WorldWideScience

Sample records for source fe2 schedule

  1. Fe2O3/Reduced Graphene Oxide/Fe3O4 Composite in Situ Grown on Fe Foil for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhao, Chongjun; Shao, Xiaoxiao; Zhang, Yuxiao; Qian, Xiuzhen

    2016-11-09

    A Fe 2 O 3 /reduced graphene oxide (RGO)/Fe 3 O 4 nanocomposite in situ grown on Fe foil was synthesized via a simple one-step hydrothermal growth process, where the iron foil served as support, reductant of graphene oxide, Fe source of Fe 3 O 4 , and also the current collector of the electrode. When it directly acted as the electrode of a supercapacitor, as-synthesized Fe 2 O 3 /RGO/Fe 3 O 4 @Fe exhibited excellent electrochemical performance with a high capability of 337.5 mF/cm 2 at 20 mA/cm 2 and a superior cyclability with 2.3% capacity loss from the 600th to the 2000th cycle.

  2. 41 CFR 101-26.507-2 - Procurement time schedule.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Procurement time schedule. 101-26.507-2 Section 101-26.507-2 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND...

  3. Na7 [Fe2S6 ] , Na2 [FeS2 ] and Na2 [FeSe2 ] : New 'reduced' sodium chalcogenido ferrates

    Science.gov (United States)

    Stüble, Pirmin; Peschke, Simon; Johrendt, Dirk; Röhr, Caroline

    2018-02-01

    Three new 'reduced' FeII containing sodium chalcogenido ferrates were obtained applying a reductive synthetic route. The mixed-valent sulfido ferrate Na7 [Fe2S6 ] , which forms bar-shaped crystals with metallic greenish luster, was synthesized in pure phase from natural pyrite and elemental sodium at a maximum temperature of 800 °C. Its centrosymmetric triclinic structure (SG P 1 bar , a = 764.15(2), b = 1153.70(2), c = 1272.58(3) pm, α = 62.3325 (7) , β = 72.8345 (8) , γ = 84.6394 (8) ° , Z = 3, R1 = 0.0185) exhibits two crystallographically different [Fe2S6 ] 7 - dimers of edge-sharing [FeS4 ] tetrahedra, with somewhat larger Fe-S distances than in the fully oxidized FeIII dimers of e.g. Na6 [Fe2III S6 ] . In contrast to the localized AFM ordered pure di-ferrates(III), the Curie-Weiss behavior of the magnetic susceptibility proves the rarely observed valence-delocalized S = 9/2 state of the mixed-valent FeIII /FeII dimer. The nearly spin-only value of the magnetic moment combined with the chemical bonding not generally differing from that in pure ferrates(II) and (III), provides a striking argument, that the reduction of the local Fe spin moments observed in all condensed sulfido ferrate moieties is connected with the AFM spin ordering. The two isotypic ferrates(II) Na2 [FeS2 ] and Na2 [FeSe2 ] with chain-like structural units (SG Ibam, a = 643.54(8)/ 660.81(1), b = 1140.2(2)/1190.30(2) c = 562.90(6)/585.59(1) pm, Z = 4, R1 = 0.0372/0.0466) crystallize in the K2 [ZnO2 ] -type structure. Although representing merely further members of the common series of chalcogenido metallates(II) Na2 [MIIQ2 ] , these two new phases, together with Na6 [FeS4 ] and Li2 [FeS2 ] , are the only examples of pure FeII alkali chalcogenido ferrates. The new compounds allow for a general comparison of di- and chain ferrates(II) and (III) and mixed-valent analogs concerning the electronic and magnetic properties (including Heisenberg super-exchange and double-exchange interactions

  4. Statistical modeling of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2.

    Science.gov (United States)

    Ushakov, Vladimir G; Troe, Jürgen; Johnson, Ryan S; Guo, Hua; Ard, Shaun G; Melko, Joshua J; Shuman, Nicholas S; Viggiano, Albert A

    2015-08-14

    The rates of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2 are modeled by statistical rate theory accounting for energy- and angular momentum-specific rate constants for formation of the primary and secondary cationic adducts and their backward and forward reactions. The reactions are both suggested to proceed on sextet and quartet potential energy surfaces with efficient, but probably not complete, equilibration by spin-inversion of the populations of the sextet and quartet adducts. The influence of spin-inversion on the overall reaction rate is investigated. The differences of the two reaction rates mostly are due to different numbers of entrance states (atom + linear rotor or linear rotor + linear rotor, respectively). The reaction Fe(+) + N2O was studied either with (6)Fe(+) or with (4)Fe(+) reactants. Differences in the rate constants of (6)Fe(+) and (4)Fe(+) reacting with N2O are attributed to different contributions from electronically excited potential energy surfaces, such as they originate from the open-electronic shell reactants.

  5. Fe atom exchange between aqueous Fe2+ and magnetite.

    Science.gov (United States)

    Gorski, Christopher A; Handler, Robert M; Beard, Brian L; Pasakarnis, Timothy; Johnson, Clark M; Scherer, Michelle M

    2012-11-20

    The reaction between magnetite and aqueous Fe(2+) has been extensively studied due to its role in contaminant reduction, trace-metal sequestration, and microbial respiration. Previous work has demonstrated that the reaction of Fe(2+) with magnetite (Fe(3)O(4)) results in the structural incorporation of Fe(2+) and an increase in the bulk Fe(2+) content of magnetite. It is unclear, however, whether significant Fe atom exchange occurs between magnetite and aqueous Fe(2+), as has been observed for other Fe oxides. Here, we measured the extent of Fe atom exchange between aqueous Fe(2+) and magnetite by reacting isotopically "normal" magnetite with (57)Fe-enriched aqueous Fe(2+). The extent of Fe atom exchange between magnetite and aqueous Fe(2+) was significant (54-71%), and went well beyond the amount of Fe atoms found at the near surface. Mössbauer spectroscopy of magnetite reacted with (56)Fe(2+) indicate that no preferential exchange of octahedral or tetrahedral sites occurred. Exchange experiments conducted with Co-ferrite (Co(2+)Fe(2)(3+)O(4)) showed little impact of Co substitution on the rate or extent of atom exchange. Bulk electron conduction, as previously invoked to explain Fe atom exchange in goethite, is a possible mechanism, but if it is occurring, conduction does not appear to be the rate-limiting step. The lack of significant impact of Co substitution on the kinetics of Fe atom exchange, and the relatively high diffusion coefficients reported for magnetite suggest that for magnetite, unlike goethite, Fe atom diffusion is a plausible mechanism to explain the rapid rates of Fe atom exchange in magnetite.

  6. Experimental Investigation and Thermodynamic Modeling of the B2O3-FeO-Fe2O3-Nd2O3 System for Recycling of NdFeB Magnet Scrap

    Science.gov (United States)

    Jakobsson, Lars Klemet; Tranell, Gabriella; Jung, In-Ho

    2017-02-01

    NdFeB magnet scrap is an alternative source of neodymium that could have a significantly lower impact on the environment than current mining and extraction processes. Neodymium can be readily oxidized in the presence of oxygen, which makes it easy to recover neodymium in oxide form. Thermochemical data and phase diagrams for neodymium oxide containing systems is, however, very limited. Thermodynamic modeling of the B2O3-FeO-Fe2O3-Nd2O3 system was hence performed to obtain accurate phase diagrams and thermochemical properties of the system. Key phase diagram experiments were also carried out for the FeO-Nd2O3 system in saturation with iron to improve the accuracy of the present modeling. The modified quasichemical model was used to describe the Gibbs energy of the liquid oxide phase. The Gibbs energy functions of the liquid phase and the solids were optimized to reproduce all available and reliable phase diagram data, and thermochemical properties of the system. Finally the optimized database was applied to calculate conditions for selective oxidation of neodymium from NdFeB magnet waste.

  7. X-ray diffraction study of chalcopyrite CuFeS2, pentlandite (Fe,Ni)9S8 and Pyrrhotite Fe1-xS obtained from Cu-Ni orebodies

    International Nuclear Information System (INIS)

    Nkoma, J.S.; Ekosse, G.

    1998-05-01

    The X-ray Diffraction (XRD) technique is applied to study five samples of Cu-Ni orebodies, and it is shown that they contain chalcopyrite CuFeS 2 as the source of Cu, pentlandite (Fe,Ni) 9 S 8 as the source of Ni and pyrrhotite Fe 1-x S as a dominant compound. There are also other less dominant compounds such as bunsenite NiO, chalcocite Cu 2 S, penrosite (Ni, Cu)Se 2 and magnetite Fe 3 O 4 . Using the obtained XRD data, we obtain the lattice parameters for tetragonal chalcopyrite as a=b=5.3069A and c=10.3836A, cubic pentlandite as a=b=c=10.0487A, and hexagonal pyrrhotite as a=b=6.8820A and c=22.8037A. (author)

  8. The Oxidation State of Fe in Glasses from the Galapagos Archipelago: Variable Oxygen Fugacity as a Function of Mantle Source

    Science.gov (United States)

    Peterson, M. E.; Kelley, K. A.; Cottrell, E.; Saal, A. E.; Kurz, M. D.

    2015-12-01

    The oxidation state of the mantle plays an intrinsic role in the magmatic evolution of the Earth. Here we present new μ-XANES measurements of Fe3+/ΣFe ratios (a proxy for ƒO2) in a suite of submarine glasses from the Galapagos Archipelago. Using previously presented major, trace, and volatile elements and isotopic data for 4 groups of glass that come from distinct mantle sources (depleted upper mantle, 2 recycled, and a primitive mantle source) we show that Fe3+/ΣFe ratios vary both with the influence of shallow level processes and with variations in mantle source. Fe3+/ΣFe ratios increase with differentiation (i.e. decreasing MgO), but show a large variation at a given MgO. Progressive degassing of sulfur accompanies decreasing Fe3+/ΣFe ratios, while assimilation of hydrothermally altered crust (as indicated by increasing Sr/Sr*) is shown to increase Fe3+/ΣFe ratios. After taking these processes into account, there is still variability in the Fe3+/ΣFe ratios of the isotopically distinct sample suites studied, yielding a magmatic ƒO2 that ranges from ΔQFM = +0.16 to +0.74 (error ITE = enriched Sr and Pb isotopes) shows evidence of mixing between oxidized and reduced sources (ITE oxidized end-member = 0.177). This suggests that mantle sources in the Galapagos that are thought to contain recycled components (i.e., WD and ITE groups) have distinct oxidation states. The high 3He/4He Fernandina samples (HHe group) are shown to be the most oxidized (ave. 0.175 ± 0.006). With C/3He ratios an order of magnitude greater than MORB this suggests that the primitive mantle is a more carbonated and oxidized source than the depleted upper mantle.

  9. Spin structure of exchange biased heterostructures. Fe/MnF{sub 2} and Fe/FeF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B

    2006-12-18

    In this work, the {sup 57}Fe probe layer technique is used in order to investigate the depth- and temperature-dependent Fe-layer spin structure of exchange biased Fe/MnF{sub 2} and Fe/FeF{sub 2} (pseudo-twinned) antiferromagnetic (AFM) systems by conversion electron Moessbauer spectroscopy (CEMS) and nuclear resonant scattering (NRS) of synchrotron radiation. Two kinds of samples with a 10 A {sup 57}Fe probe layer directly at or 35 A away from the interface, labeled as interface and center sample, respectively, were studied in this work. The results obtained by CEMS for Fe/MnF{sub 2} suggests that, at 80 K, i.e., above T{sub N}=67 K of MnF{sub 2}, the remanent state Fe-layer spin structure of the two studied samples are slightly different due to their different microstructure. In the temperature range from 300 K to 80 K, the Fe-layer spin structure does not change just by zero-field cooling the sample in remanence. For Fe/FeF{sub 2}, a continuous non-monotonic change of the remanent-state Fe spin structure was observed by cooling from 300 K to 18 K. NRS of synchrotron radiation was used to investigate the temperature- and depth-dependent Fe-layer spin structure during magnetization reversal in pseudo-twinned Fe/MnF{sub 2}. A depthdependent Fe spin structure in an applied magnetic field (applied along the bisector of the twin domains) was observed at 10 K, where the Fe spins closer to the interface are not aligned along the field direction. The depth-dependence disappears at 150 K. (orig.)

  10. Sources of Fe in eolian and soil detritus at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Vaniman, D.; Chipera, S.; Bish, D.

    1997-01-01

    Eolian deposits and adjacent soil horizons at Exile Hill near Yucca Mountain, Nevada, provide a desert environment where the origins of exotic eolian materials can be discerned. Petrographic, chemical, X-ray diffraction, and electron microprobe data allow an assessment of Fe mineral sources. Fe-rich minerals in local rhyolitic tuff bedrock consist of distinctive biotite and amphibole phenocrysts and groundmass Mn-hematites. Although the local tuffs contain only 1% FeO, detrital components of eolian and soil deposits have ∼3% FeO. Exotic minerals from distant sources provide most of the excess Fe in the surficial deposits. The exotic Fe sources are principally smectite, low-Mn hematite, low-F biotite, and high-Fe amphibole not found in local tuffs. Iron contents and the exotic Fe fraction increase with decreasing grain size, such that the clay fractions have ∼5--6% FeO, almost all of which is in exotic smectites. The distant origin of these smectites is evident in their high Fe content and distinct Sc/FeO enrichment trends, which differ from the strong local Sc/FeO control defined by coarser soil detritus. Approximate crustal average lanthanide composition in soil and eolian smectites rule out any significant contribution of local smectite derived from tuff alteration. The eolian and soil smectites instead inherit their high Fe content from eolian biotite

  11. Health Information Sources, Perceived Vaccination Benefits, and Maintenance of Childhood Vaccination Schedules.

    Science.gov (United States)

    Hwang, Juwon; Shah, Dhavan V

    2018-06-05

    Parental concerns over the safety or necessity of childhood vaccination have increased over the past decades. At the same time, there has been a proliferation of vaccine-related information available through a range of health information sources. This study investigates the associations between evaluations of health information sources, parental perceptions of childhood vaccination benefits, and the maintenance of vaccination schedules for their children. Specifically, this study aims to (a) incorporate social media into the battery of health information sources and (b) differentiate households with a childhood autism diagnosis and those without, given unsubstantiated but persistent concerns about vaccine safety and autism. Analyzing a sample of U.S. households, a total of 4,174 parents who have at least one child under the age of 18 were analyzed, including 138 of parents of households with a childhood autism diagnosis. Results show that the more the parents value interpersonal communication and magazines as sources of health information, the more they perceive vaccination benefits, and the more the value they put on television, the better they keep vaccination schedules up-to-date for their children. On the other hand, social media are negatively associated with their perceptions of vaccination benefits. Although parents of children diagnosed with autism are less likely to perceive vaccination benefits, no interaction effects with evaluations of health information sources are found on parental perceptions of vaccination benefits or maintenance of schedules.

  12. Synthesis and electrochemical characterization of LiCo_1_/_3Fe_2_/_3PO_4/C composite using nano CoFe_2O_4 as precursor

    International Nuclear Information System (INIS)

    Wu, Kaipeng; Hu, Guorong; Du, Ke; Peng, Zhongdong; Cao, Yanbing

    2015-01-01

    LiCo_1_/_3Fe_2_/_3PO_4/C composite was synthesized by a solid state method with CoFe_2O_4 as the precursor and glucose as the carbon source. The composite consists of homogeneous Co–Fe distributed LiCo_1_/_3Fe_2_/_3PO_4 with its particles covered by nano-carbon layers, which could prevent the growth of the particles as well as form a fast path for electronic transmission during charging and discharging process. It shows excellent electrochemical performance as the cathode for lithium-ion batteries, which delivers discharge capacities of 154.6, 152.9, 135.4, 122.3, 105.2 and 91.3 mAh g"−"1 at 0.05, 0.1, 0.5, 1, 2 and 5 C, respectively, and retains 94.6% of its initial discharge capacity after 30 cycles at 5 C. - Highlights: • Nano CoFe_2O_4 was prepared by a co-precipitation method. • LiCo_1_/_3Fe_2_/_3PO_4/C composite was synthesized using nano CoFe_2O_4 as a precursor. • Homogeneous Co–Fe distributed LiCo_1_/_3Fe_2_/_3PO_4 is obtained. • LiCo_1_/_3Fe_2_/_3PO_4/C composite exhibits a quite good electrochemical performance.

  13. KASS v.2.2. scheduling software for construction

    OpenAIRE

    Krzemiński Michał

    2016-01-01

    The paper presents fourth version of specialist useful software in scheduling KASS v.2.2 (Algorithm Scheduling Krzeminski System). KASS software is designed for construction scheduling, specially form flow shop models. The program is being dedicated closely for the purposes of the construction. In distinguishing to other used programs in tasks of this type operational research criteria were designed closely with the thought about construction works and about the specificity of the building pr...

  14. 20 CFR 416.919n - Informing the medical source of examination scheduling, report content, and signature requirements.

    Science.gov (United States)

    2010-04-01

    ... scheduling, report content, and signature requirements. 416.919n Section 416.919n Employees' Benefits SOCIAL... medical source of examination scheduling, report content, and signature requirements. The medical sources... report containing all of the elements in paragraph (c). (e) Signature requirements. All consultative...

  15. 20 CFR 404.1519n - Informing the medical source of examination scheduling, report content, and signature requirements.

    Science.gov (United States)

    2010-04-01

    ... scheduling, report content, and signature requirements. 404.1519n Section 404.1519n Employees' Benefits... medical source of examination scheduling, report content, and signature requirements. The medical sources... report containing all of the elements in paragraph (c). (e) Signature requirements. All consultative...

  16. Scheduling for dual-hop block-fading channels with two source-user pairs sharing one relay

    KAUST Repository

    Zafar, Ammar

    2013-09-01

    In this paper, we maximize the achievable rate region of a dual-hop network with two sources serving two users independently through a single shared relay. We formulate the problem as maximizing the sum of the weighted long term average throughputs of the two users under stability constraints on the long term throughputs of the source-user pairs. In order to solve the problem, we propose a joint user-and-hop scheduling scheme, which schedules the first or second hop opportunistically based on instantaneous channel state information, in order to exploit multiuser diversity and multihop diversity gains. Numerical results show that the proposed joint scheduling scheme enhances the achievable rate region as compared to a scheme that employs multi-user scheduling on the second-hop alone. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.

  17. Microstructure and properties of multiphase sintered cermets Fe-Fe{sub 2}B; Mikrostruktura i wlasnosci spiekanych reakcyjnie cermetali Fe-Fe{sub 2}B

    Energy Technology Data Exchange (ETDEWEB)

    Nowacki, J. [Wydzial Inzynierii Materialowej, Politechnika Szczecinska, Szczecin (Poland); Klimek, L. [Instytut Inzynierii Materialowej i Technik Bezwiorowych, Politechnika Lodzka, Lodz (Poland)

    1998-12-31

    The process of multiphase sintering of iron in the vacuum has been analysed. As a result of the process iron-iron boride cermets have been produced. Fe-Fe{sub 2}B cermets were obtained as a result of sintering of the Fe and B pure elements in the vacuum. Attemps at sintering in the solid phase and with the participation of the liquid phase, the Fe-Fe{sub 2}B eutectic, have been made. Metallographic qualitative and quantitative studies, X-ray structural qualitative and qauantitative analysis allowed to determine the structure of Fe{sub 2}B cermets, as well as a description of the kinetics of quantitative changes in phase proportions in the course of sintering. It has been found that their structure varies widely depending on sintering parameters and the composition of the sinters. Measurements of the Fe-Fe{sub 2}B cermets hardness and measurements on wear during dry friction by the pin-on-disc method have shown distinct advantages of the cermets as a modern constructional materials. The hardness of Fe-Fe{sub 2}B cermets, depending on their chemical composition and sintering parameters, ranges widely from 150 to 1500 HV, and their resistance to wear is comparable to that of diffusively boronized steels. FeFe{sub 2}B cermets are a composite material in which iron boride, Fe{sub 2}B, with a hardness of about 1800 HV plays the role of the reinforcement,while iron-iron boride, Fe-Fe{sub 2}B, with a hardness of about 500 HV plays the role of matrix. The eutectic in the spaces between iron boride grains is composed of boron solid solution plates in iron with a hardness of arround 250 HV, and iron boride, Fe{sub 2}B, plates with a hardness of approximaly 1800 HV. The combination of such different materials, a hard reinforcement and a relatively plastic matrix produces favourable properties of the cermet thus produced high hardness (1500 HV) constant over whole cross section of the material, resistance of abrasive wear and acceptable ductility. The properties mentioned above

  18. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources.

    Science.gov (United States)

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats.

  19. Oxygen formation in gamma-ray irradiation of Fe2+ -Cu2+ solutions

    DEFF Research Database (Denmark)

    Bjergbakke, Erling; Hart, E.J.

    1971-01-01

    value diminishes slightly and is displaced toward higher ${\\rm CuSO}_{4}/{\\rm FeSO}_{4}$ ratios with increasing acidity. The perchlorate system differs from the sulfate only at high ${\\rm Cu}({\\rm ClO}_{4})/{\\rm Fe}({\\rm ClO}_{4})_{2}$ ratios where $G({\\rm O}_{2})$ rises to 0.10. The O2 yield of 0.......02 is not derived from "spur" HO2, OH, H2 O2 or O2, although the increase in $G({\\rm O}_{2})$ above this level in the perchlorate system is attributed to H2 O2. "Spur" O atoms are postulated as the source of O2 with the yield, $G({\\rm O}_{2})$ = 0.02....

  20. Photochemical Degradation of Dimethyl Phthalate by Fe(III)/tartrate/H{sub 2}O{sub 2} System

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xianghua; Ding, Shimin; Xie, Faping [Yangtze Normal Univ., Fuling (China)

    2012-11-15

    Photochemical degradation of dimethyl phthalate (DMP) in Fe(III)/tartrate/H{sub 2}O{sub 2} system was investigated utilizing fluorescent lamps as the primary light source. Effects of initial pH, light source, and initial concentration of each reactant on DMP photodegradation was examined. The results show that the system was able to effectively photodegrade DMP utilizing visible light. Fluorescent lamp, halide lamp, UV lamp and sunlight could all be used as the light sources. The optimal pH ranged among 3.0-4.0 for the system. Increases of the initial concentrations of Fe(III) and H{sub 2}O{sub 2} accelerated the photodegradation of DMP, whereas excessively high initial tartrate concentration resulted in the decrease of photodegradation efficiency and rate of DMP.

  1. Characterizing the discoloration of methylene blue in Fe0/H2O systems.

    Science.gov (United States)

    Noubactep, C

    2009-07-15

    Methylene blue (MB) was used as a model molecule to characterize the aqueous reactivity of metallic iron in Fe(0)/H(2)O systems. Likely discoloration mechanisms under used experimental conditions are: (i) adsorption onto Fe(0) and Fe(0) corrosion products (CP), (ii) co-precipitation with in situ generated iron CP, (iii) reduction to colorless leukomethylene blue (LMB). MB mineralization (oxidation to CO(2)) is not expected. The kinetics of MB discoloration by Fe(0), Fe(2)O(3), Fe(3)O(4), MnO(2), and granular activated carbon were investigated in assay tubes under mechanically non-disturbed conditions. The evolution of MB discoloration was monitored spectrophotometrically. The effect of availability of CP, Fe(0) source, shaking rate, initial pH value, and chemical properties of the solution were studied. The results present evidence supporting co-precipitation of MB with in situ generated iron CP as main discoloration mechanism. Under high shaking intensities (>150 min(-1)), increased CP generation yields a brownish solution which disturbed MB determination, showing that a too high shear stress induced the suspension of in situ generated corrosion products. The present study clearly demonstrates that comparing results from various sources is difficult even when the results are achieved under seemingly similar conditions. The appeal for an unified experimental procedure for the investigation of processes in Fe(0)/H(2)O systems is reiterated.

  2. Synthesis of high-performance Li2FeSiO4/C composite powder by spray-freezing/freeze-drying a solution with two carbon sources

    Science.gov (United States)

    Fujita, Yukiko; Iwase, Hiroaki; Shida, Kenji; Liao, Jinsun; Fukui, Takehisa; Matsuda, Motohide

    2017-09-01

    Li2FeSiO4 is a promising cathode active material for lithium-ion batteries due to its high theoretical capacity. Spray-freezing/freeze-drying, a practical process reported for the synthesis of various ceramic powders, is applied to the synthesis of Li2FeSiO4/C composite powders and high-performance Li2FeSiO4/C composite powders are successfully synthesized by using starting solutions containing both Indian ink and glucose as carbon sources followed by heating. The synthesized composite powders have a unique structure, composed of Li2FeSiO4 nanoparticles coated with a thin carbon layer formed by the carbonization of glucose and carbon nanoparticles from Indian ink. The carbon layer enhances the electrochemical reactivity of the Li2FeSiO4, and the carbon nanoparticles play a role in the formation of electron-conducting paths in the cathode. The composite powders deliver an initial discharge capacity of 195 and 137 mAh g-1 at 0.1 C and 1 C, respectively, without further addition of conductive additive. The discharge capacity at 1 C is 72 mAh g-1 after the 100th cycle, corresponding to approximately 75% of the capacity at the 2nd cycle.

  3. Magnetic properties of FeZr{sub 2} and Fe{sub 2}Zr intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Prajapat, C. L., E-mail: prajapat@barc.gov.in; Singh, M. R.; Mishra, P. K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Chattaraj, D. [Product Development Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Mishra, R. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Ravikumar, G. [Scientific Information Resources Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India)

    2016-05-23

    Magnetic properties of Fe-Zr system, viz., FeZr{sub 2} and Fe{sub 2}Zr have been studied. Both the compounds show soft ferromagnetic behavior. Curie temperature is well above the room temperature. Lower saturation magnetization for the zirconium rich sample, FeZr{sub 2}, could be due to possible donation of electrons from the Zr-rich neighbors to Fe atoms or diminution of long range magnetic order by defects.

  4. Electrical resistivity surface for FeO-Fe2O3-P2O5 glasses

    Science.gov (United States)

    Vaughan, J. G.; Kinser, D. L.

    1975-01-01

    The dc electrical properties and microstructure of x(FeO-Fe2O3)-(100-x)P2O5 glasses were investigated up to a maximum of x = 75 mol %. Results indicate that, in general, the minimum resistivity of the glass does not occur at equal Fe(2+) and Fe(3+) concentrations, although for the special case where x = 55 mol % the minimum does occur at Fe(2+)/Fe total = 0.5, as reported by other investigators. Evidence presented shows that the position of the minimum resistivity is a function of total iron content. The minimum shifts to glasses richer in Fe(2+) at higher total iron concentrations.

  5. Magnetic properties of ball-milled TbFe2 and TbFe2B

    Indian Academy of Sciences (India)

    Unknown

    1. Introduction. The RFe2 (R = rare earth) Laves phase compounds are known to possess large cubic anisotropy (Clark et al 1972) and highest Curie temperature (TC) of all RT2 compounds. (T = transition metal). RFe2 ... TbFe2 and TbFe2B were prepared by arc melting the high pure elements (Tb and B, 99⋅9% purity; Fe, ...

  6. {sup 57}Fe Mössbauer spectroscopic studies of single-crystalline K{sub x}Fe{sub 2-y}S{sub 2} and K{sub x}Fe{sub 2-y}Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Yuu, E-mail: tsuchiya.yuu1990@gmail.com; Ikeda, Shugo; Kobayashi, Hisao [University of Hyogo (Japan)

    2016-12-15

    We have investigated the physical properties of single-crystalline K{sub x}Fe{sub 2-y}S{sub 2} and K{sub x}Fe{sub 2-y}Se{sub 2} samples using {sup 57}Fe Mössbauer spectroscopy. The observed {sup 57}Fe Mössbauer spectra were reconstructed using a major antiferromagnetic ordered K{sub 2}Fe{sub 4}Se{sub 5} phase and a minor paramagnetic phase down to 5 K, despite being superconducting below 32.2 K in K{sub x}Fe{sub 2-y}Se{sub 2}. The analysis of {sup 57}Fe Mössbauer spectrum for K{sub x}Fe{sub 2-y}S{sub 2} at 290 K confirms the presence of a major antiferromagnetic ordered K{sub 2}Fe{sub 4}S{sub 5} phase and a minor paramagnetic phase in the K{sub x}Fe{sub 2-y}S{sub 2} single crystal. The derived hyperfine interaction parameters of the paramagnetic phase in K{sub x}Fe{sub 2-y}S{sub 2} suggest that the microstructure of this phase in K{sub x}Fe{sub 2-y}S{sub 2} is similar to that of the superconducting phase in K{sub x}Fe{sub 2-y}Se{sub 2} although the K{sub x}Fe{sub 2-y}S{sub 2} single crystals exhibit no superconductivity down to 5 K.

  7. Moessbauer studies of magnetic Fe2O3/SiO2 nanocomposite

    International Nuclear Information System (INIS)

    Lancok, A.; Zaveta, K.; Savii, C.; Barcova, K.

    2006-01-01

    Fe 2 O 3 /SiO 2 magnetic nanocomposites rich in Fe 2 O 3 have been obtained by annealing at 1000 grad C the xerogel samples, prepared under various conditions. The target concentrations of iron oxide in inert matrix were 20% and 30%. As mesoporous matrices both silica and polyvinyl alcohol - silica hybrid ones were used. The xerogel nanocomposite samples were obtained in situ and by impregnation under ultrasonic activation. All obtained samples were annealed under moderate oxidation conditions (air) and inert atmosphere such as vacuum or nitrogen. Moessbauer spectra were obtained using a conventional Moessbauer spectrometer with a 57 Co/Rh source and constant acceleration. Velocity calibration was done using α-iron, and the Moessbauer parameters are given relative to this standard at room temperature. The Moessbauer spectra contained the sextets of ε-Fe 2 O 3 , hematite, and superparamagnetic component. The content of various phases in the samples depends on the conditions of preparation. In one of the samples also magnetite was present. The ranges of the ε-Fe 2 O 3 area of the samples are 39-76%. The hematite phase is only residual, after transformation due to heat treatment. (authors)

  8. Behaviour of Fe4O5-Mg2Fe2O5 solid solutions and their relation to coexisting Mg-Fe silicates and oxide phases

    Science.gov (United States)

    Uenver-Thiele, Laura; Woodland, Alan B.; Miyajima, Nobuyoshi; Ballaran, Tiziana Boffa; Frost, Daniel J.

    2018-03-01

    Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5-Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg-Fe silicates. Multi-anvil experiments were performed at 11-20 GPa and 1100-1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least 1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot = 0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+ + [6]Mg2+ = 2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential "water-storing" mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298 = - 1981.5 kJ mol- 1. Solid solution is complete across the Fe4O5-Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg-Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.

  9. Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe3+, Fe2+, and Mn2.

    Science.gov (United States)

    Zhao, Junfeng; Wang, Qun; Fu, Yongsheng; Peng, Bo; Zhou, Gaofeng

    2018-06-01

    In this study, the effect of Fe 3+ , Fe 2+ , and Mn 2+ dose, solution pH, reaction temperature, background water matrix (i.e., inorganic anions, cations, and natural organic matters (NOM)), and the kinetics and mechanism for the reaction system of Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ were investigated systematically. Traces of Fe 3+ , Fe 2+ , and Mn 2+ promoted the DCF removal by Fe(VI) significantly. The pseudo-first-order rate constant (k obs ) of DCF increased with decreasing pH (9-6) and increasing temperature (10-30 °C) due to the gradually reduced stability and enhanced reactivity of Fe(VI). Cu 2+ and Zn 2+ ions evidently improved the DCF removal, while CO 3 2- restrained it. Besides, SO 4 2- , Cl - , NO 3 - , Mg 2+ , and Ca 2+ almost had no influence on the degradation of DCF by Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ within the tested concentration. The addition of 5 or 20 mg L -1 NOM decreased the removal efficiency of DCF. Moreover, Fe 2 O 3 and Fe(OH) 3 , the by-products of Fe(VI), slightly inhibited the DCF removal, while α-FeOOH, another by-product of Fe(VI), showed no influence at pH 7. In addition, MnO 2 and MnO 4 - , the by-products of Mn 2+ , enhanced the DCF degradation due to catalysis and superposition of oxidation capacity, respectively. This study indicates that Fe 3+ and Fe 2+ promoted the DCF removal mainly via the self-catalysis for Fe(VI), and meanwhile, the catalysis of Mn 2+ and the effect of its by-products (i.e., MnO 2 and MnO 4 - ) contributed synchronously for DCF degradation. Graphical abstract ᅟ.

  10. Strength anomaly in B2 FeAl single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, K.; Hanada, S.; Yoo, M.H. [Oak Ridge National Lab., TN (United States); Matsumoto, N. [Tohoku Univ. (Japan). Graduate School

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

  11. Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3

    Science.gov (United States)

    Akai, Hisazumi; Ogura, Masako

    2015-03-01

    High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  12. Synthesis and Characterization of Fe0 (2,2'-bipyridine) (2-aminoethyl-pyridine) and its Reaction with Dihydrogen.

    Science.gov (United States)

    Dibenedetto, Angela; Roth, Cristina E; Aresta, Michele; Pápai, Imre

    2017-01-10

    Fe 0 (bpy)(pyea) (2; bpy=2,2'-bipyridine, pyea=2-aminoethyl-pyridine), a 16-electron species, was synthesized by reduction of FeCl 2 (bpy)(pyea) (1) using Na-strips. It is a diamagnetic low-melting solid (m.p. 295 K) stable under N 2 and easily decomposed by radiations even at low temperature. It was fully characterized by elemental analyses and multinuclear NMR. Complex 2 acts as an active hydrogenation catalyst, but has a very short lifetime. In fact, it reacts with H 2 (0.1-1 MPa) at room temperature in toluene and affords in a few minutes a new Fe 0 complex characterized as Fe 0 (bpy)(η 6 -picoline) (3), inactive to hydrogenation. Picoline is derived from the sp 3 -sp 3 C-C bond cleavage of the aminoethyl arm of the pyea ligand. The rapid evolution of the putative intermediate FeH 2 (bpy)(pyea) (4) has not allowed the isolation such Fe-hydrido species. The interaction of H 2 with 2 has been studied by DFT, which has allowed to demonstrate that 3 is lower in energy than 2+H 2 , justifying the fact that the intermediate dihydride was not isolated. Interestingly, 3 was also obtained by reaction of 1 with NaBH 4 or with glycerol-KOH. Complex 2 is one of the rare examples of Fe 0 complex stabilized by a set of only N-donor atoms. The reaction with glycerol confirms the potential role of Fe in catalytic hydrogenation reactions using bio-glycerol as a H-source. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Exchange coupling behavior in bimagnetic CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Leite, G.C.P. [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Chagas, E.F., E-mail: efchagas@fisica.ufmt.br [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Pereira, R.; Prado, R.J. [Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Terezo, A.J. [Departamento de Quimica, Universidade Federal do Mato Grosso, 78060-900 Cuiaba-MT (Brazil); Alzamora, M.; Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 Urca, Rio de Janeiro (Brazil)

    2012-09-15

    In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe{sub 2}O{sub 4} and ferrimagnetic oxide/ferromagnetic metal CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite: (i) first, preparation of CoFe{sub 2}O{sub 4} nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe{sub 2}O{sub 4} particles is about 16 nm. Mossbauer spectra revealed two sites for Fe{sup 3+}. One site is related to Fe in an octahedral coordination and the other one to the Fe{sup 3+} in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe{sub 2}O{sub 4}. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe{sub 2} on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH){sub max} of 1.22 MGOe was achieved at room temperature for CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposites, which is about 115% higher than the value obtained for CoFe{sub 2}O{sub 4} precursor. The exchange coupling interaction and the enhancement of product (BH){sub max} in nanocomposite CoFe{sub 2}O{sub 4}/CoFe{sub 2} are discussed. - Highlights: Black-Right-Pointing-Pointer CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanocomposite

  14. Crystal growth and properties of PbI2 doped with Fe and Ni

    International Nuclear Information System (INIS)

    Rybak, O.V.; Lun', Yu.O.; Bordun, I.M.; Omelyan, M.F.

    2005-01-01

    A procedure is described for doping PbI 2 monocrystals with Fe and Ni during vapor-phase growth in a closed system in the presence of excess iodine. The rate of mass transfer in the system and the doping level of the crystals are shown to be governed by the dopant content in the source material and the source temperature. The effect of Fe and Ni doping on the low-temperature (5 K) exciton photoluminescence spectrum of PbI 2 is discussed [ru

  15. Implications of Zn/Fe ratios for the sources of Colorado Plateau basalts

    Science.gov (United States)

    Rudzitis, S.; Reid, M. R.

    2011-12-01

    that melts were generated from partial melting of a peridotite source. If these results can be generalized to melting conditions across the Arizona transition zone, pressure and temperature estimates can be made using the Si and Mg barometer and thermometer of Lee et al. (2009). Assuming 0.5 wt% water contents in the source based on water contents of Colorado Plateau mantle xenolith olivines (Li et al., 2008), pressure estimates for most transition zone basalts suggest derivation below a relatively shallow lithosphere-asthenosphere boundary (P= 2.1 and 3.1 GPa). Our results show that in situ Zn and Fe analyses of olivine provides an efficient way to investigate the mineralogical and lithologic heterogeneity of mantle sources.

  16. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction

    Directory of Open Access Journals (Sweden)

    Lukas P. Feilen

    2017-05-01

    Full Text Available Physiological function and pathology of the Alzheimer’s disease causing amyloid precursor protein (APP are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs. The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

  17. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction.

    Science.gov (United States)

    Feilen, Lukas P; Haubrich, Kevin; Strecker, Paul; Probst, Sabine; Eggert, Simone; Stier, Gunter; Sinning, Irmgard; Konietzko, Uwe; Kins, Stefan; Simon, Bernd; Wild, Klemens

    2017-01-01

    Physiological function and pathology of the Alzheimer's disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

  18. Recycling of Oceanic Lithosphere: Water, fO2 and Fe-isotope Constraints

    Science.gov (United States)

    Bizmis, M.; Peslier, A. H.; McCammon, C. A.; Keshav, S.; Williams, H. M.

    2014-01-01

    Spinel peridotite and garnet pyroxenite xenoliths from Hawaii provide important clues about the composition of the oceanic lithosphere, and can be used to assess its contribution to mantle heterogeneity upon recycling. The peridotites have lower bulk H2O (approximately 70-114 ppm) than the MORB source, qualitatively consistent with melt depletion. The garnet pyroxenites (high pressure cumulates) have higher H2O (200-460 ppm, up to 550 ppm accounting for phlogopite) and low H2O/Ce ratios (less than 100). The peridotites have relatively light Fe-isotopes (delta Fe -57 = -0.34 to 0.13) that decrease with increasing depletion, while the pyroxenites are significantly heavier (delta Fe-57 up to 0.3). The observed xenolith, as well as MORB and OIB total Fe-isotope variability is larger that can be explained by existing melting models. The high H2O and low H2O/Ce ratios of pyroxenites are similar to estimates of EM-type OIB sources, while their heavy delta Fe-57 are similar to some Society and Cook-Austral basalts. Therefore, recycling of mineralogically enriched oceanic lithosphere (i.e. pyroxenites) may contribute to OIB sources and mantle heterogeneity. The Fe(3+)/Sigma? systematics of these xenoliths also suggest that there might be lateral redox gradients within the lithosphere, between juxtaposed oxidized spinel peridotites (deltaFMQ = -0.7 to 1.6, at 15 kb) and more reduced pyroxenites (deltaFMQ = -2 to -0.4, at 20-25kb). Such mineralogically and compositionally imposed fO2 gradients may generate local redox melting due to changes in fluid speciation (e.g. reduced fluids from pyroxenite encountering more oxidized peridotite). Formation of such incipient, small degree melts could further contribute to metasomatic features seen in peridotites, mantle heterogeneity, as well as the low velocity and high electrical conductivity structures near the base of the lithosphere and upper mantle.

  19. 46 CFR 525.2 - Terminal schedules.

    Science.gov (United States)

    2010-10-01

    ... domestic law and international conventions and agreements adopted by the United States; such terminal... their own negligence, or that impose upon others the obligation to indemnify or hold-harmless the terminals from liability for their own negligence. (2) Enforcement of terminal schedules. Any schedule that...

  20. Microstructure and properties of multiphase sintered cermets Fe-Fe2B

    International Nuclear Information System (INIS)

    Nowacki, J.; Klimek, L.

    1998-01-01

    The process of multiphase sintering of iron in the vacuum has been analysed. As a result of the process iron-iron boride cermets have been produced. Fe-Fe 2 B cermets were obtained as a result of sintering of the Fe and B pure elements in the vacuum. Attemps at sintering in the solid phase and with the participation of the liquid phase, the Fe-Fe 2 B eutectic, have been made. Metallographic qualitative and quantitative studies, X-ray structural qualitative and qauantitative analysis allowed to determine the structure of Fe 2 B cermets, as well as a description of the kinetics of quantitative changes in phase proportions in the course of sintering. It has been found that their structure varies widely depending on sintering parameters and the composition of the sinters. Measurements of the Fe-Fe 2 B cermets hardness and measurements on wear during dry friction by the pin-on-disc method have shown distinct advantages of the cermets as a modern constructional materials. The hardness of Fe-Fe 2 B cermets, depending on their chemical composition and sintering parameters, ranges widely from 150 to 1500 HV, and their resistance to wear is comparable to that of diffusively boronized steels. FeFe 2 B cermets are a composite material in which iron boride, Fe 2 B, with a hardness of about 1800 HV plays the role of the reinforcement,while iron-iron boride, Fe-Fe 2 B, with a hardness of about 500 HV plays the role of matrix. The eutectic in the spaces between iron boride grains is composed of boron solid solution plates in iron with a hardness of arround 250 HV, and iron boride, Fe 2 B, plates with a hardness of approximaly 1800 HV. The combination of such different materials, a hard reinforcement and a relatively plastic matrix produces favourable properties of the cermet thus produced high hardness (1500 HV) constant over whole cross section of the material, resistance of abrasive wear and acceptable ductility. The properties mentioned above, resulting from the cermet

  1. In situ QXAFS observation of the reduction of Fe2O3 and CaFe2O4

    International Nuclear Information System (INIS)

    Kimura, Masao; Takayama, Toru; Murao, Reiko; Nomura, Masaharu; Uemura, Yohei; Asakura, Kiyotaka

    2013-01-01

    In situ QXAFS studies of the reduction of α-Fe 2 O 3 and CaFe 2 O 4 were conducted to determine their reduction kinetics and mechanisms. The reduction of α-Fe 2 O 3 involved two steps, the first being a very fast process in which Fe 3+ was reduced to Fe 2+ and the second being the reduction of Fe 2+ to Fe metal over a longer period. In contrast, the reduction of Fe in CaFe 2 O 4 was a single first-order reaction, although an induction period was clearly observed at the beginning of the reduction process. The reduction processes were successfully studied using a combination of in situ QXAFS spectra at the Ca and Fe K-edges.

  2. Adhesive and Cohesive Strength in FeB/Fe2B Systems

    Science.gov (United States)

    Meneses-Amador, A.; Blancas-Pérez, D.; Corpus-Mejía, R.; Rodríguez-Castro, G. A.; Martínez-Trinidad, J.; Jiménez-Tinoco, L. F.

    2018-05-01

    In this work, FeB/Fe2B systems were evaluated by the scratch test. The powder-pack boriding process was performed on the surface of AISI M2 steel. The mechanical parameters, such as yield stress and Young's modulus of the boride layer, were obtained by the instrumented indentation technique. Residual stresses produced on the boride layer were estimated by using the x-ray diffraction (XRD) technique. The scratch test was performed in order to evaluate the cohesive/adhesive strength of the FeB/Fe2B coating. In addition, a numerical evaluation of the scratch test on boride layers was performed by the finite element method. Maximum principal stresses were related to the failure mechanisms observed by the experimental scratch test. Shear stresses at the interfaces of the FeB/Fe2B/substrate system were also evaluated. Finally, the results obtained provide essential information about the effect of the layer thickness, the residual stresses, and the resilience modulus on the cohesive/adhesive strength in FeB/Fe2B systems.

  3. Colorimetric determination of Fe2+/Fe3+ ratio in radioactive glasses

    International Nuclear Information System (INIS)

    Coleman, C.J.; Baumann, E.W.; Bibler, N.E.

    1992-01-01

    In the vitrification of nuclear wastes, the Fe 2+ /Fe 3+ ratio in the glass is a measure of the redox properties of the glass melt. It is necessary to measure this ratio to ensure that the melt redox properties are suitable for the glass melter. A colorimetric method for measuring the Fe 2+ /Fe 3+ ratio in highly radioactive glasses was developed and tested remotely in a shielded cell. The tests were performed on glasses similar in composition and radioactivity to those that will be produced in the Savannah River Site Defense Waste Processing Facility. The first step of the method is dissolution of finely crushed glass with a hydrofluoric/sulfuric acid mixture with ammonium vanadate added to preserve the Fe 2+ content of the glass during the dissolution. Boric acid is then added to complex fluoride and to destroy iron-fluoride complexes. After adjusting the solution to pH 5, FerroZine TM (trademark of the Hach Company, Loveland, CO) reagent is added to form a magenta-colored complex with Fe 2+ . The absorbance at 562 nm is measured by using a fiber optic-coupled photodiode array spectrophotometer. Ascorbic acid is then used to reduce all the iron in solution to Fe 2+ and the absorbance is again measured. The difference in absorbance measurements corresponds to the Fe 3+ in the sample and the Fe 2+ /Fe 3+ ratio can be calculated

  4. Magnetic properties of NiFe{sub 2}O{sub 4}/carbon nanofibers from Venezuelan petcoke

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, Sarah, E-mail: sbriceno@ivic.gob.ve [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Silva, Pedro; Molina, Wilmer; Brämer-Escamilla, Werner; Alcalá, Olgi [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas IVIC, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Cañizales, Edgard [Área de Análisis Químico Inorgánico, PDVSA, INTEVEP, Los Teques 1070-A (Venezuela, Bolivarian Republic of)

    2015-05-01

    NiFe{sub 2}O{sub 4}/carbon nanofibers (NiFe{sub 2}O{sub 4}/CNFs) have been successfully synthesized by hydrotermal method using Venezuelan petroleum coke (petcoke) as carbon source and NiFe{sub 2}O{sub 4} as catalyst. The morphology, structural and magnetic properties of nanocomposite products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), vibrating sample magnetometry (VSM) and electron paramagnetic resonance (EPR). XRD analysis revealed a cubic spinel structure and ferrite phase with high crystallinity. HR-TEM reveals the presence of CNFs with diameters of 4±2 nm. At room temperature, NiFe{sub 2}O{sub 4}/CNFs show superparamagnetic behavior with a maximum magnetization of 15.35 emu/g. Our findings indicate that Venezuelan petroleum coke is suitable industrial carbon source for the growth of magnetic CNFs. - Highlights: • NiFe{sub 2}O{sub 4}/CNFs have been synthesized by hydrothermal method using petroleum coke. • Nickel ferrite nanoparticles were used as the catalyst. • HR-TEM reveals the presence of CNFs with diameters of 4±2 nm. • The size of the nanoparticles defines the diameter of the CNFs.

  5. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery

    Science.gov (United States)

    Xu, Xin; Meng, Zhen; Zhu, Xueling; Zhang, Shunlong; Han, Wei-Qiang

    2018-03-01

    Pyrite FeS2 has long been used as commercial primary lithium batteries at room temperature. To achieve rechargeable FeS2 battery, biomass-carbon@FeS2 composites are prepared using green and renewable auricularia auricula as carbon source through the process of carbonization and sulfuration. The auricularia auricula has strong swelling characteristics to absorb aqueous solution which can effectively absorb Fe ions into its body. FeS2 homogeneously distributed in biomass carbon matrix performs high electronic and ionic conductivity. The specific capacity of biomass-carbon@FeS2 composites remains 850 mAh g-1 after 80 cycles at 0.5C and 700 mAh g-1 at the rate of 2C after 150 cycles. Biomass-carbon@FeS2 composites exhibit high-rate capacity in lithium-ion battery.

  6. Raman-spectroscopic (Fe/Fe+Mg, CO2) and Structural studies of Mg-Fe cordierites

    International Nuclear Information System (INIS)

    Haefeker, U.

    2013-01-01

    In the course of this dissertation synthetic hexagonal and orthorhombic Mg-Fe-cordierites have been investigated with Raman-spectroscopy and XRD methods. Cordierite´s Mg- and Fe-end-members as well as their Mg-Fe solid solutions with the chemical formula (Mg, Fe 2+ ) 2 Al 4 Si 5 O 18 *nH 2 O have been synthesized. Raman-data of synthetic hydrous Mg- and Fe-cordierites have been obtained in the wavenumber-region 100-1250 cm-1 and the experimental data were then compared with the results of quantum-mechanical calculations. 86 theoretical bands could be related to specific vibrational modes of the tetrahedral and octahedral sites of the cordierite structure. Maximum and mean deviation between experimentally-derived bands and calculated modes were ±7 cm -1 for Mg-cordierite and ±19 cm -1 for Fe-cordierite. Spectra comparison revealed a trend of peak downshifting as a consequence of Fe-incorporation. The calculations now allow more accurate interpretation of the Raman spectra with respect to structural changes of cordierite, resulting from Al-Si ordering and Mg-Fe exchange. Atomic motions in cordierite have been compared with those of the structurally similar mineral beryl. Investigations of 16 H 2 O-bearing synthetic well-ordered Mg-Fe-cordierites (XFe =0-1) with micro-Raman spectroscopy revealed a linear correlation between the Fe/Mg ratio and the position of certain Raman peaks. The peaks (wave-number Mg-/Fe-cordierite) at 122/111, 262/257, 430/418, 579/571, 974/967, and 1012/1007 cm -1 were selected for a detailed deconvolution analysis . The shifts of these peaks were then plotted vs. XFe and regression of the data lead to the formulation of a set of linear equations. In addition, the effect of different H 2 O contents and the degree of Al-Si ordering on the Fe/Mg determination were also investigated. Testing the calibration against data from six well-characterized natural cordierite samples yielded excellent agreement. Existing calibration diagrams for CO 2

  7. Synthesis of Fe2O3/TiO2 nanorod-nanotube arrays by filling TiO2 nanotubes with Fe

    International Nuclear Information System (INIS)

    Mohapatra, Susanta K; Banerjee, Subarna; Misra, Mano

    2008-01-01

    Synthesis of hematite (α-Fe 2 O 3 ) nanostructures on a titania (TiO 2 ) nanotubular template is carried out using a pulsed electrodeposition technique. The TiO 2 nanotubes are prepared by the sonoelectrochemical anodization method and are filled with iron (Fe) by pulsed electrodeposition. The Fe/TiO 2 composite is then annealed in an O 2 atmosphere to convert it to Fe 2 O 3 /TiO 2 nanorod-nanotube arrays. The length of the Fe 2 O 3 inside the TiO 2 nanotubes can be tuned from 50 to 550 nm by changing the deposition time. The composite material is characterized by scanning electron microscopy, transmission electron microscopy and diffuse reflectance ultraviolet-visible studies to confirm the formation of one-dimensional Fe 2 O 3 /TiO 2 nanorod-nanotube arrays. The present approach can be used for designing variable one-dimensional metal oxide heterostructures

  8. Stabilization of the high coercivity ε-Fe2O3 phase in the CeO2Fe2O3/SiO2 nanocomposites

    International Nuclear Information System (INIS)

    Mantlikova, A.; Poltierova Vejpravova, J.; Bittova, B.; Burianova, S.; Niznansky, D.; Ardu, A.; Cannas, C.

    2012-01-01

    We have investigated the processes leading to the formation of the Fe 2 O 3 and CeO 2 nanoparticles in the SiO 2 matrix in order to stabilize the ε-Fe 2 O 3 as the major phase. The samples with two different concentrations of the Fe were prepared by sol–gel method, subsequently annealed at different temperatures up to 1100 °C, and characterized by the Mössbauer spectroscopy, Transmission Electron Microscopy (TEM), Powder X-ray Diffraction (PXRD), Energy Dispersive X-ray analysis (EDX) and magnetic measurements. The evolution of the different Fe 2 O 3 phases under various conditions of preparation was investigated, starting with the preferential appearance of the γ-Fe 2 O 3 phase for the sample with low Fe concentration and low annealing temperature and stabilization of the major ε-Fe 2 O 3 phase for high Fe concentration and high annealing temperature, coexisting with the most stable α-Fe 2 O 3 phase. A continuous increase of the particle size of the CeO 2 nanocrystals with increasing annealing temperature was also observed. - Graphical abstract: The graphical abstract displays the most important results of our work. The significant change of the phase composition due to the variation of preparation conditions is demonstrated. As a result, significant change of the magnetic properties from superparamagnetic γ-Fe 2 O 3 phase with negligible coercivity to the high coercivity ε-Fe 2 O 3 phase has been observed. Highlights: ► Research of the stabilization of the high coercivity ε-Fe 2 O 3 in CeO 2Fe 2 O 3 /SiO 2 . ► Samples with two different concentrations of Fe and three annealing temperatures. ► Phase transition γ→ε→(β)→α with increasing annealing temperature and particle size. ► Elimination of the superparamagnetic phases in samples with higher content of Fe. ► Best conditions for high coercivity ε-Fe 2 O 3 —higher Fe content and T A =1100°C.

  9. Biodiesel production from soybean and Jatropha oils by magnetic CaFe2O4–Ca2Fe2O5-based catalyst

    International Nuclear Information System (INIS)

    Xue, Bao-jin; Luo, Jia; Zhang, Fan; Fang, Zhen

    2014-01-01

    Heterogeneous CaFe 2 O 4 –Ca 2 Fe 2 O 5 -based catalyst with weak magnetism was prepared by co-precipitation and calcination. It was characterized by various techniques including X-ray diffraction, X-ray photoelectron spectroscopy and temperature programmed desorption method. Its active components were identified as mainly Ca–Fe composite oxides such as CaFe 2 O 4 for transesterification. The magnetism was further strengthened by reducing its component of Fe 2 O 3 to Fe 3 O 4 –Fe under H 2 atmosphere for better magnetic separation. Both catalysts were used for the catalytic transesterification of soybean and Jatropha oils to biodiesel. The highest biodiesel yields for soybean oil of 85.4% and 83.5% were obtained over the weak and strong magnetic catalysts, respectively under the optimized conditions (373 K, 30 min, 15/1 methanol/oil molar ratio and 4 wt% catalyst). The catalysts could be recycled three times. Biodiesel production from pretreated Jatropha oil was tested with the magnetic CaFe 2 O 4 –Ca 2 Fe 2 O 5 –Fe 3 O 4 –Fe catalyst, and 78.2% biodiesel yield was obtained. The magnetic CaFe 2 O 4 –Ca 2 Fe 2 O 5 -based catalyst shows a potential application for the green production of biodiesel. - Highlights: • Magnetic catalyst was prepared by co-precipitation, calcination and reduction. • The catalyst was composed of CaFe 2 O 4 –Ca 2 Fe 2 O 5 –Fe 3 O 4 –Fe. • Biodiesel yields of 83.5% and 78.2% were achieved for soybean and Jatropha oils. • The catalyst was easily separated by a magnet and used for three cycles

  10. Moessbauer-spectroscopic study of structure and magnetism of the exchange-coupled layer systems Fe/FeSn{sub 2}, and Fe/FeSi/Si and the ion-implanted diluted magnetic semiconductor SiC(Fe); Moessbauerspektroskopische Untersuchung von Struktur und Magnetismus der austauschgekoppelten Schichtsysteme Fe/FeSn{sub 2} und Fe/FeSi/Si und des ionenimplantierten verduennten magnetischen Halbleiters SiC(Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Frank

    2009-07-07

    In line with this work the structural and magnetic properties of the exchange coupled layered systems Fe/FeSn{sub 2} and Fe/FeSi/Si and of the Fe ion implanted diluted magnetic semiconductor (DMS) SiC(Fe) were investigated. The main measuring method was the isotope selective {sup 57}Fe conversion electron Moessbauer spectroscopy (CEMS), mostly in connection with the {sup 57}Fe tracer layer technique, in a temperature range from 4.2 K to 340 K. Further measurement techniques were X-ray diffraction (XRD), electron diffraction (LEED, RHEED), SQUID magnetometry and FMR (Ferromagnetic Resonance). In the first part of this work the properties of thin AF FeSn{sub 2}(001) films and of the exchange-bias system Fe/FeSn{sub 2}(001) on InSb(001) were investigated. With the application of {sup 57}Fe-tracer layers and CEMS both the Fe-spin structure and the temperature dependence of the magnetic hyperfine field (B{sub hf}) of FeSn{sub 2} could be examined. The evaporation of Fe films on the FeSn{sub 2} films produced in the latter ones a high perpendicular spin component at the Fe/FeSn{sub 2} interface. In some distance from the interface the Fe spins rotate back into the sample plane. Furthermore {sup 57}Fe-CEMS provided a correlation between the absolute value of the exchange field vertical stroke He vertical stroke and the amount of magnetic defects within the FeSn{sub 2}. Temperature dependent CEMS-measurements yielded informations about the spin dynamics within the AF. The transition temperatures T{sub B}{sup *}, which were interpreted as superparamagnetic blocking temperatures, obtain higher values compared to the temperatures T{sub B} of the exchange-bias effect, obtained with magnetometry measurements. The second part of this work deals with the indirect exchange coupling within Fe/FeSi/Si/FeSi/Fe multilayers and FeSi diffusion barriers. The goal was to achieve Fe free Si interlayers. The CEMS results show that starting from a thickness of t{sub FeSi}=10-12 A of the

  11. Viscosity of SiO2-"FeO"-Al2O3 System in Equilibrium with Metallic Fe

    Science.gov (United States)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2013-08-01

    The present study delivered the measurements of viscosities in SiO2-"FeO"-Al2O3 system in equilibrium with metallic Fe. The rotational spindle technique was used in the measurements at the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The Fe saturation condition was maintained by an iron plate placed at the bottom of the crucible. The equilibrium compositions of the slags were measured by EPMA after the viscosity measurements. The effect of up to 20 mol. pct Al2O3 on the viscosity of the SiO2-"FeO" slag was investigated. The "charge compensation effect" of the Al2O3 and FeO association has been discussed. The modified quasi-chemical viscosity model has been optimized in the SiO2-"FeO"-Al2O3 system in equilibrium with metallic Fe to describe the viscosity measurements of the present study.

  12. Uniaxial-strain mechanical detwinning of CaFe2As2 and BaFe2As2 crystals: Optical and transport study

    International Nuclear Information System (INIS)

    Tanatar, M.A.; Blomberg, E.C.; Kreyssig, A.; Kim, M.G.; Ni, N.; Thaler, A.; Bud'ko, S.L.; Canfield, P.C.; Goldman, A.I.; Mazin, I.I.; Prozorov, R.

    2010-01-01

    The parent compounds of iron-arsenide superconductors, AFe 2 As 2 (A=Ca, Sr, Ba), undergo a tetragonal to orthorhombic structural transition at a temperature T TO in the range 135-205 K depending on the alkaline-earth element. Below T TO the free standing crystals split into equally populated structural domains, which mask intrinsic, in-plane, anisotropic properties of the materials. Here we demonstrate a way of mechanically detwinning CaFe 2 As 2 and BaFe 2 As 2 . The detwinning is nearly complete, as demonstrated by polarized light imaging and synchrotron x-ray measurements, and reversible, with twin pattern restored after strain release. Electrical resistivity measurements in the twinned and detwinned states show that resistivity, ρ, decreases along the orthorhombic a o axis but increases along the orthorhombic b o axis in both compounds. Immediately below T TO the ratio ρ bo /ρ ao = 1.2 and 1.5 for Ca and Ba compounds, respectively. Contrary to CaFe 2 As 2 , BaFe 2 As 2 reveals an anisotropy in the nominally tetragonal phase, suggesting that either fluctuations play a larger role above T TO in BaFe 2 As 2 than in CaFe 2 As 2 or that there is a higher temperature crossover or phase transition.

  13. Study on adsorption of 99Tc on Fe, Fe2O3 and Fe3O4

    International Nuclear Information System (INIS)

    Liu Dejun; Fan Xianhua; Zhang Yingjie; Yao Jun; Zhou Duo; Wang Yong

    2004-01-01

    The absorption behavior of 99 Tc on Fe, Fe 2 O 3 and Fe 3 O 4 powders from aqueous 99 TcO 4 - solutions is studied by batch method in atmospheric conditions. After the adsorption reaches equilibrium, the valence state of 99 Tc in the aqueous solution is examined by extraction with tetraphenylarsonium chloride. The experimental results show that the adsorption ratio of 99 Tc on iron powders decreases with the increase of pH (in the range of 5-8) and of CO 3 2- concentration (in the range of 1 x 10 -8 -1 x 10 -2 mol/L). In opposite, the two factors have no significant influence on the absorption of 99 Tc on both Fe 2 O 3 and Fe 3 O 4 powders. The adsorption isotherms of 99 TcO 4 - on Fe, Fe 2 O 3 and Fe 3 O 4 powders can be well described by the Freundlich's equation. The major valence state of 99 Tc is deduced to be Tc(IV) when iron powders is used as the absorbent. In the case of Fe 2 O 3 or Fe 3 O 4 as an absorbent, the 99 Tc remains as the TcO 4 - form

  14. Comparison of Ab initio low-energy models for LaFePO, LaFeAsO, BaFe2As2, LiFeAs, FeSe, and FeTe. Electron correlation and covalency

    International Nuclear Information System (INIS)

    Miyake, Takashi; Nakamura, Kazuma; Arita, Ryotaro; Imada, Masatoshi

    2010-01-01

    Effective low-energy Hamiltonians for several different families of iron-based superconductors are compared after deriving them from the downfolding scheme based on first-principles calculations. Systematic dependences of the derived model parameters on the families are elucidated, many of which are understood from the systematic variation of the covalency between Fe-3d and pnictogen-/chalcogen-p orbitals. First, LaFePO, LaFeAsO (1111), BaFe 2 As 2 (122), LiFeAs (111), FeSe, and FeTe (11) have overall similar band structures near the Fermi level, where the total widths of 10-fold Fe-3d bands are mostly around 4.5 eV. However, the derived effective models of the 10-fold Fe-3d bands (d model) for FeSe and FeTe have substantially larger effective onsite Coulomb interactions U - 4.2 and 3.4 eV, respectively, after the screening by electrons on other bands and after averaging over orbitals, as compared to ∼2.5 eV for LaFeAsO. The difference is similar in the effective models containing p orbitals of As, Se or Te (dp or dpp model), where U ranges from ∼4 eV for the 1111 family to ∼7 eV for the 11 family. The exchange interaction J has a similar tendency. The family dependence of models indicates a wide variation ranging from weak correlation regime (LaFePO) to substantially strong correlation regime (FeSe). The origin of the larger effective interaction in the 11 family is ascribed to smaller spread of the Wannier orbitals generating larger bare interaction, and to fewer screening channels by the other bands. This variation is primarily derived from the distance h between the pnictogen/chalcogen position and the Fe layer: The longer h for the 11 family generates more ionic character of the bonding between iron and anion atoms, while the shorter h for the 1111 family leads to more covalent-bonding character, the larger spread of the Wannier orbitals, and more efficient screening by the anion p orbitals. The screened interaction of the d model is strongly orbital

  15. Mechanically - induced disorder in CaFe2As2: a 57Fe Mössbauer study

    Science.gov (United States)

    Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; Bud'Ko, Sergey L.

    57 Fe Mössbauer spectroscopy was used to study an extremely pressure and strain sensitive compound, CaFe2As2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe2As2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe2As2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe2As2 can be inhomogeneously suppressed by the grinding induced strain to such an extent that the antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. The quadrupole shift in the magnetic phase approachs zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position. Supported by US DOE under the Contract No. DE-AC02-07CH11358 and by the China Scholarship Council.

  16. Spectroscopic properties of Fe2+ ions at tetragonal sites-Crystal field effects and microscopic modeling of spin Hamiltonian parameters for Fe2+ (S=2) ions in K2FeF4 and K2ZnF4

    International Nuclear Information System (INIS)

    Rudowicz, C.; Piwowarska, D.

    2011-01-01

    Magnetic and spectroscopic properties of the planar antiferromagnet K 2 FeF 4 are determined by the Fe 2+ ions at tetragonal sites. The two-dimensional easy-plane anisotropy exhibited by K 2 FeF 4 is due to the zero field splitting (ZFS) terms arising from the orbital singlet ground state of Fe 2+ ions with the spin S=2. To provide insight into the single-ion magnetic anisotropy of K 2 FeF 4 , the crystal field theory and the microscopic spin Hamiltonian (MSH) approach based on the tensor method is adopted. Survey of available experimental data on the crystal field energy levels and free-ion parameters for Fe 2+ ions in K 2 FeF 4 and related compounds is carried out to provide input for microscopic modeling of the ZFS parameters and the Zeeman electronic ones. The ZFS parameters are expressed in the extended Stevens notation and include contributions up to the fourth-order using as perturbation the spin-orbit and electronic spin-spin couplings within the tetragonal crystal field states of the ground 5 D multiplet. Modeling of the ZFS parameters and the Zeeman electronic ones is carried out. Variation of these parameters is studied taking into account reasonable ranges of the microscopic ones, i.e. the spin-orbit and spin-spin coupling constants, and the energy level splittings, suitable for Fe 2+ ions in K 2 FeF 4 and Fe 2+ :K 2 ZnF 4 . Conversions between the ZFS parameters in the extended Stevens notation and the conventional ones are considered to enable comparison with the data of others. Comparative analysis of the MSH formulas derived earlier and our more complete ones indicates the importance of terms omitted earlier as well as the fourth-order ZFS parameters and the spin-spin coupling related contributions. The results may be useful also for Fe 2+ ions at axial symmetry sites in related systems, i.e. Fe:K 2 MnF 4 , Rb 2 Co 1-x Fe x F 4 , Fe 2+ :Rb 2 CrCl 4 , and Fe 2+ :Rb 2 ZnCl 4 . - Highlights: → Truncated zero field splitting (ZFS) terms for Fe 2+ in K

  17. Cs[FeSe{sub 2}], Cs{sub 3}[FeSe{sub 2}]{sub 2}, and Cs{sub 7}[Fe{sub 4}Se{sub 8}]. Missing links of known chalcogenido ferrate series

    Energy Technology Data Exchange (ETDEWEB)

    Stueble, Pirmin; Roehr, Caroline [Institut fuer Anorganische und Analytische Chemie, Universitaet Freiburg (Germany)

    2017-11-17

    The three cesium selenido ferrate title compounds with an Se:Fe ratio of 2:1 were synthesized from stoichiometric samples reacting elemental Cs either (A) with Fe and Se in a double-crucible setup (Cs[FeSe{sub 2}], Cs{sub 3}[FeSe{sub 2}]{sub 2}) or (B) with previously prepared FeSe{sub 2} (Cs{sub 3}[FeSe{sub 2}]{sub 2}, Cs{sub 7}[Fe{sub 4}S{sub 8}]) (T{sub max} = 800-1000 C). The pure Fe{sup III} ferrate Cs[FeSe{sub 2}] crystallizes in the Tl[FeSe{sub 2}] type [monoclinic, space group C2/m, a = 1392.95(10), b = 564.43(3), c = 737.44(6) pm, β = 119.163(5) , Z = 4, R{sub 1} = 0.0550]. It is thus not isotypic to all other alkali ferrates(III) A[FeS{sub 2}] and A[FeSe{sub 2}] containing chains of edge-sharing tetrahedra, but crystallizes in a t2 subgroup of the Immm structure of Cs[FeS{sub 2}]. The mixed-valent chain compound Cs{sub 3}[FeSe{sub 2}]{sub 2} is isotypic to its sulfido analogue [orthorhombic, space group Pnma, a = 777.88(6), b = 1151.02(6), c = 1341.61(7) pm, Z = 4, R{sub 1} = 0.0470]. In contrast to the isopunctal Na{sub 3}[FeSe{sub 2}]{sub 2} type K/Rb compounds the chains are only slightly corrugated. The monoclinic, likewise mixed-valent Fe{sup II/III} selenido ferrate Cs{sub 7}[Fe{sub 4}Se{sub 8}] [monoclinic, space group C2/c, a = 1953.79(10), b = 879.71(5), c = 1717.03(10) pm, β = 117.890(2) , Z = 4, R{sub 1} = 0.0816] is isostructural both to the cesium sulfido and tellurido compound. The structure contains oligomeric moieties of four edge sharing [FeSe{sub 4}] tetrahedra forming slightly distorted tetrahedral clusters [Fe{sub 4}Se{sub 8}]{sup 7-}, which are surrounded by a cube of 26 Cs cations. Based on a structure map, the crystal chemistry of the three title compounds is discussed together with all chain/cluster ferrates of the general series A{sub 1+x}[Fe{sup III}{sub 1-x}Fe{sup II}{sub x}Q{sub 2}] (x = 0-1; A = Na, K, Rb, Cs; Q = S, Se, Te). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: Insight into the electronic structure of the [Fe(H2O)6]2+ – [Fe(H2O)6]3+ complex

    Energy Technology Data Exchange (ETDEWEB)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-04-14

    We report the ground and low lying electronically excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters using multi-configuration electronic structure theory. In particular, we have constructed the Potential Energy Curves (PECs) with respect to the iron-oxygen distance when removing all water ligands at the same time from the cluster minima and established their correlation to the long range dissociation channels. Due to the fact that both the second and third ionization potentials of iron are larger than the one for water, the ground state products asymptotically correlate with dissociation channels that are repulsive in nature at large separations as they contain at least one H2O+ fragment and a positive metal center. The most stable equilibrium structures emanate – via intersections and/or avoided crossings – from the channels consisting of the lowest electronic states of Fe2+(5D; 3d6) or Fe3+(6S; 3d5) and six neutral water molecules. Upon hydration, the ground state of Fe2+(H2O)6 is a triply (5Tg) degenerate one with the doubly (5Eg) degenerate state lying slightly higher in energy. Similarly, Fe3+(H2O)6 has a ground state of 6Ag symmetry under Th symmetry. We furthermore examine a multitude of electronically excited states of many possible spin multiplicities, and report the optimized geometries for several selected states. The PECs for those cases are characterized by a high density of states. Focusing on the ground and the first few excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters, we studied their mutual interaction in the gas phase. We obtained the optimal geometries of the Fe2+(H2O)6 – Fe3+(H2O)6 gas phase complex for different Fe–Fe distances. For distances shorter than 6.0 Å, the water molecules in the respective first solvation shells located between the two metal centers were found to interact via weak hydrogen bonds. We examined a total of ten electronic states for this complex, including those corresponding to the

  19. Multiferroic properties of Pb2Fe2O5 ceramics

    International Nuclear Information System (INIS)

    Wang, Min; Tan, Guolong

    2011-01-01

    Research highlights: → Simultaneous occurrence of ferromagnetism and ferroelectricity in Pb 2 Fe 2 O 5 ceramics. → The off-centers of shifted Pb 2+ ions as well as the FeO 6 octahedra in the 'Pb 2 Fe 2 O 5 ' lead to a ferroelectric polarization. → Pb 2 Fe 2 O 5 ceramic demonstrates ferromagnetic order state due to the spin arrangement in the double chains of FeO 5 tetrahedral pyramids. -- Abstract: Pb 2 Fe 2 O 5 (PFO) powders in monoclinic structure have been synthesized using lead acetate in glycerin and ferric acetylacetonate as the precursor. The powders were pressed into pellets, which were sintered into ceramics at 800 o C for 1 h. The morphology and structure have been determined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Polarization was observed in Pb 2 Fe 2 O 5 ceramics at room temperature, exhibiting a clear ferroelectric hysteresis loop. The remanent polarization of Pb 2 Fe 2 O 5 ceramic is estimated to be Pr ∼ 0.22 μC/cm 2 . The origin of the polarization may be attributed to the off-centers of shifted Pb 2+ ions as well as the FeO 6 octahedra in the perovskite-based structure of Pb 2 Fe 2 O 5 . Magnetic hysteresis loop was also observed at room temperature. The Pb 2 Fe 2 O 5 ceramic shows coexistence of ferroelectricity and ferromagnetism. It provides a new field of research for complex oxides with multiferroic properties.

  20. Influence of FeEDDS, FeEDTA, FeDTPA, FeEDDHA, and FeSO4 on Marigold Growth and Nutrition, and Substrate and Runoff Chemistry

    Science.gov (United States)

    Objectives of the study were to determine effects of Fe source on plant growth, plant nutrition, substrate chemistry and runoff chemistry. Iron source (FS) treatments consisted of Fe-aminopolycarboxylic acid (APCA) complexones iron ethylenediaminetetraacetic acid (FeEDTA), iron [S, S']-ethylenediam...

  1. Possible use of Fe/CO2 fuel cells for CO2 mitigation plus H2 and electricity production

    International Nuclear Information System (INIS)

    Rau, Greg H.

    2004-01-01

    The continuous oxidation of scrap iron in the presence of a constant CO 2 -rich waste gas stream and water is evaluated as a means of sequestering anthropogenic CO 2 as well as generating hydrogen gas and electricity. The stoichiometry of the net reaction, Fe 0 + CO 2 + H 2 O → FeCO 3 + H 2 , and assumptions about reaction rates, reactant and product prices/values and overhead costs suggest that CO 2 might be mitigated at a net profit in excess of $30/tonne CO 2 . The principle profit center of the process would be hydrogen production, alone providing a gross income of >$160/tonne CO 2 reacted. However, the realization of such fuel cell economics depends on a number of parameters including: (1) the rate at which the reaction can be sustained, (2) the areal and volumetric density with which H 2 and electricity can be produced, (3) the purity of the H 2 produced, (4) the transportation costs of the reactants (Fe, CO 2 and H 2 O) and products (FeCO 3 or Fe(HCO 3 ) 2 ) to/from the cells and (5) the cost/benefit trade-offs of optimizing the preceding variables in a given market and regulatory environment. Because of the carbon intensity of conventional iron metal production, a net carbon sequestration benefit for the process can be realized only when waste (rather than new) iron and steel are used as electrodes and/or when Fe(HCO 3 ) 2 is the end product. The used electrolyte could also provide a free source of Fe 2+ ions for enhancing iron-limited marine photosynthesis and, thus, greatly increasing the CO 2 sequestration potential of the process. Alternatively, the reaction of naturally occurring iron oxides (iron ore) with CO 2 can be considered for FeCO 3 formation and sequestration, but this foregoes the benefits of hydrogen and electricity production. Use of Fe/CO 2 fuel cells would appear to be particularly relevant for fossil fuel gasification/steam reforming systems given the highly concentrated CO 2 they generate and given the existing infrastructure they

  2. Supersonic Fe beam source for chromatic aberration-free laser focusing of atoms

    CERN Document Server

    Bosch, R C M; Van der Straten, P; Leeuwen, K A H

    2002-01-01

    A monochromatic Fe beam is generated by heated supersonic expansion of argon seeded with Fe vapor. At a nozzle temperature of 1930 K and 800 torr argon inlet pressure the Fe beam has an axial velocity spread of 8% and intensity of 3 x 10 sup 1 sup 5 s sup - sup 1 sr sup - sup 1 , corresponding to a deposition rate of 10 nm/h at 150 mm from the nozzle. The two-chamber alumina crucibles are chemically stable for liquid Fe. With 400 mm sup 3 Fe we have operated for more than 200 hours without reloading. The power consumption at 1930 K is 750 W. Temperature stability at constant power (without feedback) is better than 30 K. The source is intended for deposition of nano-structures by laser focusing of the Fe beam. The small axial velocity spread virtually eliminates the increase in focal spot size due to chromatic aberration. (authors)

  3. Spectral distribution of Fe2+ photoionization cross section in InP:Fe

    International Nuclear Information System (INIS)

    Iikawa, F.

    1985-01-01

    Measurements of Fe 2+ ( 5 E) photoionization cross section in InP at 80 0 K, using constant current photoconductivity technique, were done. The spectrum presents a threshold energy of ∼ 0,65 eV due to the transition from Fe 2+ charge state, in the ground state, to Fe 3+ with an electron emission for the minimum conduction band. In the measurement of photoluminescence at ∼ 2 0 K, a wide emission of Fe complexe with the strong lattice interaction. In order to analyse the experimental data of Fe 2+ cross section in InP, a theoretical model was used. (M.C.K.) [pt

  4. High-Temperature Superconductivity in Doped BaFe2As2

    International Nuclear Information System (INIS)

    Martin, Marianne

    2011-01-01

    This thesis provides a detailed look on the synthesis, structural features and physical properties of iron arsenides. Especially the properties of BaFe 2 As 2 and the solid solutions (Ba 1-x K x )Fe 2 As 2 , (Ba 1-x Sr x )Fe 2 As 2 and BaFe 2 (As 1-x P x ) 2 which were all synthesized by solid state reactions by heating mixtures of the elements, were intensively investigated.

  5. A method for determination of [Fe3+]/[Fe2+] ratio in superparamagnetic iron oxide

    Science.gov (United States)

    Jiang, Changzhao; Yang, Siyu; Gan, Neng; Pan, Hongchun; Liu, Hong

    2017-10-01

    Superparamagnetic iron oxide nanoparticles (SPION), as a kind of nanophase materials, are widely used in biomedical application, such as magnetic resonance imaging (MRI), drug delivery, and magnetic field assisted therapy. The magnetic property of SPION has close connection with its crystal structure, namely it is related to the ratio of Fe3+ and Fe2+ which form the SPION. So a simple way to determine the content of the Fe3+ and Fe2+ is important for researching the property of SPION. This review covers a method for determination of the Fe3+ and Fe2+ ratio in SPION by UV-vis spectrophotometry based the reaction of Fe2+ and 1,10-phenanthroline. The standard curve of Fe with R2 = 0.9999 is used for determination the content of Fe2+ and total iron with 2.5 mL 0.01% (w/v) SPION digested by HCl, pH = 4.30 HOAc-NaAc buffer 10 mL, 0.01% (w/v) 1,10-phenanthroline 5 mL and 10% (w/v) ascorbic acid 1 mL for total iron determine independently. But the presence of Fe3+ interfere with obtaining the actual value of Fe2+ (the error close to 9%). We designed a calibration curve to eliminate the error by devising a series of solution of different ratio of [Fe3+]/[Fe2+], and obtain the calibration curve. Through the calibration curve, the error between the measured value and the actual value can be reduced to 0.4%. The R2 of linearity of the method is 0.99441 and 0.99929 for Fe2+ and total iron respectively. The error of accuracy of recovery and precision of inter-day and intra-day are both lower than 2%, which can prove the reliability of the determination method.

  6. Tetragonal To Collapsed Tetragonal Phase Transition In BaFe2As2 and CaFe2As2

    International Nuclear Information System (INIS)

    Mittal, R.; Mishra, S. K.; Chaplot, S. L.; Ovsyannikov, S. V.; Trots, D. M.; Dubrovinsky, L.; Greenberg, E.; Su, Y.; Brueckel, Th.; Matsuishi, S.; Hosono, H.; Garbarino, G.

    2010-01-01

    Superconductivity in MFe 2 As 2 (M = Ba, Ca) compounds appears either at a critical doping level at ambient pressure or in the parent compound itself by application of pressure above a critical value. We report high pressure powder x-ray diffractions studies for these compounds at 300 K up to about 56 GPa using membrane diamond anvil cells. The measurements for BaFe 2 As 2 show a new tetragonal to collapsed tetragonal phase transition at about 22 GPa that remains stable upto 56 GPa. CaFe 2 As 2 is already known to transform to collapsed phase at 1.7 GPa at 300 K. Our measurements on CaFe 2 As 2 do not show any post collapsed phase transition on increase of pressure 50 GPa at 300 K. It is important to note that the transition in both compounds occurs when they are compressed to almost the same value of the unit cell volume and attain similar c t /a t ratios. We present a detailed analysis of the pressure dependence and structure phase transitions as well as equation of state in these important FeAs compounds that should be useful in the context of possible superconductivity in the collapsed phase.

  7. Photoinduced structural transformation of SrFeO3 and Ca2Fe2O5 during photodegradation of methyl orange

    International Nuclear Information System (INIS)

    Yang Yang; Cao Zhengquan; Jiang Yinshan; Liu Lihua; Sun Yanbin

    2006-01-01

    Photodegradation of methyl orange solution under UV light irradiation have been studied over photocatalyst perovskite SrFeO 3 and brownmillerite Ca 2 Fe 2 O 5 . XRD and FTIR analysis show that both SrFeO 3 and Ca 2 Fe 2 O 5 transform to carbonates during the photodegradation process of methyl orange. This result indicates that UV light irradiation induce a photochemical reaction between photocatalysts and CO 2 released from the photodegradation of methyl orange. The photochemical reaction between photocatalysts and CO 2 is responsible for the transformation of the structures. The fact that SrFeO 3 has better photocatalytic property and endures serious transformation than Ca 2 Fe 2 O 5 is due to existence of unstable Fe (IV) in the perovskite structure of SrFeO 3. Such kind of Fe (IV) makes perovskite structure unstable and sensitive to ambient (especially sensitive to UV light irradiation)

  8. Effect of Fe2+ and Fe3+ substitution on the crystal structure, optical and magnetic properties of anatase Ti1-δ (δ %Fe2+)O2 nanoparticles

    International Nuclear Information System (INIS)

    Wisnu Ari Adi; Adel Fisli

    2018-01-01

    Recently electromagnetic wave absorber materials are becoming a very interesting study to be studied more deeply because it is unique in terms of its interaction with electromagnetic waves itself. The main requirement to be met as an electromagnetic wave absorber material is that the material must have the characteristics of dielectric loss and magnetic loss are high. Anatase TiO 2 is a good dielectric material but these material is diamagnetic. Fe substitution was expected to manipulate the magnetic properties of this material. Modification of anatase TiO 2 was prepared by the precipitation method through the procedure as follows: 25 ml of iron salt solution containing 0.3 M Fe 2+ and 0.3 M Fe 3+ (mol ratio of 2 : 1) respectively mixed into 50 ml of 3 M TiCl 4 . The mixture solution of titanium and iron was added to a 150 ml solution of 2.5 M ammonia with drop wise rate 3 ml/min. After that the precipitate was washed then heated in an oven and calcined at 500 °C for 3 hours. There are two types of samples obtained namely anatase Ti 1-δ (δ %Fe 3+ ) Ti 1-δ (δ %Fe 2+ ) where (δ =0, 0.5, 1, and 5 wt %). Phase identification was measured by X-ray diffraction and crystal structure was analyzed by using the Rietveld method. Refinement result indicates that the sample has tetragonal crystal structure a single phase of anatase TiO 2 . Fe atoms have been successfully substituted into Ti without changing the crystal structure of this material. While based on the results of the analysis of optical and magnetic properties showed that the substitution effect of both Fe 2+ and Fe 3+ has managed to reduce energy of band gap and can transform this magnetic phase of this material from diamagnetic becomes paramagnetic at room temperature. It was concluded that it has successfully carried out material engineering of anatase TiO 2 with a substitution of up to 5 wt % of either Fe 2+ or Fe 3+ into ion Ti 4+ by the precipitation method. (author)

  9. CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand

    Directory of Open Access Journals (Sweden)

    N. Srisittipokakun

    Full Text Available In this research, glass productions from rice husk ash (RHA and the effect of BaO, CuO, MnO2 and Fe2O3 on physical and optical properties were investigated. All properties were compared with glass made from SiO2 using same preparations. The results show that a higher density and refractive index of BaO, CuO, MnO2 and Fe2O3 doped in RHA glasses were obtained, compared with SiO2 glasses. The optical spectra show no significant difference between both glasses. The color of CuO glasses show blue from the absorption band near 800 nm (2B1g → 2B2g due to Cu2+ ion in octahedral coordination with a strong tetragonal distortion. The color of MnO2 glasses shows brown from broad band absorption at around 500 nm. This absorption band is assigned to a single allowed 5Eg → 5T2g transition which arises from the Mn3+ ions (3d4 configuration in octahedral symmetry. The yellow color derives from F2O3 glass due to the homogeneous distribution of Fe3+ (460 nm and Fe2+ (1050 nm ions in the glass matrices. Glass production from RHA is possible and is a new option for recycling waste from biomass power plant systems and air pollution reduction. Keywords: Rice husk ash, Glass, Optical, Physical

  10. Nanotextured Spikes of α-Fe2O3/NiFe2O4 Composite for Efficient Photoelectrochemical Oxidation of Water.

    Science.gov (United States)

    Hussain, Shabeeb; Tavakoli, Mohammad Mahdi; Waleed, Aashir; Virk, Umar Siddique; Yang, Shihe; Waseem, Amir; Fan, Zhiyong; Nadeem, Muhammad Arif

    2018-03-27

    We demonstrate for the first time the application of p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin films as anode materials for light-assisted electrolysis of water. The p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin films were deposited on planar fluorinated tin oxide (FTO)-coated glass as well as on 3D array of nanospike (NSP) substrates. The effect of substrate (planar FTO and 3D-NSP) and percentage change of each component (i.e., NiFe 2 O 4 and Fe 2 O 3 ) of composite was studied on photoelectrochemical (PEC) water oxidation reaction. This work also includes the performance comparison of p-NiFe 2 O 4 /n-Fe 2 O 3 composite (planar and NSP) devices with pure hematite for PEC water oxidation. Overall, the nanostructured p-NiFe 2 O 4 /n-Fe 2 O 3 device with equal molar 1:1 ratio of NiFe 2 O 4 and Fe 2 O 3 was found to be highly efficient for PEC water oxidation as compared with pure hematite, 1:2 and 1:3 molar ratios of composite. The photocurrent density of 1:1 composite thin film on planar substrate was equal to 1.07 mA/cm 2 at 1.23 V RHE , which was 1.7 times higher current density as compared with pure hematite device (0.63 mA/cm 2 at 1.23 V RHE ). The performance of p-NiFe 2 O 4 /n-Fe 2 O 3 composites in PEC water oxidation was further enhanced by their deposition over 3D-NSP substrate. The highest photocurrent density of 2.1 mA/cm 2 at 1.23 V RHE was obtained for the 1:1 molar ratio p-NiFe 2 O 4 /n-Fe 2 O 3 composite on NSP (NF1-NSP), which was 3.3 times more photocurrent density than pure hematite. The measured applied bias photon-to-current efficiency (ABPE) value of NF1-NSP (0.206%) was found to be 1.87 times higher than that of NF1-P (0.11%) and 4.7 times higher than that of pure hematite deposited on FTO-coated glass (0.044%). The higher PEC water oxidation activity of p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin film as compared with pure hematite is attributed to the Z-path scheme and better separation of electrons and holes. The increased surface area and greater light

  11. Comparison of Interfacial Electron Transfer Efficiency in [Fe(ctpy)2]2+-TiO2 and [Fe(cCNC)2]2+-TiO2 Assemblies: Importance of Conformational Sampling.

    Science.gov (United States)

    Mukherjee, Sriparna; Liu, Chang; Jakubikova, Elena

    2018-02-22

    Fe(II)-polypyridines have limited applications as chromophores in dye-sensitized solar cells due to the short lifetimes (∼100 fs) of their photoactive metal-to-ligand charge transfer (MLCT) states formed upon photoexcitation. Recently, a 100-fold increase in the MLCT lifetime was observed in a [Fe(CNC) 2 ] 2+ complex (CNC = 2,6-bis(3-methylimidazole-1-ylidine)pyridine) which has strong σ-donating N-heterocyclic carbene ligand in comparison to the weaker field parent [Fe(tpy) 2 ] 2+ complex (tpy = 2,2':6',2″-terpyridine). This study utilizes density functional theory (DFT), time-dependent DFT, and quantum dynamics simulations to investigate the interfacial electron transfer (IET) in [Fe(cCNC) 2 ] 2+ (cCNC = 4'-carboxy-2,6-bis(3-methylimidazole-1-ylidine)pyridine) and [Fe(ctpy) 2 ] 2+ (ctpy = 4'-carboxy-2,2':6',2″-terpyridine) sensitized TiO 2 . Our results suggest that the replacement of tpy by CNC ligand does not significantly speed up the IET kinetics in the [Fe(cCNC) 2 ] 2+ -TiO 2 assembly in comparison to the [Fe(ctpy) 2 ] 2+ -TiO 2 analogue. The high IET efficiency in the [Fe(cCNC) 2 ] 2+ -TiO 2 assemblies is therefore due to longer lifetime of [Fe(cCNC) 2 ] 2+ photoactive 3 MLCT states rather than faster electron injection kinetics. It was also found that the inclusion of conformational sampling in the computational model is important for proper description of the IET processes in these systems, as the models relying on the use of only fully optimized structures may yield misleading results. The simulations presented in this work also illustrate various pitfalls of utilizing properties such as electronic coupling, number of available acceptor states, and driving force, as well as calculations based on Fermi's golden rule framework, to reach conclusions on the IET efficiency in dye-semiconductor systems.

  12. Pressure-induced phase transition in KxFe2-yS2

    International Nuclear Information System (INIS)

    Tsuchiya, Yuu; Ikeda, Shugo; Kobayashi, Hisao; Zhang, Xiao-Wei; Kishimoto, Shunji; Kikegawa, Takumi; Hirao, Naohisa; Kawaguchi, Saori I.; Ohishi, Yasuo

    2017-01-01

    The structural and electronic properties of high-quality K 0.66(6) Fe 1.75(10) S 2 single crystals have been investigated by angle-resolved X-ray diffraction and 57 Fe nuclear forward scattering using synchrotron radiation under pressure at room temperature. The samples exhibit phase separation into antiferromagnetic ordered K 2 Fe 4 S 5 and nonmagnetic K x Fe 2 S 2 phases. It was found that a pressure-induced phase transition occurs at p c = 5.9(4) GPa with simultaneous suppression of the antiferromagnetic and Fe vacancy orders. >From the results of 57 Fe nuclear forward scattering, the refined magnetic hyperfine field remains unchanged with pressure below p c , suggesting that the Néel temperature does not decrease with pressure up to p c . Above p c , all Fe atoms in K 0.66 Fe 1.75 S 2 are in the same nonmagnetic state. A discontinuous increase in the center shift was observed at p c , reflecting a change in the Fe electronic state in K 0.66 Fe 1.75 S 2 . (author)

  13. A Novel Ternary CoFe2O4/CuO/CoFe2O4 as a Giant Magnetoresistance Sensor

    Directory of Open Access Journals (Sweden)

    Ramli

    2016-12-01

    Full Text Available This paper reports the results of a study relating to the synthesis of a novel ternary CoFe2O4/CuO/CoFe2O4 thin film as a giant magnetoresistance (GMR sensor. The CoFe2O4/CuO/CoFe2O4 thin film was prepared onto silicon substrate via DC magnetron sputtering with the targets facing each other. X-ray diffraction was used to determine the structure of the thin film and a 4-point method was used to measure the MR ratio. The GMR ratio is highly dependent on the ferrimagnetic (CoFe2O4 and nonmagnetic (CuO layer thickness. The maximum GMR ratio at room temperature obtained in the CoFe2O4/CuO/CoFe2O4 thin film was 70% when the CoFe2O4 and the CuO layer had a thickness of 62.5 nm and 14.4 nm respectively.

  14. Pr2Fe14B/α-Fe nanocomposites for thermal applications

    International Nuclear Information System (INIS)

    Silva, Suelanny Carvalho da

    2012-01-01

    In this work, Pr x Fe 94 - x B 6 (x = 6, 8, 10 and 12) nanostructured powders were prepared by a combination of hydrogenation, disproportionation, desorption and recombination (HDDR) process with high energy milling applied to the mixture of an as-cast alloy (Pr 14 Fe 80 B 6 ) and α-Fe. The produced nanoparticles showed magnetic properties comparable to those reported in hyperthermia studies. The optimal time to obtain the magnetic nanoparticles is 5 hours (at 900 rpm). It was verified that longer milling times cause an increase in carbon percentage on the particles. The carbon is derived from oleic acid added as a surfactant in the milling step. The nanocomposites exhibit coercive force ranging from 80 Oe (6.5 kAm -1 ) to 170 Oe (13.5 kAm -1 ) and magnetic moments in the range of 81 129 Am2kg -1 . From the X-ray diffraction analyses, only two phases were found in all samples: α-Fe and the magnetic phase Pr 2 Fe 14 B. Individual nanoparticles with diameter of about 20 nm were verified. The samples studied presented heating when exposed to an alternating magnetic field (f = 222 kHz e H max ∼3.7 kAm -1 ) comparable to reported in literature. Temperature variations (ΔT) of the powders were: 51 K for Pr 6 Fe 88 B 6 , 41 K for Pr 8 Fe 86 B 6 , 38 K for Pr 10 Fe 8 4 B 6 and T = 34 K for Pr 12 Fe 82 B 6 . The specific absorption rates (SARs) of the powders were 201 Wkg -1 for Pr 6 Fe 88 B 6 composition, 158 Wkg -1 on the composition Pr 8 Fe 86 B 6 , and 114 Wkg -1 for Pr 10 Fe 84 B 6 and Pr 12 Fe 82 B 6 compositions. (author)

  15. Nonstoichiometric Zn Ferrite and ZnFe2O4/Fe2O3 Composite Spheres: Preparation, Magnetic Properties, and Chromium Removal

    Science.gov (United States)

    Hang, Chun-Liang; Yang, Li-Xia; Sun, Chang-Mei; Liang, Ying

    2018-03-01

    Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.

  16. Determination of the 54Fe(n, 2n)53gFe and 54Fe(n, 2n)53mFe cross sections averaged over a 235U fission neutron spectrum

    International Nuclear Information System (INIS)

    Ribeiro Guevara, S.; Arribere, M.; Kestelman, A.J.

    2002-01-01

    The reaction cross sections averaged over a 235 U fission neutron spectrum have been measured for the 54 Fe(n, 2n) 53g Fe and 54 Fe(n, 2n) 53m Fe threshold reactions. The values found are, respectively: (1.14 ± 0.13) μb, and (0.52 ± 0.16) μb. The measured cross sections are referred to the (111± 3) mb standard cross section of the 58 Ni(n, p) 58m+g Co reaction. The (81.7 ± 2.2) mb standard cross section value for the 54 Fe(n, p) 54 Mn reaction, was also used as a monitor to check the results obtained with the Ni standard, leading to an excellent agreement. (author)

  17. Characterization of the LiSi/CsBr-LiBr-KBr/FeS(2) System for Potential Use as a Geothermal Borehole Power Source

    International Nuclear Information System (INIS)

    GUIDOTTI, RONALD A.; REINHARDT, FREDERICK W.

    1999-01-01

    We are continuing to study the suitability of modified thermal-battery technology as a potential power source for geothermal borehole applications. Previous work focused on the LiSi/FeS(sub 2) couple over a temperature range of 350 C to 400 C with the LiBr-KBr-LiF eutectic, which melts at 324.5 C. In this work, the discharge processes that take place in LiSi/CsBr-LiBr-KBr eutectic/FeS(sub 2) thermal cells were studied at temperatures between 250 C and 400 C using pelletized cells with immobilized electrolyte. The CsBr-LiBr-KBr eutectic was selected because of its lower melting point (228.5 C). Incorporation of a quasi-reference electrode allowed the determination of the relative contribution of each electrode to the overall cell polarization. The results of single-cell tests and limited battery tests are presented, along with preliminary data for battery stacks tested in a simulated geothermal borehole environment

  18. μ(4)-Orthothio-carbonato-tetra-kis-[tri-carbonyl-iron(I)](2 Fe-Fe).

    Science.gov (United States)

    Shi, Yao-Cheng; Cheng, Huan-Ren; Yuan, Li-Min; Li, Qian-Kun

    2011-11-01

    The fused bis-butterfly-shaped title compound, [Fe(4)(CS(4))(CO)(12)], possesses an orthothio-carbonate (CS(4) (4-)) ligand that acts as a bridge between two Fe(2)(CO)(6) units. A short intra-molecular S⋯S contact [2.6984 (8) and 2.6977 (8) Å] occurs in each S(2)Fe(2)(CO)(6) fragment.

  19. Rational synthesis of high nuclearity Mo/Fe/S clusters: the reductive coupling approach in the convenient synthesis of (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et, (n)Pr, (n)Bu] and the new [(Cl(4)-cat)(2)Mo(2)Fe(2)S(3)O(PEt(3))(3)Cl]-1/2(Fe(PEt(3))(2)(MeCN)(4)) and (Cl(4)-cat)(2)Mo(2)Fe(3)S(5)(PEt(3))(5) clusters.

    Science.gov (United States)

    Han, J; Koutmos, M; Ahmad, S A; Coucouvanis, D

    2001-11-05

    A general method for the synthesis of high nuclearity Mo/Fe/S clusters is presented and involves the reductive coupling of the (Et(4)N)(2)[(Cl(4)-cat)MoOFeS(2)Cl(2)] (I) and (Et(4)N)(2)[Fe(2)S(2)Cl(4)] (II) clusters. The reaction of I and II with Fe(PR(3))(2)Cl(2) or sodium salts of noncoordinating anions such as NaPF(6) or NaBPh(4) in the presence of PR(3) (R = Et, (n)Pr, or (n)Bu) affords (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et (IIIa), (n)Pr (IIIb), (n)Bu (IIIc)], Fe(6)S(6)(PEt(3))(4)Cl(2) (IV) and (PF(6))[Fe(6)S(8)(P(n)Pr(3))(6)] (V) as byproducts. The isolation of (Et(4)N)[Fe(PEt(3))Cl(3)] (VI), NaCl, and SPEt(3) supports a reductive coupling mechanism. Cluster IV and V also have been synthesized by the reductive self-coupling of compound II. The reductive coupling reaction between I and II by PEt(3) and NaPF(6) in a 1:1 ratio produces the (Et(4)N)(2)[(Cl(4)-cat)Mo(L)Fe(3)S(4)Cl(3)] clusters [L = MeCN (VIIa), THF (VIIb)]. The hitherto unknown [(Cl(4)-cat)(2)Mo(2)Fe(2)S(3)O(PEt(3))(3)Cl](+) cluster (VIII) has been isolated as the 2:1 salt of the (Fe(PEt(3))(2)(MeCN)(4))(2+) cation after the reductive self-coupling reaction of I in the presence of Fe(PEt(3))(2)Cl(2). Cluster VIII crystallizes in the monoclinic space group P2(1)/c with a = 11.098(3) A, b = 22.827(6) A, c = 25.855(6) A, beta = 91.680(4) degrees, and Z = 4. The formal oxidation states of metal atoms in VIII have been assigned as Mo(III), Mo(IV), Fe(II), and Fe(III) on the basis of zero-field Mössbauer spectra. The Fe(PEt(3))(2)(MeCN)(4) cation of VIII is also synthesized independently, isolated as the BPh(4)(-) salt (IX), and has been structurally characterized. The reductive coupling of compound I also affords in low yield the new (Cl(4)-cat)(2)Mo(2)Fe(3)S(5)(PEt(3))(5) cluster (X) as a byproduct. Cluster X crystallizes in the monoclinic space group P2(1)/n with a = 14.811(3) A, b = 22.188(4) A, c = 21.864(4) A, beta = 100.124(3) degrees, and Z = 4 and the structure shows very short Mo-Fe

  20. Chemical pressure induced change in multiferroicity of Bi{sub 1+2x}Gd{sub 2x/2}Fe{sub 1−2x}O{sub 3} bulk ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, S.K. [Institute of Materials Science, Bhubaneswar 751013 Odisha (India); Center for Materials Research, Norfolk State University, Norfolk (United States); Sahu, D.R., E-mail: diptirs@yahoo.com [Institute of Materials Science, Bhubaneswar 751013 Odisha (India); Department of Natural and Applied Science, Namibia University of Science and Technology, Windhoek (Namibia); Rout, P.P.; Das, S.K. [Institute of Materials Science, Bhubaneswar 751013 Odisha (India); Pradhan, A.K. [Center for Materials Research, Norfolk State University, Norfolk (United States); Srinivasu, V.V. [Department of Physics, University of South Africa (South Africa); Roul, B.K., E-mail: ims@iopb.res.in [Institute of Materials Science, Bhubaneswar 751013 Odisha (India)

    2017-04-01

    We have optimized Gd ion substitution in BiFeO{sub 3} (BFO) and observed prominently change in structural, electrical and magnetic behavior of Bi{sub 1+2x}Gd{sub 2x/2}Fe{sub 1−2x}O{sub 3} ceramics synthesized through slow step sintering schedule. It is observed that with the increase in concentration of Gd (x=0.1), original structure of BFO is transformed from rhombohedral R3c space group to orthorhombic Pn21a space group. Surprisingly, unit cell volume is drastically contracted (35% for x=0.2) and the sintered specimen showed enhanced room temperature ferromagnetic behavior although the original BFO is normally G-type antiferromagnetic in nature at 643 K. It is expected that intrinsic chemical pressure within the bulk body built by the substitution of Gd in presence of excess bismuth greatly supported through unidirectional movement of electrical dipole moment with in each individual domain as a result of which suppression of leakage current with enhanced dielectric and ferroelectric hysteresis is observed.

  1. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia

    Science.gov (United States)

    Glassell, M.; Robles, J.; Das, R.; Phan, M. H.; Srikanth, H.

    Iron oxide nanoparticles especially Fe3O4, γ-Fe2O3 have been extensively studied for magnetic hyperthermia because of their tunable magnetic properties and stable suspension in superparamagnetic regime. However, their relatively low heating capacity hindered practical application. Recently, a large improvement in heating efficiency has been reported in exchange-coupled nanoparticles with exchange coupling between soft and hard magnetic phases. Here, we systematically studied the effect of core and shell size on the heating efficiency of the Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) showed formation of spherical shaped Fe3O4 and Fe3O-/CoFe2O4 nanoparticles. Magnetic measurements showed high magnetization (≅70 emu/g) and superparamagnetic behavior for the nanoparticles at room temperature. Magnetic hyperthermia results showed a large increase in specific absorption rate (SAR) for 8nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of the same size. The heating efficiency of the Fe3O4/CoFe2O4 with 1 nm CoFe2O4 (shell) increased from 207 to 220 W/g (for 800 Oe) with increase in core size from 6 to 8 nm. The heating efficiency of the Fe3O4/CoFe2O4 with 2 nm CoFe2O4 (shell) and core size of 8 nm increased from 220 to 460 W/g (for 800 Oe). These exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.

  2. Investigation on demagnetization of Nd2Fe14B permanent magnets induced by irradiation

    Science.gov (United States)

    Li, Zhefu; Jia, Yanyan; Liu, Renduo; Xu, Yuhai; Wang, Guanghong; Xia, Xiaobin

    2017-12-01

    Nd2Fe14B is an important component of insertion devices, which are used in synchrotron radiation sources, and could be demagnetized by irradiation. In the present study, the Monte Carlo code FLUKA was used to analyze the irradiation field of Nd2Fe14B, and it was confirmed that the main demagnetization particle was neutron. Nd2Fe14B permanent magnet samples were irradiated by Ar ions at different doses to simulate neutron irradiation damage. The hysteresis loops were measured using a vibrating sample magnetometer, and the microstructure evolutions were characterized by transmission electron microscopy. Moreover, the relationship between them was discussed. The results indicate that the decrease in saturated magnetization is caused by the changes in microstructure. The evolution of single crystals into an amorphous structure is the reason for the demagnetization phenomenon of Nd2Fe14B permanent magnets when considering its microscopic structure.

  3. Fe4 cluster and a buckled macrocycle complex from the reduction of [(dmgBF2)2Fe(L)2] (L = MeCN, (t)Bu(i)NC).

    Science.gov (United States)

    Rose, Michael J; Winkler, Jay R; Gray, Harry B

    2012-02-20

    We report the syntheses, X-ray structures, and reductive electrochemistry of the Fe(II) complexes [(dmgBF(2))(2)Fe(MeCN)(2)] (1; dmg = dimethylglyoxime, MeCN = acetonitrile) and [(dmgBF(2))Fe((t)Bu(i)NC)(2)] (2; (t)Bu(i)NC = tert-butylisocyanide). The reaction of 1 with Na/Hg amalgam led to isolation and the X-ray structure of [(dmgBF(2))(2)Fe(glyIm)] (3; glyIm = glyimine), wherein the (dmgBF(2))(2) macrocyclic frame is bent to accommodate the binding of a bidentate apical ligand. We also report the X-ray structure of a rare mixed-valence Fe(4) cluster with supporting dmg-type ligands. In the structure of [(dmg(2)BF(2))(3)Fe(3)((1)/(2)dmg)(3)Fe(O)(6)] (4), the (dmgBF(2))(2) macrocycle has been cleaved, eliminating BF(2) groups. Density functional theory calculations and electron paramagnetic resonance data are in accordance with a central Fe(III) ion surrounded by three formally Fe(II)dmg(2)BF(2) units.

  4. Fluorescence detection of a protein-bound 2Fe2S cluster.

    Science.gov (United States)

    Hoff, Kevin G; Goodlitt, Rochelle; Li, Rui; Smolke, Christina D; Silberg, Jonathan J

    2009-03-02

    A fluorescent biosensor is described for 2Fe2S clusters that is composed of green fluorescent protein (GFP) fused to glutaredoxin 2 (Grx2), as illustrated here. 2Fe2S detection is based on the reduction of GFP fluorescence upon the 2Fe2S-induced dimerization of GFP-Grx2. This assay is sufficiently sensitive to detect submicromolar changes in 2Fe2S levels, thus making it suitable for high-throughput measurements of metallocluster degradation and synthesis reactions.

  5. Optimization of Fe2+ supplement in anaerobic digestion accounting for the Fe-bioavailability.

    Science.gov (United States)

    Cai, Yafan; Zhao, Xiaoling; Zhao, Yubin; Wang, Hongliang; Yuan, Xufeng; Zhu, Wanbin; Cui, Zongjun; Wang, Xiaofen

    2018-02-01

    Fe is widely used as an additive in anaerobic digestion, but its bioavailability and the mechanism by which it enhances digestion are unclear. In this study, sequential extraction was used to measure Fe bioavailability, while biochemical parameters, kinetics model and Q-PCR (fluorescence quantitative PCR) were used to explore its mechanism of stimulation. The results showed that sequential extraction is a suitable method to assess the anaerobic system bioavailability of Fe, which is low and fluctuates to a limited extent (1.7 to -3.1wt%), indicating that it would be easy for Fe levels to be insufficient. Methane yield increased when the added Fe 2+ was 10-500mg/L. Appropriate amounts of Fe 2+ accelerated the decomposition of rice straw and facilitated methanogen metabolism, thereby improving reactor performance. The modified Gompertz model better fitted the results than the first-order kinetic model. Feasibility analysis showed that addition of Fe 2+ at ≤50mg/L was suitable. Copyright © 2017. Published by Elsevier Ltd.

  6. KASS v.2.2. scheduling software for construction

    Directory of Open Access Journals (Sweden)

    Krzemiński Michał

    2016-01-01

    Full Text Available The paper presents fourth version of specialist useful software in scheduling KASS v.2.2 (Algorithm Scheduling Krzeminski System. KASS software is designed for construction scheduling, specially form flow shop models. The program is being dedicated closely for the purposes of the construction. In distinguishing to other used programs in tasks of this type operational research criteria were designed closely with the thought about construction works and about the specificity of the building production. The minimal time, the minimal slack of brigades, the minimal slacks of the chosen working brigade and costs of the transfer operation of working fronts are included in operational research criteria between work centers. It is possible to enter data into the program both by hand as well as to load the Excel from files, similarly is with results, they are presented on-screen as well as a possibility of enrolling them in the file exists Excel. An element is very valid for it since allows for further simple processing of received results. In providing software for performing operational research calculations a technique of the complete review and simulation technology are being exploited. Described algorithms a program is using which will stay in the article as well as shown computational examples will remain.

  7. Effect of carbon coating on cycle performance of LiFePO4/C composite cathodes using Tween80 as carbon source

    International Nuclear Information System (INIS)

    Huang, You-Guo; Zheng, Feng-Hua; Zhang, Xiao-Hui; Li, Qing-Yu; Wang, Hong-Qiang

    2014-01-01

    Highlights: • The Tween80 addition could enhance cycle stability of LiFePO 4 material. • The FTIR spectrum confirms Tween80 surfactant can bond with LiFePO 4 particles. • Some chemical bonds between material and carbon layer still exist after sintering. - Abstract: The influence of carbon coating on the cycle performance of LiFePO 4 /C composite cathodes using polyoxyethylenesorbitan monooleate (Tween80) as carbon source against lithium metal foil anode for Li-ion batteries was investigated in this paper. According to Infrared spectrum analysis (FTIR), the Tween80 surfactant molecules bond to the surface of LiFePO 4 and form an adsorption layer, which contribute to the formation of a homogeneous carbon layer tightly coating on the surface of LiFePO 4 particles in the process of sintering, due to a strong binding force provided by surface chemical bonds. The transmission electron microscopy (TEM) shows that the carbon layer around LiFePO 4 using Tween80 as carbon source still coating on the surface of LiFePO 4 after 200 cycles at 5 C rate while the carbon layer shed from the surface of LiFePO 4 using glucose as carbon source. As a result, the carbon-coated LiFePO 4 using Tween80 as carbon source exhibits much higher capacity retention than the sample using glucose as carbon source. Electrochemical impedance measurement (EIS) reveals that the carbon-coated LiFePO 4 electrode using Tween80 surfactant has a lower charge transfer resistance than the electrode using glucose as carbon source electrode after 100 and 200 cycles at 5 C rate

  8. Tuning the magnetism of the top-layer FeAs on BaFe2As2 (001): First-principles study

    Science.gov (United States)

    Zhang, Bing-Jing; Liu, Kai; Lu, Zhong-Yi

    2018-04-01

    Magnetism may play an important role in inducing the superconductivity in iron-based superconductors. As a prototypical system, the surface of BaFe2As2 provides a good platform for studying related magnetic properties. We have designed systematic first-principles calculations to clarify the surface magnetism of BaFe2As2 (001), which previously has received little attention in comparison with surface structures and electronic states. We find that the surface environment has an important influence on the magnetic properties of the top-layer FeAs. For As-terminated surfaces, the magnetic ground state of the top-layer FeAs is in the staggered dimer antiferromagnetic (AFM) order, distinct from that of the bulk, while for Ba-terminated surfaces the collinear (single-stripe) AFM order is the most stable, the same as that in the bulk. When a certain coverage of Ba or K atoms is deposited onto the As-terminated surface, the calculated energy differences among different AFM orders for the top-layer FeAs on BaFe2As2 (001) can be much reduced, indicating enhanced spin fluctuations. To compare our results with available scanning tunneling microscopy (STM) measurements, we have simulated the STM images of several structural/magnetic terminations. Astonishingly, when the top-layer FeAs is in the staggered dimer AFM order, a stripe pattern appears in the simulated STM image even when the surface Ba atoms adopt a √{2 }×√{2 } structure, while a √{2 }×√{2 } square pattern comes out for the 1 ×1 full As termination. Our results suggest: (i) the magnetic state at the BaFe2As2 (001) surface can be quite different from that in the bulk; (ii) the magnetic properties of the top-layer FeAs can be tuned effectively by surface doping, which may likely induce superconductivity at the surface layer; (iii) both the surface termination and the AFM order in the top-layer FeAs can affect the STM image of BaFe2As2 (001), which needs to be taken into account when identifying the surface

  9. Synthesis and characterization of Li2FeP2O7/C nanocomposites as cathode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Du, Juan; Jiao, Lifang; Wu, Qiong; Liu, Yongchang; Zhao, Yanping; Guo, Lijing; Wang, Yijing; Yuan, Huatang

    2013-01-01

    Highlights: • Li 2 FeP 2 O 7 /C were prepared by a simple solid-state reaction. • Carbon coating and reducing particle size are adopted to improve the discharge capacity. • The detailed study about the electrochemical properties of Li 2 FeP 2 O 7 is scarce. • Li 2 FeP 2 O 7 /C show superior electrochemical properties. -- Abstract: The pristine Li 2 FeP 2 O 7 and Li 2 FeP 2 O 7 /C nanocomposites with different content of carbon have been successfully synthesized via a simple solid-state reaction, using cheap glucose as carbon source. XRD and EDS patterns demonstrate the high purity of the products. SEM images exhibit that the size of the particles is about 50–500 nm. Electrochemical measurements reveal that carbon coating and reducing particle size significantly enhance the electrochemical performances of Li 2 FeP 2 O 7 . Particularly, the Li 2 FeP 2 O 7 /C sample with a carbon content of 4.88 wt.% displays the best performance with a specific discharge capacity of 103.1 mAh g −1 at 0.1 C, which is 93.7% of its one-electron theoretical capacity, meaning 110 mAh g −1 . Meanwhile, it shows favorable cycling stability and excellent rate performance, indicating its potential applicability in Li-ion batteries in the long term

  10. Schedule Analytics

    Science.gov (United States)

    2016-04-30

    Warfare, Naval Sea Systems Command Acquisition Cycle Time : Defining the Problem David Tate, Institute for Defense Analyses Schedule Analytics Jennifer...research was comprised of the following high- level steps :  Identify and review primary data sources 1...research. However, detailed reviews of the OMB IT Dashboard data revealed that schedule data is highly aggregated. Program start date and program end date

  11. [{sup 18}F]FE-SUPPY and [{sup 18}F]FE-SUPPY:2 - metabolic considerations

    Energy Technology Data Exchange (ETDEWEB)

    Haeusler, Daniela [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria); Nics, Lukas [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Dept. of Nutritional Sciences, Univ. of Vienna, A-1090 Vienna (Austria); Mien, Leonhard-Key [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria); Ungersboeck, Johanna [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Dept. of Inorganic Chemistry, Univ. of Vienna, A-1090 Vienna (Austria); Lanzenberger, Rupert R. [Dept. of Psychiatry and Psychotherapy, Medical Univ. of Vienna, A-1090 Vienna (Austria); Shanab, Karem [Dept. of Drug and Natural Product Synthesis, Univ. of Vienna, A-1090 Vienna (Austria); Sindelar, Karoline M. [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Viernstein, Helmut [Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria); Wagner, Karl-Heinz [Dept. of Nutritional Sciences, Univ. of Vienna, A-1090 Vienna (Austria); Dudczak, Robert; Kletter, Kurt [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Wadsak, Wolfgang [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Dept. of Inorganic Chemistry, Univ. of Vienna, A-1090 Vienna (Austria); Mitterhauser, Markus [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria); Hospital Pharmacy of the General Hospital of Vienna, A-1090 Vienna (Austria)], E-mail: markus.mitterhauser@meduniwien.ac.at

    2010-05-15

    Introduction: Recently, [{sup 18}F]FE-SUPPY and [{sup 18}F]FE-SUPPY:2 were introduced as the first positron emission tomography (PET) tracers for the adenosine A{sub 3} receptor. Thus, aim of the present study was the metabolic characterization of the two adenosine A{sub 3} receptor PET tracers. Methods: In vitro carboxylesterase (CES) experiments were conducted using incubation mixtures containing different concentrations of the two substrates, porcine CES and phosphate-buffered saline. Enzymatic reactions were stopped by adding acetonitrile/methanol (10:1) after various time points and analyzed by a high-performance liquid chromatography (HPLC) standard protocol. In vivo experiments were conducted in male wild-type rats; tracers were injected through a tail vein. Rats were sacrificed after various time points (n=3), and blood and brain samples were collected. Sample cleanup was performed by an HPLC standard protocol. Results: The rate of enzymatic hydrolysis by CES demonstrated Michaelis-Menten constants in a micromolar range (FE-SUPPY, 20.15 {mu}M, and FE-SUPPY:2, 13.11 {mu}M) and limiting velocities of 0.035 and 0.015 {mu}M/min for FE-SUPPY and FE-SUPPY:2, respectively. Degree of metabolism in blood showed the following: 15 min pi 47.7% of [{sup 18}F]FE-SUPPY was intact compared to 33.1% of [{sup 18}F]FE-SUPPY:2; 30 min pi 30.3% intact [{sup 18}F]FE-SUPPY was found compared to 15.6% [{sup 18}F]FE-SUPPY:2. In brain, [{sup 18}F]FE-SUPPY:2 formed an early hydrophilic metabolite, whereas metabolism of [{sup 18}F]FE-SUPPY was not observed before 30 min pi Conclusion: Knowing that metabolism in rats is several times faster than in human, we conclude that [{sup 18}F]FE-SUPPY should be stable for the typical time span of a clinical investigation. As a consequence, from a metabolic point of view, one would tend to decide in favor of [{sup 18}F]FE-SUPPY.

  12. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H2O2 pre-oxidation enhanced Fe(II) coagulation.

    Science.gov (United States)

    Jia, Peili; Zhou, Yanping; Zhang, Xufeng; Zhang, Yi; Dai, Ruihua

    2017-12-11

    Harmful algal blooms in source water are a worldwide issue for drinking water production and safety. UV/H 2 O 2 , a pre-oxidation process, was firstly applied to enhance Fe(II) coagulation for the removal of Microcystis aeruginosa [M. aeruginosa, 2.0 (±0.5) × 10 6  cell/mL] in bench scale. It significantly improved both algae cells removal and algal organic matter (AOM) control, compared with UV irradiation alone (254 nm UVC, 5.4 mJ/cm 2 ). About 94.7% of algae cells were removed after 5 min UV/H 2 O 2 pre-treatment with H 2 O 2 dose 375 μmol/L, FeSO 4 coagulation (dose 125 μmol/L). It was also certified that low residue Fe level and AOM control was simultaneously achieved due to low dose of Fe(II) to settle down the cells as well as the AOM. The result of L 9 (3) 4 orthogonal experiment demonstrated that H 2 O 2 and FeSO 4 dose was significantly influenced the algae removal. UV/H 2 O 2 induced an increase of intracellular reactive oxidant species (ROS) and a decrease in zeta potential, which might contribute to the algae removal. The total microcystins (MCs) concentration was 1.5 μg/L after UV/H 2 O 2 pre-oxidation, however, it could be removed simultaneously with the algae cells and AOM. This study suggested a novel application of UV/H 2 O 2 -Fe(II) process to promote algae removal and simultaneously control AOM release in source waters, which is a green and promising technology without secondary pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The magnetization reversal in CoFe{sub 2}O{sub 4}/CoFe{sub 2} granular systems

    Energy Technology Data Exchange (ETDEWEB)

    Jin, J.; Sun, X.; Wang, M.; Ding, Z.L.; Ma, Y.Q., E-mail: yqma@ahu.edu.cn [Anhui University, Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science (China)

    2016-12-15

    The temperature-dependent field cooling (FC) and zero-field cooling (ZFC) magnetizations, i.e., M{sub FC} and M{sub ZFC}, measured under different magnetic fields from 500 Oe to 20 kOe have been investigated on two exchange–spring CoFe{sub 2}O{sub 4}/CoFe{sub 2} composites with different relative content of CoFe{sub 2}. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at a field-dependent irreversible temperature T{sub irr}. For the sample with less CoFe{sub 2}, the curves of −d(M{sub FC} − M{sub ZFC})/dT versus temperature T exhibit a broad peak at an intermediate temperature T{sub 2} below T{sub irr}, and the moments are suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the −d(M{sub FC} − M{sub ZFC})/dT curves of the sample with more CoFe{sub 2}, besides a broad peat at an intermediate temperature T{sub 2}, a rapid rise around the low temperature T{sub 1}~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T{sub 2} and T{sub irr} towards a lower temperature, and the shift of T{sub 2} is attributable to the moment reversal of CoFe{sub 2}O{sub 4}.

  14. A new rhodamine-based fluorescent probe for the discrimination of Fe"3"+ from Fe"2"+

    International Nuclear Information System (INIS)

    You, Qi Hua; Huang, Hua Bin; Zhuang, Zhi Xia; Wang, Xiao Ru; Chan, Wing Hong

    2016-01-01

    A new rhodamine-based fluorescent probe for the discrimination of Fe"3"+ from Fe"2"+ has been designed and investigated. The probe shows an immediate visual color change in response to Fe"3"+ and Cu"2"+, while only Fe"3"+ triggers the fluorescent change of the probe. The existence of large amount of other metal ions shows negligible interference in the detection of Fe"3"+. The association constant K_a_s_s of 4.64 × 10"8 M"-"2 (R"2 = 0.994) and 5.38 × 10"8 M"-"2 (R"2 = 0.991) of the complex was derived from UV/Vis and fluorescence titration assuming 1:2 stoichiometry of probe–Fe"3"+ complex, respectively

  15. The topotactic reduction of Sr3Fe2O5Cl2-square planar Fe(II) in an extended oxyhalide.

    Science.gov (United States)

    Dixon, Edward; Hayward, Michael A

    2010-10-18

    The topotactic reduction of the oxychloride Sr(3)Fe(2)O(5)Cl(2) with LiH results in the formation of Sr(3)Fe(2)O(4)Cl(2). Neutron powder diffraction data show that Sr(3)Fe(2)O(4)Cl(2) adopts a body-centered tetragonal crystal structure (I4/mmm, a = 4.008(1) Å, c = 22.653(1) Å at 388 K) with anion vacancies located within the SrO layer of the phase. This leads to a structure consisting of infinite sheets of corner-sharing Fe(II)O(4) square planes. Variable-temperature neutron diffraction data show that Sr(3)Fe(2)O(4)Cl(2) adopts G-type antiferromagnetic order below T(N) ∼ 378(10) K with an ordered moment of 2.81(9) μ(B) per iron center at 5 K consistent with the presence of high-spin Fe(II). The observed structural and chemical selectivity of the reduction reaction is discussed. The contrast between the structure of Sr(3)Fe(2)O(4)Cl(2) and the isoelectronic all-oxide analogue (Sr(3)Fe(2)O(5)) suggests that by careful selection of substrate phases, the topotactic reduction of complex transition metal oxychlorides can lead to the preparation of novel anion-deficient phases with unique transition metal-oxygen sublattices which cannot be prepared via the reduction of all-oxide substrates.

  16. Photodegradation of amoxicillin by catalyzed Fe3+/H2O2 process

    Institute of Scientific and Technical Information of China (English)

    Xiaoming Li; Tingting Shen; Dongbo Wang; Xiu Yue; Xian Liu; Qi Yang; Jianbin Cao; Wei Zheng; Guangming Zeng

    2012-01-01

    Three oxidation processes of UV-Fe3+(EDTA)/H2O2 (UV:ultraviolet light; EDTA:ethylenediaminetetraacetic acid),UV-Fe3+/H2O2 and Fe3+/H2O2 were simultaneously investigated for the degradation of amoxicillin at pH 7.0.The results indicated that,100% amoxicillin degradation and 81.9% chemical oxygen demand (CODcr) removal could be achieved in the UV-Fe3+ (EDTA)/H2O2 process.The treatment efficiency of amoxicillin and CODcr removal were found to decrease to 59.0% and 43.0% in the UV-Fe3+/H2O2 process;39.6% and 31.3% in the Fe3+/H2O2 process.Moreover,the results of biodegradability (biological oxygen demand (BOD5)/CODCr ratio) revealed that the UV-Fe3+ (EDTA)/H2O2 process was a promising strategy to degrade amoxicillin as the biodegradability of the effluent was improved to 0.45,compared with the cases of UV-Fe3+/H2O2 (0.25) and Fe3+/H2O2 (0.10) processes.Therefore,it could be deduced that EDTA and UV light performed synergetic catalytic effect on the Fe3+/H2O2 process,enhancing the treatment efficiency.The degradation mechanisms were also investigated via UV-Vis spectra,and high performance liquid chromatography-mass spectra.The degradation pathway of amoxicillin was further proposed.

  17. Effect of Fe2O3 and Binder on the Electrochemical Properties of Fe2O3/AB (Acetylene Black) Composite Electrodes

    Science.gov (United States)

    Anh, Trinh Tuan; Thuan, Vu Manh; Thang, Doan Ha; Hang, Bui Thi

    2017-06-01

    In an effort to find the best anode material for Fe/air batteries, a Fe2O3/AB (Acetylene Black) composite was prepared by dry-type ball milling using Fe2O3 nanoparticles and AB as the active and additive materials, respectively. The effects of various binders and Fe2O3 content on the electrochemical properties of Fe2O3/AB electrodes in alkaline solution were investigated. It was found that the content of Fe2O3 strongly affected the electrochemical behavior of Fe2O3/AB electrodes; with Fe2O3 nanopowder content reaching 70 wt.% for the electrode and showing improvement of the cyclability. When the electrode binder polytetrafluoroethylene (PTFE) was used, clear redox peaks were observed via cyclic voltammetry (CV), while polyvinylidene fluoride-containing electrodes provided CV curves with unobservable redox peaks. Increasing either binder content in the electrode showed a negative effect in terms of the cyclability of the Fe2O3/AB electrode.

  18. Electronic structure of LaFe{sub 2}X{sub 2} (X = Si,Ge)

    Energy Technology Data Exchange (ETDEWEB)

    Hase, I., E-mail: i.hase@aist.go.jp [Electronics and Photonics Research Institute, AIST, Tsukuba, Ibaraki 305-8568 (Japan); Yanagisawa, T. [Electronics and Photonics Research Institute, AIST, Tsukuba, Ibaraki 305-8568 (Japan)

    2011-11-15

    We have calculated the electronic structure of LaFe{sub 2}Si{sub 2} and LaFe{sub 2}Ge{sub 2} from first-principles. The obtained Fermi surfaces of LaFe{sub 2}Si{sub 2} and LaFe{sub 2}Ge{sub 2} resemble those of LaRu{sub 2}Ge{sub 2}, which well explains the result of the dHvA experiments of CeRu{sub 2}Ge{sub 2}. Their density of states curves show the common feature with CaFe{sub 2}As{sub 2}. D(E{sub F}) strongly depends on the distortion of the FeX{sub 4} tetrahedra and/or the height of the X atom, as also found in iron-pnictide system. Recently found iron-pnictide superconductor (Ba,K)Fe{sub 2}As{sub 2} and the heavy-fermion superconductor CeCu{sub 2}Si{sub 2} both have the same crystal structure. In this paper we have calculated the electronic structure of LaFe{sub 2}Si{sub 2} and LaFe{sub 2}Ge{sub 2} from first-principles. These compounds also have the same crystal structure and closely related to both of (Ba,K)Fe{sub 2}As{sub 2} and CeRu{sub 2}Ge{sub 2}. The obtained Fermi surfaces of LaFe{sub 2}Si{sub 2} and LaFe{sub 2}Ge{sub 2} resemble those of LaRu{sub 2}Ge{sub 2}, which are already found that they well explain the results of the dHvA experiments of CeRu{sub 2}Ge{sub 2}. Their density of states curves show the common feature with CaFe{sub 2}As{sub 2}. The density of states at the Fermi level strongly depends on the distortion of the FeX{sub 4} tetrahedra and/or the height of the X atom from the two-dimensional Fe plane, as also found in iron-pnictide system. The electronic specific heat coefficient is 11.8 mJ/mol K{sup 2} for LaFe{sub 2}Si{sub 2} and 12.5 mJ/mol K{sup 2} for LaFe{sub 2}Ge{sub 2}, which is about 1/3 and 1/2 of experimental results, respectively.

  19. Spin and lattice structures of single-crystalline SrFe2As2

    Science.gov (United States)

    Zhao, Jun; Ratcliff, W., II; Lynn, J. W.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Hu, Jiangping; Dai, Pengcheng

    2008-10-01

    We use neutron scattering to study the spin and lattice structure of single-crystal SrFe2As2 , the parent compound of the FeAs-based superconductor (Sr,K)Fe2As2 . We find that SrFe2As2 exhibits an abrupt structural phase transition at 220 K, where the structure changes from tetragonal with lattice parameters c>a=b to orthorhombic with c>a>b . At almost the same temperature, Fe spins develop a collinear antiferromagnetic structure along the orthorhombic a axis with spin direction parallel to this a axis. These results are consistent with earlier work on the RFeAsO ( R=rare earth) families of materials and on BaFe2As2 , and therefore suggest that static antiferromagnetic order is ubiquitous for the parent compounds of these FeAs-based high-transition temperature superconductors.

  20. Structural and magnetic properties of SiO2–CaO–Na2O–P2O5 containing BaO–Fe2O3 glass–ceramics

    International Nuclear Information System (INIS)

    Leenakul, W.; Kantha, P.; Pisitpipathsin, N.; Rujijanagul, G.; Eitssayeam, S.; Pengpat, K.

    2013-01-01

    The incorporation method was employed to produce bioactive glass–ceramics from the BaFe 12 O 19 –SiO 2 –CaO–Na 2 O–P 2 O 5 glass system. The ferrimagnetic BaFe 12 O 19 was first prepared using a simple mixed oxide method, where the oxide precursors of 45S5 bioglass were initially mixed and then melted to form glass. The devitrification of Na 3 Ca 6 (PO 4 ) 5 and Fe 3 O 4 was observed in all of the quenched glass samples. The glass samples were then subjected to a heat treatment schedule for further crystallization. It was found that the small traces of BaFe 12 O 19 phases started to crystallize in high BF content samples of 20 and 40 wt%. These samples also exhibited good magnetic properties comparable to that of other magnetic glass–ceramics. The bioactivity of the BF glass–ceramics improved with increasing BF content as was evident by the formation of bone-like apatite layers on the surface of all of the glass–ceramics after soaking in SBF for 14 days. The results support the use of these bioactive glass–ceramics for hyperthermia treatment within the human body. - Highlights: ►BF addition improves the magnetic property and bioactivity of 45S5 bioglasses.►Bioglass-ceramics exhibited soft magnetic properties with Mr=14.850 emu/g.►Magnetic property can be enhanced by crystallization of BF in 45S5 bioglasses.

  1. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    Science.gov (United States)

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  2. Synthesis and characterization of magnetic diphase ZnFe2O4/γ-Fe2O3 electrospun fibers

    International Nuclear Information System (INIS)

    Arias, M.; Pantojas, V.M.; Perales, O.; Otano, W.

    2011-01-01

    Magnetic nanofibers of ZnFe 2 O 4 /γ-Fe 2 O 3 composite were synthesized by electrospinning from a sol-gel solution containing a molar ratio (Fe/Zn) of 3. The effects of the calcination temperature on phase composition, particle size and magnetic properties have been investigated. Zinc ferrite fibers were obtained by calcinating the electrospun fibers in air from 300 to 800 deg. C and characterized by thermogravimetric analyses, Fourier transformed infrared spectroscopy, X-ray photoemission spectroscopy, X-ray diffraction, vibration sample magnetometry and magnetic force microscopy. The resulting fibers, with diameters ranging from 90 to 150 nm, were ferrimagnetic with high saturation magnetization as compared to bulk. An increase in the calcination temperature resulted in an increase in particle size and saturation magnetization. The observed increase in saturation magnetization was most likely due to the formation and growth of ZnFe 2 O 4 /γ-Fe 2 O 3 diphase crystals. The highest saturation magnetization (45 emu/g) was obtained for fibers calcined at 800 deg. C. - Research highlights: → Nanofibers were produced by electrospinning from a sol-gel. → ZnFe 2 O 4 /γ-Fe 2 O 3 formed after cacination in air from 300 to 800 deg. C. → Fibers were ferrimagnetic with high saturation magnetization. → Crystallite particle size and saturation magnetization increase with temperature. → Magnetic domains with sizes similar to topographical grains were observed.

  3. Comparison of LiFePO4 from different sources

    OpenAIRE

    Striebel, Kathryn; Shim, Joongpyo; Srinivasan, Venkat; Newman, John

    2003-01-01

    The lithium iron phosphate chemistry is plagued by the poor conductivity and slow lithium diffusion in the solid phase. In order to alleviate these problems, various research groups have adopted different strategies including decreasing the particle sizes, increasing the carbon content, and adding dopants. In this study we obtained LiFePO4 electrodes from six different sources and used a combined model-experimental approach to compare the performance. Samples ranged from one with no carb...

  4. Curie temperature rising by fluorination for Sm2Fe17

    Directory of Open Access Journals (Sweden)

    Matahiro Komuro

    2013-02-01

    Full Text Available Fluorine atoms can be introduced to Sm2Fe17 using XeF2 below 423 K. The resulting fluorinated Sm2Fe17 powders have ferromagnetic phases containing Sm2Fe17FY1(02Fe17FY2 (12<4, Sm2Fe17, and α-Fe. The unit cell for Sm2Fe17 is elongated by the fluorination. The largest unit cell volume among the rhombohedral Sm2Fe17 compounds is 83.8 nm3, which is 5.8% larger than Sm2Fe17. The rhombohedral Sm2Fe17 with the largest unit cell volume is dissociated above 873 K, and fluorination increases Curie temperature from 403 K for Sm2Fe17 to 675 K. This increase can be explained by the magneto-volume effect.

  5. FeO and H-2O and the homogeneous accretion of the earth

    Science.gov (United States)

    Lange, M. A.; Ahrens, T. J.

    1983-01-01

    Shock devolatilization recovery data for brunite (Mg(OH)2) shocked to 13 and 23 GPa are presented. These data combined with previous data for serpentine (Mg3Si2O5(OH)4) are used to constrain the minimum size terrestrial planet for which planetesimal infall will result in an impact generated water atmosphere. Assuming, in hydrous phyllosilicates, model calculations simulating the interaction of metallic iron with impact released free water on the surface of the accreting Earth were carried out. It is assumed that the reaction of water with iron in the presence of enstatite is the prime source of the terrestrial FeO component of silicates and oxides. Lower and upper bounds on the terrestrial FeO budget are based on mantle FeO content and possible incorporation of FeO in the outer core. We demonstrate that the iron water reaction would result in the absence of atmospheric/hydrospheric water, if homogeneous accretion is assumed.

  6. FeO and H2O and the homogeneous accretion of the earth

    Science.gov (United States)

    Lange, M. A.; Ahrens, T. J.

    1984-01-01

    Shock devolatilization recovery data for brunite (Mg(OH)2) shocked to 13 and 23 GPa are presented. These data combined with previous data for serpentine (Mg3Si2O5(OH)4) are used to constrain the minimum size terrestrial planet for which planetesimal infall will result in an impact generated water atmosphere. Assuming, in hydrous phyllosilicates, model calculations simulating the interaction of metallic iron with impact released free water on the surface of the accreting earth were carried out. It is assumed that the reaction of water with iron in the presence of enstatite is the prime source of the terrestrial FeO component of silicates and oxides. Lower and upper bounds on the terrestrial FeO budget are based on mantle FeO content and possible incorporation of FeO in the outer core. We demonstrate that the iron water reaction would resuit in the absence of atmospheric/hydrospheric water, if homogeneous accretion is assumed.

  7. Al/Fe isomorphic substitution versus Fe{sub 2}O{sub 3} clusters formation in Fe-doped aluminosilicate nanotubes (imogolite)

    Energy Technology Data Exchange (ETDEWEB)

    Shafia, Ehsan [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy); Esposito, Serena [Università degli Studi di Cassino e del Lazio Meridionale, Department of Civil and Mechanical Engineering (Italy); Manzoli, Maela; Chiesa, Mario [Università di Torino, Dipartimento di Chimica and Centro Interdipartimentale NIS (Italy); Tiberto, Paola [Electromagnetism, I.N.Ri.M. (Italy); Barrera, Gabriele [Università di Torino, Dipartimento di Chimica and Centro Interdipartimentale NIS (Italy); Menard, Gabriel [Harvard University, Department of Chemistry and Chemical Biology (United States); Allia, Paolo, E-mail: paolo.allia@polito.it [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy); Freyria, Francesca S. [Massachusetts Institute of Technology, Department of Chemistry (United States); Garrone, Edoardo; Bonelli, Barbara, E-mail: barbara.bonelli@polito.it [Politecnico di Torino, Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico (Italy)

    2015-08-15

    Textural, magnetic and spectroscopic properties are reported of Fe-doped aluminosilicate nanotubes (NTs) of the imogolite type, IMO, with nominal composition (OH){sub 3}Al{sub 2−x}Fe{sub x}O{sub 3}SiOH (x = 0, 0.025, 0.050). Samples were obtained by either direct synthesis (Fe-0.025-IMO, Fe-0.050-IMO) or post-synthesis loading (Fe-L-IMO). The Fe content was either 1.4 wt% (both Fe-0.050-IMO and Fe-L-IMO) or 0.7 wt% (Fe-0.025-IMO). Textural properties were characterized by High-Resolution Transmission Electron Microscopy, X-ray diffraction and N{sub 2} adsorption/desorption isotherms at 77 K. The presence of different iron species was studied by magnetic moment measurements and three spectroscopies: Mössbauer, UV–Vis and electron paramagnetic resonance, respectively. Fe{sup 3+}/Al{sup 3+} isomorphic substitution (IS) at octahedral sites at the external surface of NTs is the main process occurring by direct synthesis at low Fe loadings, giving rise to the formation of isolated high-spin Fe{sup 3+} sites. Higher loadings give rise, besides IS, to the formation of Fe{sub 2}O{sub 3} clusters. IS occurs up to a limit of Al/Fe atomic ratio of ca. 60 (corresponding to x = 0.032). A fraction of the magnetism related to NCs is pinned by the surface anisotropy; also, clusters are magnetically interacting with each other. Post-synthesis loading leads to a system rather close to that obtained by direct synthesis, involving both IS and cluster formations. Slightly larger clusters than with direct synthesis samples, however, are formed. The occurrence of IS indicates a facile cleavage/sealing of Al–O–Al bonds: this opens the possibility to exchange Al{sup 3+} ions in pre-formed IMO NTs, a much simpler procedure compared with direct synthesis.

  8. Effect of symbiotic compound Fe{sub 2}P{sub 2}O{sub 7} on electrochemical performance of LiFePO{sub 4}/C cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuxin, E-mail: liushuxin88@126.com [School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, Sichuan 621000 (China); Gu, Chunlei [School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 (China); Wang, Haibin [School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, Sichuan 621000 (China); Liu, Ruijiang [School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Wang, Hong; He, Jichuan [School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, Sichuan 621000 (China)

    2015-10-15

    In order to study the effect of symbiotic compound Fe{sub 2}P{sub 2}O{sub 7} on electrochemical performance of LiFePO{sub 4}/C cathode materials, the LiFePO{sub 4}/Fe{sub 2}P{sub 2}O{sub 7}/C cathode materials were synthesized by in-situ synthesis method. The phase compositions and microstructures of the products were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscope (FESEM). Results indicate that the existence of Fe{sub 2}P{sub 2}O{sub 7} does not alter LiFePO{sub 4} crystal structure and the existence of Fe{sub 2}P{sub 2}O{sub 7} decreases the particles size of LiFePO{sub 4}. The electrochemical behavior of cathode materials was analyzed using galvanostatic measurement and cyclic voltammetry (CV). The results show that the existence of Fe{sub 2}P{sub 2}O{sub 7} improves electrochemical performance of LiFePO{sub 4} cathode materials in specific capability and lithium ion diffusion rate. The charge–discharge specific capacity and apparent lithium ion diffusion coefficient increase with Fe{sub 2}P{sub 2}O{sub 7} content and maximizes around the Fe{sub 2}P{sub 2}O{sub 7} content is 5 wt%. It has been had further proved that the Fe{sub 2}P{sub 2}O{sub 7} adding enhances the lithium ion transport to improve the electrochemical performance of LiFePO{sub 4} cathode materials. However, excessive Fe{sub 2}P{sub 2}O{sub 7} will block the electron transfer pathway and affect the electrochemical performances of LiFePO{sub 4} directly. - Graphical abstract: The LiFePO{sub 4}/Fe{sub 2}P{sub 2}O{sub 7}/C cathode materials were synthesized by in-situ synthesis method. The existence of Fe{sub 2}P{sub 2}O{sub 7} does not alter LiFePO{sub 4} crystal structure and the existence of Fe{sub 2}P{sub 2}O{sub 7} decreases the particles size of LiFePO{sub 4}. The charge–discharge specific capacity and apparent lithium ion diffusion coefficient increase with Fe{sub 2}P{sub 2}O{sub 7} content. However, excessive Fe{sub 2}P{sub 2}O{sub 7} will

  9. Catalytic Methane Decomposition over Fe-Al2O3

    KAUST Repository

    Zhou, Lu; Enakonda, Linga Reddy; Saih, Youssef; Loptain, Sergei; Gary, Daniel; Del-Gallo, Pascal; Basset, Jean-Marie

    2016-01-01

    The presence of a Fe-FeAl2O4 structure over an Fe-Al2O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750°C, Fe-Al2O3 prepared by means of a fusion method, containing 86.5wt% Fe

  10. Role of the [2Fe-2S] cluster in recombinant Escherichia coli biotin synthase.

    Science.gov (United States)

    Jameson, Guy N L; Cosper, Michele Mader; Hernández, Heather L; Johnson, Michael K; Huynh, Boi Hanh

    2004-02-24

    Biotin synthase (BioB) converts dethiobiotin into biotin by inserting a sulfur atom between C6 and C9 of dethiobiotin in an S-adenosylmethionine (SAM)-dependent reaction. The as-purified recombinant BioB from Escherichia coli is a homodimeric molecule containing one [2Fe-2S](2+) cluster per monomer. It is inactive in vitro without the addition of exogenous Fe. Anaerobic reconstitution of the as-purified [2Fe-2S]-containing BioB with Fe(2+) and S(2)(-) produces a form of BioB that contains approximately one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per monomer ([2Fe-2S]/[4Fe-4S] BioB). In the absence of added Fe, the [2Fe-2S]/[4Fe-4S] BioB is active and can produce up to approximately 0.7 equiv of biotin per monomer. To better define the roles of the Fe-S clusters in the BioB reaction, Mössbauer and electron paramagnetic resonance (EPR) spectroscopy have been used to monitor the states of the Fe-S clusters during the conversion of dethiobiotin to biotin. The results show that the [4Fe-4S](2+) cluster is stable during the reaction and present in the SAM-bound form, supporting the current consensus that the functional role of the [4Fe-4S] cluster is to bind SAM and facilitate the reductive cleavage of SAM to generate the catalytically essential 5'-deoxyadenosyl radical. The results also demonstrate that approximately (2)/(3) of the [2Fe-2S] clusters are degraded by the end of the turnover experiment (24 h at 25 degrees C). A transient species with spectroscopic properties consistent with a [2Fe-2S](+) cluster is observed during turnover, suggesting that the degradation of the [2Fe-2S](2+) cluster is initiated by reduction of the cluster. This observed degradation of the [2Fe-2S] cluster during biotin formation is consistent with the proposed sacrificial S-donating function of the [2Fe-2S] cluster put forth by Jarrett and co-workers (Ugulava et al. (2001) Biochemistry 40, 8352-8358). Interestingly, degradation of the [2Fe-2S](2+) cluster was found not to parallel

  11. A pulse synthesis of beta-FeSi sub 2 layers on silicon implanted with Fe sup + ions

    CERN Document Server

    Batalov, R I; Terukov, E I; Kudoyarova, V K; Weiser, G; Kuehne, H

    2001-01-01

    The synthesis of thin beta-FeSi sub 2 films was performed by means of the Fe sup + ion implantation into Si (100) and the following nanosecond pulsed ion treatment of implanted layer. Using the beta-FeSi sub 2 beta-FeSi sub 2 e X-ray diffraction it is shown that the pulsed ion treatment results in the generation of the mixture of two phases: FeSi and beta-FeSi sub 2 with stressed crystal lattices. The following short-time annealing leads to the total transformation of the FeSi phase into the beta-FeSi sub 2 one. The Raman scattering data prove the generation of the beta-FeSi sub 2 at the high degree of the silicon crystallinity. The experimental results of the optical absorption testify to the formation of beta-FeSi sub 2 layers and precipitates with the straight-band structure. The photoluminescence signal at lambda approx = 1.56 mu m observes up to 210 K

  12. Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles

    Science.gov (United States)

    Polishchuk, Dmytro; Nedelko, Natalia; Solopan, Sergii; Ślawska-Waniewska, Anna; Zamorskyi, Vladyslav; Tovstolytkin, Alexandr; Belous, Anatolii

    2018-03-01

    Two sets of core/shell magnetic nanoparticles, CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4, with a fixed diameter of the core ( 4.1 and 6.3 nm for the former and latter sets, respectively) and thickness of shells up to 2.5 nm were synthesized from metal chlorides in a diethylene glycol solution. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The analysis of the results of magnetic measurements shows that coating of magnetic nanoparticles with the shells results in two simultaneous effects: first, it modifies the parameters of the core-shell interface, and second, it makes the particles acquire combined features of the core and the shell. The first effect becomes especially prominent when the parameters of core and shell strongly differ from each other. The results obtained are useful for optimizing and tailoring the parameters of core/shell spinel ferrite magnetic nanoparticles for their use in various technological and biomedical applications.

  13. All-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayers fabricated by Sn-induced low-temperature epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, M.; Ikawa, M.; Arima, K.; Yamada, S.; Kanashima, T.; Hamaya, K., E-mail: hamaya@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531 (Japan)

    2016-01-28

    We demonstrate low-temperature growth of all-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayer structures by developing Sn-induced surfactant-mediated molecular beam epitaxy (SMBE) of Ge on Co{sub 2}FeSi. Despite the growth of a semiconductor on a metal, we verify that the inserted Sn monolayers between Ge and Co{sub 2}FeSi enable to promote the 2D epitaxial growth of Ge up to 5 nm at a T{sub G} of 250 °C. An understanding of the mechanism of the Sn-induced SMBE leads to the achievement of all-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayer structures with spin-valve-like magnetization reversals. This study will open a way for vertical-type and high-performance Ge-based spintronics devices.

  14. Characterisation of a tertiary mixture of {alpha}-Fe{sub 2}O{sub 3}, {gamma}-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.P.; Narasimhan, S.V. [Water and Steam Chemistry Laboratory (Chemistry Group, BARC) BARC Facilities, Kalpakkam, Tamil Nadu 603 102. (India)

    1998-12-31

    A method has been developed to quantify the individual components of a ternary mixture containing {alpha}-Fe{sub 2}O{sub 3}, {gamma}- Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} based on the preferential dissolution of the components at a fixed time (fixed time - depending on the strength of the chelating agent) in a dilute chemical formulation (containing a chelant and an organic acid) both in presence and absence of reductant. A ternary component diagram was constructed based on the percentage dissolution of the individual components in 2,6-Pyridine dicarboxylic acid (PDCA), Nitrilo triacetic acid (NTA) and EDTA based formulation at 60degC both in presence and absence of reductant. In these formulations, the observed behaviour that the {alpha}-Fe{sub 2}O{sub 3} dissolved very little both in presence and absence of reductant and {gamma}-Fe{sub 2}O{sub 3} dissolved very little in absence of reductant were used for resolving the ternary physical mixture composition. Physical mixtures of Fe{sub 3}O{sub 4}, {alpha}-Fe{sub 2}O{sub 3} and {gamma}-Fe{sub 2}O{sub 3} based on mole ratio were taken such that the total quantity of Fe present would be 1.37 mM for complete dissolution. In presence and absence of reductant, dissolution percentage of Fe observed at fixed time in these formulations, when fit into the already constructed three component phase diagram for each formulation at the same fixed duration, the experimentally resolved composition showed good agreement with that based on individual components. This method is useful to resolve different polymorphs of metal oxides having the metal ions in single and/or multiple oxidation states. (author)

  15. [Determination of Total Iron and Fe2+ in Basalt].

    Science.gov (United States)

    Liu, Jian-xun; Chen, Mei-rong; Jian, Zheng-guo; Wu, Gang; Wu, Zhi-shen

    2015-08-01

    Basalt is the raw material of basalt fiber. The content of FeO and Fe2O3 has a great impact on the properties of basalt fibers. ICP-OES and dichromate method were used to test total Fe and Fe(2+) in basalt. Suitable instrument parameters and analysis lines of Fe were chosen for ICP-OES. The relative standard deviation (RSD) of ICP-OES is 2.2%, and the recovery is in the range of 98%~101%. The method shows simple, rapid and highly accurate for determination of total Fe and Fe(2+) in basalt. The RSD of ICP-OES and dichromate method is 0.42% and 1.4%, respectively.

  16. Catalytic Methane Decomposition over Fe-Al2O3

    KAUST Repository

    Zhou, Lu

    2016-05-09

    The presence of a Fe-FeAl2O4 structure over an Fe-Al2O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750°C, Fe-Al2O3 prepared by means of a fusion method, containing 86.5wt% FeAl2O4 and 13.5wt% Fe0, showed a stable CMD activity at 750°C for as long as 10h. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Obtention of the TiFe compound by high-energy milling of Ti+Fe and TiH{sub 2}+Fe powder mixtures; Obtencao do composto TiFe a partir da moagem de alta energia de misturas Ti+Fe e TiH{sub 2}+Fe

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, R.B.; Dammann, E.D.C.C.; Rocha, C.J.; Leal Neto, R.M., E-mail: railson.falcao@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencias e Tecnologia de Materiais. Lab. de Intermetalicos

    2010-07-01

    In this work TiFe compound was obtained by two process routes involving high-energy ball milling: mechanical alloying from Ti and Fe powders (route 1) and mechanical milling from TiH{sub 2} and Fe powders, both followed by an annealing heat treatment. Shaker and planetary ball mills were utilized for times varying from 1-25 hours. Milled and annealed powders were characterized by SEM and X-ray diffraction analyses. TiFe compound was formed in both routes. A strong powder adherence in the milling vial and balls occurred with route 1 in both mills. Powder adherence was significantly reduced by using TiH{sub 2} (route 2) mainly in the planetary mill, in spite of TiFe formation has only occurred after the annealing treatment. (author)

  18. Removal of Organic Dyes from Industrial Wastewaters Using UV/H2O2, UV/H2O2/Fe (II, UV/H2O2/Fe (III Processes

    Directory of Open Access Journals (Sweden)

    Nezamaddin Daneshvar

    2007-03-01

    Full Text Available UV/H2O2, UV/H2O2/Fe (II and UV/H2O2/Fe (III processes are very effective in removing pollutants from wastewater and can be used for treatment of dyestuff units wastewaters. In this study, Rhodamine B was used as a typical organic dye. Rhodamine B has found wide applications in wax, leather, and paper industries. The results from this study showed that this dye was degradable in the presence of hydrogen peroxide under UV-C irradiation (30W mercury light and Photo-Fenton process. The dye was resistant to UV irradiation. In the absence of UV irradiation, the decolorization efficiency was very negligible in the presence of hydrogen. The effects of different system variables such as initial dye concentration, duration of UV irradiation, and initial hydrogen peroxide concentration were investigated in the UV/H2O2 process. Investigation of the kinetics of the UV/H2O2 process showed that the semi-log plot of the dye concentration versus time was linear, suggesting a first order reaction. It was found that Rhodamine B decolorization efficiencies in the UV/H2O2/Fe (II and UV/H2O2/Fe (III processes were higher than that in the UV/H2O2 process. Furthermore, a solution containing 20 ppm of Rhodamine B was decolorized in the presence 18 mM of H2O2 under UV irradiation for 15 minutes. It was also found that addition of 0.1 mM Fe(II or Fe(III to the solution containing  20  ppm of the dye and 5 mM H2O2 under UV light  illumination decreased removal time to 10 min.

  19. Effect of Nb aggregates on Zr2Fe

    International Nuclear Information System (INIS)

    Ramos, Cinthia P.

    2001-01-01

    The binary Zr-Fe phase diagram revision, performed by Arias et al., accepted the intermetallic Zr 2 Fe crystalline structure as tetragonal and determined that the presence of a third element like oxygen, nitrogen or carbon, stabilizes a cubic phase. Nevitt et al. studying Ti, Zr and Hf alloys with transition metals as second or third element and ternary systems with oxygen as third element, systematized the occurrence of phases with a cubic Ti 2 Ni type crystalline structure. From previous studies in the Zr-Nb-Fe system, it is an agreed fact that Nb presence in the Zr 2 Fe intermetallic stabilizes a cubic Ti 2 Ni type phase. The purpose of the present work is to determine the stability range of the Zr 2 Fe intermetallic with Nb contents, the existence range of the ternary cubic Ti 2 Ni type phase (designated Λ) and the corresponding two-phase region. We analyze as cast and heat treated (800 C degrees) Zr-Nb-Fe alloys with 35 atomic % Fe and Nb contents between 0.5 and 15 atomic %. The determination and characterization of the phases is made by optical and scanning electron microscopy, X-ray diffraction microprobe analysis and Moessbauer Spectroscopy. Joining these techniques together it is found, among many other things, that the Zr 2 Fe phase would accept up to around 0.5 atomic % Nb in solution and that the two-phase region Zr 2 Fe+Λ would be stable in the (0.5 - 3.5) Nb atomic % range. It is proposed as well a 800 C degrees section of the ternary (Zr-Nb-Fe) in the studied region. (author) [es

  20. Structural and electrochemical characterization of 0.7LiFePO4·0.3Li3V2(PO4)3/C cathode materials using PEG and glucose as carbon sources

    International Nuclear Information System (INIS)

    Ma, Pingping; Hu, Pu; Liu, Zhijian; Xia, Jianhua; Xia, Dingguo; Chen, Yu; Liu, Zhengang; Lu, Zhichao

    2013-01-01

    0.7LiFePO 4 ·0.3Li 3 V 2 (PO 4 ) 3 /C composites (LFVP/C) were synthesized via spray-drying technique followed by solid-state reaction approach using polyethylene glycol (PEG) and glucose as carbon sources. The samples were characterized by X-ray diffraction (XRD), X-ray absorption fine-structure spectroscopy (XAFS) and Raman spectroscopy. The results show that the bi-phase composite structure of LFVP/C contains olivine LiFePO 4 (LFP) and monoclinic Li 3 V 2 (PO 4 ) 3 (LVP). The lower intensity ratio of the I D /I G and A sp 3 /A sp 2 for PEG-200 indicates the formation of higher degree of graphitized carbon during the process, which would enhance the electronic conductivity. The composite obtained using PEG-200 as carbon source show excellent rate performance, delivering the discharge capacity of 120 mAh/g at the current density of 1.5 A/g

  1. Development of novel exchange spring magnet by employing nanocomposites of CoFe_2O_4 and CoFe_2

    International Nuclear Information System (INIS)

    Safi, Rohollah; Ghasemi, Ali; Shoja-Razavi, Reza; Tavoosi, Majid

    2016-01-01

    CoFe_2O_4−CoFe2 hard–soft nanocomposites were prepared via reduction of the cobalt ferrite CoFe_2O_4 in hydrogen atmosphere at different temperature. The structure and the room temperature magnetization of the samples were characterized by X-ray diffraction, field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). It was found that the saturation magnetization of the nanocomposite powders increases by reduction temperature while their coercivity decreases. The highest M_r/M_s ratio of 0.52 was obtained for sample reduced at 550 °C. Single smooth hysteresis loops of nanocomposites show that these nanocomposites behave as the single-phase materials. This result indicates the presence of exchange coupling between two different hard and soft phases. - Highlights: • CoFe_2O_4–CoFe_2 was successfully synthesized by reduction diffusion process. • Two phases are effectively exchange coupled in nanocomposite. • Single smooth hysteresis loop was developed in nanocomposites.

  2. Designing of Vague Logic Based 2-Layered Framework for CPU Scheduler

    Directory of Open Access Journals (Sweden)

    Supriya Raheja

    2016-01-01

    Full Text Available Fuzzy based CPU scheduler has become of great interest by operating system because of its ability to handle imprecise information associated with task. This paper introduces an extension to the fuzzy based round robin scheduler to a Vague Logic Based Round Robin (VBRR scheduler. VBRR scheduler works on 2-layered framework. At the first layer, scheduler has a vague inference system which has the ability to handle the impreciseness of task using vague logic. At the second layer, Vague Logic Based Round Robin (VBRR scheduling algorithm works to schedule the tasks. VBRR scheduler has the learning capability based on which scheduler adapts intelligently an optimum length for time quantum. An optimum time quantum reduces the overhead on scheduler by reducing the unnecessary context switches which lead to improve the overall performance of system. The work is simulated using MATLAB and compared with the conventional round robin scheduler and the other two fuzzy based approaches to CPU scheduler. Given simulation analysis and results prove the effectiveness and efficiency of VBRR scheduler.

  3. Magnetic excitations in Ho2Co17 and Ho2Fe17

    International Nuclear Information System (INIS)

    Clausen, K.N.

    1981-01-01

    The low energy part ( 2 Co 17 and Ho 2 Fe 17 have been measured along the three high symmetry directions at a temperature of 4.2 K, using the inelastic neutron scattering technique. The resulting magnon dispersion relations have been interpreted using linear spin wave theory with a Hamiltonian including single ion crystal field anisotropy and isotropic exchange between spatially well localized spins. The R 2 T 17 structure contains two different Ho sites, with the same point symmetry, and from the spin wave results it was concluded that the crystal field anisotropy of the two Ho sites in both Ho 2 Co 17 and Ho 2 Fe 17 were identical. The deduced crystal field parameters for Ho 2 Fe 17 were slightly larger than for Ho 2 Co 17 , and the parameters were of the same order of magnitude as for pure Ho. For Ho 2 Fe 17 the Fe-Fe exchange was found to be anisotropic, and for both compounds the magnetic ordering temperatures of 1178 K for Ho 2 Co 17 and 335 K for Ho 2 Fe 17 were determined by the strong positive 3d-3d exchange. (Auth.)

  4. Disappearance of superconductivity in the solid solution between (Ca4Al2O6)(Fe2As2) and (Ca4Al2O6)(Fe2P2) superconductors.

    Science.gov (United States)

    Shirage, Parasharam M; Kihou, Kunihiro; Lee, Chul-Ho; Takeshita, Nao; Eisaki, Hiroshi; Iyo, Akira

    2012-09-19

    The effect of alloying the two perovskite-type iron-based superconductors (Ca(4)Al(2)O(6))(Fe(2)As(2)) and (Ca(4)Al(2)O(6))(Fe(2)P(2)) was examined. While the two stoichiometric compounds possess relatively high T(c)'s of 28 and 17 K, respectively, their solid solutions of the form (Ca(4)Al(2)O(6))(Fe(2)(As(1-x)P(x))(2)) do not show superconductivity over a wide range from x = 0.50 to 0.95. The resultant phase diagram is thus completely different from those of other typical iron-based superconductors such as BaFe(2)(As,P)(2) and LaFe(As,P)O, in which superconductivity shows up when P is substituted for As in the non-superconducting "parent" compounds. Notably, the solid solutions in the non-superconducting range exhibit resistivity anomalies at temperatures of 50-100 K. The behavior is reminiscent of the resistivity kink commonly observed in various non-superconducting parent compounds that signals the onset of antiferromagnetic/orthorhombic long-range order. The similarity suggests that the suppression of the superconductivity in the present case also has a magnetic and/or structural origin.

  5. Moessbauer effect in pure and impurity doped FeSi2

    International Nuclear Information System (INIS)

    Blaauw, C.; Hanson, H.; Woude, F. van der

    1975-01-01

    Numerical values of the calculated and experimentally determined Moessbauer parameters for pure β-FeSi 2 and α-FeSi 2 are given. Temperature dependence of isomer shift and quadrupole splitting for the two Fe positions in β-FeSi 2 is presented. For α-FeSi 2 only average values are given. Spectra of Co- and Al-doped FeSi 2 recorded at 80, 293, 557 and 788 K were analyzed in the same manner as those of undoped FeSi 2 . The average values of isomer shift and quadrupole splitting in Co- and Al-doped β-FeSi 2 (α-Fesi 2 ) were compared to those found in undoped β-FeSi 2 (α-FeSi 2 ). All data were based on the room temperature spectra. Changes in Moessbauer parameters of doped samples relative to undoped ones were generally small, being of the order of hundredths of mm/sec. (Z.S.)

  6. Efficient spin injection and giant magnetoresistance in Fe / MoS 2 / Fe junctions

    KAUST Repository

    Dolui, Kapildeb

    2014-07-02

    We demonstrate giant magnetoresistance in Fe/MoS2/Fe junctions by means of ab initio transport calculations. We show that junctions incorporating either a monolayer or a bilayer of MoS2 are metallic and that Fe acts as an efficient spin injector into MoS2 with an efficiency of about 45%. This is the result of the strong coupling between the Fe and S atoms at the interface. For junctions of greater thickness, a maximum magnetoresistance of ∼300% is obtained, which remains robust with the applied bias as long as transport is in the tunneling limit. A general recipe for improving the magnetoresistance in spin valves incorporating layered transition metal dichalcogenides is proposed. © 2014 American Physical Society.

  7. Ne, Ar, Fe, and Cu Auger-electron production at National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Lee, D.H.; Johnson, B.M.; Jones, K.W.; Guardala, N.A.; Price, J.L.; Stumborg, M.F.; Glass, G.A.

    1992-01-01

    Energetic K and L Auger electrons produced by focussed, filtered, broad-band synchrotron radiation have been measured at the x-ray ring of the National Synchrotron Light Source (NSLS). The x-ray beam was used to study inner-shell photoionization of Ne and Ar gas and Fe and Cu solid film targets. The Auger electrons were analyzed by means of a semi-hemispherical electrostatic electron spectrometer at the energy resolution of ∼ 3 %. The electrons were detected at both 90 degree and 0 degree with respect to the photon beam direction. Broad distributions of the inner-shell photoelectrons were also observed, reflecting the incoming photon flux distribution. The Fe and Cu K Auger electron spectra were found to be very similar to the Ar K Auger electron spectra. This was expected, since deep inner-shell Auger processes are not affected by the outer valence electrons. Above 3 keV in electron energy, there have been few previous Auger electron measurements. 2 figs., 13 refs

  8. Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals

    Science.gov (United States)

    Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.

    2009-01-01

    Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.

  9. N, Fe and WO3 modified TiO2 for degradation of formaldehyde

    International Nuclear Information System (INIS)

    Tong Haixia; Zhao Li; Li Dan; Zhang Xiongfei

    2011-01-01

    Graphical abstract: The undoped TiO 2 powder (T(0)) shows strong photoabsorption only at wavelengths shorter than 400 nm, and while Fe 3+ and N-doped TiO 2 nanoparticles show photoabsorption in visible region and the absorption edge shifts to a longer wavelength. WO 3 compounding also benefits the photoabsorption in visible region. Display Omitted Highlights: → The preparation of the catalysts co-doped by Fe, N and compounded by WO 3 . → The obvious sculptured 'pattern' of the catalysts doped by Fe in the SEM images. → Strengthened photoabsorption to visible light of the modified catalysts from UV-DRS analysis. - Abstract: Butyltitanate, ethanol and glacial acetic acid were chosen as titanium source, solvent and chelating agent, respectively, via a sol-gel method combined impregnation method to prepare N, Fe co-doped and WO 3 compounded photocatalyst TiO 2 powder. The synthesized products were characterized by X-ray diffraction (XRD), diffuse reflectance UV-Vis spectra (UV-DRS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Photocatalytic degradation of formaldehyde was employed to investigate the catalytic activity. The results show that the degradation rate is 77.61% in 180 min under UV light irradiation when the concentration of N is fixed on, and the optimum proportioning ratio of n(Fe):n(W):n(Ti) is 0.5:2:100.

  10. Growth and characterizations of Ba2Ti2Fe2As4O single crystals

    Directory of Open Access Journals (Sweden)

    Yun-Lei Sun, Abduweli Ablimit, Jin-Ke Bao, Hao Jiang, Jie Zhou and Guang-Han Cao

    2013-01-01

    Full Text Available Single crystals of a new iron-based superconductor Ba2Ti2Fe2As4O have been grown successfully via a Ba2As3-flux method in a sealed evacuated quartz tube. Bulk superconductivity with Tc ~ 21.5 K was demonstrated in resistivity and magnetic susceptibility measurements after the as-grown crystals were annealed at 500 °C in vacuum for a week. X-ray diffraction patterns confirm that the annealed and the as-grown crystals possess the identical crystallographic structure of Ba2Ti2Fe2As4O. Energy-dispersive x-ray spectra indicate that partial Ti/Fe substitution exists in the [Fe2As2] layers and the annealing process redistributes the Ti within the Fe-plane. The ordered Fe-plane stabilized by annealing exhibits superconductivity with magnetic vortex pinned by Ti.

  11. Magnetostriction of rare earth-Fe2 Laves phase compounds

    International Nuclear Information System (INIS)

    Clark, A.E.; Abbundi, R.; Savage, H.T.

    1977-01-01

    Single crystal magnetostriction measurements were made as a function of temperature on TbFe 2 and DyFe 2 . From these, the intrinsic magnetoelastic coupling coefficients were determined for the rare earth-Fe 2 compounds. Employing X-ray techniques, certain multicomponent rare earth-Fe 2 compounds were identified to maximize the magnetostriction to anisotropy ratio. (Auth.)

  12. Effect of carbon source on the morphology and electrochemical performances of LiFePO4/C nanocomposites.

    Science.gov (United States)

    Liu, Shuxin; Wang, Haibin; Yin, Hengbo; Wang, Hong; He, Jichuan

    2014-03-01

    The carbon coated LiFePO4 (LiFePO4/C) nanocomposites materials were successfully synthesized by sol-gel method. The microstructure and morphology of LiFePO4/C nanocomposites were characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results showed that the carbon layers decomposed by different dispersant and carbon source had different graphitization degree, and the sugar could decompose to form more graphite-like structure carbon. The carbon source and heat-treatment temperature had some effect on the particle size and morphology, the sample LFP-S700 synthesized by adding sugar as carbon source at 700 degrees C had smaller particle size, uniform size distribution and spherical shape. The electrochemical behavior of LiFePO4/C nanocomposites was analyzed using galvanostatic measurements and cyclic voltammetry (CV). The results showed that the sample LFP-S700 had higher discharge specific capacities, higher apparent lithium ion diffusion coefficient and lower charge transfer resistance. The excellent electrochemical performance of sample LFP-S700 could be attributed to its high graphitization degree of carbon, smaller particle size and uniform size distribution.

  13. The Partial Molar Volume and Compressibility of FeO in CaO-SiO2 Liquids: Systematic Variation with Fe2+ Coordination Change

    Science.gov (United States)

    Guo, X.; Lange, R. A.; Ai, Y.

    2009-12-01

    Iron is an important element in magmatic liquid, since its concentration can range up to 18% in some basaltic liquids, and it has two oxidation states. In order to model magmatic processes, thermodynamic descriptions of silicate melts must include precise information for both the FeO and Fe2O3 components. Currently, the partial molar volume of FeO is not as well known as that for Fe2O3 because of the difficulty of performing double-bob density measurements under reducing conditions. Yet these data are required in order to convert sound speed measurements on FeO-bearing liquids into compressibility data, which in turn are needed extend density models for magmatic liquids to elevated pressures. Moreover, there is growing evidence from the spectroscopic literature that Fe2+ occurs in 4, 5, and 6-fold coordination in silicate melts, and thus it is possible that the partial molar volume and compressibility of FeO may vary with Fe2+ coordination, and thus with melt composition. To explore these issues, we have conducted both density and relaxed sound speed measurements on liquids in the CaO-FeO-SiO2 system, where the CaO/SiO2 ratio was systematically varied at constant FeO concentration (40 mol%). Density was measured between 1594 and 1813K with the double-bob Archimedean method using molybdenum bobs and crucible in a reducing gas (1%CO-99%Ar) environment. The sounds speeds were measured under similar conditions with a frequency-sweep acoustic interferometer. The derived partial molar volume of FeO increases systematically from 13.7 to 15.2 cm3/mol at 1673 K as the CaO/SiO2 ratio increases and the Fe2+ coordination number decreases. From a comparison with the crystalline volume of FeO (halite structure; 12.06 cm3/mol), which serves as a lower limit for VFeO in silicate liquids when Fe2+ is in 6-fold coordination, we estimate that the average Fe2+ coordination in our experimental melts extends up to values between 5 and 4, consistent with the spectroscopic literature. The

  14. Coercivity Recovery Effect of Sm-Fe-Cu-Al Alloy on Sm2Fe17N3 Magnet

    Science.gov (United States)

    Otogawa, Kohei; Asahi, Toru; Jinno, Miho; Yamaguchi, Wataru; Takagi, Kenta; Kwon, Hansang

    2018-03-01

    The potential of a Sm-Fe-Cu-Al binder for improvement of the magnetic properties of Sm2Fe17N3 was examined. Transmission electron microscope (TEM) observation of a Sm-Fe-Cu-Al alloy-bonded Sm2Fe17N3 magnet which showed high coercivity revealed that the Sm-Fe-Cu-Al alloy had an effect of removing the surface oxide layer of the Sm2 Fe17N3 grains. However, the Sm-Fe-Cu-Al binder was contaminated by carbon and nitrogen, which originated from the organic solvent used as the milling medium during pulverization. To prevent carbon and nitrogen contamination, the Sm-Fe- Cu-Al alloy was added directly on the surface of the Sm2Fe17N3 grains by sputtering. Comparing the recovered coercivity per unit amount of the added binder the uncontaminated binder-coated sample had a higher coercivity recovery effect than the milled binder-added sample. These results suggested that sufficient addition of the contamination-free Sm-Fe-Cu-Al binder has the possibility to reduce the amount of binder necessary to produce a high coercive Sm2Fe17N3 magnet.

  15. A novel ascorbic acid sensor based on the Fe3+/Fe2+ modulated photoluminescence of CdTe quantum dots@SiO2 nanobeads.

    Science.gov (United States)

    Ma, Qiang; Li, Yang; Lin, Zi-Han; Tang, Guangchao; Su, Xing-Guang

    2013-10-21

    In this paper, CdTe quantum dot (QD)@silica nanobeads were used as modulated photoluminescence (PL) sensors for the sensing of ascorbic acid in aqueous solution for the first time. The sensor was developed based on the different quenching effects of Fe(2+) and Fe(3+) on the PL intensity of the CdTe QD@ silica nanobeads. Firstly, the PL intensity of the CdTe QDs was quenched in the presence of Fe(3+). Although both Fe(2+) and Fe(3+) could quench the PL intensity of the CdTe QDs, the quenching efficiency were quite different for Fe(2+) and Fe(3+). The PL intensity of the CdTe QD@silica nanobeads can be quenched by about 15% after the addition of Fe(3+) (60 μmol L(-1)), while the PL intensity of the CdTe QD@silica nanobeads can be quenched about 49% after the addition of Fe(2+) (60 μmol L(-1)). Therefore, the PL intensity of the CdTe QD@silica nanobeads decreased significantly when Fe(3+) was reduced to Fe(2+) by ascorbic acid. To confirm the strategy of PL modulation in this sensing system, trace H2O2 was introduced to oxidize Fe(2+) to Fe(3+). As a result, the PL intensity of the CdTe QD@silica nanobeads was partly recovered. The proposed sensor could be used for ascorbic acid sensing in the concentration range of 3.33-400 μmol L(-1), with a detection limit (3σ) of 1.25 μmol L(-1) The feasibility of the proposed sensor for ascorbic acid determination in tablet samples was also studied, and satisfactory results were obtained.

  16. Structural phase transitions in Iron - based superconductors BaFe2-xCrxAs2 under high pressure

    International Nuclear Information System (INIS)

    Uhoya, W.O.; Montgomery, J.M.; Samudrala, G.K.; Tsoi, G.M.; Vohra, Y.K.; Sefar, A.S.

    2011-01-01

    Pure BaFe 2 As 2 with the ThCr 2 Si 2 -type crystal structure under ambient conditions is known to superconduct under high pressure and undergo an isostructural phase transition from tetragonal to collapsed tetragonal phase which is accompanied by anomalous compressibility effects. Presently, there is no reported work on the crystal structure on any of the chemically doped 122- iron based superconductors under high pressure. We have carried out the electrical resistance measurements and high pressure X-ray diffraction studies on Chromium doped samples of BaFe 2-x Cr x As 2 (x = 0, 0.05, 0.15, 0.4, 0.61) to a pressure of 75 GPa and a temperature of 10K using a synchrotron source and designer diamond anvils, so as to investigate the influence of chemical doping and high pressure on crystal structure and superconductivity

  17. Visible light photocatalysts (Fe, N):TiO{sub 2} from ammonothermally processed, solvothermal self-assembly derived Fe-TiO{sub 2} mesoporous microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Mingming; Xiong, Fengqiang; Ganeshraja, Ayyakannu Sundaram [Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023 (China); Feng, Xiaohua; Wang, Chuanxi [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Thomas, Tiju, E-mail: tijuthomas@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu (India); Yang, Minghui, E-mail: myang@dicp.ac.cn [Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023 (China)

    2017-07-01

    Iron (III) and nitrogen co-doped mesoporous TiO{sub 2} microspheres (Fe-N-TiO{sub 2}) are prepared using a self-assembly based solvothermal process followed by an ammonothermal method. Among all samples, 1 mol.% of Fe dopants and 500 °C nitridation (for 2 h) gives the highest visible light photoactivity. Results imply that the Fe{sup 3+}/Fe{sup 2+} dopant trap energy level introduced within the band gap in mildly Fe (∼1 at%) doped TiO{sub 2} and the mesoporous nature of the material, both aid in the observed catalytic performance. Subjecting Fe-TiO{sub 2} samples to ammonothermal process induces oxygen vancancies, and substitutional and interstitial N. This reduces optical band gap, and introduces local states. The lower band gap and local states together aid in the absorption of visible light and separation of charge carriers. Co-dopants are distributed uniformly in the best photocatalysts. The active species generated in the photocatalytic system is shown to be singlet molecular oxygen ({sup 1}O{sub 2}) using selective radical quenchers. - Highlights: • Iron (III) and nitrogen co-doped mesoporous TiO{sub 2} microspheres (Fe-N-TiO{sub 2}) are prepared. • Fe{sup 3+}/Fe{sup 2+} dopant trap energy level introduced within the band gap in Fe (∼1 at%) doped TiO{sub 2}. • Subjecting Fe-TiO{sub 2} samples to ammonothermal process induces oxygen vancancies, and causes substitutional and interstitial N. • Co-dopants are distributed uniformly in the best photocatalysts. • Active species generated is shown to be singlet molecular oxygen ({sup 1}O{sub 2}).

  18. Magnetron-sputter epitaxy of β-FeSi2(220)/Si(111) and β-FeSi2(431)/Si(001) thin films at elevated temperatures

    International Nuclear Information System (INIS)

    Liu Hongfei; Tan Chengcheh; Chi Dongzhi

    2012-01-01

    β-FeSi 2 thin films have been grown on Si(111) and Si(001) substrates by magnetron-sputter epitaxy at 700 °C. On Si(111), the growth is consistent with the commonly observed orientation of [001]β-FeSi 2 (220)//[1-10]Si(111) having three variants, in-plane rotated 120° with respect to one another. However, on Si(001), under the same growth conditions, the growth is dominated by [-111]β-FeSi 2 (431)//[110]Si(001) with four variants, which is hitherto unknown for growing β-FeSi 2 . Photoelectron spectra reveal negligible differences in the valance-band and Fe2p core-level between β-FeSi 2 grown on Si(111) and Si(001) but an apparent increased Si-oxidization on the surface of β-FeSi 2 /Si(001). This phenomenon is discussed and attributed to the Si-surface termination effect, which also suggests that the Si/Fe ratio on the surface of β-FeSi 2 (431)/Si(001) is larger than that on the surface of β-FeSi 2 (220)/Si(111).

  19. Facile synthesis and characterization of ZnFe{sub 2}O{sub 4}/{alpha}-Fe{sub 2}O{sub 3} composite hollow nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yu [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Li, Xinyong, E-mail: xyli@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Zhao, Qidong; Hou, Yang [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Tade, Moses [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Liu, Shaomin, E-mail: Shaomin.Liu@curtin.edu.au [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer ZnFe{sub 2}O{sub 4}/{alpha}-Fe{sub 2}O{sub 3} composite hollow nanospheres were successfully synthesized via a facile method. Black-Right-Pointing-Pointer Detailed structural, morphology and the phase composition were studied. Black-Right-Pointing-Pointer The incorporation of ZnFe{sub 2}O{sub 4} and {alpha}-Fe{sub 2}O{sub 3} gives an appropriate band gap value to utilize solar energy. -- Abstract: ZnFe{sub 2}O{sub 4}/{alpha}-Fe{sub 2}O{sub 3} composite hollow nanospheres were successfully fabricated via a facile one-pot solvothermal method, utilizing polyethylene glycol as soft template. X-ray diffraction and scanning electron microscopy analysis revealed that the prepared nanospheres with cubic spinel and rhombohedra composite structure had a uniform diameter of about 370 nm, and the hollow structure could be further confirmed by transmission electron microscopy. Energy dispersive X-ray, X-ray photoelectron spectroscopy and Fourier transform infrared techniques were also applied to characterize the elemental composition and chemical bonds in the hollow nanospheres. The ZnFe{sub 2}O{sub 4}/{alpha}-Fe{sub 2}O{sub 3} composite hollow nanospheres show attractive light absorption property for potential applications in electronics, optics, and catalysis.

  20. Synthesis of LiFePO{sub 4}/polyacenes using iron oxyhydroxide as an iron source

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guiling; Zhang, Xianfa; Liu, Jing; He, Xingguang; Wang, Jiawei; Xie, Haiming; Wang, Rongshun [Institute of Functional Materials, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China); LIB Engineering Laboratory, Materials Science and Technology Center, Changchun, Jilin 130024 (China)

    2010-02-15

    LiFePO{sub 4}/polyacenes (PAS) composite is synthesized by iron oxyhydroxide as a new raw material and phenol-formaldehyde resin as both reducing agent and carbon source. The mechanism of the reaction is outlined by the analysis of XRD, FTIR as well as TG/DSC. The results show that the formation of LiFePO{sub 4} is started at 300 C, and above 550 C, the product can be mainly ascribed to olivine LiFePO{sub 4}. The electrochemical properties of the synthesized composites are investigated by charge-discharge tests. It is found that the prepared sample at 750 C (S750) has a better electrochemical performance than samples prepared at other temperatures. A discharge capacity of 158 mAh g{sup -1} is delivered at 0.2 C. Under high discharge rate of 10 C, a discharge capacity of 145 mAh g{sup -1} and good capacity retention of 93% after 800 cycles are achieved. The morphology of S750 and PAS distribution in it are investigated by SEM and TEM. (author)

  1. Fe magnetic moment formation and exchange interaction in Fe{sub 2}P: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.B., E-mail: liuxubo@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Ping Liu, J.; Zhang, Qiming [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Altounian, Z. [Center for the Physics of Materials and Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)

    2013-03-15

    Electronic structure and magnetic properties of Fe{sub 2}P have been studied by a first-principles density functional theory calculation. The ground state is ferromagnetic and the calculated magnetic moments for Fe{sub 1} (3f) and Fe{sub 2} (3g) are 0.83 and 2.30μ{sub B}, respectively. The nearest neighbor inter-site magnetic exchange coupling parameter at the Fe{sub 1} layer (0.02 mRy) is much smaller than that at the Fe{sub 2} layer (1.29 mRy). The Fe moment at the 3f site is metastable and sensitive to the inter-site exchange interaction with its magnetic neighbors, which is responsible for the first order magnetic transition and large magneto-caloric effect around T{sub C}.

  2. Modeling thermodynamics of Fe-N phases; characterisation of e-Fe2N1-z

    DEFF Research Database (Denmark)

    Pekelharing, M.I.; Böttger, A.; Somers, Marcel A.J.

    1999-01-01

    In order to arrive at modeling the thermodynamics of Fe-N phases, including long-range (LRO) and short-range ordering (SRO) of the N atoms, it is important to understand the role of N interstitially dissolved in an Fe-host lattice. The crystal structure of -Fe2N1-z consists of an h.c.p. iron...... sublattice and a hexagonal nitrogen sublattice formed by octahedral interstices of the Fe sublattice [1]. Two ground-state structures have been proposed for the ordered arrangement of the N atoms on their own sublattice [1], which were shown to be thermodynamically favourable [2]: configuration A for Fe2N1...... investigated with X-ray diffraction (XRD) and Mössbauer spectroscopy. A thermodynamic model accounting for the two configurations of LRO of the N atoms [2,3] was fitted to the N-absorption isotherm at 723 K and resulted in the occupancies of the sites of the nitrogen sublattice. A miscibility gap between...

  3. Low-temperature electron properties of Heusler alloys Fe2VAl and Fe2CrAl: Effect of annealing

    International Nuclear Information System (INIS)

    Podgornykh, S. M.; Svyazhin, A. D.; Shreder, E. I.; Marchenkov, V. V.; Dyakina, V. P.

    2007-01-01

    We present the results of measurements of low-temperature heat capacity, as well as electrical and magnetic properties of Heusler alloys Fe 2 VAl and Fe 2 CrAl prepared in different ways using various heat treatment regimes. The density of states at the Fermi level is estimated. A contribution of ferromagnetic clusters in the low-temperature heat capacity of the Fe 2 VAl alloy is detected. The change in the number and volume of clusters as a result of annealing of an alloy affects the behavior of their low-temperature heat capacity, resistivity, and magnetic properties

  4. Examination of the magnetic hyperthermia and other magnetic properties of CoFe2O4@MgFe2O4 nanoparticles using external field Mössbauer spectroscopy

    Science.gov (United States)

    Park, Jeongho; Choi, Hyunkyung; Kim, Sam Jin; Kim, Chul Sung

    2018-05-01

    CoFe2O4@MgFe2O4 core/shell nanoparticles were synthesized by high temperature thermal decomposition with seed-mediated growth. The crystal structure and magnetic properties of the nanoparticles were investigated using X-ray diffractometry (XRD), vibrating sample magnetometry (VSM), and Mössbauer spectrometry. The magnetic hyperthermia properties were investigated using a MagneTherm device. Analysis of the XRD patterns showed that CoFe2O4@MgFe2O4 had a cubic spinel crystal structure with space group Fd-3m and a lattice constant (a0) of 8.3686 Å. The size and morphology of the CoFe2O4@MgFe2O4 nanoparticles were confirmed by HR-TEM. The VSM measurements showed that the saturation magnetization (MS) of CoFe2O4@MgFe2O4 was 77.9 emu/g. The self-heating temperature of CoFe2O4@MgFe2O4 was 37.8 °C at 112 kHz and 250 Oe. The CoFe2O4@MgFe2O4 core/shell nanoparticles showed the largest saturation magnetization value, while their magnetic hyperthermia properties were between those of the CoFe2O4 and MgFe2O4 nanoparticles. In order to investigate the hyperfine interactions of CoFe2O4, MgFe2O4, and CoFe2O4@MgFe2O4, we performed Mössbauer spectrometry at various temperatures. In addition, Mössbauer spectrometry of CoFe2O4@MgFe2O4 was performed at 4.2 K with applied fields of 0-4.5 T, and the results were analyzed with sextets for the tetrahedral A-site and sextets for the octahedral B-site.

  5. Electrical conduction of glasses in the system Fe2O3-Sb2O3-TeO2; Fe2O3-Sb2O3-TeO2 kei garasu no denki dendo

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Honghua; Mori, H; Sakata, H; Hirayama, T [Tokai Univ., Tokyo (Japan). Faculty of Engineering

    1995-01-01

    In this study, taking into consideration that TeO2 is a component of the glass network and Sb2O3 shows the redox effect in the glasses reducing its possibility of transformation of Sb{sup 3+} to Sb{sup 5+} as well as glass basicity, highly conductive tellurite based glasses have been prepared by the press-quenching method selecting the Fe2O3-Sb2O3-TeO2 system, and the electroconductive mechanism of the glasses has been examined by measuring its D.C. conductivity {sigma}. Part of the obtained information is as follows; the glass formation range of the Fe2O3-Sb2O3-TeO2 system has been 0 {le} Fe2O3 {le} 15mol%, 0 {le} Sb2O3 {le} 18mol% and 78 {le} TeO2 {le} 100mol% and about 15mol% of the additional amount of Fe2O3 has been the limit of glass formation. As the amount of Fe2O3 has increased, C{sub Fe} has also increased and with this, the linear electroconductivity of the glasses has increased from 1.86 {times} 10{sup -7}S{center_dot}cm{sup -1} to 1.62 {times} 10{sup -6}S{center_dot}cm{sup -1} and the glasses have been confirmed as the n-type semiconductor. The factor determining {sigma} of the glasses has been C{sub Fe} which has increased as the amount of Fe2O3 has increased. 34 refs., 8 figs., 2 tabs.

  6. Stability of the high pressure phase Fe3S2 up to Earth's core pressures in the Fe-S-O and the Fe-S-Si systems

    Science.gov (United States)

    Zurkowski, C. C.; Chidester, B.; Davis, A.; Brauser, N.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Earth's core is comprised of an iron-nickel alloy that contains 5-15% of a light element component. The abundance and alloying capability of sulfur, silicon and oxygen in the bulk Earth make them important core alloy candidates; therefore, the high-pressure phase equilibria of the Fe-S-O and Fe-S-Si systems are relevant for understanding the possible chemistry of Earth's core. Previously, a Fe3S2 phase was recognized as a low-pressure intermediate phase in the Fe-FeS system that is stable from 14-21 GPa, but the structure of this phase has not been resolved. We report in-situ XRD and chemical analysis of recovered samples to further examine the stability and structure of Fe3S2 as it coexists with other phases in the Fe-S-O and Fe-S-Si systems. In situ high P-T synchrotron XRD experiments were conducted in the laser-heated diamond anvil cell to determine the equilibrium phases in Fe75S7O18 and Fe80S5Si15 compositions between 30 and 174 GPa and up to 3000 K. In the S,O-rich samples, an orthorhombic Fe3S2 phase coexists with hcp-Fe, Fe3S and FeO and undergoes two monoclinic distortions between 60 and 174 GPa. In the S,Si-rich samples, the orthorhombic Fe3S2 phase was observed up to 115 GPa. With increasing pressure, the Fe3S2 phase becomes stable to higher temperatures in both compositions, suggesting possible Fe3(S,O)2 or Fe3(S,Si)2 solid solutions. SEM analysis of a laser heated Fe75S7O18 sample recovered from 40 GPa and 1450 K confirms a Fe3(S,O)2 phase with O dissolved into the structure. Based on the current melting data in the Fe-S-O and Fe-S-Si systems, the Fe3(S,O)2 stability field intersects the solidus in the outer core and could be a possible liquidus phase in Fe,S,O-rich planetary cores, whereas Fe3S is the stable sulfide at outer core pressures in Fe,S,Si-rich systems.

  7. Crystal structure of (Na0.70(Na0.70,Mn0.30(Fe3+,Fe2+2Fe2+(VO43, a sodium-, iron- and manganese-based vanadate with the alluaudite-type structure

    Directory of Open Access Journals (Sweden)

    Elhassan Benhsina

    2016-02-01

    Full Text Available The title compound, sodium (sodium,manganese triiron(II,III tris[vanadate(V], (Na0.70(Na0.70,Mn0.30(Fe3+,Fe2+2Fe2+(VO43, was prepared by solid-state reactions. It crystallizes in an alluaudite-like structure, characterized by a partial cationic disorder. In the structure, four of the 12 sites in the asymmetric unit are located on special positions, three on a twofold rotation axis (Wyckoff position 4e and one on an inversion centre (4b. Two sites on the twofold rotation axis are entirely filled by Fe2+ and V5+, whereas the third site has a partial occupancy of 70% by Na+. The site on the inversion centre is occupied by Na+ and Mn2+ cations in a 0.7:0.3 ratio. The remaining Fe2+ and Fe3+ atoms are statistically distributed on a general position. The three-dimensional framework of this structure is made up of kinked chains of edge-sharing [FeO6] octahedra stacked parallel to [10-1]. These chains are held together by VO4 tetrahedral groups, forming polyhedral sheets perpendicular to [010]. Within this framework, two types of channels extending along [001] are present. One is occupied by (Na+/Mn2+ while the second is partially occupied by Na+. The mixed site containing (Na+/Mn2+ has an octahedral coordination sphere, while the Na+ cations in the second channel are coordinated by eight O atoms.

  8. Acetone sensors based on microsheet-assembled hierarchical Fe2O3 with different Fe3+ concentrations

    Science.gov (United States)

    Wang, Han; Yan, Lei; Li, Shuo; Li, Yu; Liu, Li; Du, Liting; Duan, Haojie; Cheng, Yali

    2018-02-01

    Several different morphologies of microsheet-assembled Fe2O3 have been fabricated by hydrothermal method using diverse concentrations of Fe3+ precursor solutions (0.025, 0.020, 0.015, 0.010 mol/L Fe3+). The as-synthesized materials have been characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). The SEM images reflect that the morphologies of as-synthesized materials are affected by the concentrations of Fe3+ in precursor solutions. The less concentration of Fe3+, the more porous of Fe2O3 microflowers, and thinner of slices distributed on the surface. Furthermore, gas sensors based on these Fe2O3 microflowers manufactured and tested to various common gases. The optimum response value to 100 ppm acetone is 52 at the working temperature of 220 °C. Meanwhile, the Fe2O3 microflower sensors possess ultrafast response-recovery speed, which are 8 and 19 s, respectively. The possible sensing mechanism was mainly attributed to the high surface area, three-dimensional porous structure.

  9. The Partial Molar Volume and Compressibility of the FeO Component in Model Basalts (Mixed CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6 Liquids) at 0 GPa: evidence of Fe2+ in 6-fold coordination

    Science.gov (United States)

    Guo, X.; Lange, R. A.; Ai, Y.

    2010-12-01

    FeO is an important component in magmatic liquids and yet its partial molar volume at one bar is not as well known as that for Fe2O3 because of the difficulty of performing double-bob density measurements under reducing conditions. Moreover, there is growing evidence from spectroscopic studies that Fe2+ occurs in 4, 5, and 6-fold coordination in silicate melts, and it is expected that the partial molar volume and compressibility of the FeO component will vary accordingly. We have conducted both density and relaxed sound speed measurements on four liquids in the An-Di-Hd (CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6) system: (1) Di-Hd (50:50), (2) An-Hd (50:50), (3) An-Di-Hd (33:33:33) and (4) Hd (100). Densities were measured between 1573 and 1838 K at one bar with the double-bob Archimedean method using molybdenum bobs and crucibles in a reducing gas (1%CO-99%Ar) environment. The sound speeds were measured under similar conditions with a frequency-sweep acoustic interferometer, and used to calculate isothermal compressibility. All the density data for the three multi-component (model basalt) liquids were combined with density data on SiO2-Al2O3-CaO-MgO-K2O-Na2O liquids (Lange, 1997) in a fit to a linear volume equation; the results lead to a partial molar volume (±1σ) for FeO =11.7 ± 0.3(±1σ) cm3/mol at 1723 K. This value is similar to that for crystalline FeO at 298 K (halite structure; 12.06 cm3/mol), which suggests an average Fe2+ coordination of ~6 in these model basalt compositions. In contrast, the fitted partial molar volume of FeO in pure hedenbergite liquid is 14.6 ± 0.3 at 1723 K, which is consistent with an average Fe2+ coordination of 4.3 derived from EXAFS spectroscopy (Rossano, 2000). Similarly, all the compressibility data for the three multi-component liquids were combined with compressibility data on SiO2-Al2O3-CaO-MgO liquids (Ai and Lange, 2008) in a fit to an ideal mixing model for melt compressibility; the results lead to a partial molar

  10. Texturing for bulk α-Fe/Nd2Fe14B nanocomposites with enhanced magnetic properties

    International Nuclear Information System (INIS)

    Lou, L.; Hou, F.C.; Wang, Y.N.; Cheng, Y.; Li, H.L.; Li, W.; Guo, D.F.; Li, X.H.; Zhang, X.Y.

    2014-01-01

    In the present study, the texturing of bulk α-Fe/Nd 2 Fe 14 B nanocomposites produced from Nd-lean amorphous Nd x Fe 92.5−x Cu 1.5 B 6 (x=9 to 11.5 at%) via a hot deformation under a uniaxial stress of ∼350 MPa at 973 K has been studied. An enhanced (00l) texture of the hard phase is observed with increasing Nd content, which results in an increase in the magnetic anisotropy of the nanocomposite magnets. As a result, both the coercivity and the remanence of the magnets increase simultaneously with increasing Nd content from x=9–11.5 at%, yielding a significant enhancement of the maximum energy product from (BH) max =13.2 to 17.5 MGOe in the direction parallel to stress axis. - Highlights: • Textured bulk α-Fe/Nd 2 Fe 14 B nanocomposites have been produced from Nd-lean alloys. • Nd content has an effect on the texturing of α-Fe/Nd 2 Fe 14 B nanocomposite magnets. • An enhanced (00l) texture of hard phase is observed with increasing Nd content. • Both the coercivity and remanence increase simultaneously with Nd content

  11. High pressure structural investigation on alluaudites Na{sub 2}Fe{sub 3}(PO{sub 4}){sub 3}-Na{sub 2}FeMn{sub 2}(PO{sub 4}){sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jing [Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Huang, Weifeng [College of Engineering, Peking University, Beijing 100871 (China); Qin, Shan [Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Wu, Xiang, E-mail: wuxiang@cug.edu.cn [State key laboratory of geological processes and mineral resources, China University of Geosciences, Wuhan 430074 (China)

    2017-03-15

    Alluaudites are promising electrochemical materials benefited from the open structure. Structural variations of alluaudites Na{sub 2}M{sub 3}(PO{sub 4}){sub 3} (M{sub 3}=Fe{sub 3}, Fe{sub 2}Mn and FeMn{sub 2}) system have been studied by synchrotron radiation X-ray diffraction combined with diamond anvil cell technique up to ~10 GPa at room temperature. No phase transition is observed. The excellent structural stability is mainly due to the flexible framework plus strong covalent P-O bond. Mn{sup 2+} instead of Fe can be described as Na{sup +}+2Fe{sup 2+}→Mn{sup 2+}+Fe{sup 3+}+□ where □ represents a lattice vacancy. The replacement of Fe with larger Mn{sup 2+} is equivalent to applying negative chemical pressure to the material. And it causes a more compressible b-axis, lattice expansion, structural compressibility and intensifies the core/electron-electron interactions of Fe. External pressure effect produces anisotropic lattice shrinkage. Structural considerations related to these variations and promising application prospects are discussed. - Graphical abstract: Figure 1 The crystal structure of alluaudites Na{sub 2}M{sub 3}(PO{sub 4}){sub 3} (M{sub 3}=Fe{sub 3}, Fe{sub 2}Mn and FeMn{sub 2}) projected along the c-axis. Alluaudites adopt a flexible framework plus strong covalent P-O bond, which contribute to excellent structural stability up to ~10 GPa. Mn{sup 2+} instead of Fe can be described as Na{sup ++}2Fe{sup 2+}→Mn{sup 2+}+Fe{sup 3+}+□ where □ represents a lattice vacancy, and it is equivalent to applying negative chemical pressure to the host. The substitution causes a more compressible b-axis, lattice expansion, structural compressibility and intensifies the core/electron-electron interactions of Fe.

  12. A new rhodamine-based fluorescent probe for the discrimination of Fe{sup 3+} from Fe{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    You, Qi Hua; Huang, Hua Bin; Zhuang, Zhi Xia; Wang, Xiao Ru [Dept. of Science and Technology for Inspection, Xiamen Huaxia University, Xiamen (China); Chan, Wing Hong [Dept. of of Chemistry, Hong Kong Bap tist University, Hong Kong (China)

    2016-11-15

    A new rhodamine-based fluorescent probe for the discrimination of Fe{sup 3+} from Fe{sup 2+} has been designed and investigated. The probe shows an immediate visual color change in response to Fe{sup 3+} and Cu{sup 2+}, while only Fe{sup 3+} triggers the fluorescent change of the probe. The existence of large amount of other metal ions shows negligible interference in the detection of Fe{sup 3+}. The association constant K{sub ass} of 4.64 × 10{sup 8} M{sup -2} (R{sup 2} = 0.994) and 5.38 × 10{sup 8} M{sup -2} (R{sup 2} = 0.991) of the complex was derived from UV/Vis and fluorescence titration assuming 1:2 stoichiometry of probe–Fe{sup 3+} complex, respectively.

  13. Physical Properties of Intermetallic FE2VA1

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ye [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Fe2VAl has recently been discovered to have a negative temperature coefficient of resistivity, moderately enhanced specific heat coefficient, and a large DOS at the Fermi level by photoemission. This triggered a round of heated research to understand the ground state of this material, both theoretically and experimentally. here they report a comprehensive characterization of Fe2VAl. X-ray diffraction exhibited appreciable antisite disorder in all of our samples. FTIR spectroscopy measurements showed that the carrier density and scattering time had little sample-to-sample variation or temperature dependence for near-stoichiometric samples. FTIR and DC resistivity suggest that the transport properties of Fe2VAl are influenced by both localized and delocalized carriers, with the former primarily responsible for the negative temperature coefficient of resistivity. Magnetization measurements reveal that near-stoichiometric samples have superparamagnetic clusters with at least two sizes of moments. X-ray photoemission from Fe core level showed localized magnetic moments on site-exchanged Fe. They conclude that in Fe2VAl, antisite disorder causes significant modification to the semi-metallic band structure proposed by LDA calculations. With antisite disorder considered, they are now able to explain most of the physical properties of Fe2VAl.

  14. Physical Properties of Intermetallic FE2VA1

    International Nuclear Information System (INIS)

    Ye Feng

    2002-01-01

    Fe 2 VAl has recently been discovered to have a negative temperature coefficient of resistivity, moderately enhanced specific heat coefficient, and a large DOS at the Fermi level by photoemission. This triggered a round of heated research to understand the ground state of this material, both theoretically and experimentally. here they report a comprehensive characterization of Fe 2 VAl. X-ray diffraction exhibited appreciable antisite disorder in all of our samples. FTIR spectroscopy measurements showed that the carrier density and scattering time had little sample-to-sample variation or temperature dependence for near-stoichiometric samples. FTIR and DC resistivity suggest that the transport properties of Fe 2 VAl are influenced by both localized and delocalized carriers, with the former primarily responsible for the negative temperature coefficient of resistivity. Magnetization measurements reveal that near-stoichiometric samples have superparamagnetic clusters with at least two sizes of moments. X-ray photoemission from Fe core level showed localized magnetic moments on site-exchanged Fe. They conclude that in Fe 2 VAl, antisite disorder causes significant modification to the semi-metallic band structure proposed by LDA calculations. With antisite disorder considered, they are now able to explain most of the physical properties of Fe 2 VAl

  15. Reduction under hydrogen of ferrite MFe{sub 2}O{sub 4} (M: Fe, Co, Ni) nanoparticles obtained by hydrolysis in polyol medium: A novel route to elaborate CoFe{sub 2}, Fe and Ni{sub 3}Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ballot, N.; Schoenstein, F.; Mercone, S.; Chauveau, T.; Brinza, O. [Laboratoire des Sciences des Procedes et des Materiaux, CNRS, LSPM - UPR 3407, Universite Paris 13, PRES Sorbonne-Paris-Cite, 99 Avenue J.-B. Clement, 93430 Villetaneuse (France); Jouini, N., E-mail: jouini@univ-paris13.fr [Laboratoire des Sciences des Procedes et des Materiaux, CNRS, LSPM - UPR 3407, Universite Paris 13, PRES Sorbonne-Paris-Cite, 99 Avenue J.-B. Clement, 93430 Villetaneuse (France)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Spinels nano-particles MFe{sub 2}O{sub 4} (M: Co, Fe or Ni) are obtained by hydrolysis in polyol medium. Black-Right-Pointing-Pointer Gentle reduction under hydrogen flow of spinel nano-particles yields metal and alloy nanoparticles. Black-Right-Pointing-Pointer TEM and X-ray analysis show that CoFe{sub 2}, Fe and Ni{sub 3}Fe nano-particles are monocrystalline particles with size less than 160 nm. Black-Right-Pointing-Pointer Iron with size of 150 nm presents ferromagnetic behavior. Black-Right-Pointing-Pointer CoFe{sub 2} alloy with size of 55 nm could be considered as a superparamagnetic material. - Abstract: A novel method to process metal and various alloy particles of nanometric size is described. The first step consists in the elaboration of MFe{sub 2}O{sub 4} (M: Fe, Ni or Co) spinel nanoparticles in polyol medium via hydrolysis and the second one in gently reducing these latter under hydrogen at 300 Degree-Sign C. X-ray diffraction analysis shows that pure Fe and CoFe{sub 2} alloy are well obtained by reducing Fe{sub 3}O{sub 4} and CoFe{sub 2}O{sub 4}, respectively. This is not the case when we try to reduce NiFe{sub 2}O{sub 4}. A mixture of Fe and Ni{sub 3}Fe is observed. TEM analysis reveals that the size of metal particles stays within the range of a few tenths of nm up to 150 nm, while the precursors (MFe{sub 2}O{sub 4}) never exceed 5 nm. Our results show that the formation of metal particles occurs via two main steps: (i) reduction of the spinel oxide nanoparticles into metal ones and (ii) aggregation of the latter, leading to larger metal nanoparticles. Magnetic measurements indicate that the as-obtained metallic materials have good magnetic properties mainly affected by the sizes of the nanoparticles and the purity of the reduced phases.

  16. Role of protein-glutathione contacts in defining glutaredoxin-3 [2Fe-2S] cluster chirality, ligand exchange and transfer chemistry.

    Science.gov (United States)

    Sen, Sambuddha; Cowan, J A

    2017-10-01

    Monothiol glutaredoxins (Grx) serve as intermediate cluster carriers in iron-sulfur cluster trafficking. The [2Fe-2S]-bound holo forms of Grx proteins display cysteinyl coordination from exogenous glutathione (GSH), in addition to contact from protein-derived Cys. Herein, we report mechanistic studies that investigate the role of exogenous glutathione in defining cluster chirality, ligand exchange, and the cluster transfer chemistry of Saccharomyces cerevisiae Grx3. Systematic perturbations were introduced to the glutathione-binding site by substitution of conserved charged amino acids that form crucial electrostatic contacts with the glutathione molecule. Native Grx3 could also be reconstituted in the absence of glutathione, with either DTT, BME or free L-cysteine as the source of the exogenous Fe-S ligand contact, while retaining full functional reactivity. The delivery of the [2Fe-2S] cluster to Grx3 from cluster donor proteins such as Isa, Nfu, and a [2Fe-2S](GS) 4 complex, revealed that electrostatic contacts are of key importance for positioning the exogenous glutathione that in turn influences the chiral environment of the cluster. All Grx3 derivatives were reconstituted by standard chemical reconstitution protocols and found to transfer cluster to apo ferredoxin 1 (Fdx1) at rates comparable to native protein, even when using DTT, BME or free L-cysteine as a thiol source in place of GSH during reconstitution. Kinetic analysis of cluster transfer from holo derivatives to apo Fdx1 has led to a mechanistic model for cluster transfer chemistry of native holo Grx3, and identification of the likely rate-limiting step for the reaction.

  17. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.

    Science.gov (United States)

    Bassez, Marie-Paule

    2017-12-01

    In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as

  18. Lithium insertion into Fe 2(SO 4) 3 frameworks

    Science.gov (United States)

    Manthiram, A.; Goodenough, J. B.

    1989-05-01

    The two polymorphs of Fe 2(SO 4) 3 consist of framework structures built up of tetrahedra sharing corners with octahedra and vice versa. One is rhombohedral, the other is monoclinic. Two moles of lithium insert rapidly into both structures at room temperature. However, lithium insertion into the rhombohedral phase is topotactic without any change of symmetry of the framework, whereas the monoclinic modification is converted to an orthorombic Li 2Fe 2(SO 4) 3 phase via a displacement transition; the existence of a two-phase region between Fe 2(SO 4) 3 and Li 2Fe 2(SO 4) 3 results in a flat OCV of 3.6 V versus lithium, which is 600 mV higher than is found for Li xFFe 2(WO 4) 3 or Li xFe 2(MoO 4) 3. This difference is discussed in terms of the influence of the counter cation on the solid-state Fe {3+}/{2+} redox couple.

  19. Hydrostatic pressure study of the structural phase transitions and superconductivity in single crystals of (Ba1-xKx)Fe2As2 (x=0 and 0.45) and CaFe2As2

    International Nuclear Information System (INIS)

    Torikachvili, M.S.; Bud'ko, S.L.; Ni Ni; Canfield, P.C.

    2009-01-01

    We studied the effect of hydrostatic pressure (P) on the structural phase transitions and superconductivity in the ternary and pseudo-ternary iron arsenides CaFe 2 As 2 , BaFe 2 As 2 , and (Ba 0.55 K 0.45 )Fe 2 As 2 , by means of measurements of electrical resistivity (ρ) in the 1.8-300 K temperature (T) range, pressures up to 20 kbar, and magnetic fields up to 9 T. CaFe 2 As 2 and BaFe 2 As 2 (lightly doped with Sn) display structural phase transitions near 170 and 85 K, respectively, and do not exhibit superconductivity in ambient pressure, while K-doped (Ba 0.55 K 0.45 )Fe 2 As 2 is superconducting for T 2 As 2 is to shift the onset of the crystallographic transformation down in temperature at the rate of ∼-1.04 K/kbar, while shifting the whole ρ(T) curves downward, whereas its effect on superconducting (Ba 0.55 K 0.45 )Fe 2 As 2 is to shift the onset of superconductivity to lower temperatures at the rate of ∼-0.21 K/kbar. The effect of pressure on CaFe 2 As 2 is first to suppress the crystallographic transformation and induce superconductivity with onset near 12 K very rapidly, i.e., for P c2 ) data in (Ba 0.55 K 0.45 )Fe 2 As 2 and CaFe 2 As 2 are discussed.

  20. Dimensionality and magnetic interactions in CaFe2As2: An ab initio study

    International Nuclear Information System (INIS)

    Tompsett, D.A.; Lonzarich, G.G.

    2010-01-01

    We present detailed electronic structure calculations for CaFe 2 As 2 . We investigate in particular the 'collapsed' tetragonal and orthorhombic regions of the temperature-pressure phase diagram and find properties that distinguish CaFe 2 As 2 from other Fe-pnictide compounds. In contrast to the tetragonal phase of other Fe-pnictides the electronic structure in the 'collapsed' tetragonal phase of CaFe 2 As 2 is found to be strongly 3D. By an analysis of the non-interacting susceptibility, χ 0 (q), of CaFe 2 As 2 and LaFePO we discuss the role of magnetic interactions in iron-pnictides. From this we propose an intuitive explanation for the outstanding question relating to why the predicted antiferromagnetic moment depends strongly on coordinate relaxation and the choice of correlation functional.

  1. Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.

    Science.gov (United States)

    Gorski, Christopher A; Edwards, Rebecca; Sander, Michael; Hofstetter, Thomas B; Stewart, Sydney M

    2016-08-16

    Iron is present in virtually all terrestrial and aquatic environments, where it participates in redox reactions with surrounding metals, organic compounds, contaminants, and microorganisms. The rates and extent of these redox reactions strongly depend on the speciation of the Fe2+ and Fe3+ phases, although the underlying reasons remain unclear. In particular, numerous studies have observed that Fe2+ associated with iron oxide surfaces (i.e., oxide-associated Fe2+) often reduces oxidized contaminants much faster than aqueous Fe2+ alone. Here, we tested two hypotheses related to this observation by determining if solutions containing two commonly studied iron oxides—hematite and goethite—and aqueous Fe2+ reached thermodynamic equilibrium over the course of a day. We measured reduction potential (EH) values in solutions containing these oxides at different pH values and aqueous Fe2+ concentrations using mediated potentiometry. This analysis yielded standard reduction potential (EH0) values of 768 ± 1 mV for the aqueous Fe2+–goethite redox couple and 769 ± 2 mV for the aqueous Fe2+–hematite redox couple. These values were in excellent agreement with those calculated from existing thermodynamic data, and the data could be explained by the presence of an iron oxide lowering EH values of aqueous Fe3+/Fe2+ redox couples.

  2. Preparation of Fe-Al Intermetallic / TiC-Al2O3 Ceramic Composites from Ilmenite by SHS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by self-propagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed.It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis;Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave arc improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.

  3. Fabrication of FeSi and Fe{sub 3}Si compounds by electron beam induced mixing of [Fe/Si]{sub 2} and [Fe{sub 3}/Si]{sub 2} multilayers grown by focused electron beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Porrati, F.; Sachser, R.; Huth, M. [Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Gazzadi, G. C. [S3 Center, Nanoscience Institute-CNR, Via Campi 213/a, 41125 Modena (Italy); Frabboni, S. [S3 Center, Nanoscience Institute-CNR, Via Campi 213/a, 41125 Modena (Italy); FIM Department, University of Modena and Reggio Emilia, Via G. Campi 213/a, 41125 Modena (Italy)

    2016-06-21

    Fe-Si binary compounds have been fabricated by focused electron beam induced deposition by the alternating use of iron pentacarbonyl, Fe(CO){sub 5}, and neopentasilane, Si{sub 5}H{sub 12} as precursor gases. The fabrication procedure consisted in preparing multilayer structures which were treated by low-energy electron irradiation and annealing to induce atomic species intermixing. In this way, we are able to fabricate FeSi and Fe{sub 3}Si binary compounds from [Fe/Si]{sub 2} and [Fe{sub 3}/Si]{sub 2} multilayers, as shown by transmission electron microscopy investigations. This fabrication procedure is useful to obtain nanostructured binary alloys from precursors which compete for adsorption sites during growth and, therefore, cannot be used simultaneously.

  4. Influence of ruthenium ions on the precipitation of α-FeOOH, α-Fe2O3 and Fe3O4 in highly alkaline media

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar

    2006-01-01

    The influence of ruthenium ions on the precipitation of goethite (α-FeOOH), α-Fe 2 O 3 and Fe 3 O 4 in highly alkaline media was investigated by 57 Fe Moessbauer and FT-IR spectroscopies, thermal field emission scanning electron microscope (FE SEM) and EDS. The presence of Ru-dopant strongly affected the precipitation of α-FeOOH at highly alkaline pH, i.e. the formation of α-Fe 2 O 3 was also noticed. A decrease of hyperfine magnetic field (HMF) at RT from 35.1 T (undoped α-FeOOH) to 31.3 T for sample with [Ru]/([Ru] + [Fe]) = 0.0196 was assigned to the incorporation of ruthenium ions into the α-FeOOH structure. Moessbauer spectroscopy showed the formation of stoichiometric Fe 3 O 4 for [Ru]/([Ru] + [Fe]) = 0.0291-0.0909. α-Fe 2 O 3 and Fe 3 O 4 did not show a tendency to the formation of solid solutions with ruthenium ions. FE SEM observations of the samples showed that reference α-FeOOH sample contained acicular particles of good uniformity, which increased the length up to ∼5 times with increase of concentration of ruthenium ions. On the other hand, large octahedral Fe 3 O 4 crystals (particles) were associated with small particles of ruthenium (hydrous) oxide with a size in the range ∼100 nm or less. A possible catalytic action of ruthenium that created reduction conditions for Fe 3+ ions and formation of Fe 2+ ions for precipitation of Fe 3 O 4 was discussed

  5. Evolution of Spin fluctuations in CaFe2As2 with Co-doping.

    Science.gov (United States)

    Sapkota, A.; Das, P.; Böhmer, A. E.; Abernathy, D. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    Spin fluctuations are an essential ingredient for superconductivity in Fe-based supercondcutors. In Co-doped BaFe2As2, the system goes from the antiferromagnetic (AFM) state to the superconducting (SC) state with Co doping, and the spin fluctuations also evolve from well-defined spin waves with spin gap in the AFM regime to gapless overdamped or diffused fluctuations in the SC regime. CaFe2As2 has a stronger magneto-elastic coupling than BaFe2As2 and no co-existence of SC and AFM region as observed in BaFe2As2 with Co doping. Here, we will discuss the evolution of spin fluctuations in CaFe2As2 with Co doping. Work at the Ames Laboratory was supported by US DOE, Basic Energy Sciences, Division of Material Sciences and Engineering, under contract No. DE-AC02-07CH11358. This research used resources of SNS, a DOE office of science user facility operated by ORNL.

  6. GSA eLibrary Schedules and Contracts

    Data.gov (United States)

    General Services Administration — GSA eLibrary (formerly Schedules e-Library) is the online source for the latest contract award information for: GSA Schedules; Department of Veterans Affairs (VA)...

  7. The effect of Fe-coverage on the structure, morphology and magnetic properties of α-FeSi2 nanoislands

    International Nuclear Information System (INIS)

    Tripathi, J K; Goldfarb, I; Garbrecht, M; Kaplan, W D; Markovich, G

    2012-01-01

    Self-assembled α-FeSi 2 nanoislands were formed using solid-phase epitaxy of low (∼1.2 ML) and high (∼21 ML) Fe coverages onto vicinal Si(111) surfaces followed by thermal annealing. At a resulting low Fe-covered Si(111) surface, we observed in situ, by real-time scanning tunneling microscopy and surface electron diffraction, the entire sequence of Fe–silicide formation and transformation from the initially two-dimensional (2 × 2)-reconstructed layer at 300 °C into (2 × 2)-reconstructed nanoislands decorating the vicinal step-bunch edges in a self-ordered fashion at higher temperatures. In contrast, the silicide nanoislands at a high Fe-covered surface were noticeably larger, more three-dimensional, and randomly distributed all over the surface. Ex situ x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy indicated the formation of an α-FeSi 2 island phase, in an α-FeSi 2 { 112} ∥ Si{ 111} orientation. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, with ∼1.9 μ B /Fe atom at 4 K for the low Fe-coverage, indicating stronger ferromagnetic coupling of individual magnetic moments, as compared to high Fe-coverage, where the calculated moments were only ∼0.8 μ B /Fe atom. Such anomalous magnetic behavior, particularly for the low Fe-coverage case, is radically different from the non-magnetic bulk α-FeSi 2 phase, and may open new pathways to high-density magnetic memory storage devices. (paper)

  8. Magnetic Compton scattering study of Laves phase ZrFe2 and Sc doped ZrFe2: Experiment and Green function based relativistic calculations

    Science.gov (United States)

    Bhatt, Samir; Mund, H. S.; Kumar, Kishor; Bapna, Komal; Dashora, Alpa; Itou, M.; Sakurai, Y.; Ahuja, B. L.

    2018-05-01

    Spin momentum densities of ferromagnetic ZrFe2 and Zr0.8Sc0.2Fe2 have been measured using magnetic Compton scattering with 182.65 keV circularly polarized synchrotron radiations. Site specific spin moments, which are responsible for the formation of total spin moment, have been deduced from Compton line shapes. At room temperature, the computed spin moment of ZrFe2 is found to be slightly higher than that of Sc doped ZrFe2 which is in consensus with the magnetization data. To compare the experimental data, we have also computed magnetic Compton profiles (MCPs), total and partial spin projected density of states (DOS) and the site specific spin moments using spin-polarized relativistic Korringa-Kohn-Rostoker method. It is observed that the spin moment at Fe site is aligned antiparallel to that of Zr site in both ZrFe2 and Zr0.8Sc0.2Fe2. The MCP results when compared with vibrating sample magnetometer based magnetization data, show a very small contribution of orbital moment in the formation of total magnetic moments in both the compounds. The DOS of ferromagnetic ground state of ZrFe2 and Zr0.8Sc0.2Fe2 are interpreted on the basis of a covalent magnetic model beyond the Stoner rigid band model. It appears that on alloying between a magnetic and a non-magnetic partner (with low valence), a polarization develops on the non-magnetic atom which is anti-parallel to that of the magnetic atom.

  9. Bactericidal effect of blue LED light irradiated TiO2/Fe3O4 particles on fish pathogen in seawater

    International Nuclear Information System (INIS)

    Cheng, T.C.; Yao, K.S.; Yeh, N.; Chang, C.I.; Hsu, H.C.; Gonzalez, F.; Chang, C.Y.

    2011-01-01

    This study uses blue LED light (λ max = 475 nm) activated TiO 2 /Fe 3 O 4 particles to evaluate the particles' photocatalytic activity efficiency and bactericidal effects in seawater of variable salinities. Different TiO 2 to Fe 3 O 4 mole ratios have been synthesized using sol-gel method. The synthesized particles contain mainly anatase TiO 2 , Fe 3 O 4 and FeTiO 3 . The study has identified TiO 2 /Fe 3 O 4 's bactericidal effect to marine fish pathogen (Photobacterium damselae subsp. piscicida BCRC17065) in seawater. The SEM photo reveals the surface destruction in bacteria incubated with blue LED irradiated TiO 2 /Fe 3 O 4 . The result of this study indicates that 1) TiO 2 /Fe 3 O 4 acquires photocatalytic activities in both the freshwater and the seawater via blue LED irradiation, 2) higher photocatalytic activities appear in solutions of higher TiO 2 /Fe 3 O 4 mole ratio, and 3) photocatalytic activity decreases as salinity increases. These results suggest that the energy saving blue LED light is a feasible light source to activate TiO 2 /Fe 3 O 4 photocatalytic activities in both freshwater and seawater.

  10. Photocatalytic performance of nano-photocatalyst from TiO{sub 2} and Fe{sub 2}O{sub 3} by mechanochemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ghorai, Tanmay K., E-mail: tanmay_ghorai@yahoo.co.in [Department of Chemistry, West Bengal State University, Barasat, North 24 Pgs, Kolkata 700126 (India); Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Chakraborty, Mukut [Department of Chemistry, West Bengal State University, Barasat, North 24 Pgs, Kolkata 700126 (India); Pramanik, Panchanan [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2011-08-11

    Graphical abstract: Nano-particles of homogeneous solution between TiO{sub 2} and Fe{sub 2}O{sub 3} (up to 5 mol%) have been prepared by mechanochemical milling. The results show that the alloy of TiO{sub 2} with 5 mol% of Fe{sub 2}O{sub 3} (YFT1) exhibit photocatalytic activity 3-5 times higher than that of P25 TiO{sub 2} for oxidation of various dyes (RB, MO, TB and BG) under visible light irradiation. The average particle size and crystallite size of YFT1 were found to be 30 {+-} 5 nm and 12 nm measured from TEM and XRD. Optical adsorption edge is found to be 2.26 eV. Tentative schematic diagram of reaction mechanism of YFT/RFT photocatalysts under visible light irradiation. Highlights: > Synthesis of nano-sized homogeneous solid solution between Fe{sub 2}O{sub 3} and TiO{sub 2} with high photocatalytic activity for oxidative degradation of different dyes was successfully obtained through mechanochemical synthesis. XRD data shows the formation of solid solution having anatase structure with no free Fe{sub 2}O{sub 3} up to 5 mol% of Fe{sub 2}O{sub 3}. Fe{sub 2}O{sub 3}/TiO{sub 2} catalyst have crystallite size about 12-13 nm measured from XRD and particle size about 30 {+-} 5 nm measured from TEM. FT-IR of all Fe{sub 2}O{sub 3}/TiO{sub 2} prepared catalysts is similar to pure TiO{sub 2}. The maximum solubility of Fe{sub 2}O{sub 3} in TiO{sub 2} is 5 mol% of Fe{sub 2}O{sub 3} irrespective of source and this composition has highest photocatalytic activity that is 3-5 times higher than P25 TiO{sub 2} for the oxidation of different dyes. We also observed that the rate of degradation of Rhodamine B is faster among all the four dyes under prepared catalyst and visible light. - Abstract: Nano-particles of homogeneous solid solution between TiO{sub 2} and Fe{sub 2}O{sub 3} (up to 10 mol%) have been prepared by mechanochemical milling of TiO{sub 2} and yellow Fe{sub 2}O{sub 3}/red Fe{sub 2}O{sub 3}/precipitated Fe (OH){sub 3} using a planetary ball mill. Such novel solid

  11. Incorporation of Fe2O3, FeO and Al2O3 in silicate glasses and its effect on their structure and chemical stability

    Energy Technology Data Exchange (ETDEWEB)

    Van Iseghem, P; De Grave, E; Peters, L; De Batist, R

    1983-09-01

    Large amounts of the glass intermediates Al2O3, Fe2O3 and FeO are present in the amorphous silicate slags developed at the S.C.K./C.E.N. for the conditioning of Pu contaminated radioactive waste. Strong ambiguity exists in literature about both the structural incorporation and the effect on the chemical stability of Fe2O3 and FeO. The chemical stability and its relationship to the glass structure therefore was investigated for a number of silicate base glasses, taking into consideration the following parameters (the amount of glass modifiers was kept constant at 16 mole %, equimolarly spread over Li2O, K2O, MgO and CaO): 1) Fe2Ox concentrations (x = 2 or 3) varying between 2.5 and 30 mole % (compensated by changes in SiO2 concentration); 2)Equimolar replacement of Fe2Ox by Al2O3 and Fe2Ox in all glasses listed in 1. The structural incorporation of Fe2Ox was investigated by 57 Fe Mossbauer Spectroscopy, the chemical stability by the Soxhlet corrosion test. The sample weight was measured after 14 days of corrosion, after drying and removal of the weakly bounded surface layer.

  12. ATD-2 Surface Scheduling and Metering Concept

    Science.gov (United States)

    Coppenbarger, Richard A.; Jung, Yoon Chul; Capps, Richard Alan; Engelland, Shawn A.

    2017-01-01

    This presentation describes the concept of ATD-2 tactical surface scheduling and metering. The concept is composed of several elements, including data exchange and integration; surface modeling; surface scheduling; and surface metering. The presentation explains each of the elements. Surface metering is implemented to balance demand and capacity• When surface metering is on, target times from surface scheduler areconverted to advisories for throttling demand• Through the scheduling process, flights with CTOTs will not get addedmetering delay (avoids potential for ‘double delay’)• Carriers can designate certain flights as exempt from metering holds• Demand throttle in Phase 1 at CLT is through advisories sent to rampcontrollers for pushback instructions to the flight deck– Push now– Hold for an advised period of time (in minutes)• Principles of surface metering can be more generally applied to otherairports in the NAS to throttle demand via spot-release times (TMATs Strong focus on optimal use of airport resources• Flexibility enables stakeholders to vary the amount of delay theywould like transferred to gate• Addresses practical aspects of executing surface metering in aturbulent real world environment• Algorithms designed for both short term demand/capacityimbalances (banks) or sustained metering situations• Leverage automation to enable surface metering capability withoutrequiring additional positions• Represents first step in Tactical/Strategic fusion• Provides longer look-ahead calculations to enable analysis ofstrategic surface metering potential usage

  13. 40 CFR 141.702 - Sampling schedules.

    Science.gov (United States)

    2010-07-01

    ... serving at least 10,000 people must submit their sampling schedule for the initial round of source water... submitting the sampling schedule that EPA approves. (3) Systems serving fewer than 10,000 people must submit... analytical result for a scheduled sampling date due to equipment failure, loss of or damage to the sample...

  14. A comparative study of dissolution of {alpha}-Fe{sub 2}O{sub 3} and {gamma}-Fe{sub 2}O{sub 3} in DCD formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Raghavan, P.S.; Gopalan, R. [Madras Christian Coll. (India). Dept. of Chemistry; Srinivasan, M.P.; Narasimhan, S.V.

    1998-12-31

    The important corrosion products deposited on the surfaces of structural materials such as stainless steel in the primary coolant system of BWRs are haematite in the outer layers and ferrites such as magnetite, nickel ferrite, cobalt ferrite, etc., in the inner layers. Magnetite dissolution by 2, 6 Pyridinedicarboxylic acid (PDCA), Ethylenediaminetetraacetic acid (EDTA) and Nitrolotriacetic acid (NTA) showed that there is an optimum pH of dissolution for each ligand. The leaching of the metal ions from the oxides is controlled in part by reductive dissolution; this is due to the presence of Fe(II)-L complexes generated from the released Fe{sup 2+} ions. The addition of Fe(II)-L with the formulation greatly increases the rate of dissolution. In order to understand the role of Fe{sup 2+} arising from the spinel lattice of Fe{sub 3}O{sub 4} in aiding the dissolution of magnetite, it is appropriate to study the dissolution behaviour of the system like Fe{sub 2}O{sub 3} which is not containing any Fe{sup 2+} in the crystal lattice. The present study has been carried out with {alpha}-Fe{sub 2}O{sub 3} and {gamma}-Fe{sub 2}O{sub 3} in DCD formulation in the presence of ascorbic acid and with the addition of Fe(II)-L as a reductant. (author)

  15. 2:1 Charge disproportionation in perovskite-structure oxide La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+}

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Haichuan; Hosaka, Yoshiteru; Seki, Hayato; Saito, Takashi; Ichikawa, Noriya [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Shimakawa, Yuichi, E-mail: shimak@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Integrated Research Consortium on Chemical Sciences, Uji, Kyoto 611-0011 (Japan)

    2017-02-15

    La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+} was synthesized at a high pressure and high temperature. The compound crystallizes in a √22a×√2a perovskite cell in which the La and Ca ions at the A site are disordered. At 217 K the Fe{sup 3.67+} shows charge disproportionation to Fe{sup 3+} and Fe{sup 5+} in a ratio of 2:1, and this disproportionation is accompanied by transitions in magnetic and transport properties. The charge-disproportionated Fe{sup 3+} and Fe{sup 5+} are arranged along the <111> direction of the cubic perovskite cell. The local electronic and magnetic environments of Fe in La{sub 1/3}Ca{sub 2/3}FeO{sub 3} are quite similar to those of Fe in La{sub 1/3}Sr{sub 2/3}FeO{sub 3}, and the 2:1 charge disproportionation pattern of Fe{sup 3+} and Fe{sup 5+} in La{sub 1/3}Ca{sub 2/3}FeO{sub 3} is also the same as that in La{sub 1/3}Sr{sub 2/3}FeO{sub 3}. - Graphical abstract: The perovskite-structure oxide La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+} shows charge disproportionation to Fe{sup 3+} and Fe{sup 5+} in a ratio of 2:1, and the charge-disproportionated Fe{sup 3+} and Fe{sup 5+} are arranged along the <111> direction of the cubic perovskite cell. - Highlights: • La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+} was synthesized at a high pressure and high temperature. • At 217 K the Fe{sup 3.67+} shows charge disproportionation (CD) to Fe{sup 3+} and Fe{sup 5+} in a ratio of 2:1. • The charge-disproportionated Fe{sup 3+} and Fe{sup 5+} are arranged along the <111> direction of the cubic perovskite cell. • The disproportionation is accompanied by transitions in magnetic and transport properties.

  16. Spin reorientation in α-Fe2O3 nanoparticles induced by interparticle exchange interactions in alpha-Fe2O3/NiO nanocomposites

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Lefmann, Kim; Lebech, Bente

    2011-01-01

    We report that the spin structure of alpha-Fe2O3 nanoparticles rotates coherently out of the basal (001) plane at low temperatures when interacting with thin plate-shaped NiO nanoparticles. The observed spin reorientation (up to similar to 70 degrees) in alpha-Fe2O3 nanoparticles has, in appearan......, similarities to the Morin transition in bulk alpha-Fe2O3, but its origin is different-it is caused by exchange coupling between aggregated nanoparticles of alpha-Fe2O3 and NiO with different directions of easy axes of magnetization.......We report that the spin structure of alpha-Fe2O3 nanoparticles rotates coherently out of the basal (001) plane at low temperatures when interacting with thin plate-shaped NiO nanoparticles. The observed spin reorientation (up to similar to 70 degrees) in alpha-Fe2O3 nanoparticles has, in appearance...

  17. Kinetics of dissolution of {alpha}-Fe{sub 2}O{sub 3} and {gamma}-Fe{sub 2}O{sub 3} in EDTA and NTA-based formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [Dept. of Chemical Engineering, Univ. of New Brunswick, Fredericton, N.B. (Canada); Srinivasan, M.P. [Water and Steam Chemistry Lab. of Bhabha Atomic Research Centre (BARC) (India); Narasimhan, S.V. [Bhabha Atomic Research Centre (India); Raghavan, P.S. [Madras Christian Coll., Chennai (India); Gopalan, R. [Dept. of Chemistry, Madras Christian Coll., Chennai (India)

    2004-06-01

    The dissolution studies were carried out on haematite ({alpha}-Fe{sub 2}O{sub 3}) and maghemite ({gamma}-Fe{sub 2}O{sub 3}) in two different formulations of ethylenediaminetetraacetic acid (EDTA) and nitrilotriaceticacid (NTA). The rate constants were calculated using the ''inverse cubic rate law.'' The leaching of the metal ions from the oxide is controlled partly by the Fe(II)-L{sub n} (L is a complexing ligand and n is the number of ligands attached to Fe{sup 2+}), a dissolution product arising from the oxides having Fe{sup 2+} in the lattice. The addition of Fe(II)-L{sub n} along with the formulation greatly increased the initial rate of dissolution. The effect of the addition of Fe(II)-L as a reductant on the dissolution of {alpha}-Fe{sub 2}O{sub 3} was not the same as in the case of {gamma}-Fe{sub 2}O{sub 3}. The rate constants (k{sub obs}) for the dissolution of {alpha}-Fe{sub 2}O{sub 3} and {gamma}-Fe{sub 2}O{sub 3} in the presence of ascorbic acid were less in the EDTA formulation than in the NTA formulation. The studies using Fe(II)-NTA and Fe(II)-EDTA with varying compositions of citric acid and ascorbic acid revealed that a minimum quantity of the chelant is sufficient to initiate the dissolution process, which can be further controlled by the reductants and weaker chelants such as citric acid. (orig.)

  18. FeRu/TiO2 and Fe/TiO2 catalysts after reduction and Fischer-Tropsch synthesis studied by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Nonnekens, R.C.H.; Niemantsverdriet, J.W.

    1986-01-01

    A series of TiO 2 -supported bimetallic FeRu catalysts with different Fe:Ru ratios (infinity; 10:1; 3:1; 1:1; 1:3) has been studied by means of in situ Moessbauer spectroscopy. The influence of reduction and Fischer-Tropsch synthesis on the state of iron in the FeRu/TiO 2 catalysts is derived. (Auth.)

  19. ZnFe2O4 Containing Nanoparticles: Synthesis and Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Zālīte Ilmārs

    2017-05-01

    Full Text Available Solid solutions of Co1−xZnxFe2O4 and Ni1−xZnxFe2O4 (0 < x < 1 nanoparticles were synthesized by sol-gel self-propagating combustion method. The obtained single cubic phase product has a specific surface area 25 m2∙g−1 to 33 m2∙g−1 and crystallite size 25 nm to 40 nm. Lattice parameters change linearly from 8.371 A (CoFe2O4 and 8.337 A (NiFe2O4 to 8.431 A (ZnFe2O4. The saturation magnetization (Ms changes non-linearly from 60.8 emu∙g−1 (CoFe2O4, respectively, from 35.6 emu∙g−1 (NiFe2O4 to 3.3 emu∙g−1 (ZnFe2O4 reaching maximal value 76.1 emu∙g−1 for Co0.8Zn0.2Fe2O4 and 64.9 emu∙g−1 – for Ni0.6Zn0.4Fe2O4.

  20. Study of structural, electronic and magnetic properties of CoFeIn and Co2FeIn Heusler alloys

    International Nuclear Information System (INIS)

    El Amine Monir, M.; Khenata, R.; Baltache, H.; Murtaza, G.; Abu-Jafar, M.S.; Bouhemadou, A.; Bin Omran, S.

    2015-01-01

    The structural, electronic and magnetic properties of half-Heusler CoFeIn and full-Heusler Co 2 FeIn alloys have been investigated by using the state of the art full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential was treated with the generalized gradient approximation (PBE-GGA) for the calculation of the structural properties, whereas the PBE-GGA+U approximation (where U is the Hubbard Coulomb energy term) is applied for the computation of the electronic and magnetic properties in order to treat the “d” electrons. The structural properties have been calculated in the paramagnetic and ferromagnetic phases where we have found that both the CoFeIn and Co 2 FeIn alloys have a stable ferromagnetic phase. The obtained results of the spin-polarized band structure and the density of states show that the CoFeIn alloy is a metal and the Co 2 FeIn alloy has a complete half-metallic nature. Through the obtained values of the total spin magnetic moment, we conclude that in general, the Co 2 FeIn alloy is half-metallic ferromagnet material whereas the CoFeIn alloy has a metallic nature. - Highlights: • Based on DFT calculations, CoFeIn and Co2FeIn Heusler alloys were investigated. • The magnetic phase stability was determined from the total energy calculations. • Electronic properties reveal the metallic (half-metallic) nature for CoFeIn (Co2FeIn)

  1. Fluorescent carbon dots: facile synthesis at room temperature and its application for Fe{sup 2+} sensing

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Sai Jin; Chu, Zhao Jun; Zuo, Jun; Zhao, Xiao Jing; Huang, Cheng Zhi [East China University of Technology, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation (China); Zhang, Li, E-mail: zhangli8@ncu.edu.cn [Nanchang University, College of Chemistry (China)

    2017-02-15

    A new route for one-pot preparation of carbon dots (CDs) was developed at room temperature using PEG400 as both the carbon source and passitive agent. The new method possesses the advantages of facile, rapid, energy-saving, without any external stimulus and environment friendly. By changing the content of NaOH, the PEG400-CDs with blue-emitting, yellow-emitting, orange red-emitting and red-emitting were obtained, and the formation mechanism were carefully investigated. In addition, a sensitive fluorescence sensor were developed for Fe{sup 2+} detection based on PEG400-CDs since the fluorescence of PEG400-CDs could be enhanced by Fe{sup 2+}. It was found that there is a good linear relationship between the enhanced fluorescence and Fe{sup 2+} concentration in the range of 0.5 to 2.0 μmol·L{sup −1} with the detection limit of 6.0 × 10{sup −8} mol·L{sup −1}, and Fe{sup 2+} in water samples was also determined with high accuracy and repeatability.

  2. Surfactant-induced layered growth in homoepitaxy of Fe on Fe(100)-c(2 x 2)O reconstruction surface

    International Nuclear Information System (INIS)

    Kamiko, Masao; Mizuno, Hiroyuki; Chihaya, Hiroaki; Xu, Junhua; Kojima, Isao; Yamamoto, Ryoichi

    2007-01-01

    In this study, the effects of several surfactants (Pb, Bi, and Ag) on the homoepitaxial growth of Fe(100) were studied and compared. The reflection high-energy electron diffraction measurements clearly reveal that these surfactants enhance the layer-by-layer growth of Fe on an Fe(100)-c(2 x 2)O reconstruction surface. The dependence of growth on the surfactant layer thickness suggests that there exists a suitable amount of surfactant layer that induces a smoother layer-by-layer growth. Comparisons between the atomic force microscopy images reveal that the root-mean-square surface roughness of Fe films mediated by Pb and Bi surfactants are considerably smaller than those of the films mediated by Ag surfactant. The Auger electron spectra show that Pb and Bi segregate at the top of the surface. It has been concluded that Pb and Bi are effective surfactants for enhancing layer-by-layer growth in Fe homoepitaxy. Ag has the same effect, but it is less efficient due to the weak surface segregation of Ag

  3. Research progress in photolectric materials of CuFeS2

    Science.gov (United States)

    Jing, Mingxing; Li, Jing; Liu, Kegao

    2018-03-01

    CuFeS2 as a photoelectric material, there are many advantages, such as high optical absorption coefficient, direct gap semiconductor, thermal stability, no photo-recession effect and so on. Because of its low price, abundant reserves and non-toxic, CuFeS2 has attracted extensive attention of scientists.Preparation method of thin film solar cells are included that Electrodeposition, sputtering, thermal evaporation, thermal spraying method, co-reduction method.In this paper, the development of CuFeS2 thin films prepared by co-reduction method and co-reduction method is introduced.In this paper, the structure and development of solar cells, advantages of CuFeS2 as solar cell material, the structure and photoelectric properties and magnetic properties of CuFeS2, preparation process analysis of CuFeS2 thin film, research and development of CuFeS2 in solar cells is included herein. Finally, the development trend of CuFeS2 optoelectronic materials is analyzed and further research directions are proposed.

  4. Adsorption of Ni2+ from aqueous solution by magnetic Fe@graphite nano-composite

    Directory of Open Access Journals (Sweden)

    Konicki Wojciech

    2016-12-01

    Full Text Available The removal of Ni2+ from aqueous solution by iron nanoparticles encapsulated by graphitic layers (Fe@G was investigated. Nanoparticles Fe@G were prepared by chemical vapor deposition CVD process using methane as a carbon source and nanocrystalline iron. The properties of Fe@G were characterized by X-ray Diffraction method (XRD, High-Resolution Transmission Electron Microscopy (HRTEM, Fourier Transform-Infrared Spectroscopy (FTIR, BET surface area and zeta potential measurements. The effects of initial Ni2+ concentration (1–20 mg L−1, pH (4–11 and temperature (20–60°C on adsorption capacity were studied. The adsorption capacity at equilibrium increased from 2.96 to 8.78 mg g−1, with the increase in the initial concentration of Ni2+ from 1 to 20 mg L−1 at pH 7.0 and 20oC. The experimental results indicated that the maximum Ni2+ removal could be attained at a solution pH of 8.2 and the adsorption capacity obtained was 9.33 mg g−1. The experimental data fitted well with the Langmuir model with a monolayer adsorption capacity of 9.20 mg g−1. The adsorption kinetics was found to follow pseudo-second-order kinetic model. Thermodynamics parameters, ΔHO, ΔGO and ΔSO, were calculated, indicating that the adsorption of Ni2+ onto Fe@G was spontaneous and endothermic in nature.

  5. Investigations on FCAM-III (Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36): A new homologue of the aenigmatite structure-type in the system CaO-MgO-Fe2O3-Al2O3

    Science.gov (United States)

    Zöll, Klaus; Kahlenberg, Volker; Krüger, Hannes; Tropper, Peter

    2018-02-01

    In the course of a systematic study of a part of the quaternary system Fe2O3-CaO-Al2O3-MgO (FCAM) the previously unknown compound Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 (FCAM-III) has been synthesized. By analogy with the so-called SFCA series [1-5], our investigation in the system of FCAM shows the existence of a stoichiometric homologous series M14+6nO20+8n, where M = Fe, Ca, Al, Mg and n = 1 or 2. In air, we can prove the formation of coexisting FCAM-III and FCAM-I solid solutions at 1400 °C. By increasing the temperature up to 1425 °C FCAM-I disappears completely and FCAM-III co-exists with magnesiumferrite and a variety of calcium iron oxides. At 1450 °C FCAM-III breaks down to a mixture of FCAM-I again as well as magnesioferrite and melt. Small single-crystals of FCAM-III up to 35 μm in size could be retrieved from the 1425 °C experiment and were subsequently characterized using electron microprobe analysis and synchroton X-ray single-crystal diffraction. Finally the Fe2+/Fetot ratio was calculated from the total iron content based on the crystal-chemical formula obtained from EMPA measurements and charge balance considerations. FCAM-III or Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 has a triclinic crystal structure (space group P 1 ̅). The basic crystallographic data are: a = 10.223(22) Å, b = 10.316(21) Å, c = 14.203(15) Å, α = 93.473(50)°, β = 107.418(67)°, γ = 109.646(60)°, V = 1323.85(2) ų, Z = 1. Using Schreinemaker's technique to analyze the phase relations in the system Fe2O3-CaO-Al2O3-MgO it was possible to obtain the semi-quantitative stability relations between the participating phases and construct a topologically correct phase sequence as a function of T and fO2. The analysis shows that Ca2Al0.5Fe1.5O5 (C2A0.25F0.75) and CaAl1.5Fe2.5O7 (CA0.75F1.25) with higher calculated Fe2+ contents are preferably formed at lower oxygen fugacity and react to CaAl0.5Fe1.5O4 (CA0.25F0.75) by increasing fO2. Spinel-type magnesium

  6. Room temperature ferromagnetism in Fe-doped CeO2 nanoparticles.

    Science.gov (United States)

    Maensiri, Santi; Phokha, Sumalin; Laokul, Paveena; Seraphin, Supapan

    2009-11-01

    RT ferromagnetism was observed in nanoparticles of Fe-doped CeO2 (i.e., Ce(0.97)Fe(0.03)O2) synthesized by a sol-gel method. The undoped and Fe-doped CeO2 were characterized by XRD, Raman spectroscopy, TEM, and VSM. The undoped samples and Ce(0.97)Fe(0.03)O2 precursor exhibit a diamagnetic behavior. The 673 K-calcined Ce(0.97)Fe(0.03)O2 sample is paramagnetic whereas 773 and 873 K-calcined Ce(0.97)Fe(0.03)O2 samples are ferromagnetism having the magnetizations of 4.65 x 10(-3) emu/g and 6.20 x 10(-3) emu/g at 10 kOe, respectively. Our results indicate that the ferromagnetic property is intrinsic to the Fe-doped CeO2 system and is not a result of any secondary magnetic phase or cluster formation.

  7. High quality β-FeSi2 thin films prepared on silicon (100) by using pulsed laser ablation of Fe target

    International Nuclear Information System (INIS)

    Xu, S.C.; Yang, C.; Liu, M.; Jiang, S.Z.; Ma, Y.Y.; Chen, C.S.; Gao, X.G.; Sun, Z.C.; Hu, B.; Wang, C.C.; Man, B.Y.

    2012-01-01

    High quality β-FeSi 2 thin films have been fabricated on silicon (100) substrate by the pulsed laser deposition (PLD) technique with the Fe and sintered FeSi 2 targets. The crystalline quality and surface morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. These results indicate that the samples prepared with a Fe target can acquire a better crystalline quality and a smoother surface than those with a sintered FeSi 2 target. The reasons were discussed with subsurface superheating mechanism. The intrinsic PL spectrum attributed to the interband transition of β-FeSi 2 for all the samples was compared, showing that the film prepared with Fe target can acquire a good PL property by optimizing experimental parameters. It is suggested that sputtering Fe on Si substrate by the pulsed laser offers a cheap and convenient way to prepare the β-FeSi 2 thin films. -- Highlights: ► β-FeSi 2 films were fabricated by PLD technique with the Fe and FeSi 2 targets. ► The films prepared with Fe target have good crystalline quality and smooth surface. ► The Fe target prepared film acquired a high PL intensity. ► Sputtering Fe on Si substrate offers a convenient way to prepare the β-FeSi 2 films.

  8. Synthesis of highly efficient α-Fe{sub 2}O{sub 3} catalysts for CO oxidation derived from MIL-100(Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Lifeng; Zhao, Di; Yang, Yang [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Wang, Yuxin [Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou, Zhejiang 318000 (China); Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2017-03-15

    Mesoporous hollow α-Fe{sub 2}O{sub 3} bricks were synthesized via a hydrothermal method to create a precursor MIL-100(Fe) and a subsequent calcination process was applied to prepare the Fe{sub 2}O{sub 3} phase. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed the morphology of hollow α-Fe{sub 2}O{sub 3} bricks which inherited from the MIL-100(Fe) template. The catalytic activities of hollow α-Fe{sub 2}O{sub 3} bricks for CO oxidation are studied in this work. Due to better low temperature reduction behavior, mesoporous hollow α-Fe{sub 2}O{sub 3} bricks obtained at calcination temperature of 430 °C displayed high catalytic activity and excellent stability with a complete CO conversion temperature (T{sub 100}) of 255 °C. - Graphical abstract: Synthesis of highly efficient α-Fe{sub 2}O{sub 3} catalysts for CO oxidation derived from MIL-100(Fe). - Highlights: • α-Fe{sub 2}O{sub 3} is prepared by the thermolysis of a MIL-100(Fe) template. • The morphology of hollow α-Fe{sub 2}O{sub 3} bricks is inherited from MIL-100(Fe) template. • α-Fe{sub 2}O{sub 3} obtained at calcined temperature of 430 °C displays high activity • Enhanced activity is attributed to crystal plane and reduction behavior.

  9. Schedule Matters: Understanding the Relationship between Schedule Delays and Costs on Overruns

    Science.gov (United States)

    Majerowicz, Walt; Shinn, Stephen A.

    2016-01-01

    This paper examines the relationship between schedule delays and cost overruns on complex projects. It is generally accepted by many project practitioners that cost overruns are directly related to schedule delays. But what does "directly related to" actually mean? Some reasons or root causes for schedule delays and associated cost overruns are obvious, if only in hindsight. For example, unrealistic estimates, supply chain difficulties, insufficient schedule margin, technical problems, scope changes, or the occurrence of risk events can negatively impact schedule performance. Other factors driving schedule delays and cost overruns may be less obvious and more difficult to quantify. Examples of these less obvious factors include project complexity, flawed estimating assumptions, over-optimism, political factors, "black swan" events, or even poor leadership and communication. Indeed, is it even possible the schedule itself could be a source of delay and subsequent cost overrun? Through literature review, surveys of project practitioners, and the authors' own experience on NASA programs and projects, the authors will categorize and examine the various factors affecting the relationship between project schedule delays and cost growth. The authors will also propose some ideas for organizations to consider to help create an awareness of the factors which could cause or influence schedule delays and associated cost growth on complex projects.

  10. Investigation of Synthesis and Magnetic Properties of Rod-Shaped CoFe2O4 via Precipitation-Topotactic Reaction Employing α-FeOOH and γ-FeOOH As Templates

    Science.gov (United States)

    Cao, Xiaohui; Dong, Hongfei; Tan, Yuzhuo; Meng, Jinhong

    2018-03-01

    Rod-shaped CoFe2O4 was prepared by chemical precipitation-topotactic reaction method, and in this preparation needle-like γ-FeOOH and α-FeOOH were synthesized to use as template materials. The evolution of phase and morphology in the process of calcination exhibits that α-FeOOH and γ-FeOOH experienced different routes to form the α-Fe2O3 middle phase with different crystallinity and morphology. The synthesis process of CoFe2O4 revealed that the crystallinity, purity and morphology of CoFe2O4 depend on the α-Fe2O3 middle phase. The magnetic measurement showed that the CoFe2O4 prepared from α-FeOOH has higher saturation magnetization and coercivity, and the crystallinity and morphology may play important roles in achieving a better magnetic performance.

  11. Defect annealing in Mn/Fe-implanted TiO2 (rutile)

    International Nuclear Information System (INIS)

    Gunnlaugsson, H P; Svane, A; Weyer, G; Mantovan, R; Masenda, H; Naidoo, D; Mølholt, T E; Gislason, H; Ólafsson, S; Johnston, K; Bharuth-Ram, K; Langouche, G

    2014-01-01

    A study of the annealing processes and charge state of dilute Fe in rutile TiO 2 single crystals was performed in the temperature range 143–662 K, utilizing online 57 Fe emission Mössbauer spectroscopy following low concentrations (<10 −3  at%) implantation of 57 Mn (T 1/2  = 1.5 min). Both Fe 3+ and Fe 2+ were detected throughout the temperature range. Three annealing stages were distinguished: (i) a broad annealing stage below room temperature leading to an increased Fe 3+ fraction; (ii) a sharp annealing stage at ∼330 K characterized by conversion of Fe 3+ to Fe 2+ and changes in the hyperfine parameters of Fe 2+ , attributed to the annealing of Ti vacancies in the vicinity of the probe atoms; and (iii) an annealing stage in the temperature range from 550 to 600 K, where all Fe ions are transformed to Fe 3+ , attributed to the annealing of the nearby O vacancies. The dissociation energy of Mn Ti –V O pairs was estimated to be 1.60(15) eV. Fe 2+ is found in an environment where it can probe the lattice structure through the nuclear quadrupole interaction evidencing the extreme radiation hardness of rutile TiO 2 . Fe 3+ is found in a paramagnetic state with slow spin–lattice relaxation which follows a ∼T n temperature dependence with 4.1 < n < 6.3 at T > 350 K. (paper)

  12. Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method

    Science.gov (United States)

    Kurian, Jessyamma; Mathew, M. Jacob

    2018-04-01

    In this paper we report the structural, optical and magnetic studies of three spinel ferrites namely CuFe2O4, MgFe2O4 and ZnFe2O4 prepared in an autoclave under the same physical conditions but with two different liquid medium and different surfactant. We use water as the medium and trisodium citrate as the surfactant for one method (Hydrothermal method) and ethylene glycol as the medium and poly ethylene glycol as the surfactant for the second method (solvothermal method). The phase identification and structural characterization are done using XRD and morphological studies are carried out by TEM. Cubical and porous spherical morphologies are obtained for hydrothermal and solvothermal process respectively without any impurity phase. The optical studies are carried out using FTIR and UV-Vis reflectance spectra. In order to elucidate the nonlinear optical behaviour of the prepared nanomaterial, open aperture z-scan technique is used. From the fitted z-scan curves nonlinear absorption coefficient and the saturation intensity are determined. The magnetic characterization of the samples is performed at room temperature using vibrating sample magnetometer measurements. The M-H curves obtained are fitted using theoretical equation and the different components of magnetization are determined. Nanoparticles with high saturation magnetization are obtained for MgFe2O4 and ZnFe2O4 prepared under solvothermal reaction. The magnetic hyperfine parameters and the cation distribution of the prepared materials are determined using room temperature Mössbauer spectroscopy. The fitted spectra reveal the difference in the magnetic hyperfine parameters owing to the change in size and morphology.

  13. 57Fe Mössbauer study of unusual magnetic structure of multiferroic 3R-AgFeO2

    Science.gov (United States)

    Sobolev, A.; Rusakov, V.; Moskvin, A.; Gapochka, A.; Belik, A.; Glazkova, I.; Akulenko, A.; Demazeau, G.; Presniakov, I.

    2017-07-01

    We report new results of a 57Fe Mössbauer study of hyperfine magnetic interactions in the layered multiferroic 3R-AgFeO2 demonstrating two magnetic phase transitions at T N1 and T N2. The asymptotic value β *  ≈  0.34 for the critical exponent obtained from the temperature dependence of the hyperfine field H hf(T) at 57Fe the nuclei below T N1  ≈  14 K indicates that 3R-AgFeO2 shows quasi-3D critical behavior. The spectra just above T N1 (T N1  formula to describe the dependence of H anis on the distortions of the (FeO6) clusters. Analysis of different mechanisms of spin and hyperfine interactions in 3R-AgFeO2 and its structural analogue CuFeO2 points to a specific role played by the topology of the exchange coupling and the oxygen polarization in the delafossite-like structures.

  14. Magnetic Excitations in Cu2Fe2Ge4O13

    International Nuclear Information System (INIS)

    Masuda, Takatsugu; Zheludev, Andrey I.; Sales, Brian C.; Imai, S.; Uchinokura, K.

    2005-01-01

    Magnetic excitations in the cooperative ordered state in a weakly coupled Fe chains and Cu dimers compound Cu 2 Fe 2 Ge 4 O 13 is studied by thermal neutron scattering technique. We show that the low energy excitations up to 10 meV in wide q range are well described by spin wave theory of weakly coupled Fe chains. In higher energy range a narrow band excitation that can be associated with Cu dimers is observed at ℎω-24 meV. Both types of excitations can be understood by treating the weak coupling between Fe chains and Cu dimers at the level of Mean Field/Random Phase Approximation.

  15. Magnetocapacidad en nanopartículas de Fe3O4 y NiFe2O4

    Directory of Open Access Journals (Sweden)

    Mira, J.

    2010-02-01

    Full Text Available We have synthesized NiFe2O4 (φ∼ 6 nm and Fe3O4 (φ∼ 30 nm magnetic nanoparticles by solvothermal synthesis; furthermore the Fe3O4 nanoparticles have been coated with a SiO2 shell of approximately 5 nm of thickness by the Stöber method. In the study of the dielectric properties as a function of the frequency, temperature and applied magnetic field, we observe a magnetocapacitive behavior (MC at room temperature and under a moderate magnetic field (H=0.5T, that is specially important in the case of the Fe3O4, nanoparticles (MC≈ 6%. On the other hand, the NiFe2O4 and Fe3O4@SiO2 samples present smaller magnetocapacitive effects: MC≈ 2% y MC≈ 1%, respectively. These MC values, that are higher than those reported in the literature for other related magnetic nanoparticles, corroborate the theoretical model proposed by Catalán in which the combination of Maxwell-Wagner effects and magnetoresistance promote the appearance of stronger magnetocapacitive effects.Hemos preparado nanopartículas magnéticas de NiFe2O4 (φ∼ 6 nm y Fe3O4 (φ∼ 30 nm mediante el método de síntesis solvotermal; además estas últimas han sido recubiertas con una capa de SiO2 de unos 5 nm de espesor mediante el método de Stöber. Al estudiar el comportamiento dieléctrico en función de la frecuencia, temperatura y campo magnético aplicado, observamos un comportamiento magnetocapacitivo (MC a temperatura ambiente y bajo un campo magnético moderado (H= 0.5 T que es especialmente importante en el caso de las nanopartículas de Fe3O4 (MC≈ 6%. Por su parte las muestras de NiFe2O4 y Fe3O4@SiO2 presentan efectos magnetocapacitivos menores: MC≈ 2% y MC≈ 1%, respectivamente. Estos valores de MC, que son considerablemente superiores a los descritos hasta el momento para otras nanopartículas magnéticas, corroboran la predicción teórica de Catalán de que la combinación de efecto Maxwell-Wagner con efectos magnetorresitivos potencian la aparición de fen

  16. Decacarbonyl[μ4-(ethane-1,2-diyldinitrilotetrakis(methanethiolato]bis(triphenylphosphanetetrairon(2 Fe—Fe

    Directory of Open Access Journals (Sweden)

    Wei-Ming Gao

    2012-02-01

    Full Text Available In the title compound, [Fe4(C6H12N2S4(C18H15P2(CO10], the unit cell contains one molecule, which exhibits a crystallographically imposed center of symmetry. The independent Fe2S2 fragment [Fe—Fe = 2.527 (1 Å] is in a butterfly conformation, and each Fe atom displays a pseudo-square-pyramidal coordination geometry. The phosphane group occupies an apical position [Fe—P = 2.2670 (14 Å]. In the crystal, weak intermolecular C—H...O hydrogen bonds link the molecules into chains along [110].

  17. Distribution of the ligand field at the Fe2+ ion in frozen aqueous solutions of Fe(ClO4)2

    International Nuclear Information System (INIS)

    Nagy, D.L.; Horvath, D.; Szuecs, I.S.; Spiering, H.

    1981-01-01

    Moessbauer spectra of eutectic frozen aqueous solutions of Fe(ClO 4 ) 2 have been measured at 4.2 K in applied longitudinal magnetic fields up to 5 T. The spectra are interpreted in terms of a model accounting for the random distribution of the ligand field at the Fe 2+ ion owing to the amorphity of the environment. The equilibrium state of the Fe(H 2 O) 6 2+ complex is determined by a static Jahn-Teller calculation. The main features of all spectra can be well reproduced by choosing Esub(JT)(tau)=140 cm -1 and ωsub(tau)=150 cm -1 . (author)

  18. N2O decomposition over Fe/ZSM-5: reversible generation of highly active cationic Fe species

    NARCIS (Netherlands)

    Zhu, Q.; Hensen, E.J.M.; Mojet, B.L.; Wolput, van J.H.M.C.; Santen, van R.A.

    2002-01-01

    Fe-oxide species in Fe/ZSM-5 (prepared by chemical vapor deposition of FeCl3)-active in N2O decomposition-react with zeolite protons during high temperature calcination to give highly active cationic Fe species, this transformation being reversible upon exposure to water vapor at lower temperature

  19. Magnetic properties of PrMn2-xFexGe2-57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Wang, J L; Campbell, S J; Cadogan, J M; Tegus, O; Studer, A J; Hofmann, M

    2006-01-01

    We have investigated the magnetic behaviour of PrMn 2-x Fe x Ge 2 compounds with x = 0.4, 0.6 and 0.8 over the temperature range 4.2-350 K using ac magnetic susceptibility, dc magnetization and 57 Fe Moessbauer effect spectroscopy, as well as neutron diffraction for the PrMn 1.2 Fe 0.8 Ge 2 compound. Replacement of Mn with Fe leads to contraction of the unit cell and a shortening of the Mn-Mn spacing, resulting in modification of the magnetic structure. PrMn 1.6 Fe 0.4 Ge 2 is an intralayer antiferromagnet at room temperature and ferromagnetic below T C inter ∼230 K with additional ferromagnetic ordering of the Pr sublattice detected below T C Pr ∼30 K. Re-entrant ferromagnetism has been observed in PrMn 1.4 Fe 0.6 Ge 2 with four magnetic transitions (T N intra ∼333 K, T C inter ∼168 K, T N inter ∼152 K and T C Pr ∼40 K). Moreover, it was found that T C inter and T C Pr increase with applied field while T N inter decreases. PrMn 1.2 Fe 0.8 Ge 2 is antiferromagnetic with T N intra ∼242 K and T N inter ∼154 K. The magnetic transition temperatures for all compounds are also marked by changes in the 57 Fe magnetic hyperfine field and the electric quadrupole interaction parameters. The 57 Fe transferred hyperfine field at 4.5 K in PrMn 1.6 Fe 0.4 Ge 2 and PrMn 1.4 Fe 0.6 Ge 2 is reduced (below the ordering temperature of the Pr sublattice) compared with that at 80 K (above T C Pr ), indicating that the transferred hyperfine field from Pr acts in the opposite direction to that from the Mn atoms. The neutron data for PrMn 1.2 Fe 0.8 Ge 2 demonstrate that an anisotropic thermal expansion occurs within the interplanar antiferromagnetic range

  20. Crystal structure of Fe2TiO5

    International Nuclear Information System (INIS)

    Shiojiri, M.; Sekimoto, S.; Maeda, T.; Ikeda, Y.; Iwauchi, K.

    1984-01-01

    The crystal structure of metal pseudobrookite, Fe 2 TiO 5 , is determined from high-resolution electron microscopy images observed and their computer simulated images, with the aid of electron diffraction and X-ray powder diffraction. The new structure has a monoclinic unit, containing eight molecules, with a = 2.223, b = 0.373, c = 0.980 nm, and β = 116.2 0 . The Fe, Ti, and O atoms occupy the positions (4c), +-(u, 0, w; 1/2 + u, 1/2, w), of C 2 3 (C2). The most probable parameters u and w, of Fe(1 to 4), Ti(1, 2), and O(1 to 10) are given. (author)

  1. Study of magnetization and magnetoelectricity in CoFe2O4/BiFeO3 core-shell composites

    Science.gov (United States)

    Kuila, S.; Tiwary, Sweta; Sahoo, M. R.; Barik, A.; Babu, P. D.; Siruguri, V.; Birajdar, B.; Vishwakarma, P. N.

    2018-02-01

    CoFe2O4 (core)/BiFeO3 (shell) nanoparticles are prepared by varying the relative molar concentration of core and shell materials (40%CoFe2O4-60%BiFeO3, 50%CoFe2O4-50%BiFeO3, and 60%CoFe2O4-40%BiFeO3). The core-shell nature is confirmed from transmission electron microscopy on these samples. A plot of ΔM (=MFC-MZFC) vs temperature suggests the presence of two types of spin dynamics: (a) particle size dependent spin blocking and (b) spin-disorder. These two spin dynamic processes are found to contribute independently to the generation of magnetoelectric voltage. Very clear first order and second order magnetoelectric voltages are recorded. The resemblance of the first order magnetoelectric coefficient vs temperature plot to that of building up of order parameters in the mean field theory suggests that spin disorder can act like one of the essential ingredients in building the magnetoelectric coupling. The best result is obtained for the 50-50 composition sample, which may be due to better coupling of magnetostrictive CoFe2O4, and piezoelectric BiFeO3, because of the optimum thickness of shell and core.

  2. Ab initio calculations of the electron spectrum and density of states of TlFeS{sub 2} and TlFeSe{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ismayilova, N. A., E-mail: ismayilova-narmin-84@mail.ru; Orudjev, H. S.; Jabarov, S. H. [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan)

    2017-04-15

    The results of ab initio calculations of the electron spectrum of TlFeS{sub 2} and TlFeSe{sub 2} crystals in the antiferromagnetic phase are reported. Calculations are carried out in the context of the density functional theory. The origin of the bands of s, p, and d electron states of Tl, Fe, S, and Se atoms is studied. It is established that, in the antiferromagnetic phase, the crystals possess semiconductor properties. The band gaps are found to be 0.05 and 0.34 eV for TlFeS{sub 2} and TlFeSe{sub 2} crystals, respectively.

  3. Magnetic and structural properties of ferromagnetic Fe{sub 5}PB{sub 2} and Fe{sub 5}SiB{sub 2} and effects of Co and Mn substitutions

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, Michael A., E-mail: McGuireMA@ornl.gov; Parker, David S. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-10-28

    Crystallographic and magnetic properties of Fe{sub 5}PB{sub 2}, Fe{sub 4}CoPB{sub 2}, Fe{sub 4}MnPB{sub 2}, Fe{sub 5}SiB{sub 2}, Fe{sub 4}CoSiB{sub 2}, and Fe{sub 4}MnSiB{sub 2} are reported. All adopt the tetragonal Cr{sub 5}B{sub 3} structure-type and are ferromagnetic at room temperature with easy axis of magnetization along the c-axis. The spin reorientation in Fe{sub 5}SiB{sub 2} is observed as an anomaly in the magnetization near 170 K and is suppressed by substitution of Co or Mn for Fe. The silicides are found to generally have larger magnetic moments than the phosphides, but the data suggest smaller magnetic anisotropy in the silicides. Cobalt substitution reduces the Curie temperatures by more than 100 K and ordered magnetic moments by 16%–20%, while manganese substitution has a much smaller effect. This suggests Mn moments align ferromagnetically with the Fe and that Co does not have an ordered moment in these structures. Anisotropic thermal expansion is observed in Fe{sub 5}PB{sub 2} and Fe{sub 5}SiB{sub 2}, with negative thermal expansion seen along the c-axis of Fe{sub 5}SiB{sub 2}. First principles calculations of the magnetic properties of Fe{sub 5}SiB{sub 2} and Fe{sub 4}MnSiB{sub 2} are reported. The results, including the magnetic moment and anisotropy, are in good agreement with experiment.

  4. Removal of FePO4 and Fe3(PO4)2 crystals on the surface of passive fillers in Fe0/GAC reactor using the acclimated bacteria

    International Nuclear Information System (INIS)

    Lai, Bo; Zhou, Yuexi; Yang, Ping; Wang, Juling; Yang, Jinghui; Li, Huiqiang

    2012-01-01

    Highlights: ► Fe 3 (PO 4 ) 2 and FePO 4 crystals would weaken treatment efficiency of Fe 0 /GAC reactor. ► Fe 3 (PO 4 ) 2 and FePO 4 crystals could be removed by the acclimated bacteria. ► FeS and sulfur in the passive film would be removed by the sulfur-oxidizing bacteria. ► Develop a cost-effective bio-regeneration technology for the passive fillers. - Abstract: As past studies presented, there is obvious defect that the fillers in the Fe 0 /GAC reactor begin to be passive after about 60 d continuous running, although the complicated, toxic and refractory ABS resin wastewater can be pretreated efficiently by the Fe 0 /GAC reactor. During the process, the Fe 3 (PO 4 ) 2 and FePO 4 crystals with high density in the passive film are formed by the reaction between PO 4 3− and Fe 2+ /Fe 3+ . Meanwhile, they obstruct the formation of macroscopic galvanic cells between Fe 0 and GAC, which will lower the wastewater treatment efficiency of Fe 0 /GAC reactor. In this study, in order to remove the Fe 3 (PO 4 ) 2 and FePO 4 crystals on the surface of the passive fillers, the bacteria were acclimated in the passive Fe 0 /GAC reactor. According to the results, it can be concluded that the Fe 3 (PO 4 ) 2 and FePO 4 crystals with high density in the passive film could be decomposed or removed by the joint action between the typical propionic acid type fermentation bacteria and sulfate reducing bacteria (SRB), whereas the PO 4 3− ions from the decomposition of the Fe 3 (PO 4 ) 2 and FePO 4 crystals were released into aqueous solution which would be discharged from the passive Fe 0 /GAC reactor. Furthermore, the remained FeS and sulfur (S) in the passive film also can be decomposed or removed easily by the oxidation of the sulfur-oxidizing bacteria. This study provides some theoretical references for the further study of a cost-effective bio-regeneration technology to solve the passive problems of the fillers in the zero-valent iron (ZVI) or Fe 0 /GAC reactor.

  5. Preliminary design of bellows for the DNB beam source by EJMA and FE linear analysis

    International Nuclear Information System (INIS)

    Trapasiya, Shobhit; Muvvala, Venkata Nagaraju; Rambilas, P.; Gangadharan, Roopesh; Rotti, Chandramouli; Chakraborty, Arun Kumar; Sharma, Dheeraj Kumar

    2015-01-01

    In piping system, U-shaped Bellows are widely used among flexible elements. In general, bellows are typically design for Fatigue behavior according to the EJMA standard based on empirically generated fatigue curves. The present work proposes a methodology in the design of bellows by design by analyses and validates its design by EJMA standard. A linear FE approach is chosen to in line with the EJMA standard. The proposed methodology is benchmarked with the available literatures. The same practice is implemented in the preliminary design of a U-shaped bellows in the water line circuits of DNB beam source. DNB Beam Source is a negative ion source-based neutral beam generator for ITER operates at 100KV. The beam divergence (intrinsic) and magnetic fields from ITER torus causes deflection of beams. This calls for beam optic alignment, which are assured by BS Movement mechanism system. To accomplish the above movement requirements, bellows, which is a stringent of its kind (± 22 mm axial, ± 45 mm lateral within 400mm available space with single ply), is designed between the beam source and possible rigid interface-cooling lines coming from HVB. The paper describes right from conceptual stage to preliminary design. Optimization tools are adopted in the selecting bellow dimensions using MATLAB. At the end a coordinated approach between FE based assessment (in ANSYS) and widely applied code, EJMA is implemented for the validation of design and found FE approach is a very conservative than later in the present case. (author)

  6. Synthesis and characterization of Cr doped CoFe2O4

    Science.gov (United States)

    Verma, Kavita; Patel, K. R.; Ram, Sahi; Barbar, S. K.

    2016-05-01

    Polycrystalline samples of pure and Cr-doped cobalt ferrite (CoFe2O4 and CoCrFeO4) were prepared by solid state reaction route method. X-ray diffraction pattern infers that both the samples are in single phase with Fd3m space group. Slight reduction in the lattice parameter of CoCrFeO4 has been observed as compared to CoFe2O4. The dielectric dispersion has been explained on the basis of Fe2+ ↔ Fe3+ hopping mechanism. The polarizations at lower frequencies are mainly attributed to electronic exchange between Fe2+ ↔ Fe3+ ions on the octahedral site in the ferrite lattice. In the present system a part from n-type charge carrier (Fe3+/Fe2+), the presence of (Co3+/Co2+) ions give rise to p-type charge carrier. Therefore in addition to n-type charge carrier, the local displacement of p-type charge carrier in direction of external electric field also contributes to net polarization. However, the dielectric constant and loss tangent of CoCrFeO4 are found to be lower than CoFe2O4 and is attributed to the availability of ferrous ion. CoCrFeO4 have less amount of ferrous ion available for polarization as compared to that of CoFe2O4. The impedance spectra reveal a grain interior contribution to the conduction process.

  7. In-situ generation of Li2FeSiO4/C nanocomposite as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Yi, Jin; Hou, Meng-yan; Bao, Hong-liang; Wang, Cong-xiao; Wang, Jian-qiang; Xia, Yong-yao

    2014-01-01

    Highlights: • A Li 2 FeSiO 4 /C nanocomposite is prepared via thermal vapor deposition technology. • The Li 2 FeSiO 4 /C nanocomposite is free from impurity and coated with carbon layer. • The Li 2 FeSiO 4 /C nanocomposite exhibits good rate capability and cycling stability. • Lithium benzoate serves as both lithium and carbon sources. - Abstract: A Li 2 FeSiO 4 /C nanocomposite is prepared via solvothermal method in combination with carbon coating technology. The as-prepared Li 2 FeSiO 4 /C nanocomposite is a single phase Li 2 FeSiO 4 with nano-tickness coated carbon layer and connected by the mutual cross-linked carbon conductive matrix. As cathode material for lithium ion battery, the composite delivers a discharge capacity of 154 mAh g −1 at 1 C and exhibits good rate capability with a discharge capacity of 106 mAh g −1 at the rate of 10 C, which is ascribed to the small particle size and enhanced electronic conductivity using carbon coating technology. The as-prepared Li 2 FeSiO 4 /C nanocomposite also behaves a good cycling stability with capacity retention of over 100 cycles

  8. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil-water systems.

    Science.gov (United States)

    Zhang, Yaxian; Li, Hua; Gong, Libo; Dong, Guowen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao

    2017-07-01

    The purpose of this study is to investigate the effects of nano-sized or submicro Fe 2 O 3 /Fe 3 O 4 on the bioreduction of hexavalent chromium (Cr(VI)) and to evaluate the effects of nano-sized Fe 2 O 3 /Fe 3 O 4 on the microbial communities from the anaerobic flooding soil. The results indicated that the net decreases upon Cr(VI) concentration from biotic soil samples amended with nano-sized Fe 2 O 3 (317.1±2.1mg/L) and Fe 3 O 4 (324.0±22.2mg/L) within 21days, which were approximately 2-fold of Cr(VI) concentration released from blank control assays (117.1±5.6mg/L). Furthermore, the results of denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing indicated a greater variety of microbes within the microbial community in amendments with nano-sized Fe 2 O 3 /Fe 3 O 4 than the control assays. Especially, Proteobacteria occupied a predominant status on the phylum level within the indigenous microbial communities from chromium-contaminated soils. Besides, some partial decrease of soluble Cr(VI) in abiotic nano-sized Fe 2 O 3 /Fe 3 O 4 amendments was responsible for the adsorption of nano-sized Fe 2 O 3 /Fe 3 O 4 to soluble Cr(VI). Hence, the presence of nano-sized Fe 2 O 3 /Fe 3 O 4 could largely facilitate the mobilization and biotransformation of Cr(VI) from flooding soils by adsorption and bio-mediated processes. Copyright © 2017. Published by Elsevier B.V.

  9. Monothiol glutaredoxin Grx5 interacts with Fe-S scaffold proteins Isa1 and Isa2 and supports Fe-S assembly and DNA integrity in mitochondria of fission yeast

    International Nuclear Information System (INIS)

    Kim, Kyoung-Dong; Chung, Woo-Hyun; Kim, Hyo-Jin; Lee, Kyung-Chang; Roe, Jung-Hye

    2010-01-01

    Mitochondrial monothiol glutaredoxins that bind Fe-S cluster are known to participate in Fe-S cluster assembly. However, their precise role has not been well understood. Among three monothiol glutaredoxins (Grx3, 4, and 5) in Schizosaccharomyces pombe only Grx5 resides in mitochondria. The Δgrx5 mutant requires cysteine on minimal media, and does not grow on non-fermentable carbon source such as glycerol. We found that the mutant is low in the activity of Fe-S enzymes in mitochondria as well as in the cytoplasm. Screening of multi-copy suppressor of growth defects of the mutant identified isa1 + gene encoding a putative A-type Fe-S scaffold, in addition to mas5 + and hsc1 + genes encoding putative chaperones for Fe-S assembly process. Examination of other scaffold and chaperone genes revealed that isa2 + , but not isu1 + and ssc1 + , complemented the growth phenotype of Δgrx5 mutant as isa1 + did, partly through restoration of Fe-S enzyme activities. The mutant also showed a significant decrease in the amount of mitochondrial DNA. We demonstrated that Grx5 interacts in vivo with Isa1 and Isa2 proteins in mitochondria by observing bimolecular fluorescence complementation. These results indicate that Grx5 plays a central role in Fe-S assembly process through interaction with A-type Fe-S scaffold proteins Isa1 and Isa2, each of which is an essential protein in S. pombe, and supports mitochondrial genome integrity as well as Fe-S assembly.

  10. Perpendicular magnetic anisotropy in Ta|Co40Fe40B20|MgAl2O4 structures and perpendicular CoFeB|MgAl2O4|CoFeB magnetic tunnel junction

    KAUST Repository

    Tao, B. S.

    2014-09-08

    Magnetic properties of Co40Fe40B20(CoFeB) thin films sandwiched between Ta and MgAl2O4layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl2O4structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy Ki=1.22erg/cm2, which further increases to 1.30erg/cm2after annealing, while MgAl2O4/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0nm, while that for top CoFeB layer is between 0.8 and 1.4nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl2O4/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  11. Perpendicular magnetic anisotropy in Ta|Co40Fe40B20|MgAl2O4 structures and perpendicular CoFeB|MgAl2O4|CoFeB magnetic tunnel junction

    KAUST Repository

    Tao, B. S.; Li, D. L.; Yuan, Z. H.; Liu, H. F.; Ali, S. S.; Feng, J. F.; Wei, H. X.; Han, X. F.; Liu, Y.; Zhao, Y. G.; Zhang, Q.; Guo, Zaibing; Zhang, Xixiang

    2014-01-01

    Magnetic properties of Co40Fe40B20(CoFeB) thin films sandwiched between Ta and MgAl2O4layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl2O4structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy Ki=1.22erg/cm2, which further increases to 1.30erg/cm2after annealing, while MgAl2O4/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0nm, while that for top CoFeB layer is between 0.8 and 1.4nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl2O4/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  12. Distribution of Fe atom density in a dc magnetron sputtering plasma source measured by laser-induced fluorescence imaging spectroscopy

    Science.gov (United States)

    Shibagaki, K.; Nafarizal, N.; Sasaki, K.; Toyoda, H.; Iwata, S.; Kato, T.; Tsunashima, S.; Sugai, H.

    2003-10-01

    Magnetron sputtering discharge is widely used as an efficient method for thin film fabrication. In order to achieve the optimized fabrication, understanding of the kinetics in plasmas is essential. In the present work, we measured the density distribution of sputtered Fe atoms using laser-induced fluorescence imaging spectroscopy. A dc magnetron plasma source with a Fe target was used. An area of 20 × 2 mm in front of the target was irradiated by a tunable laser beam having a planar shape. The picture of laser-induced fluorescence on the laser beam was taken using an ICCD camera. In this way, we obtained the two-dimensional image of the Fe atom density. As a result, it has been found that the Fe atom density observed at a distance of several centimeters from the target is higher than that adjacent to the target, when the Ar gas pressure was relatively high. It is suggested from this result that some gas-phase production processes of Fe atoms are available in the plasma. This work has been performed under the 21st Century COE Program by the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  13. Viscosity Measurements of "FeO"-SiO2 Slag in Equilibrium with Metallic Fe

    Science.gov (United States)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2013-06-01

    The current study delivered the measurements of viscosities in the system "FeO"-SiO2 in equilibrium with metallic Fe in the composition range between 15 and 40 wt pct SiO2. The experiments were carried out in the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C) using a rotational spindle technique. An analysis of the quenched sample by electron probe X-ray microanalysis (EPMA) after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The current results are compared with available literature data. The significant discrepancies of the viscosity measurements in this system have been clarified. The possible reasons affecting the accuracy of the viscosity measurement have been discussed. The activation energies derived from the experimental data have a sharp increase at about 33 wt pct SiO2, which corresponds to the composition of fayalite (Fe2SiO4). The modified quasi-chemical model was constructed in the system "FeO"-SiO2 to describe the current viscosity data.

  14. Terahertz conductivity measurement of FeSe0.5Te0.5 and Co-doped BaFe2As2 thin films

    International Nuclear Information System (INIS)

    Nakamura, D.; Akiike, T.; Takahashi, H.; Nabeshima, F.; Imai, Y.; Maeda, A.; Katase, T.; Hiramatsu, H.; Hosono, H.; Komiya, S.; Tsukada, I.

    2011-01-01

    We investigated the THz conductivity of FeSe 0.5 Te 0.5 and Ba (Fe 2-x Co x )As 2 thin films. We estimated the superconducting gap energy values. We found anomolous conductivity spectrum in the antiferromagnetic phase. The terahertz (THz) conductivity of FeSe 0.5 Te 0.5 ('11'-type) and Co-doped BaFe 2 As 2 ('122'-type) thin films are investigated. For '11'-type, the frequency dependence of the complex conductivity can be understood as that of BCS-type superconductor near the superconducting gap energy, and we estimated the superconducting gap energy to be 0.6 meV. For '122'-type, we estimated the superconducting gap energy to be 2.8 meV, which is considered to be the superconducting gap opened at the electron-type Fermi surface near the M point.

  15. Irradiation effects on Fe distributions in zircaloy-2 and Zr-2.5Nb

    International Nuclear Information System (INIS)

    Zou, H.; Hood, G.M.; Roy, J.A.

    1995-03-01

    Irradiation of large-grained Zr-2.5Nb (ZN) and Zircaloy-2 (Zy) with 1.5 MeV Ar ions to a fluence of ∼ 10 20 /m 2 (≡ 10 dpa) at 50, 300 and 420 deg C leads to enhanced α-phase Fe levels of 250-1500 ppma, compared to equivalent non-irradiated state values of ∼ 70 ppma. In ZN the β-phase Fe levels fell from about 6000 to 3500 ppma: this result accords, qualitatively, with the loss of Fe from the β-phase following in-service neutron irradiation. Measurements on Zy showed that the Fe concentrations were higher near the specimen surfaces. Limited data for Ni distributions in Zy show similar (to Fe) behaviour. (author). 18 refs., 2 tabs

  16. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.

    Science.gov (United States)

    Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M

    2015-03-03

    Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.

  17. Pressure induced helimagnetism in Fe-based (Y.sub.2./sub.Fe.sub.17./sub., Lu.sub.2./sub.Fe.sub.17./sub.) intermetallic compounds

    Czech Academy of Sciences Publication Activity Database

    Kamarád, Jiří; Prokhnenko, Olexandr; Prokeš, K.; Arnold, Zdeněk; Andreev, Alexander V.

    2007-01-01

    Roč. 310, - (2007), s. 1801-1803 ISSN 0304-8853 R&D Projects: GA ČR GA202/06/0178 Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetic structure * Fe-base intermetallics * Y 2 Fe 17 * pressure effects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  18. Charge ordering and multiferroicity in Fe{sub 3}BO{sub 5} and Fe{sub 2}MnBO{sub 5} oxyborates

    Energy Technology Data Exchange (ETDEWEB)

    Maignan, A., E-mail: antoine.maignan@ensicaen.fr [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UNICAEN, 6 bd du Maréchal Juin, 14050 CAEN Cedex 4 (France); Lainé, F.; Guesdon, A.; Malo, S. [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UNICAEN, 6 bd du Maréchal Juin, 14050 CAEN Cedex 4 (France); Damay, F. [Laboratoire Léon Brillouin, UMR 12, LLB-Saclay, 91191 GIF-SUR-YVETTE Cedex (France); Martin, C. [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UNICAEN, 6 bd du Maréchal Juin, 14050 CAEN Cedex 4 (France)

    2017-02-15

    The comparison of Fe{sub 3}BO{sub 5} and Fe{sub 2}MnBO{sub 5} reveals that the 2Fe{sup 2+}: Fe{sup 3+} charge ordering of the former is suppressed in the latter. Spin dynamics probed by ac susceptibility are strongly affected by the substitution, inducing superparamagnetism at low temperature in Fe{sub 2}MnBO{sub 5}. Interestingly, for both oxyborates, glassiness is observed in the dielectric properties at low temperature, but only Fe{sub 3}BO{sub 5} shows a magnetodielectric effect close to its lower magnetic transition. A change in the electrical polarization, measured by pyroelectric current integration, is observed in Fe{sub 3}BO{sub 5} and is even more pronounced in Fe{sub 2}MnBO{sub 5}. Such results suggest that these oxyborates behave like antiferromagnetic relaxor ferroelectrics. These features are proposed to be related to the distribution of the species (Fe{sup 3+}, Fe{sup 2+} and Mn{sup 2+}) over the four transition metal sites forming the ludwigite structure. - Graphical abstract: 90 K [010] electron diffraction patterns of Fe{sub 3}BO{sub 5}. The yellow arrows in the pattern indicate the extra-spots corresponding to the superstructure induced by the charge ordering. - Highlights: • The TEM (ED) study of the Fe{sub 3}BO{sub 5} oxyborate at 90 K reveals a superstructure related to a Fe{sup 2+}/Fe{sup 3+} ordering. • The Fe{sub 2}MnBO{sub 5}, Mn-substituted counterpart, does not show such ordering. • Our magnetic and electric measurements demonstrate that these magnetic ferrites exhibit glassiness in their charges (relaxor-type) with additional superparamagnetism at low T for Fe{sub 2}MnBO{sub 5} and magnetodielectric coupling near T{sub N2}=72 K in Fe{sub 3}BO{sub 5}. • The pyroelectric measurements confirm the existence of a ferroelectric behavior in these antiferromagnets. Accordingly, our results open the route to the study of other large class of the M{sub 2}{sup 2+}M’{sup 3+}BO{sub 5} ludwigites and to their complex magnetism and its

  19. Insights from in situ and environmental TEM on the oriented attachment of α-Fe2O3 nanoparticles during α-Fe2O3 nanorod formation

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Fay, Michael W.; Hansen, Thomas Willum

    2014-01-01

    Acicular α-Fe2O3 nanorods (NRs), at an intermediate stage of development, were isolated using a snapshot valve-assisted hydrothermal synthesis (HS) technique, for the purpose of complementary in situ transmission electron microscopy (iTEM) and environmental TEM (ETEM) investigations of the effect......’ with the developing NR to adopt a perfect single crystal. Conversely, the heating of partially developed α-Fe2O3 NRs up to 250 °C, under vacuum, during iTEM, demonstrated the progressive coalescence of loosely packed α-Fe2O3 NPs and the coarsening of α-Fe2O3 NRs, without any direct evidence for an intermediate OA...... stage. Direct evidence was obtained for the action of an OA mechanism prior to the consumption of α-Fe2O3 NPs at the tips of developing α-Fe2O3 NRs during ETEM investigation, under an He pressure of 5 mbar at 500 °C. However, α-Fe2O3 NPs more strongly attached to the side-walls of developing α-Fe2O3 NRs...

  20. Deuterium absorption and material phase characteristics of Zr2Fe

    International Nuclear Information System (INIS)

    Nobile, A.; Mosley, W.C.; Holder, J.S.; Brooks, K.N.

    1992-01-01

    Scanning electron microscope (SEM) images of polished surfaces, electron probe microanalysis, and X-ray powder diffractometry indicated the presence of a continuous Zr 2 Fe phase with secondary phases of ZrFe 2 , Zr 5 FeSn, α-Zr, and Zr 6 Fe 3 O. A statistically-designed experiment to determine the effects of temperature, time, and vacuum quality On activation of St 198 revealed that when activated at low temperature (350 degrees C) deuterium absorption rate was slower when the vacuum quality was pwr (2.5 Pa vs. 3x10 -4 Pa). However, at higher activation temperature (500 degrees C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200--500 degrees C. The P-C-T data over the full range of deuterium loading and at temperatures of 350 degrees C and below is described by: K 0e -(ΔH α /RT)=PD 2 q 2 /(q*-q) 2 where ΔHα and K 0 have values of 101.8 kJ·mole -1 and 3.24x10 -8 Pa -1 , and q* is 15.998 kPa·L -1 ·g -1 . At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D 2 from the gas phase. XRD suggests these reactions to be: 2 Zr 2 FeD x → x ZrD 2 + x/3 ZrFe 2 + (2 - 2/3x) Zr 2 Fe and Zr 2 FeD x + (2 -1/2x) D 2 → ZrD 2 + Fe, where 0 < x < 3. Reaction between gas phase deuterium and Zr2FC formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction

  1. Crystal structure and magnetism of Fe2(OH)[B2O4(OH)

    DEFF Research Database (Denmark)

    Kurayoshi, Yotaro; Hara, Shigeo; Sato, Hirohiko

    2014-01-01

    The structure and magnetism of Fe2(OH)[B2O4(OH)] are reported. Powder x-ray diffraction reveals a characteristic structure containing two crystallographically independent zigzag-ladder chains of magnetic Fe2+ ions. Magnetization measurements reveal a phase transition at 85 K, below which a weak...... spontaneous magnetization (approximate to 0.15 μB/Fe) appears. Below 85 K, magnetization increases with decreasing temperature down to 70 K, below which it decreases and approaches a constant value at low temperature. The Mossbauer spectrum at room temperature is composed of two paramagnetic doublets...... corresponding to the two crystallographic Fe2+ sites. Below 85 K, each doublet undergoes further splitting because of the magnetic hyperfine fields. The temperature dependence of the hyperfine field is qualitatively different for the two distinguishable Fe2+ sites. This is responsible for the anomalous...

  2. Phase diagrams of Ca(Fe,Ru){sub 2}As{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Kan; Gegenwart, Philipp [Experimentalphysik VI, Elektronische Korrelationen und Magnetismus, Institut fuer Physik, Universitaet Augsburg, D-86135 Augsburg (Germany)

    2015-07-01

    Single crystalline Ca(Fe,Ru){sub 2}As{sub 2} series have been grown and characterized by structural, magnetic, and transport measurements. These measurement shows Ca(Fe,Ru){sub 2}As{sub 2} undergoes successive phase transitions with increasing Ru element doping. The antiferromagnetic phase with orthorhombic structure at x<0.023 (x means the doping concentration of Ru element) is directly driven to a Fermi-liquid type collapsed tetragonal (cT) phase at 0.023Fe{sub 2}As{sub 2} under hydrostatic pressure.

  3. Determination of Fe2+ and Fe3+ species by FIA-CRC-ICP-MS in Antarctic ice samples

    DEFF Research Database (Denmark)

    Spolaor, A; Vallelonga, Paul Travis; Gabrieli, J

    2012-01-01

    contexts depends strongly on its oxidation state. Solubility in water and the capacity to form complexes are just two important characteristics that are species dependent. Distinguishing between the two iron species, Fe(II) and Fe(III), is necessary to evaluate bioavailability, as Fe(II) is more soluble...... detection limit is 0.01 ng g-1. A chelating resin, Ni-NTA Superflow, was used to separate the Fe species: At pH 2 the resin is capable of retaining Fe3+ with no retention of Fe2+. After the initial separation, we oxidized the Fe2+ using H2O2, and determined the Fe2+ concentration as the difference between...

  4. Moessbauer spectroscopy study on the hydrothermal transformation α-FeOOH → α-Fe2O3

    International Nuclear Information System (INIS)

    Barb, D.; Diamandescu, L.; Mihaila-Tarabsanu, D.; Rusi, A.; Moraria, M.

    1990-01-01

    The reaction kinetics of the hydrothermal transformation α-FeOOH→α-Fe 2 O 3 was studied by means of Moessbauer spectroscopy. From the reaction isotherms, a monomolecular, first order reaction was found to characterise the hydrothermal transformation of alpha oxihydroxide to the alpha iron oxide. The rate constant as well as the activation energy of this process were determined. No intermediate phases were identified in the hydrothermal samples. The thermodynamic properties of the hydrothermal system α-FeOOH→α-Fe 2 O 3 in correlation with Moessbauer spectroscopy data are discussed. (orig.)

  5. Measurement of 54Fe(n,2n)53Fe cross section near threshold

    International Nuclear Information System (INIS)

    Smither, R.K.; Greenwood, L.R.

    1984-01-01

    A series of experiments were performed at the Princeton Plasma Physics Laboratory to measure the cross section of the 54 Fe(n,2n) 53 Fe reaction near threshold. Measurements were made at 6 different neutron energies and cover the 1 MeV energy range from threshold (13.64 MeV) to 14.64 MeV. The 54 Fe(n,2n) cross section was measured relative to the 27 Al(n,p) 27 Mg cross section to an accuracy of a few percent. These accurate cross-section measurements will be useful in calculating damage caused by 14 MeV D-T plasma neutrons in Fe and calculating the production of the long-lived 53 Mn nuclei that account for much of the buildup of long-lived radioactivity in steel structures and other ferrous materials used in the construction of fusion reactors. They will also play an important part in a new method for measuring the plasma ion temperature of a D-T plasma

  6. Electrochemical properties of Li2 FeSiO4 /C nanocomposites prepared by sol-gel and hydrothermal methods

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O. D.; Naik, Vaman M.; Nazri, Gholam A.; Naik, Ratna

    Li2FeSiO4 is considered as potential cathode material for next generation lithium ion batteries because of its high specific theoretical capacity, low cost, and safety. However, it suffers from poor electronic conductivity and slow lithium ion diffusion in the solid phase. To address these issues, we have studied mesoporous Li2FeSiO4/C composites synthesized by sol-gel (SG) and hydrothermal (HT) methods using tri-block copolymer (P123) as carbon source and structure directing agent. The structure and morphology of the composites were characterized by XRD, SEM and TEM and the surface area and pore size distribution were measured by using N2 adsorption/desorption. Galvanostatic cycling, electrochemical impedance spectroscopy, and cyclic voltammetry were used to evaluate the electrochemical performance of the Li2FeSiO4/C composites. The Li2FeSiO4/C (HT) composites show a superior electrochemical performance compared to Li2FeSiO4/C (SG). At C/30 rate, the discharge capacity of Li2FeSiO4/C (HT) reached ~276 mAh/g in the 1.5-4.6 V window and shows better rate capability and stability at high rates. We attribute the improved electrochemical performance of Li2FeSiO4/C (HT) to its large surface area and reduced particle size. The details of the study will be presented.

  7. Reactions of laser-ablated iron atoms and cations with carbon monoxide: Infrared spectra of FeCO+, Fe(CO)2+, Fe(CO)x, and Fe(CO)x- (x=1-4) in solid neon

    Science.gov (United States)

    Zhou, Mingfei; Andrews, Lester

    1999-06-01

    Laser-ablated iron atoms, cations, and electrons have been reacted with CO molecules during condensation in excess neon. The FeCO molecule is observed at 1933.7 cm-1 in solid neon. Based on isotopic shifts and density functional calculations, the FeCO molecule has the same 3Σ- ground state in solid neon that has been observed at 1946.5 cm-1 in a recent high resolution gas phase investigation [Tanaka et al., J. Chem. Phys. 106, 2118 (1997)]. The C-O stretching vibration of the Fe(CO)2 molecule is observed at 1917.1 cm-1 in solid neon, which is in excellent agreement with the 1928.2 cm-1 gas phase value for the linear molecule. Anions and cations are also produced and trapped, absorptions at 1782.0, 1732.9, 1794.5, and 1859.7 cm-1 are assigned to the linear FeCO-, Fe(CO)2-, trigonal planar Fe(CO)3-, and C3v Fe(CO)4- anions, respectively, and 2123.0, 2134.0 cm-1 absorptions to the linear FeCO+ and Fe(CO)2+ cations. Doping these experiments with CCl4 virtually eliminates the anion absorptions and markedly increases the cation absorptions, which confirms the charge identifications. Higher iron carbonyl Fe(CO)3, Fe(CO)4, and Fe(CO)5 absorptions are produced on photolysis.

  8. Improved Electrochemical Performance of LiFePO4@N-Doped Carbon Nanocomposites Using Polybenzoxazine as Nitrogen and Carbon Sources.

    Science.gov (United States)

    Wang, Ping; Zhang, Geng; Li, Zhichen; Sheng, Wangjian; Zhang, Yichi; Gu, Jiangjiang; Zheng, Xinsheng; Cao, Feifei

    2016-10-03

    Polybenzoxazine is used as a novel carbon and nitrogen source for coating LiFePO 4 to obtain LiFePO 4 @nitrogen-doped carbon (LFP@NC) nanocomposites. The nitrogen-doped graphene-like carbon that is in situ coated on nanometer-sized LiFePO 4 particles can effectively enhance the electrical conductivity and provide fast Li + transport paths. When used as a cathode material for lithium-ion batteries, the LFP@NC nanocomposite (88.4 wt % of LiFePO 4 ) exhibits a favorable rate performance and stable cycling performance.

  9. Effect of Fe on the formation and H-sorption properties of Mg2FeH6

    Energy Technology Data Exchange (ETDEWEB)

    Asselli, A. A.C. [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Ishikawa, T.T.; Neves, W.R.; Kiminami, C.S.; Botta, W.J. [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil). Departamento de Engenharia de Materiais

    2009-07-01

    Full text: The compound Mg- - - -2- -FeH6- - - - was synthesized from a 2Mg+Fe mixture in a single process by reactive milling (RM) under hydrogen atmosphere at room temperature. The complex hydride was prepared from Mg powder and granulated (1-2 mm) or powdered Fe using a planetary mill. The phase evolution during different milling times (from 3 to 72h) was investigated by X-ray diffraction (XRD) technique. The dehydrogenation behavior of the so-formed metal hydride was investigated by differential scanning calorimetry (DSC). The use of powdered iron as starting material promoted conversion to complex hydride at shorter milling times than when granulated iron was used. On the other hand, the DSC analysis show a decrease in temperature of release of hydrogen for the as-milled 2Mg+Fe (Fe granulated) mixtures. Scanning (SEM) and transmission electron microscopy (TEM) have been carried out to correlate the structural characteristics of the as-milled materials to the decomposition behaviors. (author)

  10. Cu(2+) and Fe(2+) mediated photodegradation studies of soil-incorporated chlorpyrifos.

    Science.gov (United States)

    Rafique, Nazia; Tariq, Saadia R; Ahad, Karam; Taj, Touqeer

    2016-03-01

    The influences of Cu(2+) and Fe(2+) on the photodegradation of soil-incorporated chlorpyrifos were investigated in the present study. The soil samples spiked with chlorpyrifos and selected metal ions were irradiated with UV light for different intervals of time and analyzed by HPLC. The unsterile and sterile control soil samples amended with pesticides and selected metals were incubated in the dark at 25 °C for the same time intervals. The results of the study evidenced that photodegradation of chlorpyrifos followed the first-order kinetics. The dissipation t0.5 of chlorpyrifos was found to decrease from 41 to 20 days under UV irradiation. The rate of chlorpyrifos photodegradation was increased in the presence of both metals, i.e., Cu(2+) and Fe(2+). Thus, initially observed t0.5 of 19.8 days was decreased to 4.39 days in the case of Cu(+2) and 19.25 days for Fe(+2). Copper was found to increase the rate of photodegradation by 4.5 orders of magnitude while the microbial degradation of chlorpyrifos was increased only twofold. The microbial degradation of chlorpyrifos was only negligibly affected by Fe(2+) amendment. The studied trace metals also affected the abiotic degradation of the pesticide in the order Cu(2+) > Fe(2+).

  11. Bioaccumulation of Fe2O3(magnetic) nanoparticles in Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    Hu Ji; Wang Demin; Wang Jiangtao; Wang Jianmin

    2012-01-01

    While nano-Fe 2 O 3 (magnetic) is generally considered non-toxic, it could serve as a carrier of other toxic chemicals such as As(V) and enhance their toxicity. The bioaccumulation of nano-Fe 2 O 3 (m) with different exposure times, NP concentrations, and pH conditions was investigated using Ceriodaphnia dubia (C. dubia) as the model organism. Under natural pH conditions, C. dubia significantly accumulated nano-Fe 2 O 3 (m) in the gut, with the maximum accumulation being achieved after 6 h of exposure. The concentration of nano-Fe 2 O 3 also impacted its accumulation, with the maximum uptake occurring at 20 mg/L or more. In addition, the highest bioaccumulation occurred in a pH range of 7–8 where the highest feeding rate was reported, confirming that the ingestion of NPs is the main route of nano-Fe 2 O 3 (m) bioaccumulation. In a clean environment without NPs, depuration of nano-Fe 2 O 3 (m) occurred, and food addition accelerated the depuration process. - Highlights: ► Nano-Fe 2 O 3 (m) enhances the toxicity of As(V). ► C. dubia significantly accumulate nano-Fe 2 O 3 (m) through ingestion. ► The bioaccumulation of nano-Fe 2 O 3 (m) is affected by time, NP concentration, and pH. ► Food addition accelerates the depuration process of accumulated nano-Fe 2 O 3 (m). - Nano-Fe 2 O 3 (m) could enhance the toxicity of As(V) due to the significant accumulation of nano-Fe 2 O 3 (m) along with sorbed As(V) by C. dubia through ingestion.

  12. Epitaxial Fe16N2 thin film on nonmagnetic seed layer

    Science.gov (United States)

    Hang, Xudong; Zhang, Xiaowei; Ma, Bin; Lauter, Valeria; Wang, Jian-Ping

    2018-05-01

    Metastable α″ -Fe16N2 has attracted much interest as a candidate for rare-earth-free hard magnetic materials. We demonstrate that Fe16N2 thin films were grown epitaxially on Cr seed layers with MgO (001) substrates by facing-target sputtering. Good crystallinity with the epitaxial relation MgO (001 )[110 ] ∥ Cr (001 )[100 ] ∥ Fe16N2 (001 )[100 ] was obtained. The chemical order parameter, which quantifies the degree of N ordering in the Fe16N2 (the N-disordered phase is α' -Fe8N martensite), reaches 0.75 for Cr-seeded samples. Cr has a perfect lattice constant match with Fe16N2, and no noticeable strain can be assigned to Fe16N2. The intrinsic saturation magnetization of this non-strained Fe16N2 thin film at room temperature is determined to be 2.31 T by polarized neutron reflectometry and confirmed with vibrating sample magnetometry. Our work provides a platform to directly study the magnetic properties of high purity Fe16N2 films with a high order parameter.

  13. Determination of localized Fe2+/Fe3+ ratios in inks of historic documents by means of μ-XANES

    International Nuclear Information System (INIS)

    Proost, K.; Janssens, K.; Wagner, B.; Bulska, E.; Schreiner, M.

    2004-01-01

    An important part of the European cultural heritage is composed of hand-written documents. Many of these documents were drawn up with iron-gall ink. This type of ink present a serious conservation problem, as it slowly oxidizes ('burns') the paper it is written on, thereby gradually disintegrating the historic document. Acid hydrolysis of the cellulose and/or the oxidation of organic compounds promoted by radical intermediates that are formed due to the presence of Fe 2+ ions are considered to be the cause of the disintegration. μ-XANES measurements were performed with a lateral resolution of 30-50 μm in order to determine the local Fe 2+ /Fe 3+ ratio in 19th C. documents from the Austrian National Archives and fragments of 16th C documents from the Polish National Library. In the 19th C documents, no significant amount of Fe 2+ was detected. On the other hand, in the 16th C fragments, significant amounts of Fe 2+ and appreciable differences in distribution of Fe 2+ and Fe 3+ within individual letters/ink stains were observed

  14. Study of structural, electronic and magnetic properties of CoFeIn and Co{sub 2}FeIn Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    El Amine Monir, M. [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Baltache, H. [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Abu-Jafar, M.S., E-mail: mabujafar@najah.edu [Dipartimento di Fisica Universita di Roma ' La Sapienza' , Roma (Italy); Department of Physics, An-Najah N. University, Nablus, Palestine (Country Unknown); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); and others

    2015-11-15

    The structural, electronic and magnetic properties of half-Heusler CoFeIn and full-Heusler Co{sub 2}FeIn alloys have been investigated by using the state of the art full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential was treated with the generalized gradient approximation (PBE-GGA) for the calculation of the structural properties, whereas the PBE-GGA+U approximation (where U is the Hubbard Coulomb energy term) is applied for the computation of the electronic and magnetic properties in order to treat the “d” electrons. The structural properties have been calculated in the paramagnetic and ferromagnetic phases where we have found that both the CoFeIn and Co{sub 2}FeIn alloys have a stable ferromagnetic phase. The obtained results of the spin-polarized band structure and the density of states show that the CoFeIn alloy is a metal and the Co{sub 2}FeIn alloy has a complete half-metallic nature. Through the obtained values of the total spin magnetic moment, we conclude that in general, the Co{sub 2}FeIn alloy is half-metallic ferromagnet material whereas the CoFeIn alloy has a metallic nature. - Highlights: • Based on DFT calculations, CoFeIn and Co2FeIn Heusler alloys were investigated. • The magnetic phase stability was determined from the total energy calculations. • Electronic properties reveal the metallic (half-metallic) nature for CoFeIn (Co2FeIn)

  15. Structural and magnetic properties of SiO{sub 2}-CaO-Na{sub 2}O-P{sub 2}O{sub 5} containing BaO-Fe{sub 2}O{sub 3} glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Leenakul, W.; Kantha, P.; Pisitpipathsin, N. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Rujijanagul, G.; Eitssayeam, S. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pengpat, K., E-mail: kamonpan.p@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-01-15

    The incorporation method was employed to produce bioactive glass-ceramics from the BaFe{sub 12}O{sub 19}-SiO{sub 2}-CaO-Na{sub 2}O-P{sub 2}O{sub 5} glass system. The ferrimagnetic BaFe{sub 12}O{sub 19} was first prepared using a simple mixed oxide method, where the oxide precursors of 45S5 bioglass were initially mixed and then melted to form glass. The devitrification of Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} and Fe{sub 3}O{sub 4} was observed in all of the quenched glass samples. The glass samples were then subjected to a heat treatment schedule for further crystallization. It was found that the small traces of BaFe{sub 12}O{sub 19} phases started to crystallize in high BF content samples of 20 and 40 wt%. These samples also exhibited good magnetic properties comparable to that of other magnetic glass-ceramics. The bioactivity of the BF glass-ceramics improved with increasing BF content as was evident by the formation of bone-like apatite layers on the surface of all of the glass-ceramics after soaking in SBF for 14 days. The results support the use of these bioactive glass-ceramics for hyperthermia treatment within the human body. - Highlights: Black-Right-Pointing-Pointer BF addition improves the magnetic property and bioactivity of 45S5 bioglasses. Black-Right-Pointing-Pointer Bioglass-ceramics exhibited soft magnetic properties with Mr=14.850 emu/g. Black-Right-Pointing-Pointer Magnetic property can be enhanced by crystallization of BF in 45S5 bioglasses.

  16. Core-Shell Nano structure of a-Fe2O3/Fe3O4: Synthesis and Photo catalysis for Methyl Orange

    International Nuclear Information System (INIS)

    Tian, Y.; Wu, D.; Yu, B.; Jia, X.; Zhan, S.

    2011-01-01

    Fe 3 O 4 nanoparticle was synthesized in the solution involving water and ethanol. Then, a-Fe 2 O 3 shell was produced in situ on the surface of the Fe 3 O 4 nanoparticle by surface oxidation in molten salts, forming α-Fe 2 O 3 /Fe 3 O 4 core-shell nano structure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primary Fe 3 O 4 nanoparticles were oxidized. Furthermore, the obtained a-Fe 2 O 3 /Fe 3 O 4 core-shell nanoparticles were used to photo catalyse solution of methyl orange, and the results revealed that a-Fe 2 O 3 /Fe 3 O 4 nanoparticles were more efficient than the self-prepared α-Fe 2 O 3 nanoparticles. At the same time, the photo catalyzer was recyclable by applying an appropriate magnetic field.

  17. Treatment of reverse osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton process (1stFe/Cu/air-Fenton-2ndFe/Cu/air).

    Science.gov (United States)

    Ren, Yi; Yuan, Yue; Lai, Bo; Zhou, Yuexi; Wang, Juling

    2016-01-25

    To decompose or transform the toxic and refractory reverse osmosis (RO) concentrate and improve the biodegradability, 1stFe/Cu/air-Fenton-2ndFe/Cu/air were developed to treat RO concentrate obtained from an amino acid production plant in northern China. First, their operating conditions were optimized thoroughly. Furthermore, 5 control experiments were setup to confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and synergistic reaction between Fe/Cu/air and Fenton. The results suggest that the developed method could obtain high COD removal (65.1%) and BOD5/COD ratio (0.26) due to the synergistic reaction between Fe/Cu/air and Fenton. Under the optimal conditions, the influent and effluent of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and 5 control experiments were analyzed by using UV, FTIR, EEM and LC, which confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air. Therefore, the developed method in this study is a promising process for treatment of RO concentrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Inverse CeO2sbnd Fe2O3 catalyst for superior low-temperature CO conversion efficiency

    Science.gov (United States)

    Luo, Yongming; Chen, Ran; Peng, Wen; Tang, Guangbei; Gao, Xiaoya

    2017-09-01

    The paper presents a rational design of highly efficient and affordable catalysts for CO oxidation with a low operating temperature. A series of ceria-iron catalysts were inversely built via a co-precipitation method. The catalytic activity of low-temperature CO oxidation was much higher with CeO2-modified Fe2O3 (CeO2sbnd Fe2O3) than with Fe2O3-modified CeO2 (Fe2O3sbnd CeO2). In particular, the 7.5% CeO2sbnd Fe2O3 catalyst had the highest activity, reaching 96.17% CO conversion at just 25 °C. Catalyst characterization was carried out to explore the cause of the significantly different CO conversion efficiencies between the Fe2O3sbnd CeO2 and Fe2O3sbnd CeO2 catalysts. HRTEM showed a significant inhomogeneous phase in 7.5% CeO2sbnd Fe2O3 with small CeO2 nanoparticles highly dispersed on the rod-shaped Fe2O3 surface. Furthermore, the 7.5% CeO2sbnd Fe2O3 composite catalyst exhibited the highest ratios of Fe2+/Fe3+ and Ce3+/Ce4+ as well as the largest pore volume. These properties are believed to benefit the CO conversion in 7.5% CeO2sbnd Fe2O3.

  19. Synthesizing single-phase β-FeSi2 via ion beam irradiations of Fe/Si bilayers

    International Nuclear Information System (INIS)

    Milosavljevic, M.; Dhar, S.; Schaaf, P.; Bibic, N.; Lieb, K.P.

    2001-01-01

    This paper presents results on the direct synthesis of the β-FeSi 2 phase by ion beam mixing of Fe/Si bilayers with Xe ions. The influence of the substrate temperature, ion fluence and energy on the growth of this phase was investigated using Rutherford backscattering (RBS), X-ray diffraction (XRD) and conversion electron Moessbauer spectroscopy (CEMS). Complete growth of single-phase β-FeSi 2 was achieved by 205 keV Xe ion irradiation to a fluence of 2x10 16 ions/cm 2 at 600 deg. C. We propose a two-step reaction mechanism involving thermal and ion beam energy deposition

  20. Design of a neutral electro-Fenton system with Fe-Fe2O3/ACF composite cathode for wastewater treatment

    International Nuclear Information System (INIS)

    Li Jinpo; Ai Zhihui; Zhang Lizhi

    2009-01-01

    The narrow pH range limits the wide application of Fenton reaction in the wastewater treatment. It is of great importance to widen working pH range of Fenton reaction from strong acidic condition to neutral, even basic ones. In this study, for the first time nanostructured Fe-Fe 2 O 3 was loaded on active carbon fiber (ACF) as an oxygen diffusion cathode to be used in a heterogeneous electro-Fenton (E-Fenton) oxidation system. This novel Fe-Fe 2 O 3 /ACF composite cathode was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and element mapping. On the degradation of dye pollutant rhodamine B in water, this heterogeneous E-Fenton system with the Fe-Fe 2 O 3 /ACF cathode showed much higher activity than other E-Fenton systems with commercial zero valent iron powders (Fe 0 ) and ferrous ions (Fe 2+ ) under neutral pH. On the basis of experimental results, we proposed a possible pathway of rhodamine B degradation in this heterogeneous Fe-Fe 2 O 3 /ACF E-Fenton process. This heterogeneous E-Fenton system is very promising to remove organic pollutants in water at neutral pH

  1. Development of novel exchange spring magnet by employing nanocomposites of CoFe{sub 2}O{sub 4} and CoFe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Safi, Rohollah; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Shoja-Razavi, Reza; Tavoosi, Majid

    2016-12-01

    CoFe{sub 2}O{sub 4}−CoFe2 hard–soft nanocomposites were prepared via reduction of the cobalt ferrite CoFe{sub 2}O{sub 4} in hydrogen atmosphere at different temperature. The structure and the room temperature magnetization of the samples were characterized by X-ray diffraction, field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). It was found that the saturation magnetization of the nanocomposite powders increases by reduction temperature while their coercivity decreases. The highest M{sub r}/M{sub s} ratio of 0.52 was obtained for sample reduced at 550 °C. Single smooth hysteresis loops of nanocomposites show that these nanocomposites behave as the single-phase materials. This result indicates the presence of exchange coupling between two different hard and soft phases. - Highlights: • CoFe{sub 2}O{sub 4}–CoFe{sub 2} was successfully synthesized by reduction diffusion process. • Two phases are effectively exchange coupled in nanocomposite. • Single smooth hysteresis loop was developed in nanocomposites.

  2. Obtainment the reverse phase spinel [Zn2+0,5Fe3+0,5](Ni2+0,5Fe3+ 1,5)O4 by the method combustion reaction: the form of assessment heating

    International Nuclear Information System (INIS)

    Silva, M.C.; Costa, A.C.F.; Coutinho, J.P.; Silva, A.T.C.; Freitas, N.L.

    2011-01-01

    This paper aims to synthesize the inverse spinel phase of by combustion reaction method and to evaluate how [Zn 2+ 0,5Fe 3+ 0,5](Ni 2+ 0,5Fe 3+ 1,5)O 4 the heat source influences the structural and morphological this phase. The forms of heating were muffle oven and ceramic plate with built-in resistance and aniline as reducing agent. Comparisons were made between temperature, reaction time and physical changes undergone by the material during the combustion carried out in two warm-up. The material was characterized by XRD, SEM, and textural analysis. Based on the results showed that the spinel phase was successfully obtained, were found traces of the phases ZnO and Fe2O3. The Most crystallite size and higher reaction temperature were presented by the material produced in the plate. As for surface area and pore volume, the highest values were achieved by the material synthesized in the oven. The agglomerates were presented in the form of skeins made of pre-sintered particles. (author)

  3. Photoluminescence of the Mg2Al4Si5O18-Al2O3-MgAl2O4-SiO2 ceramic system containing Fe3+ and Cr3+ as impurity ions

    Science.gov (United States)

    Sosman, L. P.; López, A.; Pedro, S. S.; Papa, A. R. R.

    2018-02-01

    This work presents the results of photoluminescence, excitation and radiative decay time for a ceramic system containing Mg2Al4Si5O18-Al2O3-MgAl2O4-SiO2 with Fe3+ and Cr3+ as impurity ions. Emission data were obtained using several excitation wavelengths and the excitation data were acquired for the most intense emission bands. The optical results were analyzed according to the Tanabe-Sugano (TS) theory from which the crystalline field parameter Dq and Racah parameters B and C were obtained for the Fe3+ and Cr3+ sites. The results indicate that the Fe3+ and Cr3+ ions occupy tetrahedral and octahedral sites, respectively. The emission from Fe3+ and Cr3+ ions causes an intense and broad band ranging between 350 nm and 850 nm, showing that this material is a potential tunable radiation source at room temperature.

  4. X-Ray Magnetic Dichroism of Antiferromagnet Fe2O3 : The Orientation of Magnetic Moments Observed by Fe 2p X-Ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Kuiper, Pieter; Searle, Barry G.; Rudolf, Petra; Tjeng, L.H.; Chen, C.T.

    1993-01-01

    We report strong magnetic linear dichroism at the Fe L2,3 edge of the antiferromagnet Fe2O3 (hematite). The relative difference in absorption for light polarized parallel and perpendicular to the magnetic moment is as high as 40% at the Fe L2 edge. The spectra are in excellent agreement with

  5. Mechanism of thermal decomposition of K{sub 2}FeO{sub 4} and BaFeO{sub 4}: A review

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Virender K., E-mail: vsharma@sph.tamhsc.edu [Texas A& M University, Department of Environmental and Occupational Health, School of Public Health (United States); Machala, Libor [Palacky University, Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science (Czech Republic)

    2016-12-15

    This paper presents thermal decomposition of potassium ferrate(VI) (K{sub 2}FeO{sub 4}) and barium ferrate(VI) (BaFeO{sub 4}) in air and nitrogen atmosphere. Mössbauer spectroscopy and nuclear forward scattering (NFS) synchrotron radiation approaches are reviewed to advance understanding of electron-transfer processes involved in reduction of ferrate(VI) to Fe(III) phases. Direct evidences of Fe {sup V} and Fe {sup IV} as intermediate iron species using the applied techniques are given. Thermal decomposition of K{sub 2}FeO{sub 4} involved Fe {sup V}, Fe {sup IV}, and K{sub 3}FeO{sub 3} as intermediate species while BaFeO{sub 3} (i.e. Fe {sup IV}) was the only intermediate species during the decomposition of BaFeO{sub 4}. Nature of ferrite species, formed as final Fe(III) species, of thermal decomposition of K{sub 2}FeO{sub 4} and BaFeO{sub 4} under different conditions are evaluated. Steps of the mechanisms of thermal decomposition of ferrate(VI), which reasonably explained experimental observations of applied approaches in conjunction with thermal and surface techniques, are summarized.

  6. Characterization of magnetic nano particles of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} prepared by the chemical co-precipitation method; Caracterizacion de nanoparticulas magneticas de CoFe{sub 2}O{sub 4} y CoZnFe{sub 2}O{sub 4} preparadas por el metodo de coprecipitacion quimica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.; Zambrano, G.; Gomez, M. E. [Universidad del Valle, Departamento de Fisica, Laboratorio de Peliculas Delgadas, Ciudad Universitaria Melendez, 25360 Cali (Colombia); Prieto, P. [Universidad del Valle, Centro de Excelencia en Nuevos Materiales, Ciudad Universitaria Melendez, 25360 Cali (Colombia); Espinoza B, F. J., E-mail: javierlo21@gmail.com [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Queretaro (Mexico)

    2012-07-01

    Magnetic cobalt ferrite nanoparticles of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} were prepared by co-precipitation technique from aqueous salt solutions of Co (II), ZnSO{sub 4} and Fe (III), in an alkaline medium. CoFe{sub 2}O{sub 4} powder samples were structurally characterized by X-ray diffraction, showing the presence of the most intense peat at 2{theta} = 413928{sup o} (Co K{alpha}1) corresponding to the (311) crystallographic orientation of the CoFe{sub 2}O{sub 4} spinel phase. The mean size of the crystalline of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} nanoparticles determined from the full width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation was calculated to be 11.4 and 7.0 ({+-} o.2) nm, respectively. Transmission electron microscopy studies permitted determining nanoparticle size of CoZnFe{sub 2}O{sub 4}. Fourier transform infrared spectroscopy was used to confirm the formation of Fe-O bonds, allowing identifying the presence of ferrite spinel structure. Magnetic properties were investigated with the aid of a vibrating sample magnetometer at room temperature Herein, the sample showed superparamagnetic behavior, determined by the hysteresis loop finally, due to the hysteresis loop of the CoZnFe{sub 2}O{sub 4} is very small, our magnetic nanoparticles can be considered as a soft magnetic material. These magnetic nanoparticles have interesting technological applications in biomedicine given their biocompatibility, in nano technology, and in ferro fluid preparation. (Author)

  7. Micromagnetic finite element study for magnetic properties of nanocomposite exchange coupled Nd{sub 2}Fe{sub 14}B/α-Fe multilayer systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryo, Hyok-Su [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Faculty of Physics, Kim Il Sung University, Pyongyang 999093, Democratic People’s Republic of Korea (Korea, Republic of); Hu, Lian-Xi [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Kim, Jin-Guk [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Faculty of Physics, Kim Il Sung University, Pyongyang 999093, Democratic People’s Republic of Korea (Korea, Republic of); Yang, Yu-Lin [School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-03-15

    In this study, magnetic properties of exchange coupled nanocomposite multilayer thin films constructed alternately with magnetic hard Nd{sub 2}Fe{sub 14}B layers and soft α-Fe layers have been studied by micromagnetic finite element method (FEM). According to the results, effects of the thicknesses of layers and the magneto-crystalline anisotropy on the magnetic properties of the Nd{sub 2}Fe{sub 14}B/α-Fe multilayer systems have been estimated. On the other hand, the results have been analyzed by means of efficiency of interphase exchange coupling, which can be estimated by volume ratios of exchange coupled areas between magnetically hard Nd{sub 2}Fe{sub 14}B and soft α-Fe phase layers. The results show that the magnetic properties of exchange coupled Nd{sub 2}Fe{sub 14}B/α-Fe multilayer systems can be enhanced by efficient interphase exchange coupling between magnetically hard Nd{sub 2}Fe{sub 14}B layers and soft α-Fe layers. - Highlights: • Phase layer thicknesses dependence of magnetic properties of Nd{sub 2}Fe{sub 14}B/α-Fe multilayers. • Analyzation of the effectiveness of exchange coupling between the Nd{sub 2}Fe{sub 14}B and α-Fe layers. • Dependence of the magnetic properties on direction of external field of exchange coupled Nd{sub 2}Fe{sub 14}B/α-Fe multilayers. • Dependence of the magnetic properties on magneto-crystalline anisotropy of exchange coupled Nd{sub 2}Fe{sub 14}B/α-Fe multilayers.

  8. Hydrogen kinetics studies of MgH2-FeTi composites

    Science.gov (United States)

    Meena, Priyanka; Jangir, Mukesh; Singh, Ramvir; Sharma, V. K.; Jain, I. P.

    2018-05-01

    MgH2 + x wt% FeTi (x=10, 25, 50) nano composites were ball milled to get nano structured material and characterized for structural, morphological and thermal properties. XRD of the milled samples revealed the formation of MgH2, FeTi, Fe2Ti and H0.06FeTi phases. Morphological studies by SEM were undertaken to investigate the effect of hydrogenation of nanostructure alloy. EDX confirmed elemental composition of the as-prepared alloy. TGA studies showed higher desorption temperature for milled MgH2 compared to x wt% FeTi added MgH2. Activation energy for hydrogen desorption was found to be -177.90, -215.69, -162.46 and -87.93 kJ/mol for milled MgH2 and Mg2+x wt% FeTi (10, 25, 50), showing 89.97 kJ/ mol reduction in activation energy for 50 wt% alloy additives resulting in improved hydrogen storage capacity. DSC investigations were carried out to investigate the effect of alloy on hydrogen absorption behavior of MgH2.

  9. Erosion resistance of FeAl-TiB2 and FeAl-WC at room and elevated temperatures

    International Nuclear Information System (INIS)

    Alman, D.E.; Tylczak, J.H.; Hawk, J.A.

    2000-01-01

    The resistance of FeAl-40%TiB 2 and FeAl-80%WC cermets to solid particle erosion at 25, 180, 500 and 700 C was evaluated and compared to the behavior of WC-6%Co (Co-90%WC) cemented carbides. Even though the WC-Co contained a higher volume fraction of the hard phase, the erosion rates of the FeAl-cermets were similar in magnitude to the erosion rates of the WC-Co. However, the erosion rates of the FeAl-cermets either were constant (FeAl-TiB 2 ) or decreased (FeAl-WC) with increasing test temperature; whereas, the erosion rates of the WC-Co cemented carbides increased with increasing test temperature. This indicated that once the microstructures of the FeAl-cermets are optimized for wear resistance, these materials might make promising candidates for high-temperature wear applications

  10. Magnetic phase transitions in R2Fe17 compounds under pressure

    International Nuclear Information System (INIS)

    Arnold, Z.; Kamarad, J.

    1994-01-01

    The effect of the pressure up to 1.4 GPa on the Curie temperature T c in the R 2 Fe 17 intermetallics with R = Nd, Er and Y was measured using a low field susceptibility technique. The identical character of the temperature dependence of susceptibility χ(T) of the R 2 Fe 17 intermetallics observed at ambient pressure (sharp step-like drop at T c ) is preserved at high pressures only in the case of Nd 2 Fe 17 . Pronounced broadening and splitting of the sharp drop of χ(T) was observed in Er 2 Fe 17 and Y 2 Fe 17 respectively. The initial pressure slopes of dTc/dp are large and negative for all studied compounds, having nearly the same values (dTc/dp = -36K/GPa for Nd 2 Fe 17 compound). The results are discussed from the point of view of the sensitivity of T c on the crystal structure, the number of nearest neighbors of Fe atoms and the possible effect of disordered structures in the R 2 Fe 17 intermetallics

  11. Nd{sub 2}Fe{sub 14}B and Pr{sub 2}Fe{sub 14}B magnets characterisation and modelling for cryogenic permanent magnet undulator applications

    Energy Technology Data Exchange (ETDEWEB)

    Benabderrahmane, C., E-mail: chamseddine.benabderrahmane@synchrotron-soleil.fr [Synchrotron SOLEIL, St Aubin (France); Berteaud, P.; Valleau, M.; Kitegi, C.; Tavakoli, K.; Bechu, N.; Mary, A.; Filhol, J.M.; Couprie, M.E. [Synchrotron SOLEIL, St Aubin (France)

    2012-03-21

    Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE{sub 2}Fe{sub 14}B (Rare Earth based magnets) at cryogenic temperatures for achieving short period high magnetic field. In particular, using Praseodymium instead of Neodymium generally employed for insertion devices avoids limitation due to Spin Reorientation Transition phenomenon. Magnetic properties of magnet samples (Nd{sub 2}Fe{sub 14}B and Pr{sub 2}Fe{sub 14}B) versus temperature have been investigated and applied to a 20 mm period Nd{sub 2}Fe{sub 14}B (BH50) and to a 18 mm period Pr{sub 2}Fe{sub 14}B (CR53) systems. Four period undulators have been built, characterised and compared to the models.

  12. Magnetic SiO2/Fe3O4 colloidal crystals

    International Nuclear Information System (INIS)

    Huang, C-K; Hou, C-H; Chen, C-C; Tsai, Y-L; Chang, L-M; Wei, H-S; Hsieh, K-H; Chan, C-H

    2008-01-01

    We proposed a novel technique to fabricate colloidal crystals by using monodisperse SiO 2 coated magnetic Fe 3 O 4 (SiO 2 /Fe 3 O 4 ) microspheres. The magnetic SiO 2 /Fe 3 O 4 microspheres with a diameter of 700 nm were synthesized in the basic condition with ferric sulfate, ferrous sulfate, tartaric acid and tetraethyl orthosilicate (TEOS) in the reaction system. Monodisperse SiO 2 /Fe 3 O 4 superparamagnetic microspheres have been successfully used to fabricate colloidal crystals under the existing magnetic field

  13. ZnFe{sub 2}O{sub 4} antiferromagnetic structure redetermination

    Energy Technology Data Exchange (ETDEWEB)

    Kremenović, Aleksandar, E-mail: akremenovic@rgf.bg.ac.rs [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Đušina 7, Belgrade 11000 (Serbia); Antić, Bratislav [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Vulić, Predrag [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Đušina 7, Belgrade 11000 (Serbia); Blanuša, Jovan [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Tomic, Aleksandra [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027 (United States)

    2017-03-15

    Magnetic structure of ZnFe{sub 2}O{sub 4} normal spinel is re-examined. Antiferromagnetic structure non-collinear model is established within C{sub a}2 space group having four different crystallographic/magnetic sites for 32 Fe{sup 3+} spins within magnetic unit cell. - Highlights: • Magnetic structure of ZnFe{sub 2}O{sub 4} normal spinel is re-examined. • Antiferromagnetic non-collinear structure model is established within C{sub a}2 space group. • Four different crystallographic/magnetic sites contain 32 Fe{sup 3+} spins within magnetic unit cell.

  14. MR imaging differentiation of Fe{sup 2+} and Fe{sup 3+} based on relaxation and magnetic susceptibility properties

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Olaf [Ludwig-Maximilians-University Hospital Munich, Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Munich (Germany); Levin, Johannes [Ludwig-Maximilians-University Hospital Munich, Department of Neurology, Munich (Germany); German Center for Neurodegenerative Diseases (DZNE), Munich (Germany); Ahmadi, Seyed-Ahmad; Plate, Annika; Boetzel, Kai [Ludwig-Maximilians-University Hospital Munich, Department of Neurology, Munich (Germany); Reiser, Maximilian F.; Ertl-Wagner, Birgit [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Giese, Armin [Ludwig-Maximilians-University Munich, Center for Neuropathology and Prion Research, Munich (Germany)

    2017-04-15

    The aim of this study is to evaluate the MR imaging behavior of ferrous (Fe{sup 2+}) and ferric (Fe{sup 3+}) iron ions in order to develop a noninvasive technique to quantitatively differentiate between both forms of iron. MRI was performed at 3 T in a phantom consisting of 21 samples with different concentrations of ferrous and ferric chloride solutions (between 0 and 10 mmol/L). A multi-echo spoiled gradient-echo pulse sequence with eight echoes was used for both T{sub 2}* and quantitative susceptibility measurements. The transverse relaxation rate, R{sub 2}* = 1/T{sub 2}*, was determined by nonlinear exponential fitting based on the mean signals in each sample. The susceptibilities, χ, of the samples were calculated after phase unwrapping and background field removal by fitting the spatial convolution of a unit dipole response to the measured internal field map. Relaxation rate changes, ΔR{sub 2}*(c{sub Fe}), and susceptibility changes, Δχ(c{sub Fe}), their linear slopes, as well as the ratios ΔR{sub 2}*(c{sub Fe}) / Δχ(c{sub Fe}) were determined for all concentrations. The linear slopes of the relaxation rate were (12.5 ± 0.4) s{sup -1}/(mmol/L) for Fe{sup 3+} and (0.77 ± 0.09) s{sup -1}/(mmol/L) for Fe{sup 2+} (significantly different, z test P < 0.0001). The linear slopes of the susceptibility were (0.088 ± 0.003) ppm/(mmol/L) for Fe{sup 3+} and (0.079 ± 0.006) ppm/(mmol/L) for Fe{sup 2+}. The individual ratios ΔR{sub 2}*/Δχ were greater than 40 s{sup -1}/ppm for all samples with ferric solution and lower than 20 s{sup -1}/ppm for all but one of the samples with ferrous solution. Ferrous and ferric iron ions show significantly different relaxation behaviors in MRI but similar susceptibility patterns. These properties can be used to differentiate ferrous and ferric samples. (orig.)

  15. Effect of Si/Fe ratio on the boron and phosphorus doping efficiency of β-FeSi2 by magnetron sputtering

    International Nuclear Information System (INIS)

    Xu Jiaxiong; Yao Ruohe

    2011-01-01

    Boron-doped or phosphorus-doped β-FeSi 2 thin films have been prepared on silicon substrate by magnetron sputtering. Effects of Si/Fe ratio on the boron and phosphorus doping efficiencies have been studied from the resistivities of doped β-FeSi 2 thin films and current-voltage characteristics of doped β-FeSi 2 /Si heterojunctions. The experimental results reveal that the carrier concentration and doping efficiency of boron or phosphorus dopants at the Fe-rich side are higher than that at the Si-rich side. The effect of Si/Fe ratio can be deduced from the comparison of the formation energies under two extreme conditions. At the Fe-rich limit condition, the formation energy of boron or phosphorous doping is lower than that at the Si-rich condition. Therefore, the activation of impurities is more effective at the Fe-rich side. These results demonstrate that the boron-doped and phosphorous-doped β-FeSi 2 thin films should be kept at the Fe-rich side to avoid the unexpected doping sites and low doping efficiency.

  16. MWCNT-MnFe2O4 nanocomposite for efficient hyperthermia applications

    Science.gov (United States)

    Seal, Papori; Hazarika, Monalisa; Paul, Nibedita; Borah, J. P.

    2018-04-01

    In this work we present synthesis of multi-walled carbon nanotube (MWCNT)-Manganese ferrite (MnFe2O4) nanocomposite and its probable application in hyperthermia. MnFe2O4 nanoparticles were synthesized by co-precipitation method. X ray diffractogram (XRD) confirms the formation of cubic phase of MnFe2O4 with preferred crystallographic orientation along (311) plane. High resolution electron microscope (HRTEM) image of the composites confirms the presence of MnFe2O4 spherical nanoparticles on the surface of CNT which are bound strongly to the surface. MWCNT-MnFe2O4 nanocomposite were prepared after acid functionalization of MWCNT. Vibrational features of the synthesized samples were confirmed through Fourier transformed infra-red spectroscopy (FTIR). FTIR spectra of acid functionalized MWCNT shows a peak positioned at ˜1620cm-1 which corresponds to C=O functional group of carboxylic acid. Prepared MnFe2O4 nanoparticles and MWCNT-MnFe2O4 nanocomposites were subjected to hyperthermia studies.

  17. The effect of temperature on the crystallization of α-Fe2O3 particles from dense β-FeOOH suspensions

    International Nuclear Information System (INIS)

    Zic, Mark; Ristic, Mira; Music, Svetozar

    2010-01-01

    The effect of temperature on the crystallization of α-Fe 2 O 3 particles from dense β-FeOOH suspensions was monitored by 57 Fe Moessbauer spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive spectroscopy. Dense suspensions of very long laterally arranged β-FeOOH fibrils were obtained at 90 deg. C. Crystallization at 120 deg. C between 18 and 72 h yielded monodisperse α-Fe 2 O 3 particles of a shape close to that of double spheres with ring. The double spheres with ring showed two narrow particle size distributions. In these particles a substructure was detected, i.e., the spheres consisted of the linear chains of interconnected α-Fe 2 O 3 subparticles. With further rise in the crystallization temperature the increase in α-Fe 2 O 3 particles and porosity became pronounced. Obviously, the aggregation mechanism played an important role in the formation of α-Fe 2 O 3 particles.

  18. Moessbauer spectroscopic determination of magnetic moments of Fe3+ and Co2+ in substituted barium hexaferrite, Ba(Co,Ti)xFe(12-2x)O19

    International Nuclear Information System (INIS)

    Williams, J.M.; Adetunji, J.; Gregori, M.

    2000-01-01

    We report the distribution of magnetic moments of Fe 3+ and Co 2+ in Co 2+ -, Ti 4+ -substituted M-type barium hexaferrite, Ba(Co,Ti) x Fe (12-2x) O 19 , as a function of doping rate, x. The substitution, x, for iron has been varied with x=0, 0.25, 0.50, 0.70 and 0.85. The magnetic moments of Fe 3+ and Co 2+ were calculated from the combined results of Moessbauer measurements for Fe 3+ ions in the sublattices and neutron diffraction data for the total moments of Fe 3+ and Co 2+ . A comparison of the signs of the magnetic moments of Fe 3+ and Co 2+ ions enabled us to attribute spin directions of the Co 2+ ions in the sublattices of the substituted ferrite samples. The spin directions of Co 2+ are opposite to those of Fe 3+ in the 4f 2 and 2b sublattices. They are reversed from the original directions in the 4f 1 and 12K sublattices when the value of x≥0.70. A quantitative analysis shows that Co 2+ and Ti 4+ ions are preferably substituted into 4f 2 and 12K sublattices, respectively. In addition, while the hyperfine field of Fe 3+ in the 2b sublattice gives rise to the 2b-4f 2 interaction it is the partially substituted Co 2+ ions in the 4f 1 and 12K sublattices that contribute to the near neighbour 2a-4f 1 and 2b-12K types of interaction

  19. High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa)

    International Nuclear Information System (INIS)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong; Lind, Cora

    2016-01-01

    High pressure powder X-ray diffraction studies of several A 2 Mo 3 O 12 materials (A 2 =Al 2 , Fe 2 , FeAl, and AlGa) were conducted up to 6–7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversible on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga 2 Mo 3 O 12 suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations. - Graphical abstract: Overlay of variable pressure X-ray diffraction data of Al 2 Mo 3 O 12 collected in a diamond anvil cell. Both subtle and discontinuous phase transitions are clearly observed. - Highlights: • The high pressure behavior of A 2 Mo 3 O 12 (A=Al, Fe, (AlGa), (AlFe)) was studied. • All compounds undergo the same sequence of pressure-induced phase transitions. • The phase transition pressures correlate with the average size of the A-site cation. • All transitions were reversible with hysteresis. • Previously studied Ga 2 Mo 3 O 12 undergoes the same sequence of transitions.

  20. An eco-friendly route of γ-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-γ-Fe2O3 nanocomposites.

    Science.gov (United States)

    Sarkar, Joy; Mollick, Md Masud Rahaman; Chattopadhyay, Dipankar; Acharya, Krishnendu

    2017-03-01

    In recent times, biosynthetic approaches toward the synthesis of nanoparticles have been shown to have several advantages over physical and chemical methods. Here, we report the extracellular mycosynthesis of γ-Fe 2 O 3 nanoparticles by Alternaria alternata. The fungal biomass when exposed to aqueous iron(III) chloride solution led to the formation of highly stable γ-Fe 2 O 3 nanoparticles extracellularly. The influence of these biosynthesized γ-Fe 2 O 3 nanoparticles on the properties of hydroxyl propyl methyl cellulose was also investigated. Characterization of the biosynthesized γ-Fe 2 O 3 nanoparticles and HPMC-γ-Fe 2 O 3 nanocomposite films were done by the different types of spectral and electron microscopic analysis. The size of the γ-Fe 2 O 3 nanoparticles ranges from 75 to 650 nm. The mechanical effect of the agglomerated γ-Fe 2 O 3 nanoparticles into the HPMC polymer matrix was also investigated.

  1. Study on the structure of Fe sub 2 O sub 3 xerogels by small angle X-ray scattering

    CERN Document Server

    Liu Yi; Zhao Xin; Yang Tong Hua; Zhao Hui; Rong Li Xia; Zhang Jing; Wang Jun; Dong Bao Zhong

    2002-01-01

    Small angle X-ray scattering (SAXS) with synchrotron radiation as X-ray source is used to study the pore structure of Fe sub 2 O sub 3 xerogels prepared by sol-gel procedure and then heat-treated at different temperatures. By analysing the distribution of diameters of the pores, specific surfaces and fractal behaviors in samples, the characters and mechanisms of pores growing are discussed. The results show that the pores in Fe sub 2 O sub 3 xerogels are polydisperse and the structure of the pores is mass fractal. With increase in heat-treatment temperature, the average size of diameters of the pores and the dimension of fractal of Fe sub 2 O sub 3 xerogels are increased, whereas the scale range possessing fractal behavior become narrow

  2. Responses of mixed methanotrophic consortia to variable Cu2+/Fe2+ ratios.

    Science.gov (United States)

    Chidambarampadmavathy, Karthigeyan; Karthikeyan, Obulisamy Parthiba; Huerlimann, Roger; Maes, Gregory E; Heimann, Kirsten

    2017-07-15

    Methane mitigation in landfill top cover soils is mediated by methanotrophs whose optimal methane (CH 4 ) oxidation capacity is governed by environmental and complex microbial community interactions. Optimization of CH 4 remediating bio-filters need to take microbial responses into account. Divalent copper (Cu 2+ ) and iron (Fe 2+ ) are present in landfills at variable ratios and play a vital role in methane oxidation capacity and growth of methanotrophs. This study, as a first of its kind, therefore quantified effects of variable Cu 2+ and Fe 2+ (5:5, 5:25 and 5:50 μM) ratios on mixed methanotrophic communities enriched from landfill top cover (LB) and compost soils (CB). CH 4 oxidation capacity, CH 4 removal efficiencies, fatty acids content/profiles and polyhydroxybutyrate (PHB; a biopolymer) contents were also analysed to quantify performance and potential co-product development. Mixed methanotroph cultures were raised in 10 L continuous stirred tank reactors (CSTRs, Bioflo ® & Celligen ® 310 Fermentor/Bioreactor; John Morris Scientific, Chatswood, NSW, Australia). Community structure was determined by amplifying the V3-V4 region of 16s rRNA gene. Community structure and, consequently, fatty acid-profiles changed significantly with increasing Cu 2+ /Fe 2+ ratios, and responses were different for LB and CB. Effects on methane oxidation capacities and PHB content were similar in the LB- and CB-CSTR, decreasing with increasing Cu 2+ /Fe 2+ ratios, while biomass growth was unaffected. In general, high Fe 2+ concentration favored growth of the type -II methanotroph Methylosinus in the CB-CSTR, but methanotroph abundances decreased in the LB-CSTR. Increase in Cu 2+ /Fe 2+ ratio increased the growth of Sphingopyxis in both systems, while Azospirllum was co-dominant in the LB- but absent in the CB-CSTR. After 13 days, methane oxidation capacities and PHB content decreased by ∼50% and more in response to increasing Fe 2+ concentrations. Although methanotroph

  3. Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange

    International Nuclear Information System (INIS)

    Nguyen, Thi Dung; Phan, Ngoc Hoa; Do, Manh Huy; Ngo, Kim Tham

    2011-01-01

    We present a simple and efficient method for the fabrication of magnetic Fe 2 MO 4 (M:Fe and Mn) activated carbons (Fe 2 MO 4 /AC-H, M:Fe and Mn) by impregnating the activated carbon with simultaneous magnetic precursor and carbon modifying agent followed by calcination. The obtained samples were characterized by nitrogen adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), and the catalytic activity in heterogeneous Fenton oxidation of methyl orange (MO) was evaluated. The resulting Fe 2 MnO 4 /AC-H showed higher catalytic activity in the methyl orange oxidation than Fe 3 O 4 /AC-H. The effect of operational parameters (pH, catalyst loading H 2 O 2 dosage and initial MO concentration) on degradation performance of the oxidation process was investigated. Stability and reusability of selected catalyst were also tested.

  4. Electronic properties of Fe2+ in MTiO3

    International Nuclear Information System (INIS)

    Ito, A.; Morimoto, S.

    1975-01-01

    Moessbauer spectra were observed in a temperature range from 4.2 to 300 K for the ilmenite structure compounds MTiO 3 -2 % 57 Fe (M = Mg, Mn-I, Fe, Co, Ni) and for the disordered ilmenite structure compound MnTiO 2 -II-1 % 57 Fe. The Neel temperature and the spin orientation of host materials are tabulated. A well resolved quadrupole doublet was observed for all the samples at temperatures above the respective Neel temperatures. Below the Neel temperature a magnetic structure appeared. The Moessbauer spectra obtained at 4.2 K are presented. The spectra were analyzed on the basis of the well-known Hamiltonian for sup(57m)Fe. Moessbauer parameters obtained are tabulated. Analyzing the spectra at 4.2 K, quadrupole interaction was determined to be negative in MnTiO 3 -II and positive in all other compounds. Hyperfine magnetic field intensities observed a6 4.2 K were 34, 85, 47, 105 and 91 kOe for MnTiO 3 -I, MnTiO 3 -II, FeTiO 3 , CoTiO 3 and NiTiO 3 , respectively. (Z.S.)

  5. In Situ Studies of Fe4+ Stability in β-Li3Fe2(PO4)3 Cathodes for Li Ion Batteries

    DEFF Research Database (Denmark)

    Christiansen, Ane Sælland; Johnsen, Rune E.; Norby, Poul

    2015-01-01

    In commercial Fe-based batteries the Fe2+/Fe3+ oxidation states are used, however by also utilizing the Fe4+ oxidation state, intercalation of up to two Li ions per Fe ion could be possible. In this study, we investigate whether Fe4+ can be formed and stabilized in β-Li3Fe2(PO4)3. The work includes...... of Fe4+ formation. Oxidation of the organic electrolyte is inevitable at 4.5 V but this alone cannot explain the volume change. Instead, a reversible oxygen redox process (O2− → O−) could possibly explain and charge compensate for the reversible extraction of lithium ions from β-Li3Fe2(PO4)3....... in situ synchrotron X-ray powder diffraction studies (XRPD) during charging of β-Li3Fe2(PO4)3 up to 5.0 V vs. Li/Li+. A novel capillary-based micro battery cell for in situ XRPD has been designed for this. During charge, a plateau at 4.5 V was found and a small contraction in volume was observed...

  6. Efficient Load Scheduling Method For Power Management

    Directory of Open Access Journals (Sweden)

    Vijo M Joy

    2015-08-01

    Full Text Available An efficient load scheduling method to meet varying power supply needs is presented in this paper. At peak load times the power generation system fails due to its instability. Traditionally we use load shedding process. In load shedding process disconnect the unnecessary and extra loads. The proposed method overcomes this problem by scheduling the load based on the requirement. Artificial neural networks are used for this optimal load scheduling process. For generate economic scheduling artificial neural network has been used because generation of power from each source is economically different. In this the total load required is the inputs of this network and the power generation from each source and power losses at the time of transmission are the output of the neural network. Training and programming of the artificial neural networks are done using MATLAB.

  7. Rate law of Fe(II) oxidation under low O2 conditions

    Science.gov (United States)

    Kanzaki, Yoshiki; Murakami, Takashi

    2013-12-01

    Despite intensive studies on Fe(II) oxidation kinetics, the oxidation rate law has not been established under low O2 conditions. The importance of Fe(II) oxidation under low O2 conditions has been recently recognized; for instance, the Fe(II)/Fe(III) compositions of paleosols, ancient soils formed by weathering, can produce a quantitative pattern of the atmospheric oxygen increase during the Paleoproterozoic. The effects of partial pressure of atmospheric oxygen (PO2) on the Fe(II) oxidation rate were investigated to establish the Fe(II) oxidation rate - PO2 relationships under low O2 conditions. All oxidation experiments were carried out in a glove box by introducing Ar gas at ∼10-5-∼10-4 atm of PO2, pH 7.57-8.09 and 22 °C. Luminol chemiluminescence was adopted to measure low Fe(II) concentrations (down to ∼2 nM). Combining previous data under higher PO2 conditions (10-3-0.2 atm) with the present data, the rate law for Fe(II) oxidation over a wide range of PO2 (10-5-0.2 atm) was found to be written as: d[Fe(II)]/dt=-k[Fe(II)][[]2 where the exponent of [O2], x, and the rate constant, k, change from x = 0.98 (±0.04) and log k = 15.46 (±0.06) at ∼6 × 10-3-0.2 atm of PO2 to x = 0.58 (±0.02) and log k = 13.41 (±0.03) at 10-5-∼6 × 10-3 atm of PO2. The most plausible mechanism that explains the change in x under low O2 conditions is that, instead of O2, oxygen-derived oxidants, H2O2 and to some extent, O2rad -, dominate the oxidation reactions at PO2. The rate law found in the present study requires us to reconsider distributions of Fe redox species at low PO2 in natural environments, especially in paleoweathering profiles, and may provide a deeper understanding of the evolution of atmospheric oxygen in the Precambrian.

  8. Magnetic and superconducting properties of Ir-doped EuFe2As2

    International Nuclear Information System (INIS)

    B Paramanik, U; Hossain, Z; L Paulose, P; Ramakrishnan, S; K Nigam, A; Geibel, C

    2014-01-01

    The magnetic and superconducting properties of 14% Ir-doped EuFe 2 As 2 are studied by means of dc and ac magnetic susceptibilities, electrical resistivity, specific heat and 151 Eu and 57 Fe Mössbauer spectroscopy (MS) measurements. Doping of Ir in EuFe 2 As 2 suppresses the Fe spin density wave transition and in turn gives rise to high temperature superconductivity below 22.5 K with a reentrant feature at lower temperature. Magnetization and 151 Eu Mössbauer data indicate that the Eu 2+ spins order magnetically below 18 K. 57 Fe MS studies show a line broadening in the absorption spectra below 18 K due to transferred hyperfine field from the magnetically ordered Eu sublattices. A pronounced λ-shape peak in the specific heat supports a second-order phase transition of Eu 2+ magnetic ordering with a strong ferromagnetic component, as confirmed by the magnetic field dependences of the transition. For a single crystal, the in-plane resistivity (ρ ab ) and out-of-plane susceptibility (χ c ) show superconducting transitions with zero resistance and diamagnetism, respectively. But the in-plane susceptibility (χ ab ) does not show any diamagnetic shielding against external fields. The observed non-zero resistance in the temperature range 10–17.5 K, below the superconducting transition temperature, suggests the possible existence of a spontaneous vortex state in this superconductor. (papers)

  9. Enhanced decomposition of dimethyl phthalate via molecular oxygen activated by Fe-Fe{sub 2}O{sub 3}/AC under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiling [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Ai, Zhihui, E-mail: jennifer.ai@mail.ccnu.edu.cn [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Zhang, Lizhi [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Microwave irradiation induces the electrons transferring from AC to Fe-Fe{sub 2}O{sub 3} and reacts with molecular oxygen. Black-Right-Pointing-Pointer Microwave heating accelerates the electron transferring from AC to Fe-Fe{sub 2}O{sub 3} to generate reactive oxygen species. Black-Right-Pointing-Pointer This environmental remediation method is feasible for aqueous organic pollutants treatment. - Abstract: In this study, we demonstrate that the decomposition of dimethyl phthalate under microwave irradiation could be greatly enhanced over Fe-Fe{sub 2}O{sub 3} nanowires supported on activated carbon (Fe-Fe{sub 2}O{sub 3}/AC). The great enhanced decomposition of dimethyl phthalate could be attributed to a unique microwave induced molecular oxygen activation process. Upon microwave irradiation, electrons could be transferred from activated carbon to zero-valent iron, and then react with molecular oxygen to form O{sub 2}{center_dot}{sup -} and {center_dot}OH radicals for the decomposition of dimethyl phthalate. The deactivation and the regeneration of Fe-Fe{sub 2}O{sub 3}/AC catalyst were systematically studied. We also found that microwave heating could accelerate the electron transferring from AC to Fe-Fe{sub 2}O{sub 3} to generate more reactive oxygen species for the decomposition of DMP than conventional oil bath heating. This novel molecular oxygen activation approach may find applications for wastewater treatment and drinking water purification.

  10. Persistent Fe moments in the normal-state collapsed-tetragonal phase of the pressure-induced superconductor Ca0.67Sr0.33Fe2As2

    Science.gov (United States)

    Jeffries, J. R.; Butch, N. P.; Lipp, M. J.; Bradley, J. A.; Kirshenbaum, K.; Saha, S. R.; Paglione, J.; Kenney-Benson, C.; Xiao, Y.; Chow, P.; Evans, W. J.

    2014-10-01

    Using nonresonant Fe Kβ x-ray emission spectroscopy, we reveal that Sr substitution into CaFe2As2 decouples the Fe moment from the volume collapse transition, yielding a collapsed-tetragonal, paramagnetic normal state out of which superconductivity develops. X-ray diffraction measurements implicate the c-axis lattice parameter as the controlling criterion for the Fe moment, promoting a generic description for the appearance of pressure-induced superconductivity in the alkaline-earth-based 122 ferropnictides (AFe2As2). The evolution of Tc with pressure lends support to theories for superconductivity involving unconventional pairing mediated by magnetic fluctuations.

  11. Structural properties and superconductivity of SrFe2As2-xPx (0.0 ≤ x ≤ 1.0) and CaFe2As2-yPy (0.0 ≤ y ≤ 0.3)

    International Nuclear Information System (INIS)

    Shi, H L; Yang, H X; Tian, H F; Lu, J B; Wang, Z W; Qin, Y B; Song, Y J; Li, J Q

    2010-01-01

    The SrFe 2 As 2-x P x (0.0 ≤ x ≤ 1.0) and CaFe 2 As 2-y P y (0.0 ≤ y ≤ 0.3) materials were prepared by a solid-state reaction method. X-ray diffraction measurements indicate that the single-phase samples can be successfully obtained for SrFe 2 As 2-x P x (0.0 ≤ x ≤ 0.8) and CaFe 2 As 2-y P y (0.0 ≤ y ≤ 0.3). Visible contraction of the lattice parameters is determined due to the relatively smaller radius of P ions in comparison with that of As. The spin-density-wave (SDW) instability associated with the tetragonal to orthorhombic phase transition is suppressed noticeably in both systems following the increase in P content. The highest superconducting transitions are observed at about 27 K in SrFe 2 As 1.3 P 0.7 and at about 13 K in CaFe 2 As 1.925 P 0.075 , respectively. Structural analysis suggests that lattice contraction could notably affect the superconductivity in these materials.

  12. Si/Fe flux ratio influence on growth and physical properties of polycrystalline β-FeSi2 thin films on Si(100) surface

    Science.gov (United States)

    Tarasov, I. A.; Visotin, M. A.; Aleksandrovsky, A. S.; Kosyrev, N. N.; Yakovlev, I. A.; Molokeev, M. S.; Lukyanenko, A. V.; Krylov, A. S.; Fedorov, A. S.; Varnakov, S. N.; Ovchinnikov, S. G.

    2017-10-01

    This work investigates the Si/Fe flux ratio (2 and 0.34) influence on the growth of β-FeSi2 polycrystalline thin films on Si(100) substrate at 630 °C. Lattice deformations for the films obtained are confirmed by X-ray diffraction analysis (XRD). The volume unit cell deviation from that of β-FeSi2 single crystal are 1.99% and 1.1% for Si/Fe =2 and Si/Fe =0.34, respectively. Absorption measurements show that the indirect transition ( 0.704 eV) of the Si/Fe =0.34 sample changes to the direct transition with a bandgap value of 0.816 eV for the sample prepared at Si/Fe =2. The absorption spectrum of the Si/Fe =0.34 sample exhibits an additional peak located below the bandgap energy value with the absorption maximum of 0.36 eV. Surface magneto-optic Kerr effect (SMOKE) measurements detect the ferromagnetic behavior of the β-FeSi2 polycrystalline films grown at Si/Fe =0.34 at T=10 K, but no ferromagnetism was observed in the samples grown at Si/Fe =2. Theoretical calculations refute that the cell deformation can cause the emergence of magnetization and argue that the origin of the ferromagnetism, as well as the lower absorption peak, is β-FeSi2 stoichiometry deviations. Raman spectroscopy measurements evidence that the film obtained at Si/Fe flux ratio equal to 0.34 has the better crystallinity than the Si/Fe =2 sample.

  13. Surface coating and magnetic properties of Sm2Fe17Nx materials

    International Nuclear Information System (INIS)

    Noguchi, K.; Machida, K.; Nishimura, M.; Adachi, G.

    1998-01-01

    Surface coating for finely ground Sm 2 Fe 17 N x (x=-3) powders (diameter 2 Fe 17 N x and (Zn,In)/Cu/Sm 2 Fe 17 N x , showed good oxidation-resistivity and thermal stability compared with the samples prepared without the Cu metal pre-coating, Zn/Sm 2 Fe 17 N x . The epoxy resin- or In metal-bonded magnets produced from the above coated powders, Zn/Cu/Sm 2 Fe 17 N x and (Zn,In)/Cu/Sm 2 Fe 17 N x , under warm molding conditions provided a flux loss of around -15% after standing in air at 120 C for 1000 h, but 30-40% for the conventional injection-type resin-bonded magnets prepared from Nd-Fe-B powders. (orig.)

  14. Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@Fe2O3 core-shell nanomaterials.

    Science.gov (United States)

    Liu, Jingyi; Hu, Wenyong; Sun, Maogui; Xiong, Ouyang; Yu, Haibin; Feng, Haopeng; Wu, Xuan; Tang, Lin; Zhou, Yaoyu

    2018-06-13

    The degradation of norfloxacin by Fenton reagent with core-shell Fe@Fe 2 O 3 nanomaterials was studied under neutral conditions in a closed batch system. Norfloxacin was significantly degraded (90%) in the Fenton system with Fe@Fe 2 O 3 in 30 min at the initial pH 7.0, but slightly degraded in Fenton system without Fe@Fe 2 O 3 under the same experimental conditions. The intermediate products were investigated by gas chromatography-mass spectrometry, and the possible Fenton oxidation pathway of norfloxacin in the presence of Fe@Fe 2 O 3 nanowires was proposed. Electron spin resonance spectroscopy was used to identify and characterize the free radicals generated, and the mechanism for norfloxacin degradation was also revealed. Finally, the reusability and the stability of Fe@Fe 2 O 3 nanomaterials were studied using x-ray diffraction and scanning electron microscope, which indicated that Fe@Fe 2 O 3 is a stable catalyst and can be used repetitively in environmental pollution control.

  15. Discovery of Suprathermal Ionospheric Origin Fe+ in and Near Earth's Magnetosphere

    Science.gov (United States)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-11-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been discovered in and near Earth's 9-30 RE equatorial magnetosphere using 21 years of Geotail STICS (suprathermal ion composition spectrometer) data. Its detection is enhanced during higher geomagnetic and solar activity levels. Fe+, rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions, might derive from one or all three candidate lower-energy sources: (a) ionospheric outflow of Fe+ escaped from ion layers near 100 km altitude, (b) charge exchange of nominal solar wind iron, Fe+≥7, in Earth's exosphere, or (c) inner source pickup Fe+ carried by the solar wind, likely formed by solar wind Fe interaction with near-Sun interplanetary dust particles. Earth's semipermanent ionospheric Fe+ layers derive from tons of interplanetary dust particles entering Earth's atmosphere daily, and Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data when possible Fe+2 ions are not masked by other ions, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source. Contemporaneous Earth flyby and cruise data from charge-energy-mass spectrometer on the Cassini spacecraft, a functionally identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Consequently, we suggest that ionospheric Fe+ constitutes at least a significant portion of Earth's suprathermal Fe+, comparable to the situation at Saturn where suprathermal Fe+ is also likely of ionospheric origin.

  16. Charge density study of two FeS2 polymorphs

    DEFF Research Database (Denmark)

    Schmøkel, Mette Stokkebro; Jørgensen, Mads Ry Vogel; Bjerg, Lasse

    Experimental charge density studies of inorganic solids have proven to be a difficult task due to systematic errors related to data collection such as absorption and extinction; however, the use of synchrotron radiation has the potential to minimize these problems. [1] One of the pioneering...... experimental electron density studies of an inorganic solid containing a transition metal was presented by Stevens et al. [2] who investigated the effect of crystal-field splitting of the partially filled iron d-orbitals in the pyrite structure of FeS2. Other studies of various FeS2 structures, including...... pyrite, has been performed by Gibbs et al. [3], however, these are all based on theoretical calculations rather than experiment. In the current study we revisit FeS2 through an experimental charge density study of the two low-spin iron FeS2 structures, pyrite and marcasite. High-quality, low...

  17. Damage rates in neutron irradiated FeCo and FeCo2V ordered and disordered alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.

    1979-01-01

    Ordered and disordered samples of FeCo and FeCo2V alloys have been irradiated at liquid hydrogen temperature with fission neutrons up to an integrated dose of about 7.2 x 10 17 n/cm 2 (E > 1 MeV). During the irradiation, the resistivity increases continuously due to point defect production. (author)

  18. Electrical conductivity in Fe_2O_3 and CoFe_2O_4 nanoparticle arrays and their application in gas sensing

    International Nuclear Information System (INIS)

    Luby, S.; Benkovicova, M.; Jergel, M.; Siffalovic, P.; Majkova, E.; Rella, R.; Capone, S.; Manera, M. G.

    2013-01-01

    In this paper we summarize the results obtained as a by product of γ-Fe_2O_3 and CoFe_2O_4 sensors testing. Monodisperse γ-Fe_2O_3 and CoFe_2O_4 NPs with the size of 6.4 ± 0.6 and 7.6 ± 0.6 nm, respectively, were synthesized by high-temperature solution phase reaction from methyl acetylacetonates. The thickness of surfactant is 1 nm and 0.8 nm for two types of NPs, respectively. Surfactant stops the growth of NPs at a certain size. The self-assembled NP monolayers were prepared by Langmuir-Blodgett technique from the colloid solutions spread on the water sub-phase in a standard LB trough. M = 1, 2, 4 or 10 NP monolayers (L) were deposited onto auxiliary oxidized Si substrates or onto 2 mm x 2 mm Al_2O_3 sensor substrates equipped with 20 nm Ti/500 nm Pt comb electrodes to read the measuring current and with 20 nm Ti/500 nm Pt meander on the back side for the heating of the structure to a working temperature. Material properties of NPs and arrays were studied by SEM/EDS, GI XRD, GISAXS, XANES and ellipsometry. (authors)

  19. Optimization of the crystal growth of the superconductor CaKFe4As4 from solution in the FeAs -CaFe2As2-KFe2As2 system

    Science.gov (United States)

    Meier, W. R.; Kong, T.; Bud'ko, S. L.; Canfield, P. C.

    2017-06-01

    Measurements of the anisotropic properties of single crystals play a crucial role in probing the physics of new materials. Determining a growth protocol that yields suitable high-quality single crystals can be particularly challenging for multicomponent compounds. Here we present a case study of how we refined a procedure to grow single crystals of CaKFe4As4 from a high temperature, quaternary liquid solution rich in iron and arsenic ("FeAs self-flux"). Temperature dependent resistance and magnetization measurements are emphasized, in addition to the x-ray diffraction, to detect intergrown CaKFe4As4 , CaFe2As2 , and KFe2As2 within what appear to be single crystals. Guided by the rules of phase equilibria and these data, we adjusted growth parameters to suppress formation of the impurity phases. The resulting optimized procedure yielded phase-pure single crystals of CaKFe4As4 . This optimization process offers insight into the growth of quaternary compounds and a glimpse of the four-component phase diagram in the pseudoternary FeAs -CaFe2As2-KFe2As2 system.

  20. First-order phase transitions in CaFe2As2 single crystal: a local probe study

    International Nuclear Information System (INIS)

    Alzamora, M; Munevar, J; Baggio-Saitovitch, E; Bud'ko, S L; Ni Ni; Canfield, P C; Sanchez, D R

    2011-01-01

    57 Fe Moessbauer spectroscopy has been used to investigate the structural and magnetic phase transitions of CaFe 2 As 2 (T N = 173 K) single crystals. For this compound we found that V ZZ is positive and parallel to the c-axis of the tetragonal structure. For CaFe 2 As 2 a magnetic hyperfine field B hf was observed at the 57 Fe nucleus below T N ∼ 173 K. Analysis of the temperature dependence of B hf data using the Bean-Rodbell model shows that the Fe spins undergo a first-order magnetic transition at ∼ 173 K. A collinear antiferromagnetic structure is established below this temperature with the Fe spin lying in the (a, b) plane. Below T N the paramagnetic fraction of Fe decreases down to 150 K and for lower temperatures all the Fe spins are magnetically ordered.

  1. Crystal structure of a Ce2Fe2Mg15 compound

    International Nuclear Information System (INIS)

    Opainich, I.M.; Pavlyuk, V.V.; Bodak, O.I.

    1996-01-01

    A structure of a new Ce2Fe2Mg15 ternary compound (P63/mmc sp.gr., a=1.0324(5) nm, c=1.02080(4) nm) was determined by powder methods on a DRON-4.07 automatic diffractometer. The structure of a Ce2Fe2Mg15 crystal is a new variant of the ordered Th2Ni17 type superstructure, in which cerium atoms occupy the thorium positions; magnesium atoms occupy the nickel position 6g, 12k, and 12j; and iron atoms occupy the 4f position

  2. Study for material analogs of FeSb2: Material design for thermoelectric materials

    Science.gov (United States)

    Kang, Chang-Jong; Kotliar, Gabriel

    2018-03-01

    Using the ab initio evolutionary algorithm (implemented in uspex) and electronic structure calculations we investigate the properties of a new thermoelectric material FeSbAs, which is a material analog of the enigmatic thermoelectric FeSb2. We utilize the density functional theory and the Gutzwiller method to check the energetics. We find that FeSbAs can be made thermodynamically stable above ˜30 GPa. We investigate the electronic structure and thermoelectric properties of FeSbAs based on the density functional theory and compare with those of FeSb2. Above 50 K, FeSbAs has higher Seebeck coefficients than FeSb2. Upon doping, the figure of merit becomes larger for FeSbAs than for FeSb2. Another material analog FeSbP, was also investigated, and found thermodynamically unstable even at very high pressure. Regarding FeSb2 as a member of a family of compounds (FeSb2, FeSbAs, and FeSbP) we elucidate what are the chemical handles that control the gaps in this series. We also investigate solubility (As or P for Sb in FeSb2) we found As to be more soluble. Finally, we study a two-band model for thermoelectric properties and find that the temperature dependent chemical potential and the presence of the ionized impurities are important to explain the extremum in the Seebeck coefficient exhibited in experiments for FeSb2.

  3. First-principles calculation of the structure and electronic properties of Fe-substituted Bi2Ti2O7

    Science.gov (United States)

    Huang, Jin-Dou; Zhang, Zhenyi; Lin, Feng; Dong, Bin

    2017-12-01

    We performed first-principles calculations to investigate the formation energy, geometry structure, and electronic property of Fe-doped Bi2Ti2O7 systems with different Fe doping content. The calculated formation energies indicate that the substitutional configurations of Fe-doping Bi2Ti2O7 are easy to obtain under O-rich growth condition, but their thermodynamic stability decreases with the increase of Fe content. The calculated spin-resolved density of states and band structures indicate that the introduction of Fe into Bi2Ti2O7 brings high spin polarization. The spin-down impurity levels in Fe x Bi2-x Ti2O7 and spin-up impurity levels in Fe x Bi2Ti2-x O7 systems locate in the bottom of conduction band and narrow the band gap significantly, thus leading to the absorption of visible light. Interestingly, the impurity states in Fe x Bi2-x Ti2O7 are the efficient separation center of photogenerated electron and hole, and less affected by Fe doping content, in comparison, the levels of impurity band in Fe x Bi2Ti2-x O7 systems are largely effected by the Fe doping content, and high Fe doping content is the key factor to improve the separating rate of photogenerated electron and hole.

  4. Environmental TEM investigation of the reduction of α-Fe2O3 nanorods under H2 atmosphere

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Fay, Michael W.; Zhu, Yanqiu

    2012-01-01

    The thermal reduction of hydrothermally synthesised α-Fe2O3 nanorods (NRs) to Fe3O4 NRs under hydrogen is investigated. Complete reduction of α-Fe2O3 NRs to Fe3O4 NRs was achieved during in situ XRD under 1 bar H2 atmosphere at 360°C. Complementary environmental transmission electron microscope...... investigation at high resolution, during in situ heating under an H2 pressure of 5 mbar at 500°C, provided evidence for the very first stages of transformation, supporting a model for the migration of oxygen along favoured α-Fe2O3 lattice planes during the templated thermal reduction of α-Fe2O3 NRs to Fe3O4 NRs....

  5. alpha-Fe2O3 versus beta-Fe2O3: Controlling the Phase of the Transformation Product of epsilon-Fe2O3 in the Fe2O3/SiO2 System

    Czech Academy of Sciences Publication Activity Database

    Brázda, Petr; Kohout, J.; Bezdička, Petr; Kmjec, T.

    2014-01-01

    Roč. 14, č. 3 (2014), s. 1039-1046 ISSN 1528-7483 R&D Projects: GA ČR GAP204/10/0035 Institutional support: RVO:61388980 Keywords : CHEMICAL-VAPOR-DEPOSITION * OXIDE THIN-FILMS * X-RAY * GAMMA-FE2O3 NANOPARTICLES * THERMAL-DECOMPOSITION Subject RIV: CA - Inorganic Chemistry Impact factor: 4.891, year: 2014

  6. Synthesis, characterization of spinels NiFe_2O_4 e CoFe_2O_4 and evaluation of performance in the trans esterification and esterification of cottonseed oil

    International Nuclear Information System (INIS)

    Dantas, J.; Silva, A.S.A.; Costa, A.C.F.M.; Freitas, N.L.

    2012-01-01

    The present study aimed synthesizes by combustion reaction and characterization of the spinel CoFe_2O_4 and NiFe_2O_4, and evaluation in the esterification and transesterification reaction of cottonseed oil for biodiesel. The samples were characterized by XRD, nitrogen adsorption/desorption (BET), SEM and transesterification e esterification reaction of the cottonseed oil for biodiesel. The results show that the synthesis was effective in achievement the CoFe_2O_4 and NiFe_2O_4 with surface area 23.75 and 18.18 m"2g"1. The results for esterification indicated that CoFe_2O_4 conversion 16.8 and 38.6%, however for transesterification reaction was observed that NiFe_2O_4 conversion 8.6 and 16.8% for ethanol and methanol, respectively. (author)

  7. Dirac State in the FeB2 Monolayer with Graphene-Like Boron Sheet.

    Science.gov (United States)

    Zhang, Haijun; Li, Yafei; Hou, Jianhou; Du, Aijun; Chen, Zhongfang

    2016-10-12

    By introducing the commonly utilized Fe atoms into a two-dimensional (2D) honeycomb boron network, we theoretically designed a new Dirac material of FeB 2 monolayer with a Fermi velocity in the same order of graphene. The electron transfer from Fe atoms to B networks not only effectively stabilizes the FeB 2 networks but also leads to the strong interaction between the Fe and B atoms. The Dirac state in FeB 2 system primarily arises from the Fe d orbitals and hybridized orbital from Fe-d and B-p states. The newly predicted FeB 2 monolayer has excellent dynamic and thermal stabilities and is also the global minimum of 2D FeB 2 system, implying its experimental feasibility. Our results are beneficial to further uncovering the mechanism of the Dirac cones and providing a feasible strategy for Dirac materials design.

  8. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine2(CN2

    Directory of Open Access Journals (Sweden)

    Kasper S. Kjær

    2017-07-01

    Full Text Available We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy2(CN2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy2(CN2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy2(CN2] complement prior measurement performed on [Fe(bpy3]2+ and [Fe(bpy(CN4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpyN(CN6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.

  9. 75 FR 42831 - Proposed Collection; Comment Request for Form 1065, Schedule C, Schedule D, Schedule K-1...

    Science.gov (United States)

    2010-07-22

    .../or continuing information collections, as required by the Paperwork Reduction Act of 1995, Public Law... Income, Credits, Deductions and Other Items), Schedule L (Balance Sheets per Books), Schedule M-1 (Reconciliation of Income (Loss) per Books With Income (Loss) per Return)), Schedule M-2 (Analysis of Partners...

  10. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Ashis K., E-mail: ashis@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Sinha, Prasanta K. [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Das, Dipankar [UGC-DAE Consortium for Scientific Research, Kolkata 700098 (India); Guha, Chandan [Department of Chemical Engineering, Jadavpur University, Kolkata 700032 (India); Sen, Ranjan [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  11. Thermodynamic properties of Heusler Fe2VSi

    Science.gov (United States)

    Ito, Masakazu; Kai, Keita; Furuta, Tatsuya; Manaka, Hirotaka; Terada, Norio; Hiroi, Masahiko; Kondo, Akihiro; Kindo, Koichi

    2018-05-01

    We investigated temperature, T, dependence of magnetization, M(T), electrical resistivity, ρ(T), and specific heat, Cp(T), for the Heusler compound Fe2VSi. M(T) shows anomalies at TN1 ˜ 115 K and at TN2 ˜ 35 K. The anomaly at TN1 is caused by the magnetic transition with a crystal structural change. On the other hand, ρ(T) and Cp(T) show only anomaly at TN1, and no trace of anomaly at TN2 is observed. Because of the irreversibility of M(T), which is the characteristic of spin-glass freezing, appears below TN2, a spin-glass freezing may occur at TN2. From the analogy of the Heusler compound (Fe1-xVx ) 3Si with the cubic D03 crystal structure, (0 ≤ x ≤ 0.2), we suggested that the atomic disorder of V site by the Fe atoms gives rise to the magnetic frustration. This could be cause for the spin-glass freezing. By the Clausius-Clapeyron relation, pressure, P, derivative of TN1, (d/TN 1 d P ), is estimated to be ˜-10 K/Gpa.

  12. Joint Scheduling for Dual-Hop Block-Fading Broadcast Channels

    KAUST Repository

    Zafar, Ammar

    2012-09-16

    In this paper, we propose joint user-and-hop scheduling over dual-hop block-fading broadcast channels in order to exploit multi-user diversity gains and multi-hop diversity gains all together. To achieve this objective, the first and second hops are scheduled opportunistically based on the channel state information and as a prerequisite we assume that the relay, which is half-duplex and operates using decode-and-forward, is capable of storing the received packets from the source until the channel condition of the destined user becomes good to be scheduled. We formulate the joint scheduling problem as maximizing the weighted sum of the long term achievable rates by the users under a stability constraint, which means that on the long term the rate received by the relay should equal the rate transmitted by it, in addition to constant or variable power constraints. We show that this problem is equivalent to a single-hop broadcast channel by treating the source as a virtual user with an optimal priority weight that maintains the stability constraint. We show how to obtain the source weight either off-line based on channel statistics or on real-time based on channel measurements. Furthermore, we consider special cases including the maximum sum rate scheduler and the proportional fair scheduler. We demonstrate via numerical results that our proposed joint scheduling scheme enlarges the rate region as compared with a scheme that employs multi-user scheduling alone.

  13. Vortex pinning in artificially layered Ba(Fe,Co)2As2 film

    Science.gov (United States)

    Oh, M. J.; Lee, Jongmin; Seo, Sehun; Yoon, Sejun; Seo, M. S.; Park, S. Y.; Kim, Ho-Sup; Ha, Dong-Woo; Lee, Sanghan; Jo, Youn Jung

    2018-06-01

    Static high critical current densities (Jc) > 1 MA/cm2 with magnetic field parallel or perpendicular to c-axis were realized in Co-doped/undoped multilayerd BaFe2As2 films. We made a current bridge by FIB to allow precise measurements, and confirmed that the boundary quality using FIB was considerably better than the quality achieved using a laser. The presence of a high in-plane Jc suggested the existence of c-axis correlated vortex pinning centers. To clarify the relationship between the Jc performance and superstructures, we investigated the magnetic flux pinning mechanism using scaling theory of the volume pinning force Fp(H). The Jc(H) curves, Fp/Fp,max vs. h = H/Hirr curves, and parameters p and q depended on the characteristics of the flux pinning mechanism. It was found that the dominant pinning mechanism of Co-doped/undoped multilayerd BaFe2As2 films was Δl-pinning and the inserted undoped BaFe2As2 layers remained non-superconducting. The dominant pin geometry varied when the magnetic field direction changed. It was concluded that the artificially layered BaFe2As2 film is a 3-D superconductor due to its long correlation length compared to the thickness of the non-superconducting layer.

  14. Bactericidal effect of blue LED light irradiated TiO{sub 2}/Fe{sub 3}O{sub 4} particles on fish pathogen in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, T.C. [Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Taiwan (China); Yao, K.S. [Department of Horticulture, National Taitung Junior College, Taiwan (China); Yeh, N. [Mingdao University, Taiwan (China); Chang, C.I. [Aquaculture Division, Fisheries Research Institute, Council of Agriculture, Taiwan (China); Hsu, H.C. [Department of Life Science, Mingdao University, Taiwan (China); Gonzalez, F. [Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Taiwan (China); Chang, C.Y., E-mail: cyc1136@yahoo.com.tw [Center of General Education, National Taitung Junior College, Taiwan (China)

    2011-05-31

    This study uses blue LED light ({lambda}{sub max} = 475 nm) activated TiO{sub 2}/Fe{sub 3}O{sub 4} particles to evaluate the particles' photocatalytic activity efficiency and bactericidal effects in seawater of variable salinities. Different TiO{sub 2} to Fe{sub 3}O{sub 4} mole ratios have been synthesized using sol-gel method. The synthesized particles contain mainly anatase TiO{sub 2}, Fe{sub 3}O{sub 4} and FeTiO{sub 3}. The study has identified TiO{sub 2}/Fe{sub 3}O{sub 4}'s bactericidal effect to marine fish pathogen (Photobacterium damselae subsp. piscicida BCRC17065) in seawater. The SEM photo reveals the surface destruction in bacteria incubated with blue LED irradiated TiO{sub 2}/Fe{sub 3}O{sub 4}. The result of this study indicates that 1) TiO{sub 2}/Fe{sub 3}O{sub 4} acquires photocatalytic activities in both the freshwater and the seawater via blue LED irradiation, 2) higher photocatalytic activities appear in solutions of higher TiO{sub 2}/Fe{sub 3}O{sub 4} mole ratio, and 3) photocatalytic activity decreases as salinity increases. These results suggest that the energy saving blue LED light is a feasible light source to activate TiO{sub 2}/Fe{sub 3}O{sub 4} photocatalytic activities in both freshwater and seawater.

  15. Effect of Fe{sub 2}O{sub 3} in Fe{sub 2}O{sub 3}/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhenye [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094 (China); Nanjing University of Technology, Nanjing (China); Li, Fengsheng; Bai, Huaping [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2006-12-15

    A technique of composite processing of Fe{sub 2}O{sub 3} and ammonium perchlorate (AP) was employed in making the propellant. The effects of composite processing of Fe{sub 2}O{sub 3} on catalytic activity, on the thermal decomposition of AP, and on the burning rate of the composite propellant were investigated in this paper. Fe{sub 2}O{sub 3}/AP composite particles were prepared by a novel solvent-nonsolvent method. The results show that AP is successfully coated on the surface of Fe{sub 2}O{sub 3}. Composite processing of Fe{sub 2}O{sub 3} and AP can improve the catalytic activity of Fe{sub 2}O{sub 3}. Fe{sub 2}O{sub 3} exhibits better catalytic effect with increasing Fe{sub 2}O{sub 3} content. The larger interface between Fe{sub 2}O{sub 3} and AP and lower density of composite propellant (with the added Fe{sub 2}O{sub 3}/AP composite particles) are responsible for the enhancement of the catalytic activity of Fe{sub 2}O{sub 3}. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  16. Structural and magnetic properties of CoFe{sub 2}O{sub 4}/NiFe{sub 2}O{sub 4} core/shell nanocomposite prepared by the hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Sattar, A.A. [Department of Physics, Faculty of Science, Ain Shams University, 11566 Abbasia, Cairo (Egypt); EL-Sayed, H.M., E-mail: h_m_elsaid@hotmail.com [Department of Physics, Faculty of Science, Ain Shams University, 11566 Abbasia, Cairo (Egypt); ALsuqia, Ibrahim [Department of Physics, Faculty of Education and Applied Science, Hajjah University, Alshahli, Hajjah (Yemen)

    2015-12-01

    CoFe{sub 2}O{sub 4}/NiFe{sub 2}O{sub 4} core/shell magnetic nanocomposite was synthesized by using hydrothermal method.The analysis of XRD indicated the coexistence of CoFe{sub 2}O{sub 4}, NiFe{sub 2}O{sub 4}as core/shell composite. The core/shell structure of the composite sample has been confirmed by HR-TEM images, EDX and FT-IR measurements. The size of obtained core/shell nanoparticles was 17 nm in core diameter and about 3 nm in shell thickness. The magnetization measurements showed that both the coercive field and the saturation magnetization of the resulting core/shell nanocomposite were slightly decreased compared to those of the CoFe{sub 2}O{sub 4} core but the thermal stability is of the magnetization parameter was enhanced. Furthermore, superparamagnetic phase is established at temperatures higher than the room temperature. The results were discussed in terms of the surface pinning and the magnetic interaction at the interface between the core and shell. - Highlights: • CoFe{sub 2}O{sub 4}/NiFe{sub 2}O{sub 4} core/shell could be prepared by hydrothermal method. • The structural analysis proved the formation of NiFe{sub 2}O{sub 4} shell with thickness 3 nm. • The thermal stability of M{sub s} and H{sub c} is enhanced due to the presence of NiFe{sub 2}O{sub 4} as a shell. • Super paramagnetic transition is confirmed and the effective magnetic anisotropy was calculated.

  17. OSO-8 observing schedule for x-ray binaries

    International Nuclear Information System (INIS)

    Thomas, R.J.

    1976-01-01

    Six different instruments on OSO-8 have observed several binary x-ray sources between energies of 0.13 keV and 1 MeV at various times since June 21, 1975. The schedule for these observations is given, as well as the present plan for such future observations through July 1976. Included is the OSO-8 observing schedule for the transient x-ray source A0620-00

  18. Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction

    Science.gov (United States)

    Fang, Zhiqiang; Hao, Zhaomin; Dong, Qingsong; Cui, Yong

    2018-04-01

    Transition metal oxides that derived from metal-organic framework (MOF) precursor have intensively received attention because of their numerous electrochemical applications. Bimetallic Ni-Fe oxides have been rarely reported on the basis of MOF-related strategy. Herein, a bimetallic NiFe2O4 was successfully synthesized via confined carburization in NiFe-MOF precursors and characterized by XRD, XPS, SEM, and TEM. After conducting an investigation of oxygen evolution reaction (OER), the as-synthesized NiFe2O4 material exhibited good catalytic efficiency and high stability and durability in alkaline media. The as-synthesized NiFe2O4 material would promote the development of MOFs in non-noble-metal OER catalyst.

  19. Rod-like β-FeSi2 phase grown on Si (111) substrate

    International Nuclear Information System (INIS)

    Han Ming; Tanaka, Miyoko; Takeguchi, Masaki; Furuya, Kazuo

    2004-01-01

    Pure Fe with coverage of 0.5-2.0 nm was deposited on Si (111) 7x7 surfaces by reactive deposition epitaxy (RDE) in an integrated ultrahigh vacuum (UHV) system. Transmission electron microscopy (TEM) confirmed that the as-deposited epitaxial phase exhibits rod-like and equilateral triangular morphology. The as-deposited phase was identified as c-FeSi 2 by electron diffraction and high-resolution transmission electron microscopy. It was found that there exists lattice distortion in epitaxial c-FeSi 2 phase. Upon annealing at 1073 K, the metastable c-FeSi 2 transforms into equilibrium β-FeSi 2 phase, the latter inherits completely the morphology of c-FeSi 2 phase. Based on RDE and subsequent annealing, a new fabrication technique to grow rod-like semiconducting β-FeSi 2 on a Si substrate has been proposed in the present work

  20. Electric Field Gradients at Hf and Fe Sites in Hf2Fe Recalculated

    International Nuclear Information System (INIS)

    Belosevic-Cavor, J.; Cekic, B.; Novakovic, N.; Koteski, V.; Milosevic, Z.

    2004-01-01

    The electric field gradients (EFG) of the Hf 2 Fe intermetallic compound were calculated using the full-potential linearized augmented plain-wave (FP-LAPW) method as embodied in the WIEN 97 code. The obtained values are compared with other ab-initio calculations and on a qualitative basis with the previously reported experimental data obtained from TDPAC. The calculated results, -23.1.10 21 V/m 2 and 2.7.10 21 V/m 2 for Hf 48f and Fe 32e position, respectively, are in excellent agreement with experimental data (23.4.10 21 V/m 2 and 2.7.10 21 V/m 2 ), better than those reported in earlier calculations. The calculated EFG for Hf 16c position (4.2.10 21 V/m 2 ) is stronger than the experimental one (1.1.10 21 V/m 2 ).

  1. Magnetic properties of nanostructured CuFe2O4

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Goya, G.F.; Rechenberg, H.R.

    1999-01-01

    The structural evolution and magnetic properties of nanostructured copper ferrite, CuFe2O4, have been investigated by X-ray diffraction, Mossbauer spectroscopy, and magnetization measurements. Nanometre-sized CuFe2O4 particles with a partially inverted spinel structure were synthesized by high...

  2. Synthesis of ferrite grade γ-Fe2O3

    Indian Academy of Sciences (India)

    Unknown

    carboxylates in air yield α-Fe2O3, but the controlled atmosphere of moisture requires for the oxalates to stabi- ... structure form, α-Fe2O3, is made to react with the cubic divalent metal .... water of crystallization show multistep exothermic peaks.

  3. In situ Fabrication of Fe-TiB{sub 2} Nanocomposite Powder by Planetary Ball Milling and Subsequent Heat-treatment of FeB and TiH{sub 2} Powder Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Xuan-Khoa [Hanoi Uneversity of Science and Technology, Hanoi (Viet Nam); Bae, Sun-Woo; Kim, Ji Soon [University of Ulsan, Ulsan (Korea, Republic of)

    2017-01-15

    Fe-TiB{sub 2} powder was synthesized in-situ by the planetary ball milling and subsequent heat-treatment of an iron boride (FeB) and titanium hydride (TiH{sub 2}) powder mixture. Mechanical activation of the (FeB+TiH{sub 2}) powder mixtures was observed after a milling time of 3 hours at 700 rpm of rotation speed, but activation was not the same after 1 hour milling time. The particle size of the (FeB+ TiH{sub 2}) powder mixture was reduced to the nanometer scale, and each constituent was homogeneously distributed. A sharp exothermic peak was observed at a lower temperature (749 ℃) on the DSC curves for the (FeB+TiH{sub 2}) powder mixture milled for 3 hours, compared to the one milled for 1 hour (774 ℃). These peaks were confirmed to have resulted from the formation reaction of the TiB{sub 2} phase, from Ti and B elements in the FeB. The Fe-TiB{sub 2} composite powder fabricated in situ exhibited only two phases of Fe and TiB{sub 2} with homogeneous distribution. The size of the TiB{sub 2} particulates in the Fe matrix was less than 5 nm.

  4. Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2

    Science.gov (United States)

    Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias

    2018-04-01

    The compound NaFe2(PO4)(SO4)2 is successfully synthesized via a solid state reaction route and its crystal structure is determined using powder X-ray diffraction data. NaFe2(PO4)(SO4)2 phase is also characterized by cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. NaFe2(PO4)(SO4)2 crystallizes with the well-known NASICON-type structure. SAED and HRTEM experiments confirm the structural model, and no ordering between the PO4-3 and SO4-2 polyanions is detected. The electrochemical tests indicate that NaFe2(PO4)(SO4)2 is a 3 V sodium intercalating cathode. The electrical conductivity is relatively low (2.2 × 10-6 Scm-1 at 200 °C) and the obtained activation energy is ∼0.60eV. The GITT experiments indicate that the diffusivity values are in the range of 10-11-10-12 cm2/s within the measured sodium concentrations.

  5. Shape of growing crystals of primary phases in autectic alloys of Fe - Fe2B and Ni - Ni3B systems

    International Nuclear Information System (INIS)

    Tavadze, F.N.; Garibashvili, V.I.; Nakaidze, Sh.G.

    1983-01-01

    Shapes of Fe 2 B and Ni 3 B crystal growth in eutectic Fe-B and Ni-B system alloys are considered. Iron hemiboride primary crystals take the form of a plane-face phase boundary and inherit a tetragonal prismatic lattice. After the crystal attains the critical size the dendritic branching occurs resulting in formation of a typical sceleton dendrite. Comparison of data obtained with entropy of melting for Fe 2 B and Ni 3 B borides shows that FeB crystals during the growth should take the spherical form. It is stated that the shape of growing crystals in Fe-Fe 2 B and Ni-Ni 2 B eutectic colonies is determined by the shape of borides

  6. Survival of Anaerobic Fe2+ Stress Requires the ClpXP Protease.

    Science.gov (United States)

    Bennett, Brittany D; Redford, Kaitlyn E; Gralnick, Jeffrey A

    2018-04-15

    Shewanella oneidensis strain MR-1 is a versatile bacterium capable of respiring extracellular, insoluble ferric oxide minerals under anaerobic conditions. The respiration of iron minerals results in the production of soluble ferrous ions, which at high concentrations are toxic to living organisms. It is not fully understood how Fe 2+ is toxic to cells anaerobically, nor is it fully understood how S. oneidensis is able to resist high levels of Fe 2+ Here we describe the results of a transposon mutant screen and subsequent deletion of the genes clpX and clpP in S. oneidensis , which demonstrate that the protease ClpXP is required for anaerobic Fe 2+ resistance. Many cellular processes are known to be regulated by ClpXP, including entry into stationary phase, envelope stress response, and turnover of stalled ribosomes. However, none of these processes appears to be responsible for mediating anaerobic Fe 2+ resistance in S. oneidensis Protein trapping studies were performed to identify ClpXP targets in S. oneidensis under Fe 2+ stress, implicating a wide variety of protein targets. Escherichia coli strains lacking clpX or clpP also display increased sensitivity to Fe 2+ anaerobically, indicating Fe 2+ resistance may be a conserved role for the ClpXP protease system. Hypotheses regarding the potential role(s) of ClpXP during periods of high Fe 2+ are discussed. We speculate that metal-containing proteins are misfolded under conditions of high Fe 2+ and that the ClpXP protease system is necessary for their turnover. IMPORTANCE Prior to the evolution of cyanobacteria and oxygenic photosynthesis, life arose and flourished in iron-rich oceans. Today, aqueous iron-rich environments are less common, constrained to low-pH conditions and anaerobic systems such as stratified lakes and seas, digestive tracts, subsurface environments, and sediments. The latter two ecosystems often favor dissimilatory metal reduction, a process that produces soluble Fe 2+ from iron oxide minerals

  7. The hybrid-cluster protein ('prismane protein') from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and[2Fe-2S

    NARCIS (Netherlands)

    Berg, van den W.A.M.; Hagen, W.R.; Dongen, van W.M.A.M.

    2000-01-01

    Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state

  8. Identification of ε-Fe{sub 2}O{sub 3} nano-phase in borate glasses doped with Fe and Gd

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, O.S.; Ivantsov, R.D. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Edelman, I.S., E-mail: ise@iph.krasn.ru [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Petrakovskaja, E.A. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Velikanov, D.A. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660036 Krasnoyarsk (Russian Federation); Zubavichus, Y.V. [NRC “Kurchatov Institute”, 123182 Moscow (Russian Federation); Zaikovskii, V.I. [Boreskov Institute of Catalysis, Siberian Branch of RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Stepanov, S.A. [Vavilov State Optical Institute, All-Russia Research Center, 192371 Petersburg (Russian Federation)

    2016-03-01

    A new type of magnetic nanoparticles was revealed in borate glasses co-doped with low contents of iron and gadolinium. Structure and magnetic properties of the particles differ essentially from that of the α-Fe{sub 2}O{sub 3}, γ-Fe{sub 2}O{sub 3}, or Fe{sub 3}O{sub 4} nanoparticles which were detected earlier in similar glass matrices. Transmission electron microscopy including STEM-HAADF and EDX, synchrotron radiation-based XRD, static magnetic measurements, magnetic circular dichroism, and electron magnetic resonance studies allow referring the nanoparticles to the iron oxide phase-ε-Fe{sub 2}O{sub 3}. Analysis of the data set has shown that it is Gd atoms that govern the process of nanoparticles’ nucleation and its incorporation into the particles in different proportions can be used to adjust their magnetic and magneto-optical characteristics. - Highlights: • Alumina-potassium-borate glasses co-doped with Fe and Gd are studied. • Magnetic nanoparticles with structure close to ε-Fe{sub 2}O{sub 3} are shown to arise in glasses • Magnetic hysteresis loops and EMR evidence on the ferromagnetic and paramagnetic nano-phases coexistence. • Magnetic circular dichroism for ε-Fe{sub 2}O{sub 3} is studied for the first time.

  9. Thermal decomposition of barium ferrate(VI): Mechanism and formation of FeIV intermediate and nanocrystalline Fe2O3 and ferrite

    International Nuclear Information System (INIS)

    Machala, Libor; Sharma, Virender K.; Kuzmann, Ernö; Homonnay, Zoltán; Filip, Jan; Kralchevska, Radina P.

    2016-01-01

    Simple high-valent iron-oxo species, ferrate(VI) (Fe VI O 4 2− , Fe(VI)) has applications in energy storage, organic synthesis, and water purification. Of the various salts of Fe(VI), barium ferrate(VI) (BaFeO 4 ) has also a great potential as a battery material. This paper presents the thermal decomposition of BaFeO 4 in static air and nitrogen atmosphere, monitored by combination of thermal analysis, Mössbauer spectroscopy, X-ray powder diffraction, and electron-microscopic techniques. The formation of Fe IV species in the form of BaFeO 3 was found to be the primary decomposition product of BaFeO 4 at temperature around 190 °C under both studied atmospheres. BaFeO 3 was unstable in air reacting with CO 2 to form barium carbonate and speromagnetic amorphous iron(III) oxide nanoparticles (<5 nm). Above 600 °C, a solid state reaction between BaCO 3 and Fe 2 O 3 occurred, leading to the formation of barium ferrite nanoparticles, BaFe 2 O 4 (20–100 nm). - Highlights: • We explained the mechanism of thermal decomposition of barium ferrate(VI). • We confirmed the formation of Fe(IV) intermediate phase during the decomposition. • The mechanism of the decomposition is influenced by a presence of carbon dioxide.

  10. Mechanical alloying of an immiscible α-Fe2O3-SnO2 ceramic

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lin, Rong; Mørup, Steen

    1997-01-01

    in the immiscible ceramic oxide system. X-ray diffraction and Mossbauer spectroscopy investigations show that mechanical milling of alpha-Fe2O3 and SnO2 involves alloying on an atomic scale and that true solid solution formation occurs. We suggest that the high defect concentration and the chemical enthalpy of Fe3......+-O2--Sn4+ interfaces between nanostructured alpha-Fe2O3 and SnO2 regions may serve as a driving force for the formation of a solid solution in the immiscible ceramic system....

  11. Dual ferroic properties of hexagonal ferrite ceramics BaFe_1_2O_1_9 and SrFe_1_2O_1_9

    International Nuclear Information System (INIS)

    Kostishyn, V.G.; Panina, L.V.; Timofeev, A.V.; Kozhitov, L.V.; Kovalev, A.N.; Zyuzin, A.K.

    2016-01-01

    Dual ferroic properties of a strong magnetism and large ferroelectricity have been observed in barium BaFe_1_2O_1_9 and strontium SrFe_1_2O_1_9 hexaferrite ceramics. The samples were fabricated by a modified ceramic technique from highly purified raw materials with addition of boron oxide allowing the control of grain size and enhancement of bulk resistivity. Whereas the samples of PbFe_1_2O_1_9 fabricated by the same technological method did not have sufficient electric resistivity to support an electric field and did not exhibit the ferroelectric properties. The structure of the samples examined by X-ray diffraction is consistent with a single hexagonal phase. The grains are randomly oriented with the average grain size of 300–400 nm coated with boron oxide. The magnetic properties are characterised by standard ferrimagnetic behavior with the Neel temperature of about 450 °C. Large spontaneous polarization was observed with the maximal values of 45–50 μC/cm"2 under an applied electric field of 100–300 kV/m. A strong coupling between magnetic and electric ordering was confirmed by measuring the magnetoelectric (ME) parameter and magnetodielectric ratio. These ME characteristics are more advanced than those for well-known room temperature multiferroic BiFeO_3. Furthermore, by applying an electric field, the manipulation of magnetization in the range of up to 9% was observed, which is even greater than in some substituted hexaferrites with a non-collinear magnetic structure. The obtained results on electrical polarization are similar to the values reported for the corresponding hexaferrites sintered by polymer precursor technique. This suggests a promising potential of M-type hexaferrite ceramics in devices utilizing magnetoelectric coupling. - Highlights: • Ba(Sr)Fe_1_2O_1_9-hexaferrites show large room-temperature multiferroic properties. • Small addition of B_2O_3 increases the hexaferrite resistivity by 4 orders of magnitude. • Large spontaneous

  12. Investigation de l'anisotropie du gap supraconducteur dans les composes Ba(Fe(1-x)Co(x))2As2, Ba(1-x)K(x)Fe2As2, LiFeAs et Fe1-deltaTe(1-x)Se(x)

    Science.gov (United States)

    Reid, Jean-Philippe

    ommaire La structure du gap supraconducteur et sa modulation sont intimement liees au potentiel d'interaction responsable de l'appariement des electrons d'un supraconducteur. Ainsi, l'etude de la structure du gap-SC et de sa modulation permettent de faire la lumiere sur la nature du mecanisme d'appariement des electrons. A cet egard, les resultats experimentaux des supraconducteurs a base de fer ne cadrent pas dans un seul ensemble, ce qui est en opposition au gap-SC universel des cuprates. Dans ce qui suit, nous presenterons une etude systematique du gap-SC pour plusieurs pnictides. En effet, en utilisant la conductivite thermique, une sonde directionnelle du gap-SC, nous avons ete en mesure de reveler la structure du gap-SC pour les composes suivants : Ba1-xKxFe 2As2, Ba(Fe1-xCo x)2As2, LiFeAs et Fe1-deltaTe 1-xSex. L'etude de ces quatre composes, de trois differentes familles structurales, a pu etablir un tableau partiel mais tres exhaustif de la structure du gap-SC de pnictides. En effet, tel qu'illustre dans cette these, ces quatre composes ne possedent aucun noeud dans leur structure du gap-SC a dopage optimal. Toutefois, a une concentration differente de celle optimale pour les composes K-Ba122 et Co-Ba122, des noeuds apparaissent sur la surface de Fermi, aux extremites 'du dome supraconducteur. Ceci suggere fortement que, pour ces composes, la presence de noeuds sur la surface de Fermi est nuisible a la phase supraconductrice. Mots-cles: Supraconducteurs a base de fer, Pnictides, Structure du gap supraconducteur, Conductivite thermique

  13. Viscosity Measurements of SiO2-"FeO"-MgO System in Equilibrium with Metallic Fe

    Science.gov (United States)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2014-01-01

    The present study delivers the measurements of viscosities in the SiO2-"FeO"-MgO system in equilibrium with metallic Fe. The rotational spindle technique was used for the measurements at the temperature range of 1523 K to 1773 K (1250 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The viscosity measurements were carried out at 31 to 47 mol pct SiO2 and up to 18.8 mol pct MgO. Analysis of the quenched sample by Electron probe X-ray microanalysis after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The replacement of "FeO" by MgO was found to increase viscosity and activation energy of the SiO2-"FeO"-MgO slags. The modified Quasi-chemical Viscosity Model was further optimized in this system based on the current viscosity measurements.

  14. Core–shell structured FeSiAl/SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite cores with tunable insulating layer thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xi’an, E-mail: groupfxa@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Wang, Jian, E-mail: snove418562@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Wu, Zhaoyang, E-mail: wustwuzhaoyang@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Li, Guangqiang, E-mail: ligq-wust@mail.wust.edu.cn [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081 (China)

    2015-11-15

    Graphical abstract: - Highlights: • FeSiAl/SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores were prepared. • SiO{sub 2} surrounding FeSiAl were replaced by Al{sub 2}O{sub 3} during sintering process. • Fe{sub 3}Si particles were separated by Al{sub 2}O{sub 3} with tunable thickness in composite cores. • Fe{sub 3}Si/Al{sub 2}O{sub 3} had lower core loss and better frequency stability than FeSiAl core. • The insulating layer between ferromagnetic particles can reduce core loss. - Abstract: FeSiAl/SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores with tunable insulating layer thicknesses have been synthesized via a modified Stöber method combined with following high temperature sintering process. Most of the conductive FeSiAl particles could be coated by insulating SiO{sub 2} using the modified Stöber method. During the sintering process, the reaction 4Al + 3SiO{sub 2} ≣ 2α-Al{sub 2}O{sub 3} + 3Si took place and the new Fe{sub 3}Si/Al{sub 2}O{sub 3} composite was formed. The Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher resistivity and lower core loss than the raw FeSiAl core. Based on this, several types of FeSiAl/SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores with tunable insulating layer thicknesses were selectively prepared by simply varying TEOS contents. The thickness of Al{sub 2}O{sub 3} insulating layer and resistivity of Fe{sub 3}Si/Al{sub 2}O{sub 3} composite cores increased with increasing the TEOS contents, while the permeability and core loss changed in the opposite direction.

  15. Superparamagnetic behavior of Fe-doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y.

    2014-01-01

    SnO 2 is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO 2 nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO 2 nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO 2 , were investigated. The particle size (1.8–16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO 2 single-phase structure for samples annealed at 1073–1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO 2 is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system

  16. Superparamagnetic behavior of Fe-doped SnO2 nanoparticles

    Science.gov (United States)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y.

    2014-02-01

    SnO2 is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO2 nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO2 nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO2, were investigated. The particle size (1.8-16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO2 single-phase structure for samples annealed at 1073-1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO2 is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system.

  17. High temperature stability of surfactant capped CoFe2O4 nanoparticles

    International Nuclear Information System (INIS)

    Ayyappan, S.; Panneerselvam, G.; Antony, M.P.; Philip, John

    2011-01-01

    Highlights: → Self-assembled molecular layers of surfactant on nanoparticles are often used to modify surface properties. → We demonstrate that a surfactant nanolayer on CoFe 2 O 4 nanoparticles can act as a strong reducing agent under high temperature vacuum annealing. → We propose a possible reduction mechanism of CoFe 2 O 4 nanoparticles under air and vacuum annealing. → Our results are important in the understanding of the stability of nanoparticles at high temperatures. - Abstract: We investigate the effect of adsorbed surfactant on the structural stability of CoFe 2 O 4 nanoparticles during vacuum thermal annealing. In-situ high temperature X-ray diffraction studies show a reduction of oleic acid coated CoFe 2 O 4 nanoparticles into α-Fe and CoO under annealing at 800 deg. C. On the contrary, the uncoated CoFe 2 O 4 nanoparticles remains stable, with its cubic phase intact, even at 1000 deg. C. Thermo-gravimetric analysis coupled mass spectra reveals that the evolved carbon from the surfactant aids the removal of oxygen atom from CoFe 2 O 4 lattice thereby reducing it to α-Fe and CoO phases. These results are important in tailoring stable CoFe 2 O 4 nanostructures for various applications.

  18. Synthesis, characterization, and comparative gas-sensing properties of Fe{sub 2}O{sub 3} prepared from Fe{sub 3}O{sub 4} and Fe{sub 3}O{sub 4}-chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Cuong, Nguyen Duc [Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Vy Da Ward, Hue City (Viet Nam); College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam); Hoa, Tran Thai; Khieu, Dinh Quang [College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); Lam, Tran Dai [Institute of Materials Science, Vietnamese Academy of Science and Technology, Hanoi (Viet Nam); Hoa, Nguyen Duc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam); Van Hieu, Nguyen, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We have demonstrated a facile method to prepare Fe{sub 3}O{sub 4} nanoparticles and chitosan-coated Fe{sub 3}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer {alpha}-Fe{sub 2}O{sub 3} sensors prepared from those Fe{sub 3}O{sub 4} materials have been investigated and compared. Black-Right-Pointing-Pointer The results show potential application of {alpha}-Fe{sub 2}O{sub 3} for CO sensors in environmental monitoring. - Abstract: In this paper, Fe{sub 3}O{sub 4} and chitosan (CS)-coated Fe{sub 3}O{sub 4} nanoparticles were synthesized via co-precipitation method and subsequent covalent binding of CS onto the surface for functionalization, respectively. Characterization of the crystal structures and morphologies of as-synthesized nanoparticles by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy demonstrated that Fe{sub 3}O{sub 4} had a cubic spinal structure with irregular shapes and average diameters of 10-20 nm. The surface states and magnetic properties of Fe{sub 3}O{sub 4}-CS nanoparticles were characterized by Fourier transform infrared spectra and vibrating sample magnetometry. Results showed that Fe{sub 3}O{sub 4}-CS nanoparticles possessed super-paramagnetic properties, with saturated magnetization up to 60 emu/g. In addition, Fe{sub 3}O{sub 4} and CS-coated Fe{sub 3}O{sub 4} nanoparticles were used in the fabrication of {alpha}-Fe{sub 2}O{sub 3} based gas sensors. Gas sensing measurements revealed that the {alpha}-Fe{sub 2}O{sub 3} gas sensor prepared from Fe{sub 3}O{sub 4}-CS had a better response to H{sub 2}, CO, C{sub 2}H{sub 5}OH, and NH{sub 3} compared with the device prepared from pristine Fe{sub 3}O{sub 4}. Furthermore, the {alpha}-Fe{sub 2}O{sub 3} sensor prepared from Fe{sub 3}O{sub 4}-CS nanoparticles exhibited the highest response to CO among the test gases, suggesting that it has great potential for practical applications in environmental monitoring.

  19. Homogeneous and heterogeneous catalysts of Fe3+, Co2+ and Cu2+ for the degradation of methyl parathion in diluted aqueous medium

    Directory of Open Access Journals (Sweden)

    Cindy A. Vela-Monroy

    2016-07-01

    Full Text Available Degradation of pesticides (plaguicides, herbicides, fungicides, among others in aqueous media is a subject of great importance for ensuring the water quality into numerous hydric sources. This work reports the assessment of homogeneous (metal ion solutions and heterogeneous (oxides supported on alumina systems that are based on Fe3+, Co2+ y Cu2+, which were used as catalysts for oxidation (degradation of methyl parathion (a plaguicide in aqueous solution. Hydrogen peroxide was herein used as oxidizing molecule under mild condition of reaction (25 ºC and atmospheric pressure. The solids were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Fe3+/H2O2 (Fenton system was the most active homogeneous catalyst compared to Co2+/H2O2 and Cu2+/H2O2 systems. Solids catalysts such as cobalt, copper or iron oxides as well as mixed oxides supported on alumina were active at pH close to neutrality. Fe-Co-Cu/Al2O3, Co-Cu/Al2O3 and FeCo/Al2O3 mixed systems were solids with the highest catalytic activity. In addition, an important effect of the support (-Al2O3 on the reaction pH was observed, allowing to reach values close to that of the neutrality, and thus increasing the catalytic activity of both cobalt oxide and copper oxide species. These results allow advancing on a new pathway for searching catalysts to remove organophosphorous pesticides from residual waters.

  20. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.

    Science.gov (United States)

    Saji, Viswanathan S; Song, Hyun-Kon

    2015-01-01

    Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.

  1. EXAFS Study on LiFePO4 Powders Produced From Two Sol-Gel Routes

    Science.gov (United States)

    Negara, V. S. I.; Latif, C.; Wongtepa, W.; Pratapa, S.

    2018-04-01

    The local structure of LiFePO4 powders has been investigated using Fe K-edge Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy data. The synthesis of LFP powders was carried out using two different sol-gel methods. The raw materials for Fe source were ironstone and commercial precursor of FeCl2·4H2O. Synthesis using natural materials produced two phases, namely LiFePO4 olivine and Li3Fe2(PO4)3 nasicon, whereas that using a commercial product produced a single phase of LiFePO4 olivine. The EXAFS data for both samples were collected at Synchrotron Light Research Institute (SLRI), Thailand. Fitting of the model on the experimental curve provided parameters that can be interpreted as the distance between Fe as the absorber and the nearest atoms on the LFP materials. The EXAFS data analysis has shown that synthesis of LFPs using different Fe sources gives slightly different nearest-neighbor distances, namely Fe-O of 0.21% -0.23%, Fe-P of 0.14% - 0.16%, Fe-Fe of 0.12% for both samples, respectively.

  2. Mössbauer spectroscopy study of 60P2O5-40Fe2O3 glass crystallization

    Directory of Open Access Journals (Sweden)

    Stoch Paweł

    2015-03-01

    Full Text Available 60P2O5-40Fe2O3 glass was synthesized and 57Fe Mössbauer spectroscopy study was presented. The main goal of the research was to investigate structural changes of local environment of iron ions during gradual crystallization of the glass. It was observed that some changes were evidenced at temperature of heat treatment higher than 400°C, above which content of tetrahedrally coordinated Fe3+ was increased in cost of octahedral sites. This led to formation of areas of nucleation of α-FePO4. Crystallization of α-Fe3(P2O72 and Fe2P2O7 was also observed.

  3. Low Temperature X-Ray Diffraction Study on CaFe2As2

    Science.gov (United States)

    Huyan, Shuyuan; Deng, Liangzi; Wu, Zheng; Zhao, Kui; Lv, Bing; Xue, Yiyu; Chu, Ching-Wu; B. Lv Collaboration; HPLT (Paul C. W. Chu) Team

    For undoped CaFe2As2 single crystals, we observed that utilizing thermal treatments could stabilize two pure tetragonal phases PI and PII. Both phases are non-superconducting, while the superconductivity with a Tc up to 25 K can be induced through proper thermal treatment. Room temperature X-ray studies suggest that the origin of superconductivity arises from the interface of the mesoscopically stacked layers of PI and PII. To further investigate, a systematic low temperature X-ray study was conducted over a series of thermal treated CaFe2As2 single crystals. From which, we observed the phase aggregation of PI and PII upon cooling, more importantly, an ordered stacking structure exists at low temperature, which closely related to superconducting volume fraction and the ratio of PI and PII. These results further support the proposal of interface-enhanced superconductivity in undoped CaFe2As2. UT Dallas

  4. Nanostructured Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction photoelectrode for efficient hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Dipika; Upadhyay, Sumant; Verma, Anuradha [Department of Chemistry, Dayalbagh Educational Institute, Agra-282 110 India (India); Satsangi, Vibha R. [Department of Physics Computer Sciences, Dayalbagh Educational Institute, Agra-282 110 India (India); Shrivastav, Rohit [Department of Chemistry, Dayalbagh Educational Institute, Agra-282 110 India (India); Dass, Sahab, E-mail: drsahabdas@gmail.com [Department of Chemistry, Dayalbagh Educational Institute, Agra-282 110 India (India)

    2015-01-01

    Nanostructured thin films of pristine Fe{sub 2}O{sub 3}, Ti-doped Fe{sub 2}O{sub 3}, Cu{sub 2}O, and Fe{sub 2}O{sub 3}/Cu{sub 2}O, and Ti-doped Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction were deposited on tin-doped indium oxide (Sn:In{sub 2}O{sub 3}) glass substrate using spray pyrolysis method. Ti doping is done to improve photoelectric conversion efficiency and electrical conductivity of hematite thin films. Further enhanced photocurrent is achieved for Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction electrodes. All samples were characterized using X-ray diffractometry, scanning electron microscopy, atomic force microscopy, and UV-Vis spectrometry. Photoelectrochemical properties were also investigated in a three-electrode cell system. UV-Vis absorption spectrum for pristine Fe{sub 2}O{sub 3}, Ti-Fe{sub 2}O{sub 3}, Cu{sub 2}O, Fe{sub 2}O{sub 3}/Cu{sub 2}O, and Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction thin films exhibited absorption in visible region. Nanostructured thin films as prepared were used as photoelectrode in the photoelectrochemical cell for water splitting reaction. Maximum photocurrent density of 2.60 mA/cm{sup 2} at 0.95 V/SCE was exhibited by 454 nm thick Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction photoelectrode. Increased photocurrent density and enhanced incident photon-to-electron conversion efficiency, offered by the heterojunction thin films may be attributed to improved conductivity and efficient separation of the photogenerated charge carriers at the Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O interface. - Highlights: • Heterojunction thin films were deposited using spray pyrolysis techniques. • Titanium doping in Fe{sub 2}O{sub 3} played a significant role in PEC response. • Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction shows the absorption in visible range. • Improved charge separation and enhanced PEC response were achieved in Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O.

  5. Optimization of α-Fe{sub 2}O{sub 3}@Fe{sub 3}O{sub 4} incorporated N-TiO{sub 2} as super effective photocatalysts under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Mohamed Mokhtar, E-mail: mohmok2000@yahoo.com [Benha University, Faculty of Science, Chemistry Department, Benha (Egypt); Bayoumy, W.A. [Benha University, Faculty of Science, Chemistry Department, Benha (Egypt); Goher, M.E. [National Institute of Oceanography & Fisheries, Environmental Chemistry, Cairo (Egypt); Abdo, M.H., E-mail: mh_omr@yahoo.com [National Institute of Oceanography & Fisheries, Environmental Chemistry, Cairo (Egypt); Mansour El-Ashkar, T.Y. [National Institute of Oceanography & Fisheries, Environmental Chemistry, Cairo (Egypt)

    2017-08-01

    Highlights: • The α-Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} doped n-TiO{sub 2} was synthesized via deposition-self assembly technique. • The photocatalyst 1%α-Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4}/n-TiO{sub 2} show a remarkable performance while MB degradation. • The strong interaction between α-Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} and n-TiO{sub 2} plays an important role. • It exhibits a unique textural, optical and charge transfer properties. - Abstract: Well dispersed α-Fe{sub 2}O{sub 3}@Fe{sub 3}O{sub 4} nanoparticles (7 nm) supported on mesoporous nitrogen doped titanium dioxide (N-TiO{sub 2}) are synthesized by deposition self-assembly route and their performances as photocatalysts toward methylene blue (MB) degradation are evaluated. The results illustrate that the spherical yolk-shell structure of α-Fe{sub 2}O{sub 3}@Fe{sub 3}O{sub 4}@N-TiO{sub 2} at the loading of 1%; of excellent S{sub BET} (187 m{sup 2} g{sup −1}) and pore volume (0.50 cm{sup 3} g{sup −1}), achieved high photocatalytic performance for the MB degradation (20 ppm, λ > 420 nm, lamp power = 160 W) under visible light illumination (k = 0.059 min{sup −1}). The influence of the interface formation between α-Fe{sub 2}O{sub 3}@Fe{sub 3}O{sub 4} and n-TiO{sub 2} affects severely the charges separation efficiency and enhances the electron transfer to keep on the existence of Fe{sup 3+}/Fe{sup 2+} moieties; those take significant role in the reaction mechanism. The existence of the latter junction is affirmed via XRD, TEM-SAED, Raman and FTIR techniques whereas, the photogenerated charges, their separation together with their transport and recombination rates are depicted via photoluminescence, electrical conductivity, incident photon to current efficiency (IPCE), cyclic voltammetry (CV) and impedance (EIS) measurements. The catalyst loading, zero point charge, pH variation, total organic carbon (TOC%) and the effect of lamps power are thoroughly investigated. The 1%α-Fe{sub 2}O{sub 3

  6. Crystal structures and magnetic properties of iron (III)-based phosphates: Na4NiFe(PO4)3 and Na2Ni2Fe(PO4)3

    International Nuclear Information System (INIS)

    Essehli, Rachid; Bali, Brahim El; Benmokhtar, Said; Bouziane, Khalid; Manoun, Bouchaib; Abdalslam, Mouner Ahmed; Ehrenberg, Helmut

    2011-01-01

    Graphical abstract: A perspective view of the Na 2 Ni 2 Fe(PO 4 ) 3 structure along the [0 0 1] direction. Both compounds seem to exibit antiferromagnetic interactions between magnetic entities at low temperature. Display Omitted Research highlights: → Nasicon and Alluaudite compounds, Iron(III)-based phosphates, Crystal structures of Na 4 NiFe(PO 4 ) 3 and Na 2 Ni 2 Fe(PO 4 ) 3 . → Magnetism behaviours of Na 4 NiFe(PO 4 ) 3 and Na 2 Ni 2 Fe(PO 4 ) 3 . → Antiferromagnetism interactions. → Mossbauer spectroscopy. - Abstract: Crystal structures from two new phosphates Na 4 NiFe(PO 4 ) 3 (I) and Na 2 Ni 2 Fe(PO 4 ) 3 (II) have been determined by single crystal X-ray diffraction analysis. Compound (I) crystallizes in a rhombohedral system (S. G: R-3c, Z = 6, a = 8.7350(9) A, c = 21.643(4) A, R 1 = 0.041, wR 2 =0.120). Compound (II) crystallizes in a monoclinic system (S. G: C2/c, Z = 4, a = 11.729(7) A, b = 12.433(5) A, c = 6.431(2) A, β = 113.66(4) o , R 1 = 0.043, wR 2 =0.111). The three-dimensional structure of (I) is closely related to the Nasicon structural type, consisting of corner sharing [(Ni/Fe)O 6 ] octahedra and [PO 4 ] tetrahedra forming [NiFe(PO 4 ) 3 ] 4+ units which align in chains along the c-axis. The Na + cations fill up trigonal antiprismatic sites within these chains. The crystal structure of (II) belongs to the alluaudite type. Its open framework results from [Ni 2 O 10 ] units of edge-sharing [NiO 6 ] octahedra, which alternate with [FeO 6 ] octahedra that form infinite chains. Coordination of these chains yields two distinct tunnels in which site Na + . The magnetization data of compound (I) reveal antiferromagnetic (AFM) interactions by the onset of deviations from a Curie-Weiss behaviour at low temperature as confirmed by Moessbauer measurements performed at 4.2 K. The corresponding temperature dependence of the reciprocal susceptibility χ -1 follows a typical Curie-Weiss behaviour for T > 105 K. A canted AFM state is proposed for

  7. CoFe2O4-SiO2 Composites: Preparation and Magnetodielectric Properties

    Directory of Open Access Journals (Sweden)

    T. Ramesh

    2016-01-01

    Full Text Available Cobalt ferrite (CoFe2O4 and silica (SiO2 nanopowders have been prepared by the microwave hydrothermal (M-H method using metal nitrates as precursors of CoFe2O4 and tetraethyl orthosilicate as a precursor of SiO2. The synthesized powders were characterized by XRD and FESEM. The (100-x (CoFe2O4 + xSiO2 (where x = 0%, 10%, 20%, and 30% composites with different weight percentages have been prepared using ball mill method. The composite samples were sintered at 800°C/60 min using the microwave sintering method and then their structural and morphological studies were investigated using X-ray diffraction (XRD, Fourier transformation infrared (FTIR spectra, and scanning electron microscopy (SEM, respectively. The effect of SiO2 content on the magnetic and electrical properties of CoFe2O4/SiO2 nanocomposites has been studied via the magnetic hysteresis loops, complex permeability, permittivity spectra, and DC resistivity measurements. The synthesized nanocomposites with adjustable grain sizes and controllable magnetic properties make the applicability of cobalt ferrite even more versatile.

  8. Pure and Fe-Doped Mesoporous Titania Catalyse the Oxidation of Acid Orange 7 by H2O2 under Different Illumination Conditions: Fe Doping Improves Photocatalytic Activity under Simulated Solar Light

    Directory of Open Access Journals (Sweden)

    Francesca S. Freyria

    2017-07-01

    Full Text Available A sample of mesoporous TiO2 (MT, specific surface area = 150 m2·g−1 and two samples of MT containing 2.5 wt.% Fe were prepared by either direct synthesis doping (Fe2.5-MTd or impregnation (Fe2.5-MTi. Commercial TiO2 (Degussa P25, specific surface area = 56 m2 g−1 was used both as a benchmark and as a support for impregnation with either 0.8 or 2.5 wt.% Fe (Fe0.80-IT and Fe2.5-IT. The powders were characterized by X-ray diffraction, N2 isotherms at −196 °C, Energy Dispersive X-ray (EDX Spectroscopy, X-ray Photoelectron Spectroscopy (XPS, Diffuse Reflectance (DR ultra-violet (UV-Vis and Mössbauer spectroscopies. Degradation of Acid Orange 7 (AO7 by H2O2 was the test reaction: effects of dark-conditions versus both UV and simulated solar light irradiation were considered. In dark conditions, AO7 conversion was higher with MT than with Degussa P25, whereas Fe-containing samples were active in a (slow Fenton-like reaction. Under UV light, MT was as active as Degussa P25, and Fe doping enhanced the photocatalytic activity of Fe2.5-MTd; Fe-impregnated samples were also active, likely due to the occurrence of a photo-Fenton process. Interestingly, the Fe2.5-MTd sample showed the best performance under solar light, confirming the positive effect of Fe doping by direct synthesis with respect to impregnation.

  9. Enhanced Water Splitting by Fe2O3-TiO2-FTO Photoanode with Modified Energy Band Structure

    Directory of Open Access Journals (Sweden)

    Eul Noh

    2013-01-01

    Full Text Available The effect of TiO2 layer applied to the conventional Fe2O3/FTO photoanode to improve the photoelectrochemical performance was assessed from the viewpoint of the microstructure and energy band structure. Regardless of the location of the TiO2 layer in the photoanodes, that is, Fe2O3/TiO2/FTO or TiO2/Fe2O3/FTO, high performance was obtained when α-Fe2O3 and H-TiNT/anatase-TiO2 phases existed in the constituent Fe2O3 and TiO2 layers after optimized heat treatments. The presence of the Fe2O3 nanoparticles with high uniformity in the each layer of the Fe2O3/TiO2/FTO photoanode achieved by a simple dipping process seemed to positively affect the performance improvement by modifying the energy band structure to a more favorable one for efficient electrons transfer. Our current study suggests that the application of the TiO2 interlayer, together with α-Fe2O3 nanoparticles present in the each constituent layers, could significantly contribute to the performance improvement of the conventional Fe2O3 photoanode.

  10. Sorption Mechanisms of Cesium on Cu II2Fe II(CN) 6and Cu II3[Fe III(CN) 6] 2Hexacyanoferrates and Their Relation to the Crystalline Structure

    Science.gov (United States)

    Ayrault, S.; Jimenez, B.; Garnier, E.; Fedoroff, M.; Jones, D. J.; Loos-Neskovic, C.

    1998-12-01

    CuII2FeII(CN)6·xH2O and CuII3[FeIII(CN)6]2·xH2O can be prepared with reproducible chemical compositions and structures after careful washing. They have cubicFmoverline3mstructures with iron vacancies. In CuII2FeII(CN)6, copper occupies two different sites: Cu1 in position 4blinked to Fe through the CN groups, and Cu2 not linked to the CN groups and partially occupying the interstitial 24epositions. The second type of site is not present in CuII3[FeIII(CN)6]2. Sorption kinetics and isotherms were determined for cesium on both hexacyanoferrates by batch experiments. On CuII3[FeIII(CN)6]2, the maximum uptake is only 0.073 Cs/Fe (at./at.). On CuII2FeII(CN)6, the uptake reaches 1.5 Cs/Fe. The sorption kinetics include at least two steps: at1/2variation until approximately 72 h and then a slow evolution studied up to 6 months. The sorption mechanism is complex. The main process seems to be diffusion of ion pairs, followed by a reorganization of the solid, resulting in one or more new solid phases. The presence of the Cu2 site seems to play a favorable role in the sorption. Owing to its good midterm stability and the first rapid step of exchange, CuII2FeII(CN)6·xH2O seems to be one of the most promising compounds for the recovery of cesium from nuclear liquid wastes.

  11. Real-time systems scheduling 2 focuses

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc. Scheduling is a central problem for these computing/communication systems since it is responsible for software execution in a timely manner. This book, the second of two volumes on the subject, brings together knowledge on specific topics and discusses the recent advances for some of them.  It addresses foundations as well as the latest advances and findings in real-time scheduling, giving comprehensive references to important papers, but the chapters are short and not overloaded with co

  12. Synthesis and electrochemical characterization of mesoporous Li2FeSiO4/C composite cathode material for Li-ion batteries

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O. D.; Bazzi, Khadije; Nazri, Gholam-Abbas; Naik, Vaman M.; Naik, Ratna

    2015-03-01

    Lithium iron silicate (Li2FeSiO4) has the potential as cathode for Li ion batteries due to its high theoretical capacity (~ 330 mAh/g) and improved safety. The application of Li2FeSiO4 as cathode material has been challenged by its poor electronic conductivity and slow lithium ion diffusion in the solid phase. In order to solve these problems, we have synthesized mesoporous Li2FeSiO4/C composites by sol-gel method using the tri-block copolymer (P123) as carbon source. The phase purity and morphology of the composite materials were characterized by x-ray diffraction, SEM and TEM. The XRD pattern confirmed the formation of ~ 12 nm size Li2FeSiO4 crystallites in composites annealed at 600 °C for 6 h under argon atmosphere. The electrochemical properties are measured using the composite material as positive electrode in a standard coin cell configuration with lithium as the active anode and the cells were tested using AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The Li2FeSiO4/C composites showed a discharge capacity of ~ 240 mAh/g at a rate of C/30 at room temperature. The effect of different annealing temperature and synthesis time on the electrochemical performance of Li2FeSiO4/C will be presented.

  13. Zn-Fe-CNTs catalytic in situ generation of H2O2 for Fenton-like degradation of sulfamethoxazole.

    Science.gov (United States)

    Liu, Yong; Fan, Qin; Wang, Jianlong

    2018-01-15

    A novel Fenton-like catalyst (Zn-Fe-CNTs) capable of converting O 2 to H 2 O 2 and further to OH was prepared through infiltration fusion method followed by chemical replacement in argon atmosphere. The catalyst was characterized by SEM, EDS, TEM, XRD and XPS. The reaction between Zn-Fe-CNTs and O 2 in aqueous solution could generate H 2 O 2 in situ, which was further transferred to OH. The Fenton-like degradation of sulfamethoxazole (SMX) using Zn-Fe-CNTs as catalyst was evaluated. The results indicated that Zn-Fe-CNTs had a coral porous structure with a BET area of 51.67m 2 /g, exhibiting excellent adsorption capacity for SMX, which enhanced its degradation. The particles of Zn 0 and Fe 0 /Fe 2 O 3 were observed on the surface of Zn-Fe-CNTs. The mixture of Zn 0 and CNTs could reduce O 2 into H 2 O 2 by micro-electrolysis and Fe 0 /Fe 2 O 3 could catalyze in-situ generation of H 2 O 2 to produce OH through Fenton-like process. When initial pH=1.5, T=25°C, O 2 flow rate=400mL/min, Zn-Fe-CNTs=0.6g/L, SMX=25mg/L and reaction time=10min, the removal efficiency of SMX and TOC was 100% and 51.3%, respectively. The intermediates were detected and the possible pathway of SMX degradation and the mechanism of Zn-Fe-CNTs/O 2 process were tentatively proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Reversible Exsolution of Nanometric Fe2O3 Particles in BaFe2-x(PO4)2 (0 ≤ x ≤ 2/3):The Logic of Vacancy Ordering in Novel Metal-Depleted Two-Dimensional Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Alcover, Ignacio Blazquez; David, Rénald; Daviero-Minaud, Sylvie; Filimonov, Dmitry; Huvé, Marielle; Roussel, Pascal; Kabbour, Houria; Mentré, Olivier [CNRS-UMR

    2015-08-12

    We show here that the exsolution of Fe2+ ions out of two-dimensional (2D) honeycomb layers of BaFe2(PO4)2 into iron-deficient BaFe2–x(PO4)2 phases and nanometric α-Fe2O3 (typically 50 nm diameter at the grain surface) is efficient and reversible until x = 2/3 in mild oxidizing/reducing conditions. It corresponds to the renewable conversion of 12 wt % of the initial mass into iron oxide. After analyzing single crystal X-ray diffraction data of intermediate members x = 2/7, x = 1/3, x = 1/2 and the ultimate Fe-depleted x = 2/3 term, we then observed a systematic full ordering between Fe ions and vacancies (VFe) that denote unprecedented easy in-plane metal diffusion driven by the Fe2+/Fe3+ redox. Besides the discovery of a diversity of original depleted triangular {Fe2/3+2–xO6} topologies, we propose a unified model correlating the x Fe-removal and the experimental Fe/VFe ordering into periodic one-dimensional motifs paving the layers, gaining insights into predictive crystahemistry of complex low dimensional oxides. When we increased the x values it led to a progressive change of the materials from 2D ferromagnets (Fe2+) to 2D ferrimagnets (Fe2/3+) to antiferromagnets for x = 2/3 (Fe3+).

  15. Web Publishing Schedule

    Science.gov (United States)

    Section 207(f)(2) of the E-Gov Act requires federal agencies to develop an inventory and establish a schedule of information to be published on their Web sites, make those schedules available for public comment. To post the schedules on the web site.

  16. Solubility and precipitation of Fe on reduced TiO{sub 2}(001)

    Energy Technology Data Exchange (ETDEWEB)

    Busiakiewicz, Adam, E-mail: adambus@uni.lodz.pl

    2014-01-01

    The solubility of Fe in reduced rutile TiO{sub 2} crystals and the followed precipitation on the (001) surface have been studied using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) in ultra-high vacuum. The first step includes dissolving Fe in reduced TiO{sub 2} at 1073 K by the means of thermal diffusion and as a result the saturated solid solution is formed. Then, it undergoes fast cooling which leads to obtaining a supersaturated solid solution. When this supersaturated crystal is annealed at low temperatures of about 500 K, Fe starts to precipitate on the (001) surface forming spherical Fe-containing nanoparticles. The fast migration of Fe cations to the surface and their precipitation at relatively low temperatures are caused by high diffusion anisotropy and the reduction of the TiO{sub 2}. At about 900 K, the size of nanoparticles increases and they are transformed into nanocrystals with clearly visible facets. Simultaneously, the number of the nanocrystals substantially decreases. The partial oxidation of Fe is also observed around 900 K, which is related to strong metal support interaction between Fe and reduced TiO{sub 2}(001). The XPS and STM results suggest that the nanocrystals are mostly composed of mixed Fe/Ti oxides like FeTiO{sub 3} of ilmenite structure. Above 973 K, the nanocrystals disappear which is explained by the restored solubility of Fe cations in the reduced TiO{sub 2}. The process of the nanoparticle precipitation at lower temperatures is repeatable and the precipitation and disappearance of Fe-containing nanocrystals on TiO{sub 2}(001) are also a fully reversible phenomenon easily controlled by annealing temperature. - Highlights: • The supersaturated solid solution of Fe in TiO{sub 2}(001) is obtained at 1073 K. • Fe precipitates forming nanoparticles above 500 K and nanocrystals above 900 K. • Nanocrystals are ascribed to formation of FeTiO{sub 3} compound.

  17. Unravelling the spin-state of solvated [Fe(bpp)2]2+ spin-crossover complexes: structure-function relationship.

    Science.gov (United States)

    Giménez-López, Maria Del Carmen; Clemente-León, Miguel; Giménez-Saiz, Carlos

    2018-05-23

    This paper reports firstly the syntheses, crystal structures, and thermal and magnetic properties of spin crossover salts of formulae [Fe(bpp)2]3[Cr(CN)6]2·13H2O (1) and [Fe(bpp)2][N(CN)2]2·H2O (2) (bpp = 2,6-bis(pyrazol-3-yl)pyridine) exhibiting hydrogen-bonded networks of low-spin [Fe(bpp)2]2+ complexes and [Cr(CN)6]3- or [N(CN)2]- anions, with solvent molecules located in the voids. Desolvation of 1 is accompanied by a complete low-spin (LS) to a high-spin (HS) transformation that becomes reversible after rehydration by exposing the sample to the humidity of air. The influence of the lattice water on the magnetic properties of spin-crossover [Fe(bpp)2]X2 complex salts has been documented. In most cases, it stabilises the LS state over the HS one. In other cases, it is rather the contrary. The second part of this paper is devoted to unravelling the reasons why the lattice solvent stabilises one form over the other through magneto-structural correlations of [Fe(bpp)2]2+ salts bearing anions with different charge/size ratios (Xn-). The [Fe(bpp)2]2+ stacking explaining these two different behaviours is correlated here with the composition of the second coordination sphere of the Fe centers and the ability of these anions to form hydrogen bonds and/or π-π stacking interactions between them or the bpp ligand.

  18. DFT calculations on N2O decomposition by binuclear Fe complexes in Fe/ZSM-5

    NARCIS (Netherlands)

    Yakovlev, A.L.; Zhidomirov, G.M.; Santen, van R.A.

    2001-01-01

    N2O decomposition catalyzed by oxidized Fe clusters localized in the micropores of Fe/ZSM-5 has been studied using the DFT approach and a binuclear cluster model of the active site. Three different reaction routes were found, depending on temperature and water pressure. The results show that below

  19. Formation of β-FeSi 2 thin films by partially ionized vapor deposition

    Science.gov (United States)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  20. Fe(CO)5-catalyzed coprocessing of coal and heavy oil vacuum residue using syngas-water as a hydrogen source; Fe(CO)5 shokubai ni yoru gosei gas-mizu wo suisogen to suru sekitan-jushitsuyu no coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Hata, K.; Wada, K.; Mitsudo, T. [Kyoto University, Kyoto (Japan)

    1996-10-28

    Improvement in efficiency and profitability of hydrogenation reaction of heavy hydrocarbon resources is the most important matter to be done. In this study, coprocessing of coal and heavy oil vacuum residue was conducted using syngas-water as a hydrogen source. For the investigation of effect of the reaction temperature during the coprocessing of Wandoan coal and Arabian heavy vacuum residue using Fe(CO)5 as a catalyst, the conversion, 66.0% was obtained at 425{degree}C. For the investigation of effect of reaction time, the yield of light fractions further increased during the two stage reaction at 400{degree}C for 60 minutes and at 425{degree}C for 60 minutes. Finally, almost 100% of THF-soluble matter was obtained through the reaction using 2 mmol of Fe(CO)5 catalyst at 400{degree}C for 60 minutes, and hydrogenation of heavy oil was proceeded simultaneously. When comparing coprocessing reactions using three kinds of hydrogen sources, i.e., hydrogen, CO-water, and syngas-water, the conversion yield and oil yield obtained by using syngas-water were similar to those obtained by using hydrogen, which demonstrated the effectiveness of syngas-water. 2 refs., 2 figs., 2 tabs.

  1. 1s2p resonant inelastic x-ray scattering in a-Fe2O3

    NARCIS (Netherlands)

    Caliebe, W.A.; Kao, C.-C.; Hastings, J.B.; Taguchi, M.; Kotani, A.; Uozumi, T.; Groot, F.M.F. de

    1998-01-01

    We report experimental and theoretical results on the Fe K edge x-ray absorption spectrum and 1s2p resonant inelastic x-ray scattering (RIXS) spectra in a-Fe2O3 . The results are interpreted using an FeO6^9- cluster model with intra-atomic multiplet coupling and interatomic covalency

  2. CO{sub 2} capture in Mg oxides doped with Fe and Ni; Captura de CO{sub 2} en oxidos de Mg dopados con Fe y Ni

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez S, I. F.

    2016-07-01

    In this work the CO{sub 2} capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe{sub 2}O{sub 3} phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO{sub 2} in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO{sub 2} capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO{sub 2} capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO{sub 2} capture. The different stages

  3. The combined effects of Fe and H2 on the nitridation of silicon

    Science.gov (United States)

    Shaw, N. J.

    1982-01-01

    In view of the support offered by previous work for the suggestion that Fe may affect alpha-Si3N4 formation and microstructural development, a two-part study was conducted to differentiate the effects of H2 and Fe in, first, the nitridation of pure and of Fe-containing powder in N2 and N2-4% H2, and then the nitridation of (1 1 1) Si single crystal wafers with and without Fe powder on the surface. The degree of nitridation is most strongly affected by H2 at 1200 C, but by Fe at 1375 C, where Fe-containing samples in either atmosphere were almost completely nitrided. While neither H2 nor Fe alone changed the ratio of alpha-Si3N4 to beta-Si3N4, the combination of H2 and Fe increased it at both temperatures.

  4. Microscopic studies of a SnO2/α-Fe2O3 architectural nanocomposite using Moessbauer spectroscopic and magnetic measurements

    International Nuclear Information System (INIS)

    Hayashi, Naoaki; Muranaka, Shigetoshi; Yamamoto, Shinpei; Takano, Mikio; Zhang Dongfeng; Sun Lingdong; Yan Chunhua

    2008-01-01

    A SnO 2 /α-Fe 2 O 3 architectural nanocomposite, which was evidenced as SnO 2 nanorod arrays assembled on the surface of α-Fe 2 O 3 nanotubes in our previous study, was investigated microscopically by means of Moessbauer spectroscopic and magnetic measurements. It was found for the SnO 2 nanorods that Fe 3+ ions substituted slightly to Sn 0.998 Fe 0.002 O 2 . Concerning the α-Fe 2 O 3 tubes, the Morin transition, which was completely suppressed in the mother, SnO 2 -free α-Fe 2 O 3 nanotubes, was found to be recovered locally. We speculate that it takes place in the interface area as a result of structural modification needed for the connection with the SnO 2 nanorods. - Graphic abstract: 57 Fe Moessbauer spectrum of SnO 2 /α-Fe 2 O 3 architectural nanocomposite evidenced as SnO 2 nanorod arrays assembled on the surface of α-Fe 2 O 3 nanotubes. (I: Fe-doped SnO 2 nanorods, II: α-Fe 2 O 3 nanotubes) It was found for the SnO 2 nanorods that Fe 3+ ions substituted slightly to Sn 0.998 Fe 0.002 O 2

  5. First principles simulation on the K0.8Fe2Se2 high-temperature structural superconductor

    International Nuclear Information System (INIS)

    Guo, Rui; Yang, Shizhong; Khosravi, Ebrahim; Zhao, Guang-Lin; Bagayoko, Diola

    2013-01-01

    Highlights: • The superconductor K 0.8 Fe 2 Se 2 super cell size, shape, and atomic positions are fully optimized using first principles density functional theory method. • Each K atom donates 0.8 |e| with K vacancies in the supercell, each Fe atom donates 0.4 |e|, while each Se atom gains 0.7 |e| ∼ 0.8 |e|. • Fe atoms show magnetic moment fluctuation and possible strong spin-orbital coupling. -- Abstract: Since the synthesis of the first ones in 2008, iron-based high temperature superconductors have been the subject of many studies. This great interest is partly due to their higher, upper magnetic field, smaller Fermi surface around the Γ point, and a larger coherence length. This work is focused on A x Fe 2 Se 2 structural superconductor (FeSe, 11 hierarchy; A = K, Cs) as recently observed. ARPES data show novel, electronic structure and a hole-free Fermi surface which is different from previously observed Fermi surface images. We use ab initio density functional theory method to simulate the electronic structure of the novel superconductor A x Fe 2 Se 2 . We compare this electronic structure with those of other Fe-based superconductors

  6. Structural, thermal, and magnetic study of solvation processes in spin-crossover [Fe(bpp)(2)][Cr(L)(ox)(2)](2).nH(2)O complexes.

    Science.gov (United States)

    Clemente-León, Miguel; Coronado, Eugenio; Giménez-López, M Carmen; Romero, Francisco M

    2007-12-24

    The influence of lattice water in the magnetic properties of spin-crossover [Fe(bpp)2]X2.nH2O salts [bpp = 2,6-bis(pyrazol-3-yl)pyridine] is well-documented. In most cases, it stabilizes the low-spin state compared to the anhydrous compound. In other cases, it is rather the contrary. Unraveling this mystery implies the study of the microscopic changes that accompany the loss of water. This might be difficult from an experimental point of view. Our strategy is to focus on some salts that undergo a nonreversible dehydration-hydration process without loss of crystallinity. By comparison of the structural and magnetic properties of original and rehydrated samples, several rules concerning the role of water at the microscopic level can be deduced. This paper reports on the crystal structure, thermal studies, and magnetic properties of [Fe(bpp)2][Cr(bpy)(ox)2]2.2H2O (1), [Fe(bpp)2][Cr(phen)(ox)2]2.0.5H2O.0.5MeOH (2), and [Fe(bpp)2][Cr(phen)(ox)2]2.5.5H2O.2.5MeOH (3). Salt 1 contains both high-spin (HS) and low-spin (LS) Fe2+ cations in a 1:1 ratio. Dehydration yields the anhydrous spin-crossover compound with T1/2 downward arrow = 353 K and T1/2 upward arrow = 369 K. Rehydration affords the dihydrate [Fe(bpp)2][Cr(bpy)(ox)2]2.2H2O (1r) with 100% HS Fe2+ sites. Salt 2 also contains both HS and LS Fe2+ cations in a 1:1 ratio. Dehydration yields the anhydrous spin-crossover compound with T1/2 downward arrow = 343 K and T1/2 upward arrow = 348 K. Rehydration affords [Fe(bpp)2][Cr(phen)(ox)2]2.0.5H2O (2r) with 72% Fe2+ sites in the LS configuration. The structural, magnetic, and thermal properties of these rehydrated compounds 1r and 2r are also discussed. Finally, 1 has been dehydrated and resolvated with MeOH to give [Fe(bpp)2][Cr(bpy)(ox)2]2.MeOH (1s) with 33% HS Fe2+ sites. The influence of the guest solvent in the Fe2+ spin state can anticipate the future applications of these compounds in solvent sensing.

  7. First principles calculations of the electronic structure and magnetic properties of Y(Fe,M)9.2 and Y(Fe,M)9.2C (M= Si, Ga, Zr)

    Science.gov (United States)

    Tian, Guang; Zha, Liang; Yang, Wenyun; Qiao, Guanyi; Wang, Changsheng; Yang, Yingchang; Yang, Jinbo

    2018-06-01

    The preferential site substitution of the Fe by Si, Ga and Zr in the Y(Fe,M)9.2 and Y(Fe,M)9.2C compounds, and the doping effects on the magnetic properties have been studied by the first-principles calculations. It is found that the doping of the Si or Zr can improve the thermodynamic stability of the 1:9 phase, while the substitution of the Fe by Ga makes it unstable. Si atom tends to enter the 3g crystal site and Zr prefers to occupy the 2e site when Y(Fe,M)9.2 and their carbides are synthesized. Although the substitution of the Fe by Si and Zr will reduce the total magnetic moments of the YFe9.2 and their carbides, the volumetric and the d-band narrowing effects caused by the doping can still modify the electron density distributions of the Fe near the Fermi level, improving the magnetic ordering temperature of the non-carbonated compound YFe9.2. The calculated magnetic ordering temperatures of Y(Fe,M)9.2C decrease with the increasing content of the doping elements M due to the stronger hybridization of the d bands in the carbides. For the rare-earth(RE) iron based intermetallics REFe9.2 with the TbCu7-type structure, it is suggested that Zr is able to stabilize the phase and enhance the magnetic ordering temperature, indicating the possible further application in the field of permanent magnets, which has not been reported before.

  8. Structural and dielectric characteristics of double perovskite La2(NiFe)1/2MnO6

    Science.gov (United States)

    Nasir, Mohd.; Kandasami, Asokan; Sen, Somaditya

    2018-05-01

    Recently, La2NiMnO6 has drawn significant interest because large magnetic field induced changes in dielectric properties makes this compound a promising material for potential spintronic device applications. In the present study, the structural and dielectric characteristics of sol-gel prepared La2(Ni1/2Fe1/2)MnO6 double perovskite ceramics were evaluated. La2(Ni1/2Fe1/2)MnO6 was crystallized in the monoclinic P21/n structure with ordered Ni2+/Fe2+ and Mn4+ cations. A giant dielectric constant with relaxor-like behavior was observed, which was attributed to the dipolar effects arising from hopping between Ni2+/Fe2+ and Mn4+ ions.

  9. Temperature dependence of the magnetostriction in polycrystalline PrFe1.9 and TbFe2 alloys: Experiment and theory

    International Nuclear Information System (INIS)

    Tang, Y. M.; Chen, L. Y.; Huang, H. F.; Xia, W. B.; Zhang, S. Y.; Wei, J.; Tang, S. L.; Du, Y. W.; Zhang, L.

    2014-01-01

    A remarkable magnetostriction λ 111 as large as 6700 ppm was found at 70 K in PrFe 1.9 alloy. This value is even larger than the theoretical maximum of 5600 ppm estimated by the Steven's equivalent operator method. The temperature dependence of λ 111 for PrFe 1.9 and TbFe 2 alloys follows well with the single-ion theory rule, which yields giant estimated λ 111 values of about 8000 and 4200 ppm for PrFe 1.9 and TbFe 2 alloys, respectively, at 0 K. The easy magnetization direction of PrFe 1.9 changes from [111] to [100] as temperature decreases, which leads to the abnormal decrease of the magnetostriction λ. The rare earth sublattice moment increases sharply in PrFe 1.9 alloy with decreasing temperature, resulting in the remarkably largest estimated value of λ 111 at 0 K according to the single-ion theory

  10. Discovery of Suprathermal Fe+ in and near Earth's Magnetosphere

    Science.gov (United States)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-12-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been observed in and near Earth's equatorial magnetosphere using long-term ( 21 years) Geotail/STICS ion composition data. Fe+ is rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions. Earth's suprathermal Fe+ appears to be positively associated with both geomagnetic and solar activity. Three candidate lower-energy sources are examined for relevance: ionospheric outflow of Fe+ escaped from ion layers altitude, charge exchange of nominal solar wind Fe+≥7, and/or solar wind transported inner source pickup Fe+ (likely formed by solar wind Fe+≥7 interaction with near sun interplanetary dust particles, IDPs). Semi-permanent ionospheric Fe+ layers form near 100 km altitude from the tons of IDPs entering Earth's atmosphere daily. Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data at low-to-moderate geomagnetic activity levels, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source then. Earth flyby and cruise data from Cassini/CHEMS, a nearly identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Therefore, lacking any other candidate sources, it appears that ionospheric Fe+ constitutes at least an important portion of Earth's suprathermal Fe+, comparable to observations at Saturn where ionospheric origin suprathermal Fe+ has also been observed.

  11. Structural and optical characterization of p-type highly Fe-doped SnO2 thin films and tunneling transport on SnO2:Fe/p-Si heterojunction

    Science.gov (United States)

    Ben Haj Othmen, Walid; Ben Hamed, Zied; Sieber, Brigitte; Addad, Ahmed; Elhouichet, Habib; Boukherroub, Rabah

    2018-03-01

    Nanocrystalline highly Fe-doped SnO2 thin films were prepared using a new simple sol-gel method with iron amounts of 5, 10, 15 and 20%. The obtained gel offers a long durability and high quality allowing to reach a sub-5 nm nanocrystalline size with a good crystallinity. The films were structurally characterized through X-ray diffraction (XRD) that confirms the formation of rutile SnO2. High Resolution Transmission Electron Microscopy (HRTEM) images reveals the good crystallinity of the nanoparticles. Raman spectroscopy shows that the SnO2 rutile structure is maintained even for high iron concentration. The variation of the PL intensity with Fe concentration reveals that iron influences the distribution of oxygen vacancies in tin oxide. The optical transmittance results indicate a redshift of the SnO2 band gap when iron concentration increases. The above optical results lead us to assume the presence of a compensation phenomenon between oxygen vacancies and introduced holes following Fe doping. From current-voltage measurements, an inversion of the conduction type from n to p is strongly predicted to follow the iron addition. Electrical characterizations of SnO2:Fe/p-Si and SnO2:Fe/n-Si heterojunctions seem to be in accordance with this deduction. The quantum tunneling mechanism is expected to be important at high Fe doping level, which was confirmed by current-voltage measurements at different temperatures. Both optical and electrical properties of the elaborated films present a particularity for the same iron concentration and adopt similar tendencies with Fe amount, which strongly correlate the experimental observations. In order to evaluate the applicability of the elaborated films, we proceed to the fabrication of the SnO2:Fe/SnO2 homojunction for which we note a good rectifying behavior.

  12. Spin waves in antiferromagnetic FeF2

    DEFF Research Database (Denmark)

    Hutchings, M T; Rainford, B.D.; Guggenheim, H J

    1970-01-01

    Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin Hamilton......Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin...

  13. Interpreting the optical spectra of trace Fe2+ in layer silicates

    International Nuclear Information System (INIS)

    Tarasevich, Yu.I.; Pustovit, A.V.

    1988-01-01

    Estimates have been made of Fe 2+ term splittings in axial crystalline fields. It is found that all three long-wave bands in the optical spectrum are due to Fe 2+ α Fe 3+ charge transfer, while the splitting of 5 T/sub 2g/ and 5 E/sub g/ occurs in low-symmetry fields. Experimental evidence is presented for these calculations

  14. Simultaneous absorption of NO and SO{sub 2} into Fe-II-EDTA solution coupled with the Fe-II-EDTA regeneration catalyzed by activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.S.; Mao, Y.P.; Yang, X.J.; Chen, Y.; Long, X.L.; Yuan, W.K. [East China University of Science & Technology, Shanghai (China)

    2010-07-30

    The simultaneous removal of NO and SO{sub 2} from flue gases can be realized with Fe(II)-ethylenediamineteraacetate (EDTA) solution. Activated carbon is used to catalyze the reduction of Fe-III-EDTA to Fe-II-EDTA to maintain the capability of removing NO of the Fe-EDTA solution. The reductant is the sulfite/bisulfite ions produced by SO{sub 2} dissolving into the aqueous solution. Experiments have been performed to determine the effects of activated carbon of coconut shell, Fe-II-EDTA concentration, Fe/EDTA molar ratio, SO{sub 2} partial pressure, NO partial pressure and SO{sub 4}{sup 2-} concentration on the combined elimination of NO and SO{sub 2} with Fe-II-EDTA solution coupled with the Fe-II-EDTA regeneration catalyzed by activated carbon. According to the experimental results, activated carbon not only catalyzes the reduction of Fe-III-EDTA by sulfite/bisulfite greatly but also avoids the release of N{sub 2}O. The NO removal efficiency increases with the initial Fe-II-EDTA concentration and SO{sub 2} partial pressure. The ratio of Fe/EDTA and the SO{sub 4}{sup 2-} concentration has little effect on the catalytic reduction of Fe-III-EDTA. The optimal initial NO concentration range is from 600 ppm to 900 ppm. The experimental results manifest that the Fe-II-EDTA solution coupled with catalytic regeneration of Fe-II-EDTA can maintain high nitric oxide removal efficiency for a long period of time.

  15. Crystalline and Electronic Structures and Magnetic and Electrical Properties of La-Doped Ca2Fe2O5 Compounds

    Science.gov (United States)

    Phan, T. L.; Tho, P. T.; Tran, N.; Kim, D. H.; Lee, B. W.; Yang, D. S.; Thiet, D. V.; Cho, S. L.

    2018-01-01

    Brownmillerite Ca2Fe2O5 has been observed to exhibit many outstanding properties that are applicable to ecotechnology. However, very little work on doped Ca2Fe2O5 compounds has been carried out to widen their application scope. We present herein a detailed study of the crystalline/geometric and electronic structures and magnetic and electrical properties of Ca2- x La x Fe2O5 ( x = 0 to 1) prepared by conventional solid-state reaction. X-ray diffraction patterns indicated that the compounds with x = 0 to 0.05 exhibited brownmillerite-type single phase. La doping with higher content ( x ≥ 0.1) stimulated additive formation of Grenier- (LaCa2Fe3O8) and perovskite-type (LaFeO3) phases. Extended x-ray absorption fine structure spectroscopy at the Fe K-edge and electron spin resonance spectroscopy revealed presence of Fe3+ in the parent Ca2Fe2O5 ( x = 0) and both Fe3+ and Fe4+ in the doped compounds ( x ≥ 0.05). The Fe4+ content tended to increase with increasing x. This stimulates ferromagnetic exchange interactions between Fe3+ and Fe4+ ions and directly influences the magnetic properties of Ca2- x La x Fe2O5. Electrical resistivity ( ρ) measurements in the temperature range of T = 20 K to 400 K revealed that all the compounds exhibit insulator behavior; the ρ( T) data for x ≥ 0.1 could be described based on the adiabatic small polaron hopping model.

  16. Phase formation in the Li2MoO4–Rb2MoO4–Fe2(MoO4)3 system and crystal structure of a novel triple molybdate LiRb2Fe(MoO4)3

    International Nuclear Information System (INIS)

    Khal'baeva, Klara M.; Solodovnikov, Sergey F.; Khaikina, Elena G.; Kadyrova, Yuliya M.; Solodovnikova, Zoya A.; Basovich, Olga M.

    2013-01-01

    X-ray investigation of solid state interaction of the components in the Li 2 MoO 4 –Rb 2 MoO 4 –Fe 2 (MoO 4 ) 3 system was carried out, and a subsolidus phase diagram of the said system was constructed. The subsystem Rb 2 MoO 4 –LiRbMoO 4 –RbFe(MoO 4 ) 2 was shown to be non-quasiternary. Formation of a novel triple molybdate LiRb 2 Fe(MoO 4 ) 3 was established, conditions of solid state synthesis and crystallization of the compound were found. Its crystal structure (orthorhombic, space group Pnma, Z=4, a=24.3956(6), b=5.8306(1), c=8.4368(2) Å) represents a new structure type and includes infinite two-row ribbons ([Fe(MoO 4 ) 3 ] 3− ) ∞ parallel to the b axis and composed of FeO 6 octahedra, terminal Mo(3)O 4 tetrahedra, and bridge Mo(1)O 4 and Mo(2)O 4 tetrahedra connecting two or three FeO 6 octahedra. The ribbons are connected to form 3D framework via corner-sharing LiO 4 tetrahedra. Rubidium cations are 11- and 13-coordinated and located in cavities of this heterogeneous polyhedral framework. - Graphical abstract: Exploring the Li 2 MoO 4 –Rb 2 MoO 4 –Fe 2 (MoO 4 ) 3 system showed its partial non-quasiternarity and revealed a new compound LiRb 2 Fe(MoO 4 ) 3 which was structurally studied. - Highlights: • The Li 2 MoO 4 –Rb 2 MoO 4 –Fe 2 (MoO 4 ) 3 system study revealed a new compound LiRb 2 Fe(MoO 4 ) 3 . • Its structure of a new type includes ribbons of FeO 6 octahedra and MoO 4 tetrahedra. • The ribbons are connected into a 3D framework via corner-sharing LiO 4 tetrahedra

  17. Structural and magnetic characterization of Fe2CrSi Heusler alloy nanoparticles as spin injectors and spin based sensors

    Science.gov (United States)

    Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Parveen, I. Mubeena; Ravichandran, K.

    2018-05-01

    Half-metallic ferromagnetic [HMF] nanoparticles are of considerable interest in spintronics applications due to their potential use as a highly spin polarized current source. HMF exhibits a semiconductor in one spin band at the Fermi level Ef and at the other spin band they poses strong metallic nature which shows 100 % spin polarization at Ef. Fe based full Heusler alloys are primary interest due to high Curie temperature. Fe2CrSi Heusler alloys are synthesized using metallic powders of Fe, Cr and Si by mechanical alloying method. X-Ray diffractions studies were performed to analyze the structural details of Fe2CrSi nanoparticles with High resolution scanning electron microscope (HRSEM) studies for the morphological details of nanoparticles and magnetic properties were studied using Vibrating sample magnetometer (VSM). XRD Data analysis conforms the Heusler alloy phase showing the existence of L21 structure. Magnetic properties are measured for synthesized samples exhibiting a soft magnetic property possessing low coercivity (HC = 60.5 Oe) and saturation magnetic moment of Fe2CrSi is 3.16 µB, which is significantly higher than the ideal value of 2 µB from the Slater-Pauling rule due to room temperature measurement. The change in magnetic properties are half-metallic nature of Fe2CrSi is due to the shift of the Fermi level with respect to the gap were can be used as spin sensors and spin injectors in magnetic random access memories and other spin dependent devices.

  18. Fabrication of Nano-CeO2 and Application of Nano-CeO2 in Fe Matrix Composites

    International Nuclear Information System (INIS)

    Tiebao, W.; Chunxiang, C.; Xiaodong, W.; Guobin, L.

    2010-01-01

    It is expatiated that nano-CeO2 is fabricated by the direct sedimentation method. The components and particles diameter of nano-CeO2 powders are analyzed by XRD and SEM . The thermodynamic analysis and acting mechanism of nano-CeO2 with Al in Fe matrix composites are researched, which shows that the reaction is generated between CeO2 and Al in the composite, that is, 3CeO2+4Al - 2Al2O3+3[Ce], which obtains Al2O3 and active [Ce] during the sintering process. The active [Ce] can improve the performance of CeO2/Fe matrix composites. The suitable amount of CeO2 is about 0.05% in CeO2/Fe matrix composites. SEM fracture analysis shows that the toughness sockets in nano-CeO2/Fe matrix composites are more than those in no-added nano-CeO2 composites, which can explain that adding nano-CeO2 into Fe matrix composite, the toughness of the composite is improved significantly. Applied nano-CeO2 to Fe matrix diamond saw blades shows that Fe matrix diamond saw blade is sharper and of longer cutting life than that with no-added nano-CeO2.

  19. Chemical quenching of positronium in Fe2O3/Al2O3 catalysts

    International Nuclear Information System (INIS)

    Li, C.; Zhang, H.J.; Chen, Z.Q.

    2010-01-01

    Fe 2 O 3 /Al 2 O 3 catalysts were prepared by solid state reaction method using α-Fe 2 O 3 and γ-Al 2 O 3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ 3 and τ 4 are attributed to positronium annihilation in two types of pores distributed inside Al 2 O 3 grain and between the grains, respectively. With increasing Fe 2 O 3 content from 3 wt% to 40 wt%, the lifetime τ 3 keeps nearly unchanged, while the longest lifetime τ 4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe 2 O 3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ 4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.

  20. Chemical quenching of positronium in Fe 2O 3/Al 2O 3 catalysts

    Science.gov (United States)

    Li, C.; Zhang, H. J.; Chen, Z. Q.

    2010-09-01

    Fe 2O 3/Al 2O 3 catalysts were prepared by solid state reaction method using α-Fe 2O 3 and γ-Al 2O 3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al 2O 3 grain and between the grains, respectively. With increasing Fe 2O 3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe 2O 3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.

  1. Electronically-driven orthorhombic distortion in FeSe

    Science.gov (United States)

    Watson, Matthew; Davies, Nathaniel; Haghighirad, Amir; Narayanan, Arjun; Kim, Timur; Hoersch, Moritz; Blake, Samuel; Coldea, Amalia

    2015-03-01

    FeSe is structurally the simplest of Fe-based superconductors, and exhibits a tetragonal-to-orthorhombic structural transition at ~ 90 K, but no long-range magnetism at any temperature. We report measurements of the resistivity anisotropy in FeSe above Ts finding a large and divergent response to an applied strain, with a comparable magnitude and temperature-dependence to measurements in Ba(Fe1-xCox)2As2, but opposite sign. We compare this data with literature reports on NMR and our own ARPES data, which taken together indicate that the structural transition is electronically-driven with orbital degrees of freedom playing a central role. This work was supported by EPSRC, UK (EP/I004475/1) and Diamond Light Source.

  2. A subsurface Fe-silicate weathering microbiome

    Science.gov (United States)

    Napieralski, S. A.; Buss, H. L.; Roden, E. E.

    2017-12-01

    Traditional models of microbially mediated weathering of primary Fe-bearing minerals often invoke organic ligands (e.g. siderophores) used for nutrient acquisition. However, it is well known that the oxidation of Fe(II) governs the overall rate of Fe-silicate mineral dissolution. Recent work has demonstrated the ability of lithtrophic iron oxidizing bacteria (FeOB) to grow via the oxidation of structural Fe(II) in biotite as a source of metabolic energy with evidence suggesting a direct enzymatic attack on the mineral surface. This process necessitates the involvement of dedicated outer membrane proteins that interact with insoluble mineral phases in a process known as extracellular electron transfer (EET). To investigate the potential role FeOB in a terrestrial subsurface weathering system, samples were obtained from the bedrock-saprolite interface (785 cm depth) within the Rio Icacos Watershed of the Luquillo Mountains in Puerto Rico. Prior geochemical evidence suggests the flux of Fe(II) from the weathering bedrock supports a robust lithotrophic microbial community at depth. Current work confirms the activity of microorganism in situ, with a marked increase in ATP near the bedrock-saprolite interface. Regolith recovered from the interface was used as inoculum to establish enrichment cultures with powderized Fe(II)-bearing minerals serving as the sole energy source. Monitoring of the Fe(II)/Fe(total) ratio and ATP generation suggests growth of microorganisms coupled to the oxidation of mineral bound Fe(II). Analysis of 16S rRNA gene and shotgun metagenomic libraries from in situ and enrichment culture samples lends further support to FeOB involvement in the weathering process. Multiple metagenomic bins related to known FeOB, including Betaproteobacteria genera, contain homologs to model EET systems, including Cyc2 and MtoAB. Our approach combining geochemistry and metagenomics with ongoing microbiological and genomic characterization of novel isolates obtained

  3. Effect of chitosan coating on the structural and magnetic properties of MnFe2O4 and Mn0.5Co0.5Fe2O4 nanoparticles

    Science.gov (United States)

    Mdlalose, W. B.; Mokhosi, S. R.; Dlamini, S.; Moyo, T.; Singh, M.

    2018-05-01

    We report the influence of polymer coatings on structural and magnetic properties of MnFe2O4 and Mn0.5Co0.5Fe2O4 nanoferrites synthesized by glycol thermal technique and then coated with chitosan viz. CHI-MnFe2O4 and CHI-Mn0.5Co0.5Fe2O4. The compounds were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), high-resolution scanning electron microscopy (HRSEM), Mössbauer spectroscopy and magnetization measurements. The powder XRD patterns of naked nanoferrites confirmed single-phase spinel cubic structure with an average crystallite size of 13 nm, while the coated samples exhibited an average particle size of 15 nm. We observed a reduction in lattice parameters with coating. HRTEM results correlated well with XRD results. 57Fe Mössbauer spectra showed ordered magnetic spin states in both nanoferrites. This study shows that coatings have significant effects on the structural and magnetic properties of Mn-nanoferrites. Magnetization studies performed at room temperature in fields up to 14 kOe revealed the superparamagnetic nature of both naked and coated nanoparticles with spontaneous magnetizations at room temperature of 49.2 emu/g for MnFe2O4, 23.6 emu/g for coated CHI-MnFe2O4 nanoparticles, 63.2 emu/g for Mn0.5Co0.5Fe2O4 and 33.2 emu/g for coated CHI-Mn0.5Co0.5Fe2O4 nanoparticles. We observed reduction in coercive fields due to coating. Overall, chitosan-coated manganese and manganese-cobalt nanoferrites present as suitable candidates for biomedical applications owing to physicochemical, and magnetic properties exhibited.

  4. Structural, thermal and photomagnetic properties of spin crossover [Fe(bpp)2]2+ salts bearing [Cr(L)(ox)2]- anions.

    Science.gov (United States)

    Clemente-León, Miguel; Coronado, Eugenio; Giménez-López, M Carmen; Romero, Francisco M; Asthana, Saket; Desplanches, Cédric; Létard, Jean-François

    2009-10-14

    This paper is divided into two parts: in the first part, the influence of solvate molecules on the magnetic properties of spin crossover salts of [Fe(bpp)(2)][Cr(L)(ox)(2)]ClO(4) x nS (bpp = 2,6-bis(pyrazol-3yl)pyridine; L = 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen); ox = oxalate dianion; S = solvent) is analyzed. The second part is devoted to the photomagnetic properties of the previously reported [Fe(bpp)(2)][Cr(L)(ox)(2)](2) family of compounds. The study describes the crystal structure, differential scanning calorimetry (DSC) and magnetic properties of [Fe(bpp)(2)][Cr(bpy)(ox)(2)]ClO(4) x EtOH x 4 H(2)O (1) and [Fe(bpp)(2)][Cr(phen)(ox)(2)]ClO(4) x 1.5 EtOH x 4 H(2)O (2). Both salts are high-spin (HS) compounds. Desolvation of 1 yields a material exhibiting a gradual spin crossover that involves 50% of the Fe(2+) cations. Rehydration of this desolvated salt induces a significant increase in the low-spin (LS) population. Desolvation of 2 affords a material showing a more abrupt spin crossover with thermal hysteresis (T(1/2)(increasing) = 286 K and T(1/2)(decreasing) = 273 K). This material is not very sensitive to rehydration. The anhydrous compounds [Fe(bpp)(2)][Cr(bpy)(ox)(2)](2) (3) and [Fe(bpp)(2)][Cr(phen)(ox)(2)](2) (4) display some quantitative photomagnetic conversion with T(LIESST) values of 41 and 51 K, respectively. Kinetic parameters governing the photo-induced HS-LS relaxation process have been determined and used to reproduce the T(LIESST) curves.

  5. Paramagnetic Spin Correlations in CaFe2As2 Single Crystals

    International Nuclear Information System (INIS)

    Omar Diallo, Souleymane; Pratt, Daniel; Fernandes, Rafael; Tian, Wei; Zarestky, J.L.; Lumsden, Mark D.; Perring, T.G.; Broholm, C.; Ni, Ni; Budko, S.L.; Canfield, Paul; Li, Haifeng; Vaknin, D.; Kreyssig, A.; Goldman, A.I.; Mcqueeney, R.J.

    2010-01-01

    Magnetic correlations in the paramagnetic phase of CaFe2As2(TN=172 K) have been examined by means of inelastic neutron scattering from 180 K ( 1.05TN) up to 300 K (1.8TN). Despite the first-order nature of the magnetic ordering, strong but short-ranged antiferromagnetic (AFM) correlations are clearly observed. These correlations, which consist of quasielastic scattering centered at the wave vector QAFM of the low-temperature AFM structure, are observed up to the highest measured temperature of 300 K and at high energy transfer ( >60 meV). The L dependence of the scattering implies rather weak interlayer coupling in the tetragonal c direction corresponding to nearly two-dimensional fluctuations in the (ab) plane. The spin correlation lengths within the Fe layer are found to be anisotropic, consistent with underlying fluctuations of the AFM stripe structure. Similar to the cobalt-doped superconducting BaFe2As2 compounds, these experimental features can be adequately reproduced by a scattering model that describes short-ranged and anisotropic spin correlations with overdamped dynamics.

  6. Porous Fe2O3 Microspheres as Anode for Lithium-Ion Batteries

    Science.gov (United States)

    Noerochim, L.; Indra, M. A. T.; Purwaningsih, H.; Subhan, A.

    2018-05-01

    In this work, Fe2O3 was successfully synthesized by the hydrothermal process at low temperature. FeCl3.6H2O as precursor and variation of lysine as hydrolyzing agent were used to preparing Fe2O3. SEM images show that the morphology of Fe2O3 is porous microsphere with sizes in the range of (1 to 5) µm in diameter. The as-prepared Fe2O3 with the 2 M of lysine exhibits excellent cycling performance when used as the anode for lithium ion batteries, obtaining reversible discharge capacity of 172.33 mA·h·g‑1 at 0.5 C after 50 cycles. It is attributed to the unique structure of porous microspheres providing a large surface area which maintains good electronic contact between particles during charge-discharge process. This result demonstrates that Fe2O3 porous microsphere has a high potential as anode material for application of lithium-ion battery.

  7. Synthesis, structure and properties of layered iron-oxychalcogenides Nd2Fe2Se2−xSxO3

    International Nuclear Information System (INIS)

    Liu, Y.; Zhang, S.B.; Tan, S.G.; Yuan, B.; Kan, X.C.; Zu, L.; Sun, Y.P.

    2015-01-01

    A new series of sulfur-substituted iron-oxychalcogenides Nd 2 Fe 2 Se 2−x S x O 3 (0≤x≤0.4) was synthesized by solid state reaction method, and investigated by structure, transport, magnetic and specific heat measurements. The compounds crystallize in the layered tetragonal structure with I4/mmm space group, and show semiconducting behavior. The large discrepancy between the activation energies for conductivity, E ρ (152–202 meV), and thermopower, E S (15.6–39.8 meV), indicates the polaronic transport mechanism of the carrier. The parent compound Nd 2 Fe 2 Se 2 O 3 exhibits a frustrated antiferromagnetic (AFM) ground state, and the S-substitution induces an enhanced ferromagnetic (FM) component and possible increased degree of frustration. - Graphical abstract: The crystal structure of Nd 2 Nd 2 Fe 2 Se 2−x S x O 3 is built up by stacking fluorite-like Nd 2 O 2 layers and anti-CuO 2 -type Fe 2 O(Se/S) 2 layers with Fe 2+ cations coordinated by two in-plane O 2- and four Se 2- above and below the square Fe 2 O plane. - Highlights: • We have synthesized a new series of layered iron-oxychalcogenides Nd 2 Fe 2 Se 2−x S x O 3 . • They crystallize in layered tetragonal structure and show semiconducting behavior. • The transport analysis indicates the polaronic transport mechanism of the carrier. • The parent compound shows a frustrated antiferromagnetic (AFM) ground state. • The S-substitution induces an enhanced ferromagnetic (FM) component

  8. MnFe{sub 2}O{sub 4} as a gas sensor towards SO{sub 2} and NO{sub 2} gases

    Energy Technology Data Exchange (ETDEWEB)

    Rathore, Deepshikha, E-mail: deep.nano@gmail.com; Mitra, Supratim [Department of Natural Sciences, NIIT University, Neemrana, Rajasthan 301705 (India)

    2016-05-06

    The chemical co-precipitation method was used to synthesize MnFe{sub 2}O{sub 4} nanoparticles. Single cubic phase formation of nanoparticles was confirmed by X-ray diffraction technique. The average particle size of MnFe{sub 2}O{sub 4} nanoparticles was found to be 10.7 nm using Scherrer formula. The ultrafine powder of MnFe{sub 2}O{sub 4} nanoparticles was pressed to design pellet of 10 mm diameter and 1mm thickness. Copper electrodes have been deposited on the surface of pellet using silver paste in the form of capacitor. Fabricated gas sensing device of MnFe{sub 2}O{sub 4} nanoparticles was tested towards SO{sub 2} and NO{sub 2} gases. Cole-Cole plot of MnFe{sub 2}O{sub 4} was investigated with the help of electrochemical workstation. The performance of the sensors including sensitivity, response and recovery time was also determined. It was observed that the MnFe{sub 2}O{sub 4} nanoparticles are more sensible for NO{sub 2} gas as compared to SO{sub 2} gas.

  9. Effect of in situ pyrolysis of acetylene (C2H2) gas as a carbon source on the electrochemical performance of LiFePO4 for rechargeable lithium-ion batteries

    Science.gov (United States)

    Saroha, Rakesh; Panwar, Amrish K.

    2017-06-01

    The intention of this work is to study the effect of in situ pyrolysis of acetylene (C2H2) gas used as a carbon source on the physicochemical and electrochemical performance of pristine LiFePO4 (LFP). Acetylene gas, which decomposed to carbon and methane along with some side products when exposed to high temperature (>625 °C), is used as a carbon source for coating over the surface of LFP particles. Thermogravimetric (TGA) measurements were performed in an air atmosphere, primarily to estimate the exact amount of carbon deposited on the surface of the olivine cathode material due to the decomposition of C2H2 gas. Raman and TGA results confirm the presence of carbon as coated on the surface of the prepared compositions. Among all the synthesized samples, LFP with 10 min C2H2 treatment (LFPC10) shows the highest discharge capacity at all C-rates and exhibits excellent rate performance. LFPC10 delivers a specific discharge capacity of 144 (±5) mAh g-1 (~85% of the theoretical capacity of 170 mAh g-1) at 0.1C rate. LFPC10 demonstrates the best cycling performance as it offers an initial discharge capacity of about 117 (±5) mAh g-1 (~69% of the theoretical capacity) at 1C-rate and has 97% capacity retention even after 100 charge/discharge cycles.

  10. Fabrication, characterization, and photocatalytic property of α-Fe2O3/graphene oxide composite

    International Nuclear Information System (INIS)

    Li Hong; Zhao Qidong; Li Xinyong; Zhu Zhengru; Tade, Moses; Liu Shaomin

    2013-01-01

    Spindle-shaped microstructure of α-Fe 2 O 3 was successfully synthesized by a simple hydrothermal method. The α-Fe 2 O 3 /graphene oxide (GO) composites was prepared using a modified Hummers’ strategy. The properties of the samples were systematically investigated by X-ray powder diffraction (XRD), UV–Vis diffuse reflectance spectrophotometer, transmission electron microscope, atomic force microscope, X-ray photoelectron spectroscopy, and Raman spectroscopy (Raman) techniques. GO nanosheets act as supporting materials for anchoring the α-Fe 2 O 3 particles. The average crystallite sizes of the α-Fe 2 O 3 and α-Fe 2 O 3 /GO samples are ca. 27 and 24 nm, respectively. The possible growth of α-Fe 2 O 3 onto GO layers led to a higher absorbance capacity for visible light by α-Fe 2 O 3 /GO than α-Fe 2 O 3 composite. The photocatalytic degradation of toluene over the α-Fe 2 O 3 and α-Fe 2 O 3 /GO samples under xenon-lamp irradiation was comparatively studied by in situ FTIR technique. The results indicate that the α-Fe 2 O 3 /GO sample synthesized exhibited a higher capacity for the degradation of toluene. The composite of α-Fe 2 O 3 /GO could be promisingly applied in photo-driven air purification.

  11. Fabrication, characterization, and photocatalytic property of α-Fe2O3/graphene oxide composite

    Science.gov (United States)

    Li, Hong; Zhao, Qidong; Li, Xinyong; Zhu, Zhengru; Tade, Moses; Liu, Shaomin

    2013-06-01

    Spindle-shaped microstructure of α-Fe2O3 was successfully synthesized by a simple hydrothermal method. The α-Fe2O3/graphene oxide (GO) composites was prepared using a modified Hummers' strategy. The properties of the samples were systematically investigated by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectrophotometer, transmission electron microscope, atomic force microscope, X-ray photoelectron spectroscopy, and Raman spectroscopy (Raman) techniques. GO nanosheets act as supporting materials for anchoring the α-Fe2O3 particles. The average crystallite sizes of the α-Fe2O3 and α-Fe2O3/GO samples are ca. 27 and 24 nm, respectively. The possible growth of α-Fe2O3 onto GO layers led to a higher absorbance capacity for visible light by α-Fe2O3/GO than α-Fe2O3 composite. The photocatalytic degradation of toluene over the α-Fe2O3 and α-Fe2O3/GO samples under xenon-lamp irradiation was comparatively studied by in situ FTIR technique. The results indicate that the α-Fe2O3/GO sample synthesized exhibited a higher capacity for the degradation of toluene. The composite of α-Fe2O3/GO could be promisingly applied in photo-driven air purification.

  12. Investigation on microstructure and mechanical properties of Mo2FeB2 based cermets with and without PVA

    Science.gov (United States)

    Shen, Yupeng; Huang, Zhifu; Jian, Yongxin; Yang, Ming; Li, Kemin

    2018-03-01

    Mo2FeB2 based cermets with and without PVA have been investigated by x-ray diffractometry (XRD), x-ray photoelectron spectroscope (XPS) and scanning electron microscopy (SEM). The density and transverse rupture strength (TRS) of green compact, relative density, hardness (HRA), fracture toughness (KIC) and TRS of Mo2FeB2 based cermets were also measured. The results indicate that, compared with the Mo2FeB2 based cermets without PVA, the density of green compact with PVA can be improved slightly at the same pressure. However, the much higher TRS is obtained for the green compact without PVA. Meanwhile, Mo2FeB2 particles exhibit the finer and less congruity feature for Mo2FeB2 based cermets without PVA. In addition, the higher relative density, hardness, fracture toughness and TRS can be acquired for the cermets without PVA. Obviously, considering the mechanical properties and preparation period of Mo2FeB2 based cermets, no adding PVA is the optimized process of powder molding in the manufacture of Mo2FeB2 based cermets.

  13. CO_2 capture in Mg oxides doped with Fe and Ni

    International Nuclear Information System (INIS)

    Sanchez S, I. F.

    2016-01-01

    In this work the CO_2 capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe_2O_3 phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO_2 in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO_2 capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO_2 capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO_2 capture. The different stages of mass loss and thermal

  14. Heterostructured ZnFe2O4/Fe2TiO5/TiO2 Composite Nanotube Arrays with an Improved Photocatalysis Degradation Efficiency Under Simulated Sunlight Irradiation

    Science.gov (United States)

    Xiong, Kun; Wang, Kunzhou; Chen, Lin; Wang, Xinqing; Fan, Qingbo; Courtois, Jérémie; Liu, Yuliang; Tuo, Xianguo; Yan, Minhao

    2018-03-01

    To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays (TONTAs), ZnFe2O4 (ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltage-assisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions (0.025 mg mL-1) were kept under a 60 V bias voltage for 1 h. After annealing at 750 °C for 2 h, the heterostructured ZFO/Fe2TiO5 (FTO)/TiO2 composite nanotube arrays were successfully obtained. Furthermore, Fe3+ was reduced to Fe2+ when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced the visible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight. [Figure not available: see fulltext.

  15. Magnetic Fe{sub 2}MO{sub 4} (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Dung [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Phan, Ngoc Hoa [Department of Chemical Technology, Hochiminh University of Technology, 268 Ly Thuong Kiet, District 10, Ho Chi Minh (Viet Nam); Do, Manh Huy, E-mail: huydoma@vast-hcm.ac.vn [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Ngo, Kim Tham [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); College of science, Can Tho University, 3/2, Can Tho (Viet Nam)

    2011-01-30

    We present a simple and efficient method for the fabrication of magnetic Fe{sub 2}MO{sub 4} (M:Fe and Mn) activated carbons (Fe{sub 2}MO{sub 4}/AC-H, M:Fe and Mn) by impregnating the activated carbon with simultaneous magnetic precursor and carbon modifying agent followed by calcination. The obtained samples were characterized by nitrogen adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), and the catalytic activity in heterogeneous Fenton oxidation of methyl orange (MO) was evaluated. The resulting Fe{sub 2}MnO{sub 4}/AC-H showed higher catalytic activity in the methyl orange oxidation than Fe{sub 3}O{sub 4}/AC-H. The effect of operational parameters (pH, catalyst loading H{sub 2}O{sub 2} dosage and initial MO concentration) on degradation performance of the oxidation process was investigated. Stability and reusability of selected catalyst were also tested.

  16. Ferromagnetic characteristics of HfFe2

    International Nuclear Information System (INIS)

    Novakovic, N.; Belosevic-Cavor, J.; Cekic, B.; Manasijevic, M.; Milosevic, Z. . E-mail address of correspoding author: novnik@rt270.vin.bg.ac.yu; Novakovic, N.)

    2003-01-01

    The magnetic hyperfine fields at 181 Ta ion-probe sites in the HfFe 2 polycrystalline binary compound were measured using the time-differential perturbed angular correlation (TDPAC) method. Measurements were performed in the absence of polarizing external magnetic field, at room temperature. The existence of two different structures, dominant cubic MgCu 2 -type and hexagonal MgZn 2 -type in our HfFe 2 sample was refined. Both structures are ferromagnetic with Curie temperatures, which differ significantly (588 K for MgCu 2 and 427 K for MgZn 2 ). The corresponding values of hyperfine fields are H hf 13.8±0.1 T for MgCu 2 -type structure and H hf = 8.0±0.2 T for MgZn 2 -type structure. Calculations using LAPW-Wien 97 program package are in progress and preliminary results are in good agreement with experiment. The analysis includes qualitative explanation of the exchange interactions mechanism between magnetic dipole moment of the observed 181 Ta ion-probe and magnetic dipole moments of the nearest neighbours on the corresponding coordination polyhedra. All these results will be published recently. (author)

  17. Growth of Fe2O3 thin films by atomic layer deposition

    International Nuclear Information System (INIS)

    Lie, M.; Fjellvag, H.; Kjekshus, A.

    2005-01-01

    Thin films of α-Fe 2 O 3 (α-Al 2 O 3 -type crystal structure) and γ-Fe 2 O 3 (defect-spinel-type crystal structure) have been grown by the atomic layer deposition (ALD) technique with Fe(thd) 3 (iron derivative of Hthd = 2,2,6,6-tetramethylheptane-3,5-dione) and ozone as precursors. It has been shown that an ALD window exists between 160 and 210 deg. C. The films have been characterized by various techniques and are shown to comprise (001)-oriented columns of α-Fe 2 O 3 with no in-plane orientation when grown on soda-lime-glass and Si(100) substrates. Good quality films have been made with thicknesses ranging from 10 to 130 nm. Films grown on α-Al 2 O 3 (001) and MgO(100) substrates have the α-Fe 2 O 3 and γ-Fe 2 O 3 crystal structure, respectively, and consist of highly oriented columns with in-plane orientations matching those of the substrates

  18. Extrinsic Curie temperature and spin reorientation changes in Nd2Fe14B/α-Fe nanocomposites

    International Nuclear Information System (INIS)

    Lewis, L.H.; Panchanathan, V.

    1998-05-01

    The Curie temperatures and spin reorientation temperatures of a series of four melt-spun nanocomposite materials comprised of Nd 2 Fe 1 4B and varying amounts of α-Fe were measured using independent techniques. The phase constitution and grain size was assessed with synchrotron x-ray diffraction; the Curie temperatures were measured by differential thermal analysis (DTA) and dc SQUID magnetometry in the temperature range 375 K ≤ T ≤ 800 K, whereas the spin reorientation transition temperature was determined from ac susceptibility measurements taken in the range 10 K ≤ T ≤ 300 K. The Curie temperature increases with increasing excess iron content, resulting in a 18 degree enhancement over the Curie temperature of pure Nd 2 Fe 14 B for 27 wt% excess α-Fe. The spin reorientation temperatures are depressed from the single-crystal value by an average of 10 degrees. Both anomalous effects are attributed to intergranular exchange coupling present in the alloys, although the effects of uncompensated stress between the constituent phases cannot be ruled out The experimental results suggest that while the Curie temperature of the Nd 2 Fe 14 B phase may be extrinsically enhanced significantly beyond the bulk value, possibly extending the range of applications of this compound, the anisotropy may be simultaneously lowered, impeding the attainment of high coercivities in these alloys

  19. Photocatalytic degradation of textile dye direct orange 26 by using CoFe2O4/Ag2O

    International Nuclear Information System (INIS)

    Azhdari, F.; Mehdipour Ghazi, M.

    2016-01-01

    The magnetic and recyclable nanoparticles of CoFe 2 O 4 were synthesized by a reverse co-precipitation process. Sonication was used to couple the CoFe 2 O 4 surface with Ag 2 O. The characteristics and optical properties of the catalyst were studied by powder X-ray diffraction, UV–visible reflectance spectroscopy and scanning electron microscopy analyses. Pure CoFe 2 O 4 and CoFe 2 O 4 /Ag 2 O were utilized to determine the visible light photo catalytic degradation of Direct Orange 26. The effects of p H, the initial concentration of catalyst and initial dye concentration on the photo catalytic process were investigated. It was found that the presence of Ag 2 O remarkably improved the photo catalytic adsorption capacity and degradation efficiency of CoFe 2 O 4 /Ag 2 O when compared with the pure CoFe 2 O 4 . Moreover, due to the magnetic behavior of CoFe 2 O 4 , these coupled nanoparticles can be easily separated from the aqueous solution by applying an external magnetic field. The prepared Ag 2 O-modified CoFe 2 O 4 exhibited much higher (about 40%) photo catalytic activity than the unmodified one. The results showed that the loading of the Ag 2 O significantly improved the photo catalytic performance of the CoFe 2 O 4 in which the Ag 2 O acted as a charge carrier to capture the delocalized electrons.

  20. Superconductivity induced by doping Rh in CaFe2-xRhxAs2

    International Nuclear Information System (INIS)

    Qi Yanpeng; Wang Lei; Gao Zhaoshun; Wang Dongliang; Zhang Xianping; Wang Chunlei; Yao Chao; Ma Yanwei

    2011-01-01

    In this paper, we report the synthesis of iron-based superconductors CaFe 2-x Rh x As 2 using a one-step solid state reaction method that crystallizes in the ThCr 2 Si 2 -type structure with a space group I4/mmm. The systematic evolution of the lattice constants demonstrates that the Fe ions are successfully replaced by the Rh. By increasing the doping content of Rh, the spin-density-wave (SDW) transition in the parent compound is suppressed and superconductivity emerges. The maximum superconducting transition temperature is found at 18.5 K with a doping level of x=0.15. The temperature dependence of dc magnetization confirms superconducting transitions at around 15 K. The general phase diagram was obtained and found to be similar to the case of the Rh-doping Sr122 system. Our results explicitly demonstrate the feasibility of inducing superconductivity in Ca122 compounds by higher d-orbital electron doping; however, different Rh-doping effects between FeAs122 compounds and FeAs1111 systems still remains an open question.

  1. Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites

    International Nuclear Information System (INIS)

    Lauda, M.; Füzer, J.; Kollár, P.; Strečková, M.; Bureš, R.; Kováč, J.; Baťková, M.; Baťko, I.

    2016-01-01

    We investigated composites that have been prepared from FeSi powders covered with MnZnFe 2 O 4 (MnZn ferrite), which was prepared by sol–gel synthesis accompanied with the auto-combustion process. The aim of this paper is to analyze the complex permeability and core losses of prepared samples with different amount of MnZn ferrite. The microstructure and the powder morphology were examined by scanning electron microscopy. Magnetic measurements on bulk samples were carried out using a vibrating sample magnetometer, an impedance analyzer and hysteresisgraphs. The results indicate that the composites with 2.6 wt% MnZn ferrite show better soft magnetic properties than the composites with about 6 wt% MnZn ferrite. - Highlights: • Successful preparation of soft magnetic composite FeSi/MnZnFe 2 O 4 . • Study of the complex magnetic permeability. • Comparison of different compositions of prepared SMC's. • Determination of parts of magnetic losses.

  2. CellSs: Scheduling Techniques to Better Exploit Memory Hierarchy

    Directory of Open Access Journals (Sweden)

    Pieter Bellens

    2009-01-01

    Full Text Available Cell Superscalar's (CellSs main goal is to provide a simple, flexible and easy programming approach for the Cell Broadband Engine (Cell/B.E. that automatically exploits the inherent concurrency of the applications at a task level. The CellSs environment is based on a source-to-source compiler that translates annotated C or Fortran code and a runtime library tailored for the Cell/B.E. that takes care of the concurrent execution of the application. The first efforts for task scheduling in CellSs derived from very simple heuristics. This paper presents new scheduling techniques that have been developed for CellSs for the purpose of improving an application's performance. Additionally, the design of a new scheduling algorithm is detailed and the algorithm evaluated. The CellSs scheduler takes an extension of the memory hierarchy for Cell/B.E. into account, with a cache memory shared between the SPEs. All new scheduling practices have been evaluated showing better behavior of our system.

  3. Complex temperature evolution of the electronic structure of CaFe2As2

    International Nuclear Information System (INIS)

    Adhikary, Ganesh; Biswas, Deepnarayan; Sahadev, Nishaina; Bindu, R.; Kumar, Neeraj; Dhar, S. K.; Thamizhavel, A.; Maiti, Kalobaran

    2014-01-01

    Employing high resolution photoemission spectroscopy, we investigate the temperature evolution of the electronic structure of CaFe 2 As 2 , which is a parent compound of high temperature superconductors—CaFe 2 As 2 exhibits superconductivity under pressure as well as doping of charge carriers. Photoemission results of CaFe 2 As 2 in this study reveal a gradual shift of an energy band, α away from the chemical potential with decreasing temperature in addition to the spin density wave (SDW) transition induced Fermi surface reconstruction across SDW transition temperature. The corresponding hole pocket eventually disappears at lower temperatures, while the hole Fermi surface of the β band possessing finite p orbital character survives till the lowest temperature studied. These results, thus, reveal signature of complex charge redistribution among various energy bands as a function of temperature

  4. Polymethylated [Fe(η6-arene)2]2+ dications: methyl-group rearrangements and application of the EINS mechanism.

    Science.gov (United States)

    Štíbr, Bohumil; Bakardjiev, Mario; Hájková, Zuzana; Holub, Josef; Padělková, Zdenka; Růžička, Aleš; Kennedy, John D

    2011-06-14

    Reactions between the methylated arenes ArMe(n) [where ArMe(n) = C(6)Me(n)H((6-n)), and n = 1-6] and FeCl(2) in heptane at 90 °C in the presence of anhydrous AlCl(3) give, for the arenes with n = 1-5, extensive isomerisations and disproportionations involving the methyl groups on the arene rings, and the formation of mixtures of [Fe(ArMe(n))(2)](2+) dications that defy separation into pure species. GC-MS studies of AlCl(3)/mesitylene and AlCl(3)/durene reactions in the absence of FeCl(2) (90 °C, 2 h) allow quantitative assessments of the rearrangements, and the EINS mechanism (electrophile-induced nucleophilic substitution) is applied to rationalise the phenomena. By contrast, ArMe(n) / FeCl(2) /AlCl(3) reactions in heptane for 24-36 h at room-temperature proceed with no rearrangements, allowing the synthesis of the complete series of pure [Fe(ArMen)](2+) cations in yields of 48-71%. The pure compounds are characterised by (1)H NMR spectroscopy and electrospray-ionization mass-spectrometry (ESI-MS), and the structures of [Fe(m-xylene)(2)][PF(6)](2) and [Fe(durene)(2)][PF(6)](2) are established by single-crystal X-ray diffraction analyses.

  5. VTVH-MCD and DFT studies of thiolate bonding to [FeNO]7/[FeO2]8 complexes of isopenicillin N synthase: substrate determination of oxidase versus oxygenase activity in nonheme Fe enzymes.

    Science.gov (United States)

    Brown, Christina D; Neidig, Michael L; Neibergall, Matthew B; Lipscomb, John D; Solomon, Edward I

    2007-06-13

    Isopenicillin N synthase (IPNS) is a unique mononuclear nonheme Fe enzyme that catalyzes the four-electron oxidative double ring closure of its substrate ACV. A combination of spectroscopic techniques including EPR, absorbance, circular dichroism (CD), magnetic CD, and variable-temperature, variable-field MCD (VTVH-MCD) were used to evaluate the geometric and electronic structure of the [FeNO]7 complex of IPNS coordinated with the ACV thiolate ligand. Density Function Theory (DFT) calculations correlated to the spectroscopic data were used to generate an experimentally calibrated bonding description of the Fe-IPNS-ACV-NO complex. New spectroscopic features introduced by the binding of the ACV thiolate at 13 100 and 19 800 cm-1 are assigned as the NO pi*(ip) --> Fe dx2-y2 and S pi--> Fe dx2-y2 charge transfer (CT) transitions, respectively. Configuration interaction mixes S CT character into the NO pi*(ip) --> Fe dx2-y2 CT transition, which is observed experimentally from the VTVH-MCD data from this transition. Calculations on the hypothetical {FeO2}8 complex of Fe-IPNS-ACV reveal that the configuration interaction present in the [FeNO]7 complex results in an unoccupied frontier molecular orbital (FMO) with correct orientation and distal O character for H-atom abstraction from the ACV substrate. The energetics of NO/O2 binding to Fe-IPNS-ACV were evaluated and demonstrate that charge donation from the ACV thiolate ligand renders the formation of the FeIII-superoxide complex energetically favorable, driving the reaction at the Fe center. This single center reaction allows IPNS to avoid the O2 bridged binding generally invoked in other nonheme Fe enzymes that leads to oxygen insertion (i.e., oxygenase function) and determines the oxidase activity of IPNS.

  6. Scheduling the scheduling task : a time management perspective on scheduling

    NARCIS (Netherlands)

    Larco Martinelli, J.A.; Wiers, V.C.S.; Fransoo, J.C.

    2013-01-01

    Time is the most critical resource at the disposal of schedulers. Hence, an adequate management of time from the schedulers may impact positively on the scheduler’s productivity and responsiveness to uncertain scheduling environments. This paper presents a field study of how schedulers make use of

  7. A novel heterogeneous system for sulfate radical generation through sulfite activation on a CoFe2O4 nanocatalyst surface.

    Science.gov (United States)

    Liu, Zizheng; Yang, Shaojie; Yuan, Yanan; Xu, Jing; Zhu, Yifan; Li, Jinjun; Wu, Feng

    2017-02-15

    Heterogeneous catalytic activation is important for potential application of new sulfate-radical-based advanced oxidation process using sulfite as source of sulfate radical. We report herein a heterogeneous system for sulfite activation by CoFe 2 O 4 nanocatalyst for metoprolol removal. Factors that influence metoprolol removal were investigated, including pH and initial concentrations of components. The CoFe 2 O 4 nanocatalyst was characterized by X-ray diffractometry (XRD) and transmission electron microscopy (TEM), and the catalytic stability was tested by consecutive runs. Radicals generated in the CoFe 2 O 4 S(IV)O 2 system were identified through radical quenching experiments and by electron spin resonance (ESR). The catalytic mechanism was elucidated further by X-ray photoelectron spectroscopy (XPS). The catalytic process was dependent on initial pH, and more than 80% of the metoprolol can be removed at pH 10.0 following the Langmubir-Hinshelwood equation. The generation of Co-OH complexes on the CoFe 2 O 4 surface was crucial for sulfite activation. SO 4 - was verified to be the main oxidative species responsible for metoprolol degradation. Other organic pollutants, such as sulfanilamide, sulfasalazine, 2-nitroaniline, sulfapyridine, aniline, azo dye X-3B and 4-chloroaniline, could also be removed in this CoFe 2 O 4 S(IV)O 2 system. The results suggest that the CoFe 2 O 4 S(IV)O 2 system has good application prospects in alkaline organic wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of surface Fe-S hybrid structure on the activity of the perfect and reduced α-Fe2O3(001) for chemical looping combustion

    Science.gov (United States)

    Xiao, Xianbin; Qin, Wu; Wang, Jianye; Li, Junhao; Dong, Changqing

    2018-05-01

    Sulfurization of the gradually reduced Fe2O3 surfaces is inevitable while Fe2O3 is used as an oxygen carrier (OC) for coal chemical looping combustion (CLC), which will result in formation of Fe-S hybrid structure on the surfaces. The Fe-S hybrid structure will directly alter the reactivity of the surfaces. Therefore, detailed properties of Fe-S hybrid structure over the perfect and reduced Fe2O3(001) surfaces, and its effect on the interfacial interactions, including CO oxidization and decomposition on the surfaces, were investigated by using density functional theory (DFT) calculations. The S atom prefers to chemically bind to Fe site with electron transfer from the surfaces to the S atom, and a deeper reduction of Fe2O3(001) leads to an increasing interaction between S and Fe. The formation of Fe-S hybrid structure alters the electronic properties of the gradually reduced Fe2O3(001) surfaces, promoting CO oxidation on the surfaces ranging from Fe2O3 to FeO, but depressing carbon deposition on the surfaces ranging from FeO to Fe. The sulfurized FeO acts as a watershed to realize relatively high CO oxidation rate and low carbon deposition. Results provided a fundamental understanding for controlling and optimizing the CLC processes.

  9. New Insights into Mn1−xZnxFe2O4 via Fabricating Magnetic Photocatalyst Material BiVO4/Mn1−xZnxFe2O4

    Directory of Open Access Journals (Sweden)

    Taiping Xie

    2018-02-01

    Full Text Available BiVO4/Mn1−xZnxFe2O4 was prepared by the impregnation roasting method. XRD (X-ray Diffractometer tests showed that the prepared BiVO4 is monoclinic crystal, and the introduction of Mn1−xZnxFe2O4 does not change the crystal structure of BiVO4. The introduction of a soft-magnetic material, Mn1−xZnxFe2O4, was beneficial to the composite photocatalyst’s separation from the liquid solution using an extra magnet after use. UV-vis spectra analysis indicated that Mn1−xZnxFe2O4 enhanced the absorption intensity of visible light for BiVO4. EIS (electrochemical impedance spectroscopy investigation revealed that the introduction of Mn1−xZnxFe2O4 enhanced the conductivity of BiVO4, further decreasing its electron transfer impedance. The photocatalytic efficiency of BiVO4/Mn1−xZnxFe2O4 was higher than that of pure BiVO4. In other words, Mn1−xZnxFe2O4 could enhance the photocatalytic reaction rate.

  10. Controllable synthesis, magnetic and biocompatible properties of Fe3O4 and α-Fe2O3 nanocrystals

    International Nuclear Information System (INIS)

    Zhou, Xi; Shi, Yanfeng; Ren, Lei; Bao, Shixiong; Han, Yu; Wu, Shichao; Zhang, Honggang; Zhong, Lubin; Zhang, Qiqing

    2012-01-01

    Iron oxide nanocrystals (NCs) with a series of well-controlled morphologies (octahedron, rod, wire, cube and plate) and compositions (Fe 3 O 4 and α-Fe 2 O 3 ) were synthesized via a facile hydrothermal process. The morphological and compositional control of various iron oxide NCs was based on the regulations of precursor thermolysis kinetics and surfactants. The obtained samples were characterized by XRD, SEM, TEM, SQUID and cytotoxicity test. These as-prepared iron oxide NCs showed excellent magnetic properties and good biocompatibility, paving the way for their high-efficiency bio-separation and bio-detection applications. - Graphical Abstract: Schematic illustration for the formation of iron oxide NCs (Fe 3 O 4 and α-Fe 2 O 3 ) with different controlled morphologies and compositions. Highlights: ► Iron oxide NCs with a series of well-controlled morphologies (octahedron, rod, wire, cube, and plate) and compositions (Fe 3 O 4 and α-Fe 2 O 3 ) were synthesized via a facile hydrothermal method. ► The mechanism of the morphological and compositional control process is directly related to precursor thermolysis kinetics and surfactants. ► These iron oxide NCs exhibited excellent magnetic response and good biocompatibility, which should have great applications in the cell separation and biodetection.

  11. NMR measurements in milled GdCo2 and GdFe2 intermetallic compounds

    International Nuclear Information System (INIS)

    Tribuzy, C.V.B.; Guimaraes, A.P.; Biondo, A.; Larica, C.; Alves, K.M.B.

    1998-12-01

    We have used the nuclear magnetic resonance technique to study the magnetic and structural properties of the Gd-Co and Gd-Fe metallic systems, starting with the C15 laves phase intermetallic compounds, and submitting them to a high energy milling process. This leads to the amorphization of the samples, as determined by the X-ray diffraction spectra. For the Gd-Co system the NMR study used the 59 Co nucleus; in the Gd-Fe system, 155,157 Gd and 57 Fe were used. Both systems showed segregation of the pure elements, after a few hours of milling. In the Gd-Co system, a single line, of increasing width, was observed in the 59 Co spectrum. In the Gd-Fe system, the 155 Gd and 157 Gd resonances show three lines, arising from electrical quadrupole interaction. With increasing milling time, the lines broaden, and extra lines appear attributed to a cubic phase of Gd; this interpretation is supported by the X-ray analysis of the samples. The 57 Fe NMR spectrum of this system also informs on the direction of magnetization of the samples in the early stages of milling. From 1 h to 7 h of milling, a spectrum of α-Fe was observed. The study of the NMR line intensity as a function of radio frequency (r.f.) power in Gd Co 2 suggests the existence of regions of the samples with different degrees of disorder. We have observed the persistence of NMR signals from the original intermetallic compounds in the samples with up to 10 h and 7 h of milling, respectively, for Gd Co 2 and Gd Fe 2 . (author)

  12. Reaction Coordinate Leading to H2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory.

    Science.gov (United States)

    Pelmenschikov, Vladimir; Birrell, James A; Pham, Cindy C; Mishra, Nakul; Wang, Hongxin; Sommer, Constanze; Reijerse, Edward; Richers, Casseday P; Tamasaku, Kenji; Yoda, Yoshitaka; Rauchfuss, Thomas B; Lubitz, Wolfgang; Cramer, Stephen P

    2017-11-22

    [FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (H hyd ) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57 Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that H hyd is the catalytic state one step prior to H 2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H 2 bond formation by [FeFe]-hydrogenases.

  13. Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4 and Zinc Ferrite (ZnFe2O4 Nanoparticles Synthesized by Sol-Gel Self-Combustion Method

    Directory of Open Access Journals (Sweden)

    Samikannu Kanagesan

    2016-08-01

    Full Text Available Spinel copper ferrite (CuFe2O4 and zinc ferrite (ZnFe2O4 nanoparticles were synthesized using a sol-gel self-combustion technique. The structural, functional, morphological and magnetic properties of the samples were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, Transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. XRD patterns conform to the copper ferrite and zinc ferrite formation, and the average particle sizes were calculated by using a transmission electron microscope, the measured particle sizes being 56 nm for CuFe2O4 and 68 nm for ZnFe2O4. Both spinel ferrite nanoparticles exhibit ferromagnetic behavior with saturation magnetization of 31 emug−1 for copper ferrite (50.63 Am2/Kg and 28.8 Am2/Kg for zinc ferrite. Both synthesized ferrite nanoparticles were equally effective in scavenging 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH free radicals. ZnFe2O4 and CuFe2O4 nanoparticles showed 30.57% ± 1.0% and 28.69% ± 1.14% scavenging activity at 125 µg/mL concentrations. In vitro cytotoxicity study revealed higher concentrations (>125 µg/mL of ZnFe2O4 and CuFe2O4 with increased toxicity against MCF-7 cells, but were found to be non-toxic at lower concentrations suggesting their biocompatibility.

  14. Heat capacity and magnetic properties of fluoride CsFe{sup 2+}Fe{sup 3+}F{sub 6} with defect pyrochlore structure

    Energy Technology Data Exchange (ETDEWEB)

    Gorev, M.V., E-mail: gorev@iph.krasn.ru [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Flerov, I.N. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Tressaud, A. [Institut de Chimie de la Matière Condensée, ICMCB-CNRS, Université Bordeaux, 33608 Pessac Cedex (France); Bogdanov, E.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Astafijev Krasnoyarsk State Pedagogical University, 660049 Krasnoyarsk (Russian Federation); Kartashev, A.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Krasnoyarsk State Agrarian University, 660049 Krasnoyarsk (Russian Federation); Bayukov, O.A. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Eremin, E.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation); Institute of Engineering Physics and Radio Electronics, Siberian State University, 660074 Krasnoyarsk (Russian Federation); Krylov, A.S. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk (Russian Federation)

    2016-05-15

    Heat capacity, Mössbauer and Raman spectra as well as magnetic properties of fluoride CsFe{sub 2}F{sub 6} with defect pyrochlore structure were studied. In addition to recently found above room temperature three successive structural transformations Pnma-Imma-I4{sub 1}amd-Fd-3m, phase transition of antiferromagnetic nature with the 13.7 K Neel temperature and a broad heat capacity anomaly with a maximum at about 30 K were observed. The room temperature symmetry Pnma is unchanged at least down to 7 K. Simple model of indirect bond used to estimate the exchange interactions and to propose a magnetic structure model. - Graphical abstract: The ordered arrangement of Fe{sup 2+} and Fe{sup 3+} ions in high-spin states as well as antiferromagnetic phase transition followed by significant magnetic frustrations were found in pyrocholore-related CsFe{sup 2+}Fe{sup 3+}F{sub 6}. A magnetic structure was proposed using a simple model of indirect bonds. - Highlights: • The Pnma structure in pyrocholore CsFe{sub 2}F{sub 6} is stable down to helium temperature. • Mössbauer spectra confirmed the ordering of Fe{sup 2+} and Fe{sup 3+} ions. • Antiferromagnetic transformation and significant magnetic frustrations are found. • Experimental magnetic entropy agrees with entropy for Fe ions in high-spin state. • Superexchange interactions were calculated and a magnetic structure was proposed.

  15. Density functional study of elastic and vibrational properties of the Heusler-type alloys Fe2VAl and Fe2VGa

    DEFF Research Database (Denmark)

    Kanchana, V.; Vaitheeswaran, G.; Ma, Yanming

    2009-01-01

    agree well with the experimental values. The elastic constants of Fe2VAl and Fe2VGa are predicted. From the elastic constants the shear modulus, Young's modulus, Poisson's ratio, sound velocities, and Debye temperatures are obtained. By analyzing the ratio between the bulk and shear moduli, we conclude...

  16. Temperature dependent magnetic behavior of α-Fe2O3/GO nanocomposites

    Science.gov (United States)

    Mishra, Amodini; Moahnty, T.; Kuanr, B. K.

    2018-04-01

    Here, α-Fe2O3/GO nanocomposites were successfully synthesized by using the co-precipitation method. The phase formation of α-Fe2O3 nanoparticles was confirmed by using X-ray diffraction (XRD) study. The study of surface morphology of α-Fe2O3/GO nanocomposites was performed by using field emission scanning electron microscopy (FESEM) technique. Magnetic property measurement and determination of various magnetic parameters of α-Fe2O3/GO nanocomposites was carried out by physical property measurement system (PPMS).

  17. Magnetic ordering and electrical resistivity in Co0.2Zn0.8Fe2O4 spinel oxide

    International Nuclear Information System (INIS)

    Bhowmik, R.N.; Ranganathan, R.; Ghosh, B.; Kumar, S.; Chattopadhyay, S.

    2008-01-01

    We report the magnetic, Moessbauer spectroscopy and resistivity measurements in order to understand the electronic behaviour of bulk Co 0.2 Zn 0.8 Fe 2 O 4 spinel oxide. The effect of magnetic order on electrical behaviour is observed from the resistivity measurements in the absence and presence of magnetic field. The analysis of Moessbauer spectra suggests the absence of Fe 2+ ions in the system, which implies that complete hopping of charge carriers between localized Fe 3+ /Co 2+ and Fe 2+ /Co 3+ pair of ions in B sublattice is not the favourable mechanism in Co 0.2 Zn 0.8 Fe 2 O 4 . We suggest that electrical behaviour of the present sample may be consistent with a model of fractional charge transfer via Fe B 3+ -O 2- -Co B 2+ superexchange path

  18. THE INFLUENCES OF Fe(III ION and Fe(OH3 COLLOID ON THE PHOTODEGRADATION of p-CHLOROPHENOL CATALYZED BY TiO2

    Directory of Open Access Journals (Sweden)

    Endang Tri Wahyuni

    2010-06-01

    Full Text Available The influences of ionic Fe(III and colloidal Fe(OH3 on the effectiveness of p-chlorophenol photodegradation catalyzed by TiO2 has been studied. Photodegradation was carried out in a batch system by irradiating a suspension of TiO2, p-chlorophenol, and Fe(III as ionic or colloidal forms, using UV lamp for a period of time accompanied by magnetic stirring. Concentration of photodegraded p-chlorophenol was calculated by subtracting the initial concentration with that of undegraded p-chlorophenol. Concentration of undegraded p-chlorophenol was determined by gas chromatography. In this study, TiO2 mass and the photodegradation time were optimized. The influences of concentration of Fe(III solution, mass of Fe(OH3, and pH of the solution have also been systematically studied. The research results showed that the presence of Fe(III ions improved the effectiveness of photocatalytical degradation of p-chlorophenol, which was proportional to the concentrations of Fe(III ion. In contrast, the increasing mass of Fe(OH3 led to a decrease in the degree of p-chlorophenol photodegradation. Furthermore, it was observed that increasing pH of the solution resulted in a decrease in the photodegradation of p-chlorophenol. This phenomena may be due to the different species of TiO2 available at the surface of photocatalyst and of ionic Fe(III and colloidal Fe(OH3 in the solution resulted from the pH alteration. The highest photodegradation degree, ca. 80 % was obtained when 20 mg of TiO2 was applied in the photodegradation of 50 mL of 100 ppm p-chlorophenol solution in the presence of 100 ppm Fe3+ irradiated by UV-light for 25 hours.    Keywords: p-chlorophenol photodegradation, TiO2, Fe(III species

  19. Electrochemical Studies of Interactions Between Fe(II/Fe(III and Amino Acids Using Ferrocene-Modified Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    Vatrál Jaroslav

    2014-12-01

    Full Text Available The electrochemical behavior of an Fe(II/Fe(III redox couple in the presence of various selected amino acids has been studied using ferrocene-modified carbon paste electrode at pH = 7.4. Because of Fe(II/Fe(III solubility issues at physiological pH, ferrocene was used as a source of iron. Anodic oxidation of iron (pH = 7.2 occurred at 0.356 V and cathodic oxidation at 0.231 V, both vs Ag|AgCl. Treatment of the voltammetric data showed that it was a purely diffusion-controlled reaction with the involvement of one electron. After addition of amino acids, potential shifts and current changes can be observed on the voltammograms. Cyclic voltammetry experiments revealed the capability of amino acids to change the electrochemical behavior of the Fe(II/Fe(III redox couple.

  20. Structural and optical studies of FeSb{sub 2} under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Poffo, C.M.; Souza, S.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.br [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Polian, A.; Gauthier, M. [Physique des Milieux Denses, IMPMC, CNRS-UMR 7590, Universite Pierre et Marie Curie-Paris 6, B115, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2012-12-15

    Nanostructured orthorhombic FeSb{sub 2} was formed along with an amorphous phase, by mechanical alloying from a mixture of Fe and Sb powders. The influence of pressure on the structural and optical properties of the material was investigated by X-ray diffraction (XRD) and Raman spectroscopy (RS) up to 28.2 and 45.2 GPa, respectively. The volume fraction of the amorphous phase increased with increasing pressure. For pressures above 14.3 GPa, a tetragonal FeSb{sub 2} phase was also observed. For the orthorhombic FeSb{sub 2} phase, the pressure dependence of the volume fitted to a Birch-Murnaghan equation of state gave a bulk modulus B{sub 0}=75.5{+-}3.2 GPa, and its derivative B{sub 0}{sup Prime }=7.2{+-}0.7. For the orthorhombic FeSb{sub 2} phase, the Raman active A{sub g}{sup 2} mode was observed up to 28.3 GPa, while the B{sub 1g}{sup 2} mode was not for pressures larger than 14 GPa. For pressures above 21 GPa, the Raman active A{sub 1g} mode of a tetragonal FeSb{sub 2} phase was observed.

  1. Chinese Script vs Plate-Like Precipitation of Beta-Al9Fe2Si2 Phase in an Al-6.5Si-1Fe Alloy

    Science.gov (United States)

    Ferdian, Deni; Josse, Claudie; Nguyen, Patrick; Gey, Nathalie; Ratel-Ramond, Nicolas; de Parseval, Philippe; Thebault, Yannick; Malard, Benoit; Lacaze, Jacques; Salvo, Luc

    2015-07-01

    The microstructure of a high-purity Al-6.5Si-1Fe (wt pct) alloy after solidification at various cooling rates was investigated. In most of the cases, the monoclinic beta-Al9Fe2Si2 phase was observed as long and thin lamellae. However, at a very slow cooling rate, Fe-bearing precipitates with Chinese script morphology appeared together with lamellae. Further analysis showed all these Chinese script precipitates correspond also to the monoclinic beta phase. This finding stresses that differentiating second phases according to their shape may be misleading.

  2. Transition to collapsed tetragonal phase in CaFe2As2 single crystals as seen by 57Fe Mössbauer spectroscopy

    Science.gov (United States)

    Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.

    2016-01-01

    Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ˜25 % on cooling from room temperature to ˜100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.

  3. Fe-N-C electrocatalysts for oxygen reduction reaction synthesized by using aniline salt and Fe3+/H2O2 catalytic system

    KAUST Repository

    Bukola, Saheed; Merzougui, Belabbes A.; Akinpelu, Akeem; Laoui, Tahar; Hedhili, Mohamed N.; Swain, Greg M.; Shao, Minhua

    2014-01-01

    Non-precious metal (NPM) catalysts are synthesized by polymerizing aniline salt using an aqueous Fe3+/H2O2 coupled catalytic system on a carbon matrix with a porous creating agent. The sulfur containing compunds such as ammonium peroxydisulfate, are eliminated in this method resulting in a much simpler process. The catalysts' porous structures are enhanced with ammonium carbonate as a sacrificial material that yields voids when decomposed during the heat treatment at 900 °C in N2 atmosphere. Two catalysts Fe-N-C/Vu and Fe-N-C/KB (Vu = Vulcan and KB = Ketjen black) were synthesized and characterized. Their oxygen reduction reaction (ORR) activities were investigated using a rotating ring-disk electrode (RRDE) in both 0.1 M KOH and 0.1 M HClO4. The catalysts show improved ORR activities close to that of Pt-based catalysts, low H2O2 formation and also demonstrated a remarkable tolerance towards methanol oxidation.

  4. Fe-N-C electrocatalysts for oxygen reduction reaction synthesized by using aniline salt and Fe3+/H2O2 catalytic system

    KAUST Repository

    Bukola, Saheed

    2014-11-01

    Non-precious metal (NPM) catalysts are synthesized by polymerizing aniline salt using an aqueous Fe3+/H2O2 coupled catalytic system on a carbon matrix with a porous creating agent. The sulfur containing compunds such as ammonium peroxydisulfate, are eliminated in this method resulting in a much simpler process. The catalysts\\' porous structures are enhanced with ammonium carbonate as a sacrificial material that yields voids when decomposed during the heat treatment at 900 °C in N2 atmosphere. Two catalysts Fe-N-C/Vu and Fe-N-C/KB (Vu = Vulcan and KB = Ketjen black) were synthesized and characterized. Their oxygen reduction reaction (ORR) activities were investigated using a rotating ring-disk electrode (RRDE) in both 0.1 M KOH and 0.1 M HClO4. The catalysts show improved ORR activities close to that of Pt-based catalysts, low H2O2 formation and also demonstrated a remarkable tolerance towards methanol oxidation.

  5. Room temperature ferromagnetism in Fe-doped semiconductor ZrS2 single crystals

    Science.gov (United States)

    Muhammad, Zahir; Lv, Haifeng; Wu, Chuanqiang; Habib, Muhammad; Rehman, Zia ur; Khan, Rashid; Chen, Shuangming; Wu, Xiaojun; Song, Li

    2018-04-01

    Two dimensional (2D) layered magnetic materials have obtained much attention due to their intriguing properties with a potential application in the field of spintronics. Herein, room-temperature ferromagnetism with 0.2 emu g‑1 magnetic moment is realized in Fe-doped ZrS2 single crystals of millimeter size, in comparison with diamagnetic behaviour in ZrS2. The electron paramagnetic resonance spectroscopy reveals that 5.2wt% Fe-doping ZrS2 crystal exhibit high spin value of g-factor about 3.57 at room temperature also confirmed this evidence, due to the unpaired electrons created by doped Fe atoms. First principle static electronic and magnetic calculations further confirm the increased stability of long range ferromagnetic ordering and enhanced magnetic moment in Fe-doped ZrS2, originating from the Fe spin polarized electron near the Fermi level.

  6. Structural and magnetic stability of Fe2NiSi

    International Nuclear Information System (INIS)

    Gupta, Dinesh C.; Bhat, Idris Hamid; Chauhan, Mamta

    2014-01-01

    Full-potential ab-initio calculations in the stable F-43m phase have been performed to investigate the structural and magnetic properties of Fe 2 NiSi inverse Heusler alloys. The spin magnetic moment distributions show that present material is ferromagnetic in stable F-43m phase. Further, spin resolved electronic structure calculations show that the discrepancy in magnetic moments of Fe-I and Fe-II depend upon the hybridization of Fe with the main group element. It is found that the main group electron concentration is predominantly responsible in establishing the magnetic properties, formation of magnetic moments and the magnetic order for present alloy

  7. Synthesis and characterisation of the n = 2 Ruddlesden–Popper phases Ln2Sr(Ba)Fe2O7 (Ln = La, Nd, Eu)

    International Nuclear Information System (INIS)

    Gurusinghe, Nicola N.M.; Figuera, Juand de la; Marco, José F.; Thomas, Michael F.; Berry, Frank J.; Greaves, Colin

    2013-01-01

    Graphical abstract: - Highlights: • Some Ruddlesden–Popper phases have been characterised. • Substitution on the A site influences cationic order. • The magnetic moment redirects with temperature - Abstract: A series of n = 2 Ruddlesden–Popper phases A 2 B 2 O 7 of composition Ln 2 Sr(Ba)Fe 2 O 7 (Ln = La, Nd, Eu) have been prepared. La 2 SrFe 2 O 7 and La 2 BaFe 2 O 7 crystallise in the tetragonal space group I4/mmm. The structures of Eu 2 SrFe 2 O 7 and Nd 2 SrFe 2 O 7 are best described in space group P4 2 /mnm. Substitution on the A site with smaller lanthanide- and larger alkaline metal- ions leads to enhanced cationic order in these phases and reflects increasing differences in cationic radii. All the compounds are antiferromagnetically ordered between 298 and 2 K. In La 2 SrFe 2 O 7 the magnetic moment lies along [1 1 0] at all temperatures between 298 and 2 K whereas in La 2 BaFe 2 O 7 the magnetic moment at 298 K lies along the crystallographic x-axis but redirects from the [1 0 0] to the [1 1 0] direction between 210 and 190 K and is retained in this direction until 2 K. In Nd 2 SrFe 2 O 7 the magnetic moment at 298 K lies along [1 1 0] but rotates from [1 1 0] to [0 0 1] between 17 and 9 K. A series of 57 Fe Mössbauer spectra recorded from La 2 SrFe 2 O 7 between 290 and 600 K indicate a magnetic ordering temperature of T N ≥ 535 K

  8. Cobalt surface modification during γ-Fe2O3 nanoparticle synthesis by chemical-induced transition

    International Nuclear Information System (INIS)

    Li, Junming; Li, Jian; Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin; Li, Decai

    2015-01-01

    In the chemical-induced transition of FeCl 2 solution, the FeOOH/Mg(OH) 2 precursor was transformed into spinel structured γ-Fe 2 O 3 crystallites, coated with a FeCl 3 ·6H 2 O layer. CoCl 2 surface modified γ-Fe 2 O 3 nanoparticles were prepared by adding Co(NO 3 ) 2 during the synthesis. CoFe 2 O 4 modified γ-Fe 2 O 3 nanoparticles were prepared by adding NaOH during the surface modification with Co(NO 3 ) 2 . The CoFe 2 O 4 layer grew epitaxially on the γ-Fe 2 O 3 crystallite to form a composite crystallite, which was coated by CoCl 2 ·6H 2 O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe 2 O 4 and γ-Fe 2 O 3 possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe 2 O 3 -based nanoparticles were related to the grain size. - Highlights: • γ-Fe 2 O 3 nanoparticles were synthesized by chemical induced transition. • CoCl 2 modified nanoparticles were prepared by additional Co(NO 3 ) 2 during synthesization. • CoFe 2 O 4 modified nanoparticles were prepared by additional Co(NO 3 ) 2 and NaOH. • The magnetism of the nanoparticles is related to the grain size

  9. Synthesis of α-Fe2O3 and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates

    Science.gov (United States)

    Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Sort, Jordi

    2018-01-01

    Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N2 atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe2O3) foams are obtained from the metallic iron slurry independently of the N2 flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N2 flow. While the main phases for a N2 flow rate of 180 L/h are α-Fe2O3 and FeMnO3, the predominant phase for high N2 flow rates (e.g., 650 L/h) is Fe2MnO4. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe2MnO4 foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N2 flow rate (i.e., the amount of Fe2MnO4) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids. PMID:29439450

  10. Synthesis, structure and chemical bonding of CaFe2−xRhxSi2 (x=0, 1.32, and 2) and SrCo2Si2

    International Nuclear Information System (INIS)

    Hlukhyy, Viktor; Hoffmann, Andrea V.; Fässler, Thomas F.

    2013-01-01

    The finding of superconductivity in Ba 0.6 K 0.4 Fe 2 As 2 put the attention on the investigation of compounds that crystallize with ThCr 2 Si 2 structure type such as AT 2 X 2 (A=alkali/alkaline earth/rare earth element; T=transition metal and X=element of the 13–15th group). In this context the silicides CaFe 2 Si 2 , CaFe 0.68(6) Rh 1.32(6) Si 2 , CaRh 2 Si 2 and SrCo 2 Si 2 have been synthesized by reaction of the elements under an argon atmosphere. Single crystals were obtained by special heat treatment in welded niobium/tantalum ampoules. The compounds were investigated by means of powder and single crystal X-ray diffraction. All compounds crystallize in the ThCr 2 Si 2 -type structure with space group I4/mmm (No. 139): a=3.939(1) Å, c=10.185(1) Å, R 1 =0.045, 85 F 2 values, 8 variable parameters for CaFe 2 Si 2 ; a=4.0590(2) Å, c=9.9390(8) Å, R 1 =0.030, 90 F 2 values, 10 variable parameters for CaFe 0.68(6) Rh 1.32(6) Si 2 ; a=4.0695(1) Å, c=9.9841(3) Å, R 1 =0.031, 114 F 2 values, 9 variable parameters for CaRh 2 Si 2 ; and a=3.974(1) Å, c=10.395(1) Å, R 1 =0.036, 95 F 2 values, 8 variable parameters for SrCo 2 Si 2 . The structure of SrCo 2 Si 2 contains isolated [Co 2 Si 2 ] 22D-layers in the ab-plane whereas in CaFe 2−x Rh x Si 2 the [T 2 Si 2 ] layers (T=Fe and Rh) are interconnected along the c-axis via Si3Si bonds resulting in a three-dimentional (3D) [T 2 Si 2 ] 2− polyanions and therefore belong to the so-called collapsed form of the ThCr 2 Si 2 -type structure. The SrCo 2 Si 2 and CaRh 2 Si 2 are isoelectronic to the parent 122 iron–pnictide superconductors AeFe 2 As 2 (Ae=alkaline earth elements), whereas CaFe 2 Si 2 is a full substituted variant (As/Si) of CaFe 2 As 2 . The crystal chemistry and chemical bonding in the title compounds are discussed in terms of LMTO band structure calculations and a topological analysis using the Electron Localization Function (ELF). - Graphical abstract: The SrCo 2 Si 2 and CaFe 2−x Rh x Si

  11. PEG/CaFe2O4 nanocomposite: Structural, morphological, magnetic and thermal analyses

    International Nuclear Information System (INIS)

    Khanna, Lavanya; Verma, Narendra K.

    2013-01-01

    The coating of Polyethylene Glycol (PEG) on calcium ferrite (CaFe 2 O 4 ) nanoparticles has been reported in the present study. The X-ray diffraction pattern revealed the formation of orthorhombic structure of bare CaFe 2 O 4 nanoparticles, which was also retained after the PEG coating, along with additional characteristic peaks of PEG at 19° and 23°. The rings of CaFe 2 O 4 nanoparticles were identified by the selected area electron diffraction pattern. The characteristic bands of PEG as observed in its Fourier transform infrared spectrum were also present in PEG coated CaFe 2 O 4 nanoparticles, hence confirming its presence. In the thermal gravimetric studies, the complete thermal decomposition of PEG occurred in a one step process, but in case of PEG coated CaFe 2 O 4 nanoparticles, the decomposition took place at a higher temperature owing to the formation of covalent bonds of PEG with CaFe 2 O 4 nanoparticles. The presence of PEG on CaFe 2 O 4 nanoparticles, spherical formation of PEG coated CaFe 2 O 4 nanoparticles and reduced agglomeration in the CaFe 2 O 4 nanoparticles were revealed by high resolution transmission electron microscope, transmission electron microscope and scanning electron microscope studies, respectively. In vibrating sample magnetometer analysis, both bare as well as coated CaFe 2 O 4 nanoparticles exhibited superparamagnetic behavior. However, a drop in the magnetic saturation value was observed from 36.76 emu/g for CaFe 2 O 4 nanoparticles to 6.74 emu/g for PEG coated CaFe 2 O 4 nanoparticles, due to the formation of magnetically dead layer of PEG. In ZFC and FC analyses, superparamagnetic behavior with blocking temperature for bare and coated nanoparticles has been observed at ∼40 K and ∼60 K, respectively. The increase in the blocking temperature is attributed to the increase in the particle size after PEG coating

  12. Magnetic properties of Sc{sub x}Ti{sub 1-x}Fe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, M. [Lab. de Cristallographie, CNRS, 38 - Grenoble (France); Deportes, J. [Lab. Louis Neel, CNRS, 38 - Grenoble (France); Ouladdiaf, B. [Institut Laue-Langevin, 38 - Grenoble (France); Sayetat, F. [Lab. de Cristallographie, CNRS, 38 - Grenoble (France)

    1995-02-09

    The magnetic properties and their thermal dependences of Sc{sub 0.1}Ti{sub 0.9}Fe{sub 1.96}, Sc{sub 0.1}Ti{sub 0.9}Fe{sub 2} and Sc{sub 0.1}Ti{sub 0.9}Fe{sub 2.04} are compared with those of TiFe{sub 2}. The substitution changes the iron-iron distances. Consequently, the Fe atoms on the 6h site show in addition to the antiferromagnetic component a small ferromagnetic one, and a weak magnetic moment appears on the 2a site. ((orig.)).

  13. Synthesis and Characterization of Black CoFe2O4 Pigments Using MOOH (M = Fe and Co Nanorod

    Directory of Open Access Journals (Sweden)

    Yu R.

    2017-06-01

    Full Text Available We studied the coloration and phase transformation of various iron based pigment with cobalt substitution method and heat treatment. First, we synthesized well defined one dimension β-Fe/CoOOH nanorods using the solid solution method. Yellowish β-Fe/CoOOH nanorods were transformed into reddish intermediate states and, finally, black CoFe2O4 pigments was obtained. Divalent cobalt ions easily occupied tetrahedral sites. The prepared pigments were well characterized in terms of physical properties by using UV-vis, CIE Lab color parameter measurements, SEM (scanning electron microscopy and XRD (powder X-ray diffraction. In addition, the magnetization property of the prepared CoFe2O4 pigment was confirmed by VSM (vibrating sample magnetometer.

  14. A comprehensive study of magnetic exchanges in the layered oxychalcogenides Sr 3 Fe 2 O 5 Cu 2 Q 2 ( Q = S, Se)

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Minfeng; Mentré, Olivier; Gordon, Elijah E.; Whangbo, Myung-Hwan; Wattiaux, Alain; Duttine, Mathieu; Tiercelin, Nicolas; Kabbour, Houria

    2017-12-01

    The layered oxysulfide Sr3Fe2O5Cu2S2 was prepared, and its crystal structure and magnetic properties were characterized by synchrotron X-ray diffraction (XRD), powder neutron diffraction (PND), Mössbauer spectroscopy measurements and by density functional theory (DFT) calculations. In addition, the spin exchange interactions leading to the ordered magnetic structure of Sr3Fe2O5Cu2S2 were compared with those of its selenium analogue Sr3Fe2O5Cu2Se2. The oxysulfide Sr3Fe2O5Cu2S2 adopts a G-type antiferromagnetic (AFM) structure at a temperature in the range 485–512 K, which is comparable with the three-dimensional (3D) AFM ordering temperature, TN ≈ 490 K, found for Sr3Fe2O5Cu2Se2. Consistent with this observation, the spin exchange interactions of the magnetic (Sr3Fe2O5)2+ layers are slightly greater (but comparable) for oxysulfide than for the oxyselenide. Attempts to reduce or oxidize Sr3Fe2O5Cu2S2 using topochemical routes yield metallic Fe.

  15. Mg doped Li2FeSiO4/C nanocomposites synthesized by the solvothermal method for lithium ion batteries.

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O D; Jagannath; Bashiri, Parisa; Nazri, G A; Naik, Vaman M; Naik, Ratna

    2017-10-14

    A series of porous Li 2 Fe 1-x Mg x SiO 4 /C (x = 0, 0.01, 0.02, 0.04) nanocomposites (LFS/C, 1Mg-LFS/C, 2Mg-LFS and 4Mg-LFS/C) have been synthesized via a solvo-thermal method using the Pluronic P123 polymer as an in situ carbon source. Rietveld refinement of the X-ray diffraction data of Li 2 Fe 1-x Mg x SiO 4 /C composites confirms the formation of the monoclinic P2 1 structure of Li 2 FeSiO 4 . The addition of Mg facilitates the growth of impurity-free Li 2 FeSiO 4 with increased crystallinity and particle size. Despite having the same percentage of carbon content (∼15 wt%) in all the samples, the 1Mg-LFS/C nanocomposite delivered the highest initial discharge capacity of 278 mA h g -1 (∼84% of the theoretical capacity) at the C/30 rate and also exhibited the best rate capability and cycle stability (94% retention after 100 charge-discharge cycles at 1C). This is attributed to its large surface area with a narrow pore size distribution and a lower charge transfer resistance with enhanced Li-ion diffusion coefficient compared to other nanocomposites.

  16. Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles

    International Nuclear Information System (INIS)

    Zhou, Hongyi; Han, Jian; Baig, Shams Ali; Xu, Xinhua

    2011-01-01

    Highlights: ► CMC-stabilized Pd/Fe nanoparticles were synthesized and used for 2,4-D removal. ► Particle stability, ζ-potential and IEP of non- and stabilized Pd/Fe were compared. ► Dechlorination of 2,4-D by different Pd/Fe systems was investigated. ► The reaction mechanism has been discussed and presented in the article. ► Effects of CMC/Fe mass ratio and pH were also investigated. - Abstract: This paper describes the synthesis of sodium carboxymethyl cellulose (CMC)-stabilized Pd/Fe nanoparticles and their applications to the dechlorination of 2,4-dichlorophenoxyacetic acid (2,4-D) under controlled laboratorial conditions. For this purpose batch mode experiments were conducted to understand the effects of CMC on the surface characteristics of Pd/Fe nanoparticles, optimum removal of 2,4-D and other surface interactions mechanism. Our experimental results demonstrated considerable enhancements in particle stability and chemical reactivity with the addition of CMC to Pd/Fe nanoparticles. Transmission electron microscopy (TEM) analysis indicated that CMC-stabilized Pd/Fe nanoparticles were well dispersed, and nanoparticles remained in suspension for days compared to non-stabilized Pd/Fe nanoparticles precipitated within minutes. The isoelectric point (IEP) of the nanoparticles shifted from pH 6.5 to 2.5, suggesting that CMC-stabilized Pd/Fe nanoparticles were negatively charged over a wider pH range. Our batch experiments demonstrated that CMC-stabilized Pd/Fe nanoparticles (0.6 g Fe L −1 ) were able to remove much higher levels of 2,4-D with only one intermediate 2-chlorophenoxyacetic acid (2-CPA) and the final organic product phenoxyacetic acid (PA), than non-stabilized Pd/Fe nanoparticles or microsized Pd/Fe particles. The removal percentage of 2,4-D increased from 10% to nearly 100% as the reaction pH decreased from 11.5 to 2.5. The optimal CMC/Fe mass ratio for the dechlorination of 2,4-D was determined to be 5/1, and the removal of 2,4-D was

  17. Effects of Nb content on the Zr2Fe intermetallic stability

    International Nuclear Information System (INIS)

    Ramos, C.; Saragovi, C.; Granovsky, M.; Arias, D.

    2003-01-01

    With the aim of studying the stability range of the Zr 2 Fe intermetallic when adding Nb, the range of existence of the cubic ternary phase (λ 1 ) and the corresponding two-phase field between them, four samples were analyzed, each one containing 35 at.% Fe and different at.% Nb: 0.5, 4 10 and 15. Optical and scanning electron metallographies, X-ray diffraction, microprobe analysis and Moessbauer spectroscopy were performed to determine and characterize the phases present in the samples. Results show that the Zr 2 Fe compound accepts up to nearly 0.5 at.% Nb in solution, since the Zr 2 Fe+λ 1 region is stable in the (0.5-3.5) at.% Nb range. To summarize these results an 800 deg. C section of the ternary Zr-Nb-Fe diagram, in the studied zone, was proposed

  18. Rapid preparation of α-FeOOH and α-Fe2O3 nanostructures by microwave heating and their application in electrochemical sensors

    International Nuclear Information System (INIS)

    Marinho, J.Z.; Montes, R.H.O.; Moura, A.P. de; Longo, E.; Varela, J.A.; Munoz, R.A.A.; Lima, R.C.

    2014-01-01

    Graphical abstract: - Highlights: • Simple microwave method leads to the rapid formation of the goethite and hematite. • Homogenous nucleation and growth of particles are controlled by synthesis time. • Modified electrode with α-FeOOH nanoplates improved the electrochemical response. • The sample is directly heated by microwaves and its crystallization is accelerated. • Fe 3+ nanostructures are promising for development of electrochemical sensors. - Abstract: α-FeOOH (goethite) and α-Fe 2 O 3 (hematite) nanostructures have been successfully synthesized using the microwave-assisted hydrothermal (MAH) method and by the rapid burning in a microwave oven of the as-prepared goethite, respectively. The orthorhombic α-FeOOH to rhombohedralα-Fe 2 O 3 structural transformation was observed by X-ray diffraction (XRD) and Raman spectroscopy results. Plates-like α-FeOOH prepared in 2 min and rounded and quasi-octahedral shaped α-Fe 2 O 3 particles obtained in 10 min were observed using field emission gun scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The use of microwave heating allowed iron oxides to be prepared with shorter reaction times when compared to other synthesis methods. α-FeOOH nanoplates were incorporated into graphite-composite electrodes, which presented electrocatalytic properties towards the electrochemical oxidation of ascorbic acid in comparison with unmodified electrodes. This result demonstrates that such α-FeOOH nanostructures are very promising chemical modifiers for the development of improved electrochemical sensors

  19. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2

    Science.gov (United States)

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; McGuire, Michael A.; Sales, Brian; Custelcean, Radu; Parker, David S.

    2016-01-01

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (TN = Ts = 133 K) increase for x = 0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism. PMID:26867821

  20. Studies of N{sub 2}0 adsorption and decomposition on Fe-ZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Benjamin R.; Reimer, Jeffrey A.; Bell, Alexis T.

    2002-03-08

    The interactions of N2O with H-ZSM-5 and Fe-ZSM-5 have been investigated using infrared spectroscopy and temperature-programmed reaction. Fe-ZSM-5 samples with Fe/Al ratios of 0.17 and 0.33 were prepared by solid-state exchange. It was determined that most of the iron in the samples of Fe-ZSM-5 is in the form of isolated cations, which have exchanged with Bronsted acid H+ in H-ZSM-5. The infrared spectrum of N2O adsorbed on H-ZSM-5 at 298 K exhibits bands at 2226 and 1308 cm-1 associated with vibrations of the N-N and N-O bonds, respectively. The positions of these bands relative to those seen in the gas phase suggest that N2O adsorbs through the nitrogen end of the molecule. The heat of N2O adsorption in H-ZSM-5 is estimated to be 5 kcal/mol. In the case of Fe-ZSM-5, additional infrared bands are observed at 2282 and 1344 cm-1 due to the interactions of N2O with the iron cations. Here too, the directions of the shifts in the vibrational features relative to those for gas-phase N2O suggest that the molecule adsorbs through its nitrogen end. The heat of adsorption of N2O on the Fe sites is estimated to be 16 kcal/mol. The extent of N2O adsorption on Fe depends on the oxidation state of Fe. The degree of N2O adsorption is higher following pretreatment of the sample in He or CO at 773 K, than following pretreatment in O2 or N2O at the same temperature. Temperature-programmed decomposition of N2O was performed on the Fe-ZSM-5 samples and revealed that N2O decomposes stoichiometrically to N2 and O2. A higher activity was observed if the catalysts were pretreated in He than if they were pretreated in N2O. For the He-pretreated samples, the activation energy for N2O decomposition was estimated to be 42 kcal/mol and the preexponential factor of the rate coefficient for this process was found to increase with Fe/Al ratio. This trend was attributed to the increasing auto reducibility of Fe3+ cations to Fe2+ cations with increasing Fe/Al ratio.

  1. Local hydrated structure of an Fe2+/Fe3+ aqueous solution: an investigation using a combination of molecular dynamics and X-ray absorption fine structure methods

    International Nuclear Information System (INIS)

    Ye Qing; Zhou Jing; Zhao Haifeng; Chen Xing; Chu Wangsheng; Zheng Xusheng; Marcelli, Augusto; Wu Ziyu

    2013-01-01

    The hydrated shell of both Fe 2+ and Fe 3+ aqueous solutions are investigated by using the molecular dynamics (MD) and X-ray absorption structure (XAS) methods. The MD simulations show that the first hydrated shells of both Fe 2+ and Fe 3+ are characterized by a regular octahedron with an Fe-O distance of 2.08Å for Fe 2+ and 1.96Å for Fe 3+ , and rule out the occurrence of a Jahn-Teller distortion in the hydrated shell of an Fe 2+ aqueous solution. The corresponding X-ray absorption near edge fine structure (XANES) calculation successfully reproduces all features in the XANES spectra in Fe 2+ and Fe 3+ aqueous solution. A feature that is located at energy 1 eV higher than the white line (WL) in an Fe 3+ aqueous solution may be assigned to the contribution of the charge transfer. (authors)

  2. Effect of MnCuFe{sub 2}O{sub 4} content on magnetic and dielectric properties of poly (O-Phenylenediamine)/MnCuFe{sub 2}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kannapiran, Nagarajan [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India); Muthusamy, Athianna, E-mail: muthusrkv@gmail.com [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India); Chitra, Palanisamy [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India)

    2016-03-01

    Poly o-phenylenediamine (PoPD)/MnCuFe{sub 2}O{sub 4} nanocomposites with three different ratios of MnCuFe{sub 2}O{sub 4} (10%, 20%, 30% w/w) were synthesized by in-situ oxidative chemical polymerization method ammonium persulphate used as oxidant, while MnCuFe{sub 2}O{sub 4} nanoparticles was prepared by auto-combustion method. The structure, morphology and magnetic properties of synthesized PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites were characterized by FT-IR, UV–visible absorption spectra, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Vibrating sample magnetometer (VSM). FTIR spectra and XRD were confirmed the formation of the PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites. The morphology of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites is visualized through SEM and TEM. The spherical morphology of the PoPD was confirmed using SEM analysis. Dielectric properties of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites at different temperatures have been performed in the frequency range of 50 Hz–5 MHz. The optical absorption experiments of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites reveal that the direct transition with an energy band gap is around 2 eV. - Highlights: • Green synthesis of PoPD (the polymerization carried out only in aqueous medium) by in-situ chemical polymerization method. • For the first time, PoPD incorporated with MnCuFe{sub 2}O{sub 4} with lesser particle size. • The auto combustion reaction, support to achieve less particle size. • Ferrite content affects the magnetic properties of the nanocomposites.

  3. Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method

    International Nuclear Information System (INIS)

    Giri, S.; Samanta, S.; Maji, S.; Ganguli, S.; Bhaumik, A.

    2005-01-01

    Nanoparticles of α-Fe 2 O 3 have been prepared using a hydrothermal synthesis method in aqueous-organic microemulsion under mild alkaline condition. The condensation reaction was optimized in the presence of a cationic surfactant cetyltrimethylammonium bromide (CTAB). It was found that the size and nature of the α-Fe 2 O 3 nanoparticle strongly depends on the pH, oxalic acid and CTAB as well as tetramethylammonium hydroxide (TMAOH, alkali source) concentrations. The uniformity of the particle size was checked by the transmission electron microscopy while the single phase of the nanocrystalline α-Fe 2 O 3 was characterized using powder X-ray diffraction. The Moessbauer study exhibited a sextet pattern with internal field smaller than that of the bulk counterpart. The temperature variation of magnetization showed a broad maximum at around 125 K while the field-cooled effect of the magnetization showed the branching between the field cooled and zero field cooled magnetization up to 340 K. A large anisotropy has been observed from the analysis of magnetization curve as well as from the large blocking temperature. The estimation of the particle size from the magnetization curve was found to be in close agreement with the TEM results

  4. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells.

    Science.gov (United States)

    Wang, Zi-Yu; Song, Jian; Zhang, Dong-Sheng

    2009-06-28

    To study the methods of preparing the magnetic nano-microspheres of Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) complexes and their therapeutic effects with magnetic fluid hyperthermia (MFH). Nanospheres were prepared by chemical co-precipitation and their shape and diameter were observed. Hemolysis, micronucleus, cell viability, and LD(50) along with other in vivo tests were performed to evaluate the Fe(2)O(3) microsphere biocompatibility. The inhibition ratio of tumors after Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) injections combined with induced hyperthermia in xenograft human hepatocarcinoma was calculated. Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) particles were round with an average diameter of 20 nm and 100 nm as observed under transmission electron microscope. Upon exposure to an alternating magnetic field (AMF), the temperature of the suspension of magnetic particles increased to 41-51 degrees C, depending on different particle concentrations, and remained stable thereafter. Nanosized Fe(2)O(3) microspheres are a new kind of biomaterial without cytotoxic effects. The LD(50) of both Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) in mice was higher than 5 g/kg. One to four weeks after Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) complex injections into healthy pig livers, no significant differences were found in serum AST, ALT, BUN and Cr levels among the pigs of all groups (P > 0.05), and no obvious pathological alterations were observed. After exposure to alternating magnetic fields, the inhibition ratio of the tumors was significantly different from controls in the Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) groups (68.74% and 82.79%, respectively; P < 0.01). Tumors of mice in treatment groups showed obvious necrosis, while normal tissues adjoining the tumor and internal organs did not. Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) complexes exerted radiofrequency-induced hyperthermia and drug toxicity on tumors without any liver or kidney damage. Therefore, nanospheres are ideal carriers for tumor-targeted therapy.

  5. Cross sections for the reactions 54Fe(n,α)51Cr, 54Fe(n,p)54Mn, and 56Fe(n,p)56Mn

    International Nuclear Information System (INIS)

    Paulsen, A.; Widera, R.; Arnotte, F.; Liskien, H.

    1979-01-01

    Ratios of cross sections for the reactions 54 Fe(n,α) 51 Cr, 54 Fe(n,p) 54 Mn, and 56 Fe(n,p) 56 Mn were measured by the activation technique. In the 6- to 10-MeV energy range, quasi-monoenergetic neutrons produced by the D(d,n) source reaction were used, while additional data were obtained between 12 and 17 MeV by use of the T(d,n) source reaction. The cross-section ratios have accuracies between 1.5 and 4.5%. 1 figure, 3 tables

  6. Constraint-based scheduling applying constraint programming to scheduling problems

    CERN Document Server

    Baptiste, Philippe; Nuijten, Wim

    2001-01-01

    Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsibl...

  7. Superparamagnetic behavior of Fe-doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y. [Department of Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501 (Japan)

    2014-02-20

    SnO{sub 2} is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO{sub 2} nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO{sub 2} nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO{sub 2}, were investigated. The particle size (1.8–16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO{sub 2} single-phase structure for samples annealed at 1073–1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO{sub 2} is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system.

  8. Comparison of the solar photocatalytic activity of ZnO-Fe2O3 and ZnO-Fe(0) on 2,4-D degradation in a CPC reactor.

    Science.gov (United States)

    Maya-Treviño, M L; Villanueva-Rodríguez, M; Guzmán-Mar, J L; Hinojosa-Reyes, L; Hernández-Ramírez, A

    2015-03-01

    In this work a comparative study of the catalytic activity of ZnO-Fe2O3 and ZnO-Fe(0) 0.5 wt% materials was carried out in the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) as a commercial formulation Hierbamina®, using a compound parabolic collector (CPC) reactor. The catalysts were synthesized by the sol-gel method and characterized by X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. The textural properties of solids were determined from N2 adsorption isotherms using the Brunauer-Emmett-Teller (BET) method. The incorporation of Fe(0) onto ZnO was demonstrated by X-ray photoelectron spectroscopy analysis. The photocatalytic tests were performed at pH 7, using 10 mg L(-1) of herbicide and 0.5 g L(-1) of catalyst loading. The decay in herbicide concentration was followed by reversed-phase chromatography. A complete degradation of 2,4-D was achieved using ZnO-Fe(0) while 47% of herbicide removal was attained with ZnO-Fe2O3 mixed oxide for an accumulated energy QUV ≈ 2 kJ L(-1). The removal percentage of total organic carbon (TOC) during the solar photocatalytic process was superior using ZnO-Fe(0), achieving 45% compared to the 15% obtained with the mixed oxide catalyst.

  9. Synthesis of α-Fe2O3 and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates

    Directory of Open Access Journals (Sweden)

    Yuping Feng

    2018-02-01

    Full Text Available Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N2 atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe2O3 foams are obtained from the metallic iron slurry independently of the N2 flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N2 flow. While the main phases for a N2 flow rate of 180 L/h are α-Fe2O3 and FeMnO3, the predominant phase for high N2 flow rates (e.g., 650 L/h is Fe2MnO4. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe2MnO4 foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N2 flow rate (i.e., the amount of Fe2MnO4 is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids.

  10. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    Zhang, Dan; Li, Guangshe; Yu, Meijie; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-01

    Iron nitrides are considered as highly promising anode materials for lithium-ion batteries because of their nontoxicity, high abundance, low cost, and higher electrical conductivity. Unfortunately, their limited synthesis routes are available and practical application is still hindered by their fast capacity decay. Herein, a facile and green route is developed to synthesize Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet composite. The size of Fe4N/Fe2O3/Fe particles is small (10-40 nm) and they are confined in porous N-doped carbon nanosheet. These features are conducive to accommodate volume change well, shorten the diffusion distance and further elevate electrical conductivity. When tested as anode material for lithium-ion batteries, a high discharge capacity of 554 mA h g-1 after 100 cycles at 100 mA g-1 and 389 mA h g-1 after 300 cycles at 1000 mA g-1 are retained. Even at 2000 mA g-1, a high capacity of 330 mA h g-1 can be achieved, demonstrating superior cycling stability and rate performance. New prospects will be brought by this work for the synthesis and the potential application of iron nitrides materials as an anode for LIBs.

  11. Photoionization of FE3+ Ions

    International Nuclear Information System (INIS)

    Ovchinnikov, O.; Schlachter, F.

    2003-01-01

    Photoionization of Fe3+ ions was studied for the first time using synchrotron radiation from the Advanced Light Source (ALS) and the merged-beams technique. Fe3+ ions were successfully produced using ferrocene in an electron cyclotron resonance ion source (ECR). The measured yield of Fe4+ photoions as a function of photon energy revealed the presence of resonances that correspond to excitation of autoionizing states. These resonances are superimposed upon the photoion yield produced by direct photoionization, which is a smooth, slowly decreasing function of energy. The spectra for the photoionization of Fe3+ will be analyzed and compared with theory. The data collected will also serve to test models for the propagation of light through ionized matter.

  12. Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Aiyong; Wang, Yilin; Walter, Eric D.; Kukkadapu, Ravi K.; Guo, Yanglong; Lu, Guanzhong; Weber, Robert S.; Wang, Yong; Peden, Charles H. F.; Gao, Feng

    2018-02-01

    Fe/zeolites are important N2O abatement catalysts, efficient in direct N2O decomposition and (selective) catalytic N2O reduction. In this study, Fe/Beta and Fe/SSZ-13 were synthesized via solution ion-exchange and used to catalyze these two reactions. Nature of the Fe species was probed with UV-vis, Mössbauer and EPR spectroscopies and H2-TPR. The characterizations collectively indicate that isolated and dinuclear Fe sites dominate in Fe/SSZ-13, whereas Fe/Beta contains higher concentrations of oligomeric FexOy species. H2-TPR results suggest that Fe-O interactions are weaker in Fe/SSZ-13, as evidenced by the lower reduction temperatures and higher extents of autoreduction during high-temperature pretreatments in inert gas. Kinetic measurements show that Fe/SSZ-13 has higher activity in catalytic N2O decomposition, thus demonstrating a positive correlation between activity and Fe-O binding, consistent with O2 desorption being rate-limiting for this reaction. However, Fe/Beta was found to be more active in catalyzing N2O reduction by NH3. This indicates that larger active ensembles (i.e., oligomers) are more active for this reaction, consistent with the fact that both N2O and NH3 need to be activated in this case. The authors from PNNL gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle. Aiyong Wang gratefully acknowledges the China Scholarship Council for the Joint-Training Scholarship Program with the Pacific

  13. Pentacarbonyl-1κ2C,2κ3C-[(diphenylphosphoryldiphenylphosphane-1κP]-μ-ethane-1,2-dithiolato-1:2κ4S,S′:S,S′-diiron(I(Fe—Fe

    Directory of Open Access Journals (Sweden)

    Xu-Feng Liu

    2011-11-01

    Full Text Available The dinuclear title compound, [Fe2(C2H4S2(C24H20OP2(CO5] or (μ-SCH2CH2S-μFe2(CO5[Ph2PP(OPh2], contains a butterfly-shaped Fe2S2 core in which the Fe...Fe separation is 2.5275 (6 Å. One of the Fe atoms is also coordinated to three carbonyl ligands and the other to two carbonyl ligands and one phosphane ligand [Ph2PP(OPh2]. Both Fe-atom geometries could be described as grossly distorted octahedral and the Ph2PP(OPh2 ligand lies trans to the Fe...Fe link.

  14. Formation of {beta}-FeSi{sub 2} thin films by partially ionized vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of {beta}-FeSi{sub 2} thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of {beta}-FeSi{sub 2} films deposited on Si substrates. It was confirmed that {beta}-FeSi{sub 2} can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of {beta}-FeSi{sub 2} depends strongly on the content and the acceleration energy of ions.

  15. Degradation of organic dyes by a new heterogeneous Fenton reagent - Fe2GeS4 nanoparticle.

    Science.gov (United States)

    Shi, Xiaoguo; Tian, Ang; You, Junhua; Yang, He; Wang, Yuzheng; Xue, Xiangxin

    2018-07-05

    The heterogeneous Fenton system has become the hotspot in the decontamination field due to its effective degradation performance with a wide pH range. Based on the unstable chemical properties of pyrite, in this article, Fe 2 GeS 4 nanoparticles with better thermodynamic stability were prepared by vacuum sintering and high energy ball milling and its potential as Fenton reagent was investigated for the first time. Three determinants of the heterogeneous Fenton system including the iron source, hydrogen peroxide, pH and the degradation mechanism were investigated. The catalyst dosage of 0.3 g/L, initial H 2 O 2 concentration in the Fenton system of 50 m mol/L and pH of 7 were chosen as the best operational conditions. An almost complete degradation was achieved within 5 min for methylene blue and rhodamine b while 10 min for methyl orange. The total organic carbon removal efficiencies of Fe 2 GeS 4 heterogeneous Fenton system for methylene blue, methyl orange and rhodamine b in 10 min were 56.3%, 66.2% and 74.2%, respectively. It's found that the degradation ability could be attributed to a heterogeneous catalysis occurring at the Fe 2 GeS 4 surface together with a homogeneous catalysis in the aqueous phase by the dissolved iron ions. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Ferromagnetism in with Fe implanted GaN and TiO{sub 2}; Ferromagnetismus in mit Fe implantierten GaN und TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Talut, Georg

    2009-12-15

    In the present study it was tried to create a diluted magnetic semiconductor on the basis of GaN and TiO{sub 2} by means of ion beam implantation. In most cases, by characterization of structural and magnetic properties, it was possible to prove that the ferromagnetic state is related to either spinodal decomposition or secondary phase formation. In case of Fe implanted GaN spinodal decomposition, epitaxially oriented {alpha}-Fe or {epsilon}-Fe{sub 3}N nanocrystals were found to be responsible for the ferromagnetic behavior. In addition, the formation of {gamma}-Fe clusters was observed. Similarly, in TiO{sub 2} the ferromagnetism is related to the formation of epitaxially oriented {alpha}-Fe clusters. Dependent on the process parameters during annealing experiments several various secondary phases were formed. A critical examination of the references in literature points out the significance of usage of sensitive and complementary probe techniques (like CEMS, SQUID, XRD, EXAFS), in order to be able to discuss the origin of ferromagnetism in the field of diluted magnetic semiconductors in a proper way. (orig.)

  17. Spectroscopic measurements with the ATLAS FE-I4 pixel readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, David-Leon; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Wermes, Norbert [Physikalisches Institut der Univeristaet Bonn (Germany)

    2015-07-01

    The ATLAS FE-I4 pixel readout chip is a large (2 x 2 cm{sup 2}) state of the art ASIC used in high energy physics experiments as well as for research and development purposes. While the FE-I4 is optimized for high hit rates it provides very limited charge resolution. Therefore two methods were developed to obtain high resolution single pixel charge spectra with the ATLAS FE-I4. The first method relies on the ability to change the detection threshold in small steps while counting hits from a particle source and has a resolution limited by electronic noise only. The other method uses a FPGA based time-to-digital-converter to digitize the analog charge signal with high precision. The feasibility, performance and challenges of these methods are discussed. First results of sensor characterizations from radioactive sources and test beams with the ATLAS FE-I4 in view of the charge collection efficiency after irradiation are presented.

  18. Synthesis, characterization and photocatalytic activity of Fe2O3-TiO2 nanoparticles and nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Ahmadi Golsefidi

    2016-01-01

    Full Text Available In this pepper Fe2O3 nanoparticles were synthesized via a fast microwave method. Then Fe2O3-TiO2 nanocomposites were synthesized by a sonochemical-assisted method. The prepared products were characterized by X-ray diffraction pattern, scanning electron microscopy and Fourier transform infrared spectroscopy. The photocatalytic behaviour of Fe2O3-TiO2 nanocomposites was evaluated using the degradation of Rhodamine B under ultra violet irradiation. The results show that nanocomposites have applicable magnetic and photocatalytic performance.

  19. Isotopic fractionation associated with [NiFe]- and [FeFe]-hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Gandhi, Hasand; Cornish, Adam J.; Moran, James J.; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2016-01-30

    Hydrogenases catalyze the reversible formation of H2 from electrons and protons with high efficiency. Understanding the relationships between H2 production, H2 uptake, and H2-H2O exchange can provide insight into the metabolism of microbial communities in which H2 is an essential component in energy cycling. In this manuscript, we used stable H isotopes (1H and 2H) to probe the isotope effects associated with three [FeFe]-hydrogenases and three [NiFe]-hydrogenases. All six hydrogenases displayed fractionation factors for H2 formation that were significantly less than 1, producing H2 that was severely depleted in 2H relative to the substrate, water. Consistent with differences in their active site structure, the fractionation factors for each class appear to cluster, with the three [NiFe]-hydrogenases (α = 0.27-0.40) generally having smaller values than the three [FeFe]-hydrogenases (α = 0.41-0.55). We also obtained isotopic fractionation factors associated with H2 uptake and H2-H2O exchange under conditions similar to those utilized for H2 production, providing us with a more complete picture of the three reactions catalyzed by hydrogenases. The fractionation factors determined in our studies can be used as signatures for different hydrogenases to probe their activity under different growth conditions and to ascertain which hydrogenases are most responsible for H2 production and/or uptake in complex microbial communities.

  20. Optical spectroscopic study of multiferroic BiFeO3 and LuFe2O4

    Science.gov (United States)

    Xu, Xiaoshan

    2010-03-01

    Iron-based multiferroics such as BiFeO3 and LuFe2O4 exhibit the highest magnetic and ferroelectric ordering temperatures among known multiferroics. LuFe2O4 is a frustrated system with several phase transitions that result in electronically driven multiferroicity. To understand how this peculiar multiferroic mechanism correlates with magnetism, we studied electronic excitations by optical spectroscopy and other complementary techniques. We show that the charge order, which determines the dielectric properties, is due to the ``order by fluctuation'' mechanism, evidenced by the onset of charge fluctuation well below the charge ordering transition. We also find a low temperature monoclinic distortion driven by both temperature and magnetic field, indicating strong coupling between structure, magnetism and charge order. BiFeO3 is the only known single phase multiferroics with room temperature magnetism and ferroelectricity. To investigate the spin-charge coupling, we measured the optical properties of BiFeO3. We find that the absorption onset occurs due to on-site Fe^3+ excitations at 1.41 and 1.90 eV. Temperature and magnetic-field-induced spectral changes reveal complex interactions between on-site crystal-field and magnetic excitations in the form of magnon sidebands. The sensitivity of the magnon sidebands allows us to map out the magnetic-field temperature phase diagram which demonstrates optical evidence for spin spiral quenching above 20 T and suggests a spin domain reorientation near 10 T. Work done in collaboration with T.V. Brinzari, R.C. Rai, M. Angst, R.P. Hermann, A.D. Christianson, J.-W. Kim, Z. Islam, B.C. Sales, D. Mandrus, S. Lee, Y.H. Chu, L. W. Martin, A. Kumar, R. Ramesh, S.W. Cheong, S. McGill, and J.L. Musfeldt.

  1. Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal.

    Science.gov (United States)

    Zhao, Ling; Li, Xinyong; Zhao, Qidong; Qu, Zhenping; Yuan, Deling; Liu, Shaomin; Hu, Xijun; Chen, Guohua

    2010-12-15

    A type of uniform Mg ferrite nanospheres with excellent SO(2) adsorption capacity could be selectively synthesized via a facile solvothermal method. The size of the MgFe(2)O(4) nanospheres was controlled to be 300-400 nm in diameter. The structural, textural, and surface properties of the adsorbent have been fully characterized by a variety of techniques (Brunauer-Emmett-Teller, BET; X-ray diffraction analysis, XRD; scanning electron microscopy, SEM; and energy-dispersive X-ray spectroscopy, EDS). The valence states and the surface chemical compositions of MgFe(2)O(4) nanospheres were further identified by X-ray photoelectron spectroscopy (XPS). The behaviors of SO(2) oxidative adsorption on MgFe(2)O(4) nanospheres were studied using Fourier transform infrared spectroscopy (FTIR). Both the sulfite and sulfate species could be formed on the surface of MgFe(2)O(4). The adsorption equilibrium isotherm of SO(2) was analyzed using a volumetric method at 298 K and 473 K. The results indicate that MgFe(2)O(4) nanospheres possess a good potential as the solid-state SO(2) adsorbent for applications in hot fuel gas desulfurization. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Magnetic characteristics and nanostructures of FePt granular films with GeO2 segregant

    Science.gov (United States)

    Ono, Takuya; Moriya, Tomohiro; Hatayama, Masatoshi; Tsumura, Kaoru; Kikuchi, Nobuaki; Okamoto, Satoshi; Kitakami, Osamu; Shimatsu, Takehito

    2017-01-01

    To realize a granular film composed of L10-FePt grains with high uniaxial magnetic anisotropy energy, Ku, and segregants for energy-assisted magnetic recording, a FePt-GeO2/FePt-C stacked film was investigated in the engineering process. The FePt-GeO2/FePt-C stacked film fabricated at a substrate temperature of 450 °C realized uniaxial magnetic anisotropy, Kugrain , of about 2.5 × 107 erg/cm3, which is normalized by the volume fraction of FePt grains, and a granular structure with an averaged grain size of 7.7 nm. As the thickness of the FePt-GeO2 upper layer was increased to 9 nm, the Ku values were almost constant. That result differs absolutely from the thickness dependences of the other oxide segregant materials such as SiO2 and TiO2. Such differences on the oxide segregant are attributed to their chemical bond. The strong covalent bond of GeO2 is expected to result in high Ku of the FePt-GeO2/FePt-C stacked films.

  3. Negative impact of oxygen molecular activation on Cr(VI) removal with core–shell Fe@Fe2O3 nanowires

    International Nuclear Information System (INIS)

    Mu, Yi; Wu, Hao; Ai, Zhihui

    2015-01-01

    Highlights: • The presence of oxygen inhibited Cr(VI) removal efficiency with nZVI by near 3 times. • Cr(VI) removal with nZVI was related to adsorption, reduction, co-precipitation, and adsorption reactions. • Molecular oxygen activation competed donor electrons from Fe 0 core and surface bound Fe(II) of nZVI. • Thicker Cr(III)/Fe(III)/Cr(VI) oxyhydroxides shell of nZVI leaded to the electron transfer inhibition. - Abstract: In this study, we demonstrate that the presence of oxygen molecule can inhibit Cr(VI) removal with core–shell Fe@Fe 2 O 3 nanowires at neutral pH of 6.1. 100% of Cr(VI) removal was achieved by the Fe@Fe 2 O 3 nanowires within 60 min in the anoxic condition, in contrast, only 81.2% of Cr(VI) was sequestrated in the oxic condition. Removal kinetics analysis indicated that the presence of oxygen could inhibit the Cr(VI) removal efficiency by near 3 times. XRD, SEM, and XPS analysis revealed that either the anoxic or oxic Cr(VI) removal was involved with adsorption, reduction, co-precipitation, and re-adsorption processes. More Cr(VI) was bound in a reduced state of Cr(III) in the anoxic process, while a thicker Cr(III)/Fe(III)/Cr(VI) oxyhydroxides shell, leading to inhibiting the electron transfer, was found under the oxic process. The negative impact of oxygen molecule was attributed to the oxygen molecular activation which competed with Cr(VI) adsorbed for the consumption of donor electrons from Fe 0 core and ferrous ions bound on the iron oxides surface under the oxic condition. This study sheds light on the understanding of the fate and transport of Cr(VI) in oxic and anoxic environment, as well provides helpful guide for optimizing Cr(VI) removal conditions in real applications

  4. Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongyi, E-mail: zhouhy@zjut.edu.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Han, Jian [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Baig, Shams Ali; Xu, Xinhua [Department of Environmental Engineering, Zhejiang University, Hangzhou 310027 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer CMC-stabilized Pd/Fe nanoparticles were synthesized and used for 2,4-D removal. Black-Right-Pointing-Pointer Particle stability, {zeta}-potential and IEP of non- and stabilized Pd/Fe were compared. Black-Right-Pointing-Pointer Dechlorination of 2,4-D by different Pd/Fe systems was investigated. Black-Right-Pointing-Pointer The reaction mechanism has been discussed and presented in the article. Black-Right-Pointing-Pointer Effects of CMC/Fe mass ratio and pH were also investigated. - Abstract: This paper describes the synthesis of sodium carboxymethyl cellulose (CMC)-stabilized Pd/Fe nanoparticles and their applications to the dechlorination of 2,4-dichlorophenoxyacetic acid (2,4-D) under controlled laboratorial conditions. For this purpose batch mode experiments were conducted to understand the effects of CMC on the surface characteristics of Pd/Fe nanoparticles, optimum removal of 2,4-D and other surface interactions mechanism. Our experimental results demonstrated considerable enhancements in particle stability and chemical reactivity with the addition of CMC to Pd/Fe nanoparticles. Transmission electron microscopy (TEM) analysis indicated that CMC-stabilized Pd/Fe nanoparticles were well dispersed, and nanoparticles remained in suspension for days compared to non-stabilized Pd/Fe nanoparticles precipitated within minutes. The isoelectric point (IEP) of the nanoparticles shifted from pH 6.5 to 2.5, suggesting that CMC-stabilized Pd/Fe nanoparticles were negatively charged over a wider pH range. Our batch experiments demonstrated that CMC-stabilized Pd/Fe nanoparticles (0.6 g Fe L{sup -1}) were able to remove much higher levels of 2,4-D with only one intermediate 2-chlorophenoxyacetic acid (2-CPA) and the final organic product phenoxyacetic acid (PA), than non-stabilized Pd/Fe nanoparticles or microsized Pd/Fe particles. The removal percentage of 2,4-D increased from 10% to nearly 100% as the reaction pH decreased from 11

  5. Structural features of layered iron pnictide oxides (Fe{sub 2}As{sub 2})(Sr{sub 4}M{sub 2}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, H., E-mail: tuogino@mail.ecc.u-tokyo.ac.j [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Sato, S.; Matsumura, Y.; Kawaguchi, N.; Ushiyama, K. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Katsura, Y. [Magnetic Materials Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Horii, S. [JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Kochi University of Technology, Kami, Kochi 782-8502 (Japan); Kishio, K.; Shimoyama, J. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan)

    2010-12-15

    Structural features of newly found perovskite-based iron pnictide oxide system have been studied. Compared to REFePnO system, perovskite-based system tend to have smaller Pn-Fe-Pn angle and higher pnictogen height owing to low electronegativity of alkaline earth metal and small repulsive force between pnictogen and oxigen atoms. As-Fe-As angles of (Fe{sub 2}As{sub 2})(Sr{sub 4}Cr{sub 2}O{sub 6}), (Fe{sub 2}As{sub 2})(Sr{sub 4}V{sub 2}O{sub 6}) and (Fe{sub 2}Pn{sub 2})(Sr{sub 4}MgTiO{sub 6}) are close to ideal tetrahedron and those pnictogen heights of about 1.40 A are close to NdFeAsO with optimized carrier concentration. These structural features of this system may lead to realization of high-T{sub c} superconductivity in this system.

  6. ZnFe2O4 nanoparticles for potential application in radiosensitization

    International Nuclear Information System (INIS)

    Hidayatullah, M; Nurhasanah, I; Budi, W S

    2016-01-01

    Radiosensitizer is a material that can increase the effects of radiation in radiotherapy application. Various materials with high effective atomic number have been developed as a radiosensitizer, such as metal, iron oxide and quantum dot. In this study, ZnFe 2 O 4 nanoparticles are included in iron oxide class were synthesized by precipitation method from the solution of zinc nitrate and ferrite nitrate and followed by calcination at 700° C for 3 hours. The XRD pattern shows that most of the observed peaks can be indexed to the cubic phase of ZnFe 2 O 4 with a lattice parameter of 8.424 Å. SEM image reveals that nanoparticles are the sphere-like shape with size in the range 84-107 nm. The ability of ZnFe 2 O 4 nanoparticles as radiosensitizer was examined by loading those nanoparticles into Escherichia coli cell culture which irradiated with photon energy of 6 MV at a dose of 2 Gy. ZnFe 2 O 4 nanoparticles showed ability to increase the absorbed dose by 0.5 to 1.0 cGy/g. In addition, the presence of 1 g/L ZnFe 2 O 4 nanoparticles resulted in an increase radiation effect by 6.3% higher than if exposed to radiation only. These results indicated that ZnFe 2 O 4 nanoparticles can be used as the radiosensitizer for increasing radiation effect in radiotherapy. (paper)

  7. Resonant Ni and Fe KLL Auger spectra photoexcited from NiFe alloys

    International Nuclear Information System (INIS)

    Koever, L.; Cserny, I.; Berenyi, Z.; Egri, S.; Novak, M.

    2005-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metal atoms in solid environment, measured using high energy resolution, give an insight into the details of the local electronic structure surrounding the particular atoms emitting the signal Auger electrons. Fine tuning the energy of the exciting monochromatic photons across the K-absorption edge, features characteristic to resonant phenomena can be identified in the spectra. The shapes of the resonantly photoexcited KLL Auger spectra induced from 3d transition metals and alloys are well interpreted by the single step model of the Auger process, based on the resonant scattering theory. The peak shapes are strongly influenced by the 4p partial density of unoccupied electronic states around the excited atom. High energy resolution studies of KLL Auger spectra of 3d transition metals using laboratory X-ray sources, however, request very demanding experiments and yield spectra of limited statistical quality making the evaluation of the fine details in the spectra difficult. The Tunable High Energy XPS (THE- XPS) instrument at BW2 offers optimum photon x and energy resolution for spectroscopy of deep core Auger transitions. For the present measurements high purity polycrystalline Ni and Fe sheets as well as NiFe alloy samples of different compositions (Ni 80 Fe 20 , Ni 50 Fe 50 , Ni 20 Fe 80 ) were used. The surfaces of the samples were cleaned by in-situ argon ion sputtering. The measurements of the Ni and Fe KL 23 L 23 Auger spectra of the metal and alloy samples were performed with the THE-XPS instrument using high electron energy resolution (0.2 eV). In Fig.1, the measured Fe KL 23 L 23 spectrum, photoexcited at the Fe K absorption edge from Fe metal, is compared with the respective spectrum excited from a Ni 50 Fe 50 alloy. A significant broadening of the 1 D 2 peak and an enhancement of the spectral intensity at the low energy loss part of this peak observed in the alloy sample, while the

  8. Study of the Thermodynamics of Chromium(III) and Chromium(VI) Binding to Fe3O4 and MnFe2O4 nanoparticles

    Science.gov (United States)

    Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J.G.

    2013-01-01

    Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4 ± 0.9 nm (Fe3O4) and 15.5 ± 0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative. PMID:23558081

  9. Optimal Scheduling of a Battery-Based Energy Storage System for a Microgrid with High Penetration of Renewable Sources

    DEFF Research Database (Denmark)

    Dulout, Jeremy; Hernández, Adriana Carolina Luna; Anvari-Moghaddam, Amjad

    2017-01-01

    A new scheduling method is proposed to manage efficiently the integration of renewable sources in microgrids (MGs) with energy storage systems (ESSs). The purpose of this work is to take into account the main stress factors influencing the ageing mechanisms of a battery energy storage system (BESS......) in order to make an optimal dispatch of resources in the microgrid and enhance the storage system lifetime while minimizing the cost of electric consumption. The load demand and generation profiles are derived from the analysis of consumption and renewable production (solar photovoltaic sources and wind...... turbines) of the Western Denmark electric grid. Thus, the proposed microgrid is mainly fed by renewable sources and few electricity is coming from the main grid (which helps operating costs minimization). In this respect, a cost analysis is performed to find the optimal hourly power output of the BESS...

  10. Schedules of Controlled Substances: Temporary Placement of ortho-Fluorofentanyl, Tetrahydrofuranyl Fentanyl, and Methoxyacetyl Fentanyl Into Schedule I. Temporary amendment; temporary scheduling order.

    Science.gov (United States)

    2017-10-26

    The Administrator of the Drug Enforcement Administration is issuing this temporary scheduling order to schedule the synthetic opioids, N-(2-fluorophenyl)-N-(1-phenethylpiperidin-4-yl)propionamide (ortho-fluorofentanyl or 2-fluorofentanyl), N-(1-phenethylpiperidin-4-yl)-N-phenyltetrahydrofuran-2-carboxamide (tetrahydrofuranyl fentanyl), and 2-methoxy-N-(1-phenethylpiperidin-4-yl)-N-phenylacetamide (methoxyacetyl fentanyl), into Schedule I. This action is based on a finding by the Administrator that the placement of ortho-fluorofentanyl, tetrahydrofuranyl fentanyl, and methoxyacetyl fentanyl into Schedule I of the Controlled Substances Act is necessary to avoid an imminent hazard to the public safety. As a result of this order, the regulatory controls and administrative, civil, and criminal sanctions applicable to Schedule I controlled substances will be imposed on persons who handle (manufacture, distribute, reverse distribute, import, export, engage in research, conduct instructional activities or chemical analysis, or possess), or propose to handle, ortho-fluorofentanyl, tetrahydrofuranyl fentanyl, and methoxyacetyl fentanyl.

  11. Selective detection of Fe2+ by combination of CePO4:Tb3+ nanocrystal-H2O2 hybrid system with synchronous fluorescence scan technique.

    Science.gov (United States)

    Chen, Hongqi; Ren, Jicun

    2012-04-21

    A new method for quenching kinetic discrimination of Fe(2+) and Fe(3+), and sensitive detection of trace amount of Fe(2+) was developed by using synchronous fluorescence scan technique. The principle of this assay is based on the quenching kinetic discrimination of Fe(2+) and Fe(3+) in CePO(4):Tb(3+) nanocrytals-H(2)O(2) hybrid system and the Fenton reaction between Fe(2+) and H(2)O(2). Stable, water-soluble and well-dispersible CePO(4):Tb(3+) nanocrystals were synthesized in aqueous solutions, and characterized by transmission electron microscopy (TEM) and electron diffraction spectroscopy (EDS). We found that both Fe(2+) and Fe(3+) could quench the synchronous fluorescence of CePO(4):Tb(3+) nanocrytals-H(2)O(2) system, but their quenching kinetics velocities were quite different. In the presence of Fe(3+), the synchronous fluorescent intensity was unchanged after only one minute, but in the presence of Fe(2+), the synchronous fluorescent intensity decreased slowly until 28 min later. The Fenton reaction between Fe(2+) and H(2)O(2) resulted in hydroxyl radicals which effectively quenched the synchronous fluorescence of the CePO(4):Tb(3+) nanocrystals due to the oxidation of Ce(3+) into Ce(4+) by hydroxyl radicals. Under optimum conditions, the linear range for Fe(2+) is 3 nM-2 μM, and the limit of detection is 2.0 nM. The method was used to analyze water samples.

  12. Magnetism and thermal induced characteristics of Fe{sub 2}O{sub 3} content bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chun-Shiang; Hsi, Chi-Shiung [Department of Materials Science and Engineering, National United University, Miaoli 36003, Taiwan (China); Hsu, Fang-Chi, E-mail: fangchi@nuu.edu.tw [Department of Materials Science and Engineering, National United University, Miaoli 36003, Taiwan (China); Wang, Moo-Chin [Department of Fragrance and Cosmetics, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, Yung-Sheng [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 803, Taiwan (China)

    2012-11-15

    Magnetic properties of Li{sub 2}O-MnO{sub 2}-CaO-P{sub 2}O{sub 5}-SiO{sub 2} (LMCPS) glasses doped with various amounts of Fe{sub 2}O{sub 3} were investigated. There is a dramatic change in the magnetic property of pristine LMCPS after the addition of Fe{sub 2}O{sub 3} and crystallized at 850 Degree-Sign C for 4 h. Both the electron paramagnetic resonance and magnetic susceptibility measurements showed that the glass ceramic with 4 at% Fe{sub 2}O{sub 3} exhibited the coexistence of superparamagnetism and ferromagnetism at room temperature. When the Fe{sub 2}O{sub 3} content was higher than 8 at%, the LMCPS glasses showed ferromagnetism behavior. The complex magnetic behavior is due to the distribution of (Li, Mn)ferrite particle sizes driven by the Fe{sub 2}O{sub 3} content. The thermal induced hysteresis loss of the crystallized LMCPS glass ceramics was characterized under an alternating magnetic field. The energy dissipations of the crystallized LMCPS glass ceramics were determined by the concentration and Mn/Fe ratios of Li(Mn, Fe)ferrite phase formed in the glass ceramics. - Highlights: Black-Right-Pointing-Pointer Presence of Fe{sub 2}O{sub 3} in LMCPS glass ceramic promotes the growth of (Li, Mn)ferrite. Black-Right-Pointing-Pointer The amount of Fe{sub 2}O{sub 3} determines the size of (Li,Mn)ferrite particles. Black-Right-Pointing-Pointer Room temperature superparamagnetism was obtained at 4 at% of Fe{sub 2}O{sub 3} addition. Black-Right-Pointing-Pointer In addition, Li(Mn, Fe)ferrite phase contributes to the magnetic energy loss. Black-Right-Pointing-Pointer The largest energy loss is the trade-off between the ferrite content and Mn/Fe ratio.

  13. Corrosion of steel in carbonated media: The oxidation processes of chukanovite (Fe2(OH)2CO3)

    International Nuclear Information System (INIS)

    Azoulay, I.; Rémazeilles, C.; Refait, Ph.

    2014-01-01

    Highlights: • Oxidation of chukanovite does not lead to carbonated green rust. • Both lepidocrocite and goethite can result from the oxidation of chukanovite. • Violent oxidation of chukanovite by hydrogen peroxide leads to a Fe(III) oxycarbonate. • Chukanovite crystal structure withstands a partial oxidation of Fe(II) to Fe(III). - Abstract: The oxidation of aqueous suspensions of chukanovite (Fe 2 (OH) 2 CO 3 ) obtained by mixing NaOH, FeCl 2 and Na 2 CO 3 solutions was studied. The reaction was monitored by recording the pH and the redox potential of a platinum electrode immersed in the suspension. The precipitate was analyzed at various oxidation stages by infrared spectroscopy. The end products were also characterized by X-ray diffraction. The oxidation by air of the suspensions leads to lepidocrocite and goethite without formation of an intermediate green rust compound. Violent oxidation of chukanovite by hydrogen peroxide leads to a Fe(III) oxycarbonate with a crystal structure closely related to that of chukanovite

  14. Resilient carbon encapsulation of iron pyrite (FeS2) cathodes in lithium ion batteries

    Science.gov (United States)

    Yoder, Tara S.; Tussing, Matthew; Cloud, Jacqueline E.; Yang, Yongan

    2015-01-01

    Converting iron pyrite (FeS2) from a non-cyclable to a cyclable cathode material for lithium ion batteries has been an ongoing challenge in recent years. Herein we report a promising mitigation strategy: wet-chemistry based conformal encapsulation of synthetic FeS2 nanocrystals in a resilient carbon (RC) matrix (FeS2@RC). The FeS2@RC composite was fabricated by dispersing autoclave-synthesized FeS2 nanocrystals in an aqueous glucose solution, polymerizing the glucose in a hydrothermal reactor, and finally heating the polymer/FeS2 composite in a tube furnace to partially carbonize the polymer. The FeS2@RC electrodes showed superior cyclability compared with the FeS2 electrodes, that is, 25% versus 1% of retention at the 20th cycle. Based on electrochemical analysis, XRD study, and SEM characterization, the performance enhancement was attributed to RC's ability to accommodate volume fluctuation, enhance charge transfer, alleviate detrimental side reactions, and suppress loss of the active material. Furthermore, the remaining issues associated with the current system were identified and future research directions were proposed.

  15. Unraveling the Role of Structural Order in the Transformation of Electrical Conductivity in Ca2FeCoO6-δ, CaSrFeCoO6-δ, and Sr2FeCoO6-δ.

    Science.gov (United States)

    Hona, Ram Krishna; Huq, Ashfia; Ramezanipour, Farshid

    2017-12-04

    The ability to control the electrical conductivity of solid-state oxides using structural parameters has been demonstrated. A correlation has been established between the electrical conductivity and structural order in a series of oxygen-deficient perovskites using X-ray and neutron diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and electrical conductivity studies at a wide temperature range, 25-800 °C. The crystal structure of CaSrFeCoO 6-δ has been determined, and its stark contrast to Ca 2 FeCoO 6-δ and Sr 2 FeCoO 6-δ has been demonstrated. The Fe/Co distribution over tetrahedral and octahedral sites has been determined using neutron diffraction. There is a systematic increase in the structural order in progression from Sr 2 FeCoO 6-δ (δ = 0.5) to CaSrFeCoO 6-δ (δ = 0.8) and Ca 2 FeCoO 6-δ (δ = 0.9) . The oxygen contents of these materials were determined using iodometric titration and TGA. At room temperature, there is an inverse correlation between the electrical conductivity and structural order. The ordered Ca 2 and CaSr compounds are semiconductors, while the disordered Sr 2 compund shows metallic behavior. The metallic nature of the Sr 2 material persists up to 1073 K (800 °C), while the Ca 2 and CaSr compounds undergo a semiconductor-to-metal transition above 500 and 300 °C, respectively, highlighting another important impact of the structural order. At high temperature, the CaSr compound has the highest conductivity compared to the Ca 2 and Sr 2 materials. There appears to be an optimum degree of structural order that leads to the highest conductivity at high temperature. Another consequence of the structural order is the observation of mixed ionic-electronic conductivity in CaSr and Ca 2 compounds, as is evident from the hysteresis in the conductivity data obtained during heating and cooling cycles. The average ionic radius required for each structural transition was

  16. Synthesis and pressure effects on the La doped CaFe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Soo Hyun; Park, Tuson [Dept. of physics, Sungkyunkwan University, Suwon (Korea, Republic of); Shang, T.; Yuan, H. Q. [Dept. of physics, Zhejiang University, Hangzhou (China)

    2014-09-15

    We have synthesized La doped CaFe2As{sub 2} single crystals with Sn flux in an evacuated quartz ampule. Doping and pressure effects on the magnetic and superconducting properties of the under-doped Ca{sub 1-x}La{sub x}Fe{sub 2}As{sub 2} (x=0.08, 0.1) were studied by measuring electrical resistivity under quasi-hydrostatic pressure up to 21 kbar. Magnetic transition temperatures for all studied concentrations were sharply suppressed with slight amplitude of pressure, less than 3 kbar, while superconducting transition temperatures were robust against pressure. In this communication, we report temperature-pressure phase diagram for the La-doped CaFe{sub 2}As{sub 2} single crystals.

  17. Ferroelectric ferrimagnetic LiFe2F6 : Charge-ordering-mediated magnetoelectricity

    Science.gov (United States)

    Lin, Ling-Fang; Xu, Qiao-Ru; Zhang, Yang; Zhang, Jun-Jie; Liang, Yan-Ping; Dong, Shuai

    2017-12-01

    Trirutile-type LiFe2F6 is a charge-ordered material with an Fe2 +/Fe3 + configuration. Here, its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe2F6 can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effects and desirable functions.

  18. H+ irradiation effect in Co-doped BaFe2As2 single crystals

    International Nuclear Information System (INIS)

    Nakajima, Y.; Tsuchiya, Y.; Taen, T.; Tamegai, T.; Kitamura, H.; Murakami, T.

    2011-01-01

    The effect of H + irradiation on the suppression of Tc in Co-doped BaFe 2 As 2 . H + irradiation introduces nonmagnetic scattering centers. Critical Scattering rate is much higher than that expected in s±-pairing scenario. We report the suppression of the critical temperature T c in single crystalline Ba(Fe 1-x Co x ) 2 As 2 at under-, optimal-, and over-doping levels by 3 MeV proton irradiation. T c decreases and residual resistivity increases monotonically with increasing the dose. The low-temperature resistivity does not show the upturn in contrast with the α-particle irradiated NdFeAs(O,F), which suggests that proton irradiation introduces nonmagnetic scattering centers. Critical scattering rates for all samples obtained by three different ways are much higher than that expected in s±-pairing scenario based on inter-band scattering due to antiferro-magnetic spin fluctuations.

  19. The influence of Cd-dopant on the properties of α-FeOOH and α-Fe2O3 particles precipitated in highly alkaline media

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar

    2007-01-01

    The effects of Cd-dopant on the phenomenology of the precipitation of α-(Fe, Cd)OOH and α-(Fe, Cd) 2 O 3 particles, the formation of solid solutions, particle size and their geometrical shapes were investigated using Moessbauer and Fourier transform infrared (FT-IR) spectroscopies, field emission scanning electron microscopy (FE SEM) and energy dispersive X-ray analysis (EDS). The formation of merely α-(Fe, Cd)OOH solid solutions was measured up to r = 0.0196, where r = [Cd]/([Cd] + [Fe]). The formation of two types of solid solutions, α-(Fe, Cd)OOH and α-(Fe, Cd) 2 O 3 was found at r between 0.0291 and 0.0698, whereas the formation of an α-(Fe, Cd) 2 O 3 solid solution alone was obtained at r = 0.0909. The incorporation of Cd-substitutions into α-FeOOH and α-Fe 2 O 3 structures decreased the hf > values of the corresponding hyperfine magnetic field. The IR band at 639 cm -1 , recorded for α-FeOOH, was found to be sensitive to Cd-substitutions. With an increased r value a gradual elongation of α-(Fe, Cd)OOH particles along the c-axis was observed, with the maximum elongation (∼600-700 nm) obtained at r = 0.0476. At the same time, particle width (b-axis direction) and thickness (a-axis direction) showed a gradual decrease. With a further increase in the r value the length of α-(Fe, Cd)OOH particles rapidly decreased. α-(Fe, Cd) 2 O 3 particles ∼100-200 nm in size were obtained at r = 0.0909

  20. Molecular [(Fe3)–(Fe3)] and [(Fe4)–(Fe4)] coordination cluster pairs as single or composite arrays.

    Science.gov (United States)

    Sañudo, E Carolina; Uber, Jorge Salinas; Pons Balagué, Alba; Roubeau, Olivier; Aromí, Guillem

    2012-08-06

    The synthesis of molecular cluster pairs is a challenge for coordination chemists due to the potential applications of these species in molecular spintronics or quantum computing. The ligand H(4)L, 1,3-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-2-methoxybenzene, has been successfully used to obtain a series of such complexes using the basic Fe(III) trinuclear carboxylates as starting materials. Synthetic control has allowed the isolation of the two molecular cluster pairs that form the composite [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2)[Fe(3)O(PhCO(2))(5)(py)(H(2)L)](2) (1). The dimers of trinuclear units, [Fe(3)O(PhCO(2))(5)(H(2)O)(H(2)L)](2) (2) and [Fe(3)O(o-MePhCO(2))(5)(H(2)L)(py)](2) (3), and the dimers of tetranuclear units, [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2) (4) and [Fe(4)O(2)(o-MePhCO(2))(6)(H(2)L)(pz)](2) (5), are presented here. The magnetic properties of the reported aggregates show that they are pairs of semi-independent clusters weakly interacting magnetically as required for two-qubit quantum gates.

  1. Upgrading pyrolysis bio-oil through hydrodeoxygenation (HDO) using non-sulfided Fe-Co/SiO2 catalyst

    International Nuclear Information System (INIS)

    Cheng, Shouyun; Wei, Lin; Julson, James; Rabnawaz, Muhammad

    2017-01-01

    Highlights: • Fe-Co/SiO 2 catalyst with medium acidity was more effective for bio-oil upgrading. • Co-loading of Fe and Co on SiO 2 support improved catalyst performance. • Catalyst showing the best catalytic activity had a Fe/Co mole ratio of 1. • Biofuel produced by Fe-Co(1)/SiO 2 had the higher hydrocarbons content at 22.44%. • The mechanism of bio-oil HDO on Fe-Co/SiO 2 catalysts is proposed. - Abstract: Hydrodeoxygenation (HDO) is an effective route to upgrade bio-oil to hydrocarbon bio-oil, but the development of efficient catalysts for bio-oil HDO still remains a challenge. In this study, non-sulfided Fe-Co/SiO 2 catalysts were used to upgrade bio-oil using HDO. A series of Fe-Co/SiO 2 catalysts with different Fe/Co mole ratios were prepared, characterized and evaluated. The Fe and/or Co loading did not change SiO 2 crystalline structure. The Fe and/or Co metals increased the amount and strength of Fe-Co/SiO 2 catalyst acidity. Physicochemical properties of upgraded bio-oils produced using Fe-Co/SiO 2 catalysts such as water content, total acid number, viscosity and higher heating values improved in comparison to raw bio-oil. Bimetallic Fe-Co/SiO 2 catalysts resulted in better HDO performance than monometallic Fe/SiO 2 or Co/SiO 2 catalysts. This was due to the synergistic effect of Fe and Co occurring on the SiO 2 support. Fe-Co/SiO 2 catalyst having medium amount of acidity was more effective for bio-oil upgrading. The highest hydrocarbons content produced using Fe-Co(1)/SiO 2 catalyst was 22.44%. The mechanism of bio-oil HDO on Fe-Co/SiO 2 catalysts is proposed.

  2. Electrospinning direct preparation of SnO2/Fe2O3 heterojunction nanotubes as an efficient visible-light photocatalyst

    International Nuclear Information System (INIS)

    Zhu, Chengquan; Li, Yuren; Su, Qing; Lu, Bingan; Pan, Jiaqi; Zhang, Jiawang; Xie, Erqing; Lan, Wei

    2013-01-01

    Highlights: •SnO 2 /Fe 2 O 3 nano-heterojunction-tubes are prepared by a facile electrospinning technique. •The formation mechanism of heterojunction tubes is proposed for self-polymer-templates action. •SnO 2 /Fe 2 O 3 nano-heterojunction-tubes show high photocatalytic activity under visible light irradiation. •The reasons for the high photocatalytic activity are investigated in detail. -- Abstract: Herein SnO 2 /Fe 2 O 3 heterojunction nanotubes are prepared by a facile electrospinning technique. The heterojunction nanotubes with a diameter of about 200 nm uniformly distribute SnO 2 and Fe 2 O 3 nanocrystals and present the obvious interfaces between them, which form perfect SnO 2 /Fe 2 O 3 nano-heterojunctions. A possible mechanism based on self-polymer-templates is proposed to explain the formation of SnO 2 /Fe 2 O 3 heterojunction nanotubes. The heterojunction nanotubes show high photocatalytic activity for the degradation of RhB dye under visible light irradiation. The prepared SnO 2 /Fe 2 O 3 heterojunction nanotubes can also be applied to other fields such as sensor, lithium-ion batteries

  3. Smooth and rapid microwave synthesis of MIL-53(Fe) including superparamagnetic γ-Fe2O3 nanoparticles

    Science.gov (United States)

    Wengert, Simon; Albrecht, Joachim; Ruoss, Stephen; Stahl, Claudia; Schütz, Gisela; Schäfer, Ronald

    2017-12-01

    MIL-53(Fe) linked to superparamagnetic γ-Fe2O3 nanoparticles was created using time-efficient microwave synthesis. Intermediates as well as the final product have been characterized by Dynamic Light Scattering (DLS), Infrared Spectroscopy (FTIR) and Thermal Gravimetric Analysis (TGA). It is found that this route allows the production of Fe nanoparticles with typical sizes of about 80 nm that are embedded inside the metal-organic structures. Detailed magnetization measurements using SQUID magnetometry revealed a nearly reversible magnetization loop indicating essentially superparamagnetic behavior.

  4. Kinetics of 2-chlorobiphenyl Reductive Dechlorination by Pd-fe0 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Junrong

    2016-01-01

    Full Text Available Kinetics of 2-chlorobiphenyl (2-Cl BP catalytic reductive dechlorination by Pd-Fe0 nanoparticles were investigated. Experimental results showed that ultrafine bimetallic Pd-Fe0e nanoparticles were synthesized in the presence of 40 kHz ultrasound in order to enhance disparity and avoid agglomeration. The application of ultrasonic irradiation during the synthesis of Pd-Fe0 nanoparticles further accelerated the dechlorinated removal ratio of 2-Cl BP. Up to 95.0% of 2-Cl BP was removed after 300 min reaction with the following experimental conditions: initial 2-Cl BP concentration 10 mg L-1, Pd content 0.8 wt. %, bimetallic Pd-Fe0 nanoparticles prepared in the presence of ultrasound available dosage 7g L-1, initial pH value in aqueous solution 3.0, and reaction temperature 25°C. The catalytic reductive dechlorination of 2-Cl BP followed pseudo-first-order kinetics and the apparent pseudo-first-order kinetics constant was 0.0143 min-1.

  5. Various stages of oxidation of chlorite as reflected in the Fe2+ and Fe3+ proportions in the Moessbauer spectra of minerals in Boda Claystone

    International Nuclear Information System (INIS)

    Lazar, Karoly; Mathe, Zoltan; Foeldvari, Maria; Nemeth, Tibor; Mell, Peter

    2009-01-01

    The aptness for Fe 2+ → Fe 3+ changes in claystones may indicate the possibility for various coupled redox processes. Boda Claystone samples were studied from this aspect. Variations in the Fe 2+ and Fe 3+ ratios and changes in the coordination states of these ions were analysed in samples obtained from different depths (in between 23 and 80 m). The Fe 2+ content is attributed primarily to ferrous iron located in chlorite. On the top region of the strata the Fe 3+ proportion increases and its coordination is modified. These changes are attributed to secondary transformations and partial weathering. Thus, Fe 2+ in the Boda Claystone may probably participate other redox changes as well.

  6. Raman scattering, magnetization and magnetotransport study of SrFeO3-δ, Sr3Fe2O7-δ and CaFeO3

    International Nuclear Information System (INIS)

    Damljanovic, Vladimir

    2008-01-01

    In this thesis we have determined the Raman spectra as well as the magnetization, resistance and magnetoresistance of the compounds SrFeO 3-δ , Sr 3 Fe 2 O 7-δ and CaFeO 3 as a function of temperature. We describe the preparation of nearly stoichiometric SrFeO 3-δ crystals with δ 3.00 in order to assign the phonon modes observed in infra-red experiments. We have measured the Raman spectra of the tetragonal phase in the temperature range 13 K to 300 K and of the orthorhombic phase in the temperature range 6 K to 475 K. We have measured the temperature dependence of the magnetization for the magnetic field along high-symmetry axes of the crystal structure. We have also performed neutron diffraction measurements. The resistivity and the magnetoresistance were measured in the range 10 K to 300 K. Finally we have measured the Raman spectra of the same sample in the temperature range 15 K to 440 K. In order to assign the observed modes, we have performed lattice dynamics calculations based on the published crystal structure of Sr 3 Fe 2 O 7 . (orig.)

  7. Magnetoelastic coupling in TbFe2 (110) thin films

    International Nuclear Information System (INIS)

    Ciria, M.; Arnaudas, J.I.; Dufour, C.; Oderno, V.; Dumesnil, K.; del Moral, A.

    1997-01-01

    We have determined the rhombohedral magnetoelastic stress of a Laves phase TbFe 2 (110) single-crystal film, grown by molecular-beam epitaxy. The film thickness was 1300 Angstrom. The magnetoelastic stress was directly measured by using a low-temperature cantilever capacitive method, between 300 and 10 K. The isotherms clearly display the coercive field but, unlike bulk alloy behavior, do not saturate even at the maximum field of 12 T. The determined rhombohedral magnetoelastic parameter of the film is B ε,2 =-0.43 GPa, at 0 K and 12 T, which is 0.67 times the value for bulk TbFe 2 . B ε,2 follows a power m 3 of the reduced magnetization m, indicating a single-ion volume origin for the rhombohedral magnetoelastic stress of this film. Measurements performed in a 300 Angstrom TbFe 2 (110) film deposited onto a YFe 2 buffer show that the coercive field is drastically lowered and that the magnetoelastic distortion is negligible. copyright 1997 American Institute of Physics

  8. Synthesis of ZnFe2O4/SiO2 composites derived from a diatomite template.

    Science.gov (United States)

    Liu, Zhaoting; Fan, Tongxiang; Zhou, Han; Zhang, Di; Gong, Xiaolu; Guo, Qixin; Ogawa, Hiroshi

    2007-03-01

    A novel porous ZnFe2O4/SiO2 composite product has been generated with a template-directed assembly method from porous diatomite under different synthesis conditions, such as precursor concentrations (metallic nitrates), calcination temperature and diatomite type. The phase composition and morphology of all the materials were examined by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The results indicated that an inherited hierarchical porous structure from the diatomite template can be obtained, and the synthesis conditions were found to have clear effects on the formation of the ZnFe2O4/SiO2 composite. The ideal composite of ZnFe2O4/SiO2 can be obtained through optimization of diatomite template type, precursor solution and calcination temperature. Furthermore, the adsorption abilities of two types of diatomites were analyzed in detail using FTIR spectra and nitrogen adsorption measurements etc, which proved that A-diatomite (Shengzhou-diatomite) is better than B-diatomite (Changbai-diatomite) on the aspect of adsorbing Zn and Fe ions, and of forming the ZnFe2O4.

  9. Characterization of transparent superconductivity Fe-doped CuCrO{sub 2} delafossite oxide

    Energy Technology Data Exchange (ETDEWEB)

    Taddee, Chutirat [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Kamwanna, Teerasak, E-mail: teekam@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-09-01

    Graphical abstract: - Highlights: • Effect of Fe substitution on the physical properties in CuCrO{sub 2} is studied. • The substitution of Cr{sup 3+} by Fe{sup 3+} produces a mixed effect on the magnetic properties. • CuCr{sub 1−x}Fe{sub x}O{sub 2} delafossite oxides show transparent superconductivity. - Abstract: Delafossite CuCr{sub 1−x}Fe{sub x}O{sub 2} (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr{sub 1−x}Fe{sub x}O{sub 2} slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV–visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO{sub 2} samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe{sup 3+} for Cr{sup 3+} produced a mixed effect on the magnetic properties of CuCrO{sub 2} delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr{sub 1−x}Fe{sub x}O{sub 2} with a superconducting transition up to 118 K.

  10. Concept of Indoor 3D-Route UAV Scheduling System

    DEFF Research Database (Denmark)

    Khosiawan, Yohanes; Nielsen, Izabela Ewa; Do, Ngoc Ang Dung

    2016-01-01

    environment. On top of that, the multi-source productive best-first-search concept also supports efficient real-time scheduling in response to uncertain events. Without human intervention, the proposed work provides an automatic scheduling system for UAV routing problem in 3D indoor environment....

  11. The Influence of CuFe2O4 Nanoparticles on Superconductivity of MgB2

    Science.gov (United States)

    Novosel, Nikolina; Pajić, Damir; Skoko, Željko; Mustapić, Mislav; Babić, Emil; Zadro, Krešo; Horvat, Joseph

    The influence of CuFe2O4 nanoparticle doping on superconducting properties of Fe-sheated MgB2 wires has been studied. The wires containing 0, 3 and 7.5 wt.% of monodisperse superparamagnetic nanoparticles (˜7 nm) were sintered at 650°C or 750°C for 1 hour in the pure argon atmosphere. X-ray diffraction patterns of doped samples showed very small maxima corresponding to iron boride and an increase in the fraction of MgO phase indicating some interaction of nanoparticles with Mg and B. Both magnetic and transport measurements (performed in the temperature range 2-42 K and magnetic field up to 16 T) showed strong deterioration of the superconducting properties upon doping with CuFe2O4. The transition temperatures, Tc, of doped samples decreased for about 1.4 K per wt.% of CuFe2O4. Also, the irreversibility fields Birr(T) decreased progressively with increasing doping. Accordingly, also the suppression of Jc with magnetic field became stronger. The observed strong deterioration of superconducting properties of MgB2 wires is at variance with reported enhancement of critical currents at higher temperatures (determined from magnetization) in bulk MgB2 samples doped with Fe3O4 nanoparticles. The probable reason for this discrepancy is briefly discussed

  12. Nanocrystallization in amorphous Fe40Ni40(Si+B)19Mo1-2 ribbons

    International Nuclear Information System (INIS)

    Saiseng, S.; Winotai, P.; Nilpairuch, S.; Limsuwan, P.; Tang, I.M.

    2004-01-01

    Cut Fe 40 Ni 40 (Si+B) 19 Mo 1-2 ribbons were annealed for 2 h at various temperatures between 350 deg. C and 600 deg. C. XRD and Mossbauer effect spectroscopy (ME) measurements were then performed on all of the ribbons. The magnetic properties of several ribbons were measured using a vibrating sample magnetometer (VSM). A differential thermal analysis scan (over the range 20-800 deg. C) of the as-cast ribbon showed two phase transitions; the first at 454 deg. C and the second at 525 deg. C. Both the XRD and ME spectra of the as cast, the 350 deg. C and 400 deg. C annealed ribbons showed that they were amorphous. The ME spectra of the 450 deg. C, 475 deg. C and 500 deg. C annealed ribbons showed that these ribbons contained α-Fe, α-Fe(Si) and t-Fe 2 B nanocrystallites. For the ribbons annealed above 550 deg. C, crystallites of t-Fe 2 B, t-Fe 3 B, t-Fe 5 SiB 2 and FCC-FeNi appeared, with the α-Fe and α-Fe(Si) crystallites disappearing. The sextets of all of the Fe compounds appeared in the ME spectra of the 525 deg. C annealed ribbon. The VSM measurements supported the picture of a two-stage phase transitions; amorphous phase→a nanocrystalline phase (Fe-containing nanocrystallites in an amorphous matrix) at 454 deg. C and then a second transition, the nanocrystalline phase→a disordered alloy containing Fe-B and Fe-Ni crystallites at 525 deg. C

  13. Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5

    Science.gov (United States)

    Majzlan, J.; Navrotsky, A.; McCleskey, R. Blaine; Alpers, Charles N.

    2006-01-01

    Enthalpies of formation of ferricopiapite [nominally Fe4.67(SO4)6(OH)2 (H2O)20]. coquimbite [Fe2(SO4)3(H2O)9], rhomboclase [(H3O)Fe(SO4)2 (H2O)3], and Fe2(SO4)3(H2O)5 were measured by acid (5 N HCl) solution calorimetry. The samples were characterized by wet chemical analyses and synchrotron powder X-ray diffraction (XRD). The refinement of XRD patterns gave lattice parameters, atomic positions, thermal factors, and occupancies of the sites. The calculated formulae differ slightly from the nominal compositions: Fe4.78(SO4)6 (OH)2.34(H2O)20.71 (ferricopiapite), (Fe1.47Al0.53)(SO4)3 (H2O)9.65 (coquimbite), (H3O)1.34Fe(SO4)2.17 (H2O)3.06 (rhomboclase), and Fe2(SO4)3 (H2O)5.03. All thermodynamic data are given per mole of these formulae. The measured standard enthalpies (in kJ/mol) of formation from the elements (crystalline Fe, Al, S, and ideal gases O2 and H2) at T = 298.15 K are -4115.8??4.1 [Fe2(SO4)3 (H2O)5.03], -12045.1??9.2 (ferricopiapite), -5738.4??3.3 (coquimbite), and -3201.1??2.6 (rhomboclase). Standard entropy (S??) was estimated as a sum of entropies of oxide, hydroxide, and sulfate components. The estimated S?? (in J/mol.K) values for the iron sulfates are 488.2 [Fe2(SO4)3 (H2O)5.03], 1449.2 (ferricopiapite), 638.3 (coquimbite), and 380.1 (rhomboclase). The calculated Gibbs free energies of formation (in kJ/mol) are -3499.7??4.2 [Fe2(SO4)3 (H2O)5.03], -10089.8??9.3 (ferricopiapite), -4845.6??3.3 (coquimbite), and -2688.0??2.7 (rhomboclase). These results combined with other available thermodynamic data allow construction of mineral stability diagrams in the FeIII2(SO4)3-FeII SO4-H2O system. One such diagram is provided, indicating that the order of stability of ferric sulfate minerals with decreasing pH in the range of 1.5 to -0.5 is: hydronium jarosite, ferricopiapite, and rhomboclase. ?? 2006 E. Schweizerbart'sche Verlagsbuchhandlung.

  14. Nonstoichiometry, point defects and magnetic properties in Sr2FeMoO6−δ double perovskites

    International Nuclear Information System (INIS)

    Kircheisen, R.; Töpfer, J.

    2012-01-01

    The phase stability, nonstoichiometry and point defect chemistry of polycrystalline Sr 2 FeMoO 6−δ (SFMO) was studied by thermogravimety at 1000, 1100, and 1200 °C. Single-phase SFMO exists between −10.2≤log pO 2 ≤−13.7 at 1200 °C. At lower oxygen partial pressure a mass loss signals reductive decomposition. At higher pO 2 a mass gain indicates oxidative decomposition into SrMoO 4 and SrFeO 3−x . The nonstoichiometry δ at 1000, 1100, and 1200 °C was determined as function of pO 2 . SFMO is almost stoichiometric at the upper phase boundary (e.g. δ=0.006 at 1200 °C and log pO 2 =−10.2) and becomes more defective with decreasing oxygen partial pressure (e.g. δ=0.085 at 1200 °C and log pO 2 =−13.5). Oxygen vacancies are shown to represent majority defects. From the temperature dependence of the oxygen vacancy concentration the defect formation enthalpy was estimated (ΔH OV =253±8 kJ/mol). Samples of different nonstoichiometry δ were prepared by quenching from 1200 °C at various pO 2 . An increase of the unit cell volume with increasing defect concentration δ was found. The saturation magnetization is reduced with increasing nonstoichiometry δ. This demonstrates that in addition to Fe/Mo site disorder, oxygen nonstoichiometry is another source of reduced magnetization values. - Graphical abstract: Nonstoichiometry δ of Sr 2 FeMoO 6−δ as function of oxygen partial pressure at 1000, 1100, and 1200 °C. Highlights: ► Sr 2 FeMoO 6−δ is stable at T=1200 °C at low pO 2 only. ► Nonstoichiometry δ measured at 1200, 1100, and 1000 °C. ► Increase of oxygen vacancy concentration with lower pO 2 . ► Reduction of magnetization with increasing nonstoichiometry δ.

  15. A Low-Cost Production Method of FeSi2 Power Generation Thermoelectric Modules

    Science.gov (United States)

    Inoue, Hiroyuki; Kobayashi, Takahide; Kato, Masahiko; Yoneda, Seiji

    2016-03-01

    A method is proposed to reduce the production cost of power generation thermoelectric modules. FeSi2 is employed as the thermoelectric material because of its low cost, low environmental load, and oxidation resistance. The raw materials were prepared in the composition of Fe0.96Si2.1Co0.04 for n-type and Fe0.92Si2.1Mn0.08 for p-type, which were added with 0.5 wt.% Cu as the starting materials. They were sintered without pressure at 1446 K to be formed into elements. The Seebeck coefficient and resistivity at room temperature were determined to be -182 μV/K and 0.13 mΩm for n-type, and 338 μV/K and 1.13 mΩm for p-type, respectively. The brazing conditions of the direct joining between the element and the solder were examined. Pastes of BNi-6, BNi-7 or TB-608T were tried as the solder. TB-608T was useable for metallizing of insulation substrates and joining of thermoelectric elements in order to manufacture thermoelectric modules. The joining strength was determined to be 50 MPa between the alumina plate and the elements. No mechanical failure was observed in the modules after repetition of 10 or more exposures to a heat source of 670 K. No change was found in the internal resistance. The present production method will provide modules with high durability and low production cost, which will enable high-power multi-stage cascade modules at a reasonable cost.

  16. 59Fe uptake by Salmonella typhimurium strains of different epidemiological sources

    International Nuclear Information System (INIS)

    Rabsch, W.; Reissbrodt, R.

    1985-01-01

    All Salmonella typhimurium strains tested were able to use iron from transferrin. In buffered nutrient broth - poor in iron-content - the strains were tested in 59 FeCl 3 and 59 Fe-transferrin uptake in different growth phases. In the early log phase the strains are able to catch the 59 Fe 3+ in a very great amount as it is necessary for the growth. The content of 59 Fe per cell was in the late log phase reduced until to a value, which seen to be enough for growth. The acquisition of 59 Fe-transferrin between the early and late log phase tested by 4 S. typhimurium strains was different. (author)

  17. Mössbauer spectroscopy study of magnetic fluctuations in superconducting RbGd2Fe4As4O2

    Science.gov (United States)

    Li, Y.; Wang, Z. C.; Cao, G. H.; Zhang, J. M.; Zhang, B.; Wang, T.; Pang, H.; Li, F. S.; Li, Z. W.

    2018-05-01

    57Fe Mössbauer spectra were measured at different temperatures between 5.9 K and 300 K on the recently discovered self-doped superconducting RbGd2Fe4As4O2 with Tc as high as 35 K. Singlet pattern was observed down to the lowest temperature measured in this work, indicating the absence of static magnetic order on the Fe site. The intermediate isomer shift in comparison with that of the samples RbFe2As2 and GdFeAsO confirms the self doping induced local electronic structure change. Surprisingly, we observe two magnetic fluctuation induced spectral broadenings below ∼ 15 K and ∼ 100 K which are believed to be originated from the transferred magnetic fluctuations of the Gd3+ moments and that of the magnetic fluctuations of the Fe atoms, respectively.

  18. Temperature effects on prevalent structures of hydrated Fe{sup +} complexes: Infrared spectroscopy and DFT calculations of Fe{sup +}(H{sub 2}O){sub n} (n = 3–8)

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuhiko, E-mail: kazu@chem.kyushu-univ.jp; Sekiya, Hiroshi [Department of Chemistry, Faculty of Sciences, Kyushu University, Hakozaki, Fukuoka 812-8581 (Japan); Sasaki, Jun; Yamamoto, Gun [Department of Chemistry, Graduate School of Sciences, Kyushu University, Hakozaki, Fukuoka 812-8581 (Japan); Judai, Ken; Nishi, Nobuyuki [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan)

    2014-12-07

    Hydrated Fe{sup +} ions are produced in a laser-vaporization cluster source of a triple quadrupole mass spectrometer. The Fe{sup +}(H{sub 2}O){sub n} (n = 3–8) complexes are mass-selected and probed with infrared (IR) photodissociation spectroscopy in the OH-stretch region. Density functional theory (DFT) calculations are also carried out for analyzing the experimental IR spectra and for evaluating thermodynamic quantities of low-lying isomers. Solvation through H-bonding instead of direct coordination to Fe{sup +} is observed already at n = 3, indicating the completion of the first hydration shell with two H{sub 2}O molecules. Size dependent variations in the spectra for n = 5–7 provide evidence for the second-shell completion at n = 6, where a linearly coordinated Fe{sup +}(H{sub 2}O){sub 2} subunit is solvated with four H{sub 2}O molecules. Overall spectral features for n = 3–8 agree well with those predicted for 2-coordinated structures. DFT calculations predict that such 2-coordinated structures are lowest in energy for smaller n. However, 4-coordinated isomers are predicted to be more stable for n = 7 and 8; the energy ordering is in conflict with the IR spectroscopic observation. Examination of free energy as a function of temperature suggests that the ordering of the isomers at warmer temperatures can be different from the ordering near 0 K. For n = 7 and 8, the 4-coordinated isomers should be observed at low temperatures because they are lowest in enthalpy. Meanwhile, outer-shell waters in the 2-coordinated structures are bound less rigidly; their contribution to entropy is rather large. The 2-coordinated structures become abundant at warmer temperatures, owing to the entropy effect.

  19. Impact of Overlapping Fe/TiO2 Prepared by Sol-Gel and Dip-Coating Process on CO2 Reduction

    Directory of Open Access Journals (Sweden)

    Akira Nishimura

    2016-01-01

    Full Text Available Fe-doped TiO2 (Fe/TiO2 film photocatalyst was prepared by sol-gel and dip-coating process to extend its photoresponsivity to the visible spectrum. To promote the CO2 reduction performance with the photocatalyst, some types of base materials used for coating Fe/TiO2, which were netlike glass fiber and Cu disc, were investigated. The characterization of prepared Fe/TiO2 film coated on netlike glass fiber and Cu disc was analyzed by SEM and EPMA. In addition, the CO2 reduction performance of Fe/TiO2 film coated on netlike glass disc, Cu disc, and their overlap was tested under a Xe lamp with or without ultraviolet (UV light, respectively. The results show that the concentration of produced CO increases by Fe doping irrespective of base material used under the illumination condition with UV light as well as that without UV light. Since the electron transfer between two overlapped photocatalysts is promoted, the peak concentration of CO for the Fe/TiO2 double overlapping is approximately 1.5 times as large as the Fe/TiO2 single overlapping under the illumination condition with UV light, while the promotion ratio is approximately 1.1 times under that without UV light.

  20. A practical pathway for the preparation of Fe_2O_3 decorated TiO_2 photocatalyst with enhanced visible-light photoactivity

    International Nuclear Information System (INIS)

    Cheng, Li; Qiu, Shoufei; Chen, Juanrong; Shao, Jian; Cao, Shunsheng

    2017-01-01

    Shifting the ultra-violet of titania to visible light driven photocatalysis can be realized by coupling with metallic or non-metallic elements. However, time-consuming multi-step process and significant loss of UV photocatalytic activity of such TiO_2-based photocatalysts severely hinder their practical applications. In this work, we explore the idea of creating a practical method for the preparation of Fe_2O_3 decorated TiO_2 (TiO_2/Fe_2O_3) photocatalyst with controlled visible-light photoactivity. This method only involves the calcination of the mixture (commercial P25 powders and magnetic Fe_3O_4 nanoparticles) prepared by a mechanical process. The morphology and properties of TiO_2/Fe_2O_3 composites were characterized by Transmission electron microscope, X-ray diffraction, UV–vis spectroscopy, and X-ray photoelectron spectroscopy. Results confirm the fusion of TiO_2 and Fe_2O_3, which promotes photo-generated electrons/holes migration and separation. Because of the strong synergistic effect, the as-synthesized TiO_2/Fe_2O_3 composites manifest an enhanced visible-light photocatalytic activity. Especially, the TiO_2/Fe_2O_3 photocatalyst is very easy to be constructed via an one-step protocol that efficiently overcomes the time-consuming multi-step processes used in existed strategies for the preparation of Fe_2O_3/TiO_2 photocatalysts, providing a new insight into the practical application of TiO_2/Fe_2O_3 visible light photocatalyst. - Highlights: • We introduced a practical preparation of Fe_2O_3 decorated TiO_2 photocatalyst. • TiO_2/Fe_2O_3 was developed using commercial precursors in a high efficient manner. • Visible-light activity of TiO_2/Fe_2O_3 could be tuned by changing amount of Fe_3O_4 precursor. • TiO_2/Fe_2O_3 exhibited a higher visible-light photocatalytic activity than P25.

  1. Fe/Fe3C decorated 3-D porous nitrogen-doped graphene as a cathode material for rechargeable Li–O2 batteries

    International Nuclear Information System (INIS)

    Lai, Yanqing; Chen, Wei; Zhang, Zhian; Qu, Yaohui; Gan, Yongqing; Li, Jie

    2016-01-01

    Graphical abstract: Fe/Fe 3 C decorated 3-D porous N-doped graphene are prepaed by a one-step carbonization process, with MOF as the structure-directing agent. The method provides a simple and scalable route for preparing 3-D porous graphene materials.The as-prepared material possesses an excellent bi-functional electrocatalytic activity. While applied as the cathode materials of Li–O 2 batteries, the cell exihibits high capacity and considerable rate capability. - Highlights: • A facile simple strategy is employed to in-situ fabricate Fe/Fe 3 C decorated 3-D porous nitrogen-doped graphene. • MIL-100(Fe), a kind of metal-organic framework, is proved playing a structure-directing role in this advanced synthesis route. • This material possesses excellent bi-functional electro-catalytic activity for ORR and OER and shows good electrochemical performance while used as cathode material for Li–O 2 batteries. • The MOF-assisted synthesis method would be a promising new strategy for the synthesis of 3-D porous graphene materials. - Abstract: Fe/Fe 3 C decorated 3-D porous N-doped graphene (F-PNG) is designed and synthesized via a one-step carbonization route. During the process, MIL-100(Fe), a kind of metal organic frameworks (MOFs) plays a structure-directing role. It is found that F-PNG with 3-D porous structure is constituted by N-doped graphene and extremely small Fe/Fe 3 C particles uniformly distribute on the surface of graphene. This rationally designed F-PNG possesses excellent oxygen reduction reaction and oxygen evolution reaction bifunctional electrocatalytic activity. While the material is explored as a cathode of Li–O 2 batteries, it exhibits excellent electrochemical performances, delivering a discharge voltage platform of ∼2.91 V and a charge voltage platform of ∼3.52 V at 0.1 mA cm −2 , showing a good cycle performance and having a discharge capacity of ∼7150 mAh g −1 carbon+catalyst at 0.1 mA cm −2 . The excellent performance of

  2. PENGUJIAN AKTIVITAS KOMPOSIT Fe2O3-SiO2 SEBAGAI FOTOKATALIS PADA FOTODEGRADASI 4-KLOROFENOL (The Activity Test of Fe2O3-SiO2 Composite As Photocatalyst on 4-Chlorophenol Photodegradation

    Directory of Open Access Journals (Sweden)

    Eko Sri Kunarti

    2009-03-01

    Full Text Available ABSTRAK  Pada penelitian ini telah dilakukan pengujian aktivitas komposit Fe2O3-SiO2 sebagai fotokatalis pada fotodegradasi 4-klorofenol. Penelitian diawali dengan preparasi dan karakterisasi fotokatalis Fe2O3-SiO2. Preparasi dilakukan dengan metode sol-gel pada temperatur kamar menggunakan tetraetil ortosilikat (TEOS dan besi (III nitrat sebagai prekursor diikuti dengan perlakuan termal pada temperature 500 oC. Karakterisasi dilakukan dengan metode spektrometri inframerah, difraksi sinar-X dan spektrometri fluoresensi sinar-X. Uji aktivitas komposit untuk fotodegradasi 4-klorofenol dilakukan dalam reaktor tertutup yang dilengkapi dengan lampu UV. Pada uji ini telah dipelajari pengaruh waktu penyinaran dan pH larutan terhadap efektivitas fotodegradasi 4-klorofenol. Hasil penelitian menunjukkan bahwa komposit Fe2O3-SiO2 dapat dipreparasi dengan metode sol-gel pada temperatur kamar diikuti perlakuan termal. Komposit Fe2O3-SiO2 dapat meningkatkan efektivitas fotodegradasi 4-klorofenol dari 11,86 % menjadi 55,38 %. Efektivitas fotodegradasi 4- klorofenol dipengaruhi waktu penyinaran dan pH larutan yang semakin lama waktu penyinaran efektifitas fotodegradasi semakin tinggi, namun waktu penyinaran yang lebih lama dari 4 jam dapat menurunkan efektivitasnya. pH larutan memberikan pengaruh yang berbeda-beda pada efektivitas fotodegradasi 4-klorofenol.   ABSTRACT The activity test of Fe2O3-SiO2 composite as photocatalyst on 4-chlorophenol photodegradation has been studied. The research was initiated by preparation of Fe2O3-SiO2 photocatalyst and followed by characterization. The preparation was conducted by sol-gel method at room temperature using tetraethylorthosilicate (TEOS and iron (III nitrate as precursors followed by thermal treatment at a temperature of 500oC. The characterizations were performed by X-ray Diffraction (XRD, Infrared and X-ray Fluorescence Spectrophotometry. The photocatalytic activity test of composites for 4 chlorophenol

  3. Effects of low-pressure igneous processes and subduction on Fe3+/ΣFe and redox state of mantle eclogites from Lace (Kaapvaal craton)

    Science.gov (United States)

    Aulbach, S.; Woodland, A. B.; Vasilyev, P.; Galvez, M. E.; Viljoen, K. S.

    2017-09-01

    Reconstructing the redox state of the mantle is critical in discussing the evolution of atmospheric composition through time. Kimberlite-borne mantle eclogite xenoliths, commonly interpreted as representing former oceanic crust, may record the chemical and physical state of Archaean and Proterozoic convecting mantle sources that generated their magmatic protoliths. However, their message is generally obscured by a range of primary (igneous differentiation) and secondary processes (seawater alteration, metamorphism, metasomatism). Here, we report the Fe3+/ΣFe ratio and δ18 O in garnet from in a suite of well-characterised mantle eclogite and pyroxenite xenoliths hosted in the Lace kimberlite (Kaapvaal craton), which originated as ca. 3 Ga-old ocean floor. Fe3+/ΣFe in garnet (0.01 to 0.063, median 0.02; n = 16) shows a negative correlation with jadeite content in clinopyroxene, suggesting increased partitioning of Fe3+ into clinopyroxene in the presence of monovalent cations with which it can form coupled substitutions. Jadeite-corrected Fe3+/ΣFe in garnet shows a broad negative trend with Eu*, consistent with incompatible behaviour of Fe3+ during olivine-plagioclase accumulation in the protoliths. This trend is partially obscured by increasing Fe3+ partitioning into garnet along a conductive cratonic geotherm. In contrast, NMORB-normalised Nd/Yb - a proxy of partial melt loss from subducting oceanic crust (1) - shows no obvious correlation with Fe3+/ΣFe, nor does garnet δ18OVSMOW (5.14 to 6.21‰) point to significant seawater alteration. Median bulk-rock Fe3+/ΣFe is roughly estimated at 0.025. This observation agrees with V/Sc systematics, which collectively point to a reduced Archaean convecting mantle source to the igneous protoliths of these eclogites compared to the modern MORB source. Oxygen fugacites (fO2) relative to the fayalite-magnetite-quartz buffer (FMQ) range from Δlog ⁡ fO2 = FMQ-1.3 to FMQ-4.6. At those reducing conditions, the solubility

  4. A novel hydrothermal approach for synthesizing α-Fe2O3, γ-Fe2O3 and Fe3O4 mesoporous magnetic nanoparticles

    International Nuclear Information System (INIS)

    Jayanthi, S. Amala; Nathan, D. Muthu Gnana Theresa; Jayashainy, J.; Sagayaraj, P.

    2015-01-01

    A novel method to synthesize the three phases of iron oxide nanoparticles (hematite, maghemite and magnetite) using the same non-toxic inorganic precursors via a water–organic interface under the low temperature hydrothermal conditions is reported. The synthesized particles are characterized by Powder X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). The Brunauer–Emmett–Teller (BET) results reveal the mesoporous nature of the particles. The magnetic properties of the nanoparticles are studied by Vibrating Sample Magnetometer (VSM) at various low temperatures and also at room temperature. The XRD peaks corresponding to each sample clearly depict the presence of the respective phase of the as-prepared magnetic nanoparticles. The nanoparticles of maghemite and magnetite have saturation magnetization of 58.56 and 40.30 emu/g respectively at room temperature, whereas the particles of hematite possess very low saturation magnetization value of 1.89 emu/g. Further, the magnetization is studied at four different temperatures and the zero field cooled (ZFC) and field cooled (FC) magnetization are reported. - Graphical abstract: Display Omitted - Highlights: • Hematite, maghemite and magnetite are obtained under hydrothermal synthesis. • α-Fe 2 O 3 , γ-Fe 2 O 3 and Fe 3 O 4 prepared are mesoporous and nearly monodisperse. • Near superparamagnetism is observed at room temperature for maghemite and magnetite

  5. Calcium cation enhanced cathode/electrolyte interface property of Li2FeSiO4/C cathode for lithium-ion batteries with long-cycling life

    Science.gov (United States)

    Qu, Long; Li, Mingtao; Tian, Xiaolu; Liu, Pei; Yi, Yikun; Yang, Bolun

    2018-03-01

    Currently, the cycle performance at low rate is one of the most critical factor for realizing practical applications of Li2FeSiO4/C as a cathode of the lithium-ion batteries. To meet this challenge, calcium (Ca)-doped Li2FeSiO4/C is prepared by using the sol-gel method with soluble Li, Fe, Si and Ca sources. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy measurements are carried out to determine the crystal structures, morphologies, particle sizes and chemical valence states of the resulting products. Rietveld refinement confirms that Ca-doped Li2FeSiO4 has a monoclinic P21/n structure and that a Ca cation occupies the Fe site in the Li2FeSiO4 lattice. The grain size of Ca-doped Li2FeSiO4 is approximately 20 nm and the nanoparticles are interconnected tightly with amorphous carbon layer. As a cathode material for the lithium-ion batteries, Li2Fe0.97Ca0.03SiO4/C delivers a high discharge capacity of 186 mAh g-1 at a 0.5 C rate. Its capacity retention after the 100th cycle reaches 87%, which increases by 25 percentage points compared with Li2FeSiO4/C. The Li2Fe0.97Ca0.03SiO4/C cathode exhibits good rate performance, with corresponding discharge capacities of 170, 157, 144 and 117 mAh g-1 at 1 C, 2 C, 5 C and 10 C rates, respectively. In summary, the improvement of the electrochemical performance can be attributed to a coefficient of the strengthened crystal structure stability during Li+ deintercalation-intercalation and restrained side reactions between electrode and electrolyte.

  6. A stochastic self-scheduling program for compressed air energy storage (CAES) of renewable energy sources (RESs) based on a demand response mechanism

    International Nuclear Information System (INIS)

    Ghalelou, Afshin Najafi; Fakhri, Alireza Pashaei; Nojavan, Sayyad; Majidi, Majid; Hatami, Hojat

    2016-01-01

    Highlights: • Optimal stochastic energy management of renewable energy sources (RESs) is proposed. • The compressed air energy storage (CAES) besides RESs is used in the presence of DRP. • Determination charge and discharge of CAES in order to reduce the expected operation cost. • Moreover, demand response program (DRP) is proposed to minimize the operation cost. • The uncertainty modeling of input data are considered in the proposed stochastic framework. - Abstract: In this paper, a stochastic self-scheduling of renewable energy sources (RESs) considering compressed air energy storage (CAES) in the presence of a demand response program (DRP) is proposed. RESs include wind turbine (WT) and photovoltaic (PV) system. Other energy sources are thermal units and CAES. The time-of-use (TOU) rate of DRP is considered in this paper. This DRP shifts the percentage of load from the expensive period to the cheap one in order to flatten the load curve and minimize the operation cost, consequently. The proposed objective function includes minimizing the operation costs of thermal unit and CAES, considering technical and physical constraints. The proposed model is formulated as mixed integer linear programming (MILP) and it is been solved using General Algebraic Modeling System (GAMS) optimization package. Furthermore, CAES and DRP are incorporated in the stochastic self-scheduling problem by a decision maker to reduce the expected operation cost. Meanwhile, the uncertainty models of market price, load, wind speed, temperature and irradiance are considered in the formulation. Finally, to assess the effects of DRP and CAES on self-scheduling problem, four case studies are utilized, and significant results were obtained, which indicate the validity of the proposed stochastic program.

  7. The changes in the electronic structure of B2 FeAl alloy with a Fe antisite and absorbed hydrogen

    International Nuclear Information System (INIS)

    Gonzalez, E.A.; Jasen, P.V.; Luna, R.; Bechthold, P.; Juan, A.; Brizuela, G.

    2009-01-01

    The electronic structure and bonding in a B2 FeAl alloy with and without hydrogen interaction with a Fe antisite were computed using a density functional theoretical method. The hydrogen absorption turns out to be a favorable process. The hydrogen was found close to an octahedral site where one of its Al capped is replaced by a Fe antisite. The Fe-H distance is of 1.45 A same as the Al-H distance. The density of states (DOS) curves show several peaks below the d metal band which is made up mostly of hydrogen based states (>50% H 1s ) while the metal contribution in this region includes mainly s and p orbitals. An electron transfer of nearby 0.21e - comes from the metal to the H. The overlap population values reveal metal-metal bond breaking, the intermetallic bond being the most affected. The H bond mainly with the Al atom and the reported Fe-H overlap population is much lower than that corresponding to FePd alloys and BCC Fe. The changes in the overlap population show the Fe-Al bond is weakened nearly 41.5% after H absorption, while the Fe-Fe bond is only weakened 34.5%. H also develops a stronger bond with the Al atoms. The main bond is developed with Al being twice stronger than Fe-H.

  8. Pressure-induced change of the electronic state in the tetragonal phase of CaFe2As2

    International Nuclear Information System (INIS)

    Sakaguchi, Yui; Ikeda, Shugo; Kuse, Tetsuji; Kobayashi, Hisao

    2014-01-01

    We have investigated the electronic states of single-crystal CaFe 2 As 2 under hydrostatic pressure using 57 Fe Mössbauer spectroscopy and magnetization measurements. The center shift and the quadrupole splitting were refined from observed 57 Fe Mössbauer spectra using the single-crystalline sample under pressure at room temperature. A discontinuous decrease in the pressure dependence of the refined center shift was observed at 0.33 GPa without any anomaly in the pressure dependence of the refined quadrupole splitting, indicating a purely electronic state change in CaFe 2 As 2 with a tetragonal structure. Such a change is shown to be reflected in the peak-like anomalies observed in the pressure dependences of the magnetic susceptibility at 0.26 GPa above 150 K. Our results reveal that this pressure-induced electronic state change suppresses the tetragonal-to-orthorhombic structural phase transition accompanied by an antiferromagnetic ordering. We further observed superconductivity in CaFe 2 As 2 below ∼8 K around 0.33 GPa although our sample was not in a single phase at this pressure. These findings suggest that the electronic state change observed in CaFe 2 As 2 with the tetragonal structure is relevant to the appearance of the pressure-induced superconductivity in AFe 2 As 2 . (paper)

  9. Hydrogen Production from Gasification of Palm Kernel Shell in the Presence of Fe/ CeO_2 Catalysts

    International Nuclear Information System (INIS)

    Anita Ramli; Mas Fatiha Mohamad; Suzana Yusup; Taufiq, Y.Y.H.

    2016-01-01

    Bio hydrogen is a renewable source of clean fuel and energy which can be derived from biomass. One of the suitable candidate as a source of biomass is palm kernel shell (PKS). Our initial work shows that bio hydrogen may be produced from PKS in the presence of zeolite supported catalysts. The potential of using cerium oxide (CeO_2) supported catalysts for the production of bio hydrogen from PKS is explored in this work using 2.5 - 10 % Fe loading. The catalysts were prepared by incipient wetness impregnation method and calcined at 500 degree Celsius for 16 h. The physicochemical properties of these catalysts were characterized using BET and XRD. The catalysts were tested in dry and steam gasification of PKS at 700 degree Celsius using PKS feeding rate of 2 g h"-"1 under N_2 atmosphere with biomass to catalyst ratio of 3:1 (wt/ wt). Steam to biomass ratio of 3.5:1 (wt/ wt) was used in steam gasification reaction. The gaseous products were analyzed using an on-line gas chromatography equipped with thermal conductivity detectors (TCD) and fitted with Molsieve 5A and Hayesep Q columns. Result shows that 2.5 % Fe/ CeO_2 gave the highest hydrogen production in both the dry and steam gasification of PKS. (author)

  10. X-ray circular magnetic dichroism as a probe of spin reorientation transitions in Nd2Fe14B and Er2Fe14B systems

    International Nuclear Information System (INIS)

    Chaboy, J.; Marcelli, A.; Garcia, L.M.; Bartolome, J.; Kuz'min, M.D.; Maruyama, H.; Kobayashi, K.; Kawata, H.; Iwazumi, T.

    1995-01-01

    We present the first experimental observation of spin reorientation phase transitions (SRT) with the X-Ray circular magnetic dichroism (XCMD) technique. Both the first-order SRT in Er 2 Fe 14 B and the second-order one in Nd 2 Fe 14 B have been clearly detected, demonstrating the feasibility of this technique for studying SRTs. ((orig.))

  11. Rational Design of Multifunctional Fe@γ-Fe2 O3 @H-TiO2 Nanocomposites with Enhanced Magnetic and Photoconversion Effects for Wide Applications: From Photocatalysis to Imaging-Guided Photothermal Cancer Therapy.

    Science.gov (United States)

    Wang, Meifang; Deng, Kerong; Lü, Wei; Deng, Xiaoran; Li, Kai; Shi, Yanshu; Ding, Binbin; Cheng, Ziyong; Xing, Bengang; Han, Gang; Hou, Zhiyao; Lin, Jun

    2018-03-01

    Titanium dioxide (TiO 2 ) has been widely investigated and used in many areas due to its high refractive index and ultraviolet light absorption, but the lack of absorption in the visible-near infrared (Vis-NIR) region limits its application. Herein, multifunctional Fe@γ-Fe 2 O 3 @H-TiO 2 nanocomposites (NCs) with multilayer-structure are synthesized by one-step hydrogen reduction, which show remarkably improved magnetic and photoconversion effects as a promising generalists for photocatalysis, bioimaging, and photothermal therapy (PTT). Hydrogenation is used to turn white TiO 2 in to hydrogenated TiO 2 (H-TiO 2 ), thus improving the absorption in the Vis-NIR region. Based on the excellent solar-driven photocatalytic activities of the H-TiO 2 shell, the Fe@γ-Fe 2 O 3 magnetic core is introduced to make it convenient for separating and recovering the catalytic agents. More importantly, Fe@γ-Fe 2 O 3 @H-TiO 2 NCs show enhanced photothermal conversion efficiency due to more circuit loops for electron transitions between H-TiO 2 and γ-Fe 2 O 3 , and the electronic structures of Fe@γ-Fe 2 O 3 @H-TiO 2 NCs are calculated using the Vienna ab initio simulation package based on the density functional theory to account for the results. The reported core-shell NCs can serve as an NIR-responsive photothermal agent for magnetic-targeted photothermal therapy and as a multimodal imaging probe for cancer including infrared photothermal imaging, magnetic resonance imaging, and photoacoustic imaging. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fenton-like oxidation of 4-chlorophenol using H2O2 in situ generated by Zn-Fe-CNTs composite.

    Science.gov (United States)

    Liu, Yong; Fan, Qing; Liu, Yanlan; Wang, Jianlong

    2018-05-15

    In this paper, a zinc-iron-carbon nanotubes (Zn-Fe-CNTs) composite was prepared, characterized and used to develop a Fenton-like system of Zn-Fe-CNTs/O 2 for the degradation of 4-chlorophenol (4-CP), in which H 2 O 2 was generated in situ from zinc-carbon galvanic cells and oxygen in aqueous solution was activated by iron attached on the surface of CNTs to produce ·OH radicals for the oxidation of 4-CP. The experimental results showed that the particles of Zn and Fe in Zn-Fe-CNTs composite were adhered to the surface of CNTs, which accelerated the electron transfer process. The BET area of Zn-Fe-CNTs composite was 32.9 m 2 /g. The contents of Zn and Fe (% w) in the composite were 44.7% and 4.2%, respectively. The removal efficiency of 4-CP and TOC in Zn-Fe-CNTs/O 2 system was 90.8% and 52.9%, respectively, with the initial pH of 2.0, O 2 flow rate of 800 mL/min, Zn-Fe-CNTs dosage of 1.0 g/L, 4-CP concentration of 50 mg/L and reaction time of 20 min. Based on the analysis of the degradation intermediate products with LC-MS and IC, a possible degradation pathway of 4-CP in Zn-Fe-CNTs/O 2 system was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Enhanced multiferroic properties in scandium doped Bi2Fe4O9

    International Nuclear Information System (INIS)

    Dutta, Dimple P.; Tyagi, A. K.

    2013-01-01

    Undoped and Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles have been synthesized using sonochemical method. The phase purity of the samples was checked using powder X-rau diffraction technique. EDS analysis was done to confirm the extent of Sc 3+ doping in the samples. The size and morphology of the nanoparticles have been analyzed using transmission electron microscopy (TEM). The Bi 2 Fe 4 O 9 nanoparticles show a weak ferromagnetic behavior at room temperature, which is quite different from the linear M–H relationship reported for bulk Bi 2 Fe 4 O 9 . This is mainly attributed to the uncompensated moments at the disordered particle surface resulting from the reduced coordination of the surface spins, arising due to lattice strain or oxygen deficiency. Addition of Sc 3+ dopant in varying concentrations in these Bi 2 Fe 4 O 9 nanoparticles, improves their magnetic as well as ferroelectric properties. The leakage current is considerably reduced and electric polarization increases significantly in case of Bi 2 Fe 4(1-x) Sc x O 9 (x = 0.1) nanoparticles. Hence it can be inferred that Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles shows promise as good multiferroic materials.

  14. Coprecipitation synthesis of zinc ferrit (FE 2 O 3 /ZNO) nanoparticles ...

    African Journals Online (AJOL)

    Zinc ferrite (Fe2O3/ZnO) nanocomposites were successfully synthesized by simple co-precipitation method via iron (III) nitrate 9-hydrate (Fe(NO3)3.9H2O) and zinc nitrate hexahydrate (Zn(NO3)2.6H2O) as precursor in the presence of cetyltrimethylammonium bromide (CTAB) surfactant. The samples were characterized by ...

  15. Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods.

    Science.gov (United States)

    Hilty, Florentine M; Knijnenburg, Jesper T N; Teleki, Alexandra; Krumeich, Frank; Hurrell, Richard F; Pratsinis, Sotiris E; Zimmermann, Michael B

    2011-01-01

    Iron deficiency is one of the most common micronutrient deficiencies worldwide. Food fortification can be an effective and sustainable strategy to reduce Fe deficiency but selection of iron fortificants remains a challenge. Water-soluble compounds, for example, FeSO(4), usually demonstrate high bioavailability but they often cause unacceptable sensory changes in foods. On the other hand, poorly acid-soluble Fe compounds, for example FePO(4), may cause fewer adverse sensory changes in foods but are usually not well bioavailable since they need to be dissolved in the stomach prior to absorption. The solubility and the bioavailability of poorly acid-soluble Fe compounds can be improved by decreasing their primary particle size and thereby increasing their specific surface area. Here, Fe oxide-based nanostructured compounds with added Mg or Ca were produced by scalable flame aerosol technology. The compounds were characterized by nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and Fe solubility in dilute acid. Sensory properties of the Fe-based compounds were tested in 2 highly reactive, polyphenol-rich food matrices: chocolate milk and fruit yoghurt. The Fe solubility of nanostructured Fe(2)O(3) doped with Mg or Ca was higher than that of pure Fe(2)O(3). Since good solubility in dilute acid was obtained despite the inhomogeneity of the powders, inexpensive precursors, for example Fe- and Ca-nitrates, can be used for their manufacture. Adding Mg or Ca lightened powder color, while sensory changes when added to foods were less pronounced than for FeSO(4). The combination of high Fe solubility and low reactivity in foods makes these flame-made nanostructured compounds promising for food fortification. Practical Application: The nanostructured iron-containing compounds presented here may prove useful for iron fortification of certain foods; they are highly soluble in dilute acid and likely to be well absorbed in the gut but cause less severe

  16. Electrospun nanofiber based colorimetric probe for rapid detection of Fe{sup 2+} in water

    Energy Technology Data Exchange (ETDEWEB)

    Ondigo, D.A. [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Tshentu, Z.R. [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth, 6031 (South Africa); Torto, N., E-mail: N.Torto@ru.ac.za [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa)

    2013-12-04

    Graphical abstract: -- Highlights: •Colorimetric probe for the detection of Fe{sup 2+} was developed. •Polymeric electrospun nanofibers were used as host for the signaling reagent. •The functionalized electrospun nanofibers exhibited a selective color change in the presence of Fe{sup 2+}. •The mechanism was based on spin crossover (SCO) from high spin Fe{sup 2+} to low spin Fe{sup 2+} upon interaction with the embedded ligand. -- Abstract: An imidazole derivative, 2-(2′-pyridyl)imidazole (PIMH), was developed as a colorimetric probe for the qualitative analysis of Fe{sup 2+} in aqueous solution. PIMH was then used to post-functionalize poly(vinylbenzyl chloride) (PVBC) nanofibers after electrospinning so as to afford a solid state colorimetric probe. Upon treatment with Fe{sup 2+} the probe displayed a distinctive color change both in liquid and solid platforms. The linear dynamic range for the colorimetric determination of Fe{sup 2+} was 0.0988–3.5 μg mL{sup −1}. The ligand showed a high chromogenic selectivity for Fe{sup 2+} over other cations with a detection limit of 0.102 μg mL{sup −1} in solution (lower than the WHO drinking water guideline limit of 2 mg L{sup −1}), and 2 μg mL{sup −1} in the solid state. The concentration of Fe{sup 2+} in a certified reference material (Iron, Ferrous, 1072) was found to be 2.39 ± 0.01 mg L{sup −1}, which was comparable with the certified value of 2.44 ± 0.12 mg L{sup −1}. Application of the probe to real samples spiked with Fe{sup 2+} achieved recoveries of over 97% confirming accuracy of the method and its potential for on-site monitoring.

  17. The Partial Molar Volume and Thermal Expansivity of Fe2O3 in Alkali Silicate Liquids: Evidence for the Average Coordination of Fe3+

    Science.gov (United States)

    Liu, Q.; Lange, R.

    2003-12-01

    Ferric iron is an important component in magmatic liquids, especially in those formed at subduction zones. Although it has long been known that Fe3+ occurs in four-, five- and six-fold coordination in crystalline compounds, only recently have all three Fe3+ coordination sites been confirmed in silicate glasses utilizing XANES spectroscopy at the Fe K-edge (Farges et al., 2003). Because the density of a magmatic liquid is largely determined by the geometrical packing of its network-forming cations (e.g., Si4+, Al3+, Ti4+, and Fe3+), the capacity of Fe3+ to undergo composition-induced coordination change affects the partial molar volume of the Fe2O3 component, which must be known to calculate how the ferric-ferrous ratio in magmatic liquids changes with pressure. Previous work has shown that the partial molar volume of Fe2O3 (VFe2O3) varies between calcic vs. sodic silicate melts (Mo et al., 1982; Dingwell and Brearley, 1988; Dingwell et al., 1988). The purpose of this study is to extend the data set in order to search for systematic variations in VFe2O3 with melt composition. High temperature (867-1534° C) density measurements were performed on eleven liquids in the Na2O-Fe2O3-FeO-SiO2 (NFS) system and five liquids in the K2O-Fe2O3-FeO-SiO2 (KFS) system using Pt double-bob Archimedean method. The ferric-ferrous ratio in the sodic and potassic liquids at each temperature of density measurement were calculated from the experimentally calibrated models of Lange and Carmichael (1989) and Tangeman et al. (2001) respectively. Compositions range (in mol%) from 4-18 Fe2O3, 0-3 FeO, 12-39 Na2O, 25-37 K2O, and 43-78 SiO2. Our density data are consistent with those of Dingwell et al. (1988) on similar sodic liquids. Our results indicate that for all five KFS liquids and for eight of eleven NFS liquids, the partial molar volume of the Fe2O3 component is a constant (41.57 ñ 0.14 cm3/mol) and exhibits zero thermal expansivity (similar to that for the SiO2 component). This value

  18. Thermal decomposition of barium ferrate(VI): Mechanism and formation of Fe{sup IV} intermediate and nanocrystalline Fe{sub 2}O{sub 3} and ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Machala, Libor, E-mail: libor.machala@upol.cz [Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics, Faculty of Science, Palacký University, Olomouc (Czech Republic); Sharma, Virender K. [Department of Environmental and Occupational Health, School of Public Health, Texas A& M University, 1266 TAMU, College Station, TX 77843 (United States); Kuzmann, Ernö; Homonnay, Zoltán [Institute of Chemistry, Eötvös Loránd University, Budapest (Hungary); Filip, Jan; Kralchevska, Radina P. [Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics, Faculty of Science, Palacký University, Olomouc (Czech Republic)

    2016-05-25

    Simple high-valent iron-oxo species, ferrate(VI) (Fe{sup VI}O{sub 4}{sup 2−}, Fe(VI)) has applications in energy storage, organic synthesis, and water purification. Of the various salts of Fe(VI), barium ferrate(VI) (BaFeO{sub 4}) has also a great potential as a battery material. This paper presents the thermal decomposition of BaFeO{sub 4} in static air and nitrogen atmosphere, monitored by combination of thermal analysis, Mössbauer spectroscopy, X-ray powder diffraction, and electron-microscopic techniques. The formation of Fe{sup IV} species in the form of BaFeO{sub 3} was found to be the primary decomposition product of BaFeO{sub 4} at temperature around 190 °C under both studied atmospheres. BaFeO{sub 3} was unstable in air reacting with CO{sub 2} to form barium carbonate and speromagnetic amorphous iron(III) oxide nanoparticles (<5 nm). Above 600 °C, a solid state reaction between BaCO{sub 3} and Fe{sub 2}O{sub 3} occurred, leading to the formation of barium ferrite nanoparticles, BaFe{sub 2}O{sub 4} (20–100 nm). - Highlights: • We explained the mechanism of thermal decomposition of barium ferrate(VI). • We confirmed the formation of Fe(IV) intermediate phase during the decomposition. • The mechanism of the decomposition is influenced by a presence of carbon dioxide.

  19. Effect of pH and Fe/U ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2

    Science.gov (United States)

    Fu, Yukui; Luo, Yingfeng; Fang, Qi; Xie, Yanpei; Wang, Zhihong; Zhu, Xiangyu

    2018-02-01

    As for the decommissioned uranium deposits of acid in-situ leaching, both of the concentrations of U(VI) and Fe(II) are relatively high in groundwater. In the presence of O2, the oxidation of Fe(II) into Fe(III) that forms Fe-hydroxides could effectively remove U(VI) in the forms of sorption or co-precipitation. In this process, pH condition and Fe content will have a significant effect on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. In the present work, a series of batch experiments were carried out to investigate the effect of pH values and Fe/U mass ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. Experiment results show that the removal rate of U(VI) is mainly controlled by pH and secondly by Fe/U mass ratio. In the neutral conditions with pH at 7 and 8, the removal rate of U(VI) reaches up to 90% for all solutions with different initial Fe(II) concentrations. The optimal pH for the removal rate of U(VI) is above 7. In the acidic conditions with pH below 6, the effect of Fe/U mass ratio on the removal rate of U(VI) becomes more obvious and the optimal Fe/U mass ratio for U(VI) removal is 1:2.

  20. Defect annealing in Mn/Fe-implanted TiO2(rutile)

    CERN Document Server

    Gunnlaugsson, H P; Masenda, H; Mølholt, T E; Johnston, K; Bharuth-Ram, K; Gislason, H; Langouche, G; Naidoo, D; Ólafsson, S; Svane, A; Weyer, G

    2014-01-01

    A study of the annealing processes and charge state of dilute Fe in rutile TiO2 single crystals was performed in the temperature range 143-662 K, utilizing online 57Fe emission Mossbauer spectroscopy following low concentrations ( 350 K.