Meriem; Liu, Da Yan

    2016-01-01

    In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic

  17. Non-nuclear power sources for deep space

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, E.B.; Tang, C.; Santarius, J.F.

    1998-07-01

    Electric propulsion and non-nuclear power can be used in tandem as a replacement for the current chemical booster and radioisotope thermoelectric generators now in use for deep space applications (i.e., to the asteroid belt and beyond). In current generation systems, electric propulsion is usually considered to be impractical because of the lack of high power for deep space, and non-nuclear power is thought to be impractical partly due to its high mass. However, when taken in combination, a solar powered electric upper stage can provide ample power and propulsion capability for use in deep space. Radioisotope thermoelectric generator (RTG) systems have generally been selected for missions only when other systems are absolutely unavailable. The disadvantages of radioisotopes include the need for nuclear safety as another dimension of concern in payload integration; the lack of assured availability of plutonium in the post-cold-war world; the enormous cost of plutonium-238; and the system complexity introduced by the need to continuously cool the system during the pre-launch phase. A conservative estimate for the total power for the solar array at beginning of life (BOL) may be in the range of 25 kW in order to provide 500 W continuous power at Jupiter. The availability of {approximately} 25 kW(e) in earth orbit raises the interesting possibility of coupling electric propulsion units to this free electric power. If electric propulsion is used to raise the probe from low-earth-orbit to an earth-escape trajectory, the system could actually save on low-earth orbit mass. Electric propulsion could be used by itself in a spiral trajectory orbit raising maneuver to earth escape velocity, or it could be used in conjunction with a chemical upper stage (either solid rocket or liquid), which would boost the payload to an elliptical orbit. The concept is to begin the Earth-Jupiter trip with a swing-by near the Sun close to the orbit of Venus and perhaps even closer if thermal

  18. The problem of space nuclear power sources collisions with artificial space objects in near-earth orbits

    International Nuclear Information System (INIS)

    Gafarov, A.A.

    1993-01-01

    Practically all space objects with onboard nuclear power sources stay in earth satellite orbits with an orbital lifetime long enough to reduce their radioactivity to levels presenting no danger for the Earth population. One of the reasons for orbit lifetime reduction can be collisions with other space objects in near-earth orbits. The possible consequence of collisions can be partial, or even complete, destruction of the spacecraft with an onboard nuclear power source; as well as delivery of additional impulse both to the spacecraft and its fragments. It is shown that collisions in orbit do not cause increase of radiation hazard for the Earth population if there is aerodynamic breakup of nuclear power sources into fragments of safe sizes during atmospheric reentry

  19. Augmenting the Funding Sources for Space Science and the ASTRO-1 Space Telescope

    Science.gov (United States)

    Morse, Jon

    2015-08-01

    The BoldlyGo Institute was formed in 2013 to augment the planned space science portfolio through philanthropically funded robotic space missions, similar to how some U.S. medical institutes and ground-based telescopes are funded. I introduce BoldlyGo's two current projects: the SCIM mission to Mars and the ASTRO-1 space telescope. In particular, ASTRO-1 is a 1.8-meter off-axis (unobscured) ultraviolet-visible space observatory to be located in a Lagrange point or heliocentric orbit with a wide-field panchromatic camera, medium- and high-resolution spectrograph, and high-contrast imaging coronagraph and/or an accompanying starshade/occulter. It is intended for the post-Hubble Space Telescope era in the 2020s, enabling unique measurements of a broad range of celestial targets, while providing vital complementary capabilities to other ground- and space-based facilities such as the JWST, ALMA, WFIRST-AFTA, LSST, TESS, Euclid, and PLATO. The ASTRO-1 architecture simultaneously wields great scientific power while being technically viable and affordable. A wide variety of scientific programs can be accomplished, addressing topics across space astronomy, astrophysics, fundamental physics, and solar system science, as well as being technologically informative to future large-aperture programs. ASTRO-1 is intended to be a new-generation research facility serving a broad national and international community, as well as a vessel for impactful public engagement. Traditional institutional partnerships and consortia, such as are common with private ground-based observatories, may play a role in the support and governance of ASTRO-1; we are currently engaging interested international organizations. In addition to our planned open guest observer program and accessible data archive, we intend to provide a mechanism whereby individual scientists can buy in to a fraction of the gauranteed observing time. Our next step in ASTRO-1 development is to form the ASTRO-1 Requirements Team

  20. Space-charge compensation of highly charged ion beam from laser ion source

    International Nuclear Information System (INIS)

    Kondrashev, S.A.; Collier, J.; Sherwood, T.R.

    1996-01-01

    The problem of matching an ion beam delivered by a high-intensity ion source with an accelerator is considered. The experimental results of highly charged ion beam transport with space-charge compensation by electrons are presented. A tungsten thermionic cathode is used as a source of electrons for beam compensation. An increase of ion beam current density by a factor of 25 is obtained as a result of space-charge compensation at a distance of 3 m from the extraction system. The process of ion beam space-charge compensation, requirements for a source of electrons, and the influence of recombination losses in a space-charge-compensated ion beam are discussed. (author)

  1. Installation and Characterization of Charged Particle Sources for Space Environmental Effects Testing

    Science.gov (United States)

    Skevington, Jennifer L.

    2010-01-01

    Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.

  2. Regional Scale/Regional Climate Model Development and Its Applications at Goddard

    Science.gov (United States)

    Tao, W.-K.; Lau, W.; Qian, J.; Jia, Y.; Wetzel, P.; Chou, M.-D.; Wang, Y.; Lynn, B.

    2000-01-01

    A Regional Land-Atmosphere Climate Simulation System (RELACS) is being developed and implemented at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model (Penn State/NCAR MM5) with improved physical processes and in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water/energy cycles in the Indo-China/South China Sea (SCS)/China, N. America and S. America region.

  3. Performance of the Goddard multiscale modeling framework with Goddard ice microphysical schemes

    Science.gov (United States)

    Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L. F.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.

    2016-03-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.

  4. The NASA Library and Researchers at Goddard: A Visitor's Perspective

    Science.gov (United States)

    Powell, Jill H.

    2014-01-01

    Jill Powell, engineering librarian from Cornell University, visited the library at NASA Goddard in Greenbelt, Maryland in July 2013, interviewing library staff and selected NASA scientists. She studied the library's digital projects, publications, services, and operations. She also interviewed several NASA scientists on information-seeking…

  5. I-space: the effects of emotional valence and source of music on interpersonal distance.

    Directory of Open Access Journals (Sweden)

    Ana Tajadura-Jiménez

    Full Text Available BACKGROUND: The ubiquitous use of personal music players in over-crowded public transport alludes to the hypothesis that apart from making the journey more pleasant, listening to music through headphones may also affect representations of our personal space, that is, the emotionally-tinged zone around the human body that people feel is "their space". We evaluated the effects of emotional valence (positive versus negative and source (external, i.e. loudspeakers, versus embedded, i.e. headphones of music on the participant's interpersonal distance when interacting with others. METHODOLOGY/PRINCIPAL FINDINGS: Personal space was evaluated as the comfort interpersonal distance between participant and experimenter during both active and passive approach tasks. Our results show that, during passive approach tasks, listening to positive versus negative emotion-inducing music reduces the representation of personal space, allowing others to come closer to us. With respect to a no-music condition, an embedded source of positive emotion-inducing music reduced personal space, while an external source of negative emotion-inducing music expanded personal space. CONCLUSIONS/SIGNIFICANCE: The results provide the first empirical evidence of the relation between induced emotional state, as a result of listening to positive music through headphones, and personal space when interacting with others. This research might help to understand the benefit that people find in using personal music players in crowded situations, such as when using the public transport in urban settings.

  6. Fast space-varying convolution using matrix source coding with applications to camera stray light reduction.

    Science.gov (United States)

    Wei, Jianing; Bouman, Charles A; Allebach, Jan P

    2014-05-01

    Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.

  7. [Anthropogenic sources of radiation hazard in the near-Earth space].

    Science.gov (United States)

    Fedoseev, G A

    2004-01-01

    All plausible artificial radioactive sources entering the near-Earth space (NES) were systematized and consequences of various large radiation accidents and catastrophes to Earth and NES were analyzed. Aggressive "population" of near-Earth orbits by space stations with rotating crews, unmanned research platforms and observatories extends "borderlines" of the noosphere raising at the same time concerns about the noosphere radiation safety and global radioecology. Specifically, consideration is given to the facts of negative effects of space power reactor facilities on results of orbital astrophysical investigations.

  8. Direct and inverse source problems for a space fractional advection dispersion equation

    KAUST Repository

    Aldoghaither, Abeer

    2016-05-15

    In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic solution to the direct problem which we use to prove the uniqueness and the unstability of the inverse source problem using final measurements. Finally, we illustrate the results with a numerical example.

  9. Active and reactive power control of a current-source PWM-rectifier using space vectors

    Energy Technology Data Exchange (ETDEWEB)

    Salo, M.; Tuusa, H. [Tampere University of Technology (Finland). Department of Electrical Engineering, Power Electronics

    1997-12-31

    In this paper the current-source PWM-rectifier with active and reactive power control is presented. The control system is realized using space vector methods. Also, compensation of the reactive power drawn by the line filter is discussed. Some simulation results are shown. (orig.) 8 refs.

  10. The Space-, Time-, and Energy-distribution of Neutrons from a Pulsed Plane Source

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Arne

    1962-05-15

    The space-, time- and energy-distribution of neutrons from a pulsed, plane, high energy source in an infinite medium is determined in a diffusion approximation. For simplicity the moderator is first assumed to be hydrogen gas but it is also shown that the method can be used for a moderator of arbitrary mass.

  11. Nuclear power in space. Use of reactors and radioactive substances as power sources in satellites and space probes

    International Nuclear Information System (INIS)

    Hoestbaeck, Lars

    2008-11-01

    Today solar panels are the most common technique to supply power to satellites. Solar panels will work as long as the power demand of the satellite is limited and the satellite can be equipped with enough panels, and kept in an orbit that allows enough sunlight to hit the panels. There are various types of space missions that do not fulfil these criteria. With nuclear power these types of missions can be powered regardless of the sunlight and as early as 1961 the first satellite with a nuclear power source was placed in orbit. Out of seventy known space missions that has made use of nuclear power, ten have had some kind of failure. In no case has the failure been associated with the nuclear technology used. This report discusses to what degree satellites with nuclear power are a source for potential radioactive contamination of Swedish territory. It is not a discussion for or against nuclear power in space. Neither is it an assessment of consequences if radioactive material from a satellite would reach the earth's surface. Historically two different kinds of Nuclear Power Sources (NPS) have been used to generate electric power in space. The first is the reactor where the energy is derived from nuclear fission of 235 U and the second is the Radioisotope Thermoelectric Generator (RTG) where electricity is generated from the heat of naturally decaying radionuclides. NPS has historically only been used in space by United States and the Soviet Union (and in one failing operation Russia). Nuclear Power Sources have been used in three types of space objects: satellites, space probes and moon/Mars vehicles. USA has launched one experimental reactor into orbit, all other use of NPS by the USA has been RTG:s. The Soviet Union, in contrast, only launched a few RTG:s but nearly forty reactors. The Soviet use of NPS is less transparent than the use in USA and some data published on Soviet systems are more or less well substantiated assessments. It is likely that also future

  12. Invited Article: Characterization of background sources in space-based time-of-flight mass spectrometers

    International Nuclear Information System (INIS)

    Gilbert, J. A.; Gershman, D. J.; Gloeckler, G.; Lundgren, R. A.; Zurbuchen, T. H.; Orlando, T. M.; McLain, J.; Steiger, R. von

    2014-01-01

    For instruments that use time-of-flight techniques to measure space plasma, there are common sources of background signals that evidence themselves in the data. The background from these sources may increase the complexity of data analysis and reduce the signal-to-noise response of the instrument, thereby diminishing the science value or usefulness of the data. This paper reviews several sources of background commonly found in time-of-flight mass spectrometers and illustrates their effect in actual data using examples from ACE-SWICS and MESSENGER-FIPS. Sources include penetrating particles and radiation, UV photons, energy straggling and angular scattering, electron stimulated desorption of ions, ion-induced electron emission, accidental coincidence events, and noise signatures from instrument electronics. Data signatures of these sources are shown, as well as mitigation strategies and design considerations for future instruments

  13. Numerical method in reproducing kernel space for an inverse source problem for the fractional diffusion equation

    International Nuclear Information System (INIS)

    Wang, Wenyan; Han, Bo; Yamamoto, Masahiro

    2013-01-01

    We propose a new numerical method for reproducing kernel Hilbert space to solve an inverse source problem for a two-dimensional fractional diffusion equation, where we are required to determine an x-dependent function in a source term by data at the final time. The exact solution is represented in the form of a series and the approximation solution is obtained by truncating the series. Furthermore, a technique is proposed to improve some of the existing methods. We prove that the numerical method is convergent under an a priori assumption of the regularity of solutions. The method is simple to implement. Our numerical result shows that our method is effective and that it is robust against noise in L 2 -space in reconstructing a source function. (paper)

  14. Progress towards the development of a source of entangled photons for Space

    Science.gov (United States)

    Fedrizzi, Alessandro; Jennewein, Thomas; Ursin, Rupert; Zeilinger, Anton

    2007-03-01

    Quantum entanglement offers exciting applications like quantum computing, quantum teleportation and quantum cryptography. Ground based quantum communication schemes in optical fibres however are limited to a distance of the order of ˜100 km. In order to extend this limit to a global scale we are working on the realization of an entanglement-based quantum communication transceiver for space deployment. Here we report on a compact, extremely bright source for polarization entangled photons meeting the scientific requirements for a potential space to ground optical link. The pair production rate exceeds 4*10̂6 pairs/s at just 20mW of laser diode pump power. Furthermore, we will present the results of various experiments proving the feasibility of quantum information in space, including a weak coherent pulse single-photon downlink from a LEO satellite and the distribution of entanglement over a 144km free space link, using ESAs optical ground station.

  15. Space-time structure of neutron and X-ray sources in a plasma focus

    International Nuclear Information System (INIS)

    Bostick, W.H.; Nardi, V.; Prior, W.

    1977-01-01

    Systematic measurements with paraffin collimators of the neutron emission intensity have been completed on a plasma focus with a 15-20 kV capacitor bank (hollow centre electrode; discharge period T approximately 8 μs; D 2 filling at 4-8 torr). The space resolution was 1 cm or better. These data indicate that at least 70% of the total neutron yield originates within hot-plasma regions where electron beams and high-energy D beams (approximately > 0.1-1 MeV) are produced. The neutron source is composed of several (approximately > 1-10) space-localized sources of different intensity, each with a duration approximately less than 5 ns (FWHM). Localized neutron sources and hard (approximately > 100 keV) X-ray sources have the same time multiplicity and are usually distributed in two groups over a time interval 40-400 ns long. By the mode of operation used by the authors one group of localized sources (Burst II) is observed 200-400 ns after the other group (Burst I) and its space distribution is broader than for Burst I. The maximum intensity of a localized source of neutrons in Burst I is much higher than the maximum intensity in Burst II. Secondary reactions T(D,n) 4 He (from the tritium produced only by primary reactions in the same discharge; no tritium was used in filling the discharge chamber) are observed in a time coincidence with the strongest D-D neutron pulse of Burst I. The neutron signal from a localized source with high intensity has a relatively long tail of small amplitude (area tail approximately less than 0.2 X area peak). This tail can be generated by the D-D reactions of the unconfined part of an ion beam in the cold plasma. Complete elimination of scattered neutrons on the detector was achieved in these measurements. (author)

  16. Various technical and legal aspects of nuclear power sources in outer space

    International Nuclear Information System (INIS)

    Boeck, H.; Summerer, L.

    2001-12-01

    Since the very first days of space exploration, nuclear power was considered as an alternative to solar cells for the generation of energy in space. Especially for larger exploration missions beyond Mars, nuclear power sources (NPS) are almost unavoidable. NPS are developed, produced and flown on a continuous basis since almost 40 years by the USA and the Soviet Union, now Russia. While the technological capabilities certainly exist within Europe, Europe has not developed space nuclear power sources. This work is structured in four parts, enlightening this subject from different viewpoints on the European level. In a first chapter, European centres researching in the broader field of this technology are listed. A second chapter deals with the properties and hazards connected with plutonium, the element used in Radioisotope Thermal Generators (RTG). Recent technological developments in the field of RTG are reviewed in chapter 4, while chapter 3 deals with the international legal implications of the use of nuclear power sources in outer space. Refs. 30 (author)

  17. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    Science.gov (United States)

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  18. An open-source job management framework for parameter-space exploration: OACIS

    Science.gov (United States)

    Murase, Y.; Uchitane, T.; Ito, N.

    2017-11-01

    We present an open-source software framework for parameter-space exporation, named OACIS, which is useful to manage vast amount of simulation jobs and results in a systematic way. Recent development of high-performance computers enabled us to explore parameter spaces comprehensively, however, in such cases, manual management of the workflow is practically impossible. OACIS is developed aiming at reducing the cost of these repetitive tasks when conducting simulations by automating job submissions and data management. In this article, an overview of OACIS as well as a getting started guide are presented.

  19. Corrections to air kerma rate measurements of 125I brachytherapy sources to free space conditions

    International Nuclear Information System (INIS)

    Shipley, D.R.; Duane, S.

    1994-05-01

    Air kerma rate measurements have been made between 40 cm and 100 cm from one of a set of 125 I reference sources within the facilities of Amersham International plc. Monte Carlo techniques have been used to calculate the air kerma rate components over the same range of distances from this source. After comparing the calculated data with measurements, the compliance of the data with the inverse square law was investigated, and corrections were derived to obtain the air kerma rate at 1 m in free space from each source. Simulations of the experimental setup with an isotropic monoenergetic point source close to the effective energy of 125 I were found to reproduce the air kerma rate measurements reasonably accurately, and indicated that the contribution due to scattered photons was significant. The overall correction (which is defined as the product of individual corrections for chamber size effect, air attenuation and radiation scatter) required to the inverse square law to obtain the air kerma rate at 1 m in free space was found to be 0.981, 0.984 and 0.980, respectively, for air kerma rate measurements at 40 cm, 60 cm and 100 cm from the 125 I reference source. The total uncertainty in these corrections was estimated to be 0.88% at the 1σ level. (author)

  20. Space charge beam dynamics studies for a pulsed spallation source accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.; Lessner, E.

    1995-12-31

    Feasibility studies for 2-GeV, 1-MW and 10-GeV, 5-MW rapid cycling synchrotrons (RCS) for spallation neutron sources have been completed. Both synchrotrons operate at a repetition rate of 30 Hz, and accelerate 1.04 {times} 10{sup 14} protons per pulse. The injection energy of the 2-GeV ring is 400 MeV, and the 10-GeV RCS accepts the beam from the 2-GeV machine. Work performed to-date includes calculation of the longitudinal space charge effects in the 400-MeV beam transfer line, and of both longitudinal and transverse space charge effects during the injection, capture and acceleration processes in the two rings. Results of space charge calculations in the rings led to proper choices of the working points and of rf voltage programs that prevents beam loss. Space charge effects in the 2-GeV synchrotron, in both transverse and longitudinal phase space, have major impact on the design due to the fact that the injection energy is 400 MeV. The design achieves the required performance while alleviating harmful effects due to space charge.

  1. The space-time outside a source of gravitational radiation: the axially symmetric null fluid

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Universidad de Salamanca, Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain); Di Prisco, A. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Ospino, J. [Universidad de Salamanca, Departamento de Matematica Aplicada and Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain)

    2016-11-15

    We carry out a study of the exterior of an axially and reflection symmetric source of gravitational radiation. The exterior of such a source is filled with a null fluid produced by the dissipative processes inherent to the emission of gravitational radiation, thereby representing a generalization of the Vaidya metric for axially and reflection symmetric space-times. The role of the vorticity, and its relationship with the presence of gravitational radiation is put in evidence. The spherically symmetric case (Vaidya) is, asymptotically, recovered within the context of the 1 + 3 formalism. (orig.)

  2. The determination of an unknown source for a space fractional advection dispersion equation

    KAUST Repository

    Aldoghaither, Abeer

    2014-09-01

    In this paper, we are interested in the estimation of the source term for a space fractional advection dispersion equation using concentration and flux measurements at final time. An example of application is the identification of contamination source in groundwater transport. We propose to use the socalled modulating functions method which has been introduced for parameters estimation. This method allows to transfer the estimation problem into solving a system of algebraic equations. Numerical examples are given to illustrate the effectiveness and the robustness of the proposed method. Finally, a comparison between a Tikhonov-based optimization method and the modulating functions approach is presented.

  3. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    Science.gov (United States)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately

  4. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    Science.gov (United States)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  5. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1979-12-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed hear are of a continuing nature. Results and conclusions described may change as the work continues

  6. The effect of space charge force on beams extracted from ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1989-01-01

    A new 3 dimensional ray tracing code BEAM-3D, with a simple model to calculate the space charge force of multiple ion species, is under development and serves as a theoretical tool to study the ECRIS beam formation. Excellent agreement between the BEAM-3D calculations and beam profile and emittance measurements of the total extracted helium 1+ beam from the RTECR ion source was obtained when a low degree of beam neutralization was assumed in the calculations. The experimental evidence indicates that the positive space charge effects dominate the early RTECR ion source beam formation and beamline optics matching process. A review of important beam characteristics is made, including a conceptual model for the space charge beam blow up. Better beam transport through the RTECR beamline analysis magnet has resulted after an extraction geometry modification in which the space charge force was more correctly matched. This work involved the development of an online beam characteristic measuring apparatus which will also be described

  7. A study of ultra-stable optical clocks, frequency sources and standards for space applications

    International Nuclear Information System (INIS)

    Klein, H.A.; Knight, D.J.E.

    1999-01-01

    Optical or laser-based communication systems are expected to supplement microwave based systems for satellite-to-satellite and spacecraft-to-satellite communications early in the next millennium. Optical systems can carry far more traffic than microwave and address the need to increase communication bandwidths to meet the demands of commerce and the entertainment industry. There is already significant research and commercial interest in this area (now driven particularly by the multi-media and Internet services delivery sector) and there is a strong need to establish which are the best choices of optical sources to develop for space based optical communications. In addition to communication requirements there are strong arguments for developing ultra-stable optical frequency sources and detectors in space for at least two other purposes. At present the microwave radiation that is used for communications is also used for other purposes, for example navigation or tracking, and 'space science' experiments. With the switch from the microwave to the optical for communications it may well be convenient to switch to the optical for these and other functions. This study has examined the potential stable laser requirements for a range of space applications. An interim report was presented in the form of a conference paper summarising our initial findings (see Appendix 5). This final report gives our conclusions in more detail and recommends areas for further study

  8. Technical Guidance from the International Safety Framework for Nuclear Power Source Applications in Outer Space for Design and Development Phases

    Science.gov (United States)

    Summerer, Leopold

    2014-08-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space [1] has been adopted, following a multi-year process that involved all major space faring nations in the frame of the International Atomic Energy Agency and the UN Committee on the Peaceful Uses of Outer Space. The safety framework reflects an international consensus on best practices. After the older 1992 Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second document at UN level dedicated entirely to space nuclear power sources.This paper analyses aspects of the safety framework relevant for the design and development phases of space nuclear power sources. While early publications have started analysing the legal aspects of the safety framework, its technical guidance has not yet been subject to scholarly articles. The present paper therefore focuses on the technical guidance provided in the safety framework, in an attempt to assist engineers and practitioners to benefit from these.

  9. Study of Selecting on Light Source Used for Micro-algae Cultivation in Space

    Science.gov (United States)

    Ai, Weidang; Ai, Weidang; Guo, Shuang-Sheng; Gao, Feng; Tang, Yong-Kang; Qin, Li-Feng

    To select suitable light source for micro-algae cultivation in future space station, the selected Spirulina plastensis(No.7) were cultured under different lightening qualities, including six light sources that were made up of different combinations of red and blue light-emitting diode(LED). The growth, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the experiments, the red light may promote the cumulation of biomass of the Spirulina, and the cumulating rate was the highest under all red light source, but the syntheses of protein, phycobiliprotein, β-carotene, VE and other nutrients needs a certain portion of blue light; yet, the complete blue light condition is not favorable to the growth of Spirulina, and may bring pollution by chlorella and other kinds of micro-algae. It is concluded that the LEDs can be used as the light resource of micro-algae cultivation. The normal growth and development of microalgae need two light sources of both red and blue LEDs. The comprehensive analyses of the various factors that affect the growth of Spirulina, such as nutrition quality and photosynthetic activities, etc., showed that the combination of 80% red and 20% blue LED is the optimum one among those tested combinations. Key word: light-emitting diode; micro-algae; controlled ecological life support system (CELSS); space cultivation

  10. A Comparison Study of Sinusoidal PWM and Space Vector PWM Techniques for Voltage Source Inverter

    Directory of Open Access Journals (Sweden)

    Ömer Türksoy

    2017-06-01

    Full Text Available In this paper, the methods used to control voltage source inverters which have been intensively investigated in recent years are compared. Although the most efficient result is obtained with the least number of switching elements in the inverter topologies, the method used in the switching is at least as effective as the topology. Besides, the selected switching method to control the inverter will play an effective role in suppressing harmonic components while producing the ideal output voltage. There are many derivatives of pulse width modulation techniques that are commonly used to control voltage source inverters. Some of widespread methods are sinusoidal pulse width modulation and space vector pulse width modulation techniques. These modulation techniques used for generating variable frequency and amplitude output voltage in voltage source inverters, have been simulated by using MATLAB/SIMULINK. And, the total harmonic distortions of the output voltages are compared. As a result of simulation studies, sinusoidal pulse width modulation has been found to have more total harmonic distortion in output voltages of voltage source inverters in the simulation. Space vector pulse width modulation has been shown to produce a more efficient output voltage with less total harmonic distortion.

  11. Determination of noise sources and space-dependent reactor transfer functions from measured output signals only

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; van Dam, H.; Kleiss, E.B.J.; van Uitert, G.C.; Veldhuis, D.

    1982-01-01

    The measured cross power spectral densities of the signals from three neutron detectors and the displacement of the control rod of the 2 MW research reactor HOR at Delft have been used to determine the space-dependent reactor transfer function, the transfer function of the automatic reactor control system and the noise sources influencing the measured signals. From a block diagram of the reactor with control system and noise sources expressions were derived for the measured cross power spectral densities, which were adjusted to satisfy the requirements following from the adopted model. Then for each frequency point the required transfer functions and noise sources could be derived. The results are in agreement with those of autoregressive modelling of the reactor control feed-back loop. A method has been developed to determine the non-linear characteristics of the automatic reactor control system by analysing the non-gaussian probability density function of the power fluctuations.

  12. Determination of noise sources and space-dependent reactor transfer functions from measured output signals only

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1982-01-01

    The measured cross power spectral densities of the signals from three neutron detectors and the displacement of the control rod of the 2 MW research reactor HOR at Delft have been used to determine the space-dependent reactor transfer function, the transfer function of the automatic reactor control system and the noise sources influencing the measured signals. From a block diagram of the reactor with control system and noise sources expressions were derived for the measured cross power spectral densities, which were adjusted to satisfy the requirements following from the adopted model. Then for each frequency point the required transfer functions and noise sources could be derived. The results are in agreement with those of autoregressive modelling of the reactor control feed-back loop. A method has been developed to determine the non-linear characteristics of the automatic reactor control system by analysing the non-gaussian probability density function of the power fluctuations. (author)

  13. The Goddard multi-scale modeling system with unified physics

    Directory of Open Access Journals (Sweden)

    W.-K. Tao

    2009-08-01

    Full Text Available Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1 a cloud-resolving model (CRM, (2 a regional-scale model, the NASA unified Weather Research and Forecasting Model (WRF, and (3 a coupled CRM-GCM (general circulation model, known as the Goddard Multi-scale Modeling Framework or MMF. The same cloud-microphysical processes, long- and short-wave radiative transfer and land-surface processes are applied in all of the models to study explicit cloud-radiation and cloud-surface interactive processes in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator for comparison and validation with NASA high-resolution satellite data.

    This paper reviews the development and presents some applications of the multi-scale modeling system, including results from using the multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols. In addition, use of the multi-satellite simulator to identify the strengths and weaknesses of the model-simulated precipitation processes will be discussed as well as future model developments and applications.

  14. Design of shipping packages to transport varying radioisotopic source materials for future space and terrestrial missions

    International Nuclear Information System (INIS)

    Barklay, C.D.

    1995-01-01

    The exploration of space will begin with manned missions to the moon and to Mars, first for scientific discoveries, then for mining and manufacturing. Because of the great financial costs of this type of exploration, it can only be accomplished through an international team effort. This unified effort must include the design, planning and, execution phases of future space missions, extending down to such activities as isotope processing, and shipping package design, fabrication, and certification. All aspects of this effort potentially involve the use of radioisotopes in some capacity, and the transportation of these radioisotopes will be impossible without a shipping package that is certified by the Nuclear Regulatory Commission or the U.S. Department of Energy for domestic shipments, and the U.S. Department of Transportation or the International Atomic Energy Agency for international shipments. To remain without the international regulatory constraints, and still support the needs of new and challenging space missions conducted within ever-shrinking budgets, shipping package concepts must be innovative. A shipping package must also be versatile enough to be reconfigured to transport the varying radioisotopic source materials that may be required to support future space and terrestrial missions. One such package is the Mound USA/9516/B(U)F. Taking into consideration the potential need to transport specific types of radioisotopes, approximations of dose rates at specific distances were determined taking into account the attenuation of dose rate with distance for varying radioisotopic source materials. As a result, it has been determined that the shipping package requirements that will be demanded by future space (and terrestrial) missions can be met by making minor modifications to the USA/9516/B(U)F. copyright 1995 American Institute of Physics

  15. Limits on the space density of gamma-ray burst sources

    International Nuclear Information System (INIS)

    Epstein, R.I.

    1985-01-01

    Gamma-ray burst spectra which extend to several MeV without significant steepening indicate that there is negligible degradation due to two-photon pair production. The inferred low rate of photon-photon reactions is used to give upper limits to the distances to the sources and to the intensity of the radiation from the sources. These limits are calculated under the assumptions that the bursters are neutron stars which emit uncollimated gamma rays. The principal results are that the space density of the gamma-ray burst sources exceeds approx.10 -6 pc -3 if the entire surface of the neutron star radiates and exceeds approx.10 -3 pc -3 if only a small cap or thin strip in the stellar surface radiates. In the former case the density of gamma-ray bursters is approx.1% of the inferred density of extinct pulsars, and in the latter case the mean mass density of burster sources is a few percent of the density of unidentified dark matter in the solar neighborhood. In both cases the X-ray intensity of the sources is far below the Rayleigh-Jeans limit, and the total flux is at most comparable to the Eddington limit. This implies that low-energy self-absorption near 10 keV is entirely negligible and that radiation-driven explosions are just barely possible

  16. The source of net ultrafiltration during hemodialysis is mostly the extracellular space regardless of hydration status.

    Science.gov (United States)

    Jeong, Hyeonju; Lim, Chae-Wan; Choi, Hye-Min; Oh, Dong-Jin

    2016-01-01

    Fluid shifts are common in patients undergoing chronic hemodialysis (HD) during the intradialytic periods, as several liters of fluid are removed during ultrafiltration (UF). Some patients have experienced frequent intradialytic hypotension (IDH). However, the characteristics of fluid shifts and which fluid space is affected remain controversial. Therefore, we designed this study to evaluate the fluid spaces most affected by UF and to determine whether hydration status influences the fluid shifts during HD. This was a prospective cohort study of 40 patients undergoing HD. We measured the patient's fluid spaces using a whole-body bioimpedance apparatus to evaluate the changes in the fluid spaces before HD and 1-4 hours of HD and 30 minutes after HD. UF achieved during HD by the 40 patients (age, 60.0 ± 5.2 years; 50% men; 50% of patients with diabetes; body weight, 61.3 ± 10.5 kg) was 2.18 ± 0.78 L (measured fluid overload, 2.15 ± 1.24 L). 1) Mean relative reduction of total body water and extracellular water was reduced from the start to the end of HD. 2) However, mean relative reduction of intracellular water was not reduced from the start to the end of HD. 3) No significant differences in fluid shifts were observed according to hydration status. The source of net UF during HD is mostly the extracellular space regardless of hydration status. Thus, IDH may be related to differences in the interstitial fluid shift to the vascular space. © 2015 International Society for Hemodialysis.

  17. HF turbulence as a source of novel diagnostics tool for space plasma

    International Nuclear Information System (INIS)

    Rothkaehl, H.; Klos, Z.; Thide, B.; Bergman, J.

    2005-01-01

    The T type of turbulence and instabilities can be produced by a source of free energy in the form of natural and anthropogenic perturbation. Space turbulence acts as a tracer of the various physical processes acting in these regions and gives access to them, but on the other side it disturbs the propagation of radio waves and the ability of detecting targets of interests. To understand the property of solar terrestrial environment and to develop a quantitative model of the magnetosphere-ionosphere-thermosphere subsystem, which is strongly coupled via the electric field, particle precipitation, heat flows and small scale interaction, it is necessary to design and build new generation multipoint and different type sensor diagnostics, as proposed by LOFAR/LOIS facility in complementary of space borne satellite experiments. Ground based multi frequency and multi polarization LOIS clusters antennas and clusters observations in the in the space should be helpful in achieving to solve problems of space physics and described long term environmental changes. The real-time access to gathered based data, relevant to the impact of environment physical condition on communications and global positioning system, will create the possibility to improve quality of different type space related services. Simultaneously investigation and monitoring of Earth environment will be coordinated with space borne experiment COMPAS 2 experiment. The new design radio spectrometer will be designed to investigate the still largely unknown mechanisms which govern these turbulent interactions natural and man-made origin. The main aim of this presentation is to show the general architecture of LOIS and COMPAS 2 experiment and its scientific challenges. It will be emphasize the description of electromagnetic Earth environments in HF range as well. (author)

  18. Unsplit schemes for hyperbolic conservation laws with source terms in one space dimension

    International Nuclear Information System (INIS)

    Papalexandris, M.V.; Leonard, A.; Dimotakis, P.E.

    1997-01-01

    The present work is concerned with an application of the theory of characteristics to conservation laws with source terms in one space dimension, such as the Euler equations for reacting flows. Space-time paths are introduced on which the flow/chemistry equations decouple to a characteristic set of ODE's for the corresponding homogeneous laws, thus allowing the introduction of functions analogous to the Riemann invariants in classical theory. The geometry of these paths depends on the spatial gradients of the solution. This particular decomposition can be used in the design of efficient unsplit algorithms for the numerical integration of the equations. As a first step, these ideas are implemented for the case of a scalar conservation law with a nonlinear source term. The resulting algorithm belongs to the class of MUSCL-type, shock-capturing schemes. Its accuracy and robustness are checked through a series of tests. The stiffness of the source term is also studied. Then, the algorithm is generalized for a system of hyperbolic equations, namely the Euler equations for reacting flows. A numerical study of unstable detonations is performed. 57 refs

  19. A new open-source Python-based Space Weather data access, visualization, and analysis toolkit

    Science.gov (United States)

    de Larquier, S.; Ribeiro, A.; Frissell, N. A.; Spaleta, J.; Kunduri, B.; Thomas, E. G.; Ruohoniemi, J.; Baker, J. B.

    2013-12-01

    Space weather research relies heavily on combining and comparing data from multiple observational platforms. Current frameworks exist to aggregate some of the data sources, most based on file downloads via web or ftp interfaces. Empirical models are mostly fortran based and lack interfaces with more useful scripting languages. In an effort to improve data and model access, the SuperDARN community has been developing a Python-based Space Science Data Visualization Toolkit (DaViTpy). At the center of this development was a redesign of how our data (from 30 years of SuperDARN radars) was made available. Several access solutions are now wrapped into one convenient Python interface which probes local directories, a new remote NoSQL database, and an FTP server to retrieve the requested data based on availability. Motivated by the efficiency of this interface and the inherent need for data from multiple instruments, we implemented similar modules for other space science datasets (POES, OMNI, Kp, AE...), and also included fundamental empirical models with Python interfaces to enhance data analysis (IRI, HWM, MSIS...). All these modules and more are gathered in a single convenient toolkit, which is collaboratively developed and distributed using Github and continues to grow. While still in its early stages, we expect this toolkit will facilitate multi-instrument space weather research and improve scientific productivity.

  20. High performance AlGaN/GaN HEMTs with 2.4 μm source-drain spacing

    International Nuclear Information System (INIS)

    Wang Dongfang; Wei Ke; Yuan Tingting; Liu Xinyu

    2010-01-01

    This paper describes the performance of AlGaN/GaN HEMTs with 2.4 μm source-drain spacing. So far these are the smallest source-drain spacing AlGaN/GaN HEMTs which have been implemented with a domestic wafer and domestic process. This paper also compares their performance with that of 4 μm source-drain spacing devices. The former exhibit higher drain current, higher gain, and higher efficiency. It is especially significant that the maximum frequency of oscillation noticeably increased. (semiconductor integrated circuits)

  1. Risk knowledge and risk attitudes regarding nuclear energy sources in space

    International Nuclear Information System (INIS)

    Maharik, M.; Fischhoff, B.

    1993-01-01

    A series of four studies examined the relationship between how much people know about the risks of using nuclear energy sources in space and how they feel about the technology. The authors found that the more people know, the more favorable they are -- except for two groups of people selected from organizations with strong pro-industry or pro-environment positions. These results suggest that a technology will get a more favorable hearing if it can get its message out -- providing that it has a legitimate story to tell and that the situation has not become too polarized already. The limits to these conclusions are discussed. 19 refs., 3 figs., 1 tab

  2. General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-05-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work

  3. PhysioSpace: relating gene expression experiments from heterogeneous sources using shared physiological processes.

    Directory of Open Access Journals (Sweden)

    Michael Lenz

    Full Text Available Relating expression signatures from different sources such as cell lines, in vitro cultures from primary cells and biopsy material is an important task in drug development and translational medicine as well as for tracking of cell fate and disease progression. Especially the comparison of large scale gene expression changes to tissue or cell type specific signatures is of high interest for the tracking of cell fate in (trans- differentiation experiments and for cancer research, which increasingly focuses on shared processes and the involvement of the microenvironment. These signature relation approaches require robust statistical methods to account for the high biological heterogeneity in clinical data and must cope with small sample sizes in lab experiments and common patterns of co-expression in ubiquitous cellular processes. We describe a novel method, called PhysioSpace, to position dynamics of time series data derived from cellular differentiation and disease progression in a genome-wide expression space. The PhysioSpace is defined by a compendium of publicly available gene expression signatures representing a large set of biological phenotypes. The mapping of gene expression changes onto the PhysioSpace leads to a robust ranking of physiologically relevant signatures, as rigorously evaluated via sample-label permutations. A spherical transformation of the data improves the performance, leading to stable results even in case of small sample sizes. Using PhysioSpace with clinical cancer datasets reveals that such data exhibits large heterogeneity in the number of significant signature associations. This behavior was closely associated with the classification endpoint and cancer type under consideration, indicating shared biological functionalities in disease associated processes. Even though the time series data of cell line differentiation exhibited responses in larger clusters covering several biologically related patterns, top scoring

  4. I/O Parallelization for the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    Science.gov (United States)

    Lucchesi, Rob; Sawyer, W.; Takacs, L. L.; Lyster, P.; Zero, J.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center (GSFC) has developed the GEOS DAS, a data assimilation system that provides production support for NASA missions and will support NASA's Earth Observing System (EOS) in the coming years. The GEOS DAS will be used to provide background fields of meteorological quantities to EOS satellite instrument teams for use in their data algorithms as well as providing assimilated data sets for climate studies on decadal time scales. The DAO has been involved in prototyping parallel implementations of the GEOS DAS for a number of years and is now embarking on an effort to convert the production version from shared-memory parallelism to distributed-memory parallelism using the portable Message-Passing Interface (MPI). The GEOS DAS consists of two main components, an atmospheric General Circulation Model (GCM) and a Physical-space Statistical Analysis System (PSAS). The GCM operates on data that are stored on a regular grid while PSAS works with observational data that are scattered irregularly throughout the atmosphere. As a result, the two components have different data decompositions. The GCM is decomposed horizontally as a checkerboard with all vertical levels of each box existing on the same processing element(PE). The dynamical core of the GCM can also operate on a rotated grid, which requires communication-intensive grid transformations during GCM integration. PSAS groups observations on PEs in a more irregular and dynamic fashion.

  5. Pylogeny: an open-source Python framework for phylogenetic tree reconstruction and search space heuristics

    Directory of Open Access Journals (Sweden)

    Alexander Safatli

    2015-06-01

    Full Text Available Summary. Pylogeny is a cross-platform library for the Python programming language that provides an object-oriented application programming interface for phylogenetic heuristic searches. Its primary function is to permit both heuristic search and analysis of the phylogenetic tree search space, as well as to enable the design of novel algorithms to search this space. To this end, the framework supports the structural manipulation of phylogenetic trees, in particular using rearrangement operators such as NNI, SPR, and TBR, the scoring of trees using parsimony and likelihood methods, the construction of a tree search space graph, and the programmatic execution of a few existing heuristic programs. The library supports a range of common phylogenetic file formats and can be used for both nucleotide and protein data. Furthermore, it is also capable of supporting GPU likelihood calculation on nucleotide character data through the BEAGLE library.Availability. Existing development and source code is available for contribution and for download by the public from GitHub (http://github.com/AlexSafatli/Pylogeny. A stable release of this framework is available for download through PyPi (Python Package Index at http://pypi.python.org/pypi/pylogeny.

  6. Studies on space charge neutralization and emittance measurement of beam from microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com [Variable Energy Cyclotron Centre, 1-AF, Bidhannagar, Kolkata 700 064 (India)

    2015-11-15

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  7. Characterization of Ground Displacement Sources from Variational Bayesian Independent Component Analysis of Space Geodetic Time Series

    Science.gov (United States)

    Gualandi, Adriano; Serpelloni, Enrico; Elina Belardinelli, Maria; Bonafede, Maurizio; Pezzo, Giuseppe; Tolomei, Cristiano

    2015-04-01

    A critical point in the analysis of ground displacement time series, as those measured by modern space geodetic techniques (primarly continuous GPS/GNSS and InSAR) is the development of data driven methods that allow to discern and characterize the different sources that generate the observed displacements. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows to reduce the dimensionality of the data space maintaining most of the variance of the dataset explained. It reproduces the original data using a limited number of Principal Components, but it also shows some deficiencies, since PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem. The recovering and separation of the different sources that generate the observed ground deformation is a fundamental task in order to provide a physical meaning to the possible different sources. PCA fails in the BSS problem since it looks for a new Euclidean space where the projected data are uncorrelated. Usually, the uncorrelation condition is not strong enough and it has been proven that the BSS problem can be tackled imposing on the components to be independent. The Independent Component Analysis (ICA) is, in fact, another popular technique adopted to approach this problem, and it can be used in all those fields where PCA is also applied. An ICA approach enables us to explain the displacement time series imposing a fewer number of constraints on the model, and to reveal anomalies in the data such as transient deformation signals. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources

  8. Space-time quantitative source apportionment of soil heavy metal concentration increments.

    Science.gov (United States)

    Yang, Yong; Christakos, George; Guo, Mingwu; Xiao, Lu; Huang, Wei

    2017-04-01

    Assessing the space-time trends and detecting the sources of heavy metal accumulation in soils have important consequences in the prevention and treatment of soil heavy metal pollution. In this study, we collected soil samples in the eastern part of the Qingshan district, Wuhan city, Hubei Province, China, during the period 2010-2014. The Cd, Cu, Pb and Zn concentrations in soils exhibited a significant accumulation during 2010-2014. The spatiotemporal Kriging technique, based on a quantitative characterization of soil heavy metal concentration variations in terms of non-separable variogram models, was employed to estimate the spatiotemporal soil heavy metal distribution in the study region. Our findings showed that the Cd, Cu, and Zn concentrations have an obvious incremental tendency from the southwestern to the central part of the study region. However, the Pb concentrations exhibited an obvious tendency from the northern part to the central part of the region. Then, spatial overlay analysis was used to obtain absolute and relative concentration increments of adjacent 1- or 5-year periods during 2010-2014. The spatial distribution of soil heavy metal concentration increments showed that the larger increments occurred in the center of the study region. Lastly, the principal component analysis combined with the multiple linear regression method were employed to quantify the source apportionment of the soil heavy metal concentration increments in the region. Our results led to the conclusion that the sources of soil heavy metal concentration increments should be ascribed to industry, agriculture and traffic. In particular, 82.5% of soil heavy metal concentration increment during 2010-2014 was ascribed to industrial/agricultural activities sources. Using STK and SOA to obtain the spatial distribution of heavy metal concentration increments in soils. Using PCA-MLR to quantify the source apportionment of soil heavy metal concentration increments. Copyright © 2017

  9. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    Science.gov (United States)

    Alton, G. D.; Bilheux, H.

    2004-05-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j+ext, and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j+ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects.

  10. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    International Nuclear Information System (INIS)

    Alton, G.D.; Bilheux, H.

    2004-01-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j +ext , and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j +ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects

  11. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  12. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    Science.gov (United States)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  13. Regularization in Hilbert space under unbounded operators and general source conditions

    International Nuclear Information System (INIS)

    Hofmann, Bernd; Mathé, Peter; Von Weizsäcker, Heinrich

    2009-01-01

    The authors study ill-posed equations with unbounded operators in Hilbert space. This setup has important applications, but only a few theoretical studies are available. First, the question is addressed and answered whether every element satisfies some general source condition with respect to a given self-adjoint unbounded operator. This generalizes a previous result from Mathé and Hofmann (2008 Inverse Problems 24 015009). The analysis then proceeds to error bounds for regularization, emphasizing some specific points for regularization under unbounded operators. The study finally reviews two examples within the light of the present study, as these are fractional differentiation and some Cauchy problems for the Helmholtz equation, both studied previously and in more detail by U Tautenhahn and co-authors

  14. Aurorasaurus Database of Real-Time, Soft-Sensor Sourced Aurora Data for Space Weather Research

    Science.gov (United States)

    Kosar, B.; MacDonald, E.; Heavner, M.

    2017-12-01

    Aurorasaurus is an innovative citizen science project focused on two fundamental objectives i.e., collecting real-time, ground-based signals of auroral visibility from citizen scientists (soft-sensors) and incorporating this new type of data into scientific investigations pertaining to aurora. The project has been live since the Fall of 2014, and as of Summer 2017, the database compiled approximately 12,000 observations (5295 direct reports and 6413 verified tweets). In this presentation, we will focus on demonstrating the utility of this robust science quality data for space weather research needs. These data scale with the size of the event and are well-suited to capture the largest, rarest events. Emerging state-of-the-art computational methods based on statistical inference such as machine learning frameworks and data-model integration methods can offer new insights that could potentially lead to better real-time assessment and space weather prediction when citizen science data are combined with traditional sources.

  15. SIGMA/B, Doses in Space Vehicle for Multiple Trajectories, Various Radiation Source

    International Nuclear Information System (INIS)

    Jordan, T.M.

    2003-01-01

    1 - Description of problem or function: SIGMA/B calculates radiation dose at arbitrary points inside a space vehicle, taking into account vehicle geometry, heterogeneous placement of equipment and stores, vehicle materials, time-weighted astronaut positions and many radiation sources from mission trajectories, e.g. geomagnetically trapped protons and electrons, solar flare particles, galactic cosmic rays and their secondary radiations. The vehicle geometry, equipment and supplies, and man models are described by quadric surfaces. The irradiating flux field may be anisotropic. The code can be used to perform simultaneous dose calculations for multiple vehicle trajectories, each involving several radiation sources. Results are presented either as dose as a function of shield thickness, or the dose received through designated outer sections of the vehicle. 2 - Method of solution: Automatic sectoring of the vehicle is performed by a Simpson's rule integration over angle; the dose is computed by a numerical angular integration of the dose attenuation kernels about the dose points. The kernels are curve-fit functions constructed from input data tables. 3 - Restrictions on the complexity of the problem: The code uses variable dimensioning techniques to store data. The only restriction on problem size is the available core storage

  16. Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

    Directory of Open Access Journals (Sweden)

    Basavarajappa Mahanthesh

    2017-12-01

    Full Text Available The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

  17. SiGN-SSM: open source parallel software for estimating gene networks with state space models.

    Science.gov (United States)

    Tamada, Yoshinori; Yamaguchi, Rui; Imoto, Seiya; Hirose, Osamu; Yoshida, Ryo; Nagasaki, Masao; Miyano, Satoru

    2011-04-15

    SiGN-SSM is an open-source gene network estimation software able to run in parallel on PCs and massively parallel supercomputers. The software estimates a state space model (SSM), that is a statistical dynamic model suitable for analyzing short time and/or replicated time series gene expression profiles. SiGN-SSM implements a novel parameter constraint effective to stabilize the estimated models. Also, by using a supercomputer, it is able to determine the gene network structure by a statistical permutation test in a practical time. SiGN-SSM is applicable not only to analyzing temporal regulatory dependencies between genes, but also to extracting the differentially regulated genes from time series expression profiles. SiGN-SSM is distributed under GNU Affero General Public Licence (GNU AGPL) version 3 and can be downloaded at http://sign.hgc.jp/signssm/. The pre-compiled binaries for some architectures are available in addition to the source code. The pre-installed binaries are also available on the Human Genome Center supercomputer system. The online manual and the supplementary information of SiGN-SSM is available on our web site. tamada@ims.u-tokyo.ac.jp.

  18. Electron photon spectra at atmospheric depths 260 and 400 gm/cm2 derived from the Goddard primary proton spectrum using Fermilab data and usual cascade theory

    International Nuclear Information System (INIS)

    Bhattacharyya, D.P.; Gautam, V.P.

    1982-01-01

    The integral electron photon spectra of cosmic rays at airplane altitude and Lenin Peak (altitudes 260 and 400 g-cm -2 air) have been estimated from the primary proton spectrum of Goddard Space Flight Group using Fermilab data of pp→π +- +X and conventional cascade theory. The derived electron-photon spectra fits well the experimental data of Ohta et al. (1975) and Cherdyntseva and Nikol'skii (1976) for energies above 4 TeV

  19. Beamspace dual signal space projection (bDSSP): a method for selective detection of deep sources in MEG measurements

    Science.gov (United States)

    Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K.; Cai, Chang; Nagarajan, Srikantan S.

    2018-06-01

    Objective. Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. Approach. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Main results. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. Significance. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.

  20. EEG source space analysis of the supervised factor analytic approach for the classification of multi-directional arm movement

    Science.gov (United States)

    Shenoy Handiru, Vikram; Vinod, A. P.; Guan, Cuntai

    2017-08-01

    Objective. In electroencephalography (EEG)-based brain-computer interface (BCI) systems for motor control tasks the conventional practice is to decode motor intentions by using scalp EEG. However, scalp EEG only reveals certain limited information about the complex tasks of movement with a higher degree of freedom. Therefore, our objective is to investigate the effectiveness of source-space EEG in extracting relevant features that discriminate arm movement in multiple directions. Approach. We have proposed a novel feature extraction algorithm based on supervised factor analysis that models the data from source-space EEG. To this end, we computed the features from the source dipoles confined to Brodmann areas of interest (BA4a, BA4p and BA6). Further, we embedded class-wise labels of multi-direction (multi-class) source-space EEG to an unsupervised factor analysis to make it into a supervised learning method. Main Results. Our approach provided an average decoding accuracy of 71% for the classification of hand movement in four orthogonal directions, that is significantly higher (>10%) than the classification accuracy obtained using state-of-the-art spatial pattern features in sensor space. Also, the group analysis on the spectral characteristics of source-space EEG indicates that the slow cortical potentials from a set of cortical source dipoles reveal discriminative information regarding the movement parameter, direction. Significance. This study presents evidence that low-frequency components in the source space play an important role in movement kinematics, and thus it may lead to new strategies for BCI-based neurorehabilitation.

  1. Analytical description of photon beam phase spaces in inverse Compton scattering sources

    Directory of Open Access Journals (Sweden)

    C. Curatolo

    2017-08-01

    Full Text Available We revisit the description of inverse Compton scattering sources and the photon beams generated therein, emphasizing the behavior of their phase space density distributions and how they depend upon those of the two colliding beams of electrons and photons. The main objective is to provide practical formulas for bandwidth, spectral density, brilliance, which are valid in general for any value of the recoil factor, i.e. both in the Thomson regime of negligible electron recoil, and in the deep Compton recoil dominated region, which is of interest for gamma-gamma colliders and Compton sources for the production of multi-GeV photon beams. We adopt a description based on the center of mass reference system of the electron-photon collision, in order to underline the role of the electron recoil and how it controls the relativistic Doppler/boost effect in various regimes. Using the center of mass reference frame greatly simplifies the treatment, allowing us to derive simple formulas expressed in terms of rms momenta of the two colliding beams (emittance, energy spread, etc. and the collimation angle in the laboratory system. Comparisons with Monte Carlo simulations of inverse Compton scattering in various scenarios are presented, showing very good agreement with the analytical formulas: in particular we find that the bandwidth dependence on the electron beam emittance, of paramount importance in Thomson regime, as it limits the amount of focusing imparted to the electron beam, becomes much less sensitive in deep Compton regime, allowing a stronger focusing of the electron beam to enhance luminosity without loss of mono-chromaticity. A similar effect occurs concerning the bandwidth dependence on the frequency spread of the incident photons: in deep recoil regime the bandwidth comes out to be much less dependent on the frequency spread. The set of formulas here derived are very helpful in designing inverse Compton sources in diverse regimes, giving a

  2. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation

    International Nuclear Information System (INIS)

    Kim, Sangroh; Yoshizumi, Terry T; Yin Fangfang; Chetty, Indrin J

    2013-01-01

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the

  3. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J

    2013-04-21

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral

  4. NASA Dryden Flight Research Center's Space Weather Needs

    Science.gov (United States)

    Wiley, Scott

    2011-01-01

    Presentation involves educating Goddard Space Weather staff about what our needs are, what type of aircraft we have and to learn what we have done in the past to minimize our exposure to Space Weather Hazards.

  5. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center

    Science.gov (United States)

    Mullinix, R.; Maddox, M. M.; Berrios, D.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Zheng, Y.

    2012-12-01

    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions are therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products compels the need for a single access point to such information. The Integrated Space Weather Analysis (iSWA) System provides this single point access along with the capability to collect and catalog a vast range of sources including both observational and model data. NASA Goddard Space Weather Research Center heavily utilizes the iSWA System daily for research, space weather model validation, and forecasting for NASA missions. iSWA provides the capabilities to view and analyze near real-time space weather data from any where in the world. This presentation will describe the technology behind the iSWA system and describe how to use the system for space weather research, forecasting, training, education, and sharing.

  6. An improved gravity model for Mars: Goddard Mars Model-1 (GMM-1)

    Science.gov (United States)

    Smith, D. E.; Lerch, F. J.; Nerem, R. S.; Zuber, M. T.; Patel, G. B.; Fricke, S. K.; Lemoine, F. G.

    1993-01-01

    Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, GMM-1 (Goddard Mars Model-1). This model employs nearly all available data, consisting of approximately 1100 days of S-bank tracking data collected by NASA's Deep Space Network from the Mariner 9, and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half-wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of optimum weighting and least-squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X-band tracking data from the 379-km altitude, near-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolves the gravitational signature of the planet.

  7. Incorporating Parallel Computing into the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    Science.gov (United States)

    Larson, Jay W.

    1998-01-01

    Atmospheric data assimilation is a method of combining actual observations with model forecasts to produce a more accurate description of the earth system than the observations or forecast alone can provide. The output of data assimilation, sometimes called the analysis, are regular, gridded datasets of observed and unobserved variables. Analysis plays a key role in numerical weather prediction and is becoming increasingly important for climate research. These applications, and the need for timely validation of scientific enhancements to the data assimilation system pose computational demands that are best met by distributed parallel software. The mission of the NASA Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. The system used to create these datasets is the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The core components of the the GEOS DAS are: the GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler (which feeds analysis increments back to the GCM), and an I/O package for processing the large amounts of data the system produces (which will be described in another presentation in this session). The discussion will center on the following issues: the computational complexity for the whole GEOS DAS, assessment of the performance of the individual elements of GEOS DAS, and parallelization strategy for some of the components of the system.

  8. Space Vector Pulse Width Modulation Strategy for Single-Phase Three-Level CIC T-source Inverter

    DEFF Research Database (Denmark)

    Shults, Tatiana E.; Husev, Oleksandr O.; Blaabjerg, Frede

    2016-01-01

    This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance of the inver......This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance...... of the inverter, the strategy was compared the traditional pulse-width modulation. It is shown that the approach proposed has fewer switching states and does not suffer from neutral point misbalance....

  9. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    Science.gov (United States)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  10. Interacting noise sources shape patterns of arm movement variability in three-dimensional space.

    Science.gov (United States)

    Apker, Gregory A; Darling, Timothy K; Buneo, Christopher A

    2010-11-01

    Reaching movements are subject to noise in both the planning and execution phases of movement production. The interaction of these noise sources during natural movements is not well understood, despite its importance for understanding movement variability in neurologically intact and impaired individuals. Here we examined the interaction of planning and execution related noise during the production of unconstrained reaching movements. Subjects performed sequences of two movements to targets arranged in three vertical planes separated in depth. The starting position for each sequence was also varied in depth with the target plane; thus required movement sequences were largely contained within the vertical plane of the targets. Each final target in a sequence was approached from two different directions, and these movements were made with or without visual feedback of the moving hand. These combined aspects of the design allowed us to probe the interaction of execution and planning related noise with respect to reach endpoint variability. In agreement with previous studies, we found that reach endpoint distributions were highly anisotropic. The principal axes of movement variability were largely aligned with the depth axis, i.e., the axis along which visual planning related noise would be expected to dominate, and were not generally well aligned with the direction of the movement vector. Our results suggest that visual planning-related noise plays a dominant role in determining anisotropic patterns of endpoint variability in three-dimensional space, with execution noise adding to this variability in a movement direction-dependent manner.

  11. Working with Open BIM Standards to Source Legal Spaces for a 3D Cadastre

    Directory of Open Access Journals (Sweden)

    Jennifer Oldfield

    2017-11-01

    Full Text Available Much work has already been done on how a 3D Cadastre should best be developed. An inclusive information model, the Land Administration Model (LADM ISO 19152 has been developed to provide an international framework for how this can best be done. This conceptual model does not prescribe the technical data format. One existing source from which data could be obtained is 3D Building Information Models (BIMs, or, more specifically in this context, BIMs in the form of one of buildingSMART’s open standards: the Industry Foundation Classes (IFC. The research followed a standard BIM methodology of first defining the requirements through the use of the Information Delivery Manual (IDM ISO29481 and then translating the process described in the IDM into technical requirements using a Model View Definition (MVD, a practice to coordinate upfront the multidisciplinary stakeholders of a construction project. The proposed process model illustrated how the time it takes to register 3D spatial units in a Land Registry could substantially be reduced compared to the first 3D registration in the Netherlands. The modelling of an MVD or a subset of the IFC data model helped enable the creation and exchange of boundary representations of topological objects capable of being combined into a 3D legal space overview map.

  12. Source Space Analysis of Event-Related Dynamic Reorganization of Brain Networks

    Directory of Open Access Journals (Sweden)

    Andreas A. Ioannides

    2012-01-01

    Full Text Available How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.

  13. Source space analysis of event-related dynamic reorganization of brain networks.

    Science.gov (United States)

    Ioannides, Andreas A; Dimitriadis, Stavros I; Saridis, George A; Voultsidou, Marotesa; Poghosyan, Vahe; Liu, Lichan; Laskaris, Nikolaos A

    2012-01-01

    How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.

  14. Source-space EEG neurofeedback links subjective experience with brain activity during effortless awareness meditation.

    Science.gov (United States)

    van Lutterveld, Remko; Houlihan, Sean D; Pal, Prasanta; Sacchet, Matthew D; McFarlane-Blake, Cinque; Patel, Payal R; Sullivan, John S; Ossadtchi, Alex; Druker, Susan; Bauer, Clemens; Brewer, Judson A

    2017-05-01

    Meditation is increasingly showing beneficial effects for psychiatric disorders. However, learning to meditate is not straightforward as there are no easily discernible outward signs of performance and thus no direct feedback is possible. As meditation has been found to correlate with posterior cingulate cortex (PCC) activity, we tested whether source-space EEG neurofeedback from the PCC followed the subjective experience of effortless awareness (a major component of meditation), and whether participants could volitionally control the signal. Sixteen novice meditators and sixteen experienced meditators participated in the study. Novice meditators were briefly trained to perform a basic meditation practice to induce the subjective experience of effortless awareness in a progressively more challenging neurofeedback test-battery. Experienced meditators performed a self-selected meditation practice to induce this state in the same test-battery. Neurofeedback was provided based on gamma-band (40-57Hz) PCC activity extracted using a beamformer algorithm. Associations between PCC activity and the subjective experience of effortless awareness were assessed by verbal probes. Both groups reported that decreased PCC activity corresponded with effortless awareness (Pneurofeedback to link an objective measure of brain activity with the subjective experience of effortless awareness, and suggest potential utility of this paradigm as a tool for meditation training. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-02-01

    Studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two 238 PuO 2 pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported

  16. Nonradioactive Environmental Emissions Chemical Source Term for the Double-Shell Tank (DST) Vapor Space During Waste Retrieval Operations

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    A nonradioactive chemical vapor space source term for tanks on the Phase 1 and the extended Phase 1 delivery, storage, and disposal mission was determined. Operations modeled included mixer pump operation and DST waste transfers. Concentrations of ammonia, specific volatile organic compounds, and quantitative volumes of aerosols were estimated

  17. Space-time dependence between energy sources and climate related energy production

    Science.gov (United States)

    Engeland, Kolbjorn; Borga, Marco; Creutin, Jean-Dominique; Ramos, Maria-Helena; Tøfte, Lena; Warland, Geir

    2014-05-01

    The European Renewable Energy Directive adopted in 2009 focuses on achieving a 20% share of renewable energy in the EU overall energy mix by 2020. A major part of renewable energy production is related to climate, called "climate related energy" (CRE) production. CRE production systems (wind, solar, and hydropower) are characterized by a large degree of intermittency and variability on both short and long time scales due to the natural variability of climate variables. The main strategies to handle the variability of CRE production include energy-storage, -transport, -diversity and -information (smart grids). The three first strategies aim to smooth out the intermittency and variability of CRE production in time and space whereas the last strategy aims to provide a more optimal interaction between energy production and demand, i.e. to smooth out the residual load (the difference between demand and production). In order to increase the CRE share in the electricity system, it is essential to understand the space-time co-variability between the weather variables and CRE production under both current and future climates. This study presents a review of the literature that searches to tackle these problems. It reveals that the majority of studies deals with either a single CRE source or with the combination of two CREs, mostly wind and solar. This may be due to the fact that the most advanced countries in terms of wind equipment have also very little hydropower potential (Denmark, Ireland or UK, for instance). Hydropower is characterized by both a large storage capacity and flexibility in electricity production, and has therefore a large potential for both balancing and storing energy from wind- and solar-power. Several studies look at how to better connect regions with large share of hydropower (e.g., Scandinavia and the Alps) to regions with high shares of wind- and solar-power (e.g., green battery North-Sea net). Considering time scales, various studies consider wind

  18. Lidar Technology at the Goddard Laser and Electro-Optics Branch

    Science.gov (United States)

    Heaps, William S.; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    The Laser and Electro-Optics Branch at Goddard Space flight Center was established about three years ago to provide a focused center of engineering support and technology development in these disciplines with an emphasis on spaced based instruments for Earth and Space Science. The Branch has approximately 15 engineers and technicians with backgrounds in physics, optics, and electrical engineering. Members of the Branch are currently supporting a number of space based lidar efforts as well as several technology efforts aimed at enabling future missions. The largest effort within the Branch is support of the Ice, Cloud, and land Elevation Satellite (ICESAT) carrying the Geoscience Laser Altimeter System (GLAS) instrument. The ICESAT/GLAS primary science objectives are: 1) To determine the mass balance of the polar ice sheets and their contributions to global sea level change; and 2) To obtain essential data for prediction of future changes in ice volume and sea-level. The secondary science objectives are: 1) To measure cloud heights and the vertical structure of clouds and aerosols in the atmosphere; 2) To map the topography of land surfaces; and 3) To measure roughness, reflectivity, vegetation heights, snow-cover, and sea-ice surface characteristics. Our efforts have concentrated on the GLAS receiver component development, the Laser Reference Sensor for the Stellar Reference System, the GLAS fiber optics subsystems, and the prelaunch calibration facilities. We will report on our efforts in the development of the space qualified interference filter [Allan], etalon filter, photon counting detectors, etalor/laser tracking system, and instrument fiber optics, as well as specification and selection of the star tracker and development of the calibration test bed. We are also engaged in development work on lidar sounders for chemical species. We are developing new lidar technology to enable a new class of miniature lidar instruments that are compatible with small

  19. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Directory of Open Access Journals (Sweden)

    C. Andreani

    2018-02-01

    Full Text Available This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  20. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Science.gov (United States)

    Andreani, C.; Senesi, R.; Paccagnella, A.; Bagatin, M.; Gerardin, S.; Cazzaniga, C.; Frost, C. D.; Picozza, P.; Gorini, G.; Mancini, R.; Sarno, M.

    2018-02-01

    This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  1. Intel Xeon Phi accelerated Weather Research and Forecasting (WRF) Goddard microphysics scheme

    Science.gov (United States)

    Mielikainen, J.; Huang, B.; Huang, A. H.-L.

    2014-12-01

    The Weather Research and Forecasting (WRF) model is a numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. The WRF development is a done in collaboration around the globe. Furthermore, the WRF is used by academic atmospheric scientists, weather forecasters at the operational centers and so on. The WRF contains several physics components. The most time consuming one is the microphysics. One microphysics scheme is the Goddard cloud microphysics scheme. It is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the Goddard scheme code. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU does. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is one familiar to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discussed in this paper. The results show that the optimizations improved performance of Goddard microphysics scheme on Xeon Phi 7120P by a factor of 4.7×. In addition, the optimizations reduced the Goddard microphysics scheme's share of the total WRF processing time from 20.0 to 7.5%. Furthermore, the same optimizations

  2. A new method of testing space-based high-energy electron detectors with radioactive electron sources

    Science.gov (United States)

    Zhang, S. Y.; Shen, G. H.; Sun, Y.; Zhou, D. Z.; Zhang, X. X.; Li, J. W.; Huang, C.; Zhang, X. G.; Dong, Y. J.; Zhang, W. J.; Zhang, B. Q.; Shi, C. Y.

    2016-05-01

    Space-based electron detectors are commonly tested using radioactive β-sources which emit a continuous spectrum without spectral lines. Therefore, the tests are often to be considered only qualitative. This paper introduces a method, which results in more than a qualitative test even when using a β-source. The basic idea is to use the simulated response function of the instrument to invert the measured spectrum and compare this inverted spectrum with a reference spectrum obtained from the same source. Here we have used Geant4 to simulate the instrument response function (IRF) and a 3.5 mm thick Li-drifted Si detector to obtain the reference 90Sr/90Yi source spectrum to test and verify the geometric factors of the Omni-Direction Particle Detector (ODPD) on the Tiangong-1 (TG-1) and Tiangong-2 (TG-2) spacecraft. The TG spacecraft are experimental space laboratories and prototypes of the Chinese space station. The excellent agreement between the measured and reference spectra demonstrates that this test method can be used to quantitatively assess the quality of the instrument. Due to its simplicity, the method is faster and therefore more efficient than traditional full calibrations using an electron accelerator.

  3. A new method of testing space-based high-energy electron detectors with radioactive electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Y. [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Shen, G.H., E-mail: shgh@nssc.ac.cn [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Sun, Y., E-mail: sunying@nssc.ac.cn [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Zhou, D.Z., E-mail: dazhuang.zhou@gmail.com [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Zhang, X.X., E-mail: xxzhang@cma.gov.cn [National Center for Space Weather, Beijing (China); Li, J.W., E-mail: lijw@cma.gov.cn [National Center for Space Weather, Beijing (China); Huang, C., E-mail: huangc@cma.gov.cn [National Center for Space Weather, Beijing (China); Zhang, X.G., E-mail: zhangxg@nssc.ac.cn [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Dong, Y.J., E-mail: dyj@nssc.ac.cn [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Zhang, W.J., E-mail: zhangreatest@163.com [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Zhang, B.Q., E-mail: zhangbinquan@nssc.ac.cn [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Shi, C.Y., E-mail: scy@nssc.ac.cn [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China)

    2016-05-01

    Space-based electron detectors are commonly tested using radioactive β-sources which emit a continuous spectrum without spectral lines. Therefore, the tests are often to be considered only qualitative. This paper introduces a method, which results in more than a qualitative test even when using a β-source. The basic idea is to use the simulated response function of the instrument to invert the measured spectrum and compare this inverted spectrum with a reference spectrum obtained from the same source. Here we have used Geant4 to simulate the instrument response function (IRF) and a 3.5 mm thick Li-drifted Si detector to obtain the reference {sup 90}Sr/{sup 90}Yi source spectrum to test and verify the geometric factors of the Omni-Direction Particle Detector (ODPD) on the Tiangong-1 (TG-1) and Tiangong-2 (TG-2) spacecraft. The TG spacecraft are experimental space laboratories and prototypes of the Chinese space station. The excellent agreement between the measured and reference spectra demonstrates that this test method can be used to quantitatively assess the quality of the instrument. Due to its simplicity, the method is faster and therefore more efficient than traditional full calibrations using an electron accelerator.

  4. A new method of testing space-based high-energy electron detectors with radioactive electron sources

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Shen, G.H.; Sun, Y.; Zhou, D.Z.; Zhang, X.X.; Li, J.W.; Huang, C.; Zhang, X.G.; Dong, Y.J.; Zhang, W.J.; Zhang, B.Q.; Shi, C.Y.

    2016-01-01

    Space-based electron detectors are commonly tested using radioactive β-sources which emit a continuous spectrum without spectral lines. Therefore, the tests are often to be considered only qualitative. This paper introduces a method, which results in more than a qualitative test even when using a β-source. The basic idea is to use the simulated response function of the instrument to invert the measured spectrum and compare this inverted spectrum with a reference spectrum obtained from the same source. Here we have used Geant4 to simulate the instrument response function (IRF) and a 3.5 mm thick Li-drifted Si detector to obtain the reference "9"0Sr/"9"0Yi source spectrum to test and verify the geometric factors of the Omni-Direction Particle Detector (ODPD) on the Tiangong-1 (TG-1) and Tiangong-2 (TG-2) spacecraft. The TG spacecraft are experimental space laboratories and prototypes of the Chinese space station. The excellent agreement between the measured and reference spectra demonstrates that this test method can be used to quantitatively assess the quality of the instrument. Due to its simplicity, the method is faster and therefore more efficient than traditional full calibrations using an electron accelerator.

  5. NASA Space Geodesy Program: GSFC data analysis, 1993. VLBI geodetic results 1979 - 1992

    Science.gov (United States)

    Ma, Chopo; Ryan, James W.; Caprette, Douglas S.

    1994-01-01

    The Goddard VLBI group reports the results of analyzing Mark 3 data sets acquired from 110 fixed and mobile observing sites through the end of 1992 and available to the Space Geodesy Program. Two large solutions were used to obtain site positions, site velocities, baseline evolution for 474 baselines, earth rotation parameters, nutation offsets, and radio source positions. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for the 89 baselines that were observed in 1992 and positions at 1988.0 are presented for all fixed stations and mobile sites. Positions are also presented for quasar radio sources used in the solutions.

  6. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S., E-mail: nishioka@ppl.appi.keio.ac.jp; Goto, I.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [School of Natural and Living Sciences Education, Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Fukano, A. [Toshiba, 33 Isogo-chou, Isogo-ku, Yokohama-shi, Kanagawa 235-001 (Japan)

    2014-02-15

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.

  7. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    International Nuclear Information System (INIS)

    Nishioka, S.; Goto, I.; Hatayama, A.; Miyamoto, K.; Okuda, S.; Fukano, A.

    2014-01-01

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result

  8. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    Science.gov (United States)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  9. Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China

    Science.gov (United States)

    Lei, Y.; Tan, H. W.; Wang, L. Z.

    2017-11-01

    Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.

  10. Sources

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1991-01-01

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  11. NASA's Suborbital Missions Teach Engineering and Technology: Goddard Space Flight Center's Wallops Flight Facility

    Science.gov (United States)

    Winterton, Joyce L.

    2016-01-01

    A 50 minute-workshop based on NASA publicly available information will be conducted at the International Technology and Engineering Educator Association annual conference. Attendees will include middle and high school teachers and university teacher educators. Engineering and technology are essential to NASA's suborbital missions including sounding rockets, scientific balloon and airborne science. The attendees will learn how to include NASA information on these missions in their teaching.

  12. NASA Goddard Space Flight Center Tin Whisker (and Other Metal Whisker) Homepage

    Science.gov (United States)

    Brusse, Jay; Sampson, Mike; Leidecker, Henning; Kadesch, Jong

    2004-01-01

    This website provides information about tin whiskers and related research. The independent research performed during the past 50+ years is so vast that it is impractical to cover all aspects of tin whiskers in this one resource. Therefore, the absence of information in this website about a particular aspect of tin whiskers should NOT be construed as evidence of absence.

  13. Government/contractor partnerships for continuous improvement. A Goddard Space Flight Center example

    Science.gov (United States)

    Tagler, Richard C.

    1992-01-01

    The efforts of a government organization and its major contractors to foster a continuous improvement environment which transcends the traditional government/contractor relationship is discussed. This relationship is aimed at communication, partnership, and trust - creating benefits for all involved.

  14. LEAP: Looking beyond pixels with continuous-space EstimAtion of Point sources

    Science.gov (United States)

    Pan, Hanjie; Simeoni, Matthieu; Hurley, Paul; Blu, Thierry; Vetterli, Martin

    2017-12-01

    Context. Two main classes of imaging algorithms have emerged in radio interferometry: the CLEAN algorithm and its multiple variants, and compressed-sensing inspired methods. They are both discrete in nature, and estimate source locations and intensities on a regular grid. For the traditional CLEAN-based imaging pipeline, the resolution power of the tool is limited by the width of the synthesized beam, which is inversely proportional to the largest baseline. The finite rate of innovation (FRI) framework is a robust method to find the locations of point-sources in a continuum without grid imposition. The continuous formulation makes the FRI recovery performance only dependent on the number of measurements and the number of sources in the sky. FRI can theoretically find sources below the perceived tool resolution. To date, FRI had never been tested in the extreme conditions inherent to radio astronomy: weak signal / high noise, huge data sets, large numbers of sources. Aims: The aims were (i) to adapt FRI to radio astronomy, (ii) verify it can recover sources in radio astronomy conditions with more accurate positioning than CLEAN, and possibly resolve some sources that would otherwise be missed, (iii) show that sources can be found using less data than would otherwise be required to find them, and (iv) show that FRI does not lead to an augmented rate of false positives. Methods: We implemented a continuous domain sparse reconstruction algorithm in Python. The angular resolution performance of the new algorithm was assessed under simulation, and with visibility measurements from the LOFAR telescope. Existing catalogs were used to confirm the existence of sources. Results: We adapted the FRI framework to radio interferometry, and showed that it is possible to determine accurate off-grid point-source locations and their corresponding intensities. In addition, FRI-based sparse reconstruction required less integration time and smaller baselines to reach a comparable

  15. An economic analysis of space solar power and its cost competitiveness as a supplemental source of energy for space and ground markets

    Science.gov (United States)

    Marzwell, N. I.

    2002-01-01

    Economic Growth has been historically associated with nations that first made use of each new energy source. There is no doubt that Solar Power Satellites is high as a potential energy system for the future. A conceptual cost model of the economics value of space solar power (SSP) as a source of complementary power for in-space and ground applications will be discussed. Several financial analysis will be offered based on present and new technological innovations that may compete with or be complementary to present energy market suppliers depending on various institutional arrangements for government and the private sector in a Global Economy. Any of the systems based on fossil fuels such as coal, oil, natural gas, and synthetic fuels share the problem of being finite resources and are subject to ever-increasing cost as they grow ever more scarce with drastic increase in world population. Increasing world population and requirements from emerging underdeveloped countries will also increase overall demand. This paper would compare the future value of SSP with that of other terrestrial renewable energy in distinct geographic markets within the US, in developing countries, Europe, Asia, and Eastern Europe.

  16. Free-Space Quantum Key Distribution with a High Generation Rate Potassium Titanyl Phosphate Waveguide Photon-Pair Source

    Science.gov (United States)

    Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip; Floyd, Bertram M.; Lind, Alexander J.; hide

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nanometer pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nanometer photons are up-converted to a single 532-nanometer photon in the first stage. In the second stage, the 532-nanometer photon is down-converted to an entangled photon-pair at 800 nanometer and 1600 nanometer which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  17. Observations of the Hubble Deep Field with the Infrared Space Observatory .4. Association of sources with Hubble Deep Field galaxies

    DEFF Research Database (Denmark)

    Mann, R.G.; Oliver, S.J.; Serjeant, S.B.G.

    1997-01-01

    We discuss the identification of sources detected by the Infrared Space Observatory (ISO) at 6.7 and 15 mu m in the Hubble Deep Field (HDF) region. We conservatively associate ISO sources with objects in existing optical and near-infrared HDF catalogues using the likelihood ratio method, confirming...... these results (and, in one case, clarifying them) with independent visual searches, We find 15 ISO sources to be reliably associated with bright [I-814(AB) HDF, and one with an I-814(AB)=19.9 star, while a further 11 are associated with objects in the Hubble Flanking Fields (10 galaxies...... and one star), Amongst optically bright HDF galaxies, ISO tends to detect luminous, star-forming galaxies at fairly high redshift and with disturbed morphologies, in preference to nearby ellipticals....

  18. Size of the virtual source behind a convex spherical surface emitting a space charge limited ion current

    International Nuclear Information System (INIS)

    Chavet, I.

    1987-01-01

    A plasma source fitted with a circular orifice and emitting a space charge limited ion current can be made to operate with a convex spherical plasma boundary (meniscus) by appropriately adjusting its extraction parameters. In this case, the diameter of the virtual source behind the meniscus is much smaller than the orifice diameter. The effective value of this virtual source diameter depends significantly on various practical factors that are more or less controllable. Its lower ideal limit, however, depends only on the radio δ of the interelectrode distance to the meniscus curvature radius and on the ratio ω of the initial to final ion energy. This ideal limit is given for the ranges 0.1 ≤ δ ≤ 10 and 10 -7 ≤ ω ≤ 10 -3 . Preliminary experimental results are reported. (orig.)

  19. The determination of an unknown source for a space fractional advection dispersion equation

    KAUST Repository

    Aldoghaither, Abeer; Laleg-Kirati, Taous-Meriem; Liu, Dayan

    2014-01-01

    source in groundwater transport. We propose to use the socalled modulating functions method which has been introduced for parameters estimation. This method allows to transfer the estimation problem into solving a system of algebraic equations. Numerical

  20. Kent in space: Cosmic dust to space debris

    Science.gov (United States)

    McDonnell, J. A. M.

    1994-10-01

    The dusty heritage of the University of Kent's Space Group commenced at Jodrell Bank, Cheshire, U.K., the home of the largest steerable radio telescope. While Professor Bernard Lovell's 250 ft. diameter telescope was used to command the U.S. deep space Pioneer spacecraft, Professor Tony McDonnell, as a research student in 1960, was developing a space dust detector for the US-UK Ariel program. It was successful. With a Ph.D. safely under the belt, it seemed an inevitable step to go for the next higher degree, a B.T.A.] Two years with NASA at Goddard Space Flight Center, Greenbelt, provided excellent qualifications for such a graduation ('Been to America'). A spirited return to the University of Kent at Canterbury followed, to one of the green field UK University sites springing from the Robbins Report on Higher Education. Swimming against the current of the brain drain, and taking a very considerable reduction in salary, it was with some disappointment that he found that the UK Premier Harold Wilson's 'white-hot technological revolution' never quite seemed to materialize in terms of research funding] Research expertise, centered initially on cosmic dust, enlarged to encompass planetology during the Apollo program, and rightly acquired international acclaim, notching up a history of space missions over 25 years. The group now comprises 38 people supported by four sources: the government's Research Councils, the University, the Space Agencies and Industry. This paper describes the thrust of the group's Research Plan in Space Science and Planetology; not so much based on existing international space missions, but more helping to shape the direction and selection of space missions ahead.

  1. GSFC contamination monitors for Space Station

    Science.gov (United States)

    Carosso, P. A.; Tveekrem, J. L.; Coopersmith, J. D.

    1988-01-01

    This paper describes the Work Package 3 activities in the area of neutral contamination monitoring for the Space Station. Goddard Space Flight Center's responsibilities include the development of the Attached Payload Accommodations Equipment (APAE), the Polar Orbiting Platform (POP), and the Flight Telerobotic Servicer (FTS). GSFC will also develop the Customer Servicing Facility (CSF) in Phase 2 of the Space Station.

  2. Hubble Space Telescope: a Vision to 2020 and Beyond: The Hubble Source Catalog

    Science.gov (United States)

    Strolger, Louis-Gregory

    2016-01-01

    The Hubble Source Catalog (HSC) is an initiative centered on what science would be enabled by a master catalog of all the sources HST has imaged over its lifetime. The first version of this catalog was released in early 2015, and included approximately 30 million sources from archived direct imaging with WFPC2, ACS (through 2011), and WFC3 (to 2014). Version 2, scheduled for release in early 2016, will feed off the Hubble Legacy Archive DR9 release, updating the ACS sources with more detections, and more direct imaging, through to mid-2015. This talk will overview the properties and goals of the HSC in terms of its source detection, object resolution, confusion limits, and overall astrometric and photometric precision. I will also discuss the connections to other MAST activities (e.g., the Discovery Portal interface), to STScI and user products (e.g., the Spectroscopic Catalog and High-Level Science Products), and to community resources (e.g., Pan-STARRS, SDSS, and eventually GAIA). The HSC successfully amalgamates the diverse observations with HST, and despite the limitations in uniformity on the sky, will be an important reference for JWST, LSST, and other future telescopes.

  3. Space-Based Detection of Missing Sulfur Dioxide Sources of Global Air Pollution

    Science.gov (United States)

    McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna

    2016-01-01

    Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world-over a third are clustered around the Persian Gulf-and add up to 7 to 14 Tg of SO2 yr(exp -1), or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.

  4. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  5. Space charge and wake field analysis for a high brightness electron source

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    We present a brief overview of the formalism used, and some simulation results for transverse and longitudinal motion of a bunch of particles moving through a cavity (e.g., the Brookhaven National Laboratory high brightness photocathode gun), including effects of the accelerating field, space charge forces (e.g., arising from the interaction of the cavity surface and the self field of the bunch). 3 refs., 12 figs

  6. Integrated source and channel encoded digital communication system design study. [for space shuttles

    Science.gov (United States)

    Huth, G. K.

    1976-01-01

    The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.

  7. Disruptive conflicts in computopic space : Japanese sf videogames as sources of otherness and radical political imagination

    NARCIS (Netherlands)

    Roth, Martin Erwin

    2014-01-01

    Can you imagine a radically different world? In our times dominated by neoliberal capitalism, we seem to lack not only viable alternatives, but also the capacity to envision anything outside of the status quo. In this PhD thesis, I show that videogames can be a potential source of inspiration and

  8. Climate Adaptivity and Field Test of the Space Heating Used Air-Source Transcritical CO2 Heat Pump

    Science.gov (United States)

    Song, Yulong; Ye, Zuliang; Cao, Feng

    2017-08-01

    In this study, an innovation of air-sourced transcritical CO2 heat pump which was employed in the space heating application was presented and discussed in order to solve the problem that the heating performances of the transcritical CO2 heat pump water heater deteriorated sharply with the augment in water feed temperature. An R134a cycle was adopted as a subcooling device in the proposed system. The prototype of the presented system was installed and supplied hot water for three places in northern China in winter. The field test results showed that the acceptable return water temperature can be increased up to 55°C, while the supply water temperature was raised rapidly by the presented prototype to up to 70°C directly, which was obviously appropriate to the various conditions of heating radiator in space heating application. Additionally, though the heating capacity and power dissipation decreased with the decline in ambient temperature or the augment in water temperature, the presented heat pump system performed efficiently whatever the climate and water feed temperature were. The real time COP of the presented system was generally more than 1.8 in the whole heating season, while the seasonal performance coefficient (SPC) was also appreciable, which signified that the economic efficiency of the presented system was more excellent than other space heating approaches such as fuel, gas, coal or electric boiler. As a result, the novel system will be a promising project to solve the energy issues in future space heating application.

  9. Organic aerosol source apportionment in London 2013 with ME-2: exploring the solution space with annual and seasonal analysis

    Directory of Open Access Journals (Sweden)

    E. Reyes-Villegas

    2016-12-01

    Full Text Available The multilinear engine (ME-2 factorization tool is being widely used following the recent development of the Source Finder (SoFi interface at the Paul Scherrer Institute. However, the success of this tool, when using the a value approach, largely depends on the inputs (i.e. target profiles applied as well as the experience of the user. A strategy to explore the solution space is proposed, in which the solution that best describes the organic aerosol (OA sources is determined according to the systematic application of predefined statistical tests. This includes trilinear regression, which proves to be a useful tool for comparing different ME-2 solutions. Aerosol Chemical Speciation Monitor (ACSM measurements were carried out at the urban background site of North Kensington, London from March to December 2013, where for the first time the behaviour of OA sources and their possible environmental implications were studied using an ACSM. Five OA sources were identified: biomass burning OA (BBOA, hydrocarbon-like OA (HOA, cooking OA (COA, semivolatile oxygenated OA (SVOOA and low-volatility oxygenated OA (LVOOA. ME-2 analysis of the seasonal data sets (spring, summer and autumn showed a higher variability in the OA sources that was not detected in the combined March–December data set; this variability was explored with the triangle plots f44 : f43 f44 : f60, in which a high variation of SVOOA relative to LVOOA was observed in the f44 : f43 analysis. Hence, it was possible to conclude that, when performing source apportionment to long-term measurements, important information may be lost and this analysis should be done to short periods of time, such as seasonally. Further analysis on the atmospheric implications of these OA sources was carried out, identifying evidence of the possible contribution of heavy-duty diesel vehicles to air pollution during weekdays compared to those fuelled by petrol.

  10. Removal of power line interference of space bearing vibration signal based on the morphological filter and blind source separation

    Science.gov (United States)

    Dong, Shaojiang; Sun, Dihua; Xu, Xiangyang; Tang, Baoping

    2017-06-01

    Aiming at the problem that it is difficult to extract the feature information from the space bearing vibration signal because of different noise, for example the running trend information, high-frequency noise and especially the existence of lot of power line interference (50Hz) and its octave ingredients of the running space simulated equipment in the ground. This article proposed a combination method to eliminate them. Firstly, the EMD is used to remove the running trend item information of the signal, the running trend that affect the signal processing accuracy is eliminated. Then the morphological filter is used to eliminate high-frequency noise. Finally, the components and characteristics of the power line interference are researched, based on the characteristics of the interference, the revised blind source separation model is used to remove the power line interferences. Through analysis of simulation and practical application, results suggest that the proposed method can effectively eliminate those noise.

  11. Using Citizen Science and Crowdsourcing via Aurorasaurus as a Near Real Time Data Source for Space Weather Applications

    Science.gov (United States)

    MacDonald, E.; Heavner, M.; Hall, M.; Tapia, A.; Lalone, N.; Clayon, J.; Case, N.

    2014-12-01

    Aurorasaurus is on the cutting edge of space science, citizen science, and computer science simultaneously with the broad goals to develop a real-time citizen science network, educate the general public about the northern lights, and revolutionize real-time space weather nowcasting of the aurora for the public. We are currently in the first solar maximum with social media, which enables the technological roots to connect users, citizen scientists, and professionals around a shared global, rare interest. We will introduce the project which has been in a prototype mode since 2012 and recently relaunched with a new mobile and web presence and active campaigns. We will showcase the interdisciplinary advancements which include a more educated public, disaster warning system applications, and improved real-time ground truth data including photographs and observations of the Northern Lights. We will preview new data which validates the proof of concept for significant improvements in real-time space weather nowcasting. Our aim is to provide better real-time notifications of the visibility of the Northern Lights to the interested public via the combination of noisy crowd-sourced ground truth with noisy satellite-based predictions. The latter data are available now but are often delivered with significant jargon and uncertainty, thus reliable, timely interpretation of such forecasts by the public are problematic. The former data show real-time characteristic significant rises (in tweets for instance) that correlate with other non-real-time indices of auroral activity (like the Kp index). We will discuss the source of 'noise' in each data source. Using citizen science as a platform to provide a basis for deeper understanding is one goal; secondly we want to improve understanding of and appreciation for the dynamics and beauty of the Northern Lights by the public and scientists alike.

  12. General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-04-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work

  13. Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source.

    Science.gov (United States)

    Sheftman, D; Shafer, D; Efimov, S; Gruzinsky, K; Gleizer, S; Krasik, Ya E

    2012-10-01

    A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A ~4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

  14. High power laser source for space applications. Phase 1 study: Executive summary

    Science.gov (United States)

    1986-07-01

    A study to design a high power laser diode, to manufacture samples, to test them, and to identify the problems raised by the manufacture of such power sources in order to evaluate the effort required to overcome the difficulties in view of a component qualification was initiated. Theoretical modeling, manufacturing and test of samples, and environmental evaluation were completed. To obtain 200 mW monomode, a reversed CSP structure manufactured by chemical vapor deposition is recommended.

  15. POLAR: A Space-borne X-Ray Polarimeter for Transient Sources

    Science.gov (United States)

    Orsi, S.; Polar Collaboration

    2011-02-01

    POLAR is a novel compact Compton X-ray polarimeter designed to measure the linear polarization of the prompt emission of Gamma Ray Bursts (GRB) and other strong transient sources such as soft gamma repeaters and solar flares in the energy range 50-500 keV. A detailed measurement of the polarization from astrophysical sources will lead to a better understanding of the source geometry and emission mechanisms. POLAR is expected to observe every year several GRBs with a minimum detectable polarization smaller than 10%, thanks to its large modulation factor, effective area, and field of view. POLAR consists of 1600 low-Z plastic scintillator bars, divided in 25 independent modular units, each read out by one flat-panel multi-anode photomultiplier. The design of POLAR is reviewed, and results of tests of one modular unit of the engineering and qualification model (EQM) of POLAR with synchrotron radiation are presented. After construction and testing of the full EQM, we will start building the flight model in 2011, in view of the launch foreseen in 2013.

  16. Romanian crustal earthquake sequences: evidence for space and time clustering in correlation with seismic source properties

    International Nuclear Information System (INIS)

    Popescu, E.; Popa, M.; Radulian, M.

    2002-01-01

    The study of seismic sequences is important from both scientific point of view, and its socio-economical impact on human society. In this paper we analyze the crustal earthquake sequences in correlation with the seismogenic zones delimited on the Romanian territory using geological and tectonic information available. We consider on one hand the sequences typical for the Carpathians foreland region (Ramnicu Sarat, Vrancioaia and Sinaia seismic zones), which are associated with the Vrancea subduction process and, on the other hand the sequences typical for the contact between the Pannonian Basin and Carpathians orogen (Banat seismic zone). To analyze the seismicity and source properties, we applied the fractal statistics and relative methods such as spectral ratio and deconvolution with the empirical Green's functions. On the basis of the retrieved source parameters for small and moderate size events the scaling relations for the characteristic properties of the seismic source are estimated. The scaling and earthquake clustering properties are correlated with the geological and rheological properties of the studied seismic areas. (authors)

  17. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    International Nuclear Information System (INIS)

    Delferriere, O.; De Menezes, D.

    2004-01-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D + extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D + ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H + beam emittance will be compared with experimental measurements

  18. A New Electron Source for Laboratory Simulation of the Space Environment

    Science.gov (United States)

    Krause, Linda Habash; Everding, Daniel; Bonner, Mathew; Swan, Brian

    2012-01-01

    We have developed a new collimated electron source called the Photoelectron Beam Generator (PEBG) for laboratory and spaceflight applications. This technology is needed to replace traditional cathodes because of serious fundamental weaknesses with the present state of the art. Filament cathodes suffer from numerous practical problems, even if expertly designed, including the dependence of electron emission on filament temperature, short lifetimes (approx 100 hours), and relatively high power (approx 10s of W). Other types of cathodes have solved some of these problems, but they are plagued with other difficult problems, such as the Spindt cathode's extreme sensitivity to molecular oxygen. None to date have been able to meet the demand of long lifetime, robust packaging, and precision energy and flux control. This new cathode design avoids many common pitfalls of traditional cathodes. Specifically, there are no fragile parts, no sensitivity to oxygen, no intrinsic emission dependencies on device temperature, and no vacuum requirements for protecting the source from contamination or damage. Recent advances in high-brightness Light Emitting Diodes (LEDs) have provided the key enabling technology for this new electron source. The LEDs are used to photoeject electrons off a target material of a low work-function, and these photoelectrons are subsequently focused into a laminar beam using electrostatic lenses. The PEBG works by illuminating a target material and steering photoelectrons into a laminar beam using electrostatic lenses

  19. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    Science.gov (United States)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  20. Spectroscopic techniques for measuring ion diode space-charge distributions and ion source properties

    Energy Technology Data Exchange (ETDEWEB)

    Filuk, A B; Bailey, J E; Adams, R G [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    The authors are using time- and space-resolved visible spectroscopy to measure applied-B ion diode dynamics on the 20 TW Particle Beam Fusion Accelerator II. Doppler broadening of fast Li atoms, as viewed parallel to the anode, is used in a charge-exchange model to obtain the Li{sup +} ion divergence within 100 {mu}m of the anode surface. The characteristic Stark/Zeeman shifts in spectra of alkali neutrals or singly-ionized alkaline-earths are used to measure the strong electric (10{sup 9} V/m) an magnetic ({approx} 6 T) fields in the diode gap. Large Stark shifts within 0.5 mm of the anode indicate the LiF emits with a finite field threshold rather than with Child-Langmuir-type emission, and the small slope in the electric field indicates an unexpected build-up of electrons near the anode. In the diode gap, the authors aim to unfold fields to quantify the time-dependent ion and electron space-charge distributions that determine the ion beam properties. Observed electric field non-uniformities give local beam deflections that can be comparable to the total beam microdivergence. The authors are implementing active laser absorption and laser-induced fluorescence spectroscopy on low-density Na atoms injected into the diode gap prior to the power pulse. The small Doppler broadening in the Na spectra should allow simultaneous electric and magnetic field mapping with improved spatial resolution. (author). 4 figs., 13 refs.

  1. A Low-Order Harmonic Elimination Scheme for Induction Motor Drives Using a Multilevel Octadecagonal Space Vector Structure With a Single DC Source

    DEFF Research Database (Denmark)

    Boby, Mathews; Rahul, Arun; Gopakumar, K.

    2018-01-01

    Conventional voltage-source inverters used for induction motor drives generate a hexagonal space vector structure. In the overmodulation range, the hexagonal space vector structure generates low-order harmonics in the phase voltage resulting in low-order torque ripple in the motor. Inverter...... topologies with an octadecagonal (18 sided) space vector structure eliminate fifth-, seventh-, eleventh-, and thirteenth-order harmonics from the phase voltage, and hence, the dominant sixth- and twelfth-order torque ripple generation is eliminated. Octadecagonal space vector structures proposed in the past...... require multiple dc sources, which makes four-quadrant operation of the drive system difficult and costly. In this paper, the formation of a multilevel nine-concentric octadecagonal space vector structure using a single dc source is proposed. Detailed experimental results, using open-loop V/f control...

  2. TU-AB-BRC-07: Efficiency of An IAEA Phase-Space Source for a Low Energy X-Ray Tube Using Egs++

    Energy Technology Data Exchange (ETDEWEB)

    Watson, PGF; Renaud, MA; Seuntjens, J [McGill University, Montreal, Quebec (Canada)

    2016-06-15

    Purpose: To extend the capability of the EGSnrc C++ class library (egs++) to write and read IAEA phase-space files as a particle source, and to assess the relative efficiency gain in dose calculation using an IAEA phase-space source for modelling a miniature low energy x-ray source. Methods: We created a new ausgab object to score particles exiting a user-defined geometry and write them to an IAEA phase-space file. A new particle source was created to read from IAEA phase-space data. With these tools, a phase-space file was generated for particles exiting a miniature 50 kVp x-ray tube (The INTRABEAM System, Carl Zeiss). The phase-space source was validated by comparing calculated PDDs with a full electron source simulation of the INTRABEAM. The dose calculation efficiency gain of the phase-space source was determined relative to the full simulation. The efficiency gain as a function of i) depth in water, and ii) job parallelization was investigated. Results: The phase-space and electron source PDDs were found to agree to 0.5% RMS, comparable to statistical uncertainties. The use of a phase-space source for the INTRABEAM led to a relative efficiency gain of greater than 20 over the full electron source simulation, with an increase of up to a factor of 196. The efficiency gain was found to decrease with depth in water, due to the influence of scattering. Job parallelization (across 2 to 256 cores) was not found to have any detrimental effect on efficiency gain. Conclusion: A set of tools has been developed for writing and reading IAEA phase-space files, which can be used with any egs++ user code. For simulation of a low energy x-ray tube, the use of a phase-space source was found to increase the relative dose calculation efficiency by factor of up to 196. The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant No. 432290).

  3. Space power distribution of soft x-ray source ANGARA-5-1

    Energy Technology Data Exchange (ETDEWEB)

    Dyabilin, K S [High Energy Density Research Center, Moscow (Russian Federation); Fortov, V E; Grabovskij, E V; Lebedev, M E; Smirnov, V P [Troitsk Inst. of Innovative and Fusion Research, Troitsk (Russian Federation)

    1997-12-31

    The contribution deals with the investigation of shock waves in condensed targets generated by intense pulses of soft X radiation. Main attention is paid to the spatial distribution of the soft x-ray power, which influence strongly the shock wave front uniformity. Hot z-pinch plasma with the temperature of 60-100 eV produced by imploding double liner in the ANGARA-5-1 machine was used as a source of x rays. The maximum pinch current was as high as 3.5 MA. In order to eliminate the thermal heating of the targets, thick stepped Al/Pb, Sn/Pb, or pure Pb targets were used. The velocity of shock waves was determined by means of optical methods. Very uniform shock waves and shock pressures of up to several hundreds of GPa have been achieved. (J.U.). 3 figs., 2 refs.

  4. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    Science.gov (United States)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  5. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Gironi, Gianna; Suetta, Enrico

    2017-11-01

    This paper describes energetic, spatial, temporal and spectral characterization measurements of the Engineering Qualification Model (EQM) of the Laser Transmitter Assembly (TXA) used in the ALADIN instrument currently under development for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The EQM is equivalent to the Flight Model, with the exception of some engineering grade components. The Laser Transmitter Assembly, based on a diode pumped tripled Nd:YAG laser, is used to generate laser pulses at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz during bursts. It is capable to operate in Single Longitudinal Mode and to be tuned over 25 GHz range. An internal "network" of sensors has been implemented inside the laser architecture to allow "in flight" monitoring of transmitter. Energy in excess of 100 mJ, with a spatial beam quality factor (M2) lower than 3, a spectral linewidth less than 50 MHz with a frequency stability better than 4 MHz on short term period have been measured on the EQM. Most of the obtained results are well within the expected values and match the Instrument requirements. They constitute an important achievement, showing the absence of major critical areas in terms of performance and the capability to obtain them in a rugged and compact structure suitable for space applications. The EQM will be submitted in the near future to an Environmental test campaign.

  6. Design, conception, and metrology of Extreme Ultraviolet multilayers mirrors resistant environments of space and EUV sources

    International Nuclear Information System (INIS)

    Hecquet, Ch.

    2009-03-01

    The Extreme Ultraviolet Spectrum (EUV) wavelengths, which range between 13 nm and 40 nm, have many applications in science and technology. These have been developed for example in plasma physics (high order harmonics sources, X ray lasers). The work presented is about the design, the fabrication and the metrology of periodic multilayer mirrors. The main motivation of this study is to establish a cycle of development taking into account both the optical properties of reflective coatings (reflectivity, spectral selectivity, attenuation) and their behaviour under various environments. To improve the spectral selectivity, new multilayer periodic structures have been developed. They are characterized by a bimodal reflectance profile with adjustable attenuation. The effect of environment on the stability of performance is especially critical for the optical collection. The addition of material barriers has stabilized the performance of the peak reflectivity for over 200 h at 400 C deg. and it reduces the influence of other factors of instability on the reflectance. In addition, all structures have been fabricated successfully and evaluated in severe environments. (author)

  7. A new time-space accounting scheme to predict stream water residence time and hydrograph source components at the watershed scale

    Science.gov (United States)

    Takahiro Sayama; Jeffrey J. McDonnell

    2009-01-01

    Hydrograph source components and stream water residence time are fundamental behavioral descriptors of watersheds but, as yet, are poorly represented in most rainfall-runoff models. We present a new time-space accounting scheme (T-SAS) to simulate the pre-event and event water fractions, mean residence time, and spatial source of streamflow at the watershed scale. We...

  8. Increasing signal-to-noise ratio of swept-source optical coherence tomography by oversampling in k-space

    Science.gov (United States)

    Nagib, Karim; Mezgebo, Biniyam; Thakur, Rahul; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-03-01

    Optical coherence tomography systems suffer from noise that could reduce ability to interpret reconstructed images correctly. We describe a method to increase the signal-to-noise ratio of swept-source optical coherence tomography (SSOCT) using oversampling in k-space. Due to this oversampling, information redundancy would be introduced in the measured interferogram that could be used to reduce white noise in the reconstructed A-scan. We applied our novel scaled nonuniform discrete Fourier transform to oversampled SS-OCT interferograms to reconstruct images of a salamander egg. The peak-signal-to-noise (PSNR) between the reconstructed images using interferograms sampled at 250MS/s andz50MS/s demonstrate that this oversampling increased the signal-to-noise ratio by 25.22 dB.

  9. Public perceptions of the risks of an unfamiliar technology: The case of using nuclear energy sources for space missions

    International Nuclear Information System (INIS)

    Maharik, M.

    1992-01-01

    This thesis addresses the public perception of the risk of a technology not widely known to lay people. Its aims were (a) to characterize public perceptions of the risk of using nuclear energy in space and decisions related to this risk, and (b) to extend the mental model methodology to studying public perception of unfamiliar, risky technologies. A model of the physical processes capable of creating risks from using nuclear energy sources in space was first constructed. Then, knowledge and beliefs related to this topic were elicited from three different groups of people. The generality of the findings were examined in a constructive replication with environmentally-oriented people. The possibility of involving the public in decision-making processes related to engineering macro-design was then investigated. Finally, a communication regarding these risk processes was developed and evaluated in an experiment comparing it with communications produced by NASA. Recommendations related to the design and targeting of risk communication, and to public participation in decision making on using new and risky technologies, are derived

  10. The Joint NASA/Goddard-University of Maryland Research Program in Charged Particle and High Energy Photon Detector Technology

    Science.gov (United States)

    Ipavich, F. M.

    1990-01-01

    The Univ. of Maryland portion investigated the following areas. The Space Physics Group performed studies of data from the AMPTE/CCE spacecraft CHEM experiment and found that the ratio of solar wind to photospheric abundances decreased rather smoothly with the first ionization potential (FIP) of the ion with the low FIP ion being about a factor of two overabundant. Carbon and hydrogen fit this trend particularly well. Several occurrences were analyzed of field aligned beams observed when CCE was upstream of the Earth's bow shock. Also using CHEM data, ring current intensity and composition changes during the main and recovery phases of the great geomagnetic storm that occurred in February 1986 was examined in detail. Still using CHEM data, ring current characteristics were examined in a survey of 20 magnetic storms ranging in size from -50 nT to -312 nT. A study was done of energetic ion anisotropy characteristics in the Earth's magnetosheath region using data from the UMD/MPE experiment on ISEE-1. The properties were analyzed of approx. 30 to 130 keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE-3 spacecraft during 1978 to 1979. Work from NASA-Goddard include studies from the High Energy Cosmic Ray Group, Low Energy Cosmic Ray Group, Low Energy Gamma Ray Group, High Energy Astrophysics Theory Group, and the X ray Astronomy Group.

  11. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any

  12. Data products of NASA Goddard's LiDAR, hyperspectral, and thermal airborne imager (G-LiHT)

    Science.gov (United States)

    Corp, Lawrence A.; Cook, Bruce D.; McCorkel, Joel; Middleton, Elizabeth M.

    2015-06-01

    Scientists in the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center have undertaken a unique instrument fusion effort for an airborne package that integrates commercial off the shelf LiDAR, Hyperspectral, and Thermal components. G-LiHT is a compact, lightweight and portable system that can be used on a wide range of airborne platforms to support a number of NASA Earth Science research projects and space-based missions. G-LiHT permits simultaneous and complementary measurements of surface reflectance, vegetation structure, and temperature, which provide an analytical framework for the development of new algorithms for mapping plant species composition, plant functional types, biodiversity, biomass, carbon stocks, and plant growth. G-LiHT and its supporting database are designed to give scientists open access to the data that are needed to understand the relationship between ecosystem form and function and to stimulate the advancement of synergistic algorithms. This system will enhance our ability to design new missions and produce data products related to biodiversity and climate change. G-LiHT has been operational since 2011 and has been used to collect data for a number of NASA and USFS sponsored studies, including NASA's Carbon Monitoring System (CMS) and the American ICESat/GLAS Assessment of Carbon (AMIGA-Carb). These acquisitions target a broad diversity of forest communities and ecoregions across the United States and Mexico. Here, we will discuss the components of G-LiHT, their calibration and performance characteristics, operational implementation, and data processing workflows. We will also provide examples of higher level data products that are currently available.

  13. Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source

    Science.gov (United States)

    Yang, Xiaoling; Miley, George H.; Hora, Heinz

    2009-03-01

    This paper reviews previous theoretical and experimental study on the possibility of nuclear events in multilayer thin film electrodes (Lipson et al., 2004 and 2005; Miley et al., 2007), including the correlation between excess heat and transmutations (Miley and Shrestha, 2003) and the cluster theory that predicts it. As a result of this added understanding of cluster reactions, a new class of electrodes is under development at the University of Illinois. These electrodes are designed to enhance cluster formation and subsequent reactions. Two approaches are under development. The first employs improved loading-unloading techniques, intending to obtain a higher volumetric density of sites favoring cluster formation. The second is designed to create nanostructures on the electrode where the cluster state is formed by electroless deposition of palladium on nickel micro structures. Power units employing these electrodes should offer unique advantages for space applications. This is a fundamental new nuclear energy source that is environmentally compatible with a minimum of radiation involvement, high specific power, very long lifetime, and scalable from micro power to kilowatts.

  14. Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source

    International Nuclear Information System (INIS)

    Yang Xiaoling; Miley, George H.; Hora, Heinz

    2009-01-01

    This paper reviews previous theoretical and experimental study on the possibility of nuclear events in multilayer thin film electrodes (Lipson et al., 2004 and 2005; Miley et al., 2007), including the correlation between excess heat and transmutations (Miley and Shrestha, 2003) and the cluster theory that predicts it. As a result of this added understanding of cluster reactions, a new class of electrodes is under development at the University of Illinois. These electrodes are designed to enhance cluster formation and subsequent reactions. Two approaches are under development. The first employs improved loading-unloading techniques, intending to obtain a higher volumetric density of sites favoring cluster formation. The second is designed to create nanostructures on the electrode where the cluster state is formed by electroless deposition of palladium on nickel micro structures. Power units employing these electrodes should offer unique advantages for space applications. This is a fundamental new nuclear energy source that is environmentally compatible with a minimum of radiation involvement, high specific power, very long lifetime, and scalable from micro power to kilowatts.

  15. Fiber-Based Lasers as an Option for GRACE Follow-On Light Source

    Science.gov (United States)

    Camp, Jordan

    2010-01-01

    Fiber based lasers offer a number of attractive characteristics for space application: state of the art laser technology, leverage of design and reliability from the substantial investments of the telecon industry, and convenient redundancy of higher risk components through fiber splicing. At NASA/Goddard we are currently investigating three GFO fiber-based laser options: a fiber oscillator built in our laboratory; an effort to space qualify a commercial design that uses a proprietary high-gain fiber cavity; and the space qualification of a promising new commercial external cavity laser, notable for its low-mass, compact design. In my talk I will outline these efforts, and suggest that the GFO Project may soon have the option of a US laser vendor for its light source.

  16. The Goddard Integral Field Spectrograph at Apache Point Observatory: Current Status and Progress Towards Photon Counting

    Science.gov (United States)

    McElwain, Michael W.; Grady, Carol A.; Bally, John; Brinkmann, Jonathan V.; Bubeck, James; Gong, Qian; Hilton, George M.; Ketzeback, William F.; Lindler, Don; Llop Sayson, Jorge; Malatesta, Michael A.; Norton, Timothy; Rauscher, Bernard J.; Rothe, Johannes; Straka, Lorrie; Wilkins, Ashlee N.; Wisniewski, John P.; Woodgate, Bruce E.; York, Donald G.

    2015-01-01

    We present the current status and progress towards photon counting with the Goddard Integral Field Spectrograph (GIFS), a new instrument at the Apache Point Observatory's ARC 3.5m telescope. GIFS is a visible light imager and integral field spectrograph operating from 400-1000 nm over a 2.8' x 2.8' and 14' x 14' field of view, respectively. As an IFS, GIFS obtains over 1000 spectra simultaneously and its data reduction pipeline reconstructs them into an image cube that has 32 x 32 spatial elements and more than 200 spectral channels. The IFS mode can be applied to a wide variety of science programs including exoplanet transit spectroscopy, protostellar jets, the galactic interstellar medium probed by background quasars, Lyman-alpha emission line objects, and spectral imaging of galactic winds. An electron-multiplying CCD (EMCCD) detector enables photon counting in the high spectral resolution mode to be demonstrated at the ARC 3.5m in early 2015. The EMCCD work builds upon successful operational and characterization tests that have been conducted in the IFS laboratory at NASA Goddard. GIFS sets out to demonstrate an IFS photon-counting capability on-sky in preparation for future exoplanet direct imaging missions such as the AFTA-Coronagraph, Exo-C, and ATLAST mission concepts. This work is supported by the NASA APRA program under RTOP 10-APRA10-0103.

  17. Holographic Optical Element-Based Laser Diode Source System for Direct Metal Deposition in Space, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To meet the challenges of rapid prototyping, direct hardware fabrication, and on-the-spot repairs on the ground and on NASA space platforms, Physical Optics...

  18. Public perceptions of the risks of an unfamiliar technology: The case of using nuclear energy sources for space missions

    Science.gov (United States)

    Maharik, Michael

    This thesis addresses the public perception of the risk of a technology not widely known to laypeople. Its aims were (1) to characterize public perceptions of the risk of using nuclear energy in space and decisions related to this risk, and (2) to extend the 'mental model' methodology to studying public perception of unfamiliar, risky technologies. A model of the physical processes capable of creating risks from using nuclear energy sources in space was first constructed. Then, knowledge and beliefs related to this topic were elicited from three different groups of people. The generality of the findings was examined in a constructive replication with environmentally-oriented people. The possibility of involving the public in decision-making processes related to engineering macro-design was then investigated. Finally, a communication regarding these risk processes was developed and evaluated in an experiment comparing it with communications produced by NASA. Although they included large portions of the expert model, people's beliefs also had gaps and misconceptions. Respondents often used scientific terms without a clear understanding of what they meant. Respondents' mental models sometimes contained scattered and inconsistent entries. The impact of pre-existing mental models was clearly seen. Different groups of people had different patterns of knowledge and beliefs. Nevertheless, respondents expressed reasonable and coherent opinions on choices among engineering options. The CMU brochure, derived from the study of readers' existing mental models, provided a better risk communication tool than NASA's material, reflecting primarily experts' perspective. The better performance of subjects reading either brochure generally reflected adding knowledge on issues that they had not previously known, rather than correcting wrong beliefs. The communication study confirmed a hypothesis that improving knowledge on risk processes related to the use of a technology causes a more

  19. Low cost monitoring from space using Landsat TM time series and open source technologies: the case study of Iguazu park

    Science.gov (United States)

    Nole, Gabriele; Lasaponara, Rosa

    2015-04-01

    Up to nowadays, satellite data have become increasingly available, thus offering a low cost or even free of charge unique tool, with a great potential for operational monitoring of vegetation cover, quantitative assessment of urban expansion and urban sprawl, as well as for monitoring of land use changes and soil consumption. This growing observational capacity has also highlighted the need for research efforts aimed at exploring the potential offered by data processing methods and algorithms, in order to exploit as much as possible this invaluable space-based data source. The work herein presented concerns an application study on the monitoring of vegetation cover and urban sprawl conducted with the use of satellite Landsat TM data. The selected test site is the Iguazu park highly significant, being it one of the most threatened global conservation priorities (http://whc.unesco.org/en/list/303/). In order to produce synthetic maps of the investigated areas to monitor the status of vegetation and ongoing subtle changes, satellite Landsat TM data images were classified using two automatic classifiers, Maximum Likelihood (MLC) and Support Vector Machines (SVMs) applied by changing setting parameters, with the aim to compare their respective performances in terms of robustness, speed and accuracy. All process steps have been developed integrating Geographical Information System and Remote Sensing, and adopting free and open source software. Results pointed out that the SVM classifier with RBF kernel was generally the best choice (with accuracy higher than 90%) among all the configurations compared, and the use of multiple bands globally improves classification. One of the critical elements found in the case of monitoring of urban area expansion is given by the presence of urban garden mixed with urban fabric. The use of different configurations for the SVMs, i.e. different kernels and values of the setting parameters, allowed us to calibrate the classifier also to

  20. Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain's source space.

    Directory of Open Access Journals (Sweden)

    Gernot G Supp

    Full Text Available The increase of induced gamma-band responses (iGBRs; oscillations >30 Hz elicited by familiar (meaningful objects is well established in electroencephalogram (EEG research. This frequency-specific change at distinct locations is thought to indicate the dynamic formation of local neuronal assemblies during the activation of cortical object representations. As analytically power increase is just a property of a single location, phase-synchrony was introduced to investigate the formation of large-scale networks between spatially distant brain sites. However, classical phase-synchrony reveals symmetric, pair-wise correlations and is not suited to uncover the directionality of interactions. Here, we investigated the neural mechanism of visual object processing by means of directional coupling analysis going beyond recording sites, but rather assessing the directionality of oscillatory interactions between brain areas directly. This study is the first to identify the directionality of oscillatory brain interactions in source space during human object recognition and suggests that familiar, but not unfamiliar, objects engage widespread reciprocal information flow. Directionality of cortical information-flow was calculated based upon an established Granger-Causality coupling-measure (partial-directed coherence; PDC using autoregressive modeling. To enable comparison with previous coupling studies lacking directional information, phase-locking analysis was applied, using wavelet-based signal decompositions. Both, autoregressive modeling and wavelet analysis, revealed an augmentation of iGBRs during the presentation of familiar objects relative to unfamiliar controls, which was localized to inferior-temporal, superior-parietal and frontal brain areas by means of distributed source reconstruction. The multivariate analysis of PDC evaluated each possible direction of brain interaction and revealed widespread reciprocal information-transfer during familiar

  1. Simulation of the Ozone Monitoring Instrument aerosol index using the NASA Goddard Earth Observing System aerosol reanalysis products

    Science.gov (United States)

    Colarco, Peter R.; Gassó, Santiago; Ahn, Changwoo; Buchard, Virginie; da Silva, Arlindo M.; Torres, Omar

    2017-11-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI near-UV aerosol retrieval algorithms (known as OMAERUV) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining to the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600 and 1013.25 hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial-resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  2. Space Station automation and robotics

    Science.gov (United States)

    1987-01-01

    A group of fifteen students in the Electrical Engineering Department at the University of Maryland, College Park, has been involved in a design project under the sponsorship of NASA Headquarters, NASA Goddard Space Flight Center and the Systems Research Center (SRC) at UMCP. The goal of the NASA/USRA project was to first obtain a refinement of the design work done in Spring 1986 on the proposed Mobile Remote Manipulator System (MRMS) for the Space Station. This was followed by design exercises involving the OMV and two armed service vehicle. Three students worked on projects suggested by NASA Goddard scientists for ten weeks this past summer. The knowledge gained from the summer design exercise has been used to improve our current design of the MRMS. To this end, the following program was undertaken for the Fall semester 1986: (1) refinement of the MRMS design; and (2) addition of vision capability to our design.

  3. Exergy analysis of a two-stage ground source heat pump with a vertical bore for residential space conditioning under simulated occupancy

    International Nuclear Information System (INIS)

    Ally, Moonis R.; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.

    2015-01-01

    Highlights: • Exergy and energy analysis of a vertical-bore ground source heat pump over a 12-month period is presented. • The ground provided more than 75% of the heating energy. • Performance metrics are presented. • Sources of systemic inefficiency are identified and prioritized using Exergy analysis. • Understanding performance metrics is vital for judicial use of renewable energy. - Abstract: This twelve-month field study analyzes the performance of a 7.56 W (2.16-ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m 2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kW h at summer and winter thermostat set points of 24.4 °C and 21.7 °C, respectively. The WA-GSHP shared the same 94.5 m vertical bore ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work, are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources

  4. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  5. Comparative study of CdTe sources used for deposition of CdTe thin films by close spaced sublimation technique

    Directory of Open Access Journals (Sweden)

    Wagner Anacleto Pinheiro

    2006-03-01

    Full Text Available Unlike other thin film deposition techniques, close spaced sublimation (CSS requires a short source-substrate distance. The kind of source used in this technique strongly affects the control of the deposition parameters, especially the deposition rate. When depositing CdTe thin films by CSS, the most common CdTe sources are: single-crystal or polycrystalline wafers, powders, pellets or pieces, a thick CdTe film deposited onto glass or molybdenum substrate (CdTe source-plate and a sintered CdTe powder. In this work, CdTe thin films were deposited by CSS technique from different CdTe sources: particles, powder, compact powder, a paste made of CdTe and propylene glycol and source-plates (CdTe/Mo and CdTe/glass. The largest deposition rate was achieved when a paste made of CdTe and propylene glycol was used as the source. CdTe source-plates led to lower rates, probably due to the poor heat transmission, caused by the introduction of the plate substrate. The results also showed that compacting the powder the deposition rate increases due to the better thermal contact between powder particles.

  6. Group Analysis in FieldTrip of Time-Frequency Responses: A Pipeline for Reproducibility at Every Step of Processing, Going From Individual Sensor Space Representations to an Across-Group Source Space Representation

    Directory of Open Access Journals (Sweden)

    Lau M. Andersen

    2018-05-01

    Full Text Available An important aim of an analysis pipeline for magnetoencephalographic (MEG data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer his or her questions. The example question being answered here is whether the so-called beta rebound differs between novel and repeated stimulations. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The data analyzed are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. The processing steps covered for the first analysis are MaxFiltering the raw data, defining, preprocessing and epoching the data, cleaning the data, finding and removing independent components related to eye blinks, eye movements and heart beats, calculating participants' individual evoked responses by averaging over epoched data and subsequently removing the average response from single epochs, calculating a time-frequency representation and baselining it with non-stimulation trials and finally calculating a grand average, an across-group sensor space representation. The second analysis starts from the grand average sensor space representation and after identification of the beta rebound the neural origin is imaged using beamformer source reconstruction. This analysis covers reading in co-registered magnetic resonance images, segmenting the data, creating a volume conductor, creating a forward model, cutting out MEG data of interest in the time and frequency domains, getting Fourier transforms and estimating source activity with a beamformer model where power is expressed relative to MEG data measured during periods of non-stimulation. Finally, morphing the source estimates onto a common template and performing group-level statistics on the data are

  7. Free-Space Quantum Key Distribution with a High Generation Rate KTP Waveguide Photon-Pair Source

    Science.gov (United States)

    Wilson, J.; Chaffee, D.; Wilson, N.; Lekki, J.; Tokars, R.; Pouch, J.; Lind, A.; Cavin, J.; Helmick, S.; Roberts, T.; hide

    2016-01-01

    NASA awarded Small Business Innovative Research (SBIR) contracts to AdvR, Inc to develop a high generation rate source of entangled photons that could be used to explore quantum key distribution (QKD) protocols. The final product, a photon pair source using a dual-element periodically- poled potassium titanyl phosphate (KTP) waveguide, was delivered to NASA Glenn Research Center in June of 2015. This paper describes the source, its characterization, and its performance in a B92 (Bennett, 1992) protocol QKD experiment.

  8. A Space Experiment to Measure the Atomic Oxygen Erosion of Polymers and Demonstrate a Technique to Identify Sources of Silicone Contamination

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Baney-Barton, Elyse; Sechkar, Edward A.; Hunt, Patricia K.; Willoughby, Alan; Bemer, Meagan; Hope, Stephanie; Koo, Julie; Kaminski, Carolyn; hide

    1999-01-01

    A low Earth orbital space experiment entitled, "Polymers Erosion And Contamination Experiment", (PEACE) has been designed as a Get-Away Special (GAS Can) experiment to be accommodated as a Shuttle in-bay environmental exposure experiment. The first objective is to measure the atomic oxygen erosion yields of approximately 40 different polymeric materials by mass loss and erosion measurements using atomic force microscopy. The second objective is to evaluate the capability of identifying sources of silicone contamination through the use of a pin-hole contamination camera which utilizes environmental atomic oxygen to produce a contaminant source image on an optical substrate.

  9. 26 CFR 1.863-8 - Source of income derived from space and ocean activity under section 863(d).

    Science.gov (United States)

    2010-04-01

    ..., DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Regulations Applicable to Taxable... from sources without the United States to the extent the income, based on all the facts and... income derived by a CFC is income from sources without the United States to the extent the income, based...

  10. Evaluating the Performance of the Goddard Multi-Scale Modeling Framework against GPM, TRMM and CloudSat/CALIPSO Products

    Science.gov (United States)

    Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Mohr, K. I.

    2014-12-01

    Four six-month (March-August 2014) experiments with the Goddard Multi-scale Modeling Framework (MMF) were performed to study the impacts of different Goddard one-moment bulk microphysical schemes and large-scale forcings on the performance of the MMF. Recently a new Goddard one-moment bulk microphysics with four-ice classes (cloud ice, snow, graupel, and frozen drops/hail) has been developed based on cloud-resolving model simulations with large-scale forcings from field campaign observations. The new scheme has been successfully implemented to the MMF and two MMF experiments were carried out with this new scheme and the old three-ice classes (cloud ice, snow graupel) scheme. The MMF has global coverage and can rigorously evaluate microphysics performance for different cloud regimes. The results show MMF with the new scheme outperformed the old one. The MMF simulations are also strongly affected by the interaction between large-scale and cloud-scale processes. Two MMF sensitivity experiments with and without nudging large-scale forcings to those of ERA-Interim reanalysis were carried out to study the impacts of large-scale forcings. The model simulated mean and variability of surface precipitation, cloud types, cloud properties such as cloud amount, hydrometeors vertical profiles, and cloud water contents, etc. in different geographic locations and climate regimes are evaluated against GPM, TRMM, CloudSat/CALIPSO satellite observations. The Goddard MMF has also been coupled with the Goddard Satellite Data Simulation Unit (G-SDSU), a system with multi-satellite, multi-sensor, and multi-spectrum satellite simulators. The statistics of MMF simulated radiances and backscattering can be directly compared with satellite observations to assess the strengths and/or deficiencies of MMF simulations and provide guidance on how to improve the MMF and microphysics.

  11. Group Analysis in MNE-Python of Evoked Responses from a Tactile Stimulation Paradigm: A Pipeline for Reproducibility at Every Step of Processing, Going from Individual Sensor Space Representations to an across-Group Source Space Representation.

    Science.gov (United States)

    Andersen, Lau M

    2018-01-01

    An important aim of an analysis pipeline for magnetoencephalographic data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer the questions of the researcher, while in turn spending minimal effort on the intricacies and machinery of the pipeline. I here present a set of functions and scripts that allow for setting up a clear, reproducible structure for separating raw and processed data into folders and files such that minimal effort can be spend on: (1) double-checking that the right input goes into the right functions; (2) making sure that output and intermediate steps can be accessed meaningfully; (3) applying operations efficiently across groups of subjects; (4) re-processing data if changes to any intermediate step are desirable. Applying the scripts requires only general knowledge about the Python language. The data analyses are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The processing steps covered for the first analysis are filtering the raw data, finding events of interest in the data, epoching data, finding and removing independent components related to eye blinks and heart beats, calculating participants' individual evoked responses by averaging over epoched data and calculating a grand average sensor space representation over participants. The second analysis starts from the participants' individual evoked responses and covers: estimating noise covariance, creating a forward model, creating an inverse operator, estimating distributed source activity on the cortical surface using a minimum norm procedure, morphing those estimates onto a common cortical template and calculating the patterns of activity

  12. Group Analysis in MNE-Python of Evoked Responses from a Tactile Stimulation Paradigm: A Pipeline for Reproducibility at Every Step of Processing, Going from Individual Sensor Space Representations to an across-Group Source Space Representation

    Directory of Open Access Journals (Sweden)

    Lau M. Andersen

    2018-01-01

    Full Text Available An important aim of an analysis pipeline for magnetoencephalographic data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer the questions of the researcher, while in turn spending minimal effort on the intricacies and machinery of the pipeline. I here present a set of functions and scripts that allow for setting up a clear, reproducible structure for separating raw and processed data into folders and files such that minimal effort can be spend on: (1 double-checking that the right input goes into the right functions; (2 making sure that output and intermediate steps can be accessed meaningfully; (3 applying operations efficiently across groups of subjects; (4 re-processing data if changes to any intermediate step are desirable. Applying the scripts requires only general knowledge about the Python language. The data analyses are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The processing steps covered for the first analysis are filtering the raw data, finding events of interest in the data, epoching data, finding and removing independent components related to eye blinks and heart beats, calculating participants' individual evoked responses by averaging over epoched data and calculating a grand average sensor space representation over participants. The second analysis starts from the participants' individual evoked responses and covers: estimating noise covariance, creating a forward model, creating an inverse operator, estimating distributed source activity on the cortical surface using a minimum norm procedure, morphing those estimates onto a common cortical template and calculating the patterns

  13. Impact of Ada and object-oriented design in the flight dynamics division at Goddard Space Flight Center

    Science.gov (United States)

    Waligora, Sharon; Bailey, John; Stark, Mike

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  14. Development of cancer medical treatment/diagnostic equipment using the source of X-rays in space coherence

    International Nuclear Information System (INIS)

    Sato, Isamu; Shintomi, Kazutaka; Hayakawa, Ken

    2009-01-01

    In Nihon University, the research and development of Parametric X-rays radiation (PXR) by the 100 MeV electron linac are advanced. It was proved by basic experiment that PXR was a source of coherent X-rays. Coherent X-rays have the characteristic that a refraction action is guided with an irradiation matter. According to this action, the contrast image pick-up of an irradiation matter is attained, and X-rays becomes possible to focus a point itself. Research of cancer medical treatment and diagnosis are advanced using the new source of X-ray. Miniaturization of the source is important for the spread of cancer medical new treatment and diagnoses. Recently, the tabletop type 100 MeV class cryogenic linac with energy recovery is under development. In symposium, we report progress of these research and development. (author)

  15. Quantification of Greenhouse Gas Emission Rates from strong Point Sources by Space-borne IPDA Lidar Measurements: Results from a Sensitivity Analysis Study

    Science.gov (United States)

    Ehret, G.; Kiemle, C.; Rapp, M.

    2017-12-01

    The practical implementation of the Paris Agreement (COP21) vastly profit from an independent, reliable and global measurement system of greenhouse gas emissions, in particular of CO2, in order to complement and cross-check national efforts. Most fossil-fuel CO2 emitters emanate from large sources such as cities and power plants. These emissions increase the local CO2 abundance in the atmosphere by 1-10 parts per million (ppm) which is a signal that is significantly larger than the variability from natural sources and sinks over the local source domain. Despite these large signals, they are only sparsely sampled by the ground-based network which calls for satellite measurements. However, none of the existing and forthcoming passive satellite instruments, operating in the NIR spectral domain, can measure CO2 emissions at night time or in low sunlight conditions and in high latitude regions in winter times. The resulting sparse coverage of passive spectrometers is a serious limitation, particularly for the Northern Hemisphere, since these regions exhibit substantial emissions during the winter as well as other times of the year. In contrast, CO2 measurements by an Integrated Path Differential Absorption (IPDA) Lidar are largely immune to these limitations and initial results from airborne application look promising. In this study, we discuss the implication for a space-borne IPDA Lidar system. A Gaussian plume model will be used to simulate the CO2-distribution of large power plants downstream to the source. The space-borne measurements are simulated by applying a simple forward model based on Gaussian error distribution. Besides the sampling frequency, the sampling geometry (e.g. measurement distance to the emitting source) and the error of the measurement itself vastly impact on the flux inversion performance. We will discuss the results by incorporating Gaussian plume and mass budget approaches to quantify the emission rates.

  16. Nuclear power in space. Use of reactors and radioactive substances as power sources in satellites and space probes; Kaernkraft i rymden. Anvaendningen av reaktorer och radioaktiva aemnen som kraftkaellor i satelliter och rymdsonder

    Energy Technology Data Exchange (ETDEWEB)

    Hoestbaeck, Lars

    2008-11-15

    Today solar panels are the most common technique to supply power to satellites. Solar panels will work as long as the power demand of the satellite is limited and the satellite can be equipped with enough panels, and kept in an orbit that allows enough sunlight to hit the panels. There are various types of space missions that do not fulfil these criteria. With nuclear power these types of missions can be powered regardless of the sunlight and as early as 1961 the first satellite with a nuclear power source was placed in orbit. Out of seventy known space missions that has made use of nuclear power, ten have had some kind of failure. In no case has the failure been associated with the nuclear technology used. This report discusses to what degree satellites with nuclear power are a source for potential radioactive contamination of Swedish territory. It is not a discussion for or against nuclear power in space. Neither is it an assessment of consequences if radioactive material from a satellite would reach the earth's surface. Historically two different kinds of Nuclear Power Sources (NPS) have been used to generate electric power in space. The first is the reactor where the energy is derived from nuclear fission of 235U and the second is the Radioisotope Thermoelectric Generator (RTG) where electricity is generated from the heat of naturally decaying radionuclides. NPS has historically only been used in space by United States and the Soviet Union (and in one failing operation Russia). Nuclear Power Sources have been used in three types of space objects: satellites, space probes and moon/Mars vehicles. USA has launched one experimental reactor into orbit, all other use of NPS by the USA has been RTG:s. The Soviet Union, in contrast, only launched a few RTG:s but nearly forty reactors. The Soviet use of NPS is less transparent than the use in USA and some data published on Soviet systems are more or less well substantiated assessments. It is likely that also future

  17. Estimating the Seasonal Importance of Precipitation to Plant Source Water over Time and Space with Water Isotopes

    Science.gov (United States)

    Nelson, D. B.; Kahmen, A.

    2017-12-01

    The stable isotopic composition of hydrogen and oxygen are physical properties of water molecules that can carry information on their sources or transport histories. This provides a useful tool for assessing the importance of rainfall at different times of the year for plant growth, provided that rainwater values vary over time and that waters do not partially evaporate after deposition. We tested the viability of this approach using data from samples collected at nineteen sites throughout Europe at monthly intervals over two consecutive growing seasons in 2014 and 2015. We compared isotope measurements of plant xylem water with soil water from multiple depths, and measured and modeled precipitation isotope values. Paired analyses of oxygen and hydrogen isotope values were used to screen out a limited number of water samples that were influenced by evaporation, with the majority of all water samples indicating meteoric sources. The isotopic composition of soil and xylem waters varied over the course of an individual growing season, with many trending towards more enriched values, suggesting integration of the plant-relevant water pool at a timescale shorter than the annual mean. We then quantified how soil water residence times varied at each site by calculating the interval between measured xylem water and the most recently preceding match in modeled precipitation isotope values. Results suggest a generally increasing interval between rainfall and plant uptake throughout each year, with source water corresponding to dates in the spring, likely reflecting a combination of spring rain, and mixing with winter and summer precipitation. The seasonally evolving spatial distribution of source water-precipitation lag values was then modeled as a function of location and climatology to develop continental-scale predictions. This spatial portrait of the average date for filling the plant source water pool provides insights on the seasonal importance of rainfall for plant

  18. Value-added Data Services at the Goddard Earth Sciences Data and Information Services Center

    Science.gov (United States)

    Leptoukh, G. G.; Alcott, G. T.; Kempler, S. J.; Lynnes, C. S.; Vollmer, B. E.

    2004-05-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in addition to serving the Earth Science community as one of the major Distributed Active Archive Centers (DAACs), provides much more than just data. Among the value-added services available to general users are subsetting data spatially and/or by parameter, online analysis (to avoid downloading unnecessary all the data), and assistance in obtaining data from other centers. Services available to data producers and high-volume users include consulting on building new products with standard formats and metadata and construction of data management systems. A particularly useful service is data processing at the DISC (i.e., close to the input data) with the users' algorithms. This can take a number of different forms: as a configuration-managed algorithm within the main processing stream; as a stand-alone program next to the on-line data storage; as build-it-yourself code within the Near-Archive Data Mining (NADM) system; or as an on-the-fly analysis with simple algorithms embedded into the web-based tools. Partnerships between the GES DISC and scientists, both producers and users, allow the scientists concentrate on science, while the GES DISC handles the of data management, e.g., formats, integration and data processing. The existing data management infrastructure at the GES DISC supports a wide spectrum of options: from simple data support to sophisticated on-line analysis tools, producing economies of scale and rapid time-to-deploy. At the same time, such partnerships allow the GES DISC to serve the user community more efficiently and to better prioritize on-line holdings. Several examples of successful partnerships are described in the presentation.

  19. Inclusion of Linearized Moist Physics in Nasa's Goddard Earth Observing System Data Assimilation Tools

    Science.gov (United States)

    Holdaway, Daniel; Errico, Ronald; Gelaro, Ronaldo; Kim, Jong G.

    2013-01-01

    Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa-Schubert (RAS) convection scheme has been developed and tested in NASA's Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture.

  20. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    Science.gov (United States)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  1. Web Services Implementations at Land Process and Goddard Earth Sciences Distributed Active Archive Centers

    Science.gov (United States)

    Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.

    2007-12-01

    NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.

  2. Monuments in the Structure of an Urban Environment: The Source of Social Memory and the Marker of the Urban Space

    Science.gov (United States)

    Antonova, N.; Grunt, E.; Merenkov, A.

    2017-10-01

    The major research objective was to analyze the role of monuments in the formation of local residents’ and guests’ representations about the city, its history and traditions. The authors consider the system of monuments’ location in the urban space as a way of its social construction, as the system of influence on citizens’ aesthetic feelings, as the formation of their attitudes towards maintaining of continuity in the activities of different generations for the improvement of the territory of their permanent residence. Methodology. An urban monument is considered in two ways: as a transfer of historical memory and as a social memory transfer, which includes the experience of previous generations. One of the main provisions of the study is the idea that monuments can lose their former social value, transforming into “simple” objects of a public place. The study was conducted in the city of Yekaterinburg, one of the largest, cultural, scientific and industrial Russian megalopolises in 2015. The primary data was collected using standardized interviews. Four hundred and twenty respondents at the age of and above 18 were questioned on the basis of quota sampling. Interviews with respondents were conducted in order to identify key problems involved and reasons for shaping respondents’ representations of monuments in the urban environment typical for the population of Russian megalopolises. The standardized interview guide included 15 questions. Findings and discussion. Our investigation has revealed that different monuments fulfil various functions in an urban environment (ideological, aesthetic, transferring, valuable, etc.). The study has unequivocally confirmed that objects in the urban space have a different emotional colour background: people paint them in accordance with the feelings that arise in their perception. Hence, some monuments effectively fulfil the functions of social memory transfer: they are remembered, they tell us about the events to

  3. High Source Levels and Small Active Space of High-Pitched Song in Bowhead Whales (Balaena mysticetus)

    DEFF Research Database (Denmark)

    Tervo, Outi M.; Christoffersen, Mads F.; Simon, Malene

    2012-01-01

    The low frequency, powerful vocalizations of blue and fin whales may potentially be detected by conspecifics across entire ocean basins. In contrast, humpback and bowhead whales produce equally loud, but more complex broadband vocalizations composed of higher frequencies that suffer from higher...... notes is between 40 and 130 km, an order of magnitude smaller than the estimated active space of low frequency blue and fin whale songs produced at similar source levels and for similar noise conditions. We propose that bowhead whales spatially compensate for their smaller communication range through...

  4. Observations of the Hubble Deep Field with the Infrared Space Observatory .3. Source counts and P(D) analysis

    DEFF Research Database (Denmark)

    Oliver, S.J.; Goldschmidt, P.; Franceschini, A.

    1997-01-01

    We present source counts at 6.7 and 15 mu m from our maps of the Hubble Deep Field (HDF) region, reaching 38.6 mu Jy at 6.7 mu m and 255 mu Jy at 15 mu m. These are the first ever extragalactic number counts to be presented at 6.7 mu m, and are three decades fainter than IRAS at 12 mu m. Both...

  5. The identification of Volatile Organic Compound's emission sources in indoor air of living spaces, offices and laboratories

    Science.gov (United States)

    Kultys, Beata

    2018-01-01

    Indoor air quality is important because people spend most of their time in closed rooms. If volatile organic compounds (VOCs) are present at elevated concentrations, they may cause a deterioration in human well-being or health. The identification of indoor emission sources is carried out by comparison indoor and outdoor air composition. The aim of the study was to determinate the concentration of VOCs in indoor air, where there was a risk of elevated levels due to the kind of work type carried out or the users complained about the symptoms of a sick building followed by an appropriate interpretation of the results to determine whether the source of the emission in the tested room occurs. The air from residential, office and laboratory was tested in this study. The identification of emission sources was based on comparison of indoor and outdoor VOCs concentration and their correlation coefficients. The concentration of VOCs in all the rooms were higher or at a similar level to that of the air sampled at the same time outside the building. Human activity, in particular repair works and experiments with organic solvents, has the greatest impact on deterioration of air quality.

  6. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Model Simulations for Tropical and Continental Summertime Environments

    Science.gov (United States)

    Lang, S. E.; Tao, W. K.; Wu, D.

    2016-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm is used to retrieve estimates of cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (or GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. The strength of the algorithm relies in part on the representativeness of the simulations; more realistic simulations provide a stronger link between the observables and simulated heating profiles. The current "TRMM" version of the CSH algorithm relies on 2D GCE simulations using an improved version of the Goddard 3-class ice scheme (3ICE), a moderate-sized domain, and 1-km horizontal resolution. Updating the LUTs, which are suitable for tropical and continental summertime environments requires new, more realistic GCE simulations. New simulations are performed using a new, improved 4-class ice scheme, which has been shown to outperform the 3ICE scheme, especially for intense convection. Additional grid configurations are also tested and evaluated to find the best overall setup to for re-deriving and updating the CSH tropical/summertime LUTs.

  7. Marangoni convection in Casson liquid flow due to an infinite disk with exponential space dependent heat source and cross-diffusion effects

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.; Shashikumar, N. S.; Hayat, T.; Alsaedi, A.

    2018-06-01

    Present work aims to investigate the features of the exponential space dependent heat source (ESHS) and cross-diffusion effects in Marangoni convective heat mass transfer flow due to an infinite disk. Flow analysis is comprised with magnetohydrodynamics (MHD). The effects of Joule heating, viscous dissipation and solar radiation are also utilized. The thermal and solute field on the disk surface varies in a quadratic manner. The ordinary differential equations have been obtained by utilizing Von Kármán transformations. The resulting problem under consideration is solved numerically via Runge-Kutta-Fehlberg based shooting scheme. The effects of involved pertinent flow parameters are explored by graphical illustrations. Results point out that the ESHS effect dominates thermal dependent heat source effect on thermal boundary layer growth. The concentration and temperature distributions and their associated layer thicknesses are enhanced by Marangoni effect.

  8. Evaluation of model-simulated source contributions to tropospheric ozone with aircraft observations in the factor-projected space

    Directory of Open Access Journals (Sweden)

    Y. Yoshida

    2008-03-01

    Full Text Available Trace gas measurements of TOPSE and TRACE-P experiments and corresponding global GEOS-Chem model simulations are analyzed with the Positive Matrix Factorization (PMF method for model evaluation purposes. Specially, we evaluate the model simulated contributions to O3 variability from stratospheric transport, intercontinental transport, and production from urban/industry and biomass burning/biogenic sources. We select a suite of relatively long-lived tracers, including 7 chemicals (O3, NOy, PAN, CO, C3H8, CH3Cl, and 7Be and 1 dynamic tracer (potential temperature. The largest discrepancy is found in the stratospheric contribution to 7Be. The model underestimates this contribution by a factor of 2–3, corresponding well to a reduction of 7Be source by the same magnitude in the default setup of the standard GEOS-Chem model. In contrast, we find that the simulated O3 contributions from stratospheric transport are in reasonable agreement with those derived from the measurements. However, the springtime increasing trend over North America derived from the measurements are largely underestimated in the model, indicating that the magnitude of simulated stratospheric O3 source is reasonable but the temporal distribution needs improvement. The simulated O3 contributions from long-range transport and production from urban/industry and biomass burning/biogenic emissions are also in reasonable agreement with those derived from the measurements, although significant discrepancies are found for some regions.

  9. Know Your Enemy - Implementation of Bioremediation within a Suspected DNAPL Source Zone Following High-Resolution Site Characterization at Contractors Road Heavy Equipment Area, Kennedy Space Center, Florida

    Science.gov (United States)

    Chrest, Anne; Daprato, Rebecca; Burcham, Michael; Johnson, Jill

    2018-01-01

    The National Aeronautics and Space Administration (NASA), Kennedy Space Center (KSC), has adopted high-resolution site characterization (HRSC) sampling techniques during baseline sampling prior to implementation of remedies to confirm and refine the conceptual site model (CSM). HRSC sampling was performed at Contractors Road Heavy Equipment Area (CRHE) prior to bioremediation implementation to verify the extent of the trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source area (defined as the area with TCE concentrations above 1% solubility) and its daughter product dissolved plume that had been identified during previous HRSC events. The results of HRSC pre-bioremediation implementation sampling suggested that the TCE source area was larger than originally identified during initial site characterization activities, leading to a design refinement to improve electron donor distribution and increase the likelihood of achieving remedial objectives. Approach/Activities: HRSC was conducted from 2009 through 2014 to delineate the vertical and horizontal extent of chlorinated volatile organic compounds (CVOCs) in the groundwater. Approximately 2,340 samples were collected from 363 locations using direct push technology (DPT) groundwater sampling techniques. Samples were collected from up to 14 depth intervals at each location using a 4-foot sampling screen. This HRSC approach identified a narrow (approx. 5 to 30 feet wide), approximately 3,000 square foot TCE DNAPL source area (maximum detected TCE concentration of 160,000 micrograms per liter [micro-g/L] at DPT sampling location DPT0225). Prior to implementation of a bioremediation interim measure, HRSC baseline sampling was conducted using DPT groundwater sampling techniques. Concentrations of TCE were an order of magnitude lower than previous reported (12,000 micro-g/L maximum at DPT sampling location DPT0225) at locations sampled adjacent to previous sampling locations. To further evaluate the variability

  10. The Polarimeter for Relativistic Astrophysical X-ray Sources

    Science.gov (United States)

    Jahoda, Keith; Kallman, Timothy R.; Kouveliotou, Chryssa; Angelini, Lorella; Black, J. Kevin; Hill, Joanne E.; Jaeger, Theodore; Kaaret, Philip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Schnittman, Jeremy; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru

    2016-07-01

    The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study, with a launch date in 2020. The PRAXyS Observatory exploits grazing incidence X-ray mirrors and Time Projection Chamber Polarimeters capable of measuring the linear polarization of cosmic X-ray sources in the 2-10 keV band. PRAXyS combines well-characterized instruments with spacecraft rotation to ensure low systematic errors. The PRAXyS payload is developed at the Goddard Space Flight Center with the Johns Hopkins University Applied Physics Laboratory, University of Iowa, and RIKEN (JAXA) collaborating on the Polarimeter Assembly. The LEOStar-2 spacecraft bus is developed by Orbital ATK, which also supplies the extendable optical bench that enables the Observatory to be compatible with a Pegasus class launch vehicle. A nine month primary mission will provide sensitive observations of multiple black hole and neutron star sources, where theory predicts polarization is a strong diagnostic, as well as exploratory observations of other high energy sources. The primary mission data will be released to the community rapidly and a Guest Observer extended mission will be vigorously proposed.

  11. Beam extraction dynamics at the space-charge-limit of the high brightness E-XFEL electron source at DESY-PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ye; Gjonaj, Erion; Weiland, Thomas [TEMF, Technische Universitaet Darmstadt, Schlossgartenstrasse 8, 64289 Darmstadt (Germany)

    2015-07-01

    The physics of the photoemission, as one of the key issues for successful operation of linac based free-electron lasers like the European X-ray Free Electron Laser (E-XFEL) and the Free-electron Laser in Hamburg (FLASH), is playing an increasingly important role in the high brightness DESY-PITZ electron source. We study photoemission physics and discuss full three-dimensional numerical modeling of the electron bunch emission. The beam extraction dynamics at the photocathode has been investigated through the 3D fully electromagnetic (EM) Particle-in-Cell (PIC) solver of CST Particle Studio under the assumption of the photoemission source operating at or close to its space charge limit. PIC simulation results have shown good agreements with measurements on total emitted bunch charge for distinct experimental parameters. Further comparisons showed a general failure for the conventional Poisson solver based tracking algorithm to correctly predict the beam dynamics at the space charge limit. It is furthermore found, that fully EM PIC simulations are also consistent with a simple emission model based on the multidimensional Child-Langmuir law.

  12. Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF electron source for the European X-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Roensch, Juliane

    2010-01-15

    The Photoinjector Test facility at DESY, Zeuthen site, (PITZ) is aiming for the optimization of electron guns for SAS-FELs. For this it is necessary to investigate the characteristics of the six dimensional phase space of the bunch produced by a photoinjector. This thesis is focused on the analysis of the longitudinal properties of the electron bunch distribution, this means the temporal current distribution and the momentum distribution as well as the correlation of both properties. The complete distribution of the electron bunch in longitudinal phase space of a photoinjector was measured directly for the first time at a beam momentum of about 5 MeV/c, using an existing apparatus. This system had been designed for an accelerating gradient of 40 MV/m. Its subcomponents were analysed to understand sources of uncertainties of the measurement system. The usage of higher accelerating gradients in the gun (60 MV/m, resulting in a beam momentum of about 6.8 MeV/c) demands major modifications of the existing measurement system for the longitudinal phase space distribution. An upgrade of the facility by an additional accelerating cavity required the design of further longitudinal diagnostics systems for the analysis at higher momenta (up to 40 MeV/c). Measurements of the longitudinal beam properties to determine the influence of different operation parameters, like RF launch phase, charge, accelerating field gradient and laser distribution were performed and compared to simulations. (orig.)

  13. Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF electron source for the European X-FEL

    International Nuclear Information System (INIS)

    Roensch, Juliane

    2010-01-01

    The Photoinjector Test facility at DESY, Zeuthen site, (PITZ) is aiming for the optimization of electron guns for SAS-FELs. For this it is necessary to investigate the characteristics of the six dimensional phase space of the bunch produced by a photoinjector. This thesis is focused on the analysis of the longitudinal properties of the electron bunch distribution, this means the temporal current distribution and the momentum distribution as well as the correlation of both properties. The complete distribution of the electron bunch in longitudinal phase space of a photoinjector was measured directly for the first time at a beam momentum of about 5 MeV/c, using an existing apparatus. This system had been designed for an accelerating gradient of 40 MV/m. Its subcomponents were analysed to understand sources of uncertainties of the measurement system. The usage of higher accelerating gradients in the gun (60 MV/m, resulting in a beam momentum of about 6.8 MeV/c) demands major modifications of the existing measurement system for the longitudinal phase space distribution. An upgrade of the facility by an additional accelerating cavity required the design of further longitudinal diagnostics systems for the analysis at higher momenta (up to 40 MeV/c). Measurements of the longitudinal beam properties to determine the influence of different operation parameters, like RF launch phase, charge, accelerating field gradient and laser distribution were performed and compared to simulations. (orig.)

  14. Switching Loss Reduction in the Three-Phase Quasi-Z-Source Inverters Utilizing Modified Space Vector Modulation Strategies

    DEFF Research Database (Denmark)

    Abdelhakim, Ahmed; Davari, Pooya; Blaabjerg, Frede

    2018-01-01

    Several single-stage topologies have been introduced since kicking off the three-phase Z-source inverter (ZSI), and among these topologies, the quasi-ZSI (qZSI) is the most common one due to its simple structure and continuous input current. Furthermore, different modulation strategies, utilizing...... multiple reference signals, have been developed as well. However, prior art modulation methods have some demerits, such as the complexity of generating the gate signals, the increased number of switch commutations with continuous commutation at high current level during the entire fundamental cycle...... the generation of the gate signals by utilizing only three reference signals, and achieving a single switch commutation at a time. These modulation strategies are analyzed and compared to the conventional ones, where a reduced-scale 1 kVA three-phase qZSI is designed and simulated using these different...

  15. Near-line Archive Data Mining at the Goddard Distributed Active Archive Center

    Science.gov (United States)

    Pham, L.; Mack, R.; Eng, E.; Lynnes, C.

    2002-12-01

    NASA's Earth Observing System (EOS) is generating immense volumes of data, in some cases too much to provide to users with data-intensive needs. As an alternative to moving the data to the user and his/her research algorithms, we are providing a means to move the algorithms to the data. The Near-line Archive Data Mining (NADM) system is the Goddard Earth Sciences Distributed Active Archive Center's (GES DAAC) web data mining portal to the EOS Data and Information System (EOSDIS) data pool, a 50-TB online disk cache. The NADM web portal enables registered users to submit and execute data mining algorithm codes on the data in the EOSDIS data pool. A web interface allows the user to access the NADM system. The users first develops personalized data mining code on their home platform and then uploads them to the NADM system. The C, FORTRAN and IDL languages are currently supported. The user developed code is automatically audited for any potential security problems before it is installed within the NADM system and made available to the user. Once the code has been installed the user is provided a test environment where he/she can test the execution of the software against data sets of the user's choosing. When the user is satisfied with the results, he/she can promote their code to the "operational" environment. From here the user can interactively run his/her code on the data available in the EOSDIS data pool. The user can also set up a processing subscription. The subscription will automatically process new data as it becomes available in the EOSDIS data pool. The generated mined data products are then made available for FTP pickup. The NADM system uses the GES DAAC-developed Simple Scalable Script-based Science Processor (S4P) to automate tasks and perform the actual data processing. Users will also have the option of selecting a DAAC-provided data mining algorithm and using it to process the data of their choice.

  16. Coincident ion acceleration and electron extraction for space propulsion using the self-bias formed on a set of RF biased grids bounding a plasma source

    International Nuclear Information System (INIS)

    Rafalskyi, D; Aanesland, A

    2014-01-01

    We propose an alternative method to accelerate ions in classical gridded ion thrusters and ion sources such that co-extracted electrons from the source may provide beam space charge neutralization. In this way there is no need for an additional electron neutralizer. The method consists of applying RF voltage to a two-grid acceleration system via a blocking capacitor. Due to the unequal effective area of the two grids in contact with the plasma, a dc self-bias is formed, rectifying the applied RF voltage. As a result, ions are continuously accelerated within the grid system while electrons are emitted in brief instants within the RF period when the RF space charge sheath collapses. This paper presents the first experimental results and a proof-of-principle. Experiments are carried out using the Neptune thruster prototype which is a gridded Inductively Coupled Plasma (ICP) source operated at 4 MHz, attached to a larger beam propagation chamber. The RF power supply is used both for the ICP discharge (plasma generation) and powering the acceleration grids via a capacitor for ion acceleration and electron extraction without any dc power supplies. The ion and electron energies, particle flux and densities are measured using retarding field energy analyzers (RFEA), Langmuir probes and a large beam target. The system operates in Argon and N 2 . The dc self-bias is found to be generated within the gridded extraction system in all the range of operating conditions. Broad quasi-neutral ion-electron beams are measured in the downstream chamber with energies up to 400 eV. The beams from the RF acceleration method are compared with classical dc acceleration with an additional external electron neutralizer. It is found that the two acceleration techniques provide similar performance, but the ion energy distribution function from RF acceleration is broader, while the floating potential of the beam is lower than for the dc accelerated beam. (paper)

  17. Effects of temperature, pressure and pure copper added to source material on the CuGaTe{sub 2} deposition using close spaced vapor transport technique

    Energy Technology Data Exchange (ETDEWEB)

    Abounachit, O. [LP2M2E, Faculté des Sciences et Techniques, Université Cadi Ayyad, Gueliz, BP 549 , Marrakech, Maroc (Morocco); Chehouani, H., E-mail: chehouani@hotmail.fr [LP2M2E, Faculté des Sciences et Techniques, Université Cadi Ayyad, Gueliz, BP 549 , Marrakech, Maroc (Morocco); Djessas, K. [CNRS-PROMES Tecnosud, Rambla de la Thermodynamique, 66100 Perpignan (France)

    2013-07-01

    The quality of CuGaTe{sub 2} (CGT) thin films elaborated by close spaced vapor transport technique has been studied as a function of the source temperature (T{sub S}), iodine pressure (P{sub I2}) and the amount (X{sub Cu}) of pure copper added to the stoichiometric starting material. A thermodynamic model was developed for the Cu–Ga–Te–I system to describe the CGT deposition. The model predicts the solid phase composition with possible impurities for the operating conditions previously mentioned. The conditions of stoichiometric and near-stoichiometric deposition were determined. The value of T{sub S} must range from 450 to 550 °C for P{sub I2} varying between 0.2 and 7 kPa. Adding an amount up to 10% of pure copper to the starting material improves the quality of the deposit layers and lowers the operating interval temperature to 325–550 °C. These optimal conditions were tested experimentally at 480 °C and 500 °C. The X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy have proved that the addition of pure copper to the stoichiometric source material can be considered as a supplementary operating parameter to improve the quality of CGT thin films. - Highlights: • The stoichiometric CuGaTe{sub 2} (CGT) has been deposited by close spaced vapor transport. • The Cu–Ga–Te–I system has been studied theoretically by minimizing the Gibbs energy. • The quality of thin films has been improved by pure copper added to the source CGT. • The temperature, pressure and the amount of copper added to grow CGT are determined. • The thermodynamic predictions are in good agreement with experimental results.

  18. A Bootstrap-Based Probabilistic Optimization Method to Explore and Efficiently Converge in Solution Spaces of Earthquake Source Parameter Estimation Problems: Application to Volcanic and Tectonic Earthquakes

    Science.gov (United States)

    Dahm, T.; Heimann, S.; Isken, M.; Vasyura-Bathke, H.; Kühn, D.; Sudhaus, H.; Kriegerowski, M.; Daout, S.; Steinberg, A.; Cesca, S.

    2017-12-01

    Seismic source and moment tensor waveform inversion is often ill-posed or non-unique if station coverage is poor or signals are weak. Therefore, the interpretation of moment tensors can become difficult, if not the full model space is explored, including all its trade-offs and uncertainties. This is especially true for non-double couple components of weak or shallow earthquakes, as for instance found in volcanic, geothermal or mining environments.We developed a bootstrap-based probabilistic optimization scheme (Grond), which is based on pre-calculated Greens function full waveform databases (e.g. fomosto tool, doi.org/10.5880/GFZ.2.1.2017.001). Grond is able to efficiently explore the full model space, the trade-offs and the uncertainties of source parameters. The program is highly flexible with respect to the adaption to specific problems, the design of objective functions, and the diversity of empirical datasets.It uses an integrated, robust waveform data processing based on a newly developed Python toolbox for seismology (Pyrocko, see Heimann et al., 2017, http://doi.org/10.5880/GFZ.2.1.2017.001), and allows for visual inspection of many aspects of the optimization problem. Grond has been applied to the CMT moment tensor inversion using W-phases, to nuclear explosions in Korea, to meteorite atmospheric explosions, to volcano-tectonic events during caldera collapse and to intra-plate volcanic and tectonic crustal events.Grond can be used to optimize simultaneously seismological waveforms, amplitude spectra and static displacements of geodetic data as InSAR and GPS (e.g. KITE, Isken et al., 2017, http://doi.org/10.5880/GFZ.2.1.2017.002). We present examples of Grond optimizations to demonstrate the advantage of a full exploration of source parameter uncertainties for interpretation.

  19. 42: An Open-Source Simulation Tool for Study and Design of Spacecraft Attitude Control Systems

    Science.gov (United States)

    Stoneking, Eric

    2018-01-01

    Simulation is an important tool in the analysis and design of spacecraft attitude control systems. The speaker will discuss the simulation tool, called simply 42, that he has developed over the years to support his own work as an engineer in the Attitude Control Systems Engineering Branch at NASA Goddard Space Flight Center. 42 was intended from the outset to be high-fidelity and powerful, but also fast and easy to use. 42 is publicly available as open source since 2014. The speaker will describe some of 42's models and features, and discuss its applicability to studies ranging from early concept studies through the design cycle, integration, and operations. He will outline 42's architecture and share some thoughts on simulation development as a long-term project.

  20. The wave equation in Friedmann-Robertson-Walker space-times and asymptotics of the intensity and distance relationship of a localised source

    Science.gov (United States)

    Starko, Darij; Craig, Walter

    2018-04-01

    Variations in redshift measurements of Type 1a supernovae and intensity observations from large sky surveys are an indicator of a component of acceleration in the rate of expansion of space-time. A key factor in the measurements is the intensity-distance relation for Maxwell's equations in Friedmann-Robertson-Walker (FRW) space-times. In view of future measurements of the decay of other fields on astronomical time and spatial scales, we determine the asymptotic behavior of the intensity-distance relationship for the solution of the wave equation in space-times with an FRW metric. This builds on previous work done on initial value problems for the wave equation in FRW space-time [Abbasi, B. and Craig, W., Proc. R. Soc. London, Ser. A 470, 20140361 (2014)]. In this paper, we focus on the precise intensity decay rates of the special cases for curvature k = 0 and k = -1, as well as giving a general derivation of the wave solution for -∞ 0} where t0 represents the time of an initial emission source, relative to the Big Bang singularity at t = 0. The initial data [g(x), h(x)] are assumed to be compactly supported; supp(g, h) ⊆ BR(0) and terms in the expression for the fundamental solution for the wave equation with the slowest decay rate are retained. The intensities calculated for coordinate time {t : t > 0} contain correction terms proportional to the ratio of t0 and the time differences ρ = t - t0. For the case of general curvature k, these expressions for the intensity reduce by scaling to the same form as for k = -1, from which we deduce the general formula. We note that for typical astronomical events such as Type 1a supernovae, the first order correction term for all curvatures -∞ < k < 0 is on the order of 10-4 smaller than the zeroth order term. These correction terms are small but may be significant in applications to alternative observations of cosmological space-time expansion rates.

  1. Calcul de trajectoires d'ions dans un faisceau a trois dimensions soumis a la charge d'space. Application aux sources d'ions

    International Nuclear Information System (INIS)

    Tauth, T.

    1990-01-01

    This paper deals with the space charge effects suffered by an ionic beam of homogeneous density, composed with ions of various charges and submitted to crossed electric and magnetic fields. We consider the physical and geometric conditions in the region between an ion source and the extraction electrode. We propose two different methods that allow to reach a numerical solution of the problem. The first one is founded on the idea that the large number of particles of the beam can be replaced in the calculations by a reduced number of highly charged particles. The second one consists in considering the widening of the beam through the evolution of the beam envelope. We apply these two methods to physical situations found in published experimental data. (Author)

  2. Complete Mapping of Complex Disulfide Patterns with Closely-Spaced Cysteines by In-Source Reduction and Data-Dependent Mass Spectrometry

    DEFF Research Database (Denmark)

    Cramer, Christian N; Kelstrup, Christian D; Olsen, Jesper V

    2017-01-01

    bonds are present in complicated patterns. This includes the presence of disulfide bonds in nested patterns and closely spaced cysteines. Unambiguous mapping of such disulfide bonds typically requires advanced MS approaches. In this study, we exploited in-source reduction (ISR) of disulfide bonds during...... the electrospray ionization process to facilitate disulfide bond assignments. We successfully developed a LC-ISR-MS/MS methodology to use as an online and fully automated partial reduction procedure. Postcolumn partial reduction by ISR provided fast and easy identification of peptides involved in disulfide bonding......Mapping of disulfide bonds is an essential part of protein characterization to ensure correct cysteine pairings. For this, mass spectrometry (MS) is the most widely used technique due to fast and accurate characterization. However, MS-based disulfide mapping is challenged when multiple disulfide...

  3. An Efficient Numerical Method for Computing Synthetic Seismograms for a Layered Half-space with Sources and Receivers at Close or Same Depths

    Science.gov (United States)

    Zhang, H.-m.; Chen, X.-f.; Chang, S.

    - It is difficult to compute synthetic seismograms for a layered half-space with sources and receivers at close to or the same depths using the generalized R/T coefficient method (Kennett, 1983; Luco and Apsel, 1983; Yao and Harkrider, 1983; Chen, 1993), because the wavenumber integration converges very slowly. A semi-analytic method for accelerating the convergence, in which part of the integration is implemented analytically, was adopted by some authors (Apsel and Luco, 1983; Hisada, 1994, 1995). In this study, based on the principle of the Repeated Averaging Method (Dahlquist and Björck, 1974; Chang, 1988), we propose an alternative, efficient, numerical method, the peak-trough averaging method (PTAM), to overcome the difficulty mentioned above. Compared with the semi-analytic method, PTAM is not only much simpler mathematically and easier to implement in practice, but also more efficient. Using numerical examples, we illustrate the validity, accuracy and efficiency of the new method.

  4. Graphics Processing Units (GPU) and the Goddard Earth Observing System atmospheric model (GEOS-5): Implementation and Potential Applications

    Science.gov (United States)

    Putnam, William M.

    2011-01-01

    Earth system models like the Goddard Earth Observing System model (GEOS-5) have been pushing the limits of large clusters of multi-core microprocessors, producing breath-taking fidelity in resolving cloud systems at a global scale. GPU computing presents an opportunity for improving the efficiency of these leading edge models. A GPU implementation of GEOS-5 will facilitate the use of cloud-system resolving resolutions in data assimilation and weather prediction, at resolutions near 3.5 km, improving our ability to extract detailed information from high-resolution satellite observations and ultimately produce better weather and climate predictions

  5. CO2 Data Distribution and Support from the Goddard Earth Science Data and Information Services Center (GES-DISC)

    Science.gov (United States)

    Hearty, Thomas; Savtchenko, Andrey; Vollmer, Bruce; Albayrak, Arif; Theobald, Mike; Esfandiari, Ed; Wei, Jennifer

    2015-01-01

    This talk will describe the support and distribution of CO2 data products from OCO-2, AIRS, and ACOS, that are archived and distributed from the Goddard Earth Sciences Data and Information Services Center. We will provide a brief summary of the current online archive and distribution metrics for the OCO-2 Level 1 products and plans for the Level 2 products. We will also describe collaborative data sets and services (e.g., matchups with other sensors) and solicit feedback for potential future services.

  6. A quasi-transient model of a transcritical carbon dioxide direct-expansion ground source heat pump for space and water heating

    International Nuclear Information System (INIS)

    Eslami-Nejad, Parham; Ouzzane, Mohamed; Aidoun, Zine

    2015-01-01

    In this study, a theoretical quasi-transient model is developed for detailed simulations of a carbon dioxide (CO_2) direct-expansion ground source heat pump (DX-GSHP). This model combines a transient analytical model for the ground, steady-state numerical models for the borehole and the gas cooler, as well as several thermodynamic models for the remaining components of a conventional heat pump, organized in interacting subroutines to form a powerful simulation tool. Extensive validation combining experimental data and CFD-generated results was performed for the borehole before the tool was used to simulate a practical application case. Performance is investigated for a system satisfying both space heating and domestic hot water requirements of a typical single family detached home in a cold climate region. The variation of different system parameters is also evaluated in this study. It is shown that CO_2 DX-GSHPs can offer relatively efficient and stable performance for integrated water and space heating applications. Furthermore, the importance of an accurate geothermal borehole sizing is highlighted for the DX-CO_2 heat pump systems. It is shown that, due to changes in the system working conditions, the total borehole length is not linearly correlated with the heat pump energy consumption and other parameters such as heat pump coefficient of performance and pressure drop in ground heat exchangers. Results showed that increasing the total borehole length of an optimum design (reference case study) by 25% decreases the total annual energy consumption by only 6%. However, reducing total borehole length of the reference case by 25% increases the total annual energy consumption by 10%. - Highlights: • A quasi-transient model for CO_2 direct-exchange ground-source heat pump is developed. • Validation combining experimental data and CFD-generated results was performed. • The effect of the borehole size on the design parameters is evaluated. • Results show that

  7. A study on the use of phase change materials (PCMs) in combination with a natural cold source for space cooling in telecommunications base stations (TBSs) in China

    International Nuclear Information System (INIS)

    Sun, Xiaoqin; Zhang, Quan; Medina, Mario A.; Liu, Yingjun; Liao, Shuguang

    2014-01-01

    Highlights: • A technology that combines phase change materials and cold outdoor air is proposed. • The technology is for space cooling of telecommunications base stations. • A prototype unit was built and then tested in an enthalpy difference laboratory. • An experimentally-validated model was used to simulate the unit’s performance. • The simulated average annual adjusted energy efficiency ratio of the unit was 14 W/W. - Abstract: A technology that combines phase change materials (PCMs) with a natural cold source is proposed to reduce the space cooling energy of telecommunications base stations (TBSs). First, a mathematical model was developed to assess this technology. Then, a full-scale prototype, named latent heat storage unit (LHSU), was designed, built, and tested in an enthalpy difference laboratory. The energy efficiency ratio (EER) and the adjusted energy efficiency ratio (AEER) were used as the criteria to evaluate the performance of this unit and to compare it with conventional air conditioners. LHSU performance simulations were carried out based on the unit’s operation in TBSs located in five Chinese cities with different climates. The simulated average annual AEER was 14.04 W/W, which is considerably higher than the limiting value of 3.2 W/W for air conditioners with a cooling capacity of less than 4500 W. The estimated average energy savings potential of the LHSU was 50%. Based on these results, it was concluded that LHSUs could be used in TBSs to reduce a significant amount of their energy consumed in space cooling

  8. Evaluating a Space-Based Indicator of Surface Ozone-NO x -VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends.

    Science.gov (United States)

    Jin, Xiaomeng; Fiore, Arlene M; Murray, Lee T; Valin, Lukas C; Lamsal, Lok N; Duncan, Bryan; Boersma, K Folkert; De Smedt, Isabelle; Abad, Gonzalo Gonzalez; Chance, Kelly; Tonnesen, Gail S

    2017-10-16

    Determining effective strategies for mitigating surface ozone (O 3 ) pollution requires knowledge of the relative ambient concentrations of its precursors, NO x , and VOCs. The space-based tropospheric column ratio of formaldehyde to NO 2 (FNR) has been used as an indicator to identify NO x -limited versus NO x -saturated O 3 formation regimes. Quantitative use of this indicator ratio is subject to three major uncertainties: (1) the split between NO x -limited and NO x -saturated conditions may shift in space and time, (2) the ratio of the vertically integrated column may not represent the near-surface environment, and (3) satellite products contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument over three northern midlatitude source regions. We find that FNR in the model surface layer is a robust predictor of the simulated near-surface O 3 production regime. Extending this surface-based predictor to a column-based FNR requires accounting for differences in the HCHO and NO 2 vertical profiles. We compare four combinations of two OMI HCHO and NO 2 retrievals with modeled FNR. The spatial and temporal correlations between the modeled and satellite-derived FNR vary with the choice of NO 2 product, while the mean offset depends on the choice of HCHO product. Space-based FNR indicates that the spring transition to NO x -limited regimes has shifted at least a month earlier over major cities (e.g., New York, London, and Seoul) between 2005 and 2015. This increase in NO x sensitivity implies that NO x emission controls will improve O 3 air quality more now than it would have a decade ago.

  9. DC-bus voltage control of grid-connected voltage source converter by using space vector modulated direct power control under unbalanced network conditions

    DEFF Research Database (Denmark)

    Xiao, Lei; Huang, Shoudao; Lu, Kaiyuan

    2013-01-01

    Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load. In this......Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load....... In this study, a new proportional-integral-resonant (PI-RES) controller-based, space vector modulated direct power control topology is proposed to suppress the dc-bus voltage ripple and in the same time, controlling effectively the instantaneous power of the VSC. A special ac reactive power reference component...... is introduced in the controller, which is necessary in order to reduce the dc-bus voltage ripple and active power harmonics at the same time. The proposed control topology is implemented in the lab. Simulation and experimental results are provided to validate its performance and the analysis presented...

  10. Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept

    International Nuclear Information System (INIS)

    Sivasakthivel, T.; Murugesan, K.; Thomas, H.R.

    2014-01-01

    Highlights: • Ground Source Heat Pump (GSHP) technology is suitable for both heating and cooling. • Important parameters that affect the GSHP performance has been listed. • Parameters of GSHP system has been optimized for heating and cooling mode. • Taguchi technique and utility concept are developed for GSHP optimization. - Abstract: Use of ground source energy for space heating applications through Ground Source Heat pump (GSHP) has been established as an efficient thermodynamic process. The electricity input to the GSHP can be reduced by increasing the COP of the system. However, the COP of a GSHP system will be different for heating and cooling mode operations. Hence in order to reduce the electricity input to the GSHP, an optimum value of COP has to be determined when GSHP is operated in both heating and cooling modes. In the present research, a methodology is proposed to optimize the operating parameters of a GSHP system which will operate on both heating and cooling modes. Condenser inlet temperature, condenser outlet temperature, dryness fraction at evaporator inlet and evaporator outlet temperature are considered as the influencing parameters of the heat pump. Optimization of these parameters for only heating or only cooling mode operation is achieved by employing Taguchi method for three level variations of the above parameters using an L 9 (3 4 ) orthogonal array. Higher the better concept has been used to get a higher COP. A computer program in FORTAN has been developed to carry out the computations and the results have been analyzed for the optimum conditions using Signal-to-Noise (SN) ratio and Analysis Of Variance (ANOVA) method. Based on this analysis, the maximum COP for only heating and only cooling operation are obtained as 4.25 and 3.32 respectively. By making use of the utility concept both the higher values of COP obtained for heating and cooling modes are optimized to get a single optimum COP for heating and cooling modes. A single

  11. Young PHD's in Human Space Flight

    Science.gov (United States)

    Wilson, Eleanor

    2002-01-01

    The Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME) in cooperation with the NASA Office of Space Flight, Human Exploration and Development of Space Enterprise sponsored a summer institute, Young PHD#s (Persons Having Dreams) in Human Space Flight. This 3-day institute used the curriculum of a workshop designed for space professionals, 'Human Space Flight-Analysis and Design: An Integrated, Systematic Approach.' The content was tailored to a high school audience. This institute seeks to stimulate the interest of pre-college students in space flight and motivate them to pursue further experiences in this field. Additionally, this institute will serve as a pilot model for a pre- collegiate training program that can be replicated throughout the country. The institute was complemented with a trip to the Goddard Space Flight Center.

  12. Land Boundary Conditions for the Goddard Earth Observing System Model Version 5 (GEOS-5) Climate Modeling System: Recent Updates and Data File Descriptions

    Science.gov (United States)

    Mahanama, Sarith P.; Koster, Randal D.; Walker, Gregory K.; Takacs, Lawrence L.; Reichle, Rolf H.; De Lannoy, Gabrielle; Liu, Qing; Zhao, Bin; Suarez, Max J.

    2015-01-01

    The Earths land surface boundary conditions in the Goddard Earth Observing System version 5 (GEOS-5) modeling system were updated using recent high spatial and temporal resolution global data products. The updates include: (i) construction of a global 10-arcsec land-ocean lakes-ice mask; (ii) incorporation of a 10-arcsec Globcover 2009 land cover dataset; (iii) implementation of Level 12 Pfafstetter hydrologic catchments; (iv) use of hybridized SRTM global topography data; (v) construction of the HWSDv1.21-STATSGO2 merged global 30 arc second soil mineral and carbon data in conjunction with a highly-refined soil classification system; (vi) production of diffuse visible and near-infrared 8-day MODIS albedo climatologies at 30-arcsec from the period 2001-2011; and (vii) production of the GEOLAND2 and MODIS merged 8-day LAI climatology at 30-arcsec for GEOS-5. The global data sets were preprocessed and used to construct global raster data files for the software (mkCatchParam) that computes parameters on catchment-tiles for various atmospheric grids. The updates also include a few bug fixes in mkCatchParam, as well as changes (improvements in algorithms, etc.) to mkCatchParam that allow it to produce tile-space parameters efficiently for high resolution AGCM grids. The update process also includes the construction of data files describing the vegetation type fractions, soil background albedo, nitrogen deposition and mean annual 2m air temperature to be used with the future Catchment CN model and the global stream channel network to be used with the future global runoff routing model. This report provides detailed descriptions of the data production process and data file format of each updated data set.

  13. Demonstrating High-Accuracy Orbital Access Using Open-Source Tools

    Science.gov (United States)

    Gilbertson, Christian; Welch, Bryan

    2017-01-01

    Orbit propagation is fundamental to almost every space-based analysis. Currently, many system analysts use commercial software to predict the future positions of orbiting satellites. This is one of many capabilities that can replicated, with great accuracy, without using expensive, proprietary software. NASAs SCaN (Space Communication and Navigation) Center for Engineering, Networks, Integration, and Communications (SCENIC) project plans to provide its analysis capabilities using a combination of internal and open-source software, allowing for a much greater measure of customization and flexibility, while reducing recurring software license costs. MATLAB and the open-source Orbit Determination Toolbox created by Goddard Space Flight Center (GSFC) were utilized to develop tools with the capability to propagate orbits, perform line-of-sight (LOS) availability analyses, and visualize the results. The developed programs are modular and can be applied for mission planning and viability analysis in a variety of Solar System applications. The tools can perform 2 and N-body orbit propagation, find inter-satellite and satellite to ground station LOS access (accounting for intermediate oblate spheroid body blocking, geometric restrictions of the antenna field-of-view (FOV), and relativistic corrections), and create animations of planetary movement, satellite orbits, and LOS accesses. The code is the basis for SCENICs broad analysis capabilities including dynamic link analysis, dilution-of-precision navigation analysis, and orbital availability calculations.

  14. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Retrievals for Tropical and Extra-tropical Environments

    Science.gov (United States)

    Lang, S. E.; Tao, W. K.; Iguchi, T.

    2017-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm has been used to estimate cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics into higher latitudes, including cold season and synoptic weather systems. In response, the CSH algorithm and its LUTs have been revised both to improve the retrievals in the Tropics as well as expand retrievals to higher latitudes. For the Tropics, the GCE simulations used to build the LUTs were upgraded using larger 2D model domains (512 vs 256 km) and a new, improved Goddard 4-ice scheme as well as expanded with additional cases (4 land and 6 ocean in total). The new tropical LUTs are also re-built using additional metrics. Besides surface type, conditional rain intensity and stratiform fraction, the new LUTs incorporate echo top heights and low-level (0-2 km) vertical reflectivity gradients. CSH retrievals in the Tropics based on the new LUTs show significant differences from previous iterations using TRMM data or the old LUT metrics. For the Extra-tropics, 6 NU-WRF simulations of synoptic events (3 East Coast and 3 West Coast), including snow, were used to build new extra-tropical CSH LUTs. The LUT metrics for the extra-tropics are based on radar characteristics and freezing level height. The extra-tropical retrievals are evaluated with a self-consistency check approach using the model heating as `truth,' and freezing level height is used to transition CSH retrievals from the Tropics to Extra-tropics. Retrieved zonal average heating structures in the Extra-tropics are

  15. Enhanced Spectral Analysis of SEP Reservoir Events by OMNIWeb Multi-Source Browse Services of the Space Physics Data Facility and the Virtual Energetic Particle Observatory

    Science.gov (United States)

    Cooper, John F.; Papitashvili, Natalia E.; Johnson, Rita C.; McGuire, Robert

    2015-04-01

    The NASA Space Physics Data Facility and Virtual Energetic Particle Observatory (VEPO) have jointly upgraded the highly used OMNIWeb services for heliospheric solar wind data to also include energetic electron, proton, and heavier ion data in a variety of graphical browse formats. The underlying OMNI and VEPO data now span just over a half century from 1963 to the present. The new services include overlay of differential flux spectra from multiple instruments and spacecraft, scatter plots of fluxes from two user-selected energy channels, distribution function histograms of selected parameters, and spectrograms of flux vs. energy and time. Users can also overlay directional flux spectra from different angular channels. Data from most current and some past (Helios 1&2, Pioneer 10&11) heliospheric spacecraft and instruments are wholly or partially covered by these evolving new services. The traditional OMNI service of correlating magnetic field and plasma data from L1 to 1 AU solar wind sources is also being extended for other spacecraft, e.g. Voyager 1 and 2, to correlations with energetic particle channels. The user capability is, for example, demonstrated to rapidly scan through particle flux spectra from consecutive time periods for so-called “reservoir” events, in which solar energetic particle flux spectra converge in shape and amplitude from multiple spacecraft sources within the inner heliosphere. Such events are important for understanding spectral evolution of global heliospheric events and for intercalibration of flux data from multiple instruments of the same and different spacecraft. These services are accessible at http://omniweb.gsfc.nasa.gov/. SPDF and VEPO are separately accessible at http://spdf.gsfc.nasa.gov/ and http://vepo.gsfc.nasa.gov/.In the future we will propose to extend OMNIWeb particle flux data coverage to the plasma and suprathermal energy range.

  16. Seismicity of Romania: fractal properties of earthquake space, time and energy distributions and their correlation with segmentation of subducted lithosphere and Vrancea seismic source

    International Nuclear Information System (INIS)

    Popescu, E.; Ardeleanu, L.; Bazacliu, O.; Popa, M.; Radulian, M.; Rizescu, M.

    2002-01-01

    For any strategy of seismic hazard assessment, it is important to set a realistic seismic input such as: delimitation of seismogenic zones, geometry of seismic sources, seismicity regime, focal mechanism and stress field. The aim of the present project is a systematic investigation focused on the problem of Vrancea seismic regime at different time, space and energy scales which can offer a crucial information on the seismogenic process of this peculiar seismic area. The departures from linearity of the time, space and energy distributions are associated with inhomogeneities in the subducting slab, rheology, tectonic stress distribution and focal mechanism. The significant variations are correlated with the existence of active and inactive segments along the seismogenic zone, the deviation from linearity of the frequency-magnitude distribution is associated with the existence of different earthquake generation models and the nonlinearities showed in the time series are related with the occurrence of the major earthquakes. Another important purpose of the project is to analyze the main crustal seismic sequences generated on the Romanian territory in the following regions: Ramnicu Sarat, Fagaras-Campulung, Banat. Time, space and energy distributions together with the source parameters and scaling relations are investigated. The analysis of the seismicity and clustering properties of the earthquakes generated in both Vrancea intermediate-depth region and Romanian crustal seismogenic zones, achieved within this project, constitutes the starting point for the study of seismic zoning, seismic hazard and earthquake prediction. The data set consists of Vrancea subcrustal earthquake catalogue (since 1974 and continuously updated) and catalogues with events located in the other crustal seimogenic zones of Romania. To build up these data sets, high-quality information made available through multiple international cooperation programs is considered. The results obtained up to

  17. Quartz enhanced photoacoustic H{sub 2}S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hongpeng; Liu, Xiaoli; Zheng, Huadan; Yin, Xukun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Jia, Suotang [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006 (China); Sampaolo, Angelo [Dipartimento Interateneo di Fisica, Università degli Studi di Bari and Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, Bari 70126 (Italy); Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Dong, Lei, E-mail: donglei@sxu.edu.cn [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006 (China); Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Patimisco, Pietro; Spagnolo, Vincenzo [Dipartimento Interateneo di Fisica, Università degli Studi di Bari and Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, Bari 70126 (Italy); Tittel, Frank K. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States)

    2015-09-14

    A quartz enhanced photoacoustic spectroscopy (QEPAS) sensor, employing an erbium-doped fiber amplified laser source and a custom quartz tuning fork (QTF) with its two prongs spaced ∼800 μm apart, is reported. The sensor employs an acoustic micro-resonator (AmR) which is assembled in an “on-beam” QEPAS configuration. Both length and vertical position of the AmR are optimized in terms of signal-to-noise ratio, significantly improving the QEPAS detection sensitivity by a factor of ∼40, compared to the case of a sensor using a bare custom QTF. The fiber-amplifier-enhanced QEPAS sensor is applied to H{sub 2}S trace gas detection, reaching a sensitivity of ∼890 ppb at 1 s integration time, similar to those obtained with a power-enhanced QEPAS sensor equipped with a standard QTF, but with the advantages of easy optical alignment, simple installation, and long-term stability.

  18. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  19. Development of an expert system prototype for determining software functional requirements for command management activities at NASA Goddard

    Science.gov (United States)

    Liebowitz, J.

    1986-01-01

    The development of an expert system prototype for software functional requirement determination for NASA Goddard's Command Management System, as part of its process of transforming general requests into specific near-earth satellite commands, is described. The present knowledge base was formulated through interactions with domain experts, and was then linked to the existing Knowledge Engineering Systems (KES) expert system application generator. Steps in the knowledge-base development include problem-oriented attribute hierarchy development, knowledge management approach determination, and knowledge base encoding. The KES Parser and Inspector, in addition to backcasting and analogical mapping, were used to validate the expert system-derived requirements for one of the major functions of a spacecraft, the solar Maximum Mission. Knowledge refinement, evaluation, and implementation procedures of the expert system were then accomplished.

  20. Photographs of the “Dust of the Highway”: Georgiana Goddard King’s Way of Saint James

    Directory of Open Access Journals (Sweden)

    Annemarie Iker

    2016-11-01

    Full Text Available This article explores the use of photography in American art historian Georgiana Goddard King’s Way of Saint James (1920, a genre-defying book on the Camino de Santiago that intertwines art history with anthropology, literature, history, geography, and narrative. Despite King's groundbreaking scholarship on medieval Spain her legacy has been overshadowed by subsequent art historians, chief among them Arthur Kingsley Porter. Here, it is suggested that King’s emphasis on personal experiences of the pilgrimage—both historical and contemporary—diminished the value of her work, especially when compared with Porter’s supposedly ‘objective,’ ‘scientific’ studies. These methodological differences, visually manifest in King and Porter’s respective approaches to photographic evidence, have implications for medieval, historiographic, and feminist art historical inquiries.

  1. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: Addressing Higher Latitude, Cold Season, and Synoptic Systems

    Science.gov (United States)

    Wu, D.; Tao, W. K.; Lang, S. E.

    2016-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm is used to retrieve estimates of cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (or GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. The current CSH LUTs are differentiated with respect to surface rainfall characteristics, which is effective for tropical and continental summertime environments. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics and mid-latitudes to higher latitudes, including cold season and synoptic weather systems. Accordingly, the CSH algorithm and LUTs need to be updated for higher latitude events. In this study, NU-WRF was employed at 1 km to simulate winter systems in the US. A, new methodology has been adopted to construct LUTs utilizing satellite-observable 3D intensity fields, such as radar reflectivity. The new methodology/LUTs can be then applied to simulated radar fields to derive cloud heating for comparison against the model simulated heating. The model heating is treated as the `truth' as it is self-consistent with the simulated radar fields. This `consistency check' approach is a common well-established first step in algorithm development (e.g., the earlier CSH). The LUTs will be improved by iterating the consistency checks to quantitatively evaluate the similarities between the retrieved and simulated heating. The evaluations will be performed for different weather events, including northeast winter storms and atmospheric rivers.

  2. Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes

    Directory of Open Access Journals (Sweden)

    Xiaowei Yu

    2015-11-01

    Full Text Available It is anticipated that many of the future forest mapping applications will be based on three-dimensional (3D point clouds. A comparison study was conducted to verify the explanatory power and information contents of several 3D remote sensing data sources on the retrieval of above ground biomass (AGB, stem volume (VOL, basal area (G, basal-area weighted mean diameter (Dg and Lorey’s mean height (Hg at the plot level, utilizing the following data: synthetic aperture radar (SAR Interferometry, SAR radargrammetry, satellite-imagery having stereo viewing capability, airborne laser scanning (ALS with various densities (0.8–6 pulses/m2 and aerial stereo imagery. Laser scanning is generally known as the primary source providing a 3D point cloud. However, photogrammetric, radargrammetric and interferometric techniques can be used to produce 3D point clouds from space- and air-borne stereo images. Such an image-based point cloud could be utilized in a similar manner as ALS providing that accurate digital terrain model is available. In this study, the performance of these data sources for providing point cloud data was evaluated with 91 sample plots that were established in Evo, southern Finland within a boreal forest zone and surveyed in 2014 for this comparison. The prediction models were built using random forests technique with features derived from each data sources as independent variables and field measurements of forest attributes as response variable. The relative root mean square errors (RMSEs varied in the ranges of 4.6% (0.97 m–13.4% (2.83 m for Hg, 11.7% (3.0 cm–20.6% (5.3 cm for Dg, 14.8% (4.0 m2/ha–25.8% (6.9 m2/ha for G, 15.9% (43.0 m3/ha–31.2% (84.2 m3/ha for VOL and 14.3% (19.2 Mg/ha–27.5% (37.0 Mg/ha for AGB, respectively, depending on the data used. Results indicate that ALS data achieved the most accurate estimates for all forest inventory attributes. For image-based 3D data, high-altitude aerial images and WorldView-2

  3. OpenSpace: From Data Visualization Research to Planetariums and Classrooms Worldwide

    Science.gov (United States)

    Emmart, C.; Ynnerman, A.; Bock, A.; Kuznetsova, M. M.; Kinzler, R. J.; Trakinski, V.; Mac Low, M. M.; Ebel, D. S. S.

    2016-12-01

    "OpenSpace" is a new NASA supported open source software that brings the latest techniques from data visualization research to the planetarium community and general public. The American Museum of Natural History (AMNH), in collaboration with informal science institutions (ISI), academic partners, key vendors that support planetariums worldwide, and NASA mission teams and Subject Matter Experts (SME), is creating OpenSpace to enable STEM education and improve U.S. scientific literacy by engaging a broad spectrum of the American public and STEM learners in cutting-edge NASA science and engineering content. The project's primary focus is the interactive presentation of dynamic data from observations (image sequences), astrophysical simulation (volumetric rendering), and space missions (observation geometry visualization). Development of the software began several years ago in collaboration with NASA Goddard's space weather modeling center and in conjunction with academic support from Linköping University (LiU) in Sweden, and continued last year with visualizations of NASA's New Horizons mission and ESA's Rosetta mission. For the New Horizons Pluto encounter, a dozen sites around the world running OpenSpace networked simultaneously to view the close approach to Pluto as narrated in real time by mission control scientists at NASA's Jet Propulsion Laboratory. Subsequent image data from the Long Range Reconnaissance Imaging (LORRI) camera was released by NASA as it downloaded from the spacecraft in the following months. These images, along with post encounter navigation reconstruction data (NASA SPICE) were then used to update the OpenSpace New Horizons visualization, and create a February 2016 public program in which Deputy Project Scientist, Cathy Olkin, demonstrated these results visualized in OpenSpace to a sold out crowd in the AMNH Hayden Planetarium. As demonstrated with the New Horizons visualization in OpenSpace, the goals of the project are to make visible

  4. Using the Triple Labelling Technique to apportion N2O Emissions to Nitrification and Denitrification from different Nitrogen Sources at different Water-Filled-Pore-Spaces

    Science.gov (United States)

    Loick, Nadine; Dixon, Elizabeth R.; Repullo Ruibérriz de Torres, Miguel A.; Ciganda, Veronica; Lopez-Aizpun, Maria A.; Matthews, G. Peter; Müller, Christoph; Cardenas, Laura M.

    2017-04-01

    labelling technique - i.e. applying NH4NO3 with either the N at the NH4+ or at the NO3-, or in both places being labelled - this study investigates the effects of a low, medium and high water filled pore space (55, 70, 85%) in a clay soil on gaseous N emissions and investigates the source and processes leading to N2O emissions. To assess the utilisation of applied NO3- vs nitrified NO3- from applied NH4+, the model developed by Müller et al. (2007) is used to calculate the immobilisation of added NO3- and NH4+, nitrification of added NH4+, mineralisation of organic N and subsequent nitrification by the analysis of the 15N in the soil. Gross transformation rates, indicating the relative importance of added NO3- and NO3- derived from nitrified added NH4+ are calculated. Bergstermann et al. (2011) Soil Biol. & Biochem. 43, 240-250. Meijide et al. (2010) Eur. J. Soil Sci. 61, 364-374. Cárdenas et al. (2003) Soil Biol. & Biochem. 35, 867-870. Müller et al. (2007) Soil Biol. & Biochem. 39, 715-726.

  5. Single Source 5-dimensional (Space-, Wavelength-, Time-, Polarization-, Quadrature-) 43 Tbit/s Data Transmission of 6 SDM × 6 WDM × 1.2 Tbit/s Nyquist-OTDM-PDM-QPSK

    DEFF Research Database (Denmark)

    Hu, Hao; Ye, Feihong; Medhin, Ashenafi Kiros

    2014-01-01

    We demonstrate 43-Tbit/s transmission over 67.4-km seven-core fiber using a single source. Each of the 6 outer cores carries 6 Nyquist-WDM channels using 320-Gbaud Nyquist- OTDM-PDM-QPSK 330-GHz spaced, and the center core carries 10-GHz clock pulses....

  6. Technology transfer: The key to successful space engineering education

    Science.gov (United States)

    Fletcher, L. S.; Page, R. H.

    The 1990s are the threshold of the space revolution for the next century. This space revolution was initiated by space pioneers like Tsiolkovsky, Goddard, and Oberth, who contributed a great deal to the evolution of space exploration, and more importantly, to space education. Recently, space engineering education programs for all ages have been advocated around the world, especially in Asia and Europe, as well as the U.S.A. and the Soviet Union. And yet, although space related technologies are developing rapidly, these technologies are not being incorporated successfully into space education programs. Timely technology transfer is essential to assure the continued education of professionals. This paper reviews the evolution of space engineering education and identifies a number of initiatives which could strengthen space engineering education for the next century.

  7. Images of Earth and Space: The Role of Visualization in NASA Science

    Science.gov (United States)

    1996-01-01

    Fly through the ocean at breakneck speed. Tour the moon. Even swim safely in the boiling sun. You can do these things and more in a 17 minute virtual journey through Earth and space. The trek is by way of colorful scientific visualizations developed by the NASA/Goddard Space Flight Center's Scientific Visualization Studio and the NASA HPCC Earth and Space Science Project investigators. Various styles of electronic music and lay-level narration provide the accompaniment.

  8. Radiation Dose Reduction of Chest CT with Iterative Reconstruction in Image Space - Part I: Studies on Image Quality Using Dual Source CT

    International Nuclear Information System (INIS)

    Hwang, Hye Jeon; Seo, Joon Beom; Lee, Jin Seong; Song, Jae Woo; Lee, Hyun Joo; Lim, Chae Hun; Kim, Song Soo

    2012-01-01

    To determine whether the image quality (IQ) is improved with iterative reconstruction in image space (IRIS), and whether IRIS can be used for radiation reduction in chest CT. Standard dose chest CT (SDCT) in 50 patients and low dose chest CT (LDCT) in another 50 patients were performed, using a dual-source CT, with 120 kVp and same reference mAs (50 mAs for SDCT and 25 mAs for LDCT) employed to both tubes by modifying a dual-energy scan mode. Full-dose data were obtained by combining the data from both tubes and half-dose data were separated from a single tube. These were reconstructed by using a filtered back projection (FBP) and IRIS: full-dose FBP (F-FBP); full-dose IRIS (F-IRIS); half-dose FBP (H-FBP) and half-dose IRIS (H-IRIS). Objective noise was measured. The subjective IQ was evaluated by radiologists for the followings: noise, contrast and sharpness of mediastinum and lung. Objective noise was significantly lower in H-IRIS than in F-FBP (p < 0.01). In both SDCT and LDCT, the IQ scores were highest in F-IRIS, followed by F-FBP, H-IRIS and H-FBP, except those for sharpness of mediastinum, which tended to be higher in FBP. When comparing CT images between the same dose and different reconstruction (F-IRIS/F-FBP and H-IRIS/H-FBP) algorithms, scores tended to be higher in IRIS than in FBP, being more distinct in half-dose images. However, despite the use of IRIS, the scores were lower in H-IRIS than in F-FBP. IRIS generally helps improve the IQ, being more distinct at the reduced radiation. However, reduced radiation by half results in IQ decrease even when using IRIS in chest CT.

  9. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    Science.gov (United States)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  10. A high-speed lossless data compression system for space applications

    Science.gov (United States)

    Miko, Joe; Fong, Wai; Miller, Warner

    1993-01-01

    This paper reports on the integration of a lossless data compression/decompression chipset into a space data system architecture. For its compression engine, the data system incorporates the Universal Source Encoder (USE) designed for the NASA/Goddard Space Flight Center. Currently, the data compression testbed generates video frames consisting of 512 lines of 512 pixels having 8-bit resolution. Each image is passed through the USE where the lines are internally partitioned into 16-word blocks. These blocks are adaptively encoded across widely varying entropy levels using a Rice 12-option set coding algorithm. The current system operates at an Input/Output rate of 10 Msamples/s or 80 Mbits/s for each buffered input line. Frame and line synchronization for each image are maintained through the use of uniquely decodable command words. Length information of each variable length compressed image line is also included in the output stream. The data and command information are passed to the next stage of the system architecture through a serial fiber-optic transmitter. The initial segment of this stage consists of packetizer hardware which adds an appropriate CCSDS header to the received source data. An uncompressed mode is optionally available to pass image lines directly to the packetizer hardware. A data decompression testbed has also been developed to confirm the data compression operation.

  11. GRUNCLE, 1. Collision Source Calculation for Program DOT. DOT-3.5, 2-D Neutron Transport, Gamma Transport Program DOT with New Space-Scaling

    International Nuclear Information System (INIS)

    1996-01-01

    A - Nature of problem or function: DOT solves the Boltzmann transport equation in two-dimensional geometries. Principal applications are to neutron and/or photon transport, although the code can be applied to transport problems for any particles not subject to external force fields. Both homogeneous and external-source problems can be solved. Searches on multiplication factor, time absorption, nuclide concentration, and zone thickness are available for reactor problems. Numerous edits and output data sets for subsequent use are available. DOT-3.5 improves the space-scaling algorithm. DOT-3.5/CAB contains group by group UPSCATTER scaling method. DUCT calculates perturbations to the scalar flux caused by the presence of ducts filled with coolant. VIP is a program for cross section sensitivity analysis using two- dimensional discrete ordinates transport calculations. DGRAD calculates the directional flux gradients from DOT-3 diffusion theory flux tapes. In conjunction with VIP and TPERT, it allows the use of diffusion theory fluxes to obtain exact and first-order perturbation reactivity changes. In order to calculate the reactivity associated with changes in reactor compositions using diffusion theory, it is necessary to fold not only the scalar fluxes with the appropriate cross sections, but also the average flux gradients with the diffusion coefficients. Since DOT diffusion theory does not directly calculate these gradients, it was necessary to calculate the needed quantities external to the DOT code. TPERT is a perturbation code to obtain exact and first-order reactivity changes. TPERT is coupled to VIP which generates adjoint forward flux tables using DOT-3 scalar flux tape information. GRTUNCL calculates an analytical first-collision source for subsequent use in DOT. B - Method of solution: The method of discrete ordinates is used. Balance equations are solved for the density of particles moving along discrete directions in each cell of a two-dimensional spatial

  12. RFI Mitigation and Testing Employed at GGAO for NASA's Space Geodesy Project (SGP)

    Science.gov (United States)

    Hilliard, L. M.; Rajagopalan, Ganesh; Turner, Charles; Stevenson, Thomas; Bulcha, Berhanu

    2017-01-01

    Radio Frequency Interference (RFI) Mitigation at Goddard Geophysical and Astronomical Observatory (GGAO) has been addressed in three different ways by NASA's Space Geodesy Project (SGP); masks, blockers, and filters. All of these techniques will be employed at the GGAO, to mitigate the RFI consequences to the Very Long Baseline Interferometer.

  13. The Space Laser Business Model

    Science.gov (United States)

    2005-01-01

    Creating long-duration, high-powered lasers, for satellites, that can withstand the type of optical misalignment and damage dished out by the unforgiving environment of space, is work that is unique to NASA. It is complicated, specific work, where each step forward is into uncharted territory. In the 1990s, as this technology was first being created, NASA gave free reign to a group of "laser jocks" to develop their own business model and supply the Space Agency with the technology it needed. It was still to be a part of NASA as a division of Goddard Space Flight Center, but would operate independently out of a remote office. The idea for this satellite laboratory was based on the Skunk Works concept at Lockheed Martin Corporation. Formerly known as the Lockheed Corporation, in 1943, the aerospace firm, realizing that the type of advanced research it needed done could not be performed within the confines of a larger company, allowed a group of researchers and engineers to essentially run their own microbusiness without the corporate oversight. The Skunk Works project, in Burbank, California, produced America s first jet fighter, the world s most successful spy plane (U-2), the first 3-times-the-speed-of-sound surveillance aircraft, and the F-117A Nighthawk Stealth Fighter. Boeing followed suit with its Phantom Works, an advanced research and development branch of the company that operates independent of the larger unit and is responsible for a great deal of its most cutting-edge research. NASA s version of this advanced business model was the Space Lidar Technology Center (SLTC), just south of Goddard, in College Park, Maryland. Established in 1998 under a Cooperative Agreement between Goddard and the University of Maryland s A. James Clark School of Engineering, it was a high-tech laser shop where a small group of specialists, never more than 20 employees, worked all hours of the day and night to create the cutting- edge technology the Agency required of them. Drs

  14. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    Science.gov (United States)

    Packard, Edward

    2008-01-01

    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated

  15. Optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme for Intel Many Integrated Core (MIC) architecture

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.

  16. Space Handbook,

    Science.gov (United States)

    1985-01-01

    thle early life * of" the system. Figure 4-2 shows the variation in power output for polonium - 210 (Po- 210 ) with a 138-day half-life, curium-242 (Cm...miles above the earth’s surface. Above this altitude they must take everything they need with them. The environment will supply them with neither food ...can move large payloads through space. The radioisotope heat cycle engines use high-energy particle sources such as plutonium and polonium . The walls

  17. Architectural Options for a Future Deep Space Optical Communications Network

    Science.gov (United States)

    Edwards, B. L.; Benjamin, T.; Scozzafava, J.; Khatri, F.; Sharma, J.; Parvin, B.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    This paper provides an overview of different options at Earth to provide Deep Space optical communication services. It is based mainly on work done for the Mars Laser Communications Demonstration (MLCD) Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It also reports preliminary conclusions from the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telecommunications Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  18. The CCSDS Lossless Data Compression Algorithm for Space Applications

    Science.gov (United States)

    Yeh, Pen-Shu; Day, John H. (Technical Monitor)

    2001-01-01

    In the late 80's, when the author started working at the Goddard Space Flight Center (GSFC) for the National Aeronautics and Space Administration (NASA), several scientists there were in the process of formulating the next generation of Earth viewing science instruments, the Moderate Resolution Imaging Spectroradiometer (MODIS). The instrument would have over thirty spectral bands and would transmit enormous data through the communications channel. This was when the author was assigned the task of investigating lossless compression algorithms for space implementation to compress science data in order to reduce the requirement on bandwidth and storage.

  19. VLBI2010 in NASA's Space Geodesy Project

    Science.gov (United States)

    Ma, Chopo

    2012-01-01

    In the summer of 20 11 NASA approved the proposal for the Space Geodesy Project (SGP). A major element is developing at the Goddard Geophysical and Astronomical Observatory a prototype of the next generation of integrated stations with co-located VLBI, SLR, GNSS and DORIS instruments as well as a system for monitoring the vector ties. VLBI2010 is a key component of the integrated station. The objectives ofSGP, the role of VLBI20 lOin the context of SGP, near term plans and possible future scenarios will be discussed.

  20. Audiovisual heritage preservation in Earth and Space Science Informatics: Videos from Free and Open Source Software for Geospatial (FOSS4G) conferences in the TIB|AV-Portal.

    Science.gov (United States)

    Löwe, Peter; Marín Arraiza, Paloma; Plank, Margret

    2016-04-01

    The influence of Free and Open Source Software (FOSS) projects on Earth and Space Science Informatics (ESSI) continues to grow, particularly in the emerging context of Data Science or Open Science. The scientific significance and heritage of FOSS projects is only to a limited amount covered by traditional scientific journal articles: Audiovisual conference recordings contain significant information for analysis, reference and citation. In the context of data driven research, this audiovisual content needs to be accessible by effective search capabilities, enabling the content to be searched in depth and retrieved. Thereby, it is ensured that the content producers receive credit for their efforts within the respective communities. For Geoinformatics and ESSI, one distinguished driver is the OSGeo Foundation (OSGeo), founded in 2006 to support and promote the interdisciplinary collaborative development of open geospatial technologies and data. The organisational structure is based on software projects that have successfully passed the OSGeo incubation process, proving their compliance with FOSS licence models. This quality assurance is crucial for the transparent and unhindered application in (Open) Science. The main communication channels within and between the OSGeo-hosted community projects for face to face meetings are conferences on national, regional and global scale. Video recordings have been complementing the scientific proceedings since 2006. During the last decade, the growing body of OSGeo videos has been negatively affected by content loss, obsolescence of video technology and dependence on commercial video portals. Even worse, the distributed storage and lack of metadata do not guarantee concise and efficient access of the content. This limits the retrospective analysis of video content from past conferences. But, it also indicates a need for reliable, standardized, comparable audiovisual repositories for the future, as the number of OSGeo projects

  1. Intel Many Integrated Core (MIC) architecture optimization strategies for a memory-bound Weather Research and Forecasting (WRF) Goddard microphysics scheme

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Goddard cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The WRF is a widely used weather prediction system in the world. It development is a done in collaborative around the globe. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the code of this important part of WRF. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU do. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 4.7x. Furthermore, the same optimizations improved performance on a dual socket Intel Xeon E5-2670 system by a factor of 2.8x compared to the original code.

  2. Ultra-Low Heat-Leak, High-Temperature Superconducting Current Leads for Space Applications

    Science.gov (United States)

    Rey, Christopher M.

    2013-01-01

    NASA Goddard Space Flight Center has a need for current leads used in an adiabatic demagnetization refrigerator (ADR) for space applications. These leads must comply with stringent requirements such as a heat leak of approximately 100 W or less while conducting up to 10 A of electric current, from more than 90 K down to 10 K. Additionally, a length constraint of leak leads currently to NASA's specs.

  3. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    Science.gov (United States)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; hide

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb-mass/yr. to about 1 lb-mass/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  4. Analytical and experimental studies of leak location and environment characterization for the international space station

    Energy Technology Data Exchange (ETDEWEB)

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin [Stinger Ghaffarian Technologies, Inc, 7701 Greenbelt Rd, Greenbelt, MD 20770 (United States); Abel, Joshua; Hawk, Doug [Alliant Techsystems, Inc, 5050 Powder Mill Road, Beltsville, Maryland 20705 (United States); Autrey, David; Glenn, Jodie [Lockheed Martin, 1300 Hercules, Houston, TX 77058 (United States); Bond, Tim; Buffington, Jesse [NASA Johnson Space Flight Center, 2101 NASA Pkwy, Houston, TX 77058 (United States); Cheng, Edward; Ma, Jonathan; Rossetti, Dino [Conceptual Analytics, 8209 Woburn Abbey Rd, Glenn Dale, MD 20769 (United States); DeLatte, Danielle [ASRC Federal Space and Defense, 7000 Muirkirk Meadows Drive, Suite 100, Beltsville, MD 20705 (United States); Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford [NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States); Tull, Kimathi [Jackson and Tull, 7375 Executive Pl, Lanham, MD 20706 (United States); Warren, Eric [Wyle STE Group, 1290 Hercules Ave, Houston, TX 77058-2769 (United States)

    2014-12-09

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH{sub 3} coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb{sub m/}/yr. to about 1 lb{sub m}/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  5. Analytical and experimental studies of leak location and environment characterization for the international space station

    International Nuclear Information System (INIS)

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin; Abel, Joshua; Hawk, Doug; Autrey, David; Glenn, Jodie; Bond, Tim; Buffington, Jesse; Cheng, Edward; Ma, Jonathan; Rossetti, Dino; DeLatte, Danielle; Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford; Tull, Kimathi; Warren, Eric

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH 3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb m/ /yr. to about 1 lb m /day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit

  6. 基于MUSIC-Group Delay算法的相邻相干信号源定位%Closely spaced coherent-source localization based on MUSIC-group delay algorithm

    Institute of Scientific and Technical Information of China (English)

    郑家芝

    2016-01-01

    为了准确的进行相邻的相干信号源定位,提出了一种基于多重信号分类群延迟(MUSIC-group delay)的改进算法。首先,将空间平滑技术引入到波达方向(DoA)估计当中去除部分相干信号。由于在信号源相邻的情况下子空间算法的性能降低,就结合了 MUSIC-Group Delay算法来区分相邻的信号源,这种方法因为自身的加和性通过 MUSIC 相位谱来计算群延迟函数,从而能估计出相邻的信号源。理论分析和仿真结果表明提出的方法估计相邻的相干信号源比子空间算法更精确,分辨率更高。%In this paper,the closely spaced coherent-source localization is considered,and an improved method based on the group delay of Multiple Signal Classification (MUSIC)is presented.Firstly,we introduce the spatial smoothing technique into direction of arrival (DoA)estimation to get rid of the coherent part of signals.Due to the degraded per-formance of sub-space based methods on the condition of nearby sources,we then utilize the MUSIC-Group Delay algo-rithm to distinguish the closely spaced sources,which can resolve spatially close sources by the use of the group delay function computed from the MUSIC phase spectrum for efficient DoA estimation owing to its spatial additive property. Theoretical analysis and simulation results demonstrate that the proposed approach can estimate the DoA of the coherent close signal sources more precisely and have higher resolution compared with sub-space based methods.

  7. Space Toxicology

    Science.gov (United States)

    James, John T.

    2011-01-01

    Safe breathing air for space faring crews is essential whether they are inside an Extravehicular Mobility Suit (EMU), a small capsule such as Soyuz, or the expansive International Space Station (ISS). Sources of air pollution can include entry of propellants, excess offgassing from polymeric materials, leakage of systems compounds, escape of payload compounds, over-use of utility compounds, microbial metabolism, and human metabolism. The toxicological risk posed by a compound is comprised of the probability of escaping to cause air pollution and the magnitude of adverse effects on human health if escape occurs. The risk from highly toxic compounds is controlled by requiring multiple levels of containment to greatly reduce the probability of escape; whereas compounds that are virtually non-toxic may require little or no containment. The potential for toxicity is determined by the inherent toxicity of the compound and the amount that could potentially escape into the breathing air.

  8. AMSAHTS 󈨞: Advances in Materials Science and Applications of High Temperature Superconductors Held in Goddard Space Flight Center, Greenbelt, MD on April 2-6, 1990

    Science.gov (United States)

    1991-01-01

    Millhn, I. Rasines* Instituto de Ciencia de Materiales , CSIC Serrano 113, 28006 Madrid, Spain. J.A. Camps, Facultad de Ciencias Geol6gicas, UCM Ciudad...L2080-L2081, 1987. 28. J. Amador, M.T. Casais, C. Cascales, A. Castro and I. Rasines, "Sintesis y ca- racterizaci6n de nuevos 6xidos superconductores...Ciencia de Materiales (Spain) REICK, Franklin Fluoramics, Inc. REILEY, Don PTO/Mech/Gen Classification Gp ROMANOFSKY, Robert NASA Headquarters ROYTBURD, A

  9. Proceedings of the Annual Precise Time and Time Interval (PTTI) applications and Planning Meeting (9th), Held at NASA Goddard Space Flight Center, November 29 - December 1, 1977

    Science.gov (United States)

    1978-03-01

    receiver. 7te rrinzinal caracteristics of such a device are its n.m- sass: srt, r.edir, and lcng term stability. The spectral nuri ty ca "- l .aser is...imperfection of a plastic , inhomogeneous, poorly-understood Earth, then problems begin to arise.The rotation axis of the crust is no longer fixed with...at NRL, the sample was manipulated with cleaned tweezers and placed on fresh, clean aluminum foil; plastic gloves were used also in the-handling of

  10. Mission Oriented Support and Theory (MOST) for MMS -- The Goddard Space Flight Center/University of California Los Angeles Interdisciplinary Science Program

    Science.gov (United States)

    Goldstein, Melvyn L.; Ashour-Abdalla, Maha; F. Vinas, Adolfo; Dorelli, John; Wendel, Deirdre; Klimas, Alex; Hwang, Kyoung-Joo; El-Alaoui, Mostafa; Walker, Raymond J.; Pan, Qingjiang; hide

    2015-01-01

    The MOST IDS team was tasked with focusing on two general areas: The first was to participate with the Fast Plasma Investigation (FPI) team in the development of virtual detectors that model the instrument responses of the MMS FPI sensors. The virtual instruments can be 'flown through' both simulation data (from magnetohydrodynamic, hybrid, and kinetic simulations) and Cluster and THEMIS spacecraft data. The goal is to determine signatures of magnetic reconnection expected during the MMS mission. Such signatures can serve as triggers for selection of burst mode downloads. The chapter contributed by the FPI team covers that effort in detail and, therefore, most of that work has not been included here. The second area of emphasis, and the one detailed in this chapter, was to build on past and present knowledge of magnetic reconnection and its physical signatures. Below we describe intensive analyses of Cluster and THEMIS data together with theoretical models and simulations that delineate the plasma signatures that surround sites of reconnection, including the effects of turbulence as well as the detailed kinetic signatures that indicate proximity to reconnection sites. In particular, we point out that particles are energized in several regions, not only at the actual site of reconnection.

  11. Summer High School Apprenticeship Research Program (SHARP) of the National Aeronautics and Space Administration

    Science.gov (United States)

    1984-01-01

    A total of 125 talented high school students had the opportunity to gain first hand experience about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the fifth year of operation for NASA's Summer High School Apprenticehsip Research Program (SHARP). Ferguson Bryan served as the SHARP contractor and worked closely with NASA staff at Headquarters and the eight participating sites to plan, implement, and evaluate the Program. The main objectives were to strengthen SHARP and expand the number of students in the Program. These eight sites participated in the Program: Ames Research Center North, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallops Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center.

  12. The 1985 National Aeronautics and Space Administration's Summer High School Apprenticeship Research Program (SHARP)

    Science.gov (United States)

    1985-01-01

    In 1985, a total of 126 talented high school students gained first hand knowledge about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the sixth year of operation for NASA's Summer High School Apprenticeship Research Program (SHARP). The major priority of maintaining the high standards and success of prior years was satisfied. The following eight sites participated in the Program: Ames Research Center, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallop Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center. Tresp Associates served as the SHARP contractor and worked closely with NASA staff at headquarters and the sites just mentioned to plan, implement, and evaluate the program.

  13. Multi-Sensor Distributive On-line Processing, Visualization, and Analysis Infrastructure for an Agricultural Information System at the NASA Goddard Earth Sciences DAAC

    Science.gov (United States)

    Teng, W.; Berrick, S.; Leptoukh, G.; Liu, Z.; Rui, H.; Pham, L.; Shen, S.; Zhu, T.

    2004-12-01

    The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Archive Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide precipitation and other satellite data products and services. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical parameters, area of interest, and time period; and the system generates an output on screen in a matter of seconds. The currently available output options are (1) area plot - averaged or accumulated over any available data period for any rectangular area; (2) time plot - time series averaged over any rectangular area; (3) Hovmoller plots - longitude-time and latitude-time plots; (4) ASCII

  14. CSP: A Multifaceted Hybrid Architecture for Space Computing

    Science.gov (United States)

    Rudolph, Dylan; Wilson, Christopher; Stewart, Jacob; Gauvin, Patrick; George, Alan; Lam, Herman; Crum, Gary Alex; Wirthlin, Mike; Wilson, Alex; Stoddard, Aaron

    2014-01-01

    Research on the CHREC Space Processor (CSP) takes a multifaceted hybrid approach to embedded space computing. Working closely with the NASA Goddard SpaceCube team, researchers at the National Science Foundation (NSF) Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida and Brigham Young University are developing hybrid space computers that feature an innovative combination of three technologies: commercial-off-the-shelf (COTS) devices, radiation-hardened (RadHard) devices, and fault-tolerant computing. Modern COTS processors provide the utmost in performance and energy-efficiency but are susceptible to ionizing radiation in space, whereas RadHard processors are virtually immune to this radiation but are more expensive, larger, less energy-efficient, and generations behind in speed and functionality. By featuring COTS devices to perform the critical data processing, supported by simpler RadHard devices that monitor and manage the COTS devices, and augmented with novel uses of fault-tolerant hardware, software, information, and networking within and between COTS devices, the resulting system can maximize performance and reliability while minimizing energy consumption and cost. NASA Goddard has adopted the CSP concept and technology with plans underway to feature flight-ready CSP boards on two upcoming space missions.

  15. Generic Space Science Visualization in 2D/3D using SDDAS

    Science.gov (United States)

    Mukherjee, J.; Murphy, Z. B.; Gonzalez, C. A.; Muller, M.; Ybarra, S.

    2017-12-01

    The Southwest Data Display and Analysis System (SDDAS) is a flexible multi-mission / multi-instrument software system intended to support space physics data analysis, and has been in active development for over 20 years. For the Magnetospheric Multi-Scale (MMS), Juno, Cluster, and Mars Express missions, we have modified these generic tools for visualizing data in two and three dimensions. The SDDAS software is open source and makes use of various other open source packages, including VTK and Qwt. The software offers interactive plotting as well as a Python and Lua module to modify the data before plotting. In theory, by writing a Lua or Python module to read the data, any data could be used. Currently, the software can natively read data in IDFS, CEF, CDF, FITS, SEG-Y, ASCII, and XLS formats. We have integrated the software with other Python packages such as SPICE and SpacePy. Included with the visualization software is a database application and other utilities for managing data that can retrieve data from the Cluster Active Archive and Space Physics Data Facility at Goddard, as well as other local archives. Line plots, spectrograms, geographic, volume plots, strip charts, etc. are just some of the types of plots one can generate with SDDAS. Furthermore, due to the design, output is not limited to strictly visualization as SDDAS can also be used to generate stand-alone IDL or Python visualization code.. Lastly, SDDAS has been successfully used as a backend for several web based analysis systems as well.

  16. Gravitation and source theory

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1975-01-01

    Schwinger's source theory is applied to the problem of gravitation and its quantization. It is shown that within the framework of a flat-space the source theory implementation leads to a violation of probability. To avoid the difficulty one must introduce a curved space-time hence the source concept may be said to necessitate the transition to a curved-space theory of gravitation. It is further shown that the curved-space theory of gravitation implied by the source theory is not equivalent to the conventional Einstein theory. The source concept leads to a different theory where the gravitational field has a stress-energy tensor t/sup nu//sub mu/ which contributes to geometric curvatures

  17. The source and fate of sediment and mercury in the Tapajós River, Pará, Brazilian Amazon: Ground- and space-based evidence.

    Science.gov (United States)

    Telmer, Kevin; Costa, Maycira; Simões Angélica, Rômulo; Araujo, Eric S; Maurice, Yvon

    2006-10-01

    We present results of mercury (Hg) in surface waters and soils and an analysis of satellite imagery from the Tapajós River basin, Brazilian Amazon, and the Reserva Garimpeira do Tapajós, the legal gold mining district of the basin. Hg bound to suspended sediment was roughly 600 and 200 times the concentration of dissolved Hg per litre of water, in impacted and pristine areas, respectively. Suspended sediments thus represent the major pathway of river-borne Hg. Median concentrations of Hg in suspended load from both impacted and pristine waters were 134 ppb, and 80% of samples were below 300ppb-in the range of naturally occurring surficial materials in the tropics. Regionally, riverine Hg fluxes were proportional to the concentration of total suspended solids. This shows that the dominant source of Hg is the sediment itself rather than anthropogenic mercury discharge from the small-scale mines. To independently test this conclusion, a mass balance was performed. A conservative calculation of the annual export of mercury (Hg) from the Creporí River (a minimum) was 1.6 tonnes for the year 1998-it could be significantly larger. This amount of Hg is difficult to account for by anthropogenic discharge alone, confirming that enhanced physical erosion caused by sluicing and dredging operations is the dominant source of Hg. We therefore conclude that gold mining operations are primarily responsible for elevated Hg concentrations. The dominant source of contamination is not, however, the loss of Hg in the gold amalgamation process. Rather, the disturbance and mobilization of large quantities of Hg-rich sediment and floodplain soil into the water column during mining operations is the source of contamination. These findings shift the focus of remediation and prevention efforts away from Hg control toward soil and sediment erosion control. The minimization or elimination of Hg losses in the mining process remains important for the health of local peoples and environments

  18. A coupled diffusion-transport computational method and its application for the determination of space dependent angular flux distributions at a cold neutron source

    International Nuclear Information System (INIS)

    Turgut, M.H.

    1985-01-01

    A fast calculation program ''BRIDGE'' was developed for the calculation of a Cold Neutron Source (CNS) at a radial beam tube of the FRG-I reactor, which couples a total assembly diffusion calculation to a transport calculation for a certain subregion. For the coupling flux and current boundary values at the common surfaces are taken from the diffusion calculation and are used as driving conditions in the transport calculation. 'Equivalence Theorie' is used for the transport feedback effect on the diffusion calculation to improve the consistency of the boundary values. The optimization of a CNS for maximizing the subthermal flux in the wavelength range 4 - 6 A is discussed. (orig.) [de

  19. Space Vector Modulation for DC-Link Current Ripple Reduction in Back-To-Back Current Source Converters for Microgrid Applications

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Xu, David; Guerrero, Josep M.

    2015-01-01

    Back-to-back converters have been typically used to interconnect the microgrids. For a back-to-back current source converter, the dc-link current ripple is one of the important parameters. A large ripple will cause the electromagnetic interference, undesirable high-frequency losses, and system...... instability. Conventionally, with a given switching frequency and rated voltage, the current ripple can be reduced by increasing the dc-link inductor, but it leads to bulky size, high cost and slow dynamic response. In order to solve this problem, this paper reveals that the current ripple can...

  20. Evaluation of latent variances in Monte Carlo dose calculations with Varian TrueBeam photon phase-spaces used as a particle source

    Science.gov (United States)

    Alhakeem, Eyad; Zavgorodni, Sergei

    2018-01-01

    The purpose of this study was to evaluate the latent variance (LV) of Varian TrueBeam photon phase-space files (PSF) for open 10  ×  10 cm2 and small stereotactic fields and estimate the number of phase spaces required to be summed up in order to maintain sub-percent LV in Monte Carlo (MC) dose calculations. BEAMnrc/DOSXYZnrc software was used to transport particles from Varian phase-space files (PSFA) through the secondary collimators. Transported particles were scored into another phase-space located under the jaws (PSFB), or transported further through the cone collimators and scored straight below, forming PSFC. Phase-space files (PSFB) were scored for 6 MV-FFF, 6 MV, 10 MV-FFF, 10 MV and 15 MV beams with 10  ×  10 cm2 field size, and PSFC were scored for 6 MV beam under circular cones of 0.13, 0.25, 0.35, and 1 cm diameter. Both PSFB and PSFC were transported into a water phantom with particle recycling number ranging from 10 to 1000. For 10  ×  10 cm2 fields 0.5  ×  0.5  ×  0.5 cm3 voxels were used to score the dose, whereas the dose was scored in 0.1  ×  0.1  ×  0.5 cm3 voxels for beams collimated with small cones. In addition, for small 0.25 cm diameter cone-collimated 6 MV beam, phantom voxel size varied as 0.02  ×  0.02  ×  0.5 cm3, 0.05  ×  0.05  ×  0.5 cm3 and 0.1  ×  0.1  ×  0.5 cm3. Dose variances were scored in all cases and LV evaluated as per Sempau et al. For the 10  ×  10 cm2 fields calculated LVs were greatest at the phantom surface and decreased with depth until they reached a plateau at 5 cm depth. LVs were found to be 0.54%, 0.96%, 0.35%, 0.69% and 0.57% for the 6 MV-FFF, 6 MV, 10 MV-FFF, 10 MV and 15 MV energies, respectively at the depth of 10 cm. For the 6 MV phase-space collimated with cones of 0.13, 0.25, 0.35, 1.0 cm diameter, the LVs calculated at 1.5 cm depth were 75.6%, 25.4%, 17

  1. Combined effects of chemical reaction and temperature dependent heat source on MHD mixed convective flow of a couple-stress fluid in a vertical wavy porous space with travelling thermal waves

    Directory of Open Access Journals (Sweden)

    Muthuraj R.

    2012-01-01

    Full Text Available A mathematical model is developed to examine the effect of chemical reaction on MHD mixed convective heat and mass transfer flow of a couple-stress fluid in vertical porous space in the presence of temperature dependent heat source with travelling thermal waves. The dimensionless governing equations are assumed to be made up of two parts: a mean part corresponding to the fully developed mean flow, and a small perturbed part, using amplitude as a small parameter. The analytical solution of perturbed part have been carried out by using the long-wave approximation. The expressions for the zeroth-order and the first order solutions are obtained and the results of the heat and mass transfer characteristics are presented graphically for various values of parameters entering into the problem. It is noted that velocity of the fluid increases with the increase of the couple stress parameter and increasing the chemical reaction parameter leads suppress the velocity of the fluid. Cross velocity decreases with an increase of the phase angle. The increase of the chemical reaction parameter and Schmidt number lead to decrease the fluid concentration. The hydrodynamic case for a non-porous space in the absence of the temperature dependent heat source for Newtonian fluid can be captured as a limiting case of our analysis by taking, and α1→0, Da→∞, a→∞.

  2. Optimize Use of Space Research and Technology for Medical Devices

    Science.gov (United States)

    Minnifield, Nona K.

    2012-01-01

    systems, and cutting-edge component technologies to conduct a wide range of scientific observations and measurements. These technologies are also considered for practical applications that benefit society in remarkable ways. At NASA Goddard, the technology transfer initiative promotes matching technologies from Earth and space science needs to targeted industry sectors. This requires clear knowledge of industry needs and priorities and social demands. The process entails matching mature technologies where there are known innovation challenges and good opportunities for matching technology needs. This requires creative thinking and takes commitment of time and resources. Additionally, we also look at applications for known hot industry or societal needs. Doing so has given us occasion to host discussions with representatives from industry, academia, government organizations, and societal special interest groups about the application of NASA Goddard technologies for devices used in medical monitoring and detection tools. As a result, partnerships have been established. Innovation transpired when new products were enabled because of NASA Goddard research and technology programs.

  3. Supersymmetry in singular spaces

    NARCIS (Netherlands)

    Bergshoeff, Eric

    2002-01-01

    We discuss supersymmetry in spaces with a boundary, i.e. singular spaces. In particular, we discuss the situation in ten and five dimensions. In both these cases we review the construction of supersymmetric domain wall actions situated at the boundary. These domain walls act as sources inducing a

  4. Research of the Effect Caused by Terrestrial Power Sources on the Near-Earth Space above China based on DEMETER Satellite Data

    Science.gov (United States)

    Zhang, C.; Wu, J.; Ma, Q.

    2017-12-01

    The environmental effect on the ionosphere caused by man-made power line emission (PLE) and power line harmonic radiation (PLHR) has become an increasing concern. Based on the observed data of 6.5 operating years of DEMETER satellite, by scanning the electric field power density time-frequency spectrograms, 133 PLHR events with central frequencies from 500 Hz to 4.5 kHz are detected in the near-Earth space above China. Among the 133 events, 129 events have PLE events at the base power system frequency (50 Hz in China). The duration time of every PLE event covers that of the corresponding PLHR event totally. As the same with PLHR, PLE is also propagating in whistler mode in the ionosphere. In two events that are detected in the conjugate region of Australian NWC VLF transmitter, radiations with line structure in the vicinity of 19.8 kHz are detected. There are 5 lines distributed from about 19.7 kHz to 19.9 kHz, which are in accordance with the frequency range of NWC transmitted signals. The frequency spacing of the 5 lines is exactly 50 Hz and the bandwidth of each line is about 10 Hz. The electric field power density of the line structure radiation is at the same level with the corresponding PLE, much higher than that of PLHR. The line structure radiations suggest possible modulation of VLF signals by PLE. At last, the variation of ionospheric parameters measured by DEMETER in relation with PLHR is analyzed statistically. As the revisiting orbits of DEMETER pass over the same area with nearly no deviation and at the same time of day, for each PLHR event, we check and average the parameters of 3 revisiting orbits before and after the event respectively. Combined with the event orbit, the variations of these parameters can be obtained. There are totally 5 tendencies: no variation, ascending, descending, crest and trough. Only a few events show no variation. Though there are differences in other 4 tendencies, none of the parameters show extremely preferences on one

  5. Preliminary Evaluation of Influence of Aerosols on the Simulation of Brightness Temperature in the NASA's Goddard Earth Observing System Atmospheric Data Assimilation System

    Science.gov (United States)

    Kim, Jong; Akella, Santha; da Silva, Arlindo M.; Todling, Ricardo; McCarty, William

    2018-01-01

    This document reports on preliminary results obtained when studying the impact of aerosols on the calculation of brightness temperature (BT) for satellite infrared (IR) instruments that are currently assimilated in a 3DVAR configuration of Goddard Earth Observing System (GEOS)-atmospheric data assimilation system (ADAS). A set of fifteen aerosol species simulated by the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model is used to evaluate the influence of the aerosol fields on the Community Radiative Transfer Model (CRTM) calculations taking place in the observation operators of the Gridpoint Statistical Interpolation (GSI) analysis system of GEOSADAS. Results indicate that taking aerosols into account in the BT calculation improves the fit to observations over regions with significant amounts of dust. The cooling effect obtained with the aerosol-affected BT leads to a slight warming of the analyzed surface temperature (by about 0:5oK) in the tropical Atlantic ocean (off northwest Africa), whereas the effect on the air temperature aloft is negligible. In addition, this study identifies a few technical issues to be addressed in future work if aerosol-affected BT are to be implemented in reanalysis and operational settings. The computational cost of applying CRTM aerosol absorption and scattering options is too high to justify their use, given the size of the benefits obtained. Furthermore, the differentiation between clouds and aerosols in GSI cloud detection procedures needs satisfactory revision.

  6. A densitometric analysis of IIaO film flown aboard the space shuttle transportation system STS-3, STS-8, and STS-7

    Science.gov (United States)

    Hammond, E. C., Jr.; Peters, K. A.; Atkinson, P. F.

    1986-01-01

    Three canisters of IIaO film were prepared along with packets of color film from the National Geographic Society, which were then placed on the Space Shuttle #3. The ultimate goal was to obtain reasonably accurate data concerning the background fogging effects on IIaO film as it relates to the film's total environmental experience. This includes: the ground based packing, and loading of the film from Goddard Space Flight Center to Cape Kennedy; the effects of the solar wind, humidity, and cosmic rays; the Van Allen Belt radiation exposure; various thermal effect; reentry and off-loading of the film during take off, and 8 day, 3 hour 15 minutes orbits. The total densitometric change caused by all of the above factors were examined. The results of these studies have implications for the utilization of IIaO spectroscopic film on the future shuttle and space lab missions. These responses to standard photonic energy sources will have immediate application for the uneven responses of the film photographing a star field in a terrestrial or extraterrestrial environment with associated digital imaging equipment.

  7. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    Science.gov (United States)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  8. Design, conception, and metrology of Extreme Ultraviolet multilayers mirrors resistant environments of space and EUV sources; Conception, realisation et metrologie de miroirs multicouches pour l'extreme ultraviolet resistants aux environnements du spatial et des sources EUV

    Energy Technology Data Exchange (ETDEWEB)

    Hecquet, Ch.

    2009-03-15

    The Extreme Ultraviolet Spectrum (EUV) wavelengths, which range between 13 nm and 40 nm, have many applications in science and technology. These have been developed for example in plasma physics (high order harmonics sources, X ray lasers). The work presented is about the design, the fabrication and the metrology of periodic multilayer mirrors. The main motivation of this study is to establish a cycle of development taking into account both the optical properties of reflective coatings (reflectivity, spectral selectivity, attenuation) and their behaviour under various environments. To improve the spectral selectivity, new multilayer periodic structures have been developed. They are characterized by a bimodal reflectance profile with adjustable attenuation. The effect of environment on the stability of performance is especially critical for the optical collection. The addition of material barriers has stabilized the performance of the peak reflectivity for over 200 h at 400 C deg. and it reduces the influence of other factors of instability on the reflectance. In addition, all structures have been fabricated successfully and evaluated in severe environments. (author)

  9. Relations between turbulent regions of interplanetary magnetic field and Jovian decametric radio wave emissions from the main source

    International Nuclear Information System (INIS)

    Oya, H.; Morioka, A.

    1981-01-01

    Jovian decametric radio wave emissions that were observed at Goddard Space Flight Center, U.S.A. for a period from 1 October to 31 December, 1974 and data obtained at Mt. Zao observatory, Tohoku University, Japan, for a period from 14 July to 6 December, 1975 have been used to investigate the relationship of the occurrence of the Jovian decametric radio waves (JDW), from the main source, to the geomagnetic disturbance index, ΣKAPPA sub(rho). The dynamic cross-correlation between JDW and ΣKAPPAsubrho indicates an enhanced correlation for certain values of delay time. The delay time is consistent with predicted values based on a model of rotating turbulent regions in interplanetary space associated with two sector boundaries of the interplanetary magnetic field, i.e. the rotating sector boundaries of the interplanetary magnetic field first encounter the Earth's magnetosphere producing the geomagnetic field disturbances, and after a certain period, they encounter the Jovian magnetosphere. There are also cases where the order of the encounter is opposite, i.e. the sector boundaries encounter first Jovian magnetosphere and encounter the Earth's magnetosphere after a certain period. (author)

  10. Ethernet for Space Flight Applications

    Science.gov (United States)

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will

  11. The "Very Cool" James Webb Space Telescope!

    Science.gov (United States)

    Teague, Peter J. B.

    2018-01-01

    For over twenty years, scientists, engineers, technicians, and other personnel have been working on the next generation space telescope. As a partnership between NASA (National Aeronautics and Space Administration), CSA (Canadian Space Agency), and ESA (European Space Angency), the James Webb Space Telescope will complement the previous research performed by the Hubble by utilizing a larger primary mirror, which will also be optimized for infrared wavelengths. This combination will allow JWST to collect data and take images of light having traveled over 13.7 billion light years. This presentation will focus on the mission, as well as the contamination control challenges during the integration and testing in the NASA Goddard Spacecraft Systems Development and Integration Facility (SSDIF), one of the largest cleanrooms in the world. Additional information will be presented regarding space simulation testing down to a cool 20 degrees Kelvin [-424 degrees Fahrenheit] that will occur at Johnson Space Center in Houston, TX, and more testing and integration to happen at Northrop Grumman Corp., in Redondo Beach, CA. Launch of the JWST is currently scheduled for the spring of 2019 at Ariane Spaceport in French Guiana, South America.

  12. Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events

    Directory of Open Access Journals (Sweden)

    S. C. Lewis

    2010-06-01

    Full Text Available Water isotope records such as speleothems provide extensive evidence of past tropical hydrological changes. During Heinrich events, isotopic changes in monsoon regions have been interpreted as implying a widespread drying through the Northern Hemisphere tropics and an anti-phased precipitation response in the south. Here, we examine the sources of this variability using a water isotope-enabled general circulation model, Goddard Institute for Space Studies ModelE. We incorporate a new suite of vapour source distribution tracers to help constrain the impact of precipitation source region changes on the isotopic composition of precipitation and to identify nonlocal amount effects. We simulate a collapse of the North Atlantic meridional overturning circulation with a large freshwater input to the region as an idealised analogue to iceberg discharge during Heinrich events. An increase in monsoon intensity, defined by vertical wind shear, is modelled over the South American domain, with small decreases simulated over Asia. Simulated isotopic anomalies agree well with proxy climate records, with lighter isotopic values simulated over South America and enriched values across East Asia. For this particular abrupt climate event, we identify which climatic change is most likely linked to water isotope change – changes in local precipitation amount, monsoon intensity, water vapour source distributions or precipitation seasonality. We categorise individual sites according to the climate variability that water isotope changes are most closely associated with, and find that the dominant isotopic controls are not consistent across the tropics – simple local explanations, in particular, fall short of explaining water isotope variability at all sites. Instead, the best interpretations appear to be site specific and often regional in scale.

  13. Towards space based verification of CO2 emissions from strong localized sources: fossil fuel power plant emissions as seen by a CarbonSat constellation

    Directory of Open Access Journals (Sweden)

    T. Krings

    2011-12-01

    Full Text Available Carbon dioxide (CO2 is the most important man-made greenhouse gas (GHG that cause global warming. With electricity generation through fossil-fuel power plants now being the economic sector with the largest source of CO2, power plant emissions monitoring has become more important than ever in the fight against global warming. In a previous study done by Bovensmann et al. (2010, random and systematic errors of power plant CO2 emissions have been quantified using a single overpass from a proposed CarbonSat instrument. In this study, we quantify errors of power plant annual emission estimates from a hypothetical CarbonSat and constellations of several CarbonSats while taking into account that power plant CO2 emissions are time-dependent. Our focus is on estimating systematic errors arising from the sparse temporal sampling as well as random errors that are primarily dependent on wind speeds. We used hourly emissions data from the US Environmental Protection Agency (EPA combined with assimilated and re-analyzed meteorological fields from the National Centers of Environmental Prediction (NCEP. CarbonSat orbits were simulated as a sun-synchronous low-earth orbiting satellite (LEO with an 828-km orbit height, local time ascending node (LTAN of 13:30 (01:30 p.m. LT and achieves global coverage after 5 days. We show, that despite the variability of the power plant emissions and the limited satellite overpasses, one CarbonSat has the potential to verify reported US annual CO2 emissions from large power plants (≥5 Mt CO2 yr−1 with a systematic error of less than ~4.9% and a random error of less than ~6.7% for 50% of all the power plants. For 90% of all the power plants, the systematic error was less than ~12.4% and the random error was less than ~13%. We additionally investigated two different satellite configurations using a combination of 5 CarbonSats. One achieves global coverage everyday but only samples the targets at fixed local times. The other

  14. A Model for Undergraduate and High School Student Research in Earth and Space Sciences: The New York City Research Initiative

    Science.gov (United States)

    Scalzo, F.; Johnson, L.; Marchese, P.

    2006-05-01

    The New York City Research Initiative (NYCRI) is a research and academic program that involves high school students, undergraduate and graduate students, and high school teachers in research teams that are led by college/university principal investigators of NASA funded projects and/or NASA scientists. The principal investigators are at 12 colleges/universities within a 50-mile radius of New York City (NYC and surrounding counties, Southern Connecticut and Northern New Jersey), as well as the NASA Goddard Institute of Space Studies (GISS). This program has a summer research institute component in Earth Science and Space Science, and an academic year component that includes the formulation and implementation NASA research based learning units in existing STEM courses by high school and college faculty. NYCRI is a revision and expansion of the Institute on Climate and Planets at GISS and is funded by NASA MURED and the Goddard Space Flight Center's Education Office.

  15. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  16. Origins Space Telescope: Study Plan

    Science.gov (United States)

    Nayyeri, Hooshang; Cooray, Asantha; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.

  17. Expert systems and advanced automation for space missions operations

    Science.gov (United States)

    Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

    1990-01-01

    Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

  18. The Center for Space Telemetering and Telecommunications Systems

    Science.gov (United States)

    Horan, S.; DeLeon, P.; Borah, D.; Lyman, R.

    2003-01-01

    This report comprises the final technical report for the research grant 'Center for Space Telemetering and Telecommunications Systems' sponsored by the National Aeronautics and Space Administration's Goddard Space Flight Center. The grant activities are broken down into the following technology areas: (1) Space Protocol Testing; (2) Autonomous Reconfiguration of Ground Station Receivers; (3) Satellite Cluster Communications; and (4) Bandwidth Efficient Modulation. The grant activity produced a number of technical reports and papers that were communicated to NASA as they were generated. This final report contains the final summary papers or final technical report conclusions for each of the project areas. Additionally, the grant supported students who made progress towards their degrees while working on the research.

  19. The Representation of Tropical Cyclones Within the Global William Putman Non-Hydrostatic Goddard Earth Observing System Model (GEOS-5) at Cloud-Permitting Resolutions

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    The Goddard Earth Observing System Model (GEOS-S), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-S from irs standard 72-level 27-km resolution (approx.5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (approx. 3.6 billion cells).

  20. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Vollmer, B.; Kempler, S.; Deshong, B.; Greene, M.

    2015-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is also home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 17 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available: -Level-1 GPM Microwave Imager (GMI) and partner radiometer products, DPR products -Level-2 Goddard Profiling Algorithm (GPROF) GMI and partner products, DPR products -Level-3 daily and monthly products, DPR products -Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications. The United User Interface (UUI) is the next step in the evolution of the GES DISC web site. It attempts to provide seamless access to data, information and services through a single interface without sending the user to different applications or URLs (e.g., search, access

  1. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  2. Space-Charge Effect

    International Nuclear Information System (INIS)

    Chauvin, N

    2013-01-01

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented. (author)

  3. Space-Charge Effect

    CERN Document Server

    Chauvin, N.

    2013-12-16

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.

  4. Neighborhood spaces

    OpenAIRE

    D. C. Kent; Won Keun Min

    2002-01-01

    Neighborhood spaces, pretopological spaces, and closure spaces are topological space generalizations which can be characterized by means of their associated interior (or closure) operators. The category NBD of neighborhood spaces and continuous maps contains PRTOP as a bicoreflective subcategory and CLS as a bireflective subcategory, whereas TOP is bireflectively embedded in PRTOP and bicoreflectively embedded in CLS. Initial and final structures are described in these categories, and it is s...

  5. Advanced power sources for space missions

    National Research Council Canada - National Science Library

    National Research Council Staff; Energy Engineering Board; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    1989-01-01

    ... Board Commission on Engineering and Technical Systems National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1989 Copyrightthe cannot be not from book, paper however, version for formatting, original authoritative the typesetting-specific the as from created publication files XML from other this and of recomposed styles, ver...

  6. Advanced Power Sources for Space Missions

    Science.gov (United States)

    1989-01-01

    alternators Pulsed alternators DC generator exciters MHD generator magnets Megawatt propulsion motor (DC) Power conditioning and energy storage Low...been successfully demon- strated in homopolar types of machines and in other stationary ap- plications, such as magnets for high-energy physics

  7. Space Travel is Utter Bilge: Early Ideas on Interplanetary Exploration

    Science.gov (United States)

    Yeomans, D. K.

    2003-12-01

    Until a few decades ago, interplanetary travel was the stuff of dreams but the dreamers often turned out to be farsighted while the predictions of some eminent scientists were far too conservative. The prescient dreamers include the Russian schoolteacher, Konstanin Tsiolkovsky who, in 1883, was the first to note that only rockets could serve the needs of space travel. In 1923, Herman Oberth published a treatise discussing various aspects of interplanetary travel including the impulse necessary to escape the Earth's gravitational pull. In his spare time, a German civil engineer, Walter Hohmann, established in 1925 that the optimal energy transfer orbit between planets is an ellipse that is tangent to the orbits of both bodies. Four year later, an Austrian army officer, Hermann Potocnik outlined the benefits of space stations including those in geosynchronous orbits. Whereas Tsiolkovsky, Oberth, Hohmann, and Potocnik provided ideas and theories, the American, Robert H. Goddard, was testing liquid fueled rockets by as early as 1925. By the time he was finished in 1941, Goddard flew liquid fueled rockets that reached speeds of 700 mph and altitudes above 8,000 feet. In direct contrast to the advances by these mostly amateur engineers, many respected authorities scoffed at space travel because of the insurmountable technological difficulties. One year prior to the launch of Sputnik, the British Astronomer Royal, Sir Richard Wooley, declared, "space travel is utter bilge." While the theories of space travel were well developed by the late 1920's, space travel technology was still a poorly funded, mostly amateur, endeavor until the German army hired Oberth's student, Werner von Braun, and others to develop long range rockets for military purposes. In the early 1940's, Von Braun's team developed the rocket propulsion and guidance systems that would one day form the basis of the American space program.

  8. Apparent source levels and active communication space of whistles of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in the Pearl River Estuary and Beibu Gulf, China.

    Science.gov (United States)

    Wang, Zhi-Tao; W L Au, Whitlow; Rendell, Luke; Wang, Ke-Xiong; Wu, Hai-Ping; Wu, Yu-Ping; Liu, Jian-Chang; Duan, Guo-Qin; Cao, Han-Jiang; Wang, Ding

    2016-01-01

    Background. Knowledge of species-specific vocalization characteristics and their associated active communication space, the effective range over which a communication signal can be detected by a conspecific, is critical for understanding the impacts of underwater acoustic pollution, as well as other threats. Methods. We used a two-dimensional cross-shaped hydrophone array system to record the whistles of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in shallow-water environments of the Pearl River Estuary (PRE) and Beibu Gulf (BG), China. Using hyperbolic position fixing, which exploits time differences of arrival of a signal between pairs of hydrophone receivers, we obtained source location estimates for whistles with good signal-to-noise ratio (SNR ≥10 dB) and not polluted by other sounds and back-calculated their apparent source levels (ASL). Combining with the masking levels (including simultaneous noise levels, masking tonal threshold, and the Sousa auditory threshold) and the custom made site-specific sound propagation models, we further estimated their active communication space (ACS). Results. Humpback dolphins produced whistles with average root-mean-square ASL of 138.5 ± 6.8 (mean ± standard deviation) and 137.2 ± 7.0 dB re 1 µPa in PRE (N = 33) and BG (N = 209), respectively. We found statistically significant differences in ASLs among different whistle contour types. The mean and maximum ACS of whistles were estimated to be 14.7 ± 2.6 (median ± quartile deviation) and 17.1± 3.5 m in PRE, and 34.2 ± 9.5 and 43.5 ± 12.2 m in BG. Using just the auditory threshold as the masking level produced the mean and maximum ACSat of 24.3 ± 4.8 and 35.7 ± 4.6 m for PRE, and 60.7 ± 18.1 and 74.3 ± 25.3 m for BG. The small ACSs were due to the high ambient noise level. Significant differences in ACSs were also observed among different whistle contour types. Discussion. Besides shedding some light for evaluating appropriate noise exposure

  9. Apparent source levels and active communication space of whistles of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis in the Pearl River Estuary and Beibu Gulf, China

    Directory of Open Access Journals (Sweden)

    Zhi-Tao Wang

    2016-02-01

    Full Text Available Background. Knowledge of species-specific vocalization characteristics and their associated active communication space, the effective range over which a communication signal can be detected by a conspecific, is critical for understanding the impacts of underwater acoustic pollution, as well as other threats. Methods. We used a two-dimensional cross-shaped hydrophone array system to record the whistles of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis in shallow-water environments of the Pearl River Estuary (PRE and Beibu Gulf (BG, China. Using hyperbolic position fixing, which exploits time differences of arrival of a signal between pairs of hydrophone receivers, we obtained source location estimates for whistles with good signal-to-noise ratio (SNR ≥10 dB and not polluted by other sounds and back-calculated their apparent source levels (ASL. Combining with the masking levels (including simultaneous noise levels, masking tonal threshold, and the Sousa auditory threshold and the custom made site-specific sound propagation models, we further estimated their active communication space (ACS. Results. Humpback dolphins produced whistles with average root-mean-square ASL of 138.5 ± 6.8 (mean ± standard deviation and 137.2 ± 7.0 dB re 1 µPa in PRE (N = 33 and BG (N = 209, respectively. We found statistically significant differences in ASLs among different whistle contour types. The mean and maximum ACS of whistles were estimated to be 14.7 ± 2.6 (median ± quartile deviation and 17.1± 3.5 m in PRE, and 34.2 ± 9.5 and 43.5 ± 12.2 m in BG. Using just the auditory threshold as the masking level produced the mean and maximum ACSat of 24.3 ± 4.8 and 35.7 ± 4.6 m for PRE, and 60.7 ± 18.1 and 74.3 ± 25.3 m for BG. The small ACSs were due to the high ambient noise level. Significant differences in ACSs were also observed among different whistle contour types. Discussion. Besides shedding some light for evaluating appropriate noise

  10. Sacred Space.

    Science.gov (United States)

    Adelstein, Pamela

    2018-01-01

    A space can be sacred, providing those who inhabit a particular space with sense of transcendence-being connected to something greater than oneself. The sacredness may be inherent in the space, as for a religious institution or a serene place outdoors. Alternatively, a space may be made sacred by the people within it and events that occur there. As medical providers, we have the opportunity to create sacred space in our examination rooms and with our patient interactions. This sacred space can be healing to our patients and can bring us providers opportunities for increased connection, joy, and gratitude in our daily work.

  11. Sobolev spaces

    CERN Document Server

    Adams, Robert A

    2003-01-01

    Sobolev Spaces presents an introduction to the theory of Sobolev Spaces and other related spaces of function, also to the imbedding characteristics of these spaces. This theory is widely used in pure and Applied Mathematics and in the Physical Sciences.This second edition of Adam''s ''classic'' reference text contains many additions and much modernizing and refining of material. The basic premise of the book remains unchanged: Sobolev Spaces is intended to provide a solid foundation in these spaces for graduate students and researchers alike.* Self-contained and accessible for readers in other disciplines.* Written at elementary level making it accessible to graduate students.

  12. Non-Topographic Space-Based Laser Remote Sensing

    Science.gov (United States)

    Yu, Anthony W.; Abshire, James B.; Riris, Haris; Purucker, Michael; Janches, Diego; Getty, Stephanie; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Li, Steve X.; hide

    2016-01-01

    In the past 20+ years, NASA Goddard Space Flight Center (GSFC) has successfully developed and flown lidars for mapping of Mars, the Earth, Mercury and the Moon. As laser and electro-optics technologies expand and mature, more sophisticated instruments that once were thought to be too complicated for space are being considered and developed. We will present progress on several new, space-based laser instruments that are being developed at GSFC. These include lidars for remote sensing of carbon dioxide and methane on Earth for carbon cycle and global climate change; sodium resonance fluorescence lidar to measure environmental parameters of the middle and upper atmosphere on Earth and Mars and a wind lidar for Mars orbit; in situ laser instruments include remote and in-situ measurements of the magnetic fields; and a time-of-flight mass spectrometer to study the diversity and structure of nonvolatile organics in solid samples on missions to outer planetary satellites and small bodies.

  13. Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions

    Science.gov (United States)

    Tuttle, JIm; Canavan, Ed; Jahromi, Amir

    2017-01-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. In addition to having mechanical properties appropriate for surviving the launch environment, these materials generally must have thermal conductivity values which meet specific requirements in their operating temperature ranges. Space missions commonly propose to include materials for which the thermal conductivity is not well known at cryogenic temperatures. We developed a test facility in 2004 at NASAs Goddard Space Flight Center to measure material thermal conductivity at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for several materials.

  14. Atoms for space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig.

  15. Atoms for space

    International Nuclear Information System (INIS)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig

  16. Management of outer space

    Science.gov (United States)

    Perek, Lubos

    1993-10-01

    Various aspects of space-environment management are discussed. Attention is called to the fact that, while space radio communications are already under an adequate management by the International Communications Union, the use of nuclear power sources is regulated by the recently adopted set of principles, and space debris will be discussed in the near future at the UN COPUOS, other aspects of management of outer space received little or no attention of the international community. These include the competency of crews and technical equipment of spacecraft launched by newcomers to space exploration; monitoring of locations and motions of space objects (now in national hands), with relevant data made accessible through a computer network; and the requirement to use space only for beneficial purposes and not for promoting narrow and debatable interests damaging the outer space environment and impeding on astronomical observations. It is suggested that some of these tasks would be best performed by an international space agency within the UN system of organizations.

  17. Stutter seismic source

    Energy Technology Data Exchange (ETDEWEB)

    Gumma, W. H.; Hughes, D. R.; Zimmerman, N. S.

    1980-08-12

    An improved seismic prospecting system comprising the use of a closely spaced sequence of source initiations at essentially the same location to provide shorter objective-level wavelets than are obtainable with a single pulse. In a preferred form, three dynamite charges are detonated in the same or three closely spaced shot holes to generate a downward traveling wavelet having increased high frequency content and reduced content at a peak frequency determined by initial testing.

  18. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  19. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    Science.gov (United States)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding

  20. STS-61 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-02-01

    The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

  1. No N = 4 strings on Wolf spaces

    International Nuclear Information System (INIS)

    Gates, S.J. Jr.; Ketov, S.V.

    1995-02-01

    We generalize the standard N=2 supersymmetric Kazama-Suzuki coset construction to the N=4 case by requiring the non-linear (Goddard-Schwimmer) N=4 quasi-superconformal algebra to be realized on cosets. The constraints that we find allow very simple geometrical interpretation and have the Wolf spaces as their natural solutions. Our results obtained by using components-level superconformal field theory methods are fully consistent with standard results about N=4 supersymmetric two-dimensional nonlinear sigma-models and N=4 WZNW models on Wolf spaces. We construct the actions for the latter and express the quaternionic structure, appearing in the N=4 coset solution, in terms of the symplectic structure associated with the underlying Freudenthal triple system. Next, we gauge the N=4 QSCA and build a quantum BRST charge for the N=4 string propagating on a Wolf space. Surprisingly, the BRST charge nilpotency conditions rule out the non-trivial Wolf spaces as consistent string backgrounds. (orig.)

  2. A user interface development tool for space science systems Transportable Applications Environment (TAE) Plus

    Science.gov (United States)

    Szczur, Martha R.

    1990-01-01

    The Transportable Applications Environment Plus (TAE PLUS), developed at NASA's Goddard Space Flight Center, is a portable What You See Is What You Get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development that of user interfaces, as well as management of the user interface within the operational domain. Although TAE Plus is applicable to many types of applications, its focus is supporting user interfaces for space applications. This paper discusses what TAE Plus provides and how the implementation has utilized state-of-the-art technologies within graphic workstations, windowing systems and object-oriented programming languages.

  3. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  4. The Outer Space Treaty

    Science.gov (United States)

    Johnson, Christopher Daniel

    2018-01-01

    Negotiated at the United Nations and in force since 1967, the Outer Space Treaty has been ratified by over 100 countries and is the most important and foundational source of space law. The treaty, whose full title is "Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies," governs all of humankind's activities in outer space, including activities on other celestial bodies and many activities on Earth related to outer space. All space exploration and human spaceflight, planetary sciences, and commercial uses of space—such as the global telecommunications industry and the use of space technologies such as position, navigation, and timing (PNT), take place against the backdrop of the general regulatory framework established in the Outer Space Treaty. A treaty is an international legal instrument which balances rights and obligations between states, and exists as a kind of mutual contract of shared understandings, rights, and responsibilities between them. Negotiated and drafted during the Cold War era of heightened political tensions, the Outer Space Treaty is largely the product of efforts by the United States and the USSR to agree on certain minimum standards and obligations to govern their competition in "conquering" space. Additionally, the Outer Space Treaty is similar to other treaties, including treaties governing the high seas, international airspace, and the Antarctic, all of which govern the behavior of states outside of their national borders. The treaty is brief in nature and only contains 17 articles, and is not comprehensive in addressing and regulating every possible scenario. The negotiating states knew that the Outer Space Treaty could only establish certain foundational concepts such as freedom of access, state responsibility and liability, non-weaponization of space, the treatment of astronauts in distress, and the prohibition of non-appropriation of

  5. Photoacoustic Point Source

    International Nuclear Information System (INIS)

    Calasso, Irio G.; Craig, Walter; Diebold, Gerald J.

    2001-01-01

    We investigate the photoacoustic effect generated by heat deposition at a point in space in an inviscid fluid. Delta-function and long Gaussian optical pulses are used as sources in the wave equation for the displacement potential to determine the fluid motion. The linear sound-generation mechanism gives bipolar photoacoustic waves, whereas the nonlinear mechanism produces asymmetric tripolar waves. The salient features of the photoacoustic point source are that rapid heat deposition and nonlinear thermal expansion dominate the production of ultrasound

  6. Specification of brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    BCRU recommends that the following specification of gamma-ray brachytherapy sources be adopted. Unless otherwise stated, the output of a cylindrical source should be specified in air kerma rate at a point in free space at a distance of 1 m from the source on the radial plane of symmetry, i.e. the plane bisecting the active length and perpendicular to the cylindrical axis of the source. For a wire source the output should be specified for a 1 cm length. For any other construction of source, the point at which the output is specified should be stated. It is also recommended that the units in which the air kerma rate is expressed should be micrograys per hour (..mu..Gy/h).

  7. Design spaces

    DEFF Research Database (Denmark)

    2005-01-01

    Digital technologies and media are becoming increasingly embodied and entangled in the spaces and places at work and at home. However, our material environment is more than a geometric abstractions of space: it contains familiar places, social arenas for human action. For designers, the integration...... of digital technology with space poses new challenges that call for new approaches. Creative alternatives to traditional systems methodologies are called for when designers use digital media to create new possibilities for action in space. Design Spaces explores how design and media art can provide creative...... alternatives for integrating digital technology with space. Connecting practical design work with conceptual development and theorizing, art with technology, and usesr-centered methods with social sciences, Design Spaces provides a useful research paradigm for designing ubiquitous computing. This book...

  8. Nuclear Power in Space.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Research has shown that nuclear radioisotope power generators can supply compact, reliable, and efficient sources of energy for a broad range of space missions. These missions range from televising views of planetary surfaces to communicating scientific data to Earth. This publication presents many applications of the advancing technology and…

  9. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System Version 5 (GEOS-5)

    Science.gov (United States)

    Li, Feng; Vikhliaev, Yury V.; Newman, Paul A.; Pawson, Steven; Perlwitz, Judith; Waugh, Darryn W.; Douglass, Anne R.

    2016-01-01

    Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. In this study we investigate the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-December-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean Meridional Overturning Circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.

  10. Application of Digital Object Identifiers to data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Vollmer, B.; Ostrenga, D.; Johnson, J. E.; Savtchenko, A. K.; Shen, S.; Teng, W. L.; Wei, J. C.

    2013-12-01

    Digital Object Identifiers (DOIs) are applied to selected data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The DOI system provides an Internet resolution service for unique and persistent identifiers of digital objects. Products assigned DOIs include data from the NASA MEaSUREs Program, the Earth Observing System (EOS) Aqua Atmospheric Infrared Sounder (AIRS) and EOS Aura High Resolution Dynamics Limb Sounder (HIRDLS). DOIs are acquired and registered through EZID, California Digital Library and DataCite. GES DISC hosts a data set landing page associated with each DOI containing information on and access to the data including a recommended data citation when using the product in research or applications. This work includes participation with the earth science community (e.g., Earth Science Information Partners (ESIP) Federation) and the NASA Earth Science Data and Information System (ESDIS) Project to identify, establish and implement best practices for assigning DOIs and managing supporting information, including metadata, for earth science data sets. Future work includes (1) coordination with NASA mission Science Teams and other data providers on the assignment of DOIs for other GES DISC data holdings, particularly for future missions such as Orbiting Carbon Observatory -2 and -3 (OCO-2, OCO-3) and projects (MEaSUREs 2012), (2) construction of landing pages that are both human and machine readable, and (3) pursuing the linking of data and publications with tools such as the Thomson Reuters Data Citation Index.

  11. An expert system prototype for aiding in the development of software functional requirements for NASA Goddard's command management system: A case study and lessons learned

    Science.gov (United States)

    Liebowitz, Jay

    1986-01-01

    At NASA Goddard, the role of the command management system (CMS) is to transform general requests for spacecraft opeerations into detailed operational plans to be uplinked to the spacecraft. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Presently, it takes one to three years, with meetings once or twice a week, to determine functional requirements for CMS software design. As an alternative approach to the present technique of developing CMS software functional requirements, an expert system prototype was developed to aid in this function. Specifically, the knowledge base was formulated through interactions with domain experts, and was then linked to an existing expert system application generator called 'Knowledge Engineering System (Version 1.3).' Knowledge base development focused on four major steps: (1) develop the problem-oriented attribute hierachy; (2) determine the knowledge management approach; (3) encode the knowledge base; and (4) validate, test, certify, and evaluate the knowledge base and the expert system prototype as a whole. Backcasting was accomplished for validating and testing the expert system prototype. Knowledge refinement, evaluation, and implementation procedures of the expert system prototype were then transacted.

  12. Registration of Space Objects

    Science.gov (United States)

    Schmidt-Tedd, Bernhard

    2017-07-01

    Space objects are subject to registration in order to allocate "jurisdiction and control" over those objects in the sovereign-free environment of outer space. This approach is similar to the registration of ships in view of the high sea and for aircrafts with respect to the international airspace. Registration is one of the basic principles of space law, starting with UN General Assembly Resolution 1721 B (XVI) of December 20, 1961, followed by Resolution 1962 (XVIII) of December 13, 1963, then formulated in Article VIII of the Outer Space Treaty of 1967 and as specified in the Registration Convention of 1975. Registration of space objects can be seen today as a principle of customary international law, relevant for each spacefaring state. Registration is divided into a national and an international level. The State Party establishes a national registry for its space objects, and those registrations have to be communicated via diplomatic channel to the UN Register of space objects. This UN Register is handled by the UN Office for Outer Space Affairs (UNOOSA) and is an open source of information for space objects worldwide. Registration is linked to the so-called launching state of the relevant space object. There might be more than one launching state for the specific launch event, but only one state actor can register a specific space object. The state of registry gains "jurisdiction and control" over the space object and therefore no double registration is permissible. Based on the established UN Space Law, registration practice was subject to some adaptions due to technical developments and legal challenges. After the privatization of the major international satellite organizations, a number of non-registrations had to be faced. The state actors reacted with the UN Registration Practice Resolution of 2007 as elaborated in the Legal Subcommittee of UNCOPUOS, the Committee for the Peaceful Use of Outer Space. In this context an UNOOSA Registration Information

  13. Space Commercialization

    Science.gov (United States)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  14. Nuclear Energy in Space Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-01

    Nuclear space programs under development by the Atomic Energy Commission are reviewed including the Rover Program, systems for nuclear rocket propulsion and, the SNAP Program, systems for generating electric power in space. The letters S-N-A-P stands for Systems for Nuclear Auxiliary Power. Some of the projected uses of nuclear systems in space are briefly discussed including lunar orbit, lunar transportation from lunar orbit to lunar surface and base stations; planetary exploration, and longer space missions. The limitations of other sources of energy such as solar, fuel cells, and electric batteries are discussed. The excitement and visionary possibilities of the Age of Space are discussed.

  15. Space Radiation Research at NASA

    Science.gov (United States)

    Norbury, John

    2016-01-01

    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  16. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    Science.gov (United States)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  17. Staging Sociotechnical Spaces

    DEFF Research Database (Denmark)

    Clausen, Christian; Yoshinaka, Yutaka

    2007-01-01

    The management of innovation and product development is increasingly facing complex challenges of staging design processes across heterogeneous organisational spaces, with multiple actor-concerns and sources of knowledge. This paper addresses how insights from the Actor-Network Theory and political...... is elaborated as being an occasioning as well as a result of socio-technical choices and processes, and points to the role of socio-material as well as discursive practices, which frame and render particular spaces open to management and to the coordination of knowledge flows and ideas in early phases...... of product development. The concept of socio-technical spaces is further illustrated through actual examples from industry dealing with early conceptualisation in product development and the role played by management concepts in the configuration of spaces....

  18. Current questions concerning Space Law

    International Nuclear Information System (INIS)

    Courteix, Simone.

    1978-01-01

    This report covers in part the legal problems connected with the use of nuclear sources in space. These problems were highlighted by the accidental fall of the Soviet statellite Cosmos-954 in Canadian territory in January 1978. The author describes the status of international law on the subject, the work in the United Nations and discusses the measures to be taken to define a code of practice use of nuclear sources in space. (NEA) [fr

  19. Learning Spaces

    CERN Document Server

    Falmagne, Jean-Claude

    2011-01-01

    Learning spaces offer a rigorous mathematical foundation for practical systems of educational technology. Learning spaces generalize partially ordered sets and are special cases of knowledge spaces. The various structures are investigated from the standpoints of combinatorial properties and stochastic processes. Leaning spaces have become the essential structures to be used in assessing students' competence of various topics. A practical example is offered by ALEKS, a Web-based, artificially intelligent assessment and learning system in mathematics and other scholarly fields. At the heart of A

  20. Space Handbook: Astronautics and its Applications

    National Research Council Canada - National Science Library

    Buchheim, Robert W

    2007-01-01

    ... in the space environment, rocket vehicles, propulsion systems, propellants, internal power sources, structures and materials, flight path and orientation control, guidance, communication, observation...

  1. NASA's Internal Space Weather Working Group

    Science.gov (United States)

    St. Cyr, O. C.; Guhathakurta, M.; Bell, H.; Niemeyer, L.; Allen, J.

    2011-01-01

    Measurements from many of NASA's scientific spacecraft are used routinely by space weather forecasters, both in the U.S. and internationally. ACE, SOHO (an ESA/NASA collaboration), STEREO, and SDO provide images and in situ measurements that are assimilated into models and cited in alerts and warnings. A number of years ago, the Space Weather laboratory was established at NASA-Goddard, along with the Community Coordinated Modeling Center. Within that organization, a space weather service center has begun issuing alerts for NASA's operational users. NASA's operational user community includes flight operations for human and robotic explorers; atmospheric drag concerns for low-Earth orbit; interplanetary navigation and communication; and the fleet of unmanned aerial vehicles, high altitude aircraft, and launch vehicles. Over the past three years we have identified internal stakeholders within NASA and formed a Working Group to better coordinate their expertise and their needs. In this presentation we will describe this activity and some of the challenges in forming a diverse working group.

  2. Hot Hydrogen Heat Source Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a  hot hydrogen heat source that would produce  a high temperature hydrogen flow which would be comparable to that produced...

  3. Satellite Servicing's Autonomous Rendezvous and Docking Testbed on the International Space Station

    Science.gov (United States)

    Naasz, Bo J.; Strube, Matthew; Van Eepoel, John; Barbee, Brent W.; Getzandanner, Kenneth M.

    2011-01-01

    The Space Servicing Capabilities Project (SSCP) at NASA's Goddard Space Flight Center (GSFC) has been tasked with developing systems for servicing space assets. Starting in 2009, the SSCP completed a study documenting potential customers and the business case for servicing, as well as defining several notional missions and required technologies. In 2010, SSCP moved to the implementation stage by completing several ground demonstrations and commencing development of two International Space Station (ISS) payloads-the Robotic Refueling Mission (RRM) and the Dextre Pointing Package (DPP)--to mitigate new technology risks for a robotic mission to service existing assets in geosynchronous orbit. This paper introduces the DPP, scheduled to fly in July of 2012 on the third operational SpaceX Dragon mission, and its Autonomous Rendezvous and Docking (AR&D) instruments. The combination of sensors and advanced avionics provide valuable on-orbit demonstrations of essential technologies for servicing existing vehicles, both cooperative and non-cooperative.

  4. Space Microbiology

    Science.gov (United States)

    Horneck, Gerda; Klaus, David M.; Mancinelli, Rocco L.

    2010-01-01

    Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis. PMID:20197502

  5. Space psychology

    Science.gov (United States)

    Parin, V. V.; Gorbov, F. D.; Kosmolinskiy, F. P.

    1974-01-01

    Psychological selection of astronauts considers mental responses and adaptation to the following space flight stress factors: (1) confinement in a small space; (2) changes in three dimensional orientation; (3) effects of altered gravity and weightlessness; (4) decrease in afferent nerve pulses; (5) a sensation of novelty and danger; and (6) a sense of separation from earth.

  6. Borel Spaces

    CERN Document Server

    Berberian, S K

    2002-01-01

    A detailed exposition of G.W. Mackey's theory of Borel spaces (standard, substandard, analytic), based on results in Chapter 9 of Bourbaki's General Topology. Appended are five informal lectures on the subject (given at the CIMPA/ICPAM Summer School, Nice, 1986), sketching the connection between Borel spaces and representations of operator algebras.

  7. The Goddard Snow Radiance Assimilation Project: An Integrated Snow Radiance and Snow Physics Modeling Framework for Snow/cold Land Surface Modeling

    Science.gov (United States)

    Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.

    2006-01-01

    Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.

  8. Recent space nuclear power systems

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Yasuda, Hideshi; Hishida, Makoto

    1991-01-01

    For the advance of mankind into the space, the power sources of large output are indispensable, and it has been considered that atomic energy is promising as compared with solar energy and others. Accordingly in USA and USSR, the development of the nuclear power generation systems for space use has been carried out since considerable years ago. In this report, the general features of space nuclear reactors are shown, and by taking the system for the SP-100 project being carried out in USA as the example, the contents of the recent design regarding the safety as an important factor are discussed. Moreover, as the examples of utilizing space nuclear reactors, the concepts of the power source for the base on the moon, the sources of propulsive power for the rockets used for Mars exploration and others, the remote power transmission system by laser in the space and so on are explained. In September, 1988, the launching of a space shuttle of USA was resumed, and the Jupiter explorer 'Galileo' and the space telescope 'Hubble' were successfully launched. The space station 'Mir' of USSR has been used since February, 1986. The history of the development of the nuclear power generation systems for space use is described. (K.I.)

  9. Space engineering

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    Human productivity was studied for extravehicular tasks performed in microgravity, particularly including in-space assembly of truss structures and other large objects. Human factors research probed the anthropometric constraints imposed on microgravity task performance and the associated workstation design requirements. Anthropometric experiments included reach envelope tests conducted using the 3-D Acoustic Positioning System (3DAPS), which permitted measuring the range of reach possible for persons using foot restraints in neutral buoyancy, both with and without space suits. Much neutral buoyancy research was conducted using the support of water to simulate the weightlessness environment of space. It became clear over time that the anticipated EVA requirement associated with the Space Station and with in-space construction of interplanetary probes would heavily burden astronauts, and remotely operated robots (teleoperators) were increasingly considered to absorb the workload. Experience in human EVA productivity led naturally to teleoperation research into the remote performance of tasks through human controlled robots.

  10. NASA's Next Generation Space Geodesy Network

    Science.gov (United States)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  11. NASA Space Geodesy Program: GSFC data analysis, 1992. Crustal Dynamics Project VLBI geodetic results, 1979 - 1991

    Science.gov (United States)

    Ryan, J. W.; Ma, C.; Caprette, D. S.

    1993-01-01

    The Goddard VLBI group reports the results of analyzing 1648 Mark 3 data sets acquired from fixed and mobile observing sites through the end of 1991, and available to the Crustal Dynamics Project. Two large solutions were used to obtain Earth rotation parameters, nutation offsets, radio source positions, site positions, site velocities, and baseline evolution. Site positions are tabulated on a yearly basis for 1979 to 1995, inclusive. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for 200 baselines, and individual length determinations are presented for an additional 356 baselines. This report includes 155 quasar radio sources, 96 fixed stations and mobile sites, and 556 baselines.

  12. Considering the space environment

    International Nuclear Information System (INIS)

    Boudenot, J.C.; Fillon, T.; Barrillot, C.; Calvet, M.C.

    1999-01-01

    The high levels of radiation encountered in space and in the upper atmosphere can affect the onboard electronics in satellites, launch vehicles and aircraft. The main categories of radiation in space have been classified into four distinct types; radiation belts, solar flares, cosmic radiation and the solar wind. Most of the risk to modern electronic systems arises from heavy ions. In geostationary and low polar orbits, these originate mainly as protons from solar flares. In medium earth orbits, the main source is trapped protons and the South Atlantic anomaly. (authors)

  13. Space polypropulsion

    Science.gov (United States)

    Kellett, B. J.; Griffin, D. K.; Bingham, R.; Campbell, R. N.; Forbes, A.; Michaelis, M. M.

    2008-05-01

    Hybrid space propulsion has been a feature of most space missions. Only the very early rocket propulsion experiments like the V2, employed a single form of propulsion. By the late fifties multi-staging was routine and the Space Shuttle employs three different kinds of fuel and rocket engines. During the development of chemical rockets, other forms of propulsion were being slowly tested, both theoretically and, relatively slowly, in practice. Rail and gas guns, ion engines, "slingshot" gravity assist, nuclear and solar power, tethers, solar sails have all seen some real applications. Yet the earliest type of non-chemical space propulsion to be thought of has never been attempted in space: laser and photon propulsion. The ideas of Eugen Saenger, Georgii Marx, Arthur Kantrowitz, Leik Myrabo, Claude Phipps and Robert Forward remain Earth-bound. In this paper we summarize the various forms of nonchemical propulsion and their results. We point out that missions beyond Saturn would benefit from a change of attitude to laser-propulsion as well as consideration of hybrid "polypropulsion" - which is to say using all the rocket "tools" available rather than possibly not the most appropriate. We conclude with three practical examples, two for the next decades and one for the next century; disposal of nuclear waste in space; a grand tour of the Jovian and Saturnian moons - with Huygens or Lunoxod type, landers; and eventually mankind's greatest space dream: robotic exploration of neighbouring planetary systems.

  14. Space Weather Services of Korea

    Science.gov (United States)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  15. Knowledge spaces

    CERN Document Server

    Doignon, Jean-Paul

    1999-01-01

    Knowledge spaces offer a rigorous mathematical foundation for various practical systems of knowledge assessment. An example is offered by the ALEKS system (Assessment and LEarning in Knowledge Spaces), a software for the assessment of mathematical knowledge. From a mathematical standpoint, knowledge spaces generalize partially ordered sets. They are investigated both from a combinatorial and a stochastic viewpoint. The results are applied to real and simulated data. The book gives a systematic presentation of research and extends the results to new situations. It is of interest to mathematically oriented readers in education, computer science and combinatorics at research and graduate levels. The text contains numerous examples and exercises and an extensive bibliography.

  16. Space Bugz!

    DEFF Research Database (Denmark)

    Birke, Alexander; Schoenau-Fog, Henrik; Reng, Lars

    2012-01-01

    This paper presents Space Bugz! - a novel crowd game for large venues or cinemas that utilises the audience's smartphones as controllers for the game. This paper explains what crowd gaming is and describes how the approach used in Space Bugz! enables more advanced gameplay concepts and individual...... player control than current technologies allow. The gameplay of Space Bugz! is then explained along with the technical architecture of the game. After this, the iterative design process used to create the game is described together with future perspectives. The article concludes with links to a video...

  17. Space Debris & its Mitigation

    Science.gov (United States)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  18. Source Water Protection Contaminant Sources

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Simplified aggregation of potential contaminant sources used for Source Water Assessment and Protection. The data is derived from IDNR, IDALS, and US EPA program...

  19. Space dynamics

    International Nuclear Information System (INIS)

    Corno, S.E.

    1995-01-01

    Analytical methods for Space Dynamics of fission reactors, are presented. It is shown how a few sample problems in space dynamics can be solved, within the one and two group diffusion model, by purely analytical tools, essentially based on Laplace transform and complex Green function techniques. A quite suggestive generalization of this approach, applicable to the fluid core reactors, whose fuel is undergoing a violent mixing, is reported and briefly discussed. (author)

  20. Contact ionization ion source

    International Nuclear Information System (INIS)

    Hashmi, N.; Van Der Houven Van Oordt, A.J.

    1975-01-01

    An ion source in which an apertured or foraminous electrode having a multiplicity of openings is spaced from one or more active surfaces of an ionisation electrode, the active surfaces comprising a material capable of ionising by contact ionization a substance to be ionized supplied during operation to the active surface or surfaces comprises means for producing during operation a magnetic field which enables a stable plasma to be formed in the space between the active surface or surfaces and the apertured electrode, the field strength of the magnetic field being preferably in the range between 2 and 8 kilogauss. (U.S.)

  1. Lasers in space

    Science.gov (United States)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  2. Development of Two-Moment Cloud Microphysics for Liquid and Ice Within the NASA Goddard Earth Observing System Model (GEOS-5)

    Science.gov (United States)

    Barahona, Donifan; Molod, Andrea M.; Bacmeister, Julio; Nenes, Athanasios; Gettelman, Andrew; Morrison, Hugh; Phillips, Vaughan,; Eichmann, Andrew F.

    2013-01-01

    This work presents the development of a two-moment cloud microphysics scheme within the version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme that allows ice supersaturation and a new microphysics module embedded within the moist convection parameterization of GEOS-5. Comprehensive physically-based descriptions of ice nucleation, including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new parameterization of the subgrid scale vertical velocity distribution accounting for turbulence and gravity wave motion is developed. The implementation of the new microphysics significantly improves the representation of liquid water and ice in GEOS-5. Evaluation of the model shows agreement of the simulated droplet and ice crystal effective and volumetric radius with satellite retrievals and in situ observations. The simulated global distribution of supersaturation is also in agreement with observations. It was found that when using the new microphysics the fraction of condensate that remains as liquid follows a sigmoidal increase with temperature which differs from the linear increase assumed in most models and is in better agreement with available observations. The performance of the new microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forcing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with satellite retrievals. However the new microphysics tends to underestimate the coverage of persistent low level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to moderate variation in cloud microphysical parameters

  3. public spaces

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2013-01-01

    Full Text Available The topic of this issue is PUBLIC SPACES. It is familiar and clear to every citizen. The streets and courtyards as childhood experiences remain with us forever. And these are the places where we come with our parents at weekends, where we meet friends, where we have dates and where we already come for a walk with our children.The history of public spaces is long and captivating. It was the main city squares where the most important events took place in history. The Agoras of Ancient Greece and the Roman Forums, the squares of Vatican, Paris and London, Moscow and Saint Petersburg… Greve, Trafalgar, Senate, Palace, Red, Bolotnaya – behind every name there is life of capitals, countries and nations.Public spaces, their shapes, image and development greatly influence the perception of the city as a whole. Both visitors and inhabitants can see in public spaces not only the visage but the heart, the soul and the mind of the city.Unfortunately, sometimes we have to prove the value of public spaces and defend them from those who consider them nothing but a blank space, nobody’s land destined for barbarous development.What should happen to make citizens perceive public spaces as their own and to make authorities consider development and maintenance of squares and parks their priority task against the  background of increasing competition between cities and the fight for human capital? Lately they more often say about “a high-quality human capital”. And now, when they say “the city should be liveable” they add “for all groups of citizens, including the creative class”.

  4. Space Rescue

    Science.gov (United States)

    Muratore, John F.

    2007-01-01

    Space Rescue has been a topic of speculation for a wide community of people for decades. Astronauts, aerospace engineers, diplomats, medical and rescue professionals, inventors and science fiction writers have all speculated on this problem. Martin Caidin's 1964 novel Marooned dealt with the problems of rescuing a crew stranded in low earth orbit. Legend at the Johnson Space Center says that Caidin's portrayal of a Russian attempt to save the American crew played a pivotal role in convincing the Russians to join the real joint Apollo-Soyuz mission. Space Rescue has been a staple in science fiction television and movies portrayed in programs such as Star Trek, Stargate-SG1 and Space 1999 and movies such as Mission To Mars and Red Planet. As dramatic and as difficult as rescue appears in fictional accounts, in the real world it has even greater drama and greater difficulty. Space rescue is still in its infancy as a discipline and the purpose of this chapter is to describe the issues associated with space rescue and the work done so far in this field. For the purposes of this chapter, the term space rescue will refer to any system which allows for rescue or escape of personnel from situations which endanger human life in a spaceflight operation. This will span the period from crew ingress prior to flight through crew egress postlanding. For the purposes of this chapter, the term primary system will refer to the spacecraft system that a crew is either attempting to escape from or from which an attempt is being made to rescue the crew.

  5. Ground and Space Radar Volume Matching and Comparison Software

    Science.gov (United States)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  6. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1994-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal field - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders. Some new ideas associated with these sources are also presented. (orig.)

  7. Underground spaces/cybernetic spaces

    Directory of Open Access Journals (Sweden)

    Tomaž Novljan

    2000-01-01

    Full Text Available A modern city space is a space where in the vertical and horizontal direction dynamic, non-linear processes exist, similar as in nature. Alongside the “common” city surface, cities have underground spaces as well that are increasingly affecting the functioning of the former. It is the space of material and cybernetic communication/transport. The psychophysical specifics of using underground places have an important role in their conceptualisation. The most evident facts being their limited volume and often limited connections to the surface and increased level of potential dangers of all kinds. An efficient mode for alleviating the effects of these specific features are artistic interventions, such as: shape, colour, lighting, all applications of the basic principles of fractal theory.

  8. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Planets and Celestial Calibration Sources

    Science.gov (United States)

    Weiland, J. L.; Odegard, N.; Hill, R. S.; Wollack, E.; Hinshaw, G.; Greason, M. R.; Jarosik, N.; Page, L.; Bennett, C. L.; Dunkley, J.; Gold, B.; Halpern, M.; Kogut, A.; Komatsu, E.; Larson, D.; Limon, M.; Meyer, S. S.; Nolta, M. R.; Smith, K. M.; Spergel, D. N.; Tucker, G. S.; Wright, E. L.

    2011-02-01

    . Where appropriate, WMAP results are compared against previous findings in the literature. With an absolute calibration uncertainty of 0.2%, WMAP data are a valuable asset for calibration work. WMAP is the result of a partnership between Princeton University and NASA's Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  9. Sources management

    International Nuclear Information System (INIS)

    Mansoux, H.; Gourmelon; Scanff, P.; Fournet, F.; Murith, Ch.; Saint-Paul, N.; Colson, P.; Jouve, A.; Feron, F.; Haranger, D.; Mathieu, P.; Paycha, F.; Israel, S.; Auboiroux, B.; Chartier, P.

    2005-01-01

    Organized by the section of technical protection of the French society of radiation protection ( S.F.R.P.), these two days had for objective to review the evolution of the rule relative to the sources of ionising radiations 'sealed and unsealed radioactive sources, electric generators'. They addressed all the actors concerned by the implementation of the new regulatory system in the different sectors of activities ( research, medicine and industry): Authorities, manufacturers, and suppliers of sources, holders and users, bodies involved in the approval of sources, carriers. (N.C.)

  10. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  11. Environmental spaces

    DEFF Research Database (Denmark)

    Larsen, Henrik Gutzon

    Using the development of intergovernmental environmental cooperation in the Baltic Sea area as a concrete example, the aim of this study is to explore how the 'environment' in situations of environmental interdependence is identified and institutionalised as political-geographical objects....... 'Environmental interdependence' is to this end conceptualised as a tension between 'political spaces' of discrete state territories and 'environmental spaces' of spatially nested ecosystems. This tension between geographies of political separateness and environmental wholeness is the implicit or explicit basis...... for a large and varied literature. But in both its critical and problemsolving manifestations, this literature tends to naturalise the spatiality of environmental concerns: environmental spaces are generally taken for granted. On the suggestion that there is a subtle politics to the specification...

  12. Tsirelson's space

    CERN Document Server

    Casazza, Peter G

    1989-01-01

    This monograph provides a structure theory for the increasingly important Banach space discovered by B.S. Tsirelson. The basic construction should be accessible to graduate students of functional analysis with a knowledge of the theory of Schauder bases, while topics of a more advanced nature are presented for the specialist. Bounded linear operators are studied through the use of finite-dimensional decompositions, and complemented subspaces are studied at length. A myriad of variant constructions are presented and explored, while open questions are broached in almost every chapter. Two appendices are attached: one dealing with a computer program which computes norms of finitely-supported vectors, while the other surveys recent work on weak Hilbert spaces (where a Tsirelson-type space provides an example).

  13. Spectrometers for compact neutron sources

    Science.gov (United States)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  14. Radioisotope Power Sources

    International Nuclear Information System (INIS)

    Culwell, J. P.

    1963-01-01

    The radioisotope power programme of the US Atomic Energy Commission has brought forth a whole new technology of the use of radioisotopes as energy sources in electric power generators. Radioisotope power systems are particularly suited for remote applications where long-lived, compact, reliable power is needed. Able to perform satisfactorily under extreme environmental conditions of temperature, sunlight and electromagnetic radiations, these ''atomic batteries'' are attractive power sources for remote data collecting devices, monitoring systems, satellites and other space missions. Radioisotopes used as fuels generally are either alpha or beta emitters. Alpha emitters are the preferable fuels but are more expensive and less available than beta fuels and are generally reserved for space applications. Beta fuels separated from reactor fission wastes are being used exclusively in land and sea applications at the present. It can be expected, however, that beta emitters such as stiontium-90 eventually will be used in space. Development work is being carried out on generators which will use mixed fission products as fuel. This fuel will be less expensive than the pure radioisotopes since the costs of isotope separation and purification are eliminated. Prototype thermoelectric generators, fuelled with strontium-90 and caesium-137, are now in operation or being developed for use in weather stations, marine navigation aids and deep sea monitoring devices. A plutonium-238 thermoelectric generator is in orbit operating as electric power source in a US Navy TRANSIT satellite. Generators are under development for use on US National Aeronautics and Space Administration missions. The large quantities of radioactivity involved in radioisotope power sources require that special attention be given to safety aspects of the units. Rigid safety requirements have been established and extensive tests have been conducted to insure that these systems can be employed without creating undue

  15. Space Guiding Us

    Science.gov (United States)

    Primikiri, Athina

    2016-04-01

    Taking into consideration the fact that general education provides the passport for a successful career the charting of Space consists of a constructive instrument available to every single teacher. Activities touching directly upon Space comprise a source of inspiration that encourages pupils to get acquainted with natural sciences and technology while consolidating their cross-curriculum knowledge. The applications and endeavors arising out of Space play a vital role for the further development and growth of our societies. Moreover, the prosperity of people is inextricably bound up with the implementation of Space policies adapted to different sectors such as the Environment, the phenomenon of climate change, matters affecting public or private safety, humanitarian aid and other technological issues. Therefore, the thorough analysis of Space endows us with insights about new products and innovative forms of industrial collaboration. As a teacher, I have consciously chosen to utilize the topic of Space in class as an instructive tool during the last 4 years. The lure of Space combined with the fascination provided by Space flights contributes to the enrichment of children's knowledge in the field of STEM. Space consists of the perfect cross-curriculum tool for the teaching of distinct subjects such as History, Geography, Science, Environment, Literature, Music, Religion and Physical Education. Following the Curriculum for pupils aged 9-10 I opted to teach the topic of Space under the title 'Space Guiding Us' as well as its subunits: • International Space Station • Cassini/Huygens, Mission to Titan • Rosetta & Philae • European Union and Space • Mission X: Train like an Astronaut The main purpose of choosing the module of 'Space' is to stimulate the scientific and critical thought of the pupils, to foster the co-operative spirit among them and to make them aware of how the application of Science affects their everyday lives. Aims • To incite pupils

  16. Space doubt

    OpenAIRE

    Rega, Joseph Mark

    2003-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Comunicação e Expressão. Programa de Pós-Graduação em Inglês e Literatura Correspondente. The recent surge in cyberspace science fiction follows previous trends within the genre, i.e. those connected with future city-space and outer space, and is an inevitable result of economic forces. There has always been a close relationship between capitalism and spatial expansion, compelled by technological innovations that ha...

  17. Transit space

    DEFF Research Database (Denmark)

    Raahauge, Kirsten Marie

    2008-01-01

    This article deals with representations of one specific city, Århus, Denmark, especially its central district. The analysis is based on anthropological fieldwork conducted in Skåde Bakker and Fedet, two well-off neighborhoods. The overall purpose of the project is to study perceptions of space...... and the interaction of cultural, social, and spatial organizations, as seen from the point of view of people living in Skåde Bakker and Fedet. The focus is on the city dwellers’ representations of the central district of Århus with specific reference to the concept of transit space. When applied to various Århusian...

  18. Sourcing Excellence

    DEFF Research Database (Denmark)

    Adeyemi, Oluseyi

    2011-01-01

    Sourcing Excellence is one of the key performance indicators (KPIs) in this world of ever changing sourcing strategies. Manufacturing companies need to access and diagnose the reliability and competencies of existing suppliers in order to coordinate and develop them. This would help in managing...

  19. Low Frequency Space Array

    International Nuclear Information System (INIS)

    Dennison, B.; Weiler, K.W.; Johnston, K.J.

    1987-01-01

    The Low Frequency Space Array (LFSA) is a conceptual mission to survey the entire sky and to image individual sources at frequencies between 1.5 and 26 MHz, a frequency range over which the earth's ionosphere transmits poorly or not at all. With high resolution, high sensitivity observations, a new window will be opened in the electromagnetic spectrum for astronomical investigation. Also, extending observations down to such low frequencies will bring astronomy to the fundamental limit below which the galaxy becomes optically thick due to free-free absorption. A number of major scientific goals can be pursued with such a mission, including mapping galactic emission and absorption, studies of individual source spectra in a frequency range where a number of important processes may play a role, high resolution imaging of extended sources, localization of the impulsive emission from Jupiter, and a search for coherent emission processes. 19 references

  20. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1989-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal fields - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders

  1. Into Space

    Institute of Scientific and Technical Information of China (English)

    YIN PUMIN

    2010-01-01

    @@ China plans to launch an unmanned space module,Tiangong 1,in 2011,said Qi Faren,the chief designer of China's Shenzhou spacecraft,at the sidelines of the annual plenary session of the National Committee of the Chinese People's Political Consultative Conference(CPPCC),the country's top political advisory body,on March 3.

  2. Training Spaces

    Science.gov (United States)

    Weinstein, Margery

    2010-01-01

    Creating a balanced learning space for employees is about more than trying different types of seating. It is a challenge that an affect how well employees absorb the lessons and whether they will be able to product better results for the company. The possible solutions are as diverse as the learners. This article describes how three companies…

  3. Space Gerontology

    Science.gov (United States)

    Miquel, J. (Editor); Economos, A. C. (Editor)

    1982-01-01

    Presentations are given which address the effects of space flght on the older person, the parallels between the physiological responses to weightlessness and the aging process, and experimental possibilities afforded by the weightless environment to fundamental research in gerontology and geriatrics.

  4. Trading Spaces

    Science.gov (United States)

    Cort, Cliff

    2006-01-01

    Education administrators face the dual dilemma of crowded, aging facilities and tightening capital budgets. The challenge is to build the necessary classroom, laboratory and activity space while minimizing the length and expense of the construction process. One solution that offers an affordable alternative is modular construction, a method that…

  5. Space research

    International Nuclear Information System (INIS)

    Tempelmayer, A.

    2000-01-01

    Space research in Austria began since 1969 and has its roots in Graz. An overview of the projects performed by Austrian organizations such as local network interconnection via satellites systems, MIGMAS (Microanalysis station), ALP-SAT (Autonomous Libration Point-Satellite), MIDAS (Micro-imaging dust analysis system), among others are described. (nevyjel)

  6. Space Conquest

    CERN Multimedia

    2005-01-01

    An old water tank from the time of the ISR is being converted into a temporary store for ATLAS muon chambers. This is the last chapter in the big programme by the PH Department to make better use of space at CERN.

  7. Internet Technology for Future Space Missions

    Science.gov (United States)

    Hennessy, Joseph F. (Technical Monitor); Rash, James; Casasanta, Ralph; Hogie, Keith

    2002-01-01

    Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and the present labor-intensive, mission-specific techniques for processing and routing data become prohibitively. This paper describes how an IP-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.

  8. Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    Science.gov (United States)

    Estes, Ronald H. (Editor)

    1993-01-01

    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.

  9. [Differences and sources of CO2 concentration, carbon and oxygen stable isotope composition between inside and outside of a green space system and influencing factors in an urban area].

    Science.gov (United States)

    Sun, Shou-jia; Meng, Ping; Zhang, Jin-song; Shu, Jian-hua; Zheng, Ning

    2015-10-01

    The off-axis integrated cavity output spectroscopy technique was used to measure air CO2 concentration, stable carbon (δ13C) and oxygen (δ18C) isotope ratios on the Fourth Ring Road (FRR) and in the green space system of Beijing Institute of Landscape Architecture (BILA) in summer and winter seasons. The variations of CO2 concentration, δ13C value, δ18C value and the differences of them between the FRR and the BILA, which were correlated with traffic volume and meteorological factors, were analyzed at half-hour timescale. The results showed that traffic volume on the FRR was large both in summer and winter with obvious morning and evening rush hours, and more than 150 thousands vehicles were observed everyday during the observation periods. Diurnal variation of the CO2 concentration showed a two-peak curve both on the FRR and in the green space system of the BILA. In contrast, diurnal variation of δ13C value was a two-trough curve while diurnal variation of δ18O value was a single-trough curve. The differences of CO2 concentration, δ13C value and δ18O value between the FRR and the green space system of BILA in summer were greater than those in winter. The carbon isotope partitioning results showed that in summer vehicle exhaust contributed 64.9% to total atmospheric CO2 of the FRR during measurement time, while heterotrophic respiration contributed 56.3% to total atmospheric CO2 of the green space system in BILA. However, in winter atmospheric CO2 from both the FRR and green space system mostly came from vehicle exhaust. Stepwise regression analysis indicated that differences of CO2 concentration between the FRR and green space system were significantly related to vehicle volume and solar radiation at half-hour timescale, while solar radiation and relative humidity were the main meteorological factors causing δ13 and δ18O differences between the FRR and green space system. Plants in the green space system strongly assimilated CO2 from fossil fuel burning

  10. WORKSHOP: Inner space - outer space

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    During the first week of May, the Fermilab theoretical astrophysics group hosted an international conference on science at the interface of particle physics and cosmology/astrophysics. The conference (Inner Space-Outer Space) was attended by a very diverse group of more than 200 physical scientists, including astronomers, astrophysicists, cosmologists, low-temperature physicists, and elementary particle theorists and experimentalists. The common interest which brought this diverse group to gether is the connection between physics on the smallest scale probed by man - the realm of elementary particle physics - and physics on the largest scale imaginable (the entire Universe) - the realm of cosmology

  11. WORKSHOP: Inner space - outer space

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-09-15

    During the first week of May, the Fermilab theoretical astrophysics group hosted an international conference on science at the interface of particle physics and cosmology/astrophysics. The conference (Inner Space-Outer Space) was attended by a very diverse group of more than 200 physical scientists, including astronomers, astrophysicists, cosmologists, low-temperature physicists, and elementary particle theorists and experimentalists. The common interest which brought this diverse group to gether is the connection between physics on the smallest scale probed by man - the realm of elementary particle physics - and physics on the largest scale imaginable (the entire Universe) - the realm of cosmology.

  12. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  13. Space evaluation of a MOEMs device for space instrumentation

    Science.gov (United States)

    Zamkotsian, Frederic; Tangen, Kyrre; Lanzoni, Patrick; Grassi, Emmanuel; Barette, Rudy; Fabron, Christophe; Valenziano, Luca; Marchand, Laurent; Duvet, Ludovic

    2017-11-01

    Large field of view surveys with a high density of objects such as high-z galaxies or stars benefit of multi-object spectroscopy (MOS) technique. This technique is the best approach to eliminate the problem of spectral confusion, to optimize the quality and the SNR of the spectra, to reach fainter limiting fluxes and to maximize the scientific return. Next generation MOS for space like the Near Infrared Multi-Object Spectrograph (NIRSpec) for the James Webb Space Telescope (JWST) require a programmable multi-slit mask. The European EUCLID mission has also considered a MOS instrument in its early study phase. Conventional masks or complex fiber-optics-based mechanisms are not attractive for space. The programmable multi-slit mask requires remote control of the multi-slit configuration in real time. A promising possible solution is the use of MOEMS devices such as micromirror arrays (MMA) [1,2,3] or micro-shutter arrays (MSA) [4]. MMAs are designed for generating reflecting slits, while MSAs generate transmissive slits. MSA has been selected to be the multi-slit device for NIRSpec and is under development at NASA's Goddard Space Flight Center. In Europe, an effort is currently under way to develop single-crystalline silicon micromirror arrays for future generation infrared multi-object spectroscopy [5]. By placing the programmable slit mask in the focal plane of the telescope, the light from selected objects is directed toward the spectrograph, while the light from other objects and from the sky background is blocked. Visitech is an engineering company experienced in developing DMD solution for industrial customers. The Laboratoire d'Astrophysique de Marseille (LAM) has, over several years, developed different tools for modeling and characterization of MOEMS-based slit masks, especially during the design studies on JWSTNIRSpec [6,7]. ESA has engaged with Visitech and LAM in a technical assessment of using a Digital Micromirror Devices (DMD) from Texas Instruments for

  14. Maturing CCD Photon-Counting Technology for Space Flight

    Science.gov (United States)

    Mallik, Udayan; Lyon, Richard; Petrone, Peter; McElwain, Michael; Benford, Dominic; Clampin, Mark; Hicks, Brian

    2015-01-01

    This paper discusses charge blooming and starlight saturation - two potential technical problems - when using an Electron Multiplying Charge Coupled Device (EMCCD) type detector in a high-contrast instrument for imaging exoplanets. These problems especially affect an interferometric type coronagraph - coronagraphs that do not use a mask to physically block starlight in the science channel of the instrument. These problems are presented using images taken with a commercial Princeton Instrument EMCCD camera in the Goddard Space Flight Center's (GSFC), Interferometric Coronagraph facility. In addition, this paper discusses techniques to overcome such problems. This paper also discusses the development and architecture of a Field Programmable Gate Array and Digital-to-Analog Converter based shaped clock controller for a photon-counting EMCCD camera. The discussion contained here will inform high-contrast imaging groups in their work with EMCCD detectors.

  15. Next Generation NASA Initiative for Space Geodesy

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Space geodesy measurement requirements have become more and more stringent as our understanding of the physical processes and our modeling techniques have improved. In addition, current and future spacecraft will have ever-increasing measurement capability and will lead to increasingly sophisticated models of changes in the Earth system. Ground-based space geodesy networks with enhanced measurement capability will be essential to meeting these oncoming requirements and properly interpreting the sate1!ite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation ofthe observed geophysical signals. These requirements have been articulated by the Global Geodetic Observing System (GGOS). The NASA Space Geodesy Project (SGP) is developing a prototype core site as the basis for a next generation Space Geodetic Network (SGN) that would be NASA's contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Each of the sites in the SGN would include co-located, state of-the-art systems from all four space geodetic observing techniques (GNSS, SLR, VLBI, and DORIS). The prototype core site is being developed at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center. The project commenced in 2011 and is scheduled for completion in late 2013. In January 2012, two multiconstellation GNSS receivers, GODS and GODN, were established at the prototype site as part of the local geodetic network. Development and testing are also underway on the next generation SLR and VLBI systems along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vector ties, and network design studies are being

  16. Spacing Identity

    DEFF Research Database (Denmark)

    Stang Våland, Marianne; Georg, Susse

    2018-01-01

    In this paper, we analyze how architectural design, and the spatial and material changes this involves, contributes to the continuous shaping of identities in an organization. Based upon a case study of organizational and architectural change in a municipal administration at a time of major public...... sector reforms, we examine how design interventions were used to (re)form work and professional relationships. The paper examines how engagements with spatial arrangements and material artifacts affected people’s sense of both occupational and organizational identity. Taking a relational approach...... to sociomateriality, the paper contributes to the further theorizing of space in organization studies by proposing the concept of spacing identity to capture the fluidity of identity performance....

  17. Communication spaces.

    Science.gov (United States)

    Coiera, Enrico

    2014-01-01

    Annotations to physical workspaces such as signs and notes are ubiquitous. When densely annotated, work areas become communication spaces. This study aims to characterize the types and purpose of such annotations. A qualitative observational study was undertaken in two wards and the radiology department of a 440-bed metropolitan teaching hospital. Images were purposefully sampled; 39 were analyzed after excluding inferior images. Annotation functions included signaling identity, location, capability, status, availability, and operation. They encoded data, rules or procedural descriptions. Most aggregated into groups that either created a workflow by referencing each other, supported a common workflow without reference to each other, or were heterogeneous, referring to many workflows. Higher-level assemblies of such groupings were also observed. Annotations make visible the gap between work done and the capability of a space to support work. Annotations are repairs of an environment, improving fitness for purpose, fixing inadequacy in design, or meeting emergent needs. Annotations thus record the missing information needed to undertake tasks, typically added post-implemented. Measuring annotation levels post-implementation could help assess the fit of technology to task. Physical and digital spaces could meet broader user needs by formally supporting user customization, 'programming through annotation'. Augmented reality systems could also directly support annotation, addressing existing information gaps, and enhancing work with context sensitive annotation. Communication spaces offer a model of how work unfolds. Annotations make visible local adaptation that makes technology fit for purpose post-implementation and suggest an important role for annotatable information systems and digital augmentation of the physical environment.

  18. Space Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R.

    1968-01-01

    This booklet discusses three kinds of space radiation, cosmic rays, Van Allen Belts, and solar plasma. Cosmic rays are penetrating particles that we cannot see, hear or feel, which come from distant stars. Van Allen Belts, named after their discoverer are great belts of protons and electrons that the earth has captured in its magnetic trap. Solar plasma is a gaseous, electrically neutral mixture of positive and negative ions that the sun spews out from convulsed regions on its surface.

  19. Space Nutrition

    Science.gov (United States)

    Smith, Scott M.

    2009-01-01

    Optimal nutrition will be critical for crew members who embark on space exploration missions. Nutritional assessment provides an opportunity to ensure that crewmembers begin their missions in optimal nutritional status, to document changes during a mission and, if necessary, to provide intervention to maintain that status throughout the mission, and to assesses changes after landing in order to facilitate the return to their normal status as soon as possible after landing. We report here the findings from our nutritional assessment of astronauts who participated in the International Space Station (ISS) missions, along with flight and ground-based research findings. We also present ongoing and planned nutrition research activities. These studies provide evidence that bone loss, compromised vitamin status, and oxidative damage are the critical nutritional concerns for space travelers. Other nutrient issues exist, including concerns about the stability of nutrients in the food system, which are exposed to longterm storage and radiation during flight. Defining nutrient requirements, and being able to provide and maintain those nutrients on exploration missions, will be critical for maintaining crew member health.

  20. Game Spaces

    DEFF Research Database (Denmark)

    Kristiansen, Erik

    2015-01-01

    , called “pervasive games.” These are games that are based on computer technology, but use a physical space as the game space as opposed to video games. Coupling spatial configuration with performance theory of rituals as liminal phenomena, I put forward a model and a new understanding of the magic circle......When we play games of any kind, from tennis to board games, it is easy to notice that games seem to be configured in space, often using stripes or a kind of map on a board. Some games are clearly performed within this marked border, while it may be difficult to pinpoint such a border in games like...... hide-and-seek, but even these games are still spatially configured. The border (visible or not) both seem to separate and uphold the game that it is meant for. This chapter sets out to analyse the possible border that separates a game from the surrounding world. Johan Huizinga noted this “separateness...

  1. Legal Implications of Military Uses of Outer Space

    Science.gov (United States)

    Catena, Johanna

    2002-01-01

    Acquisition of Space Weapons, the Legal, Political and Military Impact for International Peace and At the dawn of a new century an immediate danger is upon us: The weaponization of outer space, including potential cost implications upon the prospect of ushering an era of peace and prosperity. But, can such statements be explained as pure sentimentality for hopes of a new era? Or is the danger misplaced that the threat to peace and security is an ever more ominous? By militarising outer space one could monitor crisis areas that could become a potential threat and this would in turn build confidence and security amongst nations. However the Outer Space Treaty prohibits placing in orbit nuclear and other weapons of mass destruction. This does not include other military systems. Many countries feel the prohibition should be extended in the Treaty. Other military systems may involve anti-satellite weapons, (ASATS), emitting or simply placing technologies in space using laser and /or particle beams from space to intercept presently specific military targets such as ballistic missiles and hostile satellites, but in the future this may extend to destroying a target on earth. Military presence in space however, is not founded on weapons alone, but also through military surveillance systems and seen by some countries as an effective measure in verification on arms control. It is also seen as intensifying an arms race. At the forefront of the debate for space weapons is the possibility of countries deploying a National Missile Defence system. How does one reconcile such a system with present treaties? There has always been a direct relationship between weapons and space exploration, particularly if traced through the history of the late nineteenth century to the era of the space race. Konstantin Tsiolkovsky, (1857 - 1935), was one of the founders to astronautics. Robert Goddard, (1882-1945) an Englishman, developed Tsiolkovskys' work further. He built the first liquid

  2. Hubble Source Catalog

    Science.gov (United States)

    Lubow, S.; Budavári, T.

    2013-10-01

    We have created an initial catalog of objects observed by the WFPC2 and ACS instruments on the Hubble Space Telescope (HST). The catalog is based on observations taken on more than 6000 visits (telescope pointings) of ACS/WFC and more than 25000 visits of WFPC2. The catalog is obtained by cross matching by position in the sky all Hubble Legacy Archive (HLA) Source Extractor source lists for these instruments. The source lists describe properties of source detections within a visit. The calculations are performed on a SQL Server database system. First we collect overlapping images into groups, e.g., Eta Car, and determine nearby (approximately matching) pairs of sources from different images within each group. We then apply a novel algorithm for improving the cross matching of pairs of sources by adjusting the astrometry of the images. Next, we combine pairwise matches into maximal sets of possible multi-source matches. We apply a greedy Bayesian method to split the maximal matches into more reliable matches. We test the accuracy of the matches by comparing the fluxes of the matched sources. The result is a set of information that ties together multiple observations of the same object. A byproduct of the catalog is greatly improved relative astrometry for many of the HST images. We also provide information on nondetections that can be used to determine dropouts. With the catalog, for the first time, one can carry out time domain, multi-wavelength studies across a large set of HST data. The catalog is publicly available. Much more can be done to expand the catalog capabilities.

  3. Powering the Space Exploration Initiative

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1991-01-01

    The Space Exploration Initiative (SEI) establishes the long-term goal of returning to the Moon and then exploring Mars. One of the prerequisites of SEI is the Exploration Technology Program which includes program elements on space nuclear power and surface solar power. These program elements in turn build upon the ongoing NASA research and technology base program in space energy conversion. There is a wide range of missions in NASA's strategic planning and most would benefit from power sources with improved efficiency, lighter weight and reduced cost

  4. Space nuclear reactor power plants

    International Nuclear Information System (INIS)

    Buden, D.; Ranken, W.A.; Koenig, D.R.

    1980-01-01

    Requirements for electrical and propulsion power for space are expected to increase dramatically in the 1980s. Nuclear power is probably the only source for some deep space missions and a major competitor for many orbital missions, especially those at geosynchronous orbit. Because of the potential requirements, a technology program on space nuclear power plant components has been initiated by the Department of Energy. The missions that are foreseen, the current power plant concept, the technology program plan, and early key results are described

  5. Entomophagy and space agriculture

    Science.gov (United States)

    Katayama, N.; Ishikawa, Y.; Takaoki, M.; Yamashita, M.; Nakayama, S.; Kiguchi, K.; Kok, R.; Wada, H.; Mitsuhashi, J.; Space Agriculture Task Force, J.

    Supplying food for human occupants remains one of the primary issues in engineering space habitation Evidently for long-term occupation on a distant planet it is necessary to start agriculture on site Historically humans have consumed a variety of animals and it is required to fill our nutritional need when they live in space Among many candidate group and species of animal to breed in space agriculture insects are of great interest since they have a number of advantages over mammals and other vertebrates or invertebrates About 70-75 of animal species is insects and they play an important role in materials recycle loop of terrestrial biosphere at their various niche For space agriculture we propose several insect species such as the silkworm Bombyx mori the drugstore beetle Stegobium paniceum and the termite Macrotermes subhyalinus Among many advantages these insects do not compete with human in terms of food resources but convert inedible biomass or waste into an edible food source for human The silkworm has been domesticated since 5 000 years ago in China Silk moth has lost capability of flying after its domestication history This feature is advantageous in control of their breeding Silkworm larvae eat specifically mulberry leaves and metamorphose in their cocoon Silk fiber obtained from cocoon can be used to manufacture textile Farming system of the drugstore beetle has been well established Both the drugstore beetle and the termite are capable to convert cellulose or other inedible biomass

  6. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  7. Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Navigation Accuracy to Major Error Sources

    Science.gov (United States)

    Olson, Corwin; Long, Anne; Car[emter. Russell

    2011-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.

  8. Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Naviation Accuracy to Major Error Sources

    Science.gov (United States)

    Olson, Corwin; Long, Anne; Carpenter, J. Russell

    2011-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.

  9. Detectability of molecular gas signatures on Jupiter’s moon Europa from ground and space-based facilities

    Science.gov (United States)

    Paganini, Lucas; Villanueva, Geronimo Luis; Hurford, Terry; Mandell, Avi; Roth, Lorenz; Mumma, Michael J.

    2017-10-01

    Plumes and their effluent material could provide insights into Europa’s subsurface chemistry and relevant information about the prospect that life could exist, or now exists, within the ocean. In 2016, we initiated a strong observational campaign to characterize the chemical composition of Europa’s surface and exosphere using high-resolution infrared spectroscopy. While several studies have focused on the detection of water, or its dissociation products, there could be a myriad of complex molecules released by erupting plumes. Our IR survey has provided a serendipitous search for several key molecular species, allowing a chemical characterization that can aid the investigation of physical processes underlying its surface. Since our tentative water detection, presented at the 2016 DPS meeting, we have continued the observations of Europa during 2017 covering a significant extent of the moon’s terrain and orbital position (true anomaly), accounting for over 50 hr on source. Current analyses of these data are showing spectral features that grant further investigation. In addition to analysis algorithms tailored to the examination of Europan data, we have developed simulation tools to predict the possible detection of molecular species using ground-based facilities like the Keck Observatory, NASA’s Infrared Telescope and the Atacama Large Millimeter/submillimeter Array (ALMA). In this presentation we will discuss the detectability of key molecular species with these remote sensing facilities, as well as expected challenges and future strategies with upcoming spacecrafts such as the James Webb Space Telescope (JWST), the Large UV/Optical/Infrared Surveyor (LUVOIR), and a possible gas spectrometer onboard an orbiter.This work is supported by NASA’s Keck PI Data Award (PI L.P.) and Solar System Observation Program (PI L.P.), and by the NASA Astrobiology Institute through funding awarded to the Goddard Center for Astrobiology (PI M.J.M.).

  10. Neutron source

    International Nuclear Information System (INIS)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-01-01

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap

  11. Crowd Sourcing.

    Science.gov (United States)

    Baum, Neil

    2016-01-01

    The Internet has contributed new words and slang to our daily vernacular. A few terms, such as tweeting, texting, sexting, blogging, and googling, have become common in most vocabularies and in many languages, and are now included in the dictionary. A new buzzword making the rounds in industry is crowd sourcing, which involves outsourcing an activity, task, or problem by sending it to people or groups outside a business or a practice. Crowd sourcing allows doctors and practices to tap the wisdom of many instead of relying only on the few members of their close-knit group. This article defines "crowd sourcing," offers examples, and explains how to get started with this approach that can increase your ability to finish a task or solve problems that you don't have the time or expertise to accomplish.

  12. Space Detectives

    Science.gov (United States)

    Tyszka, Steph; Saraiva, Jose; Doran, Rosa

    2017-04-01

    NUCLIO is a Portuguese non-profit organization with a strong record of investing in science education and outreach. We have developed and implemented many activities mostly directed to a young audience, in a bid to awaken and reinforce the interest that young people devote to Astronomy and all things spatial. In this framework, we have created a week-long program called Space Detectives, supported by the Municipality of Cascais, based on a story-line that provided a number of challenges and opportunities for learning matters as diverse as the electro-magnetic spectrum, means of communication, space travel, the martian environment, coding and robotics. We report on the first session that took place in December 2016. We had as participants several kids aged 9 to 12, with a mixed background in terms of interest in the sciences. Their response varied from enthusiastic to somewhat less interested, depending on the nature of the subject and the way it was presented - a reaction not necessarily related to its complexity. This week was taken as something of a trial run, in preparation for the European Commission- funded project "Stories of Tomorrow", to be implemented in schools. The individual activities and the way they were related to the story-line, as well as the smooth transition from one to the next, were subject to an analysis that will allow for improvements in the next installments of this program. We believe this is an excellent approach to the goals of using Space and Astronomy as an anchor for generating and keeping interest in the scientific areas, and of finding new and richer ways of learning.

  13. Energy sources

    International Nuclear Information System (INIS)

    Vajda, Gy.

    1998-01-01

    A comprehensive review is presented of the available sources of energy in the world is presented. About 80 percent of primary energy utilization is based on fossile fuels, and their dominant role is not expected to change in the foreseeable future. Data are given on petroleum, natural gas and coal based power production. The role and economic aspects of nuclear power are analyzed. A brief summary of renewable energy sources is presented. The future prospects of the world's energy resources are discussed, and the special position of Hungary regarding fossil, nuclear and renewable energy and the country's energy potential is evaluated. (R.P.)

  14. Space polypropulsion

    CSIR Research Space (South Africa)

    Kellett, BJ

    2008-04-01

    Full Text Available understandably, fallen by the wayside. NASAs putative atom bomb propelled mission, coincidently also baptized ORION, was also curtailed. And last of all, the use of lasers for propulsion remains firmly “stuck in the doldrums.” This mode of access to space...) Except for LOX, very polluting. V. high ζ Launch costs: $20,000/kg. Gas guns. 1 1-4 km/s Most of the system mass stays on the ground. Recoil problems. Large NASA gas gun project abandoned. (too many “g’s”) E-M guns: rail/coil. 1.5 1-10 km...

  15. Space Technospheres

    Science.gov (United States)

    Vidmachenko, A. P.; Steklov, A. F.; Primak, N. V.

    2000-01-01

    Two main tendencies of making the Solar System habitable are regarding nowadays: (1) making objects of the Solar System habitable; and (2) making the space of the Solar System habitable. We think that it's better to combine them. We should dezine and build settlements ('technospheres') on such objects as asteroids and comets, using their resources. That is, it is necessary to create 'space technospheres' - a long-termed human settlements in the space. To save energy resources it is necessary to use Near-Earth asteroids enriched with water ice (i. e. extinguished comets) with Near-Earth orbits. To realize listed conceptions it is necessary to decrease (up to 100 times) the cost price of the long-termed settlements. That's why even average UN country will be able to create it's own space house - artificial planet ('technosphere') and maintain life activities there. About 50-100 such artificial planets will represent the future civilization of our Solar System. At the same time Earth will stay basic, maternal planet. There is an interesting problem of correcting orbits of that objects. Orbits can be changed into circular or elongated to make them comfortable for living activities of 5000-10000 settlers, and to maintain connection with maternal planet. Technospheres with the elongated orbits are more advantageous to assimilate the Solar System. While technospheres with circular orbits suit to the industrial cycle with certain specialization. The specialization of the technosphere will depend on mine-workings and/or chosen high-technology industrial process. Because it is profitable to convert raw materials at the technosphere and then to transport finished products to the maternal planet. It worth to be mentioned that because of the low gravitation and changed life cycle technosphere settlers, new 'Columb' of the Solar System will transform into new mankind. It will happen though it is difficult to imaging this. Because long ago, when fish left the ocean, they didn

  16. Space exploration

    CERN Document Server

    2009-01-01

    Space Exploration, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  17. Space Pharmacology

    CERN Document Server

    Wotring, Virginia E

    2012-01-01

    Space Pharmacology” is a review of the current knowledge regarding the use of pharmaceuticals during spaceflights. It is a comprehensive review of the literature, addressing each area of pharmacokinetics and each major physiological system in turn. Every section begins with a topic overview, and is followed by a discussion of published data from spaceflight, and from ground experiments meant to model the spaceflight situation. Includes a discussion looking forward to the new medical challenges we are likely to face on longer duration exploration missions. This book is a snapshot of our current knowledge that also highlights areas of unknown.

  18. Potatoes in Space

    Science.gov (United States)

    2004-01-01

    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  19. Antimatter as an Energy Source

    International Nuclear Information System (INIS)

    Jackson, Gerald P.

    2009-01-01

    Antiprotons and positrons are constantly generated in space, and periodically manufactured by humans here on Earth. Harvesting of these particles in space and forming stable antimatter atoms and molecules would create a significant energy source for power and propulsion. Though dedicated fabrication of these particles on Earth consumes much more energy than could be liberated upon annihilation, manufactured antimatter represents a high-density energy storage mechanism well suited for spacecraft power and propulsion. In this paper the creation, storage, and utilization of antimatter is introduced. Specific examples of electrical energy generation and deep-space propulsion based on antimatter are also reviewed.

  20. The Space package: Tight Integration Between Space and Semantics

    NARCIS (Netherlands)

    van Hage, W.R.; Wielemaker, J.; Schreiber, A.Th.

    2010-01-01

    Interpretation of spatial features often requires combined reasoning over geometry and semantics. We introduce the Space package, an open source SWI-Prolog extension that provides spatial indexing capabilities. Together with the existing semantic web reasoning capabilities of SWI-Prolog, this allows

  1. NASA space geodesy program: Catalogue of site information

    Science.gov (United States)

    Bryant, M. A.; Noll, C. E.

    1993-01-01

    This is the first edition of the NASA Space Geodesy Program: Catalogue of Site Information. This catalogue supersedes all previous versions of the Crustal Dynamics Project: Catalogue of Site Information, last published in May 1989. This document is prepared under the direction of the Space Geodesy and Altimetry Projects Office (SGAPO), Code 920.1, Goddard Space Flight Center. SGAPO has assumed the responsibilities of the Crustal Dynamics Project, which officially ended December 31, 1991. The catalog contains information on all NASA supported sites as well as sites from cooperating international partners. This catalog is designed to provde descriptions and occupation histories of high-accuracy geodetic measuring sites employing space-related techniques. The emphasis of the catalog has been in the past, and continues to be with this edition, station information for facilities and remote locations utilizing the Satellite Laser Ranging (SLR), Lunar Laser Ranging (LLR), and Very Long Baseline Interferometry (VLBI) techniques. With the proliferation of high-quality Global Positioning System (GPS) receivers and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) transponders, many co-located at established SLR and VLBI observatories, the requirement for accurate station and localized survey information for an ever broadening base of scientists and engineers has been recognized. It is our objective to provide accurate station information to scientific groups interested in these facilities.

  2. Ion source

    International Nuclear Information System (INIS)

    1977-01-01

    The specifications of a set of point-shape electrodes of non-corrodable material that can hold a film of liquid material of equal thickness is described. Contained in a jacket, this set forms an ion source. The electrode is made of tungsten with a glassy carbon layer for insulation and an outer layer of aluminium-oxide ceramic material

  3. Space Colonization Using Space-Elevators from Phobos

    Science.gov (United States)

    Weinstein, Leonard M.

    2003-01-01

    A novel approach is examined for creating an industrial civilization beyond Earth. The approach would take advantage of the unique configuration of Mars and its moon Phobos to make a transportation system capable of raising mass from the surface of Mars to space at a low cost. Mars would be used as the primary location for support personnel and infrastructure. Phobos would be used as a source of raw materials for space-based activity, and as an anchor for tethered carbon-nanotube-based space-elevators. One space-elevator would terminate at the upper edge of Mars' atmosphere. Small craft would be launched from Mars' surface to rendezvous with the moving elevator tip and their payloads detached and raised with solar powered loop elevators to Phobos. Another space-elevator would be extended outward from Phobos to launch craft toward the Earth/Moon system or the asteroid belt. The outward tip would also be used to catch arriving craft. This approach would allow Mars to be colonized, and allow transportation of people and supplies from Mars to support the space industry. In addition, large quantities of material obtained from Phobos could be used to construct space habitats and also supply propellant and material for space industry in the Earth/Moon system as well as around Mars.

  4. Gamma-ray astronomy from the ground and the space: first analyses of the HESS-II hybrid array and search for blazar candidates among the unidentified Fermi-LAT sources

    International Nuclear Information System (INIS)

    Lefaucheur, Julien

    2015-01-01

    This manuscript is about high energy gamma-ray astronomy (between 30 GeV and 300 GeV) with the Fermi-LAT satellite and very high energy gamma-ray astronomy (above ∼100 GeV) via the H.E.S.S. experiment. The second phase of the H.E.S.S. experiment began in July 2012 with the inauguration of a fifth 28 m-diameter telescope added to the initial array composed of four 12 m-diameter imaging atmospheric Cherenkov telescopes. In the first part of this thesis, we present the development of an analysis in hybrid mode based on a multivariate method dedicated to detect and study sources with different spectral shapes and the first analysis results on real data. The second part is dedicated to the research of blazar candidates among the Fermi-LAT unidentified sources of the 2FGL catalog. A first development is based on a multivariate approach using discriminant parameters built with the 2FGL catalog parameters. A second development is done with the use of the WISE satellite catalog and a non-parametric technic in order to find the blazar-like infrared counterparts of the unidentified sources of the 2FGL catalog. (author)

  5. Nutrition for Space Exploration

    Science.gov (United States)

    Smith, Scott M.

    2005-01-01

    during space flight. Omega3 fatty acids are currently being studied as a means of protecting against radiation-induced cancer. They have also recently been implicated as having a role in mitigating the physical wasting, or cachexia, caused by cancer. The mechanism of muscle loss associated with this type of cachexia is similar to the mechanism of muscle loss during disuse or space flight. Omega3 fatty acids have already been shown to have protective effects on bone and cardiovascular function. Omega3 fatty acids could be an ideal countermeasure for space flight because they have protective effects on multiple systems. A definition of optimal nutrient intake requirements for long-duration space travel should also include antioxidants. Astronauts are exposed to numerous sources of oxidative stress, including radiation, elevated oxygen exposure during extravehicular activity, and physical and psychological stress. Elevated levels of oxidative damage are related to increased risk for cataracts, cardiovascular disease, and cancer. Many groundbased studies show the protective effects of antioxidants against oxidative damage induced by radiation or oxygen. Balancing the diet with foods that have high levels of antioxidants would be another ideal countermeasure because it should have minimal side effects on crew health. Antioxidant supplements, however, are often used without having data on their effectiveness or side effects. High doses of supplements have been associated with bone and cardiovascular problems, but research on antioxidant effects during space flight has not been conducted. Much work must be done before we can send crews on exploration missions. Nutrition is often assumed to be the simple provision of food items that will be stable throughout the mission. As outlined briefly above, the situation is much more complex than food provision. As explorers throughout history have found, failure to truly understand the role of nutrition can be catastrophic. When huns are

  6. Open Source GIS Connectors to NASA GES DISC Satellite Data

    Science.gov (United States)

    Kempler, Steve; Pham, Long; Yang, Wenli

    2014-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) houses a suite of high spatiotemporal resolution GIS data including satellite-derived and modeled precipitation, air quality, and land surface parameter data. The data are valuable to various GIS research and applications at regional, continental, and global scales. On the other hand, many GIS users, especially those from the ArcGIS community, have difficulties in obtaining, importing, and using our data due to factors such as the variety of data products, the complexity of satellite remote sensing data, and the data encoding formats. We introduce a simple open source ArcGIS data connector that significantly simplifies the access and use of GES DISC data in ArcGIS.

  7. Heliodromus : Renewable energy from space

    NARCIS (Netherlands)

    Kuiper, J.M.

    2010-01-01

    Climate change and the related running out of fossil fuel reserves drive the development of renewable energy sources. To contribute to a solution of these problems, we present the results of a BSc student design synthesis exercise project on Space Based Solar Power (SBSP). A SBSP system generates

  8. Trace spaces

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth; Goubault, Eric; Haucourt, Emmanuel

    2012-01-01

    in the interleaving semantics of a concurrent program, but rather some equivalence classes. The purpose of this paper is to describe a new algorithm to compute such equivalence classes, and a representative per class, which is based on ideas originating in algebraic topology. We introduce a geometric semantics...... of concurrent languages, where programs are interpreted as directed topological spaces, and study its properties in order to devise an algorithm for computing dihomotopy classes of execution paths. In particular, our algorithm is able to compute a control-flow graph for concurrent programs, possibly containing...... loops, which is “as reduced as possible” in the sense that it generates traces modulo equivalence. A preliminary implementation was achieved, showing promising results towards efficient methods to analyze concurrent programs, with very promising results compared to partial-order reduction techniques....

  9. SUSTAINABILITY OF DIGITAL PUBLIC SPACES

    Directory of Open Access Journals (Sweden)

    Matej Hudák

    2015-07-01

    Full Text Available Purpose: Modern digital public spaces are evolving from being mostly the provider of ICT and internet connection to institutions that provide complex range of services and support for the community. With this shift in their focus new challenges are emerging, among others their sustainability.Methodology/Approach: We build on and extend the methodology of Digital Cooperatives project. Within this project, survey on 59 digital public spaces from 12 EU countries was conducted. These digital public spaces were examined in 21 areas, some of them relating to their sustainability. We further analyse the sustainability issue of these digital public spaces.Findings: We identified three main issues affecting sustainability of digital public spaces – budgeting, services and community. Digital public spaces mostly rely on public funding and have limited diversification of their funds, which increases a risk when one source of funding drops out. They also have to build a strong community of users, supporters, which will make use of their capacities and helps co-create new services and thus strengthen and improve the community itself.Originality/Value of paper: Research in this paper is based on the collection of best practices from various EU countries in the field of digital public spaces. Recommendations based on these practices could help the creation of new, and in current digital public spaces.

  10. The Nobel Connection to the Space Program

    Science.gov (United States)

    Ng, E. N.; Nash, R. L.

    2007-09-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the "First Nobel Prize for Space Exploration." Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, "The COBE results provided increased support for the Big Bang scenario for the origin of the Universe. These measurements also marked the inception of cosmology as a precise science." NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark. We have organized this lengthy paper into nine, fairly independent sections for ease of reading:1."Michael Jordan or Mia Hamm" - Introduction and Background2."Connecting the Dots Between the Heavens and Earth" - From Newton to Bethe3."From Cosmic Noise to the Big Bang" - The First Nobel

  11. NASA's Next Generation Space Geodesy Program

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  12. Nobel Connection to the Space Program

    Science.gov (United States)

    Ng, Edward W.; Nash, Rebecca

    2007-09-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the "First Nobel Prize for Space Exploration." Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, "The COBE results provided increased support for the Big Bang scenario for the origin of the Universe... These measurements also marked the inception of cosmology as a precise science." NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons (of either gender) are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark. We have organized this paper into nine, fairly independent sections for ease of reading: I. "Michael Jordan or Mia Hamm" - Introduction and Background II. "Connecting the Dots Between the Heavens and Earth" - From Newton to Bethe III. "From Cosmic Noise to the Big Bang" - The

  13. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  14. Orphan sources

    International Nuclear Information System (INIS)

    Pust, R.; Urbancik, L.

    2008-01-01

    The presentation describes how the stable detection systems (hereinafter referred to as S DS ) have contributed to reveal the uncontrolled sources of ionizing radiation on the territory of the State Office for Nuclear Safety (SONS) Brno Regional Centre (RC Brno). It also describes the emergencies which were solved by or in which the workers from the Brno. Regional Centre participated in. The contribution is divided into the following chapters: A. SDS systems installed on the territory of SONS RC Brno; B. Selected unusual emergencies; C. Comments to individual emergencies; D. Aspects of SDS operation in term of their users; E. Aspects of SDS operation and related activities in term of radiation protection; F. Current state of orphan sources. (authors)

  15. Tritium sources

    International Nuclear Information System (INIS)

    Glodic, S.; Boreli, F.

    1993-01-01

    Tritium is the only radioactive isotope of hydrogen. It directly follows the metabolism of water and it can be bound into genetic material, so it is very important to control levels of contamination. In order to define the state of contamination it is necessary to establish 'zero level', i.e. actual global inventory. The importance of tritium contamination monitoring increases with the development of fusion power installations. Different sources of tritium are analyzed and summarized in this paper. (author)

  16. Source rock

    Directory of Open Access Journals (Sweden)

    Abubakr F. Makky

    2014-03-01

    Full Text Available West Beni Suef Concession is located at the western part of Beni Suef Basin which is a relatively under-explored basin and lies about 150 km south of Cairo. The major goal of this study is to evaluate the source rock by using different techniques as Rock-Eval pyrolysis, Vitrinite reflectance (%Ro, and well log data of some Cretaceous sequences including Abu Roash (E, F and G members, Kharita and Betty formations. The BasinMod 1D program is used in this study to construct the burial history and calculate the levels of thermal maturity of the Fayoum-1X well based on calibration of measured %Ro and Tmax against calculated %Ro model. The calculated Total Organic Carbon (TOC content from well log data compared with the measured TOC from the Rock-Eval pyrolysis in Fayoum-1X well is shown to match against the shale source rock but gives high values against the limestone source rock. For that, a new model is derived from well log data to calculate accurately the TOC content against the limestone source rock in the study area. The organic matter existing in Abu Roash (F member is fair to excellent and capable of generating a significant amount of hydrocarbons (oil prone produced from (mixed type I/II kerogen. The generation potential of kerogen in Abu Roash (E and G members and Betty formations is ranging from poor to fair, and generating hydrocarbons of oil and gas prone (mixed type II/III kerogen. Eventually, kerogen (type III of Kharita Formation has poor to very good generation potential and mainly produces gas. Thermal maturation of the measured %Ro, calculated %Ro model, Tmax and Production index (PI indicates that Abu Roash (F member exciting in the onset of oil generation, whereas Abu Roash (E and G members, Kharita and Betty formations entered the peak of oil generation.

  17. Radioactive source

    International Nuclear Information System (INIS)

    Drabkina, L.E.; Mazurek, V.; Myascedov, D.N.; Prokhorov, P.; Kachalov, V.A.; Ziv, D.M.

    1976-01-01

    A radioactive layer in a radioactive source is sealed by the application of a sealing layer on the radioactive layer. The sealing layer can consist of a film of oxide of titanium, tin, zirconium, aluminum, or chromium. Preferably, the sealing layer is pure titanium dioxide. The radioactive layer is embedded in a finish enamel which, in turn, is on a priming enamel which surrounds a substrate

  18. Muon sources

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    A full high energy muon collider may take considerable time to realize. However, intermediate steps in its direction are possible and could help facilitate the process. Employing an intense muon source to carry out forefront low energy research, such as the search for muon-number non-conservation, represents one interesting possibility. For example, the MECO proposal at BNL aims for 2 x 10 -17 sensitivity in their search for coherent muon-electron conversion in the field of a nucleus. To reach that goal requires the production, capture and stopping of muons at an unprecedented 10 11 μ/sec. If successful, such an effort would significantly advance the state of muon technology. More ambitious ideas for utilizing high intensity muon sources are also being explored. Building a muon storage ring for the purpose of providing intense high energy neutrino beams is particularly exciting.We present an overview of muon sources and example of a muon storage ring based Neutrino Factory at BNL with various detector location possibilities

  19. Robotic Materials Handling in Space: Mechanical Design of the Robot Operated Materials Processing System HitchHiker Experiment

    Science.gov (United States)

    Voellmer, George

    1997-01-01

    The Goddard Space Flight Center has developed the Robot Operated Materials Processing System (ROMPS) that flew aboard STS-64 in September, 1994. The ROMPS robot transported pallets containing wafers of different materials from their storage racks to a furnace for thermal processing. A system of tapered guides and compliant springs was designed to deal with the potential misalignments. The robot and all the sample pallets were locked down for launch and landing. The design of the passive lockdown system, and the interplay between it and the alignment system are presented.

  20. Space exploration and colonization - Towards a space faring society

    Science.gov (United States)

    Hammond, Walter E.

    1990-01-01

    Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.