WorldWideScience

Sample records for source 4d geospatial

  1. NASA World Wind, Open Source 4D Geospatial Visualization Platform: *.NET & Java*

    Science.gov (United States)

    Hogan, P.; Coughlan, J.

    2006-12-01

    NASA World Wind has only one goal, to provide the maximum opportunity for geospatial information to be experienced, be it education, science, research, business, or government. The benefits to understanding for information delivered in the context of its 4D virtual reality are extraordinary. The NASA World Wind visualization platform is open source and therefore lends itself well to being extended to service *any* requirements, be they proprietary and commercial or simply available. Data accessibility is highly optimized using standard formats including internationally certified open standards (W*S). Although proprietary applications can be built based on World Wind, and proprietary data delivered that leverage World Wind, there is nothing proprietary about the visualization platform itself or the multiple planetary data sets readily available, including global animations of live weather. NASA World Wind is being used by NASA research teams as well as being a formal part of high school and university curriculum. The National Guard uses World Wind for emergency response activities and State governments have incorporated high resolution imagery for GIS management as well as for their cross-agency emergency response activities. The U.S. federal government uses NASA World Wind for a myriad of GIS and security-related issues (NSA, NGA, DOE, FAA, etc.).

  2. NASA World Wind, Open Source 4D Geospatial Visualization Platform: *.NET & Java* for EDUCATION

    Science.gov (United States)

    Hogan, P.; Kuehnel, F.

    2006-12-01

    NASA World Wind has only one goal, to provide the maximum opportunity for geospatial information to be experienced, be it education, science, research, business, or government. The benefits to understanding for information delivered in the context of its 4D virtual reality are extraordinary. The NASA World Wind visualization platform is open source and therefore lends itself well to being extended to service *any* requirements, be they proprietary and commercial or simply available. Data accessibility is highly optimized using standard formats including internationally certified open standards (W*S). Although proprietary applications can be built based on World Wind, and proprietary data delivered that leverage World Wind, there is nothing proprietary about the visualization platform itself or the multiple planetary data sets readily available, including global animations of live weather. NASA World Wind is being used by NASA research teams as well as being a formal part of high school and university curriculum. The National Guard uses World Wind for emergency response activities and State governments have incorporated high resolution imagery for GIS management as well as for their cross-agency emergency response activities. The U.S. federal government uses NASA World Wind for a myriad of GIS and security-related issues (NSA, NGA, DOE, FAA, etc.).

  3. OSGeo - Open Source Geospatial Foundation

    Directory of Open Access Journals (Sweden)

    Margherita Di Leo

    2012-09-01

    Full Text Available L'esigenza nata verso la fine del 2005 di selezionare ed organizzare più di 200 progetti FOSS4G porta alla nascita nel Febbraio2006 di OSGeo (the Open Source Geospatial Foundation, organizzazione internazionale la cui mission è promuovere lo sviluppo collaborativo di software libero focalizzato sull'informazione geografica (FOSS4G.Open   Source   Geospatial   Foundation (OSGeoThe Open Source Geospatial Foundation (OSGeo  is  a  not-for-profit  organization, created  in  early  2006  to  the  aim  at  sup-porting   the   collaborative   development of  geospatial  open  source  software,  and promote its widespread use. The founda-tion provides financial, organizational and legal support to the broader open source geospatial community. It also serves as an independent  legal  entity  to  which  com-munity  members  can  contribute  code, funding  and  other  resources,  secure  in the knowledge that their contributions will be maintained for public benefit. OSGeo also  serves  as  an  outreach  and  advocacy organization for the open source geospa-tial  community,  and  provides  a  common forum  and  shared  infrastructure  for  im-proving  cross-project  collaboration.  The foundation's projects are all freely available and  useable  under  an  OSI-certified  open source license. The Italian OSGeo local chapter is named GFOSS.it     (Associazione     Italiana     per l'informazione Geografica Libera.

  4. A FRAMEWORK FOR AN OPEN SOURCE GEOSPATIAL CERTIFICATION MODEL

    Directory of Open Access Journals (Sweden)

    T. U. R. Khan

    2016-06-01

    Full Text Available The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission “Making geospatial education and opportunities accessible to all”. Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the “Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM. The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and

  5. a Framework for AN Open Source Geospatial Certification Model

    Science.gov (United States)

    Khan, T. U. R.; Davis, P.; Behr, F.-J.

    2016-06-01

    The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission "Making geospatial education and opportunities accessible to all". Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the "Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM). The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and evaluated with 105

  6. Integrating Free and Open Source Solutions into Geospatial Science Education

    Directory of Open Access Journals (Sweden)

    Vaclav Petras

    2015-06-01

    Full Text Available While free and open source software becomes increasingly important in geospatial research and industry, open science perspectives are generally less reflected in universities’ educational programs. We present an example of how free and open source software can be incorporated into geospatial education to promote open and reproducible science. Since 2008 graduate students at North Carolina State University have the opportunity to take a course on geospatial modeling and analysis that is taught with both proprietary and free and open source software. In this course, students perform geospatial tasks simultaneously in the proprietary package ArcGIS and the free and open source package GRASS GIS. By ensuring that students learn to distinguish between geospatial concepts and software specifics, students become more flexible and stronger spatial thinkers when choosing solutions for their independent work in the future. We also discuss ways to continually update and improve our publicly available teaching materials for reuse by teachers, self-learners and other members of the GIS community. Only when free and open source software is fully integrated into geospatial education, we will be able to encourage a culture of openness and, thus, enable greater reproducibility in research and development applications.

  7. Updating Geospatial Data from Large Scale Data Sources

    Science.gov (United States)

    Zhao, R.; Chen, J.; Wang, D.; Shang, Y.; Wang, Z.; Li, X.; Ai, T.

    2011-08-01

    In the past decades, many geospatial databases have been established at national, regional and municipal levels over the world. Nowadays, it has been widely recognized that how to update these established geo-spatial database and keep them up to date is most critical for the value of geo-spatial database. So, more and more efforts have been devoted to the continuous updating of these geospatial databases. Currently, there exist two main types of methods for Geo-spatial database updating: directly updating with remote sensing images or field surveying materials, and indirectly updating with other updated data result such as larger scale newly updated data. The former method is the basis because the update data sources in the two methods finally root from field surveying and remote sensing. The later method is often more economical and faster than the former. Therefore, after the larger scale database is updated, the smaller scale database should be updated correspondingly in order to keep the consistency of multi-scale geo-spatial database. In this situation, it is very reasonable to apply map generalization technology into the process of geo-spatial database updating. The latter is recognized as one of most promising methods of geo-spatial database updating, especially in collaborative updating environment in terms of map scale, i.e , different scale database are produced and maintained separately by different level organizations such as in China. This paper is focused on applying digital map generalization into the updating of geo-spatial database from large scale in the collaborative updating environment for SDI. The requirements of the application of map generalization into spatial database updating are analyzed firstly. A brief review on geospatial data updating based digital map generalization is then given. Based on the requirements analysis and review, we analyze the key factors for implementing updating geospatial data from large scale including technical

  8. Open Source Web Based Geospatial Processing with OMAR

    Directory of Open Access Journals (Sweden)

    Mark Lucas

    2009-01-01

    Full Text Available The availability of geospatial data sets is exploding. New satellites, aerial platforms, video feeds, global positioning system tagged digital photos, and traditional GIS information are dramatically increasing across the globe. These raw materials need to be dynamically processed, combined and correlated to generate value added information products to answer a wide range of questions. This article provides an overview of OMAR web based geospatial processing. OMAR is part of the Open Source Software Image Map project under the Open Source Geospatial Foundation. The primary contributors of OSSIM make their livings by providing professional services to US Government agencies and programs. OMAR provides one example that open source software solutions are increasingly being deployed in US government agencies. We will also summarize the capabilities of OMAR and its plans for near term development.

  9. Multi-source Geospatial Data Analysis with Google Earth Engine

    Science.gov (United States)

    Erickson, T.

    2014-12-01

    The Google Earth Engine platform is a cloud computing environment for data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog is a multi-petabyte archive of georeferenced datasets that include images from Earth observing satellite and airborne sensors (examples: USGS Landsat, NASA MODIS, USDA NAIP), weather and climate datasets, and digital elevation models. Earth Engine supports both a just-in-time computation model that enables real-time preview and debugging during algorithm development for open-ended data exploration, and a batch computation mode for applying algorithms over large spatial and temporal extents. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, and resampling, which facilitates writing algorithms that combine data from multiple sensors and/or models. Although the primary use of Earth Engine, to date, has been the analysis of large Earth observing satellite datasets, the computational platform is generally applicable to a wide variety of use cases that require large-scale geospatial data analyses. This presentation will focus on how Earth Engine facilitates the analysis of geospatial data streams that originate from multiple separate sources (and often communities) and how it enables collaboration during algorithm development and data exploration. The talk will highlight current projects/analyses that are enabled by this functionality.https://earthengine.google.org

  10. Innovative Ways of Visualising Meta Data in 4D Using Open Source Libaries

    Science.gov (United States)

    Balhar, Jakub; Valach, Pavel; Veselka, Jonas; Voumard, Yann

    2016-08-01

    There are more and more data being measured by different Earth Observation satellites around the world. Ever increasing amount of these data present new challenges and opportunities for their visualization.In this paper we propose how to visualize the amount, distribution and the structure of the data in a transparent way, which will take into account time-dimensions as well. Our approach allows us to get a global overview as well detailed regional information about distribution of the products from EO observation missions.We focus on introducing our mobile-friendly and easy- to-use web mapping application for 4D visualization of the data. Apart from that we also present the Java application which can read and process the data from various data sources.

  11. A Practice Approach of Multi-source Geospatial Data Integration for Web-based Geoinformation Services

    Science.gov (United States)

    Huang, W.; Jiang, J.; Zha, Z.; Zhang, H.; Wang, C.; Zhang, J.

    2014-04-01

    Geospatial data resources are the foundation of the construction of geo portal which is designed to provide online geoinformation services for the government, enterprise and public. It is vital to keep geospatial data fresh, accurate and comprehensive in order to satisfy the requirements of application and development of geographic location, route navigation, geo search and so on. One of the major problems we are facing is data acquisition. For us, integrating multi-sources geospatial data is the mainly means of data acquisition. This paper introduced a practice integration approach of multi-source geospatial data with different data model, structure and format, which provided the construction of National Geospatial Information Service Platform of China (NGISP) with effective technical supports. NGISP is the China's official geo portal which provides online geoinformation services based on internet, e-government network and classified network. Within the NGISP architecture, there are three kinds of nodes: national, provincial and municipal. Therefore, the geospatial data is from these nodes and the different datasets are heterogeneous. According to the results of analysis of the heterogeneous datasets, the first thing we do is to define the basic principles of data fusion, including following aspects: 1. location precision; 2.geometric representation; 3. up-to-date state; 4. attribute values; and 5. spatial relationship. Then the technical procedure is researched and the method that used to process different categories of features such as road, railway, boundary, river, settlement and building is proposed based on the principles. A case study in Jiangsu province demonstrated the applicability of the principle, procedure and method of multi-source geospatial data integration.

  12. Design of a 4D emittance measurement device for high charge state ECR ion sources

    International Nuclear Information System (INIS)

    Zhao Yangyang; Yang Yao; Zhao Hongwei; Sun Liangting; Cao Yun; Wang Yun

    2013-01-01

    For the purpose of on-line beam quality diagnostics and transverse emittance coupling investigation of the ion beams delivered by an Electron Cyclotron Resonance (ECR) ion source, a real-time 4D Pepper Pot type emittance scanner is under development at IMP (Institute of Moden Physics, Chinese Academy of Sciences). The high charge state ECR ion source at IMP could produce CW or pulsed heavy ion beam intensities in the range of 1 eμA∼1 emA with the kinetic energy of 10∼35 keV/q, which needs the design of the Pepper Pot scanner to be optimized accordingly. The Pepper Pot scanner has many features, such as very short response time and wide dynamic working range that the device could be applied. Since intense heavy ion beam bombardment is expected for this device, the structure and the material selection for the device is specially considered during the design, and a feasible solution to analyze the pictures acquired after the data acquisition is also made. (authors)

  13. Geospatial semantic web

    CERN Document Server

    Zhang, Chuanrong; Li, Weidong

    2015-01-01

    This book covers key issues related to Geospatial Semantic Web, including geospatial web services for spatial data interoperability; geospatial ontology for semantic interoperability; ontology creation, sharing, and integration; querying knowledge and information from heterogeneous data source; interfaces for Geospatial Semantic Web, VGI (Volunteered Geographic Information) and Geospatial Semantic Web; challenges of Geospatial Semantic Web; and development of Geospatial Semantic Web applications. This book also describes state-of-the-art technologies that attempt to solve these problems such as WFS, WMS, RDF, OWL, and GeoSPARQL, and demonstrates how to use the Geospatial Semantic Web technologies to solve practical real-world problems such as spatial data interoperability.

  14. Free and Open Source Software for Geospatial in the field of planetary science

    Science.gov (United States)

    Frigeri, A.

    2012-12-01

    Information technology applied to geospatial analyses has spread quickly in the last ten years. The availability of OpenData and data from collaborative mapping projects increased the interest on tools, procedures and methods to handle spatially-related information. Free Open Source Software projects devoted to geospatial data handling are gaining a good success as the use of interoperable formats and protocols allow the user to choose what pipeline of tools and libraries is needed to solve a particular task, adapting the software scene to his specific problem. In particular, the Free Open Source model of development mimics the scientific method very well, and researchers should be naturally encouraged to take part to the development process of these software projects, as this represent a very agile way to interact among several institutions. When it comes to planetary sciences, geospatial Free Open Source Software is gaining a key role in projects that commonly involve different subjects in an international scenario. Very popular software suites for processing scientific mission data (for example, ISIS) and for navigation/planning (SPICE) are being distributed along with the source code and the interaction between user and developer is often very strict, creating a continuum between these two figures. A very widely spread library for handling geospatial data (GDAL) has started to support planetary data from the Planetary Data System, and recent contributions enabled the support to other popular data formats used in planetary science, as the Vicar one. The use of Geographic Information System in planetary science is now diffused, and Free Open Source GIS, open GIS formats and network protocols allow to extend existing tools and methods developed to solve Earth based problems, also to the case of the study of solar system bodies. A day in the working life of a researcher using Free Open Source Software for geospatial will be presented, as well as benefits and

  15. Influence of physiological sources on the impedance cardiogram analyzed using 4D FEM simulations

    International Nuclear Information System (INIS)

    Ulbrich, Mark; Leonhardt, Steffen; Walter, Marian; Mühlsteff, Jens

    2014-01-01

    Impedance cardiography is a simple and inexpensive method to acquire data on hemodynamic parameters. This study analyzes the influence of four dynamic physiological sources (aortic expansion, heart contraction, lung perfusion and erythrocyte orientation) on the impedance signal using a model of the human thorax with a high temporal resolution (125 Hz) based on human MRI data. Simulations of electromagnetic fields were conducted using the finite element method. The ICG signal caused by these sources shows very good agreement with the measured signals (r = 0.89). Standard algorithms can be used to extract characteristic points to calculate left ventricular ejection time and stroke volume (SV). In the presented model, the calculated SV equals the implemented left ventricular volume change of the heart. It is shown that impedance changes due to lung perfusion and heart contraction compensate themselves, and that erythrocyte orientation together with the aortic impedance basically form the ICG signal while taking its characteristic morphology from the aortic signal. The model is robust to conductivity changes of tissues and organ displacements. In addition, it reflects the multi-frequency behavior of the thoracic impedance. (paper)

  16. Newspaper archives + text mining = rich sources of historical geo-spatial data

    Science.gov (United States)

    Yzaguirre, A.; Smit, M.; Warren, R.

    2016-04-01

    Newspaper archives are rich sources of cultural, social, and historical information. These archives, even when digitized, are typically unstructured and organized by date rather than by subject or location, and require substantial manual effort to analyze. The effort of journalists to be accurate and precise means that there is often rich geo-spatial data embedded in the text, alongside text describing events that editors considered to be of sufficient importance to the region or the world to merit column inches. A regional newspaper can add over 100,000 articles to its database each year, and extracting information from this data for even a single country would pose a substantial Big Data challenge. In this paper, we describe a pilot study on the construction of a database of historical flood events (location(s), date, cause, magnitude) to be used in flood assessment projects, for example to calibrate models, estimate frequency, establish high water marks, or plan for future events in contexts ranging from urban planning to climate change adaptation. We then present a vision for extracting and using the rich geospatial data available in unstructured text archives, and suggest future avenues of research.

  17. HARVESTING, INTEGRATING AND DISTRIBUTING LARGE OPEN GEOSPATIAL DATASETS USING FREE AND OPEN-SOURCE SOFTWARE

    Directory of Open Access Journals (Sweden)

    R. Oliveira

    2016-06-01

    Full Text Available Federal, State and Local government agencies in the USA are investing heavily on the dissemination of Open Data sets produced by each of them. The main driver behind this thrust is to increase agencies’ transparency and accountability, as well as to improve citizens’ awareness. However, not all Open Data sets are easy to access and integrate with other Open Data sets available even from the same agency. The City and County of Denver Open Data Portal distributes several types of geospatial datasets, one of them is the city parcels information containing 224,256 records. Although this data layer contains many pieces of information it is incomplete for some custom purposes. Open-Source Software were used to first collect data from diverse City of Denver Open Data sets, then upload them to a repository in the Cloud where they were processed using a PostgreSQL installation on the Cloud and Python scripts. Our method was able to extract non-spatial information from a ‘not-ready-to-download’ source that could then be combined with the initial data set to enhance its potential use.

  18. Cloud computing geospatial application for water resources based on free and open source software and open standards - a prototype

    Science.gov (United States)

    Delipetrev, Blagoj

    2016-04-01

    Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state

  19. GEOSPATIAL ANALYSIS OF ATMOSPHERIC HAZE EFFECT BY SOURCE AND SINK LANDSCAPE

    Directory of Open Access Journals (Sweden)

    T. Yu

    2017-09-01

    Full Text Available Based on geospatial analysis model, this paper analyzes the relationship between the landscape patterns of source and sink in urban areas and atmospheric haze pollution. Firstly, the classification result and aerosol optical thickness (AOD of Wuhan are divided into a number of square grids with the side length of 6 km, and the category level landscape indices (PLAND, PD, COHESION, LPI, FRAC_MN and AOD of each grid are calculated. Then the source and sink landscapes of atmospheric haze pollution are selected based on the analysis of the correlation between landscape indices and AOD. Next, to make the following analysis more efficient, the indices selected before should be determined through the correlation coefficient between them. Finally, due to the spatial dependency and spatial heterogeneity of the data used in this paper, spatial autoregressive model and geo-weighted regression model are used to analyze atmospheric haze effect by source and sink landscape from the global and local level. The results show that the source landscape of atmospheric haze pollution is the building, and the sink landscapes are shrub and woodland. PLAND, PD and COHESION are suitable for describing the atmospheric haze effect by source and sink landscape. Comparing these models, the fitting effect of SLM, SEM and GWR is significantly better than that of OLS model. The SLM model is superior to the SEM model in this paper. Although the fitting effect of GWR model is more unsuited than that of SLM, the influence degree of influencing factors on atmospheric haze of different geography can be expressed clearer. Through the analysis results of these models, following conclusions can be summarized: Reducing the proportion of source landscape area and increasing the degree of fragmentation could cut down aerosol optical thickness; And distributing the source and sink landscape evenly and interspersedly could effectively reduce aerosol optical thickness which represents

  20. Geospatial Analysis of Atmospheric Haze Effect by Source and Sink Landscape

    Science.gov (United States)

    Yu, T.; Xu, K.; Yuan, Z.

    2017-09-01

    Based on geospatial analysis model, this paper analyzes the relationship between the landscape patterns of source and sink in urban areas and atmospheric haze pollution. Firstly, the classification result and aerosol optical thickness (AOD) of Wuhan are divided into a number of square grids with the side length of 6 km, and the category level landscape indices (PLAND, PD, COHESION, LPI, FRAC_MN) and AOD of each grid are calculated. Then the source and sink landscapes of atmospheric haze pollution are selected based on the analysis of the correlation between landscape indices and AOD. Next, to make the following analysis more efficient, the indices selected before should be determined through the correlation coefficient between them. Finally, due to the spatial dependency and spatial heterogeneity of the data used in this paper, spatial autoregressive model and geo-weighted regression model are used to analyze atmospheric haze effect by source and sink landscape from the global and local level. The results show that the source landscape of atmospheric haze pollution is the building, and the sink landscapes are shrub and woodland. PLAND, PD and COHESION are suitable for describing the atmospheric haze effect by source and sink landscape. Comparing these models, the fitting effect of SLM, SEM and GWR is significantly better than that of OLS model. The SLM model is superior to the SEM model in this paper. Although the fitting effect of GWR model is more unsuited than that of SLM, the influence degree of influencing factors on atmospheric haze of different geography can be expressed clearer. Through the analysis results of these models, following conclusions can be summarized: Reducing the proportion of source landscape area and increasing the degree of fragmentation could cut down aerosol optical thickness; And distributing the source and sink landscape evenly and interspersedly could effectively reduce aerosol optical thickness which represents atmospheric haze

  1. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    Science.gov (United States)

    Steenhuisen, Frits; Wilson, Simon J.

    2015-07-01

    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important sectors and industries responsible for emissions at a national level; however, to be useful for air transport modelling, more precise information on the locations of emission is required. This paper describes the methodology applied, and the results of work that was conducted to assign anthropogenic mercury emissions to point sources as part of geospatial mapping of the 2010 global anthropogenic mercury emissions inventory prepared by AMAP/UNEP. Major point-source emission sectors addressed in this work account for about 850 tonnes of the emissions included in the 2010 inventory. This work allocated more than 90% of these emissions to some 4600 identified point source locations, including significantly more point source locations in Africa, Asia, Australia and South America than had been identified during previous work to geospatially-distribute the 2005 global inventory. The results demonstrate the utility and the limitations of using existing, mainly public domain resources to accomplish this work. Assumptions necessary to make use of selected online resources are discussed, as are artefacts that can arise when these assumptions are applied to assign (national-sector) emissions estimates to point sources in various countries and regions. Notwithstanding the limitations of the available information, the value of this procedure over alternative methods commonly used to geo-spatially distribute emissions, such as use of 'proxy' datasets to represent emissions patterns, is illustrated. Improvements in information that would facilitate greater use of these methods in future work to assign emissions to point-sources are discussed. These include improvements to both national

  2. Python geospatial development

    CERN Document Server

    Westra, Erik

    2013-01-01

    This is a tutorial style book that will teach usage of Python tools for GIS using simple practical examples and then show you how to build a complete mapping application from scratch. The book assumes basic knowledge of Python. No knowledge of Open Source GIS is required.Experienced Python developers who want to learn about geospatial concepts, work with geospatial data, solve spatial problems, and build mapbased applications.This book will be useful those who want to get up to speed with Open Source GIS in order to build GIS applications or integrate GeoSpatial features into their existing ap

  3. Ibmdbpy-spatial : An Open-source implementation of in-database geospatial analytics in Python

    Science.gov (United States)

    Roy, Avipsa; Fouché, Edouard; Rodriguez Morales, Rafael; Moehler, Gregor

    2017-04-01

    As the amount of spatial data acquired from several geodetic sources has grown over the years and as data infrastructure has become more powerful, the need for adoption of in-database analytic technology within geosciences has grown rapidly. In-database analytics on spatial data stored in a traditional enterprise data warehouse enables much faster retrieval and analysis for making better predictions about risks and opportunities, identifying trends and spot anomalies. Although there are a number of open-source spatial analysis libraries like geopandas and shapely available today, most of them have been restricted to manipulation and analysis of geometric objects with a dependency on GEOS and similar libraries. We present an open-source software package, written in Python, to fill the gap between spatial analysis and in-database analytics. Ibmdbpy-spatial provides a geospatial extension to the ibmdbpy package, implemented in 2015. It provides an interface for spatial data manipulation and access to in-database algorithms in IBM dashDB, a data warehouse platform with a spatial extender that runs as a service on IBM's cloud platform called Bluemix. Working in-database reduces the network overload, as the complete data need not be replicated into the user's local system altogether and only a subset of the entire dataset can be fetched into memory in a single instance. Ibmdbpy-spatial accelerates Python analytics by seamlessly pushing operations written in Python into the underlying database for execution using the dashDB spatial extender, thereby benefiting from in-database performance-enhancing features, such as columnar storage and parallel processing. The package is currently supported on Python versions from 2.7 up to 3.4. The basic architecture of the package consists of three main components - 1) a connection to the dashDB represented by the instance IdaDataBase, which uses a middleware API namely - pypyodbc or jaydebeapi to establish the database connection via

  4. Evaluating the Open Source Data Containers for Handling Big Geospatial Raster Data

    Directory of Open Access Journals (Sweden)

    Fei Hu

    2018-04-01

    Full Text Available Big geospatial raster data pose a grand challenge to data management technologies for effective big data query and processing. To address these challenges, various big data container solutions have been developed or enhanced to facilitate data storage, retrieval, and analysis. Data containers were also developed or enhanced to handle geospatial data. For example, Rasdaman was developed to handle raster data and GeoSpark/SpatialHadoop were enhanced from Spark/Hadoop to handle vector data. However, there are few studies to systematically compare and evaluate the features and performances of these popular data containers. This paper provides a comprehensive evaluation of six popular data containers (i.e., Rasdaman, SciDB, Spark, ClimateSpark, Hive, and MongoDB for handling multi-dimensional, array-based geospatial raster datasets. Their architectures, technologies, capabilities, and performance are compared and evaluated from two perspectives: (a system design and architecture (distributed architecture, logical data model, physical data model, and data operations; and (b practical use experience and performance (data preprocessing, data uploading, query speed, and resource consumption. Four major conclusions are offered: (1 no data containers, except ClimateSpark, have good support for the HDF data format used in this paper, requiring time- and resource-consuming data preprocessing to load data; (2 SciDB, Rasdaman, and MongoDB handle small/mediate volumes of data query well, whereas Spark and ClimateSpark can handle large volumes of data with stable resource consumption; (3 SciDB and Rasdaman provide mature array-based data operation and analytical functions, while the others lack these functions for users; and (4 SciDB, Spark, and Hive have better support of user defined functions (UDFs to extend the system capability.

  5. 4D imaging of the source of ground deformation at Campi Flegrei caldera (Italy) during recent unrest episodes

    Science.gov (United States)

    D'Auria, L.; Giudicepietro, F.; Martini, M.; Lanari, R.

    2011-12-01

    Campi Flegrei caldera, has been affected in recent decades by three episodes of significant ground uplift. After the last crisis (1982-84), which was accompanied by strong seismicity, the ground has shown a general descending trend, occasionally interrupted by minor uplift episodes, together with low-magnitude volcano-tectonic and long-period seismicity. We assume that the source of minor ground deformations consists in a diffuse volumetric source, related to both thermoelastic and poroelastic strain. This is a reasonable assumption considering that Campi Flegrei are known to host a geothermal reservoir. We have inverted a DInSAR dataset spanning the interval 1995-2008. Results show that the geometry of the source is much more complex than previously recognized and, most important, it shows significant temporal variations, within few months. The deformation source, of the analyzed uplift episodes, starts with a volumetric expansion centered at a depth of about 5 km. The position of this volume is close to the caldera rims. Later the expansion migrates upward, reaching the surface along preferred paths, leading to the Solfatara area, located almost at the center of the caldera. This area is well known for its powerful geothermal emissions. During the upward migration, seismic long-period sources are activated. Their location is consistent with the path identified by the inversion of the DInSAR dataset. We infer, that this dynamics is linked to the injection of hot fluid batches, along the caldera rims and their upward migration, following preferential high permeability paths. Furthermore we have identified an injection episode which has not been previously recognized. The deformation source remains at depth slowly waning in few years. We show how this conceptual framework fits well with the observed geodetic, seismic and geochemical data.

  6. Building a multi-scaled geospatial temporal ecology database from disparate data sources: Fostering open science through data reuse

    Science.gov (United States)

    Soranno, Patricia A.; Bissell, E.G.; Cheruvelil, Kendra S.; Christel, Samuel T.; Collins, Sarah M.; Fergus, C. Emi; Filstrup, Christopher T.; Lapierre, Jean-Francois; Lotting, Noah R.; Oliver, Samantha K.; Scott, Caren E.; Smith, Nicole J.; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A.; Gries, Corinna; Henry, Emily N.; Skaff, Nick K.; Stanley, Emily H.; Stow, Craig A.; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E.

    2015-01-01

    Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km2). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated

  7. Building a multi-scaled geospatial temporal ecology database from disparate data sources: fostering open science and data reuse.

    Science.gov (United States)

    Soranno, Patricia A; Bissell, Edward G; Cheruvelil, Kendra S; Christel, Samuel T; Collins, Sarah M; Fergus, C Emi; Filstrup, Christopher T; Lapierre, Jean-Francois; Lottig, Noah R; Oliver, Samantha K; Scott, Caren E; Smith, Nicole J; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A; Gries, Corinna; Henry, Emily N; Skaff, Nick K; Stanley, Emily H; Stow, Craig A; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E

    2015-01-01

    Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km(2)). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated

  8. Development, management and benefit from Internet-based geospatial data sources through knowledge management for GIS-based regional geography applications

    International Nuclear Information System (INIS)

    Thunemann, H.G.

    2009-01-01

    The provision of data and information on the Internet is growing daily. For geoscientific applications, especially using geographic information systems (GIS), changing geospacial data are often needed, and thus possibly different data sources. Geospatial data should be easily available. As an increasingly important medium for exchange of geospatial data is the internet. The problem of finding appropriate datasources on the Internet remains to the user. The Internet as a technical basis, which was designed as a tool for information exchange, has changed the practice of dealing with knowledge and information on fundamental and not previously foreseeable manner. From the many individual acts social consequences result, concerning the production and disposal of knowledge. These determine the development of different solutions significantly, which also includes the production, deployment and use of geospatial data, with all its strengths and problems. Various solutions to the provision of geospatial data are available on the Internet, the targeted searching of this geodata sources on the Internet remains a shortcoming. The options of knowledge management, among other solutions, could be a possibility to ease the compilation, storage, connection, popularization and ultimately the application of geodata sources on the Internet. Communication, as a central element of the use of knowledge management, should be used in the form of a communication platform. The present study describes the variety of deployment options of geospatial data and the problems of finding data sources on the Internet. Potential hazards of geospatial data provision (also) via the Internet as well as an option to manage, update and use them for various applications on the Internet are are pointed out. (author) [de

  9. Geospatial Authentication

    Science.gov (United States)

    Lyle, Stacey D.

    2009-01-01

    A software package that has been designed to allow authentication for determining if the rover(s) is/are within a set of boundaries or a specific area to access critical geospatial information by using GPS signal structures as a means to authenticate mobile devices into a network wirelessly and in real-time. The advantage lies in that the system only allows those with designated geospatial boundaries or areas into the server.

  10. Geospatial health

    DEFF Research Database (Denmark)

    Utzinger, Jürg; Rinaldi, Laura; Malone, John B.

    2011-01-01

    Geospatial Health is an international, peer-reviewed scientific journal produced by the Global Network for Geospatial Health (GnosisGIS). This network was founded in 2000 and the inaugural issue of its official journal was published in November 2006 with the aim to cover all aspects of geographical...... information system (GIS) applications, remote sensing and other spatial analytic tools focusing on human and veterinary health. The University of Naples Federico II is the publisher, producing two issues per year, both as hard copy and an open-access online version. The journal is referenced in major...... databases, including CABI, ISI Web of Knowledge and PubMed. In 2008, it was assigned its first impact factor (1.47), which has now reached 1.71. Geospatial Health is managed by an editor-in-chief and two associate editors, supported by five regional editors and a 23-member strong editorial board...

  11. 4D Electron Tomography

    Science.gov (United States)

    Kwon, Oh-Hoon; Zewail, Ahmed H.

    2010-06-01

    Electron tomography provides three-dimensional (3D) imaging of noncrystalline and crystalline equilibrium structures, as well as elemental volume composition, of materials and biological specimens, including those of viruses and cells. We report the development of 4D electron tomography by integrating the fourth dimension (time resolution) with the 3D spatial resolution obtained from a complete tilt series of 2D projections of an object. The different time frames of tomograms constitute a movie of the object in motion, thus enabling studies of nonequilibrium structures and transient processes. The method was demonstrated using carbon nanotubes of a bracelet-like ring structure for which 4D tomograms display different modes of motion, such as breathing and wiggling, with resonance frequencies up to 30 megahertz. Applications can now make use of the full space-time range with the nanometer-femtosecond resolution of ultrafast electron tomography.

  12. A comparison of geospatially modeled fire behavior and fire management utility of three data sources in the southeastern United States

    Science.gov (United States)

    LaWen T. Hollingsworth; Laurie L. Kurth; Bernard R. Parresol; Roger D. Ottmar; Susan J. Prichard

    2012-01-01

    Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation...

  13. Geospatial Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: To process, store, and disseminate geospatial data to the Department of Defense and other Federal agencies.DESCRIPTION: The Geospatial Services Laboratory...

  14. Integration of 4D Airline Operation Control Systems into NextGen and the NAS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — WxOps patent pending OpsTablet(TM) software and 4D geospatial data are used by Hawaiian Airlines to achieve unprecedented Airline Operation Control (AOC) in a...

  15. GIBS Geospatial Data Abstraction Library (GDAL)

    Data.gov (United States)

    National Aeronautics and Space Administration — GDAL is an open source translator library for raster geospatial data formats that presents a single abstract data model to the calling application for all supported...

  16. Geospatial Data Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Geospatial application development, location-based services, spatial modeling, and spatial analysis are examples of the many research applications that this facility...

  17. National Geospatial Program

    Science.gov (United States)

    Carswell, William J.

    2011-01-01

    The National Geospatial Program (NGP; http://www.usgs.gov/ngpo/) satisfies the needs of customers by providing geospatial products and services that customers incorporate into their decisionmaking and operational activities. These products and services provide geospatial data that are organized and maintained in cost-effective ways and developed by working with partners and organizations whose activities align with those of the program. To accomplish its mission, the NGP— organizes, maintains, publishes, and disseminates the geospatial baseline of the Nation's topography, natural landscape, and manmade environment through The National Map

  18. Increasing the value of geospatial informatics with open approaches for Big Data

    Science.gov (United States)

    Percivall, G.; Bermudez, L. E.

    2017-12-01

    Open approaches to big data provide geoscientists with new capabilities to address problems of unmatched size and complexity. Consensus approaches for Big Geo Data have been addressed in multiple international workshops and testbeds organized by the Open Geospatial Consortium (OGC) in the past year. Participants came from government (NASA, ESA, USGS, NOAA, DOE); research (ORNL, NCSA, IU, JPL, CRIM, RENCI); industry (ESRI, Digital Globe, IBM, rasdaman); standards (JTC 1/NIST); and open source software communities. Results from the workshops and testbeds are documented in Testbed reports and a White Paper published by the OGC. The White Paper identifies the following set of use cases: Collection and Ingest: Remote sensed data processing; Data stream processing Prepare and Structure: SQL and NoSQL databases; Data linking; Feature identification Analytics and Visualization: Spatial-temporal analytics; Machine Learning; Data Exploration Modeling and Prediction: Integrated environmental models; Urban 4D models. Open implementations were developed in the Arctic Spatial Data Pilot using Discrete Global Grid Systems (DGGS) and in Testbeds using WPS and ESGF to publish climate predictions. Further development activities to advance open implementations of Big Geo Data include the following: Open Cloud Computing: Avoid vendor lock-in through API interoperability and Application portability. Open Source Extensions: Implement geospatial data representations in projects from Apache, Location Tech, and OSGeo. Investigate parallelization strategies for N-Dimensional spatial data. Geospatial Data Representations: Schemas to improve processing and analysis using geospatial concepts: Features, Coverages, DGGS. Use geospatial encodings like NetCDF and GeoPackge. Big Linked Geodata: Use linked data methods scaled to big geodata. Analysis Ready Data: Support "Download as last resort" and "Analytics as a service". Promote elements common to "datacubes."

  19. GeoSpatial Data Analysis for DHS Programs

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, Eric G.; Burke, John S.; Carlson, Carrie A.; Gillen, David S.; Joslyn, Cliff A.; Olsen, Bryan K.; Critchlow, Terence J.

    2009-05-10

    The Department of Homeland Security law enforcement faces the continual challenge of analyzing their custom data sources in a geospatial context. From a strategic perspective law enforcement has certain requirements to first broadly characterize a given situation using their custom data sources and then once it is summarily understood, to geospatially analyze their data in detail.

  20. ICT4D and sustainability

    CSIR Research Space (South Africa)

    Marais, Mario A

    2015-02-01

    Full Text Available . Resilience is the capacity of a system to absorb disturbance. ICTs play a key role in the decoupling of economic development from the use of natural resources, by reducing the energy use of economic processes. ICT4D has moved to the use of ICTs as a platform...

  1. Instant Cinema 4D starter

    CERN Document Server

    Kaminar, Aaron

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks.This book is written in a friendly, practical style with lots of screenshots and help that will ensure you grow in confidence chapter by chapter.This book is recommended for artists that have experience in other 3D software packages, and who want to learn Cinema 4D. That being said, dedicated readers without experience in other 3D software should not be discouraged from reading this book to learn the basics of Cinema 4D as their first 3D package.

  2. A national assessment of the effect of intensive agro-land use practices on nonpoint source pollution using emission scenarios and geo-spatial data.

    Science.gov (United States)

    Zhuo, Dong; Liu, Liming; Yu, Huirong; Yuan, Chengcheng

    2018-01-01

    China's intensive agriculture has led to a broad range of adverse impacts upon ecosystems and thereby caused environmental quality degradation. One of the fundamental problems that face land managers when dealing with agricultural nonpoint source (NPS) pollution is to quantitatively assess the NPS pollution loads from different sources at a national scale. In this study, export scenarios and geo-spatial data were used to calculate the agricultural NPS pollution loads of nutrient, pesticide, plastic film residue, and crop straw burning in China. The results provided the comprehensive and baseline knowledge of agricultural NPS pollution from China's arable farming system in 2014. First, the nitrogen (N) and phosphorus (P) emission loads to water environment were estimated to be 1.44 Tg N and 0.06 Tg P, respectively. East and south China showed the highest load intensities of nutrient release to aquatic system. Second, the amount of pesticide loss to water of seven pesticides that are widely used in China was estimated to be 30.04 tons (active ingredient (ai)). Acetochlor was the major source of pesticide loss to water, contributing 77.65% to the total loss. The environmental impacts of pesticide usage in east and south China were higher than other parts. Third, 19.75% of the plastic film application resided in arable soils. It contributed a lot to soil phthalate ester (PAE) contamination. Fourth, 14.11% of straw produce were burnt in situ, most occurring in May to July (post-winter wheat harvest) in North China Plain and October to November (post-rice harvest days) in southeast China. All the above agricultural NPS pollution loadings were unevenly distributed across China. The spatial correlations between pollution loads at land unit scale were also estimated. Rising labor cost in rural China might be a possible explanation for the general positive correlations of the NPS pollution loads. It also indicated a co-occurred higher NPS pollution loads and a higher

  3. NCI's Distributed Geospatial Data Server

    Science.gov (United States)

    Larraondo, P. R.; Evans, B. J. K.; Antony, J.

    2016-12-01

    Earth systems, environmental and geophysics datasets are an extremely valuable source of information about the state and evolution of the Earth. However, different disciplines and applications require this data to be post-processed in different ways before it can be used. For researchers experimenting with algorithms across large datasets or combining multiple data sets, the traditional approach to batch data processing and storing all the output for later analysis rapidly becomes unfeasible, and often requires additional work to publish for others to use. Recent developments on distributed computing using interactive access to significant cloud infrastructure opens the door for new ways of processing data on demand, hence alleviating the need for storage space for each individual copy of each product. The Australian National Computational Infrastructure (NCI) has developed a highly distributed geospatial data server which supports interactive processing of large geospatial data products, including satellite Earth Observation data and global model data, using flexible user-defined functions. This system dynamically and efficiently distributes the required computations among cloud nodes and thus provides a scalable analysis capability. In many cases this completely alleviates the need to preprocess and store the data as products. This system presents a standards-compliant interface, allowing ready accessibility for users of the data. Typical data wrangling problems such as handling different file formats and data types, or harmonising the coordinate projections or temporal and spatial resolutions, can now be handled automatically by this service. The geospatial data server exposes functionality for specifying how the data should be aggregated and transformed. The resulting products can be served using several standards such as the Open Geospatial Consortium's (OGC) Web Map Service (WMS) or Web Feature Service (WFS), Open Street Map tiles, or raw binary arrays under

  4. The 4D Nucleome Project

    Science.gov (United States)

    Dekker, Job; Belmont, Andrew S.; Guttman, Mitchell; Leshyk, Victor O.; Lis, John T.; Lomvardas, Stavros; Mirny, Leonid A.; O’Shea, Clodagh C.; Park, Peter J.; Ren, Bing; Ritland Politz, Joan C.; Shendure, Jay; Zhong, Sheng

    2017-01-01

    Preface The 4D Nucleome Network aims to develop and apply approaches to map the structure and dynamics of the human and mouse genomes in space and time with the goal of gaining deeper mechanistic understanding of how the nucleus is organized and functions. The project will develop and benchmark experimental and computational approaches for measuring genome conformation and nuclear organization, and investigate how these contribute to gene regulation and other genome functions. Validated experimental approaches will be combined with biophysical modeling to generate quantitative models of spatial genome organization in different biological states, both in cell populations and in single cells. PMID:28905911

  5. Hygroscopic Metamorphic 4D Pleats

    Science.gov (United States)

    Yang, Shu

    There have been significant interests in morphing 2D sheets into 3D structures via programmed out-of-plane distortion, including bending, tilting, rotating, and folding as seen in recent origami and kirigami strategies. Hydrogel is one of the unique soft materials that can swell and shrink, thereby enabling real-time 4D motions in response to external stimuli, such as pH, temperature, and moisture. To achieve reliable folding behaviors, it often requires a large amount of water molecules or ions diffusing in and out of the hydrogel sheet, thus the entire sheet is immersed in an aqueous solution. Here, we demonstrate the design and folding of hierarchical pleats patterned from a combination of hydrophobic and hygroscopic materials, allowing us to spatially and locally control the water condensation induced by environmental humidity. In turn, we show out-of-plane deformation of the 2D sheets only in the patterned hygroscopic regions, much like the folding behaviors of many plants. By designing the dimension, geometry, and density of hygroscopic microstructures (as pixels) in the hydrophobic materials, we can display the enhanced water condensation together with the spatial guidance of obtained droplets as unified water-harvesting systems. When the water droplets become large enough, they roll off from the hierarchical sheet along the inclined plane that is programmed by the hygroscopic motion of hydrogel, and eventually wrapped by the folded sheet to keep them from evaporation. We acknowledge support from NSF/EFRI-ODISSEI, EFRI 13-31583.

  6. Geospatial Information Response Team

    Science.gov (United States)

    Witt, Emitt C.

    2010-01-01

    Extreme emergency events of national significance that include manmade and natural disasters seem to have become more frequent during the past two decades. The Nation is becoming more resilient to these emergencies through better preparedness, reduced duplication, and establishing better communications so every response and recovery effort saves lives and mitigates the long-term social and economic impacts on the Nation. The National Response Framework (NRF) (http://www.fema.gov/NRF) was developed to provide the guiding principles that enable all response partners to prepare for and provide a unified national response to disasters and emergencies. The NRF provides five key principles for better preparation, coordination, and response: 1) engaged partnerships, 2) a tiered response, 3) scalable, flexible, and adaptable operations, 4) unity of effort, and 5) readiness to act. The NRF also describes how communities, tribes, States, Federal Government, privatesector, and non-governmental partners apply these principles for a coordinated, effective national response. The U.S. Geological Survey (USGS) has adopted the NRF doctrine by establishing several earth-sciences, discipline-level teams to ensure that USGS science, data, and individual expertise are readily available during emergencies. The Geospatial Information Response Team (GIRT) is one of these teams. The USGS established the GIRT to facilitate the effective collection, storage, and dissemination of geospatial data information and products during an emergency. The GIRT ensures that timely geospatial data are available for use by emergency responders, land and resource managers, and for scientific analysis. In an emergency and response capacity, the GIRT is responsible for establishing procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing coordinated products and services utilizing the USGS' exceptional pool of

  7. The geospatial data quality REST API for primary biodiversity data.

    Science.gov (United States)

    Otegui, Javier; Guralnick, Robert P

    2016-06-01

    We present a REST web service to assess the geospatial quality of primary biodiversity data. It enables access to basic and advanced functions to detect completeness and consistency issues as well as general errors in the provided record or set of records. The API uses JSON for data interchange and efficient parallelization techniques for fast assessments of large datasets. The Geospatial Data Quality API is part of the VertNet set of APIs. It can be accessed at http://api-geospatial.vertnet-portal.appspot.com/geospatial and is already implemented in the VertNet data portal for quality reporting. Source code is freely available under GPL license from http://www.github.com/vertnet/api-geospatial javier.otegui@gmail.com or rguralnick@flmnh.ufl.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  8. Leveraging the geospatial advantage

    Science.gov (United States)

    Ben Butler; Andrew Bailey

    2013-01-01

    The Wildland Fire Decision Support System (WFDSS) web-based application leverages geospatial data to inform strategic decisions on wildland fires. A specialized data team, working within the Wildland Fire Management Research Development and Application group (WFM RD&A), assembles authoritative national-level data sets defining values to be protected. The use of...

  9. Audiovisual heritage preservation in Earth and Space Science Informatics: Videos from Free and Open Source Software for Geospatial (FOSS4G) conferences in the TIB|AV-Portal.

    Science.gov (United States)

    Löwe, Peter; Marín Arraiza, Paloma; Plank, Margret

    2016-04-01

    The influence of Free and Open Source Software (FOSS) projects on Earth and Space Science Informatics (ESSI) continues to grow, particularly in the emerging context of Data Science or Open Science. The scientific significance and heritage of FOSS projects is only to a limited amount covered by traditional scientific journal articles: Audiovisual conference recordings contain significant information for analysis, reference and citation. In the context of data driven research, this audiovisual content needs to be accessible by effective search capabilities, enabling the content to be searched in depth and retrieved. Thereby, it is ensured that the content producers receive credit for their efforts within the respective communities. For Geoinformatics and ESSI, one distinguished driver is the OSGeo Foundation (OSGeo), founded in 2006 to support and promote the interdisciplinary collaborative development of open geospatial technologies and data. The organisational structure is based on software projects that have successfully passed the OSGeo incubation process, proving their compliance with FOSS licence models. This quality assurance is crucial for the transparent and unhindered application in (Open) Science. The main communication channels within and between the OSGeo-hosted community projects for face to face meetings are conferences on national, regional and global scale. Video recordings have been complementing the scientific proceedings since 2006. During the last decade, the growing body of OSGeo videos has been negatively affected by content loss, obsolescence of video technology and dependence on commercial video portals. Even worse, the distributed storage and lack of metadata do not guarantee concise and efficient access of the content. This limits the retrospective analysis of video content from past conferences. But, it also indicates a need for reliable, standardized, comparable audiovisual repositories for the future, as the number of OSGeo projects

  10. Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research

    Directory of Open Access Journals (Sweden)

    Raj K Panta

    2012-01-01

    Conclusions: An integrated computer program has been developed to generate, review, analyse, process, and export the 4D XCAT images. A framework has been established to implement the 4D XCAT phantom for 4D RT research.

  11. 4-D OCT in Developmental Cardiology

    Science.gov (United States)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  12. Infrastructure for the Geospatial Web

    Science.gov (United States)

    Lake, Ron; Farley, Jim

    Geospatial data and geoprocessing techniques are now directly linked to business processes in many areas. Commerce, transportation and logistics, planning, defense, emergency response, health care, asset management and many other domains leverage geospatial information and the ability to model these data to achieve increased efficiencies and to develop better, more comprehensive decisions. However, the ability to deliver geospatial data and the capacity to process geospatial information effectively in these domains are dependent on infrastructure technology that facilitates basic operations such as locating data, publishing data, keeping data current and notifying subscribers and others whose applications and decisions are dependent on this information when changes are made. This chapter introduces the notion of infrastructure technology for the Geospatial Web. Specifically, the Geography Markup Language (GML) and registry technology developed using the ebRIM specification delivered from the OASIS consortium are presented as atomic infrastructure components in a working Geospatial Web.

  13. CINEMA 4D The Artist's Project Sourcebook

    CERN Document Server

    McQuilkin, Kent

    2011-01-01

    Cinema 4D is a fully integrated 3D modeling, animation, and rendering package used extensively in the film, television, science, architecture, engineering and other industries. Generally ranked as the 3rd most widely-used 3Dapplication Cinema 4D is widely praised for its stability, speed and ease of use. Recent film and broadcast productions that have used Cinema 4D include Open Season, Monster House, Superman Returns, Polar Express, Monday Night Football. This third edition of Cinema 4D is updated to address the latest release of the application as well as its critically acclaimed MoGr

  14. SWOT analysis on National Common Geospatial Information Service Platform of China

    Science.gov (United States)

    Zheng, Xinyan; He, Biao

    2010-11-01

    Currently, the trend of International Surveying and Mapping is shifting from map production to integrated service of geospatial information, such as GOS of U.S. etc. Under this circumstance, the Surveying and Mapping of China is inevitably shifting from 4D product service to NCGISPC (National Common Geospatial Information Service Platform of China)-centered service. Although State Bureau of Surveying and Mapping of China has already provided a great quantity of geospatial information service to various lines of business, such as emergency and disaster management, transportation, water resource, agriculture etc. The shortcomings of the traditional service mode are more and more obvious, due to the highly emerging requirement of e-government construction, the remarkable development of IT technology and emerging online geospatial service demands of various lines of business. NCGISPC, which aimed to provide multiple authoritative online one-stop geospatial information service and API for further development to government, business and public, is now the strategic core of SBSM (State Bureau of Surveying and Mapping of China). This paper focuses on the paradigm shift that NCGISPC brings up by using SWOT (Strength, Weakness, Opportunity and Threat) analysis, compared to the service mode that based on 4D product. Though NCGISPC is still at its early stage, it represents the future service mode of geospatial information of China, and surely will have great impact not only on the construction of digital China, but also on the way that everyone uses geospatial information service.

  15. A Geospatial Online Instruction Model

    OpenAIRE

    Athena OWEN-NAGEL; John C. RODGERS III; Shrinidhi AMBINAKUDIGE

    2012-01-01

    The objective of this study is to present a pedagogical model for teaching geospatial courses through an online format and to critique the model’s effectiveness. Offering geospatial courses through an online format provides avenues to a wider student population, many of whom are not able to take traditional on-campus courses. Yet internet-based teaching effectiveness has not yet been clearly demonstrated for geospatial courses. The pedagogical model implemented in this study heavily utilizes ...

  16. A Javascript GIS Platform Based on Invocable Geospatial Web Services

    Directory of Open Access Journals (Sweden)

    Konstantinos Evangelidis

    2018-04-01

    Full Text Available Semantic Web technologies are being increasingly adopted by the geospatial community during last decade through the utilization of open standards for expressing and serving geospatial data. This was also dramatically assisted by the ever-increasing access and usage of geographic mapping and location-based services via smart devices in people’s daily activities. In this paper, we explore the developmental framework of a pure JavaScript client-side GIS platform exclusively based on invocable geospatial Web services. We also extend JavaScript utilization on the server side by deploying a node server acting as a bridge between open source WPS libraries and popular geoprocessing engines. The vehicle for such an exploration is a cross platform Web browser capable of interpreting JavaScript commands to achieve interaction with geospatial providers. The tool is a generic Web interface providing capabilities of acquiring spatial datasets, composing layouts and applying geospatial processes. In an ideal form the end-user will have to identify those services, which satisfy a geo-related need and put them in the appropriate row. The final output may act as a potential collector of freely available geospatial web services. Its server-side components may exploit geospatial processing suppliers composing that way a light-weight fully transparent open Web GIS platform.

  17. The Future of Geospatial Standards

    Science.gov (United States)

    Bermudez, L. E.; Simonis, I.

    2016-12-01

    The OGC is an international not-for-profit standards development organization (SDO) committed to making quality standards for the geospatial community. A community of more than 500 member organizations with more than 6,000 people registered at the OGC communication platform drives the development of standards that are freely available for anyone to use and to improve sharing of the world's geospatial data. OGC standards are applied in a variety of application domains including Environment, Defense and Intelligence, Smart Cities, Aviation, Disaster Management, Agriculture, Business Development and Decision Support, and Meteorology. Profiles help to apply information models to different communities, thus adapting to particular needs of that community while ensuring interoperability by using common base models and appropriate support services. Other standards address orthogonal aspects such as handling of Big Data, Crowd-sourced information, Geosemantics, or container for offline data usage. Like most SDOs, the OGC develops and maintains standards through a formal consensus process under the OGC Standards Program (OGC-SP) wherein requirements and use cases are discussed in forums generally open to the public (Domain Working Groups, or DWGs), and Standards Working Groups (SWGs) are established to create standards. However, OGC is unique among SDOs in that it also operates the OGC Interoperability Program (OGC-IP) to provide real-world testing of existing and proposed standards. The OGC-IP is considered the experimental playground, where new technologies are researched and developed in a user-driven process. Its goal is to prototype, test, demonstrate, and promote OGC Standards in a structured environment. Results from the OGC-IP often become requirements for new OGC standards or identify deficiencies in existing OGC standards that can be addressed. This presentation will provide an analysis of the work advanced in the OGC consortium including standards and testbeds

  18. Tools for open geospatial science

    Science.gov (United States)

    Petras, V.; Petrasova, A.; Mitasova, H.

    2017-12-01

    Open science uses open source to deal with reproducibility challenges in data and computational sciences. However, just using open source software or making the code public does not make the research reproducible. Moreover, the scientists face the challenge of learning new unfamiliar tools and workflows. In this contribution, we will look at a graduate-level course syllabus covering several software tools which make validation and reuse by a wider professional community possible. For the novices in the open science arena, we will look at how scripting languages such as Python and Bash help us reproduce research (starting with our own work). Jupyter Notebook will be introduced as a code editor, data exploration tool, and a lab notebook. We will see how Git helps us not to get lost in revisions and how Docker is used to wrap all the parts together using a single text file so that figures for a scientific paper or a technical report can be generated with a single command. We will look at examples of software and publications in the geospatial domain which use these tools and principles. Scientific contributions to GRASS GIS, a powerful open source desktop GIS and geoprocessing backend, will serve as an example of why and how to publish new algorithms and tools as part of a bigger open source project.

  19. Geospatial Technology in Geography Education

    NARCIS (Netherlands)

    Muniz Solari, Osvaldo; Demirci, A.; van der Schee, J.A.

    2015-01-01

    The book is presented as an important starting point for new research in Geography Education (GE) related to the use and application of geospatial technologies (GSTs). For this purpose, the selection of topics was based on central ideas to GE in its relationship with GSTs. The process of geospatial

  20. A Geospatial Online Instruction Model

    Science.gov (United States)

    Rodgers, John C., III; Owen-Nagel, Athena; Ambinakudige, Shrinidhi

    2012-01-01

    The objective of this study is to present a pedagogical model for teaching geospatial courses through an online format and to critique the model's effectiveness. Offering geospatial courses through an online format provides avenues to a wider student population, many of whom are not able to take traditional on-campus courses. Yet internet-based…

  1. Representing Participation in ICT4D Projects

    DEFF Research Database (Denmark)

    Singh, J. P.; Flyverbom, Mikkel

    2016-01-01

    How do the discourses of participation inform deployment of information and communication technologies for development (ICT4D)? Discourses here mean narratives that assign roles to actors, and specify causes and outcomes for events. Based on the theory and practice of international development we......, depending on the context of their implementation, are permeated by multiple discourses about participation. Our four ideal types of participation discourses are, therefore, useful starting points to discuss the intricate dynamics of participation in ICT4D projects....

  2. New C4D Sensor with a Simulated Inductor

    Directory of Open Access Journals (Sweden)

    Yingchao Lyu

    2016-01-01

    Full Text Available A new capacitively coupled contactless conductivity detection (C4D sensor with an improved simulated inductor is developed in this work. The improved simulated inductor is designed on the basis of the Riordan-type floating simulated inductor. With the improved simulated inductor, the negative influence of the coupling capacitances is overcome and the conductivity measurement is implemented by the series resonance principle. The conductivity measurement experiments are carried out in three pipes with different inner diameters of 3.0 mm, 4.6 mm and 6.4 mm, respectively. The experimental results show that the designs of the new C4D sensor and the improved simulated inductor are successful. The maximum relative error of the conductivity measurement is less than 5%. Compared with the C4D sensors using practical inductors, the measurement accuracy of the new C4D sensor is comparable. The research results also indicate that the adjustability of a simulated inductor can reduce the requirement for the AC source and guarantee the interchangeableness. Meanwhile, it is recommended that making the potential of one terminal of a simulated inductor stable is beneficial to the running stability. Furthermore, this work indirectly verifies the possibility and feasibility of the miniaturization of the C4D sensor by using the simulated inductor technique and lays a good foundation for future research work.

  3. GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data

    Science.gov (United States)

    Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.

    2016-12-01

    Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We

  4. Two new DOSXYZnrc sources for 4D Monte Carlo simulations of continuously variable beam configurations, with applications to RapidArc, VMAT, TomoTherapy and CyberKnife

    International Nuclear Information System (INIS)

    Lobo, Julio; Popescu, I Antoniu

    2010-01-01

    We present two new Monte Carlo sources for the DOSXYZnrc code, which can be used to compute dose distributions due to continuously variable beam configurations. These sources support a continuously rotating gantry and collimator, dynamic multileaf collimator (MLC) motion, variable monitor unit (MU) rate, couch rotation and translation in any direction, arbitrary isocentre motion with respect to the patient and variable source-to-axis distance (SAD). These features make them applicable to Monte Carlo simulations for RapidArc(TM), Elekta VMAT, TomoTherapy(TM) and CyberKnife(TM). Unique to these sources is the synchronization between the motion in the DOSXYZnrc geometry and the motion within the linac head, represented by a shared library (either a BEAMnrc accelerator with dynamic component modules, or an external library). The simulations are achieved in single runs, with no intermediate phase space files.

  5. Geospatial Semantics and the Semantic Web

    CERN Document Server

    Ashish, Naveen

    2011-01-01

    The availability of geographic and geospatial information and services, especially on the open Web has become abundant in the last several years with the proliferation of online maps, geo-coding services, geospatial Web services and geospatially enabled applications. The need for geospatial reasoning has significantly increased in many everyday applications including personal digital assistants, Web search applications, local aware mobile services, specialized systems for emergency response, medical triaging, intelligence analysis and more. Geospatial Semantics and the Semantic Web: Foundation

  6. 4D Bioprinting for Biomedical Applications.

    Science.gov (United States)

    Gao, Bin; Yang, Qingzhen; Zhao, Xin; Jin, Guorui; Ma, Yufei; Xu, Feng

    2016-09-01

    3D bioprinting has been developed to effectively and rapidly pattern living cells and biomaterials, aiming to create complex bioconstructs. However, placing biocompatible materials or cells into direct contact via bioprinting is necessary but insufficient for creating these constructs. Therefore, '4D bioprinting' has emerged recently, where 'time' is integrated with 3D bioprinting as the fourth dimension, and the printed objects can change their shapes or functionalities when an external stimulus is imposed or when cell fusion or postprinting self-assembly occurs. In this review, we highlight recent developments in 4D bioprinting technology. Additionally, we review the uses of 4D bioprinting in tissue engineering and drug delivery. Finally, we discuss the major roadblocks to this approach, together with possible solutions, to provide future perspectives on this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cinema 4D R13 Cookbook

    CERN Document Server

    Szabo, Michael

    2012-01-01

    This book contains short recipes designed to effectively teach tools in the minimum amount of time. Each recipe hits on a topic that can be combined or incorporated with other recipes to give you the building blocks you need to start making great designs with Cinema 4D. Rather than demonstrating how to make a few specific and extensive projects, the recipes create a solid base of knowledge to help the reader understand the tools available to foster their own creativity. This book is for anyone who wants to quickly get up to speed with Cinema 4D to create 3D projects that run laps around simple

  8. Bio-optical data integration based on a 4 D database system approach

    Science.gov (United States)

    Imai, N. N.; Shimabukuro, M. H.; Carmo, A. F. C.; Alcantara, E. H.; Rodrigues, T. W. P.; Watanabe, F. S. Y.

    2015-04-01

    Bio-optical characterization of water bodies requires spatio-temporal data about Inherent Optical Properties and Apparent Optical Properties which allow the comprehension of underwater light field aiming at the development of models for monitoring water quality. Measurements are taken to represent optical properties along a column of water, and then the spectral data must be related to depth. However, the spatial positions of measurement may differ since collecting instruments vary. In addition, the records should not refer to the same wavelengths. Additional difficulty is that distinct instruments store data in different formats. A data integration approach is needed to make these large and multi source data sets suitable for analysis. Thus, it becomes possible, even automatically, semi-empirical models evaluation, preceded by preliminary tasks of quality control. In this work it is presented a solution, in the stated scenario, based on spatial - geographic - database approach with the adoption of an object relational Database Management System - DBMS - due to the possibilities to represent all data collected in the field, in conjunction with data obtained by laboratory analysis and Remote Sensing images that have been taken at the time of field data collection. This data integration approach leads to a 4D representation since that its coordinate system includes 3D spatial coordinates - planimetric and depth - and the time when each data was taken. It was adopted PostgreSQL DBMS extended by PostGIS module to provide abilities to manage spatial/geospatial data. It was developed a prototype which has the mainly tools an analyst needs to prepare the data sets for analysis.

  9. 4D-Var Developement at GMAO

    Science.gov (United States)

    Pelc, Joanna S.; Todling, Ricardo; Akkraoui, Amal El

    2014-01-01

    The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.

  10. Challenges in sharing of geospatial data by data custodians in South Africa

    Science.gov (United States)

    Kay, Sissiel E.

    2018-05-01

    As most development planning and rendering of public services happens at a place or in a space, geospatial data is required. This geospatial data is best managed through a spatial data infrastructure, which has as a key objective to share geospatial data. The collection and maintenance of geospatial data is expensive and time consuming and so the principle of "collect once - use many times" should apply. It is best to obtain the geospatial data from the authoritative source - the appointed data custodian. In South Africa the South African Spatial Data Infrastructure (SASDI) is the means to achieve the requirement for geospatial data sharing. This requires geospatial data sharing to take place between the data custodian and the user. All data custodians are expected to comply with the Spatial Data Infrastructure Act (SDI Act) in terms of geo-spatial data sharing. Currently data custodians are experiencing challenges with regard to the sharing of geospatial data. This research is based on the current ten data themes selected by the Committee for Spatial Information and the organisations identified as the data custodians for these ten data themes. The objectives are to determine whether the identified data custodians comply with the SDI Act with respect to geospatial data sharing, and if not what are the reasons for this. Through an international comparative assessment it then determines if the compliance with the SDI Act is not too onerous on the data custodians. The research concludes that there are challenges with geospatial data sharing in South Africa and that the data custodians only partially comply with the SDI Act in terms of geospatial data sharing. However, it is shown that the South African legislation is not too onerous on the data custodians.

  11. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT ...

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS2) hydrologic models. The application of these two models allows AGWA to conduct hydrologic modeling and watershed assessments at multiple temporal and spatial scales. AGWA’s current outputs are runoff (volumes and peaks) and sediment yield, plus nitrogen and phosphorus with the SWAT model. AGWA uses commonly available GIS data layers to fully parameterize, execute, and visualize results from both models. Through an intuitive interface the user selects an outlet from which AGWA delineates and discretizes the watershed using a Digital Elevation Model (DEM) based on the individual model requirements. The watershed model elements are then intersected with soils and land cover data layers to derive the requisite model input parameters. The chosen model is then executed, and the results are imported back into AGWA for visualization. This allows managers to identify potential problem areas where additional monitoring can be undertaken or mitigation activities can be focused. AGWA also has tools to apply an array of best management practices. There are currently two versions of AGWA available; AGWA 1.5 for

  12. Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system.

    Science.gov (United States)

    Mariampillai, Adrian; Standish, Beau A; Munce, Nigel R; Randall, Cristina; Liu, George; Jiang, James Y; Cable, Alex E; Vitkin, I A; Yang, Victor X D

    2007-02-19

    We report a Doppler optical cardiogram gating technique for increasing the effective frame rate of Doppler optical coherence tomography (DOCT) when imaging periodic motion as found in the cardiovascular system of embryos. This was accomplished with a Thorlabs swept-source DOCT system that simultaneously acquired and displayed structural and Doppler images at 12 frames per second (fps). The gating technique allowed for ultra-high speed visualization of the blood flow pattern in the developing hearts of African clawed frog embryos (Xenopus laevis) at up to 1000 fps. In addition, four-dimensional (three spatial dimensions + temporal) Doppler imaging at 45 fps was demonstrated using this gating technique, producing detailed visualization of the complex cardiac motion and hemodynamics in a beating heart.

  13. Critical evaluation of reverse engineering tool Imagix 4D!

    Science.gov (United States)

    Yadav, Rashmi; Patel, Ravindra; Kothari, Abhay

    2016-01-01

    The comprehension of legacy codes is difficult to understand. Various commercial reengineering tools are available that have unique working styles, and are equipped with their inherent capabilities and shortcomings. The focus of the available tools is in visualizing static behavior not the dynamic one. Therefore, it is difficult for people who work in software product maintenance, code understanding reengineering/reverse engineering. Consequently, the need for a comprehensive reengineering/reverse engineering tool arises. We found the usage of Imagix 4D to be good as it generates the maximum pictorial representations in the form of flow charts, flow graphs, class diagrams, metrics and, to a partial extent, dynamic visualizations. We evaluated Imagix 4D with the help of a case study involving a few samples of source code. The behavior of the tool was analyzed on multiple small codes and a large code gcc C parser. Large code evaluation was performed to uncover dead code, unstructured code, and the effect of not including required files at preprocessing level. The utility of Imagix 4D to prepare decision density and complexity metrics for a large code was found to be useful in getting to know how much reengineering is required. At the outset, Imagix 4D offered limitations in dynamic visualizations, flow chart separation (large code) and parsing loops. The outcome of evaluation will eventually help in upgrading Imagix 4D and posed a need of full featured tools in the area of software reengineering/reverse engineering. It will also help the research community, especially those who are interested in the realm of software reengineering tool building.

  14. Aircraft 4D trajectories planning under uncertainties

    OpenAIRE

    Chaimatanan , Supatcha; Delahaye , Daniel; Mongeau , Marcel

    2015-01-01

    International audience; To sustain the rapidly increasing air traffic demand, the future air traffic management system will rely on a concept, called Trajectory-Based Operations (TBO), that will require aircraft to follow an assigned 4D trajectory (time-constrained trajectory) with high precision. TBO involves separating aircraft via strategic (long-term) trajectory deconfliction rather than the currently-practicing tactical (short-term) conflict resolution. In this context, this paper presen...

  15. Building tomorrow's nuclear power plants with 4+D VR technology

    International Nuclear Information System (INIS)

    Lee, Il S.; Yoon, Sang H.; Shim, Kyu W.; Yu, Yong H.; Suh, Kune Y.

    2002-01-01

    There continues to be an increasing demand of electricity around the globe to fuel the industrial growth and to promote the human welfare. The economic activities have brought about richness in our material and cultural lives, in which process the electric power has been at the heart of the versatile energy sources. In order to timely and competitively respond to rapidly changing energy environment in the twenty-first century there is a growing need to build the advanced nuclear power plants in the unlimited workspace of virtual reality (VR) prior to commissioning. One can then realistically evaluate their construction time and cost per varying methods and options available from the leading-edge technology. In particular a great deal of efforts have yet to be made for time- and cost-dependent plant simulation and dynamically coupled database construction in the VR space. The operator training and personnel education may also benefit from the VR technology. The present work is being proposed in the three-dimensional space and time plus cost coordinates, i. e. four plus dimensional (4 + D) coordinates. The 4 + D VR application will enable the nuclear industry to narrow the technological gap from the other leading industries that have long since been employing the VR engineering. The 4 + D technology will help nurture public understanding of the special discipline of nuclear power plants. The technology will also facilitate public access to the knowledge on the nuclear science and engineering which has so far been monopolized by the academia, national laboratories and the heavy industry. The 4 + D virtual design and construction will open up the new horizon for revitalization of the nuclear industry over the globe in the foreseeable future. Considering the long construction and operation time for the nuclear power plants, the preliminary VR simulation capability for the plants will supply the vital information not only for the actual design and construction of the

  16. A Geospatial Semantic Enrichment and Query Service for Geotagged Photographs

    Science.gov (United States)

    Ennis, Andrew; Nugent, Chris; Morrow, Philip; Chen, Liming; Ioannidis, George; Stan, Alexandru; Rachev, Preslav

    2015-01-01

    With the increasing abundance of technologies and smart devices, equipped with a multitude of sensors for sensing the environment around them, information creation and consumption has now become effortless. This, in particular, is the case for photographs with vast amounts being created and shared every day. For example, at the time of this writing, Instagram users upload 70 million photographs a day. Nevertheless, it still remains a challenge to discover the “right” information for the appropriate purpose. This paper describes an approach to create semantic geospatial metadata for photographs, which can facilitate photograph search and discovery. To achieve this we have developed and implemented a semantic geospatial data model by which a photograph can be enrich with geospatial metadata extracted from several geospatial data sources based on the raw low-level geo-metadata from a smartphone photograph. We present the details of our method and implementation for searching and querying the semantic geospatial metadata repository to enable a user or third party system to find the information they are looking for. PMID:26205265

  17. Technologies Connotation and Developing Characteristics of Open Geospatial Information Platform

    Directory of Open Access Journals (Sweden)

    GUO Renzhong

    2016-02-01

    Full Text Available Based on the background of developments of surveying,mapping and geoinformation,aimed at the demands of data fusion,real-time sharing,in-depth processing and personalization,this paper analyzes significant features of geo-spatial service in digital city,focuses on theory,method and key techniques of open environment of cloud computing,multi-path data updating,full-scale urban geocoding,multi-source spatial data integration,adaptive geo-processing and adaptive Web mapping.As the basis for it,the Open Geospatial information platform is developed,and successfully implicated in digital Shenzhen.

  18. Persistent Teaching Practices after Geospatial Technology Professional Development

    Science.gov (United States)

    Rubino-Hare, Lori A.; Whitworth, Brooke A.; Bloom, Nena E.; Claesgens, Jennifer M.; Fredrickson, Kristi M.; Sample, James C.

    2016-01-01

    This case study described teachers with varying technology skills who were implementing the use of geospatial technology (GST) within project-based instruction (PBI) at varying grade levels and contexts 1 to 2 years following professional development. The sample consisted of 10 fifth- to ninth-grade teachers. Data sources included artifacts,…

  19. Geospatial Absorption and Regional Effects

    Directory of Open Access Journals (Sweden)

    IOAN MAC

    2009-01-01

    Full Text Available The geospatial absorptions are characterized by a specific complexity both in content and in their phenomenological and spatial manifestation fields. Such processes are differentiated according to their specificity to pre-absorption, absorption or post-absorption. The mechanisms that contribute to absorption are extremely numerous: aggregation, extension, diffusion, substitution, resistivity (resilience, stratification, borrowings, etc. Between these mechanisms frequent relations are established determining an amplification of the process and of its regional effects. The installation of the geographic osmosis phenomenon in a given territory (a place for example leads to a homogenization of the geospatial state and to the installation of the regional homogeneity.

  20. Intelligence, mapping, and geospatial exploitation system (IMAGES)

    Science.gov (United States)

    Moellman, Dennis E.; Cain, Joel M.

    1998-08-01

    This paper provides further detail to one facet of the battlespace visualization concept described in last year's paper Battlespace Situation Awareness for Force XXI. It focuses on the National Imagery and Mapping Agency (NIMA) goal to 'provide customers seamless access to tailorable imagery, imagery intelligence, and geospatial information.' This paper describes Intelligence, Mapping, and Geospatial Exploitation System (IMAGES), an exploitation element capable of CONUS baseplant operations or field deployment to provide NIMA geospatial information collaboratively into a reconnaissance, surveillance, and target acquisition (RSTA) environment through the United States Imagery and Geospatial Information System (USIGS). In a baseplant CONUS setting IMAGES could be used to produce foundation data to support mission planning. In the field it could be directly associated with a tactical sensor receiver or ground station (e.g. UAV or UGV) to provide near real-time and mission specific RSTA to support mission execution. This paper provides IMAGES functional level design; describes the technologies, their interactions and interdependencies; and presents a notional operational scenario to illustrate the system flexibility. Using as a system backbone an intelligent software agent technology, called Open Agent ArchitectureTM (OAATM), IMAGES combines multimodal data entry, natural language understanding, and perceptual and evidential reasoning for system management. Configured to be DII COE compliant, it would utilize, to the extent possible, COTS applications software for data management, processing, fusion, exploitation, and reporting. It would also be modular, scaleable, and reconfigurable. This paper describes how the OAATM achieves data synchronization and enables the necessary level of information to be rapidly available to various command echelons for making informed decisions. The reasoning component will provide for the best information to be developed in the timeline

  1. The Geospatial Web and Local Geographical Education

    Science.gov (United States)

    Harris, Trevor M.; Rouse, L. Jesse; Bergeron, Susan J.

    2010-01-01

    Recent innovations in the Geospatial Web represent a paradigm shift in Web mapping by enabling educators to explore geography in the classroom by dynamically using a rapidly growing suite of impressive online geospatial tools. Coupled with access to spatial data repositories and User-Generated Content, the Geospatial Web provides a powerful…

  2. Cinema 4D R14 cookbook

    CERN Document Server

    Russell, Simon

    2013-01-01

    This book is written in a Cookbook style with short recipes designed to effectively teach tools in the minimum amount of time. Each recipe hits on a topic that can be combined or incorporated with other recipes to give you the building blocks you need to start making great designs with Cinema 4D. Rather than demonstrating how to make a few specific and extensive projects, the recipes create a solid base of knowledge to help the reader understand the tools available to foster their own creativity.This book is for professional artists working in architecture, design, production, or games and wan

  3. Streamlining geospatial metadata in the Semantic Web

    Science.gov (United States)

    Fugazza, Cristiano; Pepe, Monica; Oggioni, Alessandro; Tagliolato, Paolo; Carrara, Paola

    2016-04-01

    In the geospatial realm, data annotation and discovery rely on a number of ad-hoc formats and protocols. These have been created to enable domain-specific use cases generalized search is not feasible for. Metadata are at the heart of the discovery process and nevertheless they are often neglected or encoded in formats that either are not aimed at efficient retrieval of resources or are plainly outdated. Particularly, the quantum leap represented by the Linked Open Data (LOD) movement did not induce so far a consistent, interlinked baseline in the geospatial domain. In a nutshell, datasets, scientific literature related to them, and ultimately the researchers behind these products are only loosely connected; the corresponding metadata intelligible only to humans, duplicated on different systems, seldom consistently. Instead, our workflow for metadata management envisages i) editing via customizable web- based forms, ii) encoding of records in any XML application profile, iii) translation into RDF (involving the semantic lift of metadata records), and finally iv) storage of the metadata as RDF and back-translation into the original XML format with added semantics-aware features. Phase iii) hinges on relating resource metadata to RDF data structures that represent keywords from code lists and controlled vocabularies, toponyms, researchers, institutes, and virtually any description one can retrieve (or directly publish) in the LOD Cloud. In the context of a distributed Spatial Data Infrastructure (SDI) built on free and open-source software, we detail phases iii) and iv) of our workflow for the semantics-aware management of geospatial metadata.

  4. Active origami by 4D printing

    International Nuclear Information System (INIS)

    Ge, Qi; Qi, H Jerry; Dunn, Martin L; Dunn, Conner K

    2014-01-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand. (paper)

  5. Active origami by 4D printing

    Science.gov (United States)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  6. A Python Geospatial Language Toolkit

    Science.gov (United States)

    Fillmore, D.; Pletzer, A.; Galloy, M.

    2012-12-01

    The volume and scope of geospatial data archives, such as collections of satellite remote sensing or climate model products, has been rapidly increasing and will continue to do so in the near future. The recently launched (October 2011) Suomi National Polar-orbiting Partnership satellite (NPP) for instance, is the first of a new generation of Earth observation platforms that will monitor the atmosphere, oceans, and ecosystems, and its suite of instruments will generate several terabytes each day in the form of multi-spectral images and derived datasets. Full exploitation of such data for scientific analysis and decision support applications has become a major computational challenge. Geophysical data exploration and knowledge discovery could benefit, in particular, from intelligent mechanisms for extracting and manipulating subsets of data relevant to the problem of interest. Potential developments include enhanced support for natural language queries and directives to geospatial datasets. The translation of natural language (that is, human spoken or written phrases) into complex but unambiguous objects and actions can be based on a context, or knowledge domain, that represents the underlying geospatial concepts. This poster describes a prototype Python module that maps English phrases onto basic geospatial objects and operations. This module, along with the associated computational geometry methods, enables the resolution of natural language directives that include geographic regions of arbitrary shape and complexity.

  7. Interactive Visualization and Analysis of Geospatial Data Sets - TrikeND-iGlobe

    Science.gov (United States)

    Rosebrock, Uwe; Hogan, Patrick; Chandola, Varun

    2013-04-01

    The visualization of scientific datasets is becoming an ever-increasing challenge as advances in computing technologies have enabled scientists to build high resolution climate models that have produced petabytes of climate data. To interrogate and analyze these large datasets in real-time is a task that pushes the boundaries of computing hardware and software. But integration of climate datasets with geospatial data requires considerable amount of effort and close familiarity of various data formats and projection systems, which has prevented widespread utilization outside of climate community. TrikeND-iGlobe is a sophisticated software tool that bridges this gap, allows easy integration of climate datasets with geospatial datasets and provides sophisticated visualization and analysis capabilities. The objective for TrikeND-iGlobe is the continued building of an open source 4D virtual globe application using NASA World Wind technology that integrates analysis of climate model outputs with remote sensing observations as well as demographic and environmental data sets. This will facilitate a better understanding of global and regional phenomenon, and the impact analysis of climate extreme events. The critical aim is real-time interactive interrogation. At the data centric level the primary aim is to enable the user to interact with the data in real-time for the purpose of analysis - locally or remotely. TrikeND-iGlobe provides the basis for the incorporation of modular tools that provide extended interactions with the data, including sub-setting, aggregation, re-shaping, time series analysis methods and animation to produce publication-quality imagery. TrikeND-iGlobe may be run locally or can be accessed via a web interface supported by high-performance visualization compute nodes placed close to the data. It supports visualizing heterogeneous data formats: traditional geospatial datasets along with scientific data sets with geographic coordinates (NetCDF, HDF, etc

  8. 4D Lung Reconstruction with Phase Optimization

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Paulsen, Rasmus; Brink, Carsten

    2009-01-01

    This paper investigates and demonstrates a 4D lung CT reconstruction/registration method which results in a complete volumetric model of the lung that deforms according to a respiratory motion field. The motion field is estimated iteratively between all available slice samples and a reference...... volume which is updated on the fly. The method is two part and the second part of the method aims to correct wrong phase information by employing another iterative optimizer. This two part iterative optimization allows for complete reconstruction at any phase and it will be demonstrated that it is better...... than using an optimization which does not correct for phase errors. Knowing how the lung and any tumors located within the lung deforms is relevant in planning the treatment of lung cancer....

  9. Geospatial metadata retrieval from web services

    Directory of Open Access Journals (Sweden)

    Ivanildo Barbosa

    Full Text Available Nowadays, producers of geospatial data in either raster or vector formats are able to make them available on the World Wide Web by deploying web services that enable users to access and query on those contents even without specific software for geoprocessing. Several providers around the world have deployed instances of WMS (Web Map Service, WFS (Web Feature Service and WCS (Web Coverage Service, all of them specified by the Open Geospatial Consortium (OGC. In consequence, metadata about the available contents can be retrieved to be compared with similar offline datasets from other sources. This paper presents a brief summary and describes the matching process between the specifications for OGC web services (WMS, WFS and WCS and the specifications for metadata required by the ISO 19115 - adopted as reference for several national metadata profiles, including the Brazilian one. This process focuses on retrieving metadata about the identification and data quality packages as well as indicates the directions to retrieve metadata related to other packages. Therefore, users are able to assess whether the provided contents fit to their purposes.

  10. The 4p5rd10 and 4d86p configurations of Te VIII

    International Nuclear Information System (INIS)

    Churilov, S.S.; Rossijskaya Akademiya Nauk, Troitsk; Joshi, Y.N.; Kildiyarova, R.R.

    1998-01-01

    The spectrum of tellurium was photographed in the 100-500 A region on a variety of grazing incidence spectrographs using a triggered spark source. The analysis of the lines in the 117-216 A region has lead to establishing 42 out of 45 levels of the 4d 8 6p configuration of Te VIII. Four levels of the 4d 8 4f configuration were confirmed and their level values revised, and an additional 4d 8 4f level was established. The 4p 5 4d 10 levels reported earlier were found to be erroneous and new values have been found for them. Eighty seven (87) new lines have been classified in the (4d 9 + 4d 8 5s)-(4d 8 4f + 4p 5 4d 10 + 4d 8 6p) transition array. Hartree-Fock with relativistic corrections (HFR) and parametric least-squares-fitted (lSF) calculations were carried out to interpret the present analysis adequately. (orig.)

  11. Geospatial Virtual Appliances Using Open Source Software

    OpenAIRE

    Schwartze , Christian; Kralisch , Sven; Flügel , Wolfgang-Albert

    2011-01-01

    Part 2: eEnvironment and Cross-Border Services in Digital Agenda for Europe; International audience; The hype on the Cloud is based on promising cost savings if, considering the new service platform concepts (IaaS, PaaS, SaaS) the term comes with, IT resources will be used effectively. Therefore, the trend is moving away from physical systems to more instant and short-term environments and virtualization is increasingly taking on a key role in various system architectures. This is already wel...

  12. Intrinsic functional brain mapping in reconstructed 4D magnetic susceptibility (χ) data space.

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince

    2015-02-15

    By solving an inverse problem of T2*-weighted magnetic resonance imaging for a dynamic fMRI study, we reconstruct a 4D magnetic susceptibility source (χ) data space for intrinsic functional mapping. A 4D phase dataset is calculated from a 4D complex fMRI dataset. The background field and phase wrapping effect are removed by a Laplacian technique. A 3D χ source map is reconstructed from a 3D phase image by a computed inverse MRI (CIMRI) scheme. A 4D χ data space is reconstructed by repeating the 3D χ source reconstruction for each time point. A functional map is calculated by a temporal correlation between voxel signals in the 4D χ space and the timecourse of the task paradigm. With a finger-tapping experiment, we obtain two 3D functional mappings in the 4D magnitude data space and in the reconstructed 4D χ data space. We find that the χ-based functional mapping reveals co-occurrence of bidirectional responses in a 3D activation map that is different from the conventional magnitude-based mapping. The χ-based functional mapping can also be achieved by a 3D deconvolution of a phase activation map. Based on a subject experimental comparison, we show that the 4D χ tomography method could produce a similar χ activation map as obtained by the 3D deconvolution method. By removing the dipole effect and other fMRI technological contaminations, 4D χ tomography provides a 4D χ data space that allows a more direct and truthful functional mapping of a brain activity. Published by Elsevier B.V.

  13. Opening the Black Box of ICT4D: Advancing Our Understanding of ICT4D Partnerships

    Science.gov (United States)

    Park, Sung Jin

    2013-01-01

    The term, Information and Communication Technologies for Development (ICT4D), pertains to programs or projects that strategically use ICTs (e.g. mobile phones, computers, and the internet) as a means toward the socio-economic betterment for the poor in developing contexts. Gaining the political and financial support of the international community…

  14. Geospatial Data Availability for Haiti: An Aid in the Development of GIS-Based Natural Resource Assessments for Conservation Planning.

    Science.gov (United States)

    Maya Quinones; William Gould; Carlos D. Rodriguez-Pedraza

    2007-01-01

    This report documents the type and source of geospatial data available for Haiti. It was compiled to serve as a resource for geographic information system (GIS)-based land management and planning. It will be useful for conservation planning, reforestation efforts, and agricultural extension projects. Our study indicates that there is a great deal of geospatial...

  15. Grid Enabled Geospatial Catalogue Web Service

    Science.gov (United States)

    Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush

    2004-01-01

    Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.

  16. Geospatial Technologies and Geography Education in a Changing World : Geospatial Practices and Lessons Learned

    NARCIS (Netherlands)

    2015-01-01

    Book published by IGU Commission on Geographical Education. It focuses particularly on what has been learned from geospatial projects and research from the past decades of implementing geospatial technologies in formal and informal education.

  17. Geospatial Analysis Framework

    Directory of Open Access Journals (Sweden)

    Elisabeta Antonia Haller

    2010-04-01

    Full Text Available In a computerized society, the volume of data grows unexpectedly, making their processing time a very difficult task. A priority has become the processing of data in useful information and knowledge. Thus we can say that data mining is a result of technological developments. Interpretation of spatial data has made the subject of research over time, reaching now to have a large variety of instruments and software products for representation and interpretation. What we need to understand beyond the facilities offered by one system or another, proprietary or open source solution, is how they work and interact with spatial data.

  18. Modeling photovoltaic diffusion: an analysis of geospatial datasets

    International Nuclear Information System (INIS)

    Davidson, Carolyn; Drury, Easan; Lopez, Anthony; Elmore, Ryan; Margolis, Robert

    2014-01-01

    This study combines address-level residential photovoltaic (PV) adoption trends in California with several types of geospatial information—population demographics, housing characteristics, foreclosure rates, solar irradiance, vehicle ownership preferences, and others—to identify which subsets of geospatial information are the best predictors of historical PV adoption. Number of rooms, heating source and house age were key variables that had not been previously explored in the literature, but are consistent with the expected profile of a PV adopter. The strong relationship provided by foreclosure indicators and mortgage status have less of an intuitive connection to PV adoption, but may be highly correlated with characteristics inherent in PV adopters. Next, we explore how these predictive factors and model performance varies between different Investor Owned Utility (IOU) regions in California, and at different spatial scales. Results suggest that models trained with small subsets of geospatial information (five to eight variables) may provide similar explanatory power as models using hundreds of geospatial variables. Further, the predictive performance of models generally decreases at higher resolution, i.e., below ZIP code level since several geospatial variables with coarse native resolution become less useful for representing high resolution variations in PV adoption trends. However, for California we find that model performance improves if parameters are trained at the regional IOU level rather than the state-wide level. We also find that models trained within one IOU region are generally representative for other IOU regions in CA, suggesting that a model trained with data from one state may be applicable in another state. (letter)

  19. Towards Geo-spatial Information Science in Big Data Era

    Directory of Open Access Journals (Sweden)

    LI Deren

    2016-04-01

    Full Text Available Since the 1990s, with the advent of worldwide information revolution and the development of internet, geospatial information science have also come of age, which pushed forward the building of digital Earth and cyber city. As we entered the 21st century, with the development and integration of global information technology and industrialization, internet of things and cloud computing came into being, human society enters into the big data era. This article covers the key features (ubiquitous, multi-dimension and dynamics, internet+networking, full automation and real-time, from sensing to recognition, crowdsourcing and VGI, and service-oriented of geospatial information science in the big data era and addresses the key technical issues (non-linear four dimensional Earth reference frame system, space based enhanced GNSS, space-air and land unified network communication techniques, on board processing techniques for multi-sources image data, smart interface service techniques for space-borne information, space based resource scheduling and network security, design and developing of a payloads based multi-functional satellite platform. That needs to be resolved to provide a new definition of geospatial information science in big data era. Based on the discussion in this paper, the author finally proposes a new definition of geospatial information science (geomatics, i.e. Geomatics is a multiple discipline science and technology which, using a systematic approach, integrates all the means for spatio-temporal data acquisition, information extraction, networked management, knowledge discovering, spatial sensing and recognition, as well as intelligent location based services of any physical objects and human activities around the earth and its environment. Starting from this new definition, geospatial information science will get much more chances and find much more tasks in big data era for generation of smart earth and smart city . Our profession

  20. Spectral analysis of the 4d96s configuration in eight times ionized xenon, Xe IX

    International Nuclear Information System (INIS)

    Raineri, M.; Gallardo, M.; Reyna Almandos, J.G.

    2006-01-01

    A capillary light source was used to observe the spectrum of eight times ionized xenon, Xe IX, in the vacuum ultraviolet range, 270-2000 A. Sixteen transitions have been identified as combinations between energy levels of the 4d 9 6s with 4d 9 5p configuration, and all 4d 9 6s levels have been determined. The present analysis is based on an accurate extrapolation of energy parameters and experimental energy level values in the Pd I isoelectronic sequence. The energy parameters were obtained with Hartree-Fock relativistic calculations. Least-squares parametric calculation has been carried out to study the fit between experimental and theoretical values

  1. Learning R for geospatial analysis

    CERN Document Server

    Dorman, Michael

    2014-01-01

    This book is intended for anyone who wants to learn how to efficiently analyze geospatial data with R, including GIS analysts, researchers, educators, and students who work with spatial data and who are interested in expanding their capabilities through programming. The book assumes familiarity with the basic geographic information concepts (such as spatial coordinates), but no prior experience with R and/or programming is required. By focusing on R exclusively, you will not need to depend on any external software-a working installation of R is all that is necessary to begin.

  2. Integration of Geospatial Science in Teacher Education

    Science.gov (United States)

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  3. The new geospatial tools: global transparency enhancing safeguards verification

    Energy Technology Data Exchange (ETDEWEB)

    Pabian, Frank Vincent [Los Alamos National Laboratory

    2010-09-16

    This paper focuses on the importance and potential role of the new, freely available, geospatial tools for enhancing IAEA safeguards and how, together with commercial satellite imagery, they can be used to promote 'all-source synergy'. As additional 'open sources', these new geospatial tools have heralded a new era of 'global transparency' and they can be used to substantially augment existing information-driven safeguards gathering techniques, procedures, and analyses in the remote detection of undeclared facilities, as well as support ongoing monitoring and verification of various treaty (e.g., NPT, FMCT) relevant activities and programs. As an illustration of how these new geospatial tools may be applied, an original exemplar case study provides how it is possible to derive value-added follow-up information on some recent public media reporting of a former clandestine underground plutonium production complex (now being converted to a 'Tourist Attraction' given the site's abandonment by China in the early 1980s). That open source media reporting, when combined with subsequent commentary found in various Internet-based Blogs and Wikis, led to independent verification of the reporting with additional ground truth via 'crowdsourcing' (tourist photos as found on 'social networking' venues like Google Earth's Panoramio layer and Twitter). Confirmation of the precise geospatial location of the site (along with a more complete facility characterization incorporating 3-D Modeling and visualization) was only made possible following the acquisition of higher resolution commercial satellite imagery that could be correlated with the reporting, ground photos, and an interior diagram, through original imagery analysis of the overhead imagery.

  4. The new geospatial tools: global transparency enhancing safeguards verification

    International Nuclear Information System (INIS)

    Pabian, Frank Vincent

    2010-01-01

    This paper focuses on the importance and potential role of the new, freely available, geospatial tools for enhancing IAEA safeguards and how, together with commercial satellite imagery, they can be used to promote 'all-source synergy'. As additional 'open sources', these new geospatial tools have heralded a new era of 'global transparency' and they can be used to substantially augment existing information-driven safeguards gathering techniques, procedures, and analyses in the remote detection of undeclared facilities, as well as support ongoing monitoring and verification of various treaty (e.g., NPT, FMCT) relevant activities and programs. As an illustration of how these new geospatial tools may be applied, an original exemplar case study provides how it is possible to derive value-added follow-up information on some recent public media reporting of a former clandestine underground plutonium production complex (now being converted to a 'Tourist Attraction' given the site's abandonment by China in the early 1980s). That open source media reporting, when combined with subsequent commentary found in various Internet-based Blogs and Wikis, led to independent verification of the reporting with additional ground truth via 'crowdsourcing' (tourist photos as found on 'social networking' venues like Google Earth's Panoramio layer and Twitter). Confirmation of the precise geospatial location of the site (along with a more complete facility characterization incorporating 3-D Modeling and visualization) was only made possible following the acquisition of higher resolution commercial satellite imagery that could be correlated with the reporting, ground photos, and an interior diagram, through original imagery analysis of the overhead imagery.

  5. New prospective 4D-CT for mitigating the effects of irregular respiratory motion

    Science.gov (United States)

    Pan, Tinsu; Martin, Rachael M.; Luo, Dershan

    2017-08-01

    Artifact caused by irregular respiration is a major source of error in 4D-CT imaging. We propose a new prospective 4D-CT to mitigate this source of error without new hardware, software or off-line data-processing on the GE CT scanner. We utilize the cine CT scan in the design of the new prospective 4D-CT. The cine CT scan at each position can be stopped by the operator when an irregular respiration occurs, and resumed when the respiration becomes regular. This process can be repeated at one or multiple scan positions. After the scan, a retrospective reconstruction is initiated on the CT console to reconstruct only the images corresponding to the regular respiratory cycles. The end result is a 4D-CT free of irregular respiration. To prove feasibility, we conducted a phantom and six patient studies. The artifacts associated with the irregular respiratory cycles could be removed from both the phantom and patient studies. A new prospective 4D-CT scanning and processing technique to mitigate the impact of irregular respiration in 4D-CT has been demonstrated. This technique can save radiation dose because the repeat scans are only at the scan positions where an irregular respiration occurs. Current practice is to repeat the scans at all positions. There is no cost to apply this technique because it is applicable on the GE CT scanner without new hardware, software or off-line data-processing.

  6. Supersymmetry breaking in 4D string theory

    International Nuclear Information System (INIS)

    De la Macorra, A.; Ross, G.G.

    1995-01-01

    We construct a (locally supersymmetric) four-fermion effective lagrangian description of the strong binding effects responsible for the formation of a gaugino condensate, extending the analysis to include the multiple moduli of orbifold compactification. Using this to estimate the binding we find that supersymmetry is broken and a phenomenologically realistic value for the gravitino mass and gauge coupling constant at the unification scale with only one gaugino condensate may be obtained. The main source for supersymmetry breaking is the VEV of the auxiliary field of the dilaton h s (i.e. h S >>h T , where T are moduli fields). By studying the scalar potential we find either that the vacuum expectation values of the moduli have a common value related to the vacuum expectation value of the dilaton or that they take the values of the dual invariant points. A squeezed orbifold can thus naturally be obtained, allowing for the possibility of minimal string unification. We include chiral matter fields and derive the scalar potential up to one-loop level. The one-loop potential is responsible for stabilising the scalar potential for vanishing vacuum expectation values of the chiral matter fields. We then calculate the soft supersymmetry breaking parameters in the visible sector. Finally we show that with a suitable choice of superpotential it is possible to cancel the cosmological constant while having supersymmetry broken. ((orig.))

  7. Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics

    Science.gov (United States)

    Singh, R.; Bermudez, L. E.

    2013-12-01

    Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web

  8. GSKY: A scalable distributed geospatial data server on the cloud

    Science.gov (United States)

    Rozas Larraondo, Pablo; Pringle, Sean; Antony, Joseph; Evans, Ben

    2017-04-01

    Earth systems, environmental and geophysical datasets are an extremely valuable sources of information about the state and evolution of the Earth. Being able to combine information coming from different geospatial collections is in increasing demand by the scientific community, and requires managing and manipulating data with different formats and performing operations such as map reprojections, resampling and other transformations. Due to the large data volume inherent in these collections, storing multiple copies of them is unfeasible and so such data manipulation must be performed on-the-fly using efficient, high performance techniques. Ideally this should be performed using a trusted data service and common system libraries to ensure wide use and reproducibility. Recent developments in distributed computing based on dynamic access to significant cloud infrastructure opens the door for such new ways of processing geospatial data on demand. The National Computational Infrastructure (NCI), hosted at the Australian National University (ANU), has over 10 Petabytes of nationally significant research data collections. Some of these collections, which comprise a variety of observed and modelled geospatial data, are now made available via a highly distributed geospatial data server, called GSKY (pronounced [jee-skee]). GSKY supports on demand processing of large geospatial data products such as satellite earth observation data as well as numerical weather products, allowing interactive exploration and analysis of the data. It dynamically and efficiently distributes the required computations among cloud nodes providing a scalable analysis framework that can adapt to serve large number of concurrent users. Typical geospatial workflows handling different file formats and data types, or blending data in different coordinate projections and spatio-temporal resolutions, is handled transparently by GSKY. This is achieved by decoupling the data ingestion and indexing process as

  9. Arc4nix: A cross-platform geospatial analytical library for cluster and cloud computing

    Science.gov (United States)

    Tang, Jingyin; Matyas, Corene J.

    2018-02-01

    Big Data in geospatial technology is a grand challenge for processing capacity. The ability to use a GIS for geospatial analysis on Cloud Computing and High Performance Computing (HPC) clusters has emerged as a new approach to provide feasible solutions. However, users lack the ability to migrate existing research tools to a Cloud Computing or HPC-based environment because of the incompatibility of the market-dominating ArcGIS software stack and Linux operating system. This manuscript details a cross-platform geospatial library "arc4nix" to bridge this gap. Arc4nix provides an application programming interface compatible with ArcGIS and its Python library "arcpy". Arc4nix uses a decoupled client-server architecture that permits geospatial analytical functions to run on the remote server and other functions to run on the native Python environment. It uses functional programming and meta-programming language to dynamically construct Python codes containing actual geospatial calculations, send them to a server and retrieve results. Arc4nix allows users to employ their arcpy-based script in a Cloud Computing and HPC environment with minimal or no modification. It also supports parallelizing tasks using multiple CPU cores and nodes for large-scale analyses. A case study of geospatial processing of a numerical weather model's output shows that arcpy scales linearly in a distributed environment. Arc4nix is open-source software.

  10. Gamification and geospatial health management

    Science.gov (United States)

    Wortley, David

    2014-06-01

    Sensor and Measurement technologies are rapidly developing for many consumer applications which have the potential to make a major impact on business and society. One of the most important areas for building a sustainable future is in health management. This opportunity arises because of the growing popularity of lifestyle monitoring devices such as the Jawbone UP bracelet, Nike Fuelband and Samsung Galaxy GEAR. These devices measure physical activity and calorie consumption and, when visualised on mobile and portable devices, enable users to take more responsibility for their personal health. This presentation looks at how the process of gamification can be applied to develop important geospatial health management applications that could not only improve the health of nations but also significantly address some of the issues in global health such as the ageing society and obesity.

  11. Gamification and geospatial health management

    International Nuclear Information System (INIS)

    Wortley, David

    2014-01-01

    Sensor and Measurement technologies are rapidly developing for many consumer applications which have the potential to make a major impact on business and society. One of the most important areas for building a sustainable future is in health management. This opportunity arises because of the growing popularity of lifestyle monitoring devices such as the Jawbone UP bracelet, Nike Fuelband and Samsung Galaxy GEAR. These devices measure physical activity and calorie consumption and, when visualised on mobile and portable devices, enable users to take more responsibility for their personal health. This presentation looks at how the process of gamification can be applied to develop important geospatial health management applications that could not only improve the health of nations but also significantly address some of the issues in global health such as the ageing society and obesity

  12. Visualization and Ontology of Geospatial Intelligence

    Science.gov (United States)

    Chan, Yupo

    Recent events have deepened our conviction that many human endeavors are best described in a geospatial context. This is evidenced in the prevalence of location-based services, as afforded by the ubiquitous cell phone usage. It is also manifested by the popularity of such internet engines as Google Earth. As we commute to work, travel on business or pleasure, we make decisions based on the geospatial information provided by such location-based services. When corporations devise their business plans, they also rely heavily on such geospatial data. By definition, local, state and federal governments provide services according to geographic boundaries. One estimate suggests that 85 percent of data contain spatial attributes.

  13. Biokinetic Analysis and Metabolic Fate of 2,4-D in 2,4-D-Resistant Soybean (Glycine max).

    Science.gov (United States)

    Skelton, Joshua J; Simpson, David M; Peterson, Mark A; Riechers, Dean E

    2017-07-26

    The Enlist weed control system allows the use of 2,4-D in soybean but slight necrosis in treated leaves may be observed in the field. The objectives of this research were to measure and compare uptake, translocation, and metabolism of 2,4-D in Enlist (E, resistant) and non-AAD-12 transformed (NT, sensitive) soybeans. The adjuvant from the Enlist Duo herbicide formulation (ADJ) increased 2,4-D uptake (36%) and displayed the fastest rate of uptake (U 50 = 0.2 h) among treatments. E soybean demonstrated a faster rate of 2,4-D metabolism (M 50 = 0.2 h) compared to NT soybean, but glyphosate did not affect 2,4-D metabolism. Metabolites of 2,4-D in E soybean were qualitatively different than NT. Applying 2,4-D-ethylhexyl ester instead of 2,4-D choline (a quaternary ammonium salt) eliminated visual injury to E soybean, likely due to the time required for initial de-esterification and bioactivation. Excessive 2,4-D acid concentrations in E soybean resulting from ADJ-increased uptake may significantly contribute to foliar injury.

  14. INTEGRATING GEOSPATIAL TECHNOLOGIES AND SECONDARY STUDENT PROJECTS: THE GEOSPATIAL SEMESTER

    Directory of Open Access Journals (Sweden)

    Bob Kolvoord

    2012-12-01

    Full Text Available Resumen:El Semestre Geoespacial es una actividad de educación geográfica centrada en que los estudiantes del último curso de secundaria en los institutos norteamericanos, adquieran competencias y habilidades específicas en sistemas de información geográfica, GPS y teledetección. A través de una metodología de aprendizaje basado en proyectos, los alumnos se motivan e implican en la realización de trabajos de investigación en los que analizan, e incluso proponen soluciones, diferentes procesos, problemas o cuestiones de naturaleza espacial. El proyecto está coordinado por la Universidad James Madison y lleva siete años implantándose en diferentes institutos del Estado de Virginia, implicando a más de 20 centros educativos y 1.500 alumnos. Los alumnos que superan esta asignatura de la enseñanza secundaria obtienen la convalidación de determinados créditos académicos de la Universidad de referencia.Palabras clave:Sistemas de información geográfica, enseñanza, didáctica de la geografía, semestre geoespacial.Abstract:The Geospatial Semester is a geographical education activity focused on students in their final year of secondary schools in the U.S., acquiring specific skills in GIS, GPS and remote sensing. Through a methodology for project-based learning, students are motivated and involved in conducting research using geographic information systems and analyze, and even propose solutions, different processes, problems or issues spatial in nature. The Geospatial Semester university management not only ensures proper coaching, guidance and GIS training for teachers of colleges, but has established a system whereby students who pass this course of secondary education gain the recognition of certain credits from the University.Key words:Geographic information system, teaching, geographic education, geospatial semester. Résumé:Le semestre géospatial est une activité axée sur l'éducation géographique des étudiants en derni

  15. National Geospatial-Intelligence Agency Academic Research Program

    Science.gov (United States)

    Loomer, S. A.

    2004-12-01

    "Know the Earth.Show the Way." In fulfillment of its vision, the National Geospatial-Intelligence Agency (NGA) provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. To achieve this, NGA conducts a multi-disciplinary program of basic research in geospatial intelligence topics through grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program (NARP) are: - NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. - Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. - Director of Central Intelligence Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how other researchers and institutions can apply for grants under the program.

  16. Adoption of Geospatial Systems towards evolving Sustainable Himalayan Mountain Development

    Science.gov (United States)

    Murthy, M. S. R.; Bajracharya, B.; Pradhan, S.; Shestra, B.; Bajracharya, R.; Shakya, K.; Wesselmann, S.; Ali, M.; Bajracharya, S.; Pradhan, S.

    2014-11-01

    Natural resources dependence of mountain communities, rapid social and developmental changes, disaster proneness and climate change are conceived as the critical factors regulating sustainable Himalayan mountain development. The Himalayan region posed by typical geographic settings, diverse physical and cultural diversity present a formidable challenge to collect and manage data, information and understands varied socio-ecological settings. Recent advances in earth observation, near real-time data, in-situ measurements and in combination of information and communication technology have transformed the way we collect, process, and generate information and how we use such information for societal benefits. Glacier dynamics, land cover changes, disaster risk reduction systems, food security and ecosystem conservation are a few thematic areas where geospatial information and knowledge have significantly contributed to informed decision making systems over the region. The emergence and adoption of near-real time systems, unmanned aerial vehicles (UAV), board-scale citizen science (crowd-sourcing), mobile services and mapping, and cloud computing have paved the way towards developing automated environmental monitoring systems, enhanced scientific understanding of geophysical and biophysical processes, coupled management of socio-ecological systems and community based adaptation models tailored to mountain specific environment. There are differentiated capacities among the ICIMOD regional member countries with regard to utilization of earth observation and geospatial technologies. The region can greatly benefit from a coordinated and collaborative approach to capture the opportunities offered by earth observation and geospatial technologies. The regional level data sharing, knowledge exchange, and Himalayan GEO supporting geospatial platforms, spatial data infrastructure, unique region specific satellite systems to address trans-boundary challenges would go a long way in

  17. The site of 2,4-D accumulation in Euphorbia helioscopia L

    International Nuclear Information System (INIS)

    Sakri, F.A.

    1990-01-01

    The distribution and accumulation of the herbicide 2,4-D have been studied by 14 C labelling and by tracing due to the autoradiographic method in young plants of Euphorbia helioscopia L. (milkweed). Milkweed plants were grown in a greenhouse at 30deg C under 16 hrs. photoperiod for about two weeks. The two lower opposite leaves, the cotyledons, were used as sites for 14 C-labelled 2,4-D application. The autoradiograph of the whole plants revealed that labelled 2,4-D movement was predominantly basipetal into the root as well as acropetal into the shoot apex. The 2,4-D movement has by-passed all the matured leaves in its movement from active sources to active sinks. The microautoradiography indicated that 2,4-D can accumulate to a considerable amount both in the parenchyma of the pith and in the cortical cells. It is concluded that 2,4-D is transported through phloem cells when applied to the healthy long leaves. (author)

  18. Beyond ICT4D: new media research in Uganda

    NARCIS (Netherlands)

    Lovink, G.

    2011-01-01

    Beyond ICT4D: New Media Research in Uganda is a collection of ethnographic reports from diverse perspectives of those living at the other end of the African ICT pyramid. Crucially, these texts refocus on the so-called "ICT4D" debate away from the standard western lens, which depicts users in the

  19. Ultrafast Digital Printing toward 4D Shape Changing Materials.

    Science.gov (United States)

    Huang, Limei; Jiang, Ruiqi; Wu, Jingjun; Song, Jizhou; Bai, Hao; Li, Bogeng; Zhao, Qian; Xie, Tao

    2017-02-01

    Ultrafast 4D printing (printing converts the structure into 3D. An additional dimension can be incorporated by choosing the printing precursors. The process overcomes the speed limiting steps of typical 3D (4D) printing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Geospatial Information System Capability Maturity Models

    Science.gov (United States)

    2017-06-01

    To explore how State departments of transportation (DOTs) evaluate geospatial tool applications and services within their own agencies, particularly their experiences using capability maturity models (CMMs) such as the Urban and Regional Information ...

  1. Ventilation measured on clinical 4D-CBCT

    DEFF Research Database (Denmark)

    Rørdam Jensen, Kasper; Brink, Carsten; Hansen, Olfred

    2017-01-01

    as a gold standard the current study investigates if image improvements increase the accuracy of 4D-CBCT measured ventilation. MATERIAL AND METHODS: The study consists of 4D-CBCT and 4D-CT scans of 20 non-small-cell lung cancer patients. Raw CBCT projections were subjected to a standard or an improved...... and the SART reconstruction increased the accuracy of CBCT ventilation and this result can be a stepping stone to extract dynamic changes in respiration pattern of patients during radiotherapy....

  2. A geospatial search engine for discovering multi-format geospatial data across the web

    Science.gov (United States)

    Christopher Bone; Alan Ager; Ken Bunzel; Lauren Tierney

    2014-01-01

    The volume of publically available geospatial data on the web is rapidly increasing due to advances in server-based technologies and the ease at which data can now be created. However, challenges remain with connecting individuals searching for geospatial data with servers and websites where such data exist. The objective of this paper is to present a publically...

  3. Nebhydro: Sharing Geospatial Data to Supportwater Management in Nebraska

    Science.gov (United States)

    Kamble, B.; Irmak, A.; Hubbard, K.; Deogun, J.; Dvorak, B.

    2012-12-01

    Recent advances in web-enabled geographical technologies have the potential to make a dramatic impact on development of highly interactive spatial applications on the web for visualization of large-scale geospatial data by water resources and irrigation scientists. Spatial and point scale water resources data visualization are an emerging and challenging application domain. Query based visual explorations of geospatial hydrological data can play an important role in stimulating scientific hypotheses and seeking causal relationships among hydro variables. The Nebraska Hydrological Information System (NebHydro) utilizes ESRI's ArcGIS server technology to increase technological awareness among farmers, irrigation managers and policy makers. Web-based geospatial applications are an effective way to expose scientific hydrological datasets to the research community and the public. NebHydro uses Adobe Flex technology to offer an online visualization and data analysis system for presentation of social and economic data. Internet mapping services is an integrated product of GIS and Internet technologies; it is a favored solution to achieve the interoperability of GIS. The development of Internet based GIS services in the state of Nebraska showcases the benefits of sharing geospatial hydrological data among agencies, resource managers and policy makers. Geospatial hydrological Information (Evapotranspiration from Remote Sensing, vegetation indices (NDVI), USGS Stream gauge data, Climatic data etc.) is generally generated through model simulation (METRIC, SWAP, Linux, Python based scripting etc). Information is compiled into and stored within object oriented relational spatial databases using a geodatabase information model that supports the key data types needed by applications including features, relationships, networks, imagery, terrains, maps and layers. The system provides online access, querying, visualization, and analysis of the hydrological data from several sources

  4. Mograph Cinema 4d untuk Menunjang Efek Visual Video Klip

    Directory of Open Access Journals (Sweden)

    Ardiyan Ardiyan

    2010-10-01

    Full Text Available This research is to talk about the advantages of MoGraph as one reliability feature in 3D modeling application, 4D Cinema as the implemented example in Cinta Laura video clip. The advantage in MoGraph is the ability to create multiple object moving effect accordingly and (or randomly easily and efficiently, also supported by the render quality of Cinema 4D that clean and relatively fast. The advantage made MoGraph Cinema 4D is suitable to use to enrich the visual effect a motion graphic work. The quality is hoped to support MoGraph usage as more creative. Regarding today’s visual variation is effected by the digital technology development, therefore the implementation of MoGraph Conema 4D is hoped to be optimally supporting creativity in making video clip in motion graphic art content. 

  5. 4D Applications of GIS in Construction Management

    Directory of Open Access Journals (Sweden)

    A. Chaitanya Kumar

    2017-01-01

    Full Text Available Construction industries broadly involve different set of construction activities which are to be executed as per schedule and the major software used for scheduling is PRIMAVERA and Microsoft Project (MSP. But the software still lacks a feature of providing spatial aspects of information in construction schedule. Recently, advanced technology like 4D GIS plays a major role in overcoming the limitation of the software. 4D GIS technology includes integration of 2D drawings from AutoCAD and schedules prepared in PRIMAVERA software. In the present study, a multistair residential building has been selected. ARCMAP 10.2 is used for interlinking of schedules as well as drawings and ARCSCENE has been used for developing 4D view. This linkage between scheduled activities and respective drawings in GIS helps in identifying construction sequences and also in detecting logical errors that occur in project schedules. The developed 4D view provides better visualization of construction progress of a project.

  6. Play as Freedom : Implications for ICT4D

    OpenAIRE

    Ferreira, Pedro

    2015-01-01

    Information and Communication Tech nologies for Development (ICT4D) deals with understanding the relationship between modern technology use and social and economic development. While play may not appear as an immediate concern to the field, a recent body of work has emerged questioning the role of play in ICT4D and the reasons behind its apparent dismissal. Some have even argued that aspects of pleasure and enjoyment get only marginal treatment within academic studies of technology more gener...

  7. Potential for wind extraction from 4D-Var assimilation of aerosols and moisture

    Science.gov (United States)

    Zaplotnik, Žiga; Žagar, Nedjeljka

    2017-04-01

    We discuss the potential of the four-dimensional variational data assimilation (4D-Var) to retrieve the unobserved wind field from observations of atmospheric tracers and the mass field through internal model dynamics and the multivariate relationships in the background-error term for 4D-Var. The presence of non-linear moist dynamics makes the wind retrieval from tracers very difficult. On the other hand, it has been shown that moisture observations strongly influence both tropical and mid-latitude wind field in 4D-Var. We present an intermediate complexity model that describes nonlinear interactions between the wind, temperature, aerosols and moisture including their sinks and sources in the framework of the so-called first baroclinic mode atmosphere envisaged by A. Gill. Aerosol physical processes, which are included in the model, are the non-linear advection, diffusion and sources and sinks that exist as dry and wet deposition and diffusion. Precipitation is parametrized according to the Betts-Miller scheme. The control vector for 4D-Var includes aerosols, moisture and the three dynamical variables. The former is analysed univariately whereas wind field and mass field are analysed in a multivariate fashion taking into account quasi-geostrophic and unbalanced dynamics. The OSSE type of studies are performed for the tropical region to assess the ability of 4D-Var to extract wind-field information from the time series of observations of tracers as a function of the flow nonlinearity, the observations density and the length of the assimilation window (12 hours and 24 hours), in dry and moist environment. Results show that the 4D-Var assimilation of aerosols and temperature data is beneficial for the wind analysis with analysis errors strongly dependent on the moist processes and reliable background-error covariances.

  8. From Geomatics to Geospatial Intelligent Service Science

    Directory of Open Access Journals (Sweden)

    LI Deren

    2017-10-01

    Full Text Available The paper reviews the 60 years of development from traditional surveying and mapping to today's geospatial intelligent service science.The three important stages of surveying and mapping, namely analogue,analytical and digital stage are summarized.The author introduces the integration of GNSS,RS and GIS(3S,which forms the rise of geospatial informatics(Geomatics.The development of geo-spatial information science in digital earth era is analyzed,and the latest progress of geo-spatial information science towards real-time intelligent service in smart earth era is discussed.This paper focuses on the three development levels of "Internet plus" spatial information intelligent service.In the era of big data,the traditional geomatics will surely take advantage of the integration of communication,navigation,remote sensing,artificial intelligence,virtual reality and brain cognition science,and become geospatial intelligent service science,thereby making contributions to national economy,defense and people's livelihood.

  9. ISSUES ON BUILDING KAZAKHSTAN GEOSPATIAL PORTAL TO IMPLEMENT E-GOVERNMENT

    Directory of Open Access Journals (Sweden)

    K. Sagadiyev

    2016-06-01

    Full Text Available A main issue in developing e-government is about how to integrate and organize many complicated processes and different stakeholders. Interestingly geospatial information provides an efficient framework to integrate and organized them. In particular, it is very useful to integrate the process of land management in e-government with geospatial information framework, since most of land management tasks are related with geospatial properties. In this paper, we present a use-case on the e-government project in Kazakhstan for land management. We develop a geoportal to connect many tasks and different users via geospatial information framework. This geoportal is based on open source geospatial software including GeoServer, PostGIS, and OpenLayers. With this geoportal, we expect three achievements as follows. First we establish a transparent governmental process, which is one of main goal of e-government. Every stakeholder monitors what is happening in land management process. Second, we can significantly reduce the time and efforts in the government process. For example, a grant procedure for a building construction has taken more than one year with more than 50 steps. It is expected that this procedure would be reduced to 2 weeks by the geoportal framework. Third we provide a collaborative environment between different governmental structures via the geoportal, while many conflicts and mismatches have been a critical issue of governmental administration processes.

  10. Issues on Building Kazakhstan Geospatial Portal to Implement E-Government

    Science.gov (United States)

    Sagadiyev, K.; Kang, H. K.; Li, K. J.

    2016-06-01

    A main issue in developing e-government is about how to integrate and organize many complicated processes and different stakeholders. Interestingly geospatial information provides an efficient framework to integrate and organized them. In particular, it is very useful to integrate the process of land management in e-government with geospatial information framework, since most of land management tasks are related with geospatial properties. In this paper, we present a use-case on the e-government project in Kazakhstan for land management. We develop a geoportal to connect many tasks and different users via geospatial information framework. This geoportal is based on open source geospatial software including GeoServer, PostGIS, and OpenLayers. With this geoportal, we expect three achievements as follows. First we establish a transparent governmental process, which is one of main goal of e-government. Every stakeholder monitors what is happening in land management process. Second, we can significantly reduce the time and efforts in the government process. For example, a grant procedure for a building construction has taken more than one year with more than 50 steps. It is expected that this procedure would be reduced to 2 weeks by the geoportal framework. Third we provide a collaborative environment between different governmental structures via the geoportal, while many conflicts and mismatches have been a critical issue of governmental administration processes.

  11. Geospatial Information Service System Based on GeoSOT Grid & Encoding

    Directory of Open Access Journals (Sweden)

    LI Shizhong

    2016-12-01

    Full Text Available With the rapid development of the space and earth observation technology, it is important to establish a multi-source, multi-scale and unified cross-platform reference for global data. In practice, the production and maintenance of geospatial data are scattered in different units, and the standard of the data grid varies between departments and systems. All these bring out the disunity of standards among different historical periods or orgnizations. Aiming at geospatial information security library for the national high resolution earth observation, there are some demands for global display, associated retrieval and template applications and other integrated services for geospatial data. Based on GeoSOT grid and encoding theory system, "geospatial information security library information of globally unified grid encoding management" data subdivision organization solutions have been proposed; system-level analyses, researches and designs have been carried out. The experimental results show that the data organization and management method based on GeoSOT can significantly improve the overall efficiency of the geospatial information security service system.

  12. Towards the Development of a Taxonomy for Visualisation of Streamed Geospatial Data

    Science.gov (United States)

    Sibolla, B. H.; Van Zyl, T.; Coetzee, S.

    2016-06-01

    Geospatial data has very specific characteristics that need to be carefully captured in its visualisation, in order for the user and the viewer to gain knowledge from it. The science of visualisation has gained much traction over the last decade as a response to various visualisation challenges. During the development of an open source based, dynamic two-dimensional visualisation library, that caters for geospatial streaming data, it was found necessary to conduct a review of existing geospatial visualisation taxonomies. The review was done in order to inform the design phase of the library development, such that either an existing taxonomy can be adopted or extended to fit the needs at hand. The major challenge in this case is to develop dynamic two dimensional visualisations that enable human interaction in order to assist the user to understand the data streams that are continuously being updated. This paper reviews the existing geospatial data visualisation taxonomies that have been developed over the years. Based on the review, an adopted taxonomy for visualisation of geospatial streaming data is presented. Example applications of this taxonomy are also provided. The adopted taxonomy will then be used to develop the information model for the visualisation library in a further study.

  13. Progress in selection for sodium chloride, 2,4-D dichlorophenoxy acetic acid (2,4-D) and streptomycin tolerance in Citrus sinensis ovular callus lines

    International Nuclear Information System (INIS)

    Kochba, J.; Spiegel-Roy, P.

    1982-01-01

    Citrus sinensis (cultivar Shamouti) nucellar embryogenic callus lines with greatly increased tolerance to salinity (NaCl), 2,4-D and streptomycin were selected. Selected lines were found stable after removal of selection pressure. Gamma irradiation at 8-16 kR was also employed and found to speed up selections. Embryos from NaCl and 2,4-D tolerant lines also showed increased tolerance. Embryogenesis in selected lines, suppressed during selection procedures, was regained by growing cultures in the presence of galactose or lactose as the sole carbon source. A schedule was worked out furthering development of embryos into plantlets. Conditions for adventive shoot formation from embryonic shoot segments were established, thus allowing cloning of embryos. A procedure was worked out for suspension culture and agar plating of cell groups. (author)

  14. Geospatial technology perspectives for mining vis-a-vis sustainable forest ecosystems

    Directory of Open Access Journals (Sweden)

    Goparaju Laxmi

    2017-06-01

    Full Text Available Forests, the backbone of biogeochemical cycles and life supporting systems, are under severe pressure due to varied anthropogenic activities. Mining activities are one among the major reasons for forest destruction questioning the survivability and sustainability of flora and fauna existing in that area. Thus, monitoring and managing the impact of mining activities on natural resources at regular intervals is necessary to check the status of their depleted conditions, and to take up restoration and conservative measurements. Geospatial technology provides means to identify the impact of different mining operations on forest ecosystems and helps in proposing initiatives for safeguarding the forest environment. In this context, the present study highlights the problems related to mining in forest ecosystems and elucidates how geospatial technology can be employed at various stages of mining activities to achieve a sustainable forest ecosystem. The study collates information from various sources and highlights the role of geospatial technology in mining industries and reclamation process.

  15. FOSS Tools and Applications for Education in Geospatial Sciences

    Directory of Open Access Journals (Sweden)

    Marco Ciolli

    2017-07-01

    Full Text Available While the theory and implementation of geographic information systems (GIS have a history of more than 50 years, the development of dedicated educational tools and applications in this field is more recent. This paper presents a free and open source software (FOSS approach for education in the geospatial disciplines, which has been used over the last 20 years at two Italian universities. The motivations behind the choice of FOSS are discussed with respect to software availability and development, as well as educational material licensing. Following this philosophy, a wide range of educational tools have been developed, covering topics from numerical cartography and GIS principles to the specifics regarding different systems for the management and analysis of spatial data. Various courses have been implemented for diverse recipients, ranging from professional training workshops to PhD courses. Feedback from the students of those courses provides an invaluable assessment of the effectiveness of the approach, supplying at the same time directions for further improvement. Finally, lessons learned after 20 years are discussed, highlighting how the management of educational materials can be difficult even with a very open approach to licensing. Overall, the use of free and open source software for geospatial (FOSS4G science provides a clear advantage over other approaches, not only simplifying software and data management, but also ensuring that all of the information related to system design and implementation is available.

  16. 4d N=1 from 6d (1,0)

    Energy Technology Data Exchange (ETDEWEB)

    Razamat, Shlomo S. [Physics Department, Technion,Haifa, 32000 (Israel); Vafa, Cumrun [Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States); Zafrir, Gabi [Physics Department, Technion,Haifa, 32000 (Israel); Kavli IPMU (WPI), UTIAS, the University of Tokyo,Kashiwa, Chiba 277-8583 (Japan)

    2017-04-11

    We study the geometry of 4d N=1 SCFT’s arising from compactification of 6d (1,0) SCFT’s on a Riemann surface. We show that the conformal manifold of the resulting theory is characterized, in addition to moduli of complex structure of the Riemann surface, by the choice of a connection for a vector bundle on the surface arising from flavor symmetries in 6d. We exemplify this by considering the case of 4d N=1 SCFT’s arising from M5 branes probing ℤ{sub k} singularity compactified on a Riemann surface. In particular, we study in detail the four dimensional theories arising in the case of two M5 branes on ℤ{sub 2} singularity. We compute the conformal anomalies and indices of such theories in 4d and find that they are consistent with expectations based on anomaly and the moduli structure derived from the 6 dimensional perspective.

  17. Cinema 4D Dalam Pipeline Produksi Serial Animasi

    Directory of Open Access Journals (Sweden)

    Ardiyansah Ardiyansah

    2011-04-01

    Full Text Available Cinema 4D is best known as software that is efficient in render time. This is very beneficial especially for those who engaged in animated projects with tight deadlines and require work time efficiency, such as serial project. In addition to time, in the animated series production pipeline also generally require various items of work that involves a lot of resources implemented in parallel. This is to avoid delays to the overall project progress whenever a work item suffers setback due to any reason. Cinema 4D as a tool, allowing a project carried out with the most efficient method in accordance with needs, and flexibility that is the appeal of Cinema 4D as well as strength in the context of the animated series production. 

  18. Master-Slave Synchronization of 4D Hyperchaotic Rabinovich Systems

    Directory of Open Access Journals (Sweden)

    Ke Ding

    2018-01-01

    Full Text Available This paper is concerned with master-slave synchronization of 4D hyperchaotic Rabinovich systems. Compared with some existing papers, this paper has two contributions. The first contribution is that the nonlinear terms of error systems remained which inherit nonlinear features from master and slave 4D hyperchaotic Rabinovich systems, rather than discarding nonlinear features of original hyperchaotic Rabinovich systems and eliminating those nonlinear terms to derive linear error systems as the control methods in some existing papers. The second contribution is that the synchronization criteria of this paper are global rather than local synchronization results in some existing papers. In addition, those synchronization criteria and control methods for 4D hyperchaotic Rabinovich systems are extended to investigate the synchronization of 3D chaotic Rabinovich systems. The effectiveness of synchronization criteria is illustrated by three simulation examples.

  19. Topological wave functions and the 4D-5D lift

    OpenAIRE

    Gao, Peng; Pioline, Boris

    2008-01-01

    We revisit the holomorphic anomaly equations satisfied by the topological string amplitude from the perspective of the 4D-5D lift, in the context of ''magic'' N=2 supergravity theories. In particular, we interpret the Gopakumar-Vafa relation between 5D black hole degeneracies and the topological string amplitude as the result of a canonical transformation from 4D to 5D charges. Moreover we use the known Bekenstein-Hawking entropy of 5D black holes to constrain the asymptotic behavior of the t...

  20. The three dimensional dual of 4D chirality

    International Nuclear Information System (INIS)

    Porrati, M.; Girardello, L.

    2009-01-01

    Chiral gauge theories can be defined in four-dimensional Anti de Sitter space, but AdS boundary conditions explicitly break the chiral symmetry in a specific, well defined manner, which in turns results in an anomalous Ward identity. When the 4D theory admits a dual description in terms of a 3D CFT, the 3D dual of the broken chiral symmetry is a certain double-trace deformation of the CFT, which produces the same anomalous chiral Ward identities that obtains in the 4D bulk theory.

  1. Beyond ICT4D: new media research in Uganda

    OpenAIRE

    Lovink, G.

    2011-01-01

    Beyond ICT4D: New Media Research in Uganda is a collection of ethnographic reports from diverse perspectives of those living at the other end of the African ICT pyramid. Crucially, these texts refocus on the so-called "ICT4D" debate away from the standard western lens, which depicts users in the developing world as passive receivers of Western technological development, towards Ugandans whose use and production of technologies entail innovations from the ground up. It is this ‘other’ everyday...

  2. 4D ultrasound imaging - ethically justifiable in India?

    Science.gov (United States)

    Indiran, Venkatraman

    2017-01-01

    Four-dimensional (4D) ultrasound (real-time volume sonography), which has been used in the West since the last decade for the determination of gender as well as for bonding and entertainment of the parents, has become widely available in India in this decade. Here, I would like to discuss the ethical issues associated with 4D ultrasonography in India. These are self-referral, the use of the technology for non-medical indications, a higher possibility of the disclosure of the foetus' gender and safety concerns.

  3. Elliptic genus derivation of 4d holomorphic blocks

    Science.gov (United States)

    Poggi, Matteo

    2018-03-01

    We study elliptic vortices on ℂ × T 2 by considering the 2d quiver gauge theory describing their moduli spaces. The elliptic genus of these moduli spaces is the elliptic version of vortex partition function of the 4d theory. We focus on two examples: the first is a N = 1, U( N ) gauge theory with fundamental and anti-fundamental matter; the second is a N = 2, U( N ) gauge theory with matter in the fundamental representation. The results are instances of 4d "holomorphic blocks" into which partition functions on more complicated surfaces factorize. They can also be interpreted as free-field representations of elliptic Virasoro algebrae.

  4. Compton profiles of some 4d transition-metals

    International Nuclear Information System (INIS)

    Sharma, B.K.; Tomak, M.

    1982-08-01

    We have computed Compton profiles for 4d transition-metals using the Renormalized Free Atom (RFA) model for two different electron configurations, namely 4dsup(n-1)5s 1 and 4dsup(n-2)5s 2 . The results for niobium and molybdenum are presented and compared with those obtained for these metals within free atom model. For low values of momenta the RFA profiles are broader than the latter ones. The constancy of J(0) values reported for 3d-metals is shown to be present also in case of 4d-metals. (author)

  5. Geospatial Modeling of Asthma Population in Relation to Air Pollution

    Science.gov (United States)

    Kethireddy, Swatantra R.; Tchounwou, Paul B.; Young, John H.; Luvall, Jeffrey C.; Alhamdan, Mohammad

    2013-01-01

    Current observations indicate that asthma is growing every year in the United States, specific reasons for this are not well understood. This study stems from an ongoing research effort to investigate the spatio-temporal behavior of asthma and its relatedness to air pollution. The association between environmental variables such as air quality and asthma related health issues over Mississippi State are investigated using Geographic Information Systems (GIS) tools and applications. Health data concerning asthma obtained from Mississippi State Department of Health (MSDH) for 9-year period of 2003-2011, and data of air pollutant concentrations (PM2.5) collected from USEPA web resources, and are analyzed geospatially to establish the impacts of air quality on human health specifically related to asthma. Disease mapping using geospatial techniques provides valuable insights into the spatial nature, variability, and association of asthma to air pollution. Asthma patient hospitalization data of Mississippi has been analyzed and mapped using quantitative Choropleth techniques in ArcGIS. Patients have been geocoded to their respective zip codes. Potential air pollutant sources of Interstate highways, Industries, and other land use data have been integrated in common geospatial platform to understand their adverse contribution on human health. Existing hospitals and emergency clinics are being injected into analysis to further understand their proximity and easy access to patient locations. At the current level of analysis and understanding, spatial distribution of Asthma is observed in the populations of Zip code regions in gulf coast, along the interstates of south, and in counties of Northeast Mississippi. It is also found that asthma is prevalent in most of the urban population. This GIS based project would be useful to make health risk assessment and provide information support to the administrators and decision makers for establishing satellite clinics in future.

  6. 4-D Visualization of Seismic and Geodetic Data of the Big Island of Hawai'i

    Science.gov (United States)

    Burstein, J. A.; Smith-Konter, B. R.; Aryal, A.

    2017-12-01

    For decades Hawai'i has served as a natural laboratory for studying complex interactions between magmatic and seismic processes. Investigating characteristics of these processes, as well as the crustal response to major Hawaiian earthquakes, requires a synthesis of seismic and geodetic data and models. Here, we present a 4-D visualization of the Big Island of Hawai'i that investigates geospatial and temporal relationships of seismicity, seismic velocity structure, and GPS crustal motions to known volcanic and seismically active features. Using the QPS Fledermaus visualization package, we compile 90 m resolution topographic data from NASA's Shuttle Radar Topography Mission (SRTM) and 50 m resolution bathymetric data from the Hawaiian Mapping Research Group (HMRG) with a high-precision earthquake catalog of more than 130,000 events from 1992-2009 [Matoza et al., 2013] and a 3-D seismic velocity model of Hawai'i [Lin et al., 2014] based on seismic data from the Hawaiian Volcano Observatory (HVO). Long-term crustal motion vectors are integrated into the visualization from HVO GPS time-series data. These interactive data sets reveal well-defined seismic structure near the summit areas of Mauna Loa and Kilauea volcanoes, where high Vp and high Vp/Vs anomalies at 5-12 km depth, as well as clusters of low magnitude (M data are also used to help identify seismic clusters associated with the steady crustal detachment of the south flank of Kilauea's East Rift Zone. We also investigate the fault geometry of the 2006 M6.7 Kiholo Bay earthquake event by analyzing elastic dislocation deformation modeling results [Okada, 1985] and HVO GPS and seismic data of this event. We demonstrate the 3-D fault mechanisms of the Kiholo Bay main shock as a combination of strike-slip and dip-slip components (net slip 0.55 m) delineating a 30 km east-west striking, southward-dipping fault plane, occurring at 39 km depth. This visualization serves as a resource for advancing scientific analyses of

  7. The African Geospatial Sciences Institute (agsi): a New Approach to Geospatial Training in North Africa

    Science.gov (United States)

    Oeldenberger, S.; Khaled, K. B.

    2012-07-01

    The African Geospatial Sciences Institute (AGSI) is currently being established in Tunisia as a non-profit, non-governmental organization (NGO). Its objective is to accelerate the geospatial capacity development in North-Africa, providing the facilities for geospatial project and management training to regional government employees, university graduates, private individuals and companies. With typical course durations between one and six months, including part-time programs and long-term mentoring, its focus is on practical training, providing actual project execution experience. The AGSI will complement formal university education and will work closely with geospatial certification organizations and the geospatial industry. In the context of closer cooperation between neighboring North Africa and the European Community, the AGSI will be embedded in a network of several participating European and African universities, e. g. the ITC, and international organizations, such as the ISPRS, the ICA and the OGC. Through a close cooperation with African organizations, such as the AARSE, the RCMRD and RECTAS, the network and exchange of ideas, experiences, technology and capabilities will be extended to Saharan and sub-Saharan Africa. A board of trustees will be steering the AGSI operations and will ensure that practical training concepts and contents are certifiable and can be applied within a credit system to graduate and post-graduate education at European and African universities. The geospatial training activities of the AGSI are centered on a facility with approximately 30 part- and full-time general staff and lecturers in Tunis during the first year. The AGSI will operate a small aircraft with a medium-format aerial camera and compact LIDAR instrument for local, community-scale data capture. Surveying training, the photogrammetric processing of aerial images, GIS data capture and remote sensing training will be the main components of the practical training courses

  8. Oscillator strengths and branching fractions of 4d75p-4d75s Rh II transitions

    Science.gov (United States)

    Bouazza, Safa

    2017-01-01

    This work reports semi-empirical determination of oscillator strengths, transition probabilities and branching fractions for Rh II 4d75p-4d75s transitions in a wide wavelength range. The angular coefficients of the transition matrix, beforehand obtained in pure SL coupling with help of Racah algebra are transformed into intermediate coupling using eigenvector amplitudes of these two configuration levels determined for this purpose; The transition integral was treated as free parameter in the least squares fit to experimental oscillator strength (gf) values found in literature. The extracted value: 5s|r1|4d75p> =2.7426 ± 0.0007 is slightly smaller than that computed by means of ab-initio method. Subsequently to oscillator strength evaluations, transition probabilities and branching fractions were deduced and compared to those obtained experimentally or through another approach like pseudo-relativistic Hartree-Fock model including core-polarization effects.

  9. Interferometric Imaging and its Application to 4D Imaging

    KAUST Repository

    Sinha, Mrinal

    2018-03-01

    This thesis describes new interferometric imaging methods for migration and waveform inversion. The key idea is to use reflection events from a known reference reflector to ”naturally redatum” the receivers and sources to the reference reflector. Here, ”natural redatuming” is a data-driven process where the redatuming Green’s functions are obtained from the data. Interferometric imaging eliminates the statics associated with the noisy overburden above the reference reflector. To mitigate the defocussing caused by overburden errors I first propose the use of interferometric least-squares migration (ILSM) to estimate the migration image. Here, a known reflector is used as the reference interface for ILSM, and the data are naturally redatumed to this reference interface before imaging. Numerical results on synthetic and field data show that ILSM can significantly reduce the defocussing artifacts in the migration image. Next, I develop a waveform tomography approach for inverting the velocity model by mitigating the velocity errors in the overburden. Unresolved velocity errors in the overburden velocity model can cause conventional full-waveform inversion to get stuck in a local minimum. To resolve this problem, I present interferometric full-waveform inversion (IFWI), where conventional waveform tomography is reformulated so a velocity model is found that minimizes the objective function with an interferometric crosscorrelogram misfit. Numerical examples show that IFWI, compared to FWI, computes a significantly more accurate velocity model in the presence of a nearsurface with unknown velocity anomalies. I use IFWI and ILSM for 4D imaging where seismic data are recorded at different times over the same reservoir. To eliminate the time-varying effects of the near surface both data sets are virtually redatumed to a common reference interface before migration. This largely eliminates the overburden-induced statics errors in both data sets. Results with

  10. AGWA: The Automated Geospatial Watershed Assessment Tool

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment Tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA-Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona...

  11. Excitation of the inner 4d shell of neutral iodine

    Energy Technology Data Exchange (ETDEWEB)

    Pettini, M; Tozzi, G P [Osservatorio Astrofisico di Arcetri, Florence (Italy); Mazzoni, M [Florence Univ. (Italy). Ist. di Astronomia

    1981-03-23

    The absorption spectrum of neutral atomic iodine has been photographed in the EUV region and three strong autoionized resonances have been identified. A broad absorption feature has been observed and is ascribed to a collective exitation of the 4d inner shell.

  12. Analytical determination of low velocity layer in 4-D hydrocarbon ...

    African Journals Online (AJOL)

    Generally, Seismic reflection surveys are done in the oil sectors to determine commercially viable hydrocarbon reservoirs but in most cases reflection records are obscured by wave behaviours in weathering layer. Hence, Up-hole refraction surveys are carried out in 3-D and 4-D prospects with a view to delineating the ...

  13. 4D flow mri post-processing strategies for neuropathologies

    Science.gov (United States)

    Schrauben, Eric Mathew

    4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a

  14. Examining the Effect of Enactment of a Geospatial Curriculum on Students' Geospatial Thinking and Reasoning

    Science.gov (United States)

    Bodzin, Alec M.; Fu, Qiong; Kulo, Violet; Peffer, Tamara

    2014-08-01

    A potential method for teaching geospatial thinking and reasoning (GTR) is through geospatially enabled learning technologies. We developed an energy resources geospatial curriculum that included learning activities with geographic information systems and virtual globes. This study investigated how 13 urban middle school teachers implemented and varied the enactment of the curriculum with their students and investigated which teacher- and student-level factors accounted for students' GTR posttest achievement. Data included biweekly implementation surveys from teachers and energy resources content and GTR pre- and posttest achievement measures from 1,049 students. Students significantly increased both their energy resources content knowledge and their GTR skills related to energy resources at the end of the curriculum enactment. Both multiple regression and hierarchical linear modeling found that students' initial GTR abilities and gain in energy content knowledge were significantly explanatory variables for their geospatial achievement at the end of curriculum enactment, p critical components of the curriculum or the number of years the teachers had taught the curriculum, did not have significant effects on students' geospatial posttest achievement. The findings from this study provide support that learning with geospatially enabled learning technologies can support GTR with urban middle-level learners.

  15. 4D MR imaging using robust internal respiratory signal

    International Nuclear Information System (INIS)

    Hui, CheukKai; Wen, Zhifei; Beddar, Sam; Stemkens, Bjorn; Tijssen, R H N; Van den Berg, C A T; Hwang, Ken-Pin

    2016-01-01

    The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D. (paper)

  16. Triple shape memory polymers by 4D printing

    Science.gov (United States)

    Bodaghi, M.; Damanpack, A. R.; Liao, W. H.

    2018-06-01

    This article aims at introducing triple shape memory polymers (SMPs) by four-dimensional (4D) printing technology and shaping adaptive structures for mechanical/bio-medical devices. The main approach is based on arranging hot–cold programming of SMPs with fused decomposition modeling technology to engineer adaptive structures with triple shape memory effect (SME). Experiments are conducted to characterize elasto-plastic and hyper-elastic thermo-mechanical material properties of SMPs in low and high temperatures at large deformation regime. The feasibility of the dual and triple SMPs with self-bending features is demonstrated experimentally. It is advantageous in situations either where it is desired to perform mechanical manipulations on the 4D printed objects for specific purposes or when they experience cold programming inevitably before activation. A phenomenological 3D constitutive model is developed for quantitative understanding of dual/triple SME of SMPs fabricated by 4D printing in the large deformation range. Governing equations of equilibrium are established for adaptive structures on the basis of the nonlinear Green–Lagrange strains. They are then solved by developing a finite element approach along with an elastic-predictor plastic-corrector return map procedure accomplished by the Newton–Raphson method. The computational tool is applied to simulate dual/triple SMP structures enabled by 4D printing and explore hot–cold programming mechanisms behind material tailoring. It is shown that the 4D printed dual/triple SMPs have great potential in mechanical/bio-medical applications such as self-bending gripers/stents and self-shrinking/tightening staples.

  17. 5D maximally supersymmetric Yang-Mills in 4D superspace. Applications

    International Nuclear Information System (INIS)

    McGarrie, Moritz

    2013-03-01

    We reformulate 5D maximally supersymmetric Yang-Mills in 4D Superspace, for a manifold with boundaries. We emphasise certain features and conventions necessary to allow for supersymmetric model building applications. Finally we apply the holographic interpretation of a slice of AdS and show how to generate Dirac soft masses between external source fields, as well as kinetic mixing, as a boundary effective action.

  18. 5D maximally supersymmetric Yang-Mills in 4D superspace. Applications

    Energy Technology Data Exchange (ETDEWEB)

    McGarrie, Moritz

    2013-03-15

    We reformulate 5D maximally supersymmetric Yang-Mills in 4D Superspace, for a manifold with boundaries. We emphasise certain features and conventions necessary to allow for supersymmetric model building applications. Finally we apply the holographic interpretation of a slice of AdS and show how to generate Dirac soft masses between external source fields, as well as kinetic mixing, as a boundary effective action.

  19. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring

    International Nuclear Information System (INIS)

    Tian, Y; Stützer, K; Enghardt, W; Priegnitz, M; Helmbrecht, S; Fiedler, F; Bert, C

    2016-01-01

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with  ⩽4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed. (note)

  20. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring

    Science.gov (United States)

    Tian, Y.; Stützer, K.; Enghardt, W.; Priegnitz, M.; Helmbrecht, S.; Bert, C.; Fiedler, F.

    2016-01-01

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with  ⩽4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed.

  1. Foreword to the theme issue on geospatial computer vision

    Science.gov (United States)

    Wegner, Jan Dirk; Tuia, Devis; Yang, Michael; Mallet, Clement

    2018-06-01

    Geospatial Computer Vision has become one of the most prevalent emerging fields of investigation in Earth Observation in the last few years. In this theme issue, we aim at showcasing a number of works at the interface between remote sensing, photogrammetry, image processing, computer vision and machine learning. In light of recent sensor developments - both from the ground as from above - an unprecedented (and ever growing) quantity of geospatial data is available for tackling challenging and urgent tasks such as environmental monitoring (deforestation, carbon sequestration, climate change mitigation), disaster management, autonomous driving or the monitoring of conflicts. The new bottleneck for serving these applications is the extraction of relevant information from such large amounts of multimodal data. This includes sources, stemming from multiple sensors, that exhibit distinct physical nature of heterogeneous quality, spatial, spectral and temporal resolutions. They are as diverse as multi-/hyperspectral satellite sensors, color cameras on drones, laser scanning devices, existing open land-cover geodatabases and social media. Such core data processing is mandatory so as to generate semantic land-cover maps, accurate detection and trajectories of objects of interest, as well as by-products of superior added-value: georeferenced data, images with enhanced geometric and radiometric qualities, or Digital Surface and Elevation Models.

  2. 4D CT sorting based on patient internal anatomy

    Science.gov (United States)

    Li, Ruijiang; Lewis, John H.; Cerviño, Laura I.; Jiang, Steve B.

    2009-08-01

    Respiratory motion during free-breathing computed tomography (CT) scan may cause significant errors in target definition for tumors in the thorax and upper abdomen. A four-dimensional (4D) CT technique has been widely used for treatment simulation of thoracic and abdominal cancer radiotherapy. The current 4D CT techniques require retrospective sorting of the reconstructed CT slices oversampled at the same couch position. Most sorting methods depend on external surrogates of respiratory motion recorded by extra instruments. However, respiratory signals obtained from these external surrogates may not always accurately represent the internal target motion, especially when irregular breathing patterns occur. We have proposed a new sorting method based on multiple internal anatomical features for multi-slice CT scan acquired in the cine mode. Four features are analyzed in this study, including the air content, lung area, lung density and body area. We use a measure called spatial coherence to select the optimal internal feature at each couch position and to generate the respiratory signals for 4D CT sorting. The proposed method has been evaluated for ten cancer patients (eight with thoracic cancer and two with abdominal cancer). For nine patients, the respiratory signals generated from the combined internal features are well correlated to those from external surrogates recorded by the real-time position management (RPM) system (average correlation: 0.95 ± 0.02), which is better than any individual internal measures at 95% confidence level. For these nine patients, the 4D CT images sorted by the combined internal features are almost identical to those sorted by the RPM signal. For one patient with an irregular breathing pattern, the respiratory signals given by the combined internal features do not correlate well with those from RPM (correlation: 0.68 ± 0.42). In this case, the 4D CT image sorted by our method presents fewer artifacts than that from the RPM signal. Our

  3. The Role of Discrete Global Grid Systems in the Global Statistical Geospatial Framework

    Science.gov (United States)

    Purss, M. B. J.; Peterson, P.; Minchin, S. A.; Bermudez, L. E.

    2016-12-01

    The United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM) has proposed the development of a Global Statistical Geospatial Framework (GSGF) as a mechanism for the establishment of common analytical systems that enable the integration of statistical and geospatial information. Conventional coordinate reference systems address the globe with a continuous field of points suitable for repeatable navigation and analytical geometry. While this continuous field is represented on a computer in a digitized and discrete fashion by tuples of fixed-precision floating point values, it is a non-trivial exercise to relate point observations spatially referenced in this way to areal coverages on the surface of the Earth. The GSGF states the need to move to gridded data delivery and the importance of using common geographies and geocoding. The challenges associated with meeting these goals are not new and there has been a significant effort within the geospatial community to develop nested gridding standards to tackle these issues over many years. These efforts have recently culminated in the development of a Discrete Global Grid Systems (DGGS) standard which has been developed under the auspices of Open Geospatial Consortium (OGC). DGGS provide a fixed areal based geospatial reference frame for the persistent location of measured Earth observations, feature interpretations, and modelled predictions. DGGS address the entire planet by partitioning it into a discrete hierarchical tessellation of progressively finer resolution cells, which are referenced by a unique index that facilitates rapid computation, query and analysis. The geometry and location of the cell is the principle aspect of a DGGS. Data integration, decomposition, and aggregation is optimised in the DGGS hierarchical structure and can be exploited for efficient multi-source data processing, storage, discovery, transmission, visualization, computation, analysis, and modelling. During

  4. 4D Art: corpos reais e virtuais, uma realidade aumentada

    Directory of Open Access Journals (Sweden)

    Michel Lemieux

    2016-05-01

    Full Text Available A companhia canadense 4D Art fascina o olhar do público e interroga seus sentidos de realidade e presença pela interação cênica dos movimentos de corpos reais e virtuais. Para compreender os processos de criação da cena multimídia de 4D Art, apresenta-se uma entrevista exclusiva realizada com os diretores artísticos Michel Lemieux e Victor Pilon. As motivações artísticas do jogo real e virtual, os procedimentos empregados na criação das figuras virtuais e os desafios enfrentados pelos atores aparecem nas palavras dos criadores.

  5. Phase space descriptions for simplicial 4D geometries

    International Nuclear Information System (INIS)

    Dittrich, Bianca; Ryan, James P

    2011-01-01

    Starting from the canonical phase space for discretized (4D) BF theory, we implement a canonical version of the simplicity constraints and construct phase spaces for simplicial geometries. Our construction allows us to study the connection between different versions of Regge calculus and approaches using connection variables, such as loop quantum gravity. We find that on a fixed triangulation the (gauge invariant) phase space associated with loop quantum gravity is genuinely larger than the one for length and even area Regge calculus. Rather, it corresponds to the phase space of area-angle Regge calculus, as defined in [1] (prior to the imposition of gluing constraints, which ensure the metricity of the triangulation). Finally, we show that for a subclass of triangulations one can construct first-class Hamiltonian and diffeomorphism constraints leading to flat 4D spacetimes.

  6. Dynamics of the conformal factor in 4D gravity

    International Nuclear Information System (INIS)

    Antoniadis, I.

    1993-01-01

    We argue that 4D gravity is drastically modified at distances larger than the horizon scale, due to the large infrared quantum fluctuations of the conformal part of the metric. The infrared dynamics of the conformal factor is generated by an effective action, induced by the trace anomaly of matter in curved space, analogous to the Polyakov action in two dimensions. The resulting effective scalar theory is renormalizable, and possesses a non-trivial, infrared stable fixed point, characterized by an anomalous scaling dimension of the conformal factor. We argue that this theory describes a large distance scale invariant phase of 4D gravity and provides a framework for a dynamical solution of the cosmological constant problem (author). 12 refs

  7. 4D constructions of supersymmetric extra dimensions and gaugino mediation

    International Nuclear Information System (INIS)

    Csaki, Csaba; Erlich, Joshua; Grojean, Christophe; Kribs, Graham D.

    2002-01-01

    We present 4D gauge theories which at low energies coincide with higher dimensional supersymmetric (SUSY) gauge theories on a transverse lattice. We show that in the simplest case of pure 5D SUSY Yang-Mills theory there is an enhancement of SUSY in the continuum limit without fine tuning. This result no longer holds in the presence of matter fields, in which case fine tuning is necessary to ensure higher dimensional Lorentz invariance and supersymmetry. We use this construction to generate 4D models which mimic gaugino mediation of SUSY breaking. The way supersymmetry breaking is mediated in these models to the MSSM is by assuming that the physical gauginos are a mixture of a number of gauge eigenstate gauginos: one of these couples to the SUSY breaking sector, while another couples to the MSSM matter fields. The lattice can be as coarse as just two gauge groups while still obtaining the characteristic gaugino-mediated soft breaking terms

  8. Fuzzy-4D/RCS for Unmanned Aerial Vehicles

    OpenAIRE

    Olivares Mendez, Miguel Angel; Campoy, Pascual; Mondragon, Ivan F.; Martinez, Carol

    2010-01-01

    Abstract This paper presents an improvement of the cognitive architecture, 4D/RCS, developed by the NIST. This improvement consist of the insertion of Fuzzy Logic cells (FLCs), in different parts and hierarchy levels of the architecture, and the adaptation of this architecture for Unmanned Aerial Vehicles (UAVs). This advance provides an improvement in the functionality of the system based on the uses of the Miguel Olivares’ Fuzzy Software for the definition of the FLCs and its...

  9. Automatic re-contouring in 4D radiotherapy

    International Nuclear Information System (INIS)

    Lu, Weiguo; Olivera, Gustavo H; Chen, Quan; Chen, Ming-Li; Ruchala, Kenneth J

    2006-01-01

    Delineating regions of interest (ROIs) on each phase of four-dimensional (4D) computed tomography (CT) images is an essential step for 4D radiotherapy. The requirement of manual phase-by-phase contouring prohibits the routine use of 4D radiotherapy. This paper develops an automatic re-contouring algorithm that combines techniques of deformable registration and surface construction. ROIs are manually contoured slice-by-slice in the reference phase image. A reference surface is constructed based on these reference contours using a triangulated surface construction technique. The deformable registration technique provides the voxel-to-voxel mapping between the reference phase and the test phase. The vertices of the reference surface are displaced in accordance with the deformation map, resulting in a deformed surface. The new contours are reconstructed by cutting the deformed surface slice-by-slice along the transversal, sagittal or coronal direction. Since both the inputs and outputs of our automatic re-contouring algorithm are contours, it is relatively easy to cope with any treatment planning system. We tested our automatic re-contouring algorithm using a deformable phantom and 4D CT images of six lung cancer patients. The proposed algorithm is validated by visual inspections and quantitative comparisons of the automatic re-contours with both the gold standard segmentations and the manual contours. Based on the automatic delineated ROIs, changes of tumour and sensitive structures during respiration are quantitatively analysed. This algorithm could also be used to re-contour daily images for treatment evaluation and adaptive radiotherapy

  10. Analytical methods for 2,4-D (Dichlorophenoxyacetic acid) determination

    International Nuclear Information System (INIS)

    Martinez G, M.S.M.

    1999-01-01

    The 2,4-D herbicide is one of the main pesticides for controlling the bad grass in crops such as the water undergrowth. In Mexico the allowed bound of this pesticide is 0.05 mg/l in water of 2,4-D so it is required to have methods trusts and exacts, which can used in order to detected low concentration of it. In this work we show some for the conventional techniques and for establishing the 2,4-D concentrations. The UV-Vis spectrometer and liquids chromatography due that they are the most common used nowadays. Beside, we introduce a now developed technique, which is based on the neutronic activation analysis. Though use of the UV-Vis spectrometer technique it was possible target the concentrations interval between 1 and 200 mg/l. In the liquids chromatography interval was between 0.1 and 0.9, and by the neutronic activation analysis the interval was between 0.01 and 200 mg/l. (Author)

  11. 4D modeling in high-rise construction

    Science.gov (United States)

    Balakina, Anastasiya; Simankina, Tatyana; Lukinov, Vitaly

    2018-03-01

    High-rise construction is a complex construction process, requiring the use of more perfected and sophisticated tools for design, planning and construction management. The use of BIM-technologies allows minimizing the risks associated with design errors and errors that occur during construction. This article discusses a visual planning method using the 4D model, which allows the project team to create an accurate and complete construction plan, which is much more difficult to achieve with the help of traditional planning methods. The use of the 4D model in the construction of a 70-story building allowed to detect spatial and temporal errors before the start of construction work. In addition to identifying design errors, 4D modeling has allowed to optimize the construction, as follows: to optimize the operation of cranes, the placement of building structures and materials at various stages of construction, to optimize the organization of work performance, as well as to monitor the activities related to the preparation of the construction site for compliance with labor protection and safety requirements, which resulted in saving money and time.

  12. 4D Biofabrication Using Shape-Morphing Hydrogels.

    Science.gov (United States)

    Kirillova, Alina; Maxson, Ridge; Stoychev, Georgi; Gomillion, Cheryl T; Ionov, Leonid

    2017-12-01

    Despite the tremendous potential of bioprinting techniques toward the fabrication of highly complex biological structures and the flourishing progress in 3D bioprinting, the most critical challenge of the current approaches is the printing of hollow tubular structures. In this work, an advanced 4D biofabrication approach, based on printing of shape-morphing biopolymer hydrogels, is developed for the fabrication of hollow self-folding tubes with unprecedented control over their diameters and architectures at high resolution. The versatility of the approach is demonstrated by employing two different biopolymers (alginate and hyaluronic acid) and mouse bone marrow stromal cells. Harnessing the printing and postprinting parameters allows attaining average internal tube diameters as low as 20 µm, which is not yet achievable by other existing bioprinting/biofabrication approaches and is comparable to the diameters of the smallest blood vessels. The proposed 4D biofabrication process does not pose any negative effect on the viability of the printed cells, and the self-folded hydrogel-based tubes support cell survival for at least 7 d without any decrease in cell viability. Consequently, the presented 4D biofabrication strategy allows the production of dynamically reconfigurable architectures with tunable functionality and responsiveness, governed by the selection of suitable materials and cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 4D modeling in high-rise construction

    Directory of Open Access Journals (Sweden)

    Balakina Anastasiya

    2018-01-01

    Full Text Available High-rise construction is a complex construction process, requiring the use of more perfected and sophisticated tools for design, planning and construction management. The use of BIM-technologies allows minimizing the risks associated with design errors and errors that occur during construction. This article discusses a visual planning method using the 4D model, which allows the project team to create an accurate and complete construction plan, which is much more difficult to achieve with the help of traditional planning methods. The use of the 4D model in the construction of a 70-story building allowed to detect spatial and temporal errors before the start of construction work. In addition to identifying design errors, 4D modeling has allowed to optimize the construction, as follows: to optimize the operation of cranes, the placement of building structures and materials at various stages of construction, to optimize the organization of work performance, as well as to monitor the activities related to the preparation of the construction site for compliance with labor protection and safety requirements, which resulted in saving money and time.

  14. An Effective Framework for Distributed Geospatial Query Processing in Grids

    Directory of Open Access Journals (Sweden)

    CHEN, B.

    2010-08-01

    Full Text Available The emergence of Internet has greatly revolutionized the way that geospatial information is collected, managed, processed and integrated. There are several important research issues to be addressed for distributed geospatial applications. First, the performance of geospatial applications is needed to be considered in the Internet environment. In this regard, the Grid as an effective distributed computing paradigm is a good choice. The Grid uses a series of middleware to interconnect and merge various distributed resources into a super-computer with capability of high performance computation. Secondly, it is necessary to ensure the secure use of independent geospatial applications in the Internet environment. The Grid just provides the utility of secure access to distributed geospatial resources. Additionally, it makes good sense to overcome the heterogeneity between individual geospatial information systems in Internet. The Open Geospatial Consortium (OGC proposes a number of generalized geospatial standards e.g. OGC Web Services (OWS to achieve interoperable access to geospatial applications. The OWS solution is feasible and widely adopted by both the academic community and the industry community. Therefore, we propose an integrated framework by incorporating OWS standards into Grids. Upon the framework distributed geospatial queries can be performed in an interoperable, high-performance and secure Grid environment.

  15. Effects of Piecewise Spatial Smoothing in 4-D SPECT Reconstruction

    Science.gov (United States)

    Qi, Wenyuan; Yang, Yongyi; King, Michael A.

    2014-02-01

    In nuclear medicine, cardiac gated SPECT images are known to suffer from significantly increased noise owing to limited data counts. Consequently, spatial (and temporal) smoothing has been indispensable for suppressing the noise artifacts in SPECT reconstruction. However, recently we demonstrated that the benefit of spatial processing in motion-compensated reconstruction of gated SPECT (aka 4-D) could be outweighed by its adverse effects on the myocardium, which included degraded wall motion and perfusion defect detectability. In this work, we investigate whether we can alleviate these adverse effects by exploiting an alternative spatial smoothing prior in 4-D based on image total variation (TV). TV based prior is known to induce piecewise smoothing which can preserve edge features (such as boundaries of the heart wall) in reconstruction. However, it is not clear whether such a property would necessarily be beneficial for improving the accuracy of the myocardium in 4-D reconstruction. In particular, it is unknown whether it would adversely affect the detectability of perfusion defects that are small in size or low in contrast. In our evaluation study, we first use Monte Carlo simulated imaging with 4-D NURBS-based cardiac-torso (NCAT) phantom wherein the ground truth is known for quantitative comparison. We evaluated the accuracy of the reconstructed myocardium using a number of metrics, including regional and overall accuracy of the myocardium, accuracy of the phase activity curve (PAC) of the LV wall for wall motion, uniformity and spatial resolution of the LV wall, and detectability of perfusion defects using a channelized Hotelling observer (CHO). For lesion detection, we simulated perfusion defects with different sizes and contrast levels with the focus being on perfusion defects that are subtle. As a preliminary demonstration, we also tested on three sets of clinical acquisitions. From the quantitative results, it was demonstrated that TV smoothing could

  16. Activity-Based Intelligence prevedere il futuro osservando il presente con gli strumenti Hexagon Geospatial

    Directory of Open Access Journals (Sweden)

    Massimo Zotti

    2015-06-01

    Full Text Available The intelligence of human activities on the earth's surface, obtained through the analysis of earth observation data and other geospatial information, is vital for the planning and execution of any military action, for peacekeeping or for humanitarian emergencies. The success of these actions largely depends on the ability to analyze timely data from multiple sources. However, the proliferation of new sources of intelligence in a Geospatial big data scenario increasingly complicate the analysis of such activities by human analysts. Modern technologies solve these problems by enabling the Activity Based Intelligence, a methodology that improves the efficiency and timeliness of intelligence through the analysis of historical, current and future activity, to identify patterns, trends and relationships hidden in large data collections from different sources.

  17. Research and Practical Trends in Geospatial Sciences

    Science.gov (United States)

    Karpik, A. P.; Musikhin, I. A.

    2016-06-01

    In recent years professional societies have been undergoing fundamental restructuring brought on by extensive technological change and rapid evolution of geospatial science. Almost all professional communities have been affected. Communities are embracing digital techniques, modern equipment, software and new technological solutions at a staggering pace. In this situation, when planning financial investments and intellectual resource management, it is crucial to have a clear understanding of those trends that will be in great demand in 3-7 years. This paper reviews current scientific and practical activities of such non-governmental international organizations as International Federation of Surveyors, International Cartographic Association, and International Society for Photogrammetry and Remote Sensing, analyzes and groups most relevant topics brought up at their scientific events, forecasts most probable research and practical trends in geospatial sciences, outlines topmost leading countries and emerging markets for further detailed analysis of their activities, types of scientific cooperation and joint implementation projects.

  18. RESEARCH AND PRACTICAL TRENDS IN GEOSPATIAL SCIENCES

    Directory of Open Access Journals (Sweden)

    A. P. Karpik

    2016-06-01

    Full Text Available In recent years professional societies have been undergoing fundamental restructuring brought on by extensive technological change and rapid evolution of geospatial science. Almost all professional communities have been affected. Communities are embracing digital techniques, modern equipment, software and new technological solutions at a staggering pace. In this situation, when planning financial investments and intellectual resource management, it is crucial to have a clear understanding of those trends that will be in great demand in 3-7 years. This paper reviews current scientific and practical activities of such non-governmental international organizations as International Federation of Surveyors, International Cartographic Association, and International Society for Photogrammetry and Remote Sensing, analyzes and groups most relevant topics brought up at their scientific events, forecasts most probable research and practical trends in geospatial sciences, outlines topmost leading countries and emerging markets for further detailed analysis of their activities, types of scientific cooperation and joint implementation projects.

  19. Stakeholder Alignment and Changing Geospatial Information Capabilities

    Science.gov (United States)

    Winter, S.; Cutcher-Gershenfeld, J.; King, J. L.

    2015-12-01

    Changing geospatial information capabilities can have major economic and social effects on activities such as drought monitoring, weather forecasts, agricultural productivity projections, water and air quality assessments, the effects of forestry practices and so on. Whose interests are served by such changes? Two common mistakes are assuming stability in the community of stakeholders and consistency in stakeholder behavior. Stakeholder communities can reconfigure dramatically as some leave the discussion, others enter, and circumstances shift — all resulting in dynamic points of alignment and misalignment . New stakeholders can bring new interests, and existing stakeholders can change their positions. Stakeholders and their interests need to be be considered as geospatial information capabilities change, but this is easier said than done. New ways of thinking about stakeholder alignment in light of changes in capability are presented.

  20. Nondipole effects in the photoionization of Xe 4d: Evidence for quadrupole satellites

    International Nuclear Information System (INIS)

    Hemmers, O.; Guillemin, R.; Wolska, A.; Lindle, D.W.; Rolles, D.; Cheng, K.T.; Johnson, W.R.; Zhou, H.L.; Manson, S.T.

    2004-01-01

    Full text: We measured the nondipole parameters for the spin-orbit depletes Xe 4d 5/2 and Xe 4d 3/2 over a photonenergy range from 100 eV to 250 eV at beamline 8.0.1.3 of the Advanced Light Source at the Lawrence Berkeley National Laboratory. Significant nondipole effects are found at relatively low energies as a result of Cooper minima in dipole channels and interchannel coupling in quadrupole channels. Most importantly, sharp disagreement between experiment and theory, when otherwise excellent agreement was expected, has provided the first evidence of satellite two-electron quadrupole photoionization transitions, along with their crucial importance for a quantitatively accurate theory

  1. Geospatial Image Stream Processing: Models, techniques, and applications in remote sensing change detection

    Science.gov (United States)

    Rueda-Velasquez, Carlos Alberto

    Detection of changes in environmental phenomena using remotely sensed data is a major requirement in the Earth sciences, especially in natural disaster related scenarios where real-time detection plays a crucial role in the saving of human lives and the preservation of natural resources. Although various approaches formulated to model multidimensional data can in principle be applied to the inherent complexity of remotely sensed geospatial data, there are still challenging peculiarities that demand a precise characterization in the context of change detection, particularly in scenarios of fast changes. In the same vein, geospatial image streams do not fit appropriately in the standard Data Stream Management System (DSMS) approach because these systems mainly deal with tuple-based streams. Recognizing the necessity for a systematic effort to address the above issues, the work presented in this thesis is a concrete step toward the foundation and construction of an integrated Geospatial Image Stream Processing framework, GISP. First, we present a data and metadata model for remotely sensed image streams. We introduce a precise characterization of images and image streams in the context of remotely sensed geospatial data. On this foundation, we define spatially-aware temporal operators with a consistent semantics for change analysis tasks. We address the change detection problem in settings where multiple image stream sources are available, and thus we introduce an architectural design for the processing of geospatial image streams from multiple sources. With the aim of targeting collaborative scientific environments, we construct a realization of our architecture based on Kepler, a robust and widely used scientific workflow management system, as the underlying computational support; and open data and Web interface standards, as a means to facilitate the interoperability of GISP instances with other processing infrastructures and client applications. We demonstrate our

  2. Solar Maps | Geospatial Data Science | NREL

    Science.gov (United States)

    Solar Maps Solar Maps These solar maps provide average daily total solar resource information on disability, contact the Geospatial Data Science Team. U.S. State Solar Resource Maps Access state maps of MT NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY × U.S. Solar Resource

  3. Generation of Multiple Metadata Formats from a Geospatial Data Repository

    Science.gov (United States)

    Hudspeth, W. B.; Benedict, K. K.; Scott, S.

    2012-12-01

    The Earth Data Analysis Center (EDAC) at the University of New Mexico is partnering with the CYBERShARE and Environmental Health Group from the Center for Environmental Resource Management (CERM), located at the University of Texas, El Paso (UTEP), the Biodiversity Institute at the University of Kansas (KU), and the New Mexico Geo- Epidemiology Research Network (GERN) to provide a technical infrastructure that enables investigation of a variety of climate-driven human/environmental systems. Two significant goals of this NASA-funded project are: a) to increase the use of NASA Earth observational data at EDAC by various modeling communities through enabling better discovery, access, and use of relevant information, and b) to expose these communities to the benefits of provenance for improving understanding and usability of heterogeneous data sources and derived model products. To realize these goals, EDAC has leveraged the core capabilities of its Geographic Storage, Transformation, and Retrieval Engine (Gstore) platform, developed with support of the NSF EPSCoR Program. The Gstore geospatial services platform provides general purpose web services based upon the REST service model, and is capable of data discovery, access, and publication functions, metadata delivery functions, data transformation, and auto-generated OGC services for those data products that can support those services. Central to the NASA ACCESS project is the delivery of geospatial metadata in a variety of formats, including ISO 19115-2/19139, FGDC CSDGM, and the Proof Markup Language (PML). This presentation details the extraction and persistence of relevant metadata in the Gstore data store, and their transformation into multiple metadata formats that are increasingly utilized by the geospatial community to document not only core library catalog elements (e.g. title, abstract, publication data, geographic extent, projection information, and database elements), but also the processing steps used to

  4. Economic assessment of the use value of geospatial information

    Science.gov (United States)

    Bernknopf, Richard L.; Shapiro, Carl D.

    2015-01-01

    Geospatial data inform decision makers. An economic model that involves application of spatial and temporal scientific, technical, and economic data in decision making is described. The value of information (VOI) contained in geospatial data is the difference between the net benefits (in present value terms) of a decision with and without the information. A range of technologies is used to collect and distribute geospatial data. These technical activities are linked to examples that show how the data can be applied in decision making, which is a cultural activity. The economic model for assessing the VOI in geospatial data for decision making is applied to three examples: (1) a retrospective model about environmental regulation of agrochemicals; (2) a prospective model about the impact and mitigation of earthquakes in urban areas; and (3) a prospective model about developing private–public geospatial information for an ecosystem services market. Each example demonstrates the potential value of geospatial information in a decision with uncertain information.

  5. Geospatial Analysis of Oil and Gas Wells in California

    Science.gov (United States)

    Riqueros, N. S.; Kang, M.; Jackson, R. B.

    2015-12-01

    California currently ranks third in oil production by U.S. state and more than 200,000 wells have been drilled in the state. Oil and gas wells provide a potential pathway for subsurface migration, leading to groundwater contamination and emissions of methane and other fluids to the atmosphere. Here we compile available public databases on oil and gas wells from the California Department of Conservation's Division of Oil, Gas, and Geothermal Resources, the U.S. Geological Survey, and other state and federal sources. We perform geospatial analysis at the county and field levels to characterize depths, producing formations, spud/completion/abandonment dates, land cover, population, and land ownership of active, idle, buried, abandoned, and plugged wells in California. The compiled database is designed to serve as a quantitative platform for developing field-based groundwater and air emission monitoring plans.

  6. Establishment of the Northeast Coastal Watershed Geospatial Data Network (NECWGDN)

    Energy Technology Data Exchange (ETDEWEB)

    Hannigan, Robyn [University of Massachusetts Boston

    2014-02-17

    The goals of NECWGDN were to establish integrated geospatial databases that interfaced with existing open-source (water.html) environmental data server technologies (e.g., HydroDesktop) and included ecological and human data to enable evaluation, prediction, and adaptation in coastal environments to climate- and human-induced threats to the coastal marine resources within the Gulf of Maine. We have completed the development and testing of a "test bed" architecture that is compatible with HydroDesktop and have identified key metadata structures that will enable seamless integration and delivery of environmental, ecological, and human data as well as models to predict threats to end-users. Uniquely this database integrates point as well as model data and so offers capacities to end-users that are unique among databases. Future efforts will focus on the development of integrated environmental-human dimension models that can serve, in near real time, visualizations of threats to coastal resources and habitats.

  7. Efeitos do 2,4-D, em laranjeira baianinha Effects of 2,4-D on the baianinha orange

    Directory of Open Access Journals (Sweden)

    Ody Rodriguez

    1960-01-01

    Full Text Available Com o objetivo de conhecer a reação da laranjeira Baianinha à aplicação de 2,4-D, principalmente com relação à queda de frutas, executamos um experimento de pulverização de plantas com solução deste hormônio sintético, na Estação Experimental de Limeira, zona de maior densidade citrícola do Estado de São Paulo. Tôdas as concentrações do ácido, usadas no experimento, causaram modificações nos caracteres normais da laranjeira (Citrus sinensis Osb. As fôlhas, flôres e frutas sofreram modificações mais ou menos acentuadas, de acordo com a concentração do produto, os resultados permitindo contra-indicar pulverizações com 2,4-D nas condições apresentadas; mostram também, que as modificações atribuídas ao hormônio só se produziram durante a safra em que se fizeram os tratamentos. São apresentados dados das produções, do aumento de pêso das frutas e de queda das mesmas e das fôlhas, bem como ilustrações das principais modificações ocorridas nas frutas. A aplicação do 2,4-D causou decréscimo linear do número de frutas, proporcional as dosagens do hormônio. Como conseqüência houve aumento do seu pêso médio. Êste fato pode ser de utilidade para outras variedades cítricas, quando houver interesse no aumento de tamanho das frutas.The reaction of the Baianinha orange (Citrus sinensis Osb., a Brazilian hud sport of the Washington Navel, to applications of 2,4-D was studied at the Limeira Agr. Exp. Sta., São Paulo. All concentrations of this hormonial herbicide used in the tests induced some modifications of the normal characteristics of the plants when compared with the controls. The leaves, flowers, and fruits were the plant parts most affected by the treatments. Some of the morphological changes induced on the fruits tend to confirm the view that the Baia orange originated as a mutation from the Seleta variety. Data obtained on the yield, weight per fruit, and fruit drop indicate that application

  8. 4D seismic data acquisition method during coal mining

    International Nuclear Information System (INIS)

    Du, Wen-Feng; Peng, Su-Ping

    2014-01-01

    In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions. (paper)

  9. 4D Proton treatment planning strategy for mobile lung tumors

    International Nuclear Information System (INIS)

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE R IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE R IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE R IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors

  10. 4D-QSAR: Perspectives in Drug Design

    Directory of Open Access Journals (Sweden)

    Carolina H. Andrade

    2010-05-01

    Full Text Available Drug design is a process driven by innovation and technological breakthroughs involving a combination of advanced experimental and computational methods. A broad variety of medicinal chemistry approaches can be used for the identification of hits, generation of leads, as well as to accelerate the optimization of leads into drug candidates. The quantitative structure–activity relationship (QSAR formalisms are among the most important strategies that can be applied for the successful design new molecules. This review provides a comprehensive review on the evolution and current status of 4D-QSAR, highlighting present challenges and new opportunities in drug design.

  11. Medicoscapes: on mobile ubiquity effects and ICT4D

    DEFF Research Database (Denmark)

    Michelsen, Anders Ib

    2012-01-01

    The Article presents theoretical comments on the theme of ‘media ubiquity’, as an introduction to the presentation of an information and communication technology ‘4’ development (ICT4D) project in the Republic of Somaliland: The Somaliland Telemedical System for Psychiatry. This project is based...... perspective. It will ponder issues of collective imagination as exerted by way of such effects, i.e. in cultural forms that emerge out of media-roles in the ‘complex connectivity’ in globalisation processes....

  12. Actively triggered 4d cone-beam CT acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Martin F.; Wisotzky, Eric [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Oelfke, Uwe; Nill, Simeon [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  13. Actively triggered 4d cone-beam CT acquisition.

    Science.gov (United States)

    Fast, Martin F; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-01

    4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this "after-the-fact" binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor. The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective "Faraday" shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories. With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145 projections were acquired per respiratory

  14. Founding Gravitation in 4D Euclidean Space-Time Geometry

    International Nuclear Information System (INIS)

    Winkler, Franz-Guenter

    2010-01-01

    The Euclidean interpretation of special relativity which has been suggested by the author is a formulation of special relativity in ordinary 4D Euclidean space-time geometry. The natural and geometrically intuitive generalization of this view involves variations of the speed of light (depending on location and direction) and a Euclidean principle of general covariance. In this article, a gravitation model by Jan Broekaert, which implements a view of relativity theory in the spirit of Lorentz and Poincare, is reconstructed and shown to fulfill the principles of the Euclidean approach after an appropriate reinterpretation.

  15. Actively triggered 4d cone-beam CT acquisition

    International Nuclear Information System (INIS)

    Fast, Martin F.; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-01-01

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  16. Exploring the minimal 4D N=1 SCFT

    Energy Technology Data Exchange (ETDEWEB)

    Poland, David [Department of Physics, Yale University,New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Stergiou, Andreas [Department of Physics, Yale University,New Haven, CT 06520 (United States)

    2015-12-17

    We study the conformal bootstrap constraints for 4D N=1 superconformal field theories containing a chiral operator ϕ and the chiral ring relation ϕ{sup 2}=0. Hints for a minimal interacting SCFT in this class have appeared in previous numerical bootstrap studies. We perform a detailed study of the properties of this conjectured theory, establishing that the corresponding solution to the bootstrap constraints contains a U(1){sub R} current multiplet and estimating the central charge and low-lying operator spectrum of this theory.

  17. IMPRINT Analysis of an Unmanned Air System Geospatial Information Process

    National Research Council Canada - National Science Library

    Hunn, Bruce P; Schweitzer, Kristin M; Cahir, John A; Finch, Mary M

    2008-01-01

    ... intelligence, geospatial analysis cell. The Improved Performance Research Integration Tool (IMPRINT) modeling program was used to understand this process and to assess crew workload during several test scenarios...

  18. Phase 1 report: the 4D seismic market from 2000 to 2003

    International Nuclear Information System (INIS)

    Sagary, C.

    2004-01-01

    This report synthesizes the phase 1 results of the joint industrial project, called ''4D Seismic: Technologies, Economics and Issues''. This project was conducted by IFP between November 2003 and April 2004, in collaboration with Compagnie Generale de Geophysique (CGG) and sponsored by Gaz de France and 4. Wave Imaging. Phase 1 offers an objective view of the 4D seismic market over the period 2000-2003. The market has been assessed from IFP extensive databases, gathering 115 4D projects conducted worldwide and from interviews of seven oil companies, both representing 90% of the activity in time-lapse seismic. This study provides sales estimation and sales/projects breakdown by: in-house/subcontracted activity, geography, onshore/offshore, reservoir rocks and recovery methods, technology/methodology, oil companies and service companies. The market of 4D seismic has been split into 4 segments: acquisition, processing, reservoir studies - feasibility, interpretation and seismic history matching -, borehole seismic (acquisition and processing). In addition, the market of passive seismic monitoring, another technique of seismic reservoir monitoring has also been estimated. The main sources, used to build the IFP databases, were: Worldwide Global E and P Service Reports from IHS Energy, World Geophysical News, an extensive bibliographic study through more than 200 articles, abstracts and summaries, a collaboration with CGG. For all market estimations, numbers computed from IFP databases and from interviews of oil companies were extrapolated from 90% to 100%, to quantify the total 4D activity. The estimations obtained were not rounded in order to preserve trends with a consistent computation from one year to another and from one market segment to another, despite uncertainties of about 10%. Quality controls were performed to validate the final estimations: volumes of 4D seismic data, computed from IFP databases, were checked by comparing processed data with acquired data

  19. 4'' + D VR technology for structural analysis and integrated maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, I. S.; Yoon, S. H.; Shim, K. W.; Yu, Y. H.; Suh, K. Y.

    2002-01-01

    There continues to be an increasing demand of electricity around the globe to fuel the industrial growth and to promote the human welfare. The economic activities have brought about richness in our material and cultural lives, in which process the electric power has been at the heart of the versatile energy sources. In order to timely and competitively respond to rapidly changing energy environment in the twenty-first century there is a growing need to build the advanced nuclear power plants in the unlimited K, which were confirmed by FTIR and 51 V Ncommissioning. One can then realistically evaluate their construction time and cost per varying methods and options available from the leading-edge technology. In particular a great deal of efforts have yet to be made for time- and cost-dependent plant simulation and dynamically coupled database construction in the VR space. The operator training and personnel education may also benefit from the VR technology. The present work is being proposed in the three-dimensional space and time plus cost coordinates, i.e. four plus dimensional (4 + D) coordinates. The 4 + D VR application will enable the nuclear industry to narrow the technological gap from the other leading industries that have long since been employing the VR engineering. The 4 + D technology will help nurture public understanding of the special discipline of nuclear power plants. The technology will also facilitate public access to the knowledge on the nuclear science and engineering which has so far been monopolized by the academia, national laboratories and the heavy industry. The 4 + D virtual design and construction will open up the new horizon for revitalization of the nuclear industry over the globe in the foreseeable future. Considering the long construction and operation time for the nuclear power plants, the preliminary VR simulation capability for the plants will supply the vital information not only for the actual design and construction of the

  20. 4D experience on Girassol Field block 17, Angola

    Energy Technology Data Exchange (ETDEWEB)

    Lefeuvre, F.; Brechet, E.; Bertini, F.; Jourdan, J.M.; Cassou, G. [TOTAL S.A., Luanda (Angola); Dubucq, D. [TOTAL Angola, Luanda (Angola)

    2004-07-01

    The Girassol field is located in Angolan deep water of Block 17 and consists of large vertically stacked turbidities complexes. The reservoir extends over approximately 200 km{sup 2} and water depth ranges between 1300 and 1400 meters. In that context High Resolution 3D seismic became the most valuable tool to describe and monitor the reservoir. The field development plan took into account, through re-injection of the gas into the reservoir, Total environmental policy imposing the recycling of production gas. Monitoring of this injection was the main reason to shoot the first High Resolution 4D extremely early in the life of field. Despite the complexity of interpretation due to complex fluid situation and pressure effect, the results went way beyond expectations as the 4D images are of very high quality. Data has also been used to update and refine the reservoir flow model as well as to help deciding on the location of latest development wells. Other repeat surveys are scheduled, the next one before the end of 2004. The ultimate goal which we hope to reach in the very near future will be to use seismic-derived saturation and pressure changes to constrain the reservoir model during the history matching process. (author)

  1. The 4D Nucleome: Genome Compartmentalization in an Evolutionary Context.

    Science.gov (United States)

    Cremer, T; Cremer, M; Cremer, C

    2018-04-01

    4D nucleome research aims to understand the impact of nuclear organization in space and time on nuclear functions, such as gene expression patterns, chromatin replication, and the maintenance of genome integrity. In this review we describe evidence that the origin of 4D genome compartmentalization can be traced back to the prokaryotic world. In cell nuclei of animals and plants chromosomes occupy distinct territories, built up from ~1 Mb chromatin domains, which in turn are composed of smaller chromatin subdomains and also form larger chromatin domain clusters. Microscopic evidence for this higher order chromatin landscape was strengthened by chromosome conformation capture studies, in particular Hi-C. This approach demonstrated ~1 Mb sized, topologically associating domains in mammalian cell nuclei separated by boundaries. Mutations, which destroy boundaries, can result in developmental disorders and cancer. Nucleosomes appeared first as tetramers in the Archaea kingdom and later evolved to octamers built up each from two H2A, two H2B, two H3, and two H4 proteins. Notably, nucleosomes were lost during the evolution of the Dinoflagellata phylum. Dinoflagellate chromosomes remain condensed during the entire cell cycle, but their chromosome architecture differs radically from the architecture of other eukaryotes. In summary, the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals suggests the existence of conserved, but still unknown mechanism(s) controlling this architecture. Notwithstanding this conservation, a comparison of metazoans and protists also demonstrates species-specific structural and functional features of nuclear organization.

  2. 4d N=2 theories with disconnected gauge groups

    Energy Technology Data Exchange (ETDEWEB)

    Argyres, Philip C.; Martone, Mario [Physics Department, University of Cincinnati,PO Box 210011, Cincinnati OH 45221 (United States)

    2017-03-28

    In this paper we present a beautifully consistent web of evidence for the existence of interacting 4d rank-1 N=2 SCFTs obtained from gauging discrete subgroups of global symmetries of other existing 4d rank-1 N=2 SCFTs. The global symmetries that can be gauged involve a non-trivial combination of discrete subgroups of the U(1){sub R}, low-energy EM duality group SL(2,ℤ), and the outer automorphism group of the flavor symmetry algebra, Out(F). The theories that we construct are remarkable in many ways: (i) two of them have exceptional F{sub 4} and G{sub 2} flavor groups; (ii) they substantially complete the picture of the landscape of rank-1 N=2 SCFTs as they realize all but one of the remaining consistent rank-1 Seiberg-Witten geometries that we previously constructed but were not associated to known SCFTs; and (iii) some of them have enlarged N=3 SUSY, and have not been previously constructed. They are also examples of SCFTs which violate the Shapere-Tachikawa relation between the conformal central charges and the scaling dimension of the Coulomb branch vev. We propose a modification of the formulas computing these central charges from the topologically twisted Coulomb branch partition function which correctly compute them for discretely gauged theories.

  3. 4D Dynamic Required Navigation Performance Final Report

    Science.gov (United States)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  4. Abdominal organ motion measured using 4D CT

    International Nuclear Information System (INIS)

    Brandner, Edward D.; Wu, Andrew; Chen, Hungcheng; Heron, Dwight; Kalnicki, Shalom; Komanduri, Krishna; Gerszten, Kristina; Burton, Steve; Ahmed, Irfan; Shou, Zhenyu

    2006-01-01

    Purpose: To measure respiration-induced abdominal organ motion using four-dimensional computed tomography (4D CT) scanning and to examine the organ paths. Methods and Materials: During 4D CT scanning, consecutive CT images are acquired of the patient at each couch position. Simultaneously, the patient's respiratory pattern is recorded using an external marker block taped to the patient's abdomen. This pattern is used to retrospectively organize the CT images into multiple three-dimensional images, each representing one breathing phase. These images are analyzed to measure organ motion between each phase. The displacement from end expiration is compared to a displacement limit that represents acceptable dosimetric results (5 mm). Results: The organs measured in 13 patients were the liver, spleen, and left and right kidneys. Their average superior to inferior absolute displacements were 1.3 cm for the liver, 1.3 cm for the spleen, 1.1 cm for the left kidney, and 1.3 cm for the right kidney. Although the organ paths varied among patients, 5 mm of superior to inferior displacement from end expiration resulted in less than 5 mm of displacement in the other directions for 41 of 43 organs measured. Conclusions: Four-dimensional CT scanning can accurately measure abdominal organ motion throughout respiration. This information may result in greater organ sparing and planning target volume coverage

  5. 3D and 4D Seismic Technics Today

    Directory of Open Access Journals (Sweden)

    Marcin Marian

    2004-09-01

    Full Text Available Years ago, exploration was done through surface observations and „divining rods“ – now, it is done by satellites, microprocessors, remote sensing, and supercomputers. In the 1970´ s, the exploration success rate was 14 percent, today, it is nearly 29 percent. Not so long ago, three – dimension (3D seismic diagnostic techniques helped recover 25-50 percent of the oil in place – now, 4D seismic helps recover up to 70 percent of the oil in place. 3D and 4D seismic and earth imaging systems also help in understanding the subsurface flow of other fluids, such as groundwater and pollutants.Seismic surveys – a technique in which sound waves are bounced off underground rock struktures to reveal possible oil and gas bearing formation – are now standard fare for the modern petroleum industry. But today’s seismic methods are best at locating „structural traps“ where faults or folds in the underground rock have created zones where oil can become trapped.

  6. 4+D digital engineering for advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Jeong, S. G.; Suh, K. Y.; Nam, S. K.

    2007-01-01

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully automated way of managing the information flow spanning their life cycle. In line with practice in disciplines of naval architecture, aerospace engineering, and automotive manufacturing, the paper proposes total digital systems engineering based on three-dimensional (3D) computer-aided design (CAD) models. The signature in the proposal lies with the four-plus-dimensional (4 + D) Technology T M, a critical know-how for digital management. The so-called OPIUM (Optimized Plant Integrated Ubiquitous Management) features a 4 + D Technology T M for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4 + D, is the backbone of digital engineering in the nuclear systems design and management. Based on an integrated 3D configuration management system, OPIUM consists of solutions NOTUS (Nuclear Optimization Technique Ubiquitous System), VENUS (Virtual Engineering Nuclear Ubiquitous System), INUUS (Informatics Nuclear Utilities Ubiquitous System), JANUS (Junctional Analysis Numerical Ubiquitous System) and EURUS (Electronic Unit Research Ubiquitous System). These solutions will help initial simulation capability for NPPs to supply the crucial information. NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4

  7. Data Democracy and Decision Making: Enhancing the Use and Value of Geospatial Data and Scientific Information

    Science.gov (United States)

    Shapiro, C. D.

    2014-12-01

    Data democracy is a concept that has great relevance to the use and value of geospatial data and scientific information. Data democracy describes a world in which data and information are widely and broadly accessible, understandable, and useable. The concept operationalizes the public good nature of scientific information and provides a framework for increasing benefits from its use. Data democracy encompasses efforts to increase accessibility to geospatial data and to expand participation in its collection, analysis, and application. These two pillars are analogous to demand and supply relationships. Improved accessibility, or demand, includes increased knowledge about geospatial data and low barriers to retrieval and use. Expanded participation, or supply, encompasses a broader community involved in developing geospatial data and scientific information. This pillar of data democracy is characterized by methods such as citizen science or crowd sourcing.A framework is developed for advancing the use of data democracy. This includes efforts to assess the societal benefits (economic and social) of scientific information. This knowledge is critical to continued monitoring of the effectiveness of data democracy implementation and of potential impact on the use and value of scientific information. The framework also includes an assessment of opportunities for advancing data democracy both on the supply and demand sides. These opportunities include relatively inexpensive efforts to reduce barriers to use as well as the identification of situations in which participation can be expanded in scientific efforts to enhance the breadth of involvement as well as expanding participation to non-traditional communities. This framework provides an initial perspective on ways to expand the "scientific community" of data users and providers. It also describes a way forward for enhancing the societal benefits from geospatial data and scientific information. As a result, data

  8. Exploring 4D Flow Data in an Immersive Virtual Environment

    Science.gov (United States)

    Stevens, A. H.; Butkiewicz, T.

    2017-12-01

    Ocean models help us to understand and predict a wide range of intricate physical processes which comprise the atmospheric and oceanic systems of the Earth. Because these models output an abundance of complex time-varying three-dimensional (i.e., 4D) data, effectively conveying the myriad information from a given model poses a significant visualization challenge. The majority of the research effort into this problem has concentrated around synthesizing and examining methods for representing the data itself; by comparison, relatively few studies have looked into the potential merits of various viewing conditions and virtual environments. We seek to improve our understanding of the benefits offered by current consumer-grade virtual reality (VR) systems through an immersive, interactive 4D flow visualization system. Our dataset is a Regional Ocean Modeling System (ROMS) model representing a 12-hour tidal cycle of the currents within New Hampshire's Great Bay estuary. The model data was loaded into a custom VR particle system application using the OpenVR software library and the HTC Vive hardware, which tracks a headset and two six-degree-of-freedom (6DOF) controllers within a 5m-by-5m area. The resulting visualization system allows the user to coexist in the same virtual space as the data, enabling rapid and intuitive analysis of the flow model through natural interactions with the dataset and within the virtual environment. Whereas a traditional computer screen typically requires the user to reposition a virtual camera in the scene to obtain the desired view of the data, in virtual reality the user can simply move their head to the desired viewpoint, completely eliminating the mental context switches from data exploration/analysis to view adjustment and back. The tracked controllers become tools to quickly manipulate (reposition, reorient, and rescale) the dataset and to interrogate it by, e.g., releasing dye particles into the flow field, probing scalar velocities

  9. 4D XCAT phantom for multimodality imaging research

    Energy Technology Data Exchange (ETDEWEB)

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W. [Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Hock Plaza, Suite 302, Durham, North Carolina 27705 (United States); Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Hock Plaza, Suite 302, Durham, North Carolina 27705 and Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Hock Plaza, Suite 302, Durham, North Carolina 27705 (United States); The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287 (United States)

    2010-09-15

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ''Basic anatomical and physiological data for use in radiological protection: reference values,'' ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the

  10. 4D XCAT phantom for multimodality imaging research

    International Nuclear Information System (INIS)

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-01-01

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ''Basic anatomical and physiological data for use in radiological protection: reference values,'' ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  11. A Spatial Data Infrastructure Integrating Multisource Heterogeneous Geospatial Data and Time Series: A Study Case in Agriculture

    Directory of Open Access Journals (Sweden)

    Gloria Bordogna

    2016-05-01

    Full Text Available Currently, the best practice to support land planning calls for the development of Spatial Data Infrastructures (SDI capable of integrating both geospatial datasets and time series information from multiple sources, e.g., multitemporal satellite data and Volunteered Geographic Information (VGI. This paper describes an original OGC standard interoperable SDI architecture and a geospatial data and metadata workflow for creating and managing multisource heterogeneous geospatial datasets and time series, and discusses it in the framework of the Space4Agri project study case developed to support the agricultural sector in Lombardy region, Northern Italy. The main novel contributions go beyond the application domain for which the SDI has been developed and are the following: the ingestion within an a-centric SDI, potentially distributed in several nodes on the Internet to support scalability, of products derived by processing remote sensing images, authoritative data, georeferenced in-situ measurements and voluntary information (VGI created by farmers and agronomists using an original Smart App; the workflow automation for publishing sets and time series of heterogeneous multisource geospatial data and relative web services; and, finally, the project geoportal, that can ease the analysis of the geospatial datasets and time series by providing complex intelligent spatio-temporal query and answering facilities.

  12. Nonsense mutants in the bacteriophage T4D v gene

    Energy Technology Data Exchange (ETDEWEB)

    Minderhout, L van; Grimbergen, J; Groot, B de [Rijksuniversiteit Leiden (Netherlands). Lab. voor Stralengenetica en Chemische Mutagenese; Cohen (J.A.) Instituut voor Radiopathologie en Stralenbescherming, Leiden (Netherlands))

    1975-09-01

    Ten UV-sensitive mutants of T4D with the v phenotype were isolated. Of these ten mutants, two are amber and two opal. In UV curves and in photoreactivation and multiplicity reactivation experiments the nonsense mutants show the v phenotype in su/sup -/ hosts and almost the T4/sup +/ phenotype in su/sup +/ hosts. The mutations are located between rl and e and are alleles of v/sub 1/. In crosses with irradiated and non-irradiated phages the recombinant frequency is not reduced by uvs5. Amber uvs5 propagated in CR63 su/sup +/ is with B su/sup -/ just as sensitive to UV as uvs5 propagated in B su/sup -/, which permits the conclusion that the capsid of T4 phage particles does not contain the v gene product.

  13. Towards 4D intervention guidance using compressed sensing

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Jan; Bartling, Soenke [Deutsches Krebsforschungszentrum DKFZ, Heidelberg (Germany); Brehm, Marcus; Kachelriess, Marc [Erlangen-Nuernberg Univ., Erlangen (Germany). Inst. of Medical Physics (IMP)

    2011-07-01

    Interventional radiology is nowadays usually guided with projection radiography using mono- or biplane systems. Due to the projective nature of this guidance imaging certain intraprocedural situations remain unclear. Although helpful, the use of 3D CT is limited due to radiation dose. Using advanced reconstruction techniques incorporating prior knowledge, one could overcome these limitations without exceeding dose limitations. Intervention guidance is especially appealing to those algorithms, because certain constrains apply to useful images in intervention guidance that vary relevantly from other CT applications. These are: key relevance of high contrast structures, sparse temporal updates and little relevance of absolute CT values. In this paper the principal usability of reconstruction algorithms for intervention guidance is tested. Compressed sensing algorithms PICCS and ASD-POCS are compared to the McKinnon-Bates and Feldkamp-Davis-Kress algorithm. Animal experiments as well as simulations are performed. An outlook towards 4D intervention guidance is provided. (orig.)

  14. Rose, a rotating system for 4D emittance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Michael; Groening, Lars; Xiao, Chen; Mickat, Sascha; Du, Xiaonan; Gerhard, Peter; Vormann, Hartmut [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    A ROtating System for Emittance measurements ROSE, to measure the full 4 dimensional transverse beam matrix of a heavy ion beam has been developed and commissioned. Different heavy ion beams behind the HLI at GSI have been used in two commissioning beam times. All technical aspects of Rose have been tested, Rose has been benchmarked against existing emittance scanners for horizontal and vertical projections and the method, hard- and software to measure the 4D beam matrix has been upgraded, refined and successfully commissioned. The inter plane correlations of the HLI beam have been measured, yet as no significant initial correlations were found to be present, controlled coupling of the beam by using a skew triplet has been applied and confirmed with Rose. The next step is to use ROSE to measure and remove the known inter plane correlations of a Uranium beam before SIS18 injection.

  15. A new class of spatially homogeneous 4D string backgrounds

    CERN Document Server

    Batakis, N A

    1995-01-01

    A new class of spatially homogeneous 4D string backgrounds, the X(d\\rightarrow) according to a recent classification, is presented and shown to contain only five generic types. In contrast to the case of X(d\\uparrow) (which contains as a subclass all possible FRW backgrounds), exact SO(3) isotropy is always broken in the X(d\\rightarrow) class. This is due to the H-field, whose dual is necessarily along a principal direction of anisotropy. Nevertheless, FRW symmetry can be attained asymptotically for Bianchi-types I and VII_0 in a rather appealing physical context. Other aspects of the solutions found for types X=I,II,III,VI_{-1}, and of the VII_0 case are briefly discussed.

  16. 4D space access neutron spectrometer 4SEASONS (SIKI)

    International Nuclear Information System (INIS)

    Kajimoto, Ryoichi; Nakamura, Mitsutaka

    2010-01-01

    The 4D Space Access Neutron Spectrometer (4SEASONS) is a high-intensity Fermi-chopper spectrometer. It is intended to provide high counting rate for thermal neutrons with medium resolution (ΔE/E i -6% at E=0) to efficiently collect weak inelastic signals from novel spin and lattice dynamics especially in high-T c superconductors and related materials. To achieve this goal, the spectrometer equips advanced instrumental design such as an elliptic-shaped converging neutron guide coated with high-Q c (m=3-4) supermirror, and long-length (2.5 m) 3 He position sensitive detectors (PSDs) arranged cylindrically inside the vacuum scattering chamber. Furthermore, the spectrometer is ready for multi-incident-energy measurements by the repetition rate multiplication method, which greatly improves the measurement efficiency. (author)

  17. 4D Simulation for Nuclear Power Plant Construction

    International Nuclear Information System (INIS)

    Jeong, Seo G.; Suh, Kune Y.

    2006-01-01

    For the timely and competitive response to rapidly changing energy environment at the turn of millennium, there is a desperate need to build the nuclear power plant (NPP) in the virtual reality of digital engineering prior to commissioning. To construct a NPP is a highly integrated, voluminous project. Verification of design and initial planning is prerequisite to construction to confirm optimal fabrication and high productivity. This paper presents the design feasibility by simulating the initial construction plan of NPP using four-dimensional (4D) simulation. The virtual reality method, using three dimensional (3D) computer-aided design (CAD) model, enables various designs in the project launching stage to be promptly and exactly previewed

  18. Imaging of aortic valve dynamics in 4D OCT

    Directory of Open Access Journals (Sweden)

    Schnabel Christian

    2015-09-01

    Full Text Available The mechanical components of the heart, especially the valves and leaflets, are enormous stressed during lifetime. Therefore, those structures undergo different pathophysiological tissue transformations which affect cardiac output and in consequence living comfort of affected patients. These changes may lead to calcific aortic valve stenosis (AVS, the major heart valve disease in humans. The knowledge about changes of the dynamic behaviour during the course of this disease and the possibility of early stage diagnosis is of particular interest and could lead to the development of new treatment strategies and drug based options of prevention or therapy. 4D optical coherence tomography (OCT in combination with high-speed video microscopy were applied to characterize dynamic behaviour of the murine aortic valve and to characterize dynamic properties during artificial stimulation. We present a promising tool to investigate the aortic valve dynamics in an ex vivo disease model with a high spatial and temporal resolution using a multimodal imaging setup.

  19. Development of Geospatial Map Based Election Portal

    Science.gov (United States)

    Gupta, A. Kumar Chandra; Kumar, P.; Vasanth Kumar, N.

    2014-11-01

    The Geospatial Delhi Limited (GSDL), a Govt. of NCT of Delhi Company formed in order to provide the geospatial information of National Capital Territory of Delhi (NCTD) to the Government of National Capital Territory of Delhi (GNCTD) and its organs such as DDA, MCD, DJB, State Election Department, DMRC etc., for the benefit of all citizens of Government of National Capital Territory of Delhi (GNCTD). This paper describes the development of Geospatial Map based Election portal (GMEP) of NCT of Delhi. The portal has been developed as a map based spatial decision support system (SDSS) for pertain to planning and management of Department of Chief Electoral Officer, and as an election related information searching tools (Polling Station, Assembly and parliamentary constituency etc.,) for the citizens of NCTD. The GMEP is based on Client-Server architecture model. It has been developed using ArcGIS Server 10.0 with J2EE front-end on Microsoft Windows environment. The GMEP is scalable to enterprise SDSS with enterprise Geo Database & Virtual Private Network (VPN) connectivity. Spatial data to GMEP includes delimited precinct area boundaries of Voters Area of Polling stations, Assembly Constituency, Parliamentary Constituency, Election District, Landmark locations of Polling Stations & basic amenities (Police Stations, Hospitals, Schools and Fire Stations etc.). GMEP could help achieve not only the desired transparency and easiness in planning process but also facilitates through efficient & effective tools for management of elections. It enables a faster response to the changing ground realities in the development planning, owing to its in-built scientific approach and open-ended design.

  20. Authoring Tours of Geospatial Data With KML and Google Earth

    Science.gov (United States)

    Barcay, D. P.; Weiss-Malik, M.

    2008-12-01

    As virtual globes become widely adopted by the general public, the use of geospatial data has expanded greatly. With the popularization of Google Earth and other platforms, GIS systems have become virtual reality platforms. Using these platforms, a casual user can easily explore the world, browse massive data-sets, create powerful 3D visualizations, and share those visualizations with millions of people using the KML language. This technology has raised the bar for professionals and academics alike. It is now expected that studies and projects will be accompanied by compelling, high-quality visualizations. In this new landscape, a presentation of geospatial data can be the most effective form of advertisement for a project: engaging both the general public and the scientific community in a unified interactive experience. On the other hand, merely dumping a dataset into a virtual globe can be a disorienting, alienating experience for many users. To create an effective, far-reaching presentation, an author must take care to make their data approachable to a wide variety of users with varying knowledge of the subject matter, expertise in virtual globes, and attention spans. To that end, we present techniques for creating self-guided interactive tours of data represented in KML and visualized in Google Earth. Using these methods, we provide the ability to move the camera through the world while dynamically varying the content, style, and visibility of the displayed data. Such tours can automatically guide users through massive, complex datasets: engaging a broad user-base, and conveying subtle concepts that aren't immediately apparent when viewing the raw data. To the casual user these techniques result in an extremely compelling experience similar to watching video. Unlike video though, these techniques maintain the rich interactive environment provided by the virtual globe, allowing users to explore the data in detail and to add other data sources to the presentation.

  1. Geospatial analysis of food environment demonstrates associations with gestational diabetes.

    Science.gov (United States)

    Kahr, Maike K; Suter, Melissa A; Ballas, Jerasimos; Ramin, Susan M; Monga, Manju; Lee, Wesley; Hu, Min; Shope, Cindy D; Chesnokova, Arina; Krannich, Laura; Griffin, Emily N; Mastrobattista, Joan; Dildy, Gary A; Strehlow, Stacy L; Ramphul, Ryan; Hamilton, Winifred J; Aagaard, Kjersti M

    2016-01-01

    Gestational diabetes mellitus (GDM) is one of most common complications of pregnancy, with incidence rates varying by maternal age, race/ethnicity, obesity, parity, and family history. Given its increasing prevalence in recent decades, covariant environmental and sociodemographic factors may be additional determinants of GDM occurrence. We hypothesized that environmental risk factors, in particular measures of the food environment, may be a diabetes contributor. We employed geospatial modeling in a populous US county to characterize the association of the relative availability of fast food restaurants and supermarkets to GDM. Utilizing a perinatal database with >4900 encoded antenatal and outcome variables inclusive of ZIP code data, 8912 consecutive pregnancies were analyzed for correlations between GDM and food environment based on countywide food permit registration data. Linkage between pregnancies and food environment was achieved on the basis of validated 5-digit ZIP code data. The prevalence of supermarkets and fast food restaurants per 100,000 inhabitants for each ZIP code were gathered from publicly available food permit sources. To independently authenticate our findings with objective data, we measured hemoglobin A1c levels as a function of geospatial distribution of food environment in a matched subset (n = 80). Residence in neighborhoods with a high prevalence of fast food restaurants (fourth quartile) was significantly associated with an increased risk of developing GDM (relative to first quartile: adjusted odds ratio, 1.63; 95% confidence interval, 1.21-2.19). In multivariate analysis, this association held true after controlling for potential confounders (P = .002). Measurement of hemoglobin A1c levels in a matched subset were significantly increased in association with residence in a ZIP code with a higher fast food/supermarket ratio (n = 80, r = 0.251 P analysis, a relationship of food environment and risk for gestational diabetes was

  2. Parallel Wavefront Analysis for a 4D Interferometer

    Science.gov (United States)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  3. Enhanced multimaterial 4D printing with active hinges

    Science.gov (United States)

    Akbari, Saeed; Hosein Sakhaei, Amir; Kowsari, Kavin; Yang, Bill; Serjouei, Ahmad; Yuanfang, Zhang; Ge, Qi

    2018-06-01

    Despite great progress in four-dimensional (4D) printing, i.e. three-dimensional (3D) printing of active (stimuli-responsive) materials, the relatively low actuation force of the 4D printed structures often impedes their engineering applications. In this study, we use multimaterial inkjet 3D printing technology to fabricate shape memory structures, including a morphing wing flap and a deployable structure, which consist of active and flexible hinges joining rigid (non-active) parts. The active hinges, printed from a shape memory polymer (SMP), lock the structure into a second temporary shape during a thermomechanical programming process, while the flexible hinges, printed from an elastomer, effectively increase the actuation force and the load-bearing capacity of the printed structure as reflected in the recovery ratio. A broad range of mechanical properties such as modulus and failure strain can be achieved for both active and flexible hinges by varying the composition of the two base materials, i.e. the SMP and the elastomer, to accommodate large deformation induced during programming step, and enhance the recovery in the actuating step. To find the important design parameters, including local deformation, shape fixity and recovery ratio, we conduct high fidelity finite element simulations, which are able to accurately predict the nonlinear deformation of the printed structures. In addition, a coupled thermal-electrical finite element analysis was performed to model the heat transfer within the active hinges during the localized Joule heating process. The model predictions showed good agreement with the measured temperature data and were used to find the major parameters affecting temperature distribution including the applied voltage and the convection rate.

  4. Accelerated 4D phase contrast MRI in skeletal muscle contraction.

    Science.gov (United States)

    Mazzoli, Valentina; Gottwald, Lukas M; Peper, Eva S; Froeling, Martijn; Coolen, Bram F; Verdonschot, Nico; Sprengers, Andre M; van Ooij, Pim; Strijkers, Gustav J; Nederveen, Aart J

    2018-03-05

    3D time-resolved (4D) phase contrast MRI can be used to study muscle contraction. However, 3D coverage with sufficient spatiotemporal resolution can only be achieved by interleaved acquisitions during many repetitions of the motion task, resulting in long scan times. The aim of this study was to develop a compressed sensing accelerated 4D phase contrast MRI technique for quantification of velocities and strain rate of the muscles in the lower leg during active plantarflexion/dorsiflexion. Nine healthy volunteers were scanned during active dorsiflexion/plantarflexion task. For each volunteer, we acquired a reference scan, as well as 4 different accelerated scans (k-space undersampling factors: 3.14X, 4.09X, 4.89X, and 6.41X) obtained using Cartesian Poisson disk undersampling schemes. The data was reconstructed using a compressed sensing pipeline. For each scan, velocity and strain rate values were quantified in the gastrocnemius lateralis, gastrocnemius medialis, tibialis anterior, and soleus. No significant differences in velocity values were observed as a function acceleration factor in the investigated muscles. The strain rate calculation resulted in one positive (s + ) and one negative (s - ) eigenvalue, whereas the third eigenvalue (s 3 ) was consistently 0 for all the acquisitions. No significant differences were observed for the strain rate eigenvalues as a function of acceleration factor. Data undersampling combined with compressed sensing reconstruction allowed obtainment of time-resolved phase contrast acquisitions with 3D coverage and quantitative information comparable to the reference scan. The 3D sensitivity of the method can help in understanding the connection between muscle architecture and muscle function in future studies. © 2018 International Society for Magnetic Resonance in Medicine.

  5. A modified 4D ROOSTER method using the Chambolle-Pock algorithm

    OpenAIRE

    Mory, Cyril; Jacques, Laurent; The Third International Conference on Image Formation in X-Ray Computed Tomography

    2014-01-01

    The 4D RecOnstructiOn using Spatial and TEmpo- ral Regularization method is a recent 4D cone beam computed tomography algorithm. 4D ROOSTER has not been rigorously proved to converge. This paper aims to reformulate it using the Chambolle & Pock primal-dual optimization scheme. The convergence of this reformulated 4D ROOSTER is therefore guaranteed.

  6. Biosecurity and geospatial analysis of mycoplasma infections in ...

    African Journals Online (AJOL)

    Geospatial database of farm locations and biosecurity measures are essential to control disease outbreaks. A study was conducted to establish geospatial database on poultry farms in Al-Jabal Al-Gharbi region of Libya, to evaluate the biosecurity level of each farm and to determine the seroprevalence of mycoplasma and ...

  7. Geospatial Services in Special Libraries: A Needs Assessment Perspective

    Science.gov (United States)

    Barnes, Ilana

    2013-01-01

    Once limited to geographers and mapmakers, Geographic Information Systems (GIS) has taken a growing central role in information management and visualization. Geospatial services run a gamut of different products and services from Google maps to ArcGIS servers to Mobile development. Geospatial services are not new. Libraries have been writing about…

  8. Capacity Building through Geospatial Education in Planning and School Curricula

    Science.gov (United States)

    Kumar, P.; Siddiqui, A.; Gupta, K.; Jain, S.; Krishna Murthy, Y. V. N.

    2014-11-01

    Geospatial technology has widespread usage in development planning and resource management. It offers pragmatic tools to help urban and regional planners to realize their goals. On the request of Ministry of Urban Development, Govt. of India, the Indian Institute of Remote Sensing (IIRS), Dehradun has taken an initiative to study the model syllabi of All India Council for Technical Education for planning curricula of Bachelor and Master (five disciplines) programmes. It is inferred that geospatial content across the semesters in various planning fields needs revision. It is also realized that students pursuing planning curricula are invariably exposed to spatial mapping tools but the popular digital drafting software have limitations on geospatial analysis of planning phenomena. Therefore, students need exposure on geospatial technologies to understand various real world phenomena. Inputs were given to seamlessly merge and incorporate geospatial components throughout the semesters wherever seems relevant. Another initiative by IIRS was taken to enhance the understanding and essence of space and geospatial technologies amongst the young minds at 10+2 level. The content was proposed in a manner such that youngsters start realizing the innumerable contributions made by space and geospatial technologies in their day-to-day life. This effort both at school and college level would help in not only enhancing job opportunities for young generation but also utilizing the untapped human resource potential. In the era of smart cities, higher economic growth and aspirations for a better tomorrow, integration of Geospatial technologies with conventional wisdom can no longer be ignored.

  9. Interacting With A Near Real-Time Urban Digital Watershed Using Emerging Geospatial Web Technologies

    Science.gov (United States)

    Liu, Y.; Fazio, D. J.; Abdelzaher, T.; Minsker, B.

    2007-12-01

    The value of real-time hydrologic data dissemination including river stage, streamflow, and precipitation for operational stormwater management efforts is particularly high for communities where flash flooding is common and costly. Ideally, such data would be presented within a watershed-scale geospatial context to portray a holistic view of the watershed. Local hydrologic sensor networks usually lack comprehensive integration with sensor networks managed by other agencies sharing the same watershed due to administrative, political, but mostly technical barriers. Recent efforts on providing unified access to hydrological data have concentrated on creating new SOAP-based web services and common data format (e.g. WaterML and Observation Data Model) for users to access the data (e.g. HIS and HydroSeek). Geospatial Web technology including OGC sensor web enablement (SWE), GeoRSS, Geo tags, Geospatial browsers such as Google Earth and Microsoft Virtual Earth and other location-based service tools provides possibilities for us to interact with a digital watershed in near-real-time. OGC SWE proposes a revolutionary concept towards a web-connected/controllable sensor networks. However, these efforts have not provided the capability to allow dynamic data integration/fusion among heterogeneous sources, data filtering and support for workflows or domain specific applications where both push and pull mode of retrieving data may be needed. We propose a light weight integration framework by extending SWE with open source Enterprise Service Bus (e.g., mule) as a backbone component to dynamically transform, transport, and integrate both heterogeneous sensor data sources and simulation model outputs. We will report our progress on building such framework where multi-agencies" sensor data and hydro-model outputs (with map layers) will be integrated and disseminated in a geospatial browser (e.g. Microsoft Virtual Earth). This is a collaborative project among NCSA, USGS Illinois Water

  10. Geospatial Brokering - Challenges and Future Directions

    Science.gov (United States)

    White, C. E.

    2012-12-01

    An important feature of many brokers is to facilitate straightforward human access to scientific data while maintaining programmatic access to it for system solutions. Standards-based protocols are critical for this, and there are a number of protocols to choose from. In this discussion, we will present a web application solution that leverages certain protocols - e.g., OGC CSW, REST, and OpenSearch - to provide programmatic as well as human access to geospatial resources. We will also discuss managing resources to reduce duplication yet increase discoverability, federated search solutions, and architectures that combine human-friendly interfaces with powerful underlying data management. The changing requirements witnessed in brokering solutions over time, our recent experience participating in the EarthCube brokering hack-a-thon, and evolving interoperability standards provide insight to future technological and philosophical directions planned for geospatial broker solutions. There has been much change over the past decade, but with the unprecedented data collaboration of recent years, in many ways the challenges and opportunities are just beginning.

  11. Geospatial Data Management Platform for Urban Groundwater

    Science.gov (United States)

    Gaitanaru, D.; Priceputu, A.; Gogu, C. R.

    2012-04-01

    Due to the large amount of civil work projects and research studies, large quantities of geo-data are produced for the urban environments. These data are usually redundant as well as they are spread in different institutions or private companies. Time consuming operations like data processing and information harmonisation represents the main reason to systematically avoid the re-use of data. The urban groundwater data shows the same complex situation. The underground structures (subway lines, deep foundations, underground parkings, and others), the urban facility networks (sewer systems, water supply networks, heating conduits, etc), the drainage systems, the surface water works and many others modify continuously. As consequence, their influence on groundwater changes systematically. However, these activities provide a large quantity of data, aquifers modelling and then behaviour prediction can be done using monitored quantitative and qualitative parameters. Due to the rapid evolution of technology in the past few years, transferring large amounts of information through internet has now become a feasible solution for sharing geoscience data. Furthermore, standard platform-independent means to do this have been developed (specific mark-up languages like: GML, GeoSciML, WaterML, GWML, CityML). They allow easily large geospatial databases updating and sharing through internet, even between different companies or between research centres that do not necessarily use the same database structures. For Bucharest City (Romania) an integrated platform for groundwater geospatial data management is developed under the framework of a national research project - "Sedimentary media modeling platform for groundwater management in urban areas" (SIMPA) financed by the National Authority for Scientific Research of Romania. The platform architecture is based on three components: a geospatial database, a desktop application (a complex set of hydrogeological and geological analysis

  12. Open cyberGIS software for geospatial research and education in the big data era

    Science.gov (United States)

    Wang, Shaowen; Liu, Yan; Padmanabhan, Anand

    CyberGIS represents an interdisciplinary field combining advanced cyberinfrastructure, geographic information science and systems (GIS), spatial analysis and modeling, and a number of geospatial domains to improve research productivity and enable scientific breakthroughs. It has emerged as new-generation GIS that enable unprecedented advances in data-driven knowledge discovery, visualization and visual analytics, and collaborative problem solving and decision-making. This paper describes three open software strategies-open access, source, and integration-to serve various research and education purposes of diverse geospatial communities. These strategies have been implemented in a leading-edge cyberGIS software environment through three corresponding software modalities: CyberGIS Gateway, Toolkit, and Middleware, and achieved broad and significant impacts.

  13. Open cyberGIS software for geospatial research and education in the big data era

    Directory of Open Access Journals (Sweden)

    Shaowen Wang

    2016-01-01

    Full Text Available CyberGIS represents an interdisciplinary field combining advanced cyberinfrastructure, geographic information science and systems (GIS, spatial analysis and modeling, and a number of geospatial domains to improve research productivity and enable scientific breakthroughs. It has emerged as new-generation GIS that enable unprecedented advances in data-driven knowledge discovery, visualization and visual analytics, and collaborative problem solving and decision-making. This paper describes three open software strategies–open access, source, and integration–to serve various research and education purposes of diverse geospatial communities. These strategies have been implemented in a leading-edge cyberGIS software environment through three corresponding software modalities: CyberGIS Gateway, Toolkit, and Middleware, and achieved broad and significant impacts.

  14. Geospatial Image Mining For Nuclear Proliferation Detection: Challenges and New Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL; Bhaduri, Budhendra L [ORNL; Cheriyadat, Anil M [ORNL; Arrowood, Lloyd [Y-12 National Security Complex; Bright, Eddie A [ORNL; Gleason, Shaun Scott [ORNL; Diegert, Carl [Sandia National Laboratories (SNL); Katsaggelos, Aggelos K [ORNL; Pappas, Thrasos N [ORNL; Porter, Reid [Los Alamos National Laboratory (LANL); Bollinger, Jim [Savannah River National Laboratory (SRNL); Chen, Barry [Lawrence Livermore National Laboratory (LLNL); Hohimer, Ryan [Pacific Northwest National Laboratory (PNNL)

    2010-01-01

    With increasing understanding and availability of nuclear technologies, and increasing persuasion of nuclear technologies by several new countries, it is increasingly becoming important to monitor the nuclear proliferation activities. There is a great need for developing technologies to automatically or semi-automatically detect nuclear proliferation activities using remote sensing. Images acquired from earth observation satellites is an important source of information in detecting proliferation activities. High-resolution remote sensing images are highly useful in verifying the correctness, as well as completeness of any nuclear program. DOE national laboratories are interested in detecting nuclear proliferation by developing advanced geospatial image mining algorithms. In this paper we describe the current understanding of geospatial image mining techniques and enumerate key gaps and identify future research needs in the context of nuclear proliferation.

  15. The effect of 2,4-D and ABA on respiration of isolated mitochondria from maize coleoptiles

    Directory of Open Access Journals (Sweden)

    Ewa Raczek

    2014-01-01

    Full Text Available The susceptibility of isolated maize mitochondria to the growth regulators: 2,4-dichlorophenoxyacetic acid (2,4-D and abscisic acid (ABA was studied. It was found that 2,4-D (a herbicide inhibits respiration in mitochondria, as do other herbicides or phenoxy-acids. In the entire range of concentrations used (10-3-10-9 M, 2,4-D introduced into the medium before the respiration reaction was begun, or during it, limited the intensity of succinate oxidation. It did not, however, markedly change phosphorylation properties. Uncoupling of oxidative phosphorylation took place only after preincubation of mitochondria with 2,4-D and was the result of the destruction of mitochondrial membranes. ABA (a growth inhibitor of plants caused a similar response in maize mitochondria. Preincubation of mitochondria with ABA lead to the uncoupling of oxidative phosphorylation. Whereas ABA introduced during respiration (state 4 respiration or before its onset, lowered the oxidative potential of mitochondria, it also changed the pattern of state 4-3-4 transition after addition of ADP (it was especially visible at high concentrations, which indicates that the coupling of oxidative phosphorylation with the respiratory chain has faltered. It seems that this negative effect of 2,4-D and ABA on respiration of isolated maize mitochondria is connected with the inhibitory effect of these growth regulators on the growth of maize coleoptiles. Interference in the organization mitochondrial membranes results in a lowered supply of ATP - a source of energy needed in elongation processes.

  16. MULTIVARIABLE ANALYSIS OF 2,4-D HERBICIDE PHOTOCATALYTIC DEGRADATION

    Directory of Open Access Journals (Sweden)

    ANDRÉS F. LÓPEZ-VÁSQUEZ

    2011-01-01

    Full Text Available La degradación del herbicida 2,4-D en suspensiones de TiO2 en agua real fue evaluada bajo condiciones de irradiación artificial. El análisis multivariable de metodología de superficie de respuesta (MSR, se aplicó para evaluar el efecto de variables como la concentración de catalizador y pesticida, el pH y el caudal volumétrico sobre la reacción fotocatalítica en dos fotorreactores catalíticos: placa plana y tubular. La variable de respuesta fue la mineralización del pesticida expresada como porcentaje de degradación de carbono orgánico total (COT después de cuatro horas de irradiación. Para el fotorreactor tubular, los cuatro factores tuvieron la misma significancia sobre la degradación, mientras que para el fotorreactor de placa plana inclinada, sólo la concentración de catalizador y el pH tuvieron significancia. La MSR fue una técnica adecuada para obtener parámetros de operación óptimos de un proceso fotocatalítico con un reactor específico y dentro de un rango de estudio determinado.

  17. 4D Cellular Automaton Track Finder in the CBM Experiment

    International Nuclear Information System (INIS)

    Akishina, Valentina; Kisel, Ivan

    2016-01-01

    The CBM experiment (FAIR/GSI, Darmstadt, Germany) will focus on the measurement of rare probes at interaction rates up to 10MHz with data flow of up to 1 TB/s. It requires a novel read-out and data-acquisition concept with self-triggered electronics and free-streaming data. In this case resolving different collisions is a non-trivial task and event building must be performed in software online. That requires full online event reconstruction and selection not only in space, but also in time, so-called 4D event building and selection. This is a task of the First-Level Event Selection (FLES). The FLES reconstruction and selection package consists of several modules: track finding, track fitting, short-lived particles finding, event building and event selection. The Cellular Automaton (CA) track finder algorithm was adapted towards time-based reconstruction. In this article, we describe in detail the modification done to the algorithm, as well as the performance of the developed time-based CA approach

  18. Adaptive 4d Psi-Based Change Detection

    Science.gov (United States)

    Yang, Chia-Hsiang; Soergel, Uwe

    2018-04-01

    In a previous work, we proposed a PSI-based 4D change detection to detect disappearing and emerging PS points (3D) along with their occurrence dates (1D). Such change points are usually caused by anthropic events, e.g., building constructions in cities. This method first divides an entire SAR image stack into several subsets by a set of break dates. The PS points, which are selected based on their temporal coherences before or after a break date, are regarded as change candidates. Change points are then extracted from these candidates according to their change indices, which are modelled from their temporal coherences of divided image subsets. Finally, we check the evolution of the change indices for each change point to detect the break date that this change occurred. The experiment validated both feasibility and applicability of our method. However, two questions still remain. First, selection of temporal coherence threshold associates with a trade-off between quality and quantity of PS points. This selection is also crucial for the amount of change points in a more complex way. Second, heuristic selection of change index thresholds brings vulnerability and causes loss of change points. In this study, we adapt our approach to identify change points based on statistical characteristics of change indices rather than thresholding. The experiment validates this adaptive approach and shows increase of change points compared with the old version. In addition, we also explore and discuss optimal selection of temporal coherence threshold.

  19. Cardy formula for 4d SUSY theories and localization

    Energy Technology Data Exchange (ETDEWEB)

    Pietro, Lorenzo Di [Perimeter Institute for Theoretical Physics,Caroline Street N 31, Waterloo (Canada); Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Herzl street 234, Rehovot (Israel); Honda, Masazumi [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Herzl street 234, Rehovot (Israel)

    2017-04-11

    We study 4d N=1 supersymmetric theories on a compact Euclidean manifold of the form S{sup 1}×M{sub 3}. Partition functions of gauge theories on this background can be computed using localization, and explicit formulas have been derived for different choices of the compact manifold M{sub 3}. Taking the limit of shrinking S{sup 1}, we present a general formula for the limit of the localization integrand, derived by simple effective theory considerations, generalizing the result of https://www.doi.org/10.1007/JHEP07(2016)025. The limit is given in terms of an effective potential for the holonomies around the S{sup 1}, whose minima determine the asymptotic behavior of the partition function. If the potential is minimized in the origin, where it vanishes, the partition function has a Cardy-like behavior fixed by Tr(R), while a nontrivial minimum gives a shift in the coefficient. In all the examples that we consider, the origin is a minimum if Tr(R)≤0.

  20. 4D ANIMATION RECONSTRUCTION FROM MULTI-CAMERA COORDINATES TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    J. P. Jhan

    2016-06-01

    Full Text Available Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australis© coded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.

  1. Estimation of steam-chamber extent using 4D seismic

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [Waseda Univ., Waseda (Japan); Endo, K. [Japan Canada Oil Sands Ltd., Calgary, AB (Canada); Onozuka, S. [Japan Oil, Gas and Metals National Corp., Tokyo (Japan)

    2009-07-01

    The steam-assisted gravity drainage (SAGD) technique is among the most effective steam injection methods and is widely applied in Canadian oil-sand reservoirs. The SAGD technology uses hot steam to decrease bitumen viscosity and allow it to flow. Japan Canada Oil Sands Limited (JACOS) has been developing an oil-sand reservoir in the Alberta's Hangingstone area since 1997. This paper focused on the western area of the reservoir and reported on a study that estimated the steam-chamber extent generated by horizontal well pairs. It listed steam injection start time for each well of the western area. Steam-chamber distribution was determined by distinguishing high temperature and high pore-pressure zones from low temperature and high pore-pressure zones. The bitumen recovery volume in the steam-chamber zone was estimated and compared with the actual cumulative production. This paper provided details of the methodology and interpretation procedures for the quantitative method to interpret 4D-seismic data for a SAGD process. A procedure to apply a petrophysical model was demonstrated first by scaling laboratory measurements to field-scale applications, and then by decoupling pressure and temperature effects. The first 3D seismic data in this study were already affected by higher pressures and temperatures. 11 refs., 3 tabs., 12 figs.

  2. Optimization of compressive 4D-spatio-spectral snapshot imaging

    Science.gov (United States)

    Zhao, Xia; Feng, Weiyi; Lin, Lihua; Su, Wu; Xu, Guoqing

    2017-10-01

    In this paper, a modified 3D computational reconstruction method in the compressive 4D-spectro-volumetric snapshot imaging system is proposed for better sensing spectral information of 3D objects. In the design of the imaging system, a microlens array (MLA) is used to obtain a set of multi-view elemental images (EIs) of the 3D scenes. Then, these elemental images with one dimensional spectral information and different perspectives are captured by the coded aperture snapshot spectral imager (CASSI) which can sense the spectral data cube onto a compressive 2D measurement image. Finally, the depth images of 3D objects at arbitrary depths, like a focal stack, are computed by inversely mapping the elemental images according to geometrical optics. With the spectral estimation algorithm, the spectral information of 3D objects is also reconstructed. Using a shifted translation matrix, the contrast of the reconstruction result is further enhanced. Numerical simulation results verify the performance of the proposed method. The system can obtain both 3D spatial information and spectral data on 3D objects using only one single snapshot, which is valuable in the agricultural harvesting robots and other 3D dynamic scenes.

  3. 4D tracking with ultra-fast silicon detectors

    Science.gov (United States)

    F-W Sadrozinski, Hartmut; Seiden, Abraham; Cartiglia, Nicolò

    2018-02-01

    The evolution of particle detectors has always pushed the technological limit in order to provide enabling technologies to researchers in all fields of science. One archetypal example is the evolution of silicon detectors, from a system with a few channels 30 years ago, to the tens of millions of independent pixels currently used to track charged particles in all major particle physics experiments. Nowadays, silicon detectors are ubiquitous not only in research laboratories but in almost every high-tech apparatus, from portable phones to hospitals. In this contribution, we present a new direction in the evolution of silicon detectors for charge particle tracking, namely the inclusion of very accurate timing information. This enhancement of the present silicon detector paradigm is enabled by the inclusion of controlled low gain in the detector response, therefore increasing the detector output signal sufficiently to make timing measurement possible. After providing a short overview of the advantage of this new technology, we present the necessary conditions that need to be met for both sensor and readout electronics in order to achieve 4D tracking. In the last section, we present the experimental results, demonstrating the validity of our research path.

  4. ADHM and the 4d quantum Hall effect

    Science.gov (United States)

    Barns-Graham, Alec; Dorey, Nick; Lohitsiri, Nakarin; Tong, David; Turner, Carl

    2018-04-01

    Yang-Mills instantons are solitonic particles in d = 4 + 1 dimensional gauge theories. We construct and analyse the quantum Hall states that arise when these particles are restricted to the lowest Landau level. We describe the ground state wavefunctions for both Abelian and non-Abelian quantum Hall states. Although our model is purely bosonic, we show that the excitations of this 4d quantum Hall state are governed by the Nekrasov partition function of a certain five dimensional supersymmetric gauge theory with Chern-Simons term. The partition function can also be interpreted as a variant of the Hilbert series of the instanton moduli space, counting holomorphic sections rather than holomorphic functions. It is known that the Hilbert series of the instanton moduli space can be rewritten using mirror symmetry of 3d gauge theories in terms of Coulomb branch variables. We generalise this approach to include the effect of a five dimensional Chern-Simons term. We demonstrate that the resulting Coulomb branch formula coincides with the corresponding Higgs branch Molien integral which, in turn, reproduces the standard formula for the Nekrasov partition function.

  5. Temporally coherent 4D video segmentation for teleconferencing

    Science.gov (United States)

    Ehmann, Jana; Guleryuz, Onur G.

    2013-09-01

    We develop an algorithm for 4-D (RGB+Depth) video segmentation targeting immersive teleconferencing ap- plications on emerging mobile devices. Our algorithm extracts users from their environments and places them onto virtual backgrounds similar to green-screening. The virtual backgrounds increase immersion and interac- tivity, relieving the users of the system from distractions caused by disparate environments. Commodity depth sensors, while providing useful information for segmentation, result in noisy depth maps with a large number of missing depth values. By combining depth and RGB information, our work signi¯cantly improves the other- wise very coarse segmentation. Further imposing temporal coherence yields compositions where the foregrounds seamlessly blend with the virtual backgrounds with minimal °icker and other artifacts. We achieve said improve- ments by correcting the missing information in depth maps before fast RGB-based segmentation, which operates in conjunction with temporal coherence. Simulation results indicate the e±cacy of the proposed system in video conferencing scenarios.

  6. Effortless assignment with 4D covariance sequential correlation maps.

    Science.gov (United States)

    Harden, Bradley J; Mishra, Subrata H; Frueh, Dominique P

    2015-11-01

    Traditional Nuclear Magnetic Resonance (NMR) assignment procedures for proteins rely on preliminary peak-picking to identify and label NMR signals. However, such an approach has severe limitations when signals are erroneously labeled or completely neglected. The consequences are especially grave for proteins with substantial peak overlap, and mistakes can often thwart entire projects. To overcome these limitations, we previously introduced an assignment technique that bypasses traditional pick peaking altogether. Covariance Sequential Correlation Maps (COSCOMs) transform the indirect connectivity information provided by multiple 3D backbone spectra into direct (H, N) to (H, N) correlations. Here, we present an updated method that utilizes a single four-dimensional spectrum rather than a suite of three-dimensional spectra. We demonstrate the advantages of 4D-COSCOMs relative to their 3D counterparts. We introduce improvements accelerating their calculation. We discuss practical considerations affecting their quality. And finally we showcase their utility in the context of a 52 kDa cyclization domain from a non-ribosomal peptide synthetase. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Aortic root segmentation in 4D transesophageal echocardiography

    Science.gov (United States)

    Chechani, Shubham; Suresh, Rahul; Patwardhan, Kedar A.

    2018-02-01

    The Aortic Valve (AV) is an important anatomical structure which lies on the left side of the human heart. The AV regulates the flow of oxygenated blood from the Left Ventricle (LV) to the rest of the body through aorta. Pathologies associated with the AV manifest themselves in structural and functional abnormalities of the valve. Clinical management of pathologies often requires repair, reconstruction or even replacement of the valve through surgical intervention. Assessment of these pathologies as well as determination of specific intervention procedure requires quantitative evaluation of the valvular anatomy. 4D (3D + t) Transesophageal Echocardiography (TEE) is a widely used imaging technique that clinicians use for quantitative assessment of cardiac structures. However, manual quantification of 3D structures is complex, time consuming and suffers from inter-observer variability. Towards this goal, we present a semiautomated approach for segmentation of the aortic root (AR) structure. Our approach requires user-initialized landmarks in two reference frames to provide AR segmentation for full cardiac cycle. We use `coarse-to-fine' B-spline Explicit Active Surface (BEAS) for AR segmentation and Masked Normalized Cross Correlation (NCC) method for AR tracking. Our method results in approximately 0.51 mm average localization error in comparison with ground truth annotation performed by clinical experts on 10 real patient cases (139 3D volumes).

  8. Quasars in the 4D Eigenvector 1 Context: a stroll down memory lane

    Science.gov (United States)

    Sulentic, Jack; Marziani, Paola

    2015-10-01

    Recently some pessimism has been expressed about our lack of progress in understanding quasars over more than fifty year since their discovery. It is worthwhile to look back at some of the progress that has been made - but still lies under the radar - perhaps because few people are working on optical/UV spectroscopy in this field. Great advances in understanding quasar phenomenology have emerged using eigenvector techniques. The 4D eigenvector 1 context provides a surrogate H-R Diagram for quasars with a source main sequence driven by Eddington ratio convolved with line-of-sight orientation. Appreciating the striking differences between quasars at opposite ends of the main sequence (so-called population A and B sources) opens the door towards a unified model of quasar physics, geometry and kinematics. We present a review of some of the progress that has been made over the past 15 years, and point out unsolved issues.

  9. Quasars in the 4D Eigenvector 1 Context: a stroll down memory lane

    Directory of Open Access Journals (Sweden)

    Jack W. Sulentic

    2015-10-01

    Full Text Available Recently some pessimism has been expressed about our lack of progress in understanding quasars over more than fifty year since their discovery. It is worthwhile to look back at some of the progress that has been made – but still lies under the radar – perhaps because few people are working on optical/UV spectroscopy in this field. Great advances in understanding quasar phenomenology have emerged using eigenvector techniques. The 4D eigenvector 1 context provides a surrogate H-R Diagram for quasars with a source main sequence driven by Eddington ratio convolved with line-of-sight orientation. Appreciating the striking differences between quasars at opposite ends of the main sequence (so-called population A and B sources opens the door towards a unified model of quasar physics, geometry and kinematics. We present a review of some of the progress that has been made over the past 15 years, and point out unsolved issues.

  10. Quasars in the 4D eigenvector 1 context: a stroll down memory lane

    International Nuclear Information System (INIS)

    Sulentic, Jack W.; Marziani, Paola

    2015-01-01

    Recently some pessimism has been expressed about our lack of progress in understanding quasars over the 50+ year since their discovery (Antonucci, 2013). It is worthwhile to look back at some of the progress that has been made—but still lies under the radar—perhaps because few people are working on optical/UV spectroscopy in this field. Great advances in understanding quasar phenomenology have emerged using eigenvector techniques. The 4D eigenvector 1 context provides a surrogate H-R Diagram for quasars with a source main sequence driven by Eddington ratio convolved with line-of-sight orientation. Appreciating the striking differences between quasars at opposite ends of the main sequence (so-called population A and B sources) opens the door toward a unified model of quasar physics, geometry and kinematics. We present a review of some of the progress that has been made over the past 15 years, and point out unsolved issues.

  11. Quasars in the 4D eigenvector 1 context: a stroll down memory lane

    Energy Technology Data Exchange (ETDEWEB)

    Sulentic, Jack W. [Instituto de Astrofísica de Andalucía-Consejo Superior de Investigaciones Científicas, Granada (Spain); Marziani, Paola, E-mail: paola.marziani@oapd.inaf.it [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Padova, Padova (Italy)

    2015-10-13

    Recently some pessimism has been expressed about our lack of progress in understanding quasars over the 50+ year since their discovery (Antonucci, 2013). It is worthwhile to look back at some of the progress that has been made—but still lies under the radar—perhaps because few people are working on optical/UV spectroscopy in this field. Great advances in understanding quasar phenomenology have emerged using eigenvector techniques. The 4D eigenvector 1 context provides a surrogate H-R Diagram for quasars with a source main sequence driven by Eddington ratio convolved with line-of-sight orientation. Appreciating the striking differences between quasars at opposite ends of the main sequence (so-called population A and B sources) opens the door toward a unified model of quasar physics, geometry and kinematics. We present a review of some of the progress that has been made over the past 15 years, and point out unsolved issues.

  12. Strengthened IAEA Safeguards-Imagery Analysis: Geospatial Tools for Nonproliferation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pabian, Frank V [Los Alamos National Laboratory

    2012-08-14

    This slide presentation focuses on the growing role and importance of imagery analysis for IAEA safeguards applications and how commercial satellite imagery, together with the newly available geospatial tools, can be used to promote 'all-source synergy.' As additional sources of openly available information, satellite imagery in conjunction with the geospatial tools can be used to significantly augment and enhance existing information gathering techniques, procedures, and analyses in the remote detection and assessment of nonproliferation relevant activities, facilities, and programs. Foremost of the geospatial tools are the 'Digital Virtual Globes' (i.e., GoogleEarth, Virtual Earth, etc.) that are far better than previously used simple 2-D plan-view line drawings for visualization of known and suspected facilities of interest which can be critical to: (1) Site familiarization and true geospatial context awareness; (2) Pre-inspection planning; (3) Onsite orientation and navigation; (4) Post-inspection reporting; (5) Site monitoring over time for changes; (6) Verification of states site declarations and for input to State Evaluation reports; and (7) A common basis for discussions among all interested parties (Member States). Additionally, as an 'open-source', such virtual globes can also provide a new, essentially free, means to conduct broad area search for undeclared nuclear sites and activities - either alleged through open source leads; identified on internet BLOGS and WIKI Layers, with input from a 'free' cadre of global browsers and/or by knowledgeable local citizens (a.k.a.: 'crowdsourcing'), that can include ground photos and maps; or by other initiatives based on existing information and in-house country knowledge. They also provide a means to acquire ground photography taken by locals, hobbyists, and tourists of the surrounding locales that can be useful in identifying and discriminating between relevant

  13. Geospatial Health: the first five years

    Directory of Open Access Journals (Sweden)

    Jürg Utzinger

    2011-11-01

    Full Text Available Geospatial Health is an international, peer-reviewed scientific journal produced by the Global Network for Geospatial Health (GnosisGIS. This network was founded in 2000 and the inaugural issue of its official journal was published in November 2006 with the aim to cover all aspects of geographical information system (GIS applications, remote sensing and other spatial analytic tools focusing on human and veterinary health. The University of Naples Federico II is the publisher, producing two issues per year, both as hard copy and an open-access online version. The journal is referenced in major databases, including CABI, ISI Web of Knowledge and PubMed. In 2008, it was assigned its first impact factor (1.47, which has now reached 1.71. Geospatial Health is managed by an editor-in-chief and two associate editors, supported by five regional editors and a 23-member strong editorial board. This overview takes stock of the first five years of publishing: 133 contributions have been published so far, primarily original research (79.7%, followed by reviews (7.5%, announcements (6.0%, editorials and meeting reports (3.0% each and a preface in the first issue. A content analysis of all the original research articles and reviews reveals that three quarters of the publications focus on human health with the remainder dealing with veterinary health. Two thirds of the papers come from Africa, Asia and Europe with similar numbers of contributions from each continent. Studies of more than 35 different diseases, injuries and risk factors have been presented. Malaria and schistosomiasis were identified as the two most important diseases (11.2% each. Almost half the contributions were based on GIS, one third on spatial analysis, often using advanced Bayesian geostatistics (13.8%, and one quarter on remote sensing. The 120 original research articles, reviews and editorials were produced by 505 authors based at institutions and universities in 52 countries

  14. Online Resources to Support Professional Development for Managing and Preserving Geospatial Data

    Science.gov (United States)

    Downs, R. R.; Chen, R. S.

    2013-12-01

    Improved capabilities of information and communication technologies (ICT) enable the development of new systems and applications for collecting, managing, disseminating, and using scientific data. New knowledge, skills, and techniques are also being developed to leverage these new ICT capabilities and improve scientific data management practices throughout the entire data lifecycle. In light of these developments and in response to increasing recognition of the wider value of scientific data for society, government agencies are requiring plans for the management, stewardship, and public dissemination of data and research products that are created by government-funded studies. Recognizing that data management and dissemination have not been part of traditional science education programs, new educational programs and learning resources are being developed to prepare new and practicing scientists, data scientists, data managers, and other data professionals with skills in data science and data management. Professional development and training programs also are being developed to address the need for scientists and professionals to improve their expertise in using the tools and techniques for managing and preserving scientific data. The Geospatial Data Preservation Resource Center offers an online catalog of various open access publications, open source tools, and freely available information for the management and stewardship of geospatial data and related resources, such as maps, GIS, and remote sensing data. Containing over 500 resources that can be found by type, topic, or search query, the geopreservation.org website enables discovery of various types of resources to improve capabilities for managing and preserving geospatial data. Applications and software tools can be found for use online or for download. Online journal articles, presentations, reports, blogs, and forums are also available through the website. Available education and training materials include

  15. An Automated End-To Multi-Agent Qos Based Architecture for Selection of Geospatial Web Services

    Science.gov (United States)

    Shah, M.; Verma, Y.; Nandakumar, R.

    2012-07-01

    Over the past decade, Service-Oriented Architecture (SOA) and Web services have gained wide popularity and acceptance from researchers and industries all over the world. SOA makes it easy to build business applications with common services, and it provides like: reduced integration expense, better asset reuse, higher business agility, and reduction of business risk. Building of framework for acquiring useful geospatial information for potential users is a crucial problem faced by the GIS domain. Geospatial Web services solve this problem. With the help of web service technology, geospatial web services can provide useful geospatial information to potential users in a better way than traditional geographic information system (GIS). A geospatial Web service is a modular application designed to enable the discovery, access, and chaining of geospatial information and services across the web that are often both computation and data-intensive that involve diverse sources of data and complex processing functions. With the proliferation of web services published over the internet, multiple web services may provide similar functionality, but with different non-functional properties. Thus, Quality of Service (QoS) offers a metric to differentiate the services and their service providers. In a quality-driven selection of web services, it is important to consider non-functional properties of the web service so as to satisfy the constraints or requirements of the end users. The main intent of this paper is to build an automated end-to-end multi-agent based solution to provide the best-fit web service to service requester based on QoS.

  16. Selective 4D modelling framework for spatial-temporal land information management system

    Science.gov (United States)

    Doulamis, Anastasios; Soile, Sofia; Doulamis, Nikolaos; Chrisouli, Christina; Grammalidis, Nikos; Dimitropoulos, Kosmas; Manesis, Charalambos; Potsiou, Chryssy; Ioannidis, Charalabos

    2015-06-01

    This paper introduces a predictive (selective) 4D modelling framework where only the spatial 3D differences are modelled at the forthcoming time instances, while regions of no significant spatial-temporal alterations remain intact. To accomplish this, initially spatial-temporal analysis is applied between 3D digital models captured at different time instances. So, the creation of dynamic change history maps is made. Change history maps indicate spatial probabilities of regions needed further 3D modelling at forthcoming instances. Thus, change history maps are good examples for a predictive assessment, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 4D Land Information Management System (LIMS) is implemented using open interoperable standards based on the CityGML framework. CityGML allows the description of the semantic metadata information and the rights of the land resources. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 4D LIMS digital parcels and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics. An application is made to detect the change through time of a 3D block of plots in an urban area of Athens, Greece. Starting with an accurate 3D model of the buildings in 1983, a change history map is created using automated dense image matching on aerial photos of 2010. For both time instances meshes are created and through their comparison the changes are detected.

  17. Fast interactive exploration of 4D MRI flow data

    Science.gov (United States)

    Hennemuth, A.; Friman, O.; Schumann, C.; Bock, J.; Drexl, J.; Huellebrand, M.; Markl, M.; Peitgen, H.-O.

    2011-03-01

    1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing

  18. Evaluation of a novel 4D in vivo dosimetry system

    International Nuclear Information System (INIS)

    Cherpak, A.; Ding, W.; Hallil, A.; Cygler, J. E.

    2009-01-01

    A prototype of a new 4D in vivo dosimetry system capable of simultaneous real-time position monitoring and dose measurement has been developed. The radiation positioning system (RADPOS) is controlled by a computer and combines two technologies: MOSFET radiation detector coupled with an electromagnetic positioning device. Special software has been developed that allows sampling position and dose either manually or automatically in user-defined time intervals. Preliminary tests of the new device include a dosimetric evaluation of the detector in 60 Co, 6 MV, and 18 MV beams and measurements of spatial position stability and accuracy. In addition, the effect of metals and other materials on the performance of the positioning system has been investigated. Results show that the RADPOS system can measure in-air dose profiles that agree, on average, within 3%-5% of diode measurements for the energies tested. The response of the detector is isotropic within 1.6% (1 SD) with a maximum deviation of ±4.0% over 360 deg. The maximum variation in the calibration coefficient over field sizes from 6x6 to 25x25 cm 2 was 2.3% for RADPOS probe with the high sensitivity MOSFET and 4.6% for the probe with the standard sensitivity MOSFET. Of the materials tested, only aluminum, lead, and brass caused shifts in the RADPOS read position. The magnitude of the shift varied between materials and size of the material sample. Nonmagnetic stainless steel (Grade 304) caused a distortion of less than 2 mm when placed within 10 mm of the detector; therefore, it can provide a reasonable alternative to other metals if required. The results of the preliminary tests indicate that the device can be used for in vivo dosimetry in 60 Co and high-energy beams from linear accelerators.

  19. 4D cone beam CT via spatiotemporal tensor framelet

    International Nuclear Information System (INIS)

    Gao, Hao; Li, Ruijiang; Xing, Lei; Lin, Yuting

    2012-01-01

    Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose. Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization. Results: Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet . Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.

  20. 4D cone beam CT via spatiotemporal tensor framelet

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hao, E-mail: hao.gao@emory.edu [Departments of Mathematics and Computer Science, and Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322 (United States); Li, Ruijiang; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Lin, Yuting [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2012-11-15

    Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose. Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization. Results: Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet . Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.

  1. A Platform for Scalable Satellite and Geospatial Data Analysis

    Science.gov (United States)

    Beneke, C. M.; Skillman, S.; Warren, M. S.; Kelton, T.; Brumby, S. P.; Chartrand, R.; Mathis, M.

    2017-12-01

    At Descartes Labs, we use the commercial cloud to run global-scale machine learning applications over satellite imagery. We have processed over 5 Petabytes of public and commercial satellite imagery, including the full Landsat and Sentinel archives. By combining open-source tools with a FUSE-based filesystem for cloud storage, we have enabled a scalable compute platform that has demonstrated reading over 200 GB/s of satellite imagery into cloud compute nodes. In one application, we generated global 15m Landsat-8, 20m Sentinel-1, and 10m Sentinel-2 composites from 15 trillion pixels, using over 10,000 CPUs. We recently created a public open-source Python client library that can be used to query and access preprocessed public satellite imagery from within our platform, and made this platform available to researchers for non-commercial projects. In this session, we will describe how you can use the Descartes Labs Platform for rapid prototyping and scaling of geospatial analyses and demonstrate examples in land cover classification.

  2. Searches over graphs representing geospatial-temporal remote sensing data

    Science.gov (United States)

    Brost, Randolph; Perkins, David Nikolaus

    2018-03-06

    Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.

  3. Analysis of the 4d9-(4d86p + 4p54d10) transitions of Sb VII and the strongest transitions of the 4d9-4d84f array of Sb VII and Te VIII

    International Nuclear Information System (INIS)

    Kildiyarova, R.R.; Churilov, S.S.; Joshi, Y.N.; Ryabtsev, A.N.

    1995-01-01

    The spectra of antimony and tellurium were photographed in the 100-200 A region on grazing incidence spectrographs at Moscow, Russia and NIST, U.S.A. laboratories. The 4d 9 -[4d 8 6p + 4p 5 4d 10 ] transition array of Sb VII was analyzed. 31 levels in Sb VII were established. 41 new lines in Sb VII belonging to the 4d 9 -(4p 5 4d 10 + 4d 8 6p) transition array have been classified. Seven lines each in Sb VII and Te VIII belonging to the 4d 9 -4d 8 4f transition array have been classified. Parametric least-squares-fitted calculations involving configuration interaction have been carried out to interpret the spectrum satisfactorily. (orig.)

  4. Development of a model of the coronary arterial tree for the 4D XCAT phantom

    International Nuclear Information System (INIS)

    Fung, George S K; Tsui, Benjamin M W; Segars, W Paul; Gullberg, Grant T

    2011-01-01

    A detailed three-dimensional (3D) model of the coronary artery tree with cardiac motion has great potential for applications in a wide variety of medical imaging research areas. In this work, we first developed a computer-generated 3D model of the coronary arterial tree for the heart in the extended cardiac-torso (XCAT) phantom, thereby creating a realistic computer model of the human anatomy. The coronary arterial tree model was based on two datasets: (1) a gated cardiac dual-source computed tomography (CT) angiographic dataset obtained from a normal human subject and (2) statistical morphometric data of porcine hearts. The initial proximal segments of the vasculature and the anatomical details of the boundaries of the ventricles were defined by segmenting the CT data. An iterative rule-based generation method was developed and applied to extend the coronary arterial tree beyond the initial proximal segments. The algorithm was governed by three factors: (1) statistical morphometric measurements of the connectivity, lengths and diameters of the arterial segments; (2) avoidance forces from other vessel segments and the boundaries of the myocardium, and (3) optimality principles which minimize the drag force at the bifurcations of the generated tree. Using this algorithm, the 3D computational model of the largest six orders of the coronary arterial tree was generated, which spread across the myocardium of the left and right ventricles. The 3D coronary arterial tree model was then extended to 4D to simulate different cardiac phases by deforming the original 3D model according to the motion vector map of the 4D cardiac model of the XCAT phantom at the corresponding phases. As a result, a detailed and realistic 4D model of the coronary arterial tree was developed for the XCAT phantom by imposing constraints of anatomical and physiological characteristics of the coronary vasculature. This new 4D coronary artery tree model provides a unique simulation tool that can be

  5. Describing Geospatial Assets in the Web of Data: A Metadata Management Scenario

    Directory of Open Access Journals (Sweden)

    Cristiano Fugazza

    2016-12-01

    Full Text Available Metadata management is an essential enabling factor for geospatial assets because discovery, retrieval, and actual usage of the latter are tightly bound to the quality of these descriptions. Unfortunately, the multi-faceted landscape of metadata formats, requirements, and conventions makes it difficult to identify editing tools that can be easily tailored to the specificities of a given project, workgroup, and Community of Practice. Our solution is a template-driven metadata editing tool that can be customised to any XML-based schema. Its output is constituted by standards-compliant metadata records that also have a semantics-aware counterpart eliciting novel exploitation techniques. Moreover, external data sources can easily be plugged in to provide autocompletion functionalities on the basis of the data structures made available on the Web of Data. Beside presenting the essentials on customisation of the editor by means of two use cases, we extend the methodology to the whole life cycle of geospatial metadata. We demonstrate the novel capabilities enabled by RDF-based metadata representation with respect to traditional metadata management in the geospatial domain.

  6. A Geospatial Cyberinfrastructure for Urban Economic Analysis and Spatial Decision-Making

    Directory of Open Access Journals (Sweden)

    Michael F. Goodchild

    2013-05-01

    Full Text Available Urban economic modeling and effective spatial planning are critical tools towards achieving urban sustainability. However, in practice, many technical obstacles, such as information islands, poor documentation of data and lack of software platforms to facilitate virtual collaboration, are challenging the effectiveness of decision-making processes. In this paper, we report on our efforts to design and develop a geospatial cyberinfrastructure (GCI for urban economic analysis and simulation. This GCI provides an operational graphic user interface, built upon a service-oriented architecture to allow (1 widespread sharing and seamless integration of distributed geospatial data; (2 an effective way to address the uncertainty and positional errors encountered in fusing data from diverse sources; (3 the decomposition of complex planning questions into atomic spatial analysis tasks and the generation of a web service chain to tackle such complex problems; and (4 capturing and representing provenance of geospatial data to trace its flow in the modeling task. The Greater Los Angeles Region serves as the test bed. We expect this work to contribute to effective spatial policy analysis and decision-making through the adoption of advanced GCI and to broaden the application coverage of GCI to include urban economic simulations.

  7. Bridging the Gap between NASA Hydrological Data and the Geospatial Community

    Science.gov (United States)

    Rui, Hualan; Teng, Bill; Vollmer, Bruce; Mocko, David M.; Beaudoing, Hiroko K.; Nigro, Joseph; Gary, Mark; Maidment, David; Hooper, Richard

    2011-01-01

    There is a vast and ever increasing amount of data on the Earth interconnected energy and hydrological systems, available from NASA remote sensing and modeling systems, and yet, one challenge persists: increasing the usefulness of these data for, and thus their use by, the geospatial communities. The Hydrology Data and Information Services Center (HDISC), part of the Goddard Earth Sciences DISC, has continually worked to better understand the hydrological data needs of the geospatial end users, to thus better able to bridge the gap between NASA data and the geospatial communities. This paper will cover some of the hydrological data sets available from HDISC, and the various tools and services developed for data searching, data subletting ; format conversion. online visualization and analysis; interoperable access; etc.; to facilitate the integration of NASA hydrological data by end users. The NASA Goddard data analysis and visualization system, Giovanni, is described. Two case examples of user-customized data services are given, involving the EPA BASINS (Better Assessment Science Integrating point & Non-point Sources) project and the CUAHSI Hydrologic Information System, with the common requirement of on-the-fly retrieval of long duration time series for a geographical point

  8. Nansat: a Scientist-Orientated Python Package for Geospatial Data Processing

    Directory of Open Access Journals (Sweden)

    Anton A. Korosov

    2016-10-01

    Full Text Available Nansat is a Python toolbox for analysing and processing 2-dimensional geospatial data, such as satellite imagery, output from numerical models, and gridded in-situ data. It is created with strong focus on facilitating research, and development of algorithms and autonomous processing systems. Nansat extends the widely used Geospatial Abstraction Data Library (GDAL by adding scientific meaning to the datasets through metadata, and by adding common functionality for data analysis and handling (e.g., exporting to various data formats. Nansat uses metadata vocabularies that follow international metadata standards, in particular the Climate and Forecast (CF conventions, and the NASA Directory Interchange Format (DIF and Global Change Master Directory (GCMD keywords. Functionality that is commonly needed in scientific work, such as seamless access to local or remote geospatial data in various file formats, collocation of datasets from different sources and geometries, and visualization, is also built into Nansat. The paper presents Nansat workflows, its functional structure, and examples of typical applications.

  9. Biofilm vs. Planktonic Lifestyle: Consequences for Pesticide 2,4-D Metabolism by Cupriavidus necator JMP134

    Directory of Open Access Journals (Sweden)

    Thomas Z. Lerch

    2017-05-01

    Full Text Available The development of bacterial biofilms in natural environments may alter important functions, such as pollutant bioremediation by modifying both the degraders' physiology and/or interactions within the matrix. The present study focuses on the influence of biofilm formation on the metabolism of a pesticide, 2,4-dichlorophenoxyacetic acid (2,4-D, by Cupriavidus necator JMP134. Pure cultures were established in a liquid medium with 2,4-D as a sole carbon source with or without sand grains for 10 days. Bacterial numbers and 2,4-D concentrations in solution were followed by spectrophotometry, the respiration rate by gas chromatography and the surface colonization by electron microscopy. In addition, isotopic techniques coupled with Fatty Acid Methyl Ester (FAME profiling were used to determine possible metabolic changes. After only 3 days, approximately 80% of the cells were attached to the sand grains and microscopy images showed that the porous medium was totally clogged by the development of a biofilm. After 10 days, there was 25% less 2,4-D in the solution in samples with sand than in control samples. This difference was due to (1 a higher (+8% mineralization of 2,4-D by sessile bacteria and (2 a retention (15% of 2,4-D in the biofilm matrix. Besides, the amount of carbohydrates, presumably constituting the biofilm polysaccharides, increased by 63%. Compound-specific isotope analysis revealed that the FAME isotopic signature was less affected by the biofilm lifestyle than was the FAME composition. These results suggest that sessile bacteria differ more in their anabolism than in their catabolism compared to their planktonic counterparts. This study stresses the importance of considering interactions between microorganisms and their habitat when studying pollutant dynamics in porous media.

  10. Interactive 4D Visualization of Sediment Transport Models

    Science.gov (United States)

    Butkiewicz, T.; Englert, C. M.

    2013-12-01

    Coastal sediment transport models simulate the effects that waves, currents, and tides have on near-shore bathymetry and features such as beaches and barrier islands. Understanding these dynamic processes is integral to the study of coastline stability, beach erosion, and environmental contamination. Furthermore, analyzing the results of these simulations is a critical task in the design, placement, and engineering of coastal structures such as seawalls, jetties, support pilings for wind turbines, etc. Despite the importance of these models, there is a lack of available visualization software that allows users to explore and perform analysis on these datasets in an intuitive and effective manner. Existing visualization interfaces for these datasets often present only one variable at a time, using two dimensional plan or cross-sectional views. These visual restrictions limit the ability to observe the contents in the proper overall context, both in spatial and multi-dimensional terms. To improve upon these limitations, we use 3D rendering and particle system based illustration techniques to show water column/flow data across all depths simultaneously. We can also encode multiple variables across different perceptual channels (color, texture, motion, etc.) to enrich surfaces with multi-dimensional information. Interactive tools are provided, which can be used to explore the dataset and find regions-of-interest for further investigation. Our visualization package provides an intuitive 4D (3D, time-varying) visualization of sediment transport model output. In addition, we are also integrating real world observations with the simulated data to support analysis of the impact from major sediment transport events. In particular, we have been focusing on the effects of Superstorm Sandy on the Redbird Artificial Reef Site, offshore of Delaware Bay. Based on our pre- and post-storm high-resolution sonar surveys, there has significant scour and bedform migration around the

  11. A dose error evaluation study for 4D dose calculations

    Science.gov (United States)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  12. 4D Visualization of Experimental Procedures in Rock Physics

    Science.gov (United States)

    Vanorio, T.; di Bonito, C.

    2010-12-01

    Engaging students in laboratory classes in geophysics is becoming more and more difficult. This is primarily because of an ever-widening gap between the less appealing aspects that characterize these courses (e.g., lengthiness of the experimental operations, high student/instrument ratio, limited time associated with lack of previous hands-on experiences, and logistical and safety concerns) and the life style of the 21st century generations (i.e., extensive practice to high-tech tools, high-speed communications and computing, 3D graphics and HD videos). To bridge the gap and enhance the teaching strategy of laboratory courses in geophysics, we have created simulator-training tools for use in preparation for the actual experimental phase. We are using a modeling, animation, and rendering package to create (a) 3D models that accurately reproduce actual scenarios and instruments used for the measurement of rock physics properties and (b) 4D interactive animations that simulate hands-on demonstrations of the experimental procedures. We present here a prototype describing step-by-step the experimental protocol and the principles behind the measurement of rock porosity. The tool reproduces an actual helium porosimeter and makes use of interactive animations, guided text, and a narrative voice guiding the audience through the different phases of the experimental process. Our strategy is to make the most of new technologies while preserving the accuracy of classical laboratory methods and practices. These simulations are not intended to replace traditional lab work; rather they provide students with the opportunity for review and repetition. The primary goal is thus to help students familiarize themselves during their earlier curricula with lab methodologies, thus minimizing apparent hesitation and frustration in later classes. This may also increase the level of interest and involvement of undergraduate students and, in turn, enhance their keenness to pursue their

  13. Atomic character of the 4d-absorption of Ce metal

    International Nuclear Information System (INIS)

    Wolff, H.W.; Bruhn, R.; Radler, K.; Sonntag, B.

    1976-08-01

    The photoabsorption of atomic Ce has been determined in the energy range from 100 eV to 150 eV. Except for very small deviations, the 4d-spectra of atomic and mettalic Ce are identical. The resonances near the 4d-threshold are ascribed to 4d 10 4f → 4d 9 4f 2 transitions. (orig.) [de

  14. Academic research opportunities at the National Geospatial-Intelligence Agency(NGA)

    Science.gov (United States)

    Loomer, Scott A.

    2006-05-01

    The vision of the National Geospatial-Intelligence Agency (NGA) is to "Know the Earth...Show the Way." To achieve this vision, the NGA provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. Academia plays a key role in the NGA research and development program through the NGA Academic Research Program. This multi-disciplinary program of basic research in geospatial intelligence topics provides grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program are: *NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. *Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. *Intelligence Community Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how researchers and institutions can apply for grants under the program. In addition, other opportunities for academia to engage with NGA through

  15. 2D/3D/4D ULTRASOUND IN INFERTILITY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Uršula Reš-Muravec

    2018-02-01

    CoSy (Hysterosal- pingo Contrast Sonografy or 3D HyCoSy. Examination of the ovary: With the 2D ultrasound the size of ovaries is measured and the morphology of ovaries is examined. With the 3D ultrasound the volume of the ovaries, follicles, cysts and tumors can be measured. Furthermore, position of the ovaries with re- gard to their surrounding can be defined. With the 3D surface mode we can see the surface view of the inner layer of the follicle or the cyst. The volume of the liquid structures can be measured with VOCAL or sonoAVC (sono automated volume count. The number of the antral follicles strongly correlates with fertility potential markers such as FSH and AMH. Examination of peritoneum: The position of gynaecological organs and ascites are defined. Examination of vagina: Endometriotic nodules can be excluded with ultrasound. A 3D ultrasound can define the exact position of the nodule. Ultrasound in the following of infertility treatment: Before the ovarian stimulation it is mandatory to exclude pelvic pathology that can influence the stimulation. Ovarian stimulation: We follow the natural or stimulated cycles with an ultrasound in view of follicular and endometrial growth. SonoAVC offers us automatic volume count of all follicles. This information enables us to change the stimulation protocol and avoid OHSS more accurately comparing to the standard 2D technology. Oocyte puncture: US puncture is done with ultrasound-guided needle. Great vessels around the vagina and on the needle line can be avoided if colour doppler is used. With 3D surface mode good quality follicles can be identified. Embryotransfer (ET: The angle between cervical canal and corpus uteri can be mea- sured before the embryotransfer. The introduction of the ET catheter can be followed with the 2D transabdominal probe. More exact location of the catheter can be visualized with 4D US. With this method we can avoid touching the uterine fundus with the catether and avoid bleeding in the foetus surroundings

  16. 32 CFR 1630.43 - Class 4-D: Minister of religion.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Class 4-D: Minister of religion. 1630.43 Section... CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D who is a: (a) Duly ordained minister of religion; or (b) Regular...

  17. Term structure of 4d-electron configurations and calculated spectrum in Sn-isonuclear sequence

    International Nuclear Information System (INIS)

    Al-Rabban, Moza M.

    2006-01-01

    Theoretical calculations of term structure are carried out for the ground configurations 4d w , of atomic ions in the Sn isonuclear sequence. Atomic computations are performed to give a detailed account of the transitions in Sn +6 to Sn +13 ions. The spectrum is calculated for the most important excited configurations 4p 5 4d n+1 , 4d n-1 4f 1 , and 4d n-1 5p 1 with respect to the ground configuration 4d n , with n=8-1, respectively. The importance of 4p-4d, 4d-4f, and 4d-5p transitions is stressed, as well as the need for the configuration-interaction CI treatment of the Δn=0 transitions. In the region of importance for extreme ultraviolet (EUV) lithography around 13.4nm, the strongest lines were expected to be 4d n -4p 5 4d n+1 and 4d n -4d n-1 4f 1

  18. The 2D : 4D Digit Ratio as a Biomarker for Autism Spectrum Disorder

    NARCIS (Netherlands)

    Mackus, Marlou; de Kruijff, Deborah; Otten, Leila S.; Kraneveld, A D; Garssen, J; Verster, J C

    2017-01-01

    It has been suggested that the second (2D, index finger) to fourth (4D, ring finger) digit ratio, 2D : 4D, may be a biomarker for the risk of developing autism. The aim of the current study was to determine the usefulness of the 2D : 4D digit ratio as biomarker for autistic traits. N = 401 healthy

  19. Revelation of `Hidden' Balinese Geospatial Heritage on A Map

    Science.gov (United States)

    Soeria Atmadja, Dicky A. S.; Wikantika, Ketut; Budi Harto, Agung; Putra, Daffa Gifary M.

    2018-05-01

    Bali is not just about beautiful nature. It also has a unique and interesting cultural heritage, including `hidden' geospatial heritage. Tri Hita Karana is a Hinduism concept of life consisting of human relation to God, to other humans and to the nature (Parahiyangan, Pawongan and Palemahan), Based on it, - in term of geospatial aspect - the Balinese derived its spatial orientation, spatial planning & lay out, measurement as well as color and typography. Introducing these particular heritage would be a very interesting contribution to Bali tourism. As a respond to these issues, a question arise on how to reveal these unique and highly valuable geospatial heritage on a map which can be used to introduce and disseminate them to the tourists. Symbols (patterns & colors), orientation, distance, scale, layout and toponimy have been well known as elements of a map. There is an chance to apply Balinese geospatial heritage in representing these map elements.

  20. DIGI-vis: Distributed interactive geospatial information visualization

    KAUST Repository

    Ponto, Kevin; Kuester, Falk

    2010-01-01

    data sets. We propose a distributed data gathering and visualization system that allows researchers to view these data at hundreds of megapixels simultaneously. This system allows scientists to view real-time geospatial information at unprecedented

  1. A Geospatial Decision Support System Toolkit, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build and commercialize a working prototype Geospatial Decision Support Toolkit (GeoKit). GeoKit will enable scientists, agencies, and stakeholders to...

  2. 75 FR 10309 - Announcement of National Geospatial Advisory Committee Meeting

    Science.gov (United States)

    2010-03-05

    ... Geospatial Advisory Committee (NGAC) will meet on March 24-25, 2010 at the One Washington Circle Hotel, 1... implementation of Office of Management and Budget (OMB) Circular A-16. Topics to be addressed at the meeting...

  3. FOSS geospatial libraries in scientific workflow environments: experiences and directions

    CSIR Research Space (South Africa)

    McFerren, G

    2011-07-01

    Full Text Available of experiments. In context of three sets of research (wildfire research, flood modelling and the linking of disease outbreaks to multi-scale environmental conditions), we describe our efforts to provide geospatial capability for scientific workflow software...

  4. Geospatial Information is the Cornerstone of Effective Hazards Response

    Science.gov (United States)

    Newell, Mark

    2008-01-01

    Every day there are hundreds of natural disasters world-wide. Some are dramatic, whereas others are barely noticeable. A natural disaster is commonly defined as a natural event with catastrophic consequences for living things in the vicinity. Those events include earthquakes, floods, hurricanes, landslides, tsunami, volcanoes, and wildfires. Man-made disasters are events that are caused by man either intentionally or by accident, and that directly or indirectly threaten public health and well-being. These occurrences span the spectrum from terrorist attacks to accidental oil spills. To assist in responding to natural and potential man-made disasters, the U.S. Geological Survey (USGS) has established the Geospatial Information Response Team (GIRT) (http://www.usgs.gov/emergency/). The primary purpose of the GIRT is to ensure rapid coordination and availability of geospatial information for effective response by emergency responders, and land and resource managers, and for scientific analysis. The GIRT is responsible for establishing monitoring procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing relevant geospatial products and services. The GIRT is focused on supporting programs, offices, other agencies, and the public in mission response to hazards. The GIRT will leverage the USGS Geospatial Liaison Network and partnerships with the Department of Homeland Security (DHS), National Geospatial-Intelligence Agency (NGA), and Northern Command (NORTHCOM) to coordinate the provisioning and deployment of USGS geospatial data, products, services, and equipment. The USGS geospatial liaisons will coordinate geospatial information sharing with State, local, and tribal governments, and ensure geospatial liaison back-up support procedures are in place. The GIRT will coordinate disposition of USGS staff in support of DHS response center activities as requested by DHS. The GIRT

  5. DIGI-vis: Distributed interactive geospatial information visualization

    KAUST Repository

    Ponto, Kevin

    2010-03-01

    Geospatial information systems provide an abundance of information for researchers and scientists. Unfortunately this type of data can usually only be analyzed a few megapixels at a time, giving researchers a very narrow view into these voluminous data sets. We propose a distributed data gathering and visualization system that allows researchers to view these data at hundreds of megapixels simultaneously. This system allows scientists to view real-time geospatial information at unprecedented levels expediting analysis, interrogation, and discovery. ©2010 IEEE.

  6. 4+D TechnologyTM for nuclear systems soft solutions

    International Nuclear Information System (INIS)

    Suh, Kune Y.

    2010-10-01

    The signature in the proposal lies with the NSSS (Nuclear Systems Soft Solutions). NSSS proposed in the 3-dimensional space and time plus cost coordinates, i.e. 4 + dimensional technology, is the backbone of digital engineering in the nuclear system design and management. The NSSS is empowered by Janus (Junctional Analysis Neo dynamic Unit Soft Power), NOTUS (Neo systemic Optimization Technical Unit Soft Power), Venus (Virtual Engineering Neo cybernetic Unit Soft Power), EURUS (Engineering Utilities Research Unit Soft Power) and INUUS (Informative Neo graphic Utilities Unit Soft Power). Janus extracts the geometric data directly from the computer-aided design CAD files to import to multidimensional computational fluid and structural dynamics codes. Janus uses the joint-CAD analysis methods to eliminate the necessity of any pre- and post- processors. Starting from the 3-dimensional CAD, NOTUS contributes to reducing the construction cost of the nuclear power plants by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3-dimensional visualization of construction processes and resulting products intrinsically afford most of the advantages realized by the 4 + D technology. Problems with equipment positioning and manpower congestion in certain areas can readily be visualized prior to the actual operation, thus preventing accidents and safety problems such as collision between two machines and losses in productivity. Venus applied the virtual reality technology in nuclear industry. Virtual reality provides an interactive real time motion with sound and tactile and other forms of feedback. The management and workers can thus comprehend the work process crystal clear by visualizing precisely how activities relate to one another, whereby reducing conflicting

  7. Data Quality, Provenance and IPR Management services: their role in empowering geospatial data suppliers and users

    Science.gov (United States)

    Millard, Keiran

    2015-04-01

    This paper looks at current experiences of geospatial users and geospatial suppliers and how they have been limited by suitable frameworks for managing and communicating data quality, data provenance and intellectual property rights (IPR). Current political and technological drivers mean that increasing volumes of geospatial data are available through a plethora of different products and services, and whilst this is inherently a good thing it does create a new generation of challenges. This paper consider two examples of where these issues have been examined and looks at the challenges and possible solutions from a data user and data supplier perspective. The first example is the IQmulus project that is researching fusion environments for big geospatial point clouds and coverages. The second example is the EU Emodnet programme that is establishing thematic data portals for public marine and coastal data. IQmulus examines big geospatial data; the data from sources such as LIDAR, SONAR and numerical simulations; these data are simply too big for routine and ad-hoc analysis, yet they could realise a myriad of disparate, and readily useable, information products with the right infrastructure in place. IQmulus is researching how to deliver this infrastructure technically, but a financially sustainable delivery depends on being able to track and manage ownership and IPR across the numerous data sets being processed. This becomes complex when the data is composed of multiple overlapping coverages, however managing this allows for uses to be delivered highly-bespoke products to meet their budget and technical needs. The Emodnet programme delivers harmonised marine data at the EU scale across seven thematic portals. As part of the Emodnet programme a series of 'check points' have been initiated to examine how useful these services and other public data services actually are to solve real-world problems. One key finding is that users have been confused by the fact that often

  8. Comparison of an alternative and existing binning methods to reduce the acquisition duration of 4D PET/CT

    International Nuclear Information System (INIS)

    Didierlaurent, David; Ribes, Sophie; Caselles, Olivier; Jaudet, Cyril; Dierickx, Lawrence O.; Zerdoud, Slimane; Brillouet, Severine; Weits, Kathleen; Batatia, Hadj; Courbon, Frédéric

    2014-01-01

    Purpose: Respiratory motion is a source of artifacts that reduce image quality in PET. Four dimensional (4D) PET/CT is one approach to overcome this problem. Existing techniques to limiting the effects of respiratory motions are based on prospective phase binning which requires a long acquisition duration (15–25 min). This time is uncomfortable for the patients and limits the clinical exploitation of 4D PET/CT. In this work, the authors evaluated an existing method and an alternative retrospective binning method to reduce the acquisition duration of 4D PET/CT. Methods: The authors studied an existing mixed-amplitude binning (MAB) method and an alternative binning method by mixed-phases (MPhB). Before implementing MPhB, they analyzed the regularity of the breathing patterns in patients. They studied the breathing signal drift and missing CT slices that could be challenging for implementing MAB. They compared the performance of MAB and MPhB with current binning methods to measure the maximum uptake, internal volume, and maximal range of tumor motion. Results: MPhB can be implemented depending on an optimal phase (in average, the exhalation peak phase −4.1% of the entire breathing cycle duration). Signal drift of patients was in average 35% relative to the breathing amplitude. Even after correcting this drift, MAB was feasible in 4D CT for only 64% of patients. No significant differences appeared between the different binning methods to measure the maximum uptake, internal volume, and maximal range of tumor motion. The authors also determined the inaccuracies of MAB and MPhB to measure the maximum amplitude of tumor motion with three bins (less than 3 mm for movement inferior to 12 mm, up to 6.4 mm for a 21 mm movement). Conclusions: The authors proposed an alternative binning method by mixed-phase binning that halves the acquisition duration of 4D PET/CT. Mixed-amplitude binning was challenging because of signal drift and missing CT slices. They showed that more

  9. Standard 4D gravity on a brane in six-dimensional flux compactifications

    International Nuclear Information System (INIS)

    Peloso, Marco; Sorbo, Lorenzo; Tasinato, Gianmassimo

    2006-01-01

    We consider a six-dimensional space-time, in which two of the dimensions are compactified by a flux. Matter can be localized on a codimension one brane coupled to the bulk gauge field and wrapped around an axis of symmetry of the internal space. By studying the linear perturbations around this background, we show that the gravitational interaction between sources on the brane is described by Einstein 4D gravity at large distances. Our model provides a consistent setup for the study of gravity in the rugby (or football) compactification, without having to deal with the complications of a deltalike, codimension two brane. To our knowledge, this is the first complete study of gravity in a realistic brane model with two extra dimensions, in which the mechanism of stabilization of the extra space is fully taken into account

  10. Mapping a Difference: The Power of Geospatial Visualization

    Science.gov (United States)

    Kolvoord, B.

    2015-12-01

    Geospatial Technologies (GST), such as GIS, GPS and remote sensing, offer students and teachers the opportunity to study the "why" of where. By making maps and collecting location-based data, students can pursue authentic problems using sophisticated tools. The proliferation of web- and cloud-based tools has made these technologies broadly accessible to schools. In addition, strong spatial thinking skills have been shown to be a key factor in supporting students that want to study science, technology, engineering, and mathematics (STEM) disciplines (Wai, Lubinski and Benbow) and pursue STEM careers. Geospatial technologies strongly scaffold the development of these spatial thinking skills. For the last ten years, the Geospatial Semester, a unique dual-enrollment partnership between James Madison University and Virginia high schools, has provided students with the opportunity to use GST's to hone their spatial thinking skills and to do extended projects of local interest, including environmental, geological and ecological studies. Along with strong spatial thinking skills, these students have also shown strong problem solving skills, often beyond those of fellow students in AP classes. Programs like the Geospatial Semester are scalable and within the reach of many college and university departments, allowing strong engagement with K-12 schools. In this presentation, we'll share details of the Geospatial Semester and research results on the impact of the use of these technologies on students' spatial thinking skills, and discuss the success and challenges of developing K-12 partnerships centered on geospatial visualization.

  11. Automated geospatial Web Services composition based on geodata quality requirements

    Science.gov (United States)

    Cruz, Sérgio A. B.; Monteiro, Antonio M. V.; Santos, Rafael

    2012-10-01

    Service-Oriented Architecture and Web Services technologies improve the performance of activities involved in geospatial analysis with a distributed computing architecture. However, the design of the geospatial analysis process on this platform, by combining component Web Services, presents some open issues. The automated construction of these compositions represents an important research topic. Some approaches to solving this problem are based on AI planning methods coupled with semantic service descriptions. This work presents a new approach using AI planning methods to improve the robustness of the produced geospatial Web Services composition. For this purpose, we use semantic descriptions of geospatial data quality requirements in a rule-based form. These rules allow the semantic annotation of geospatial data and, coupled with the conditional planning method, this approach represents more precisely the situations of nonconformities with geodata quality that may occur during the execution of the Web Service composition. The service compositions produced by this method are more robust, thus improving process reliability when working with a composition of chained geospatial Web Services.

  12. The Value of Information - Accounting for a New Geospatial Paradigm

    Science.gov (United States)

    Pearlman, J.; Coote, A. M.

    2014-12-01

    A new frontier in consideration of socio-economic benefit is valuing information as an asset, often referred to as Infonomics. Conventional financial practice does not easily provide a mechanism for valuing information and yet clearly for many of the largest corporations, such as Google and Facebook, it is their principal asset. This is exacerbated for public sector organizations, as those that information-centric rather than information-enabled are relatively few - statistics, archiving and mapping agencies are perhaps the only examples - so it's not at the top of the agenda for Government. However, it is a hugely important issue when valuing Geospatial data and information. Geospatial data allows public institutions to operate, and facilitates the provision of essential services for emergency response and national defense. In this respect, geospatial data is strongly analogous to other types of public infrastructure, such as utilities and roads. The use of Geospatial data is widespread from companies in the transportation or construction sectors to individual planning for daily events. The categorization of geospatial data as infrastructure is critical to decisions related to investment in its management, maintenance and upgrade over time. Geospatial data depreciates in the same way that physical infrastructure depreciates. It needs to be maintained otherwise its functionality and value in use declines. We have coined the term geo-infonomics to encapsulate the concept. This presentation will develop the arguments around its importance and current avenues of research.

  13. Bim and Gis: when Parametric Modeling Meets Geospatial Data

    Science.gov (United States)

    Barazzetti, L.; Banfi, F.

    2017-12-01

    Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building) scale to the infrastructure (where geospatial data cannot be neglected) has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by "pure" GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator) industry, as well as new solutions for parametric modelling with additional geoinformation.

  14. BIM AND GIS: WHEN PARAMETRIC MODELING MEETS GEOSPATIAL DATA

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2017-12-01

    Full Text Available Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building scale to the infrastructure (where geospatial data cannot be neglected has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by “pure” GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator industry, as well as new solutions for parametric modelling with additional geoinformation.

  15. Economic Assessment of the Use Value of Geospatial Information

    Directory of Open Access Journals (Sweden)

    Richard Bernknopf

    2015-07-01

    Full Text Available Geospatial data inform decision makers. An economic model that involves application of spatial and temporal scientific, technical, and economic data in decision making is described. The value of information (VOI contained in geospatial data is the difference between the net benefits (in present value terms of a decision with and without the information. A range of technologies is used to collect and distribute geospatial data. These technical activities are linked to examples that show how the data can be applied in decision making, which is a cultural activity. The economic model for assessing the VOI in geospatial data for decision making is applied to three examples: (1 a retrospective model about environmental regulation of agrochemicals; (2 a prospective model about the impact and mitigation of earthquakes in urban areas; and (3 a prospective model about developing private–public geospatial information for an ecosystem services market. Each example demonstrates the potential value of geospatial information in a decision with uncertain information.

  16. Contextual object understanding through geospatial analysis and reasoning (COUGAR)

    Science.gov (United States)

    Douglas, Joel; Antone, Matthew; Coggins, James; Rhodes, Bradley J.; Sobel, Erik; Stolle, Frank; Vinciguerra, Lori; Zandipour, Majid; Zhong, Yu

    2009-05-01

    Military operations in urban areas often require detailed knowledge of the location and identity of commonly occurring objects and spatial features. The ability to rapidly acquire and reason over urban scenes is critically important to such tasks as mission and route planning, visibility prediction, communications simulation, target recognition, and inference of higher-level form and function. Under DARPA's Urban Reasoning and Geospatial ExploitatioN Technology (URGENT) Program, the BAE Systems team has developed a system that combines a suite of complementary feature extraction and matching algorithms with higher-level inference and contextual reasoning to detect, segment, and classify urban entities of interest in a fully automated fashion. Our system operates solely on colored 3D point clouds, and considers object categories with a wide range of specificity (fire hydrants, windows, parking lots), scale (street lights, roads, buildings, forests), and shape (compact shapes, extended regions, terrain). As no single method can recognize the diverse set of categories under consideration, we have integrated multiple state-of-the-art technologies that couple hierarchical associative reasoning with robust computer vision and machine learning techniques. Our solution leverages contextual cues and evidence propagation from features to objects to scenes in order to exploit the combined descriptive power of 3D shape, appearance, and learned inter-object spatial relationships. The result is a set of tools designed to significantly enhance the productivity of analysts in exploiting emerging 3D data sources.

  17. A Metadata Schema for Geospatial Resource Discovery Use Cases

    Directory of Open Access Journals (Sweden)

    Darren Hardy

    2014-07-01

    Full Text Available We introduce a metadata schema that focuses on GIS discovery use cases for patrons in a research library setting. Text search, faceted refinement, and spatial search and relevancy are among GeoBlacklight's primary use cases for federated geospatial holdings. The schema supports a variety of GIS data types and enables contextual, collection-oriented discovery applications as well as traditional portal applications. One key limitation of GIS resource discovery is the general lack of normative metadata practices, which has led to a proliferation of metadata schemas and duplicate records. The ISO 19115/19139 and FGDC standards specify metadata formats, but are intricate, lengthy, and not focused on discovery. Moreover, they require sophisticated authoring environments and cataloging expertise. Geographic metadata standards target preservation and quality measure use cases, but they do not provide for simple inter-institutional sharing of metadata for discovery use cases. To this end, our schema reuses elements from Dublin Core and GeoRSS to leverage their normative semantics, community best practices, open-source software implementations, and extensive examples already deployed in discovery contexts such as web search and mapping. Finally, we discuss a Solr implementation of the schema using a "geo" extension to MODS.

  18. GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow

    Science.gov (United States)

    Falcone, James A.

    2011-01-01

    This dataset, termed "GAGES II", an acronym for Geospatial Attributes of Gages for Evaluating Streamflow, version II, provides geospatial data and classifications for 9,322 stream gages maintained by the U.S. Geological Survey (USGS). It is an update to the original GAGES, which was published as a Data Paper on the journal Ecology's website (Falcone and others, 2010b) in 2010. The GAGES II dataset consists of gages which have had either 20+ complete years (not necessarily continuous) of discharge record since 1950, or are currently active, as of water year 2009, and whose watersheds lie within the United States, including Alaska, Hawaii, and Puerto Rico. Reference gages were identified based on indicators that they were the least-disturbed watersheds within the framework of broad regions, based on 12 major ecoregions across the United States. Of the 9,322 total sites, 2,057 are classified as reference, and 7,265 as non-reference. Of the 2,057 reference sites, 1,633 have (through 2009) 20+ years of record since 1950. Some sites have very long flow records: a number of gages have been in continuous service since 1900 (at least), and have 110 years of complete record (1900-2009) to date. The geospatial data include several hundred watershed characteristics compiled from national data sources, including environmental features (e.g. climate – including historical precipitation, geology, soils, topography) and anthropogenic influences (e.g. land use, road density, presence of dams, canals, or power plants). The dataset also includes comments from local USGS Water Science Centers, based on Annual Data Reports, pertinent to hydrologic modifications and influences. The data posted also include watershed boundaries in GIS format. This overall dataset is different in nature to the USGS Hydro-Climatic Data Network (HCDN; Slack and Landwehr 1992), whose data evaluation ended with water year 1988. The HCDN identifies stream gages which at some point in their history had

  19. Building Geospatial Web Services for Ecological Monitoring and Forecasting

    Science.gov (United States)

    Hiatt, S. H.; Hashimoto, H.; Melton, F. S.; Michaelis, A. R.; Milesi, C.; Nemani, R. R.; Wang, W.

    2008-12-01

    The Terrestrial Observation and Prediction System (TOPS) at NASA Ames Research Center is a modeling system that generates a suite of gridded data products in near real-time that are designed to enhance management decisions related to floods, droughts, forest fires, human health, as well as crop, range, and forest production. While these data products introduce great possibilities for assisting management decisions and informing further research, realization of their full potential is complicated by their shear volume and by the need for a necessary infrastructure for remotely browsing, visualizing, and analyzing the data. In order to address these difficulties we have built an OGC-compliant WMS and WCS server based on an open source software stack that provides standardized access to our archive of data. This server is built using the open source Java library GeoTools which achieves efficient I/O and image rendering through Java Advanced Imaging. We developed spatio-temporal raster management capabilities using the PostGrid raster indexation engine. We provide visualization and browsing capabilities through a customized Ajax web interface derived from the kaMap project. This interface allows resource managers to quickly assess ecosystem conditions and identify significant trends and anomalies from within their web browser without the need to download source data or install special software. Our standardized web services also expose TOPS data to a range of potential clients, from web mapping applications to virtual globes and desktop GIS packages. However, support for managing the temporal dimension of our data is currently limited in existing software systems. Future work will attempt to overcome this shortcoming by building time-series visualization and analysis tools that can be integrated with existing geospatial software.

  20. 4D printing of polymeric materials for tissue and organ regeneration.

    Science.gov (United States)

    Miao, Shida; Castro, Nathan; Nowicki, Margaret; Xia, Lang; Cui, Haitao; Zhou, Xuan; Zhu, Wei; Lee, Se-Jun; Sarkar, Kausik; Vozzi, Giovanni; Tabata, Yasuhiko; Fisher, John; Zhang, Lijie Grace

    2017-12-01

    Four dimensional (4D) printing is an emerging technology with great capacity for fabricating complex, stimuli-responsive 3D structures, providing great potential for tissue and organ engineering applications. Although the 4D concept was first highlighted in 2013, extensive research has rapidly developed, along with more-in-depth understanding and assertions regarding the definition of 4D. In this review, we begin by establishing the criteria of 4D printing, followed by an extensive summary of state-of-the-art technological advances in the field. Both transformation-preprogrammed 4D printing and 4D printing of shape memory polymers are intensively surveyed. Afterwards we will explore and discuss the applications of 4D printing in tissue and organ regeneration, such as developing synthetic tissues and implantable scaffolds, as well as future perspectives and conclusions.

  1. High performance geospatial and climate data visualization using GeoJS

    Science.gov (United States)

    Chaudhary, A.; Beezley, J. D.

    2015-12-01

    GeoJS (https://github.com/OpenGeoscience/geojs) is an open-source library developed to support interactive scientific and geospatial visualization of climate and earth science datasets in a web environment. GeoJS has a convenient application programming interface (API) that enables users to harness the fast performance of WebGL and Canvas 2D APIs with sophisticated Scalable Vector Graphics (SVG) features in a consistent and convenient manner. We started the project in response to the need for an open-source JavaScript library that can combine traditional geographic information systems (GIS) and scientific visualization on the web. Many libraries, some of which are open source, support mapping or other GIS capabilities, but lack the features required to visualize scientific and other geospatial datasets. For instance, such libraries are not be capable of rendering climate plots from NetCDF files, and some libraries are limited in regards to geoinformatics (infovis in a geospatial environment). While libraries such as d3.js are extremely powerful for these kinds of plots, in order to integrate them into other GIS libraries, the construction of geoinformatics visualizations must be completed manually and separately, or the code must somehow be mixed in an unintuitive way.We developed GeoJS with the following motivations:• To create an open-source geovisualization and GIS library that combines scientific visualization with GIS and informatics• To develop an extensible library that can combine data from multiple sources and render them using multiple backends• To build a library that works well with existing scientific visualizations tools such as VTKWe have successfully deployed GeoJS-based applications for multiple domains across various projects. The ClimatePipes project funded by the Department of Energy, for example, used GeoJS to visualize NetCDF datasets from climate data archives. Other projects built visualizations using GeoJS for interactively exploring

  2. Sources

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1991-01-01

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  3. Geospatial database for heritage building conservation

    Science.gov (United States)

    Basir, W. N. F. W. A.; Setan, H.; Majid, Z.; Chong, A.

    2014-02-01

    Heritage buildings are icons from the past that exist in present time. Through heritage architecture, we can learn about economic issues and social activities of the past. Nowadays, heritage buildings are under threat from natural disaster, uncertain weather, pollution and others. In order to preserve this heritage for the future generation, recording and documenting of heritage buildings are required. With the development of information system and data collection technique, it is possible to create a 3D digital model. This 3D information plays an important role in recording and documenting heritage buildings. 3D modeling and virtual reality techniques have demonstrated the ability to visualize the real world in 3D. It can provide a better platform for communication and understanding of heritage building. Combining 3D modelling with technology of Geographic Information System (GIS) will create a database that can make various analyses about spatial data in the form of a 3D model. Objectives of this research are to determine the reliability of Terrestrial Laser Scanning (TLS) technique for data acquisition of heritage building and to develop a geospatial database for heritage building conservation purposes. The result from data acquisition will become a guideline for 3D model development. This 3D model will be exported to the GIS format in order to develop a database for heritage building conservation. In this database, requirements for heritage building conservation process are included. Through this research, a proper database for storing and documenting of the heritage building conservation data will be developed.

  4. GEOSPATIAL CHARACTERIZATION OF BIODIVERSITY: NEED AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    P. S. Roy

    2012-08-01

    Full Text Available Explaining the distribution of species and understanding their abundance and spatial distribution at multiple scales using remote sensing and ground based observation have been the central aspect of the meeting of COP10 for achieving CBD 2020 targets. In this respect the Biodiveristy Characterization at Landscape Level for India is a milestone in biodiversity study in this country. Satellite remote sensing has been used to derive the spatial extent and vegetation composition patterns. Sensitivity of different multi-scale landscape metrics, species composition, ecosystem uniqueness and diversity in distribution of biological diversity is assessed through customized landscape analysis software to generate the biological richness surface. The uniqueness of the study lies in the creation of baseline geo-spatial data on vegetation types using multi-temporal satellite remote sensing data (IRS LISS III, deriving biological richness based on spatial landscape analysis and inventory of location specific information about 7964 unique plant species recorded in 20,000 sample plots in India and their status with respect to endemic, threatened and economic/medicinal importance. The results generated will serve as a baseline database for various assessment of the biodiversity for addressing CBD 2020 targets.

  5. Geospatial database for heritage building conservation

    International Nuclear Information System (INIS)

    Basir, W N F W A; Setan, H; Majid, Z; Chong, A

    2014-01-01

    Heritage buildings are icons from the past that exist in present time. Through heritage architecture, we can learn about economic issues and social activities of the past. Nowadays, heritage buildings are under threat from natural disaster, uncertain weather, pollution and others. In order to preserve this heritage for the future generation, recording and documenting of heritage buildings are required. With the development of information system and data collection technique, it is possible to create a 3D digital model. This 3D information plays an important role in recording and documenting heritage buildings. 3D modeling and virtual reality techniques have demonstrated the ability to visualize the real world in 3D. It can provide a better platform for communication and understanding of heritage building. Combining 3D modelling with technology of Geographic Information System (GIS) will create a database that can make various analyses about spatial data in the form of a 3D model. Objectives of this research are to determine the reliability of Terrestrial Laser Scanning (TLS) technique for data acquisition of heritage building and to develop a geospatial database for heritage building conservation purposes. The result from data acquisition will become a guideline for 3D model development. This 3D model will be exported to the GIS format in order to develop a database for heritage building conservation. In this database, requirements for heritage building conservation process are included. Through this research, a proper database for storing and documenting of the heritage building conservation data will be developed

  6. 4D-flat compactifications with brane vorticities

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Rubakov, V.

    2004-07-01

    We present solutions in six-dimensional gravity coupled to a sigma model, in the presence of three-brane sources. The space transverse to the branes is a compact non-singular manifold. The example of O(3) sigma model in the presence of two three-branes is worked out in detail. We show that the four-dimensional flatness is obtained with a single condition involving the brane tensions, which are in general different and may be both positive, and another characteristic of the branes, vorticity. We speculate that the adjustment of the effective four- dimensional cosmological constant may occur through the exchange of vorticity between the branes. We then give exact instanton type solutions for sigma models targeted on a general Kaehler manifold, and elaborate in this framework on multi-instantons of the O(3) sigma model. The latter have branes, possibly with vorticities, at the instanton positions, thus generalizing our two-brane solution. (author)

  7. 4d-flat compactifications with brane vorticities

    International Nuclear Information System (INIS)

    Randjbar-Daemi, Seif; Rubakov, Valery

    2004-01-01

    We present solutions in six-dimensional gravity coupled to a sigma model, in the presence of three-brane sources. The space transverse to the branes is a compact non-singular manifold. The example of O(3) sigma model in the presence of two three-branes is worked out in detail. We show that the four-dimensional flatness is obtained with a single condition involving the brane tensions, which are in general different and may be both positive, and another characteristic of the branes, vorticity. We speculate that the adjustment of the effective four-dimensional cosmological constant may occur through the exchange of vorticity between the branes. We then give exact instanton type solutions for sigma models targeted on a general Kaehler manifold, and elaborate in this framework on multi-instantons of the O(3) sigma model. The latter have branes, possibly with vorticities, at the instanton positions, thus generalizing our two-brane solution. (author)

  8. Acquiring 4D thoracic CT scans using a multislice helical method

    International Nuclear Information System (INIS)

    Keall, P J; Starkschall, G; Shukla, H; Forster, K M; Ortiz, V; Stevens, C W; Vedam, S S; George, R; Guerrero, T; Mohan, R

    2004-01-01

    Respiratory motion degrades anatomic position reproducibility during imaging, necessitates larger margins during radiotherapy planning and causes errors during radiation delivery. Computed tomography (CT) scans acquired synchronously with the respiratory signal can be used to reconstruct 4D CT scans, which can be employed for 4D treatment planning to explicitly account for respiratory motion. The aim of this research was to develop, test and clinically implement a method to acquire 4D thoracic CT scans using a multislice helical method. A commercial position-monitoring system used for respiratory-gated radiotherapy was interfaced with a third generation multislice scanner. 4D cardiac reconstruction methods were modified to allow 4D thoracic CT acquisition. The technique was tested on a phantom under different conditions: stationary, periodic motion and non-periodic motion. 4D CT was also implemented for a lung cancer patient with audio-visual breathing coaching. For all cases, 4D CT images were successfully acquired from eight discrete breathing phases, however, some limitations of the system in terms of respiration reproducibility and breathing period relative to scanner settings were evident. Lung mass for the 4D CT patient scan was reproducible to within 2.1% over the eight phases, though the lung volume changed by 20% between end inspiration and end expiration (870 cm 3 ). 4D CT can be used for 4D radiotherapy, respiration-gated radiotherapy, 'slow' CT acquisition and tumour motion studies

  9. A spatiotemporal-based scheme for efficient registration-based segmentation of thoracic 4-D MRI.

    Science.gov (United States)

    Yang, Y; Van Reeth, E; Poh, C L; Tan, C H; Tham, I W K

    2014-05-01

    Dynamic three-dimensional (3-D) (four-dimensional, 4-D) magnetic resonance (MR) imaging is gaining importance in the study of pulmonary motion for respiratory diseases and pulmonary tumor motion for radiotherapy. To perform quantitative analysis using 4-D MR images, segmentation of anatomical structures such as the lung and pulmonary tumor is required. Manual segmentation of entire thoracic 4-D MRI data that typically contains many 3-D volumes acquired over several breathing cycles is extremely tedious, time consuming, and suffers high user variability. This requires the development of new automated segmentation schemes for 4-D MRI data segmentation. Registration-based segmentation technique that uses automatic registration methods for segmentation has been shown to be an accurate method to segment structures for 4-D data series. However, directly applying registration-based segmentation to segment 4-D MRI series lacks efficiency. Here we propose an automated 4-D registration-based segmentation scheme that is based on spatiotemporal information for the segmentation of thoracic 4-D MR lung images. The proposed scheme saved up to 95% of computation amount while achieving comparable accurate segmentations compared to directly applying registration-based segmentation to 4-D dataset. The scheme facilitates rapid 3-D/4-D visualization of the lung and tumor motion and potentially the tracking of tumor during radiation delivery.

  10. Four-dimensional MAP-RBI-EM image reconstruction method with a 4D motion prior for 4D gated myocardial perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek-Soo; Tsui, Benjamin M.W. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Radiology; Gullberg, Grant T. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2011-07-01

    We evaluated and proposed here a 4D maximum a posteriori rescaled-block iterative (MAP-RBI)-EM image reconstruction method with a motion prior to improve the accuracy of 4D gated myocardial perfusion (GMP) SPECT images. We hypothesized that a 4D motion prior which resembles the global motion of the true 4D motion of the heart will improve the accuracy of the reconstructed images with regional myocardial motion defect. Normal heart model in the 4D XCAT (eXtended CArdiac-Torso) phantom is used as the prior in the 4D MAP-RBI-EM algorithm where a Gaussian-shaped distribution is used as the derivative of potential function (DPF) that determines the smoothing strength and range of the prior in the algorithm. The mean and width of the DPF equal to the expected difference between the reconstructed image and the motion prior, and smoothing range, respectively. To evaluate the algorithm, we used simulated projection data from a typical clinical {sup 99m}Tc Sestamibi GMP SPECT study using the 4D XCAT phantom. The noise-free projection data were generated using an analytical projector that included the effects of attenuation, collimator-detector response and scatter (ADS) and Poisson noise was added to generated noisy projection data. The projection datasets were reconstructed using the modified 4D MAP-RBI-EM with various iterations, prior weights, and sigma values as well as with ADS correction. The results showed that the 4D reconstructed image estimates looked more like the motion prior with sharper edges as the weight of prior increased. It also demonstrated that edge preservation of the myocardium in the GMP SPECT images could be controlled by a proper motion prior. The Gaussian-shaped DPF allowed stronger and weaker smoothing force for smaller and larger difference of neighboring voxel values, respectively, depending on its parameter values. We concluded the 4D MAP-RBI-EM algorithm with the general motion prior can be used to provide 4D GMP SPECT images with improved

  11. Regulation of semaphorin 4D expression and cell proliferation of ovarian cancer by ERalpha and ERbeta

    Directory of Open Access Journals (Sweden)

    Y. Liu

    Full Text Available Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2 significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication.

  12. Development of the WRF-CO2 4D-Var assimilation system v1.0

    Directory of Open Access Journals (Sweden)

    T. Zheng

    2018-05-01

    Full Text Available Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF modeling system, including the system coupled to chemistry (WRF-Chem, with tangent linear and adjoint codes (WRFPLUS, and with data assimilation (WRFDA, all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden–Fletcher–Goldfarb–Shanno (BFGS minimization algorithm (L-BFGS-B and the second uses the Lanczos conjugate gradient (CG in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km  ×  48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.

  13. Development of the WRF-CO2 4D-Var assimilation system v1.0

    Science.gov (United States)

    Zheng, Tao; French, Nancy H. F.; Baxter, Martin

    2018-05-01

    Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF) modeling system, including the system coupled to chemistry (WRF-Chem), with tangent linear and adjoint codes (WRFPLUS), and with data assimilation (WRFDA), all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization algorithm (L-BFGS-B) and the second uses the Lanczos conjugate gradient (CG) in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km × 48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.

  14. Dioxins in soil treated with 2,4-D in a municipality of the State of Rio de Janeiro, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cheble Bahia Braga, A.M.; Monteiro Rosa, J. [National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro (Brazil); Krauss, T. [National Institute for Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro (Brazil)

    2004-09-15

    In Brazil, the herbicide 2,4,5-T was prohibited due to the presence of high dioxins concentrations as impurity in its formulations but the herbicide 2,4-D is widely used to control broad-leaf weeds in several plantations such as sugar cane, coffee, potato among others or prior to planting in order to prepare soil for plantation. The National Agency for Sanitary Surveillance (ANVISA), the authority in charge of the pesticides registry, also established the concentration of 0.1 ppm as maximum limit for dioxins in 2,4-D formulations. It is also a common practice to use this herbicide associated with Glyphosate to reduce or replace manual or mechanical weeding. In 2000, the Secretary of Health of Cantagalo, Municipality in the north part of Rio de Janeiro State was notified about a possible environmental contamination by the application of 2,4-D at a coffee farm named Santa Guilhermina. Spraying had occurred in an area close to a creek used as a source of drinking water of a school and as a water supply for a second district of this municipality. Special care was given to the possibility of PCDD/Fs contamination of the drinking water supply directly through 2,4-D aplication and indirectly through the transfer by run-off. Thus, it was requested scientific advice and analytical support to verify whether or not contamination had occurred. They had called for technical support only 8 days after the episode and considering the very low solubility of PCDD/Fs in water and their high tendency to adsorb on particles, it was decided to check if the soil had been contaminated by these activities and to use this database for further decision-making, as well. It was also looked up for original 2,4-D formulation in the area to verify the possible presence of PCDD/Fs but none was available.

  15. From 4D Medical Images (CT, MRI, and Ultrasound to 4D Structured Mesh Models of the Left Ventricular Endocardium for Patient-Specific Simulations

    Directory of Open Access Journals (Sweden)

    Federico Canè

    2018-01-01

    Full Text Available With cardiovascular disease (CVD remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time with 1-to-1 vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume.

  16. Generating a geospatial database of U.S. regional feedstock production for use in evaluating the environmental footprint of biofuels.

    Science.gov (United States)

    Holder, Christopher T; Cleland, Joshua C; LeDuc, Stephen D; Andereck, Zac; Hogan, Chris; Martin, Kristen M

    2016-04-01

    The potential environmental effects of increased U.S. biofuel production often vary depending upon the location and type of land used to produce biofuel feedstocks. However, complete, annual data are generally lacking regarding feedstock production by specific location. Corn is the dominant biofuel feedstock in the U.S., so here we present methods for estimating where bioethanol corn feedstock is grown annually and how much is used by U.S. ethanol biorefineries. We use geospatial software and publicly available data to map locations of biorefineries, estimate their corn feedstock requirements, and estimate the feedstock production locations and quantities. We combined these data and estimates into a Bioethanol Feedstock Geospatial Database (BFGD) for years 2005-2010. We evaluated the performance of the methods by assessing how well the feedstock geospatial model matched our estimates of locally-sourced feedstock demand. On average, the model met approximately 89 percent of the total estimated local feedstock demand across the studied years-within approximately 25-to-40 kilometers of the biorefinery in the majority of cases. We anticipate that these methods could be used for other years and feedstocks, and can be subsequently applied to estimate the environmental footprint of feedstock production. Methods used to develop the Bioethanol Feedstock Geospatial Database (BFGD) provide a means of estimating the amount and location of U.S. corn harvested for use as U.S. bioethanol feedstock. Such estimates of geospatial feedstock production may be used to evaluate environmental impacts of bioethanol production and to identify conservation priorities. The BFGD is available for 2005-2010, and the methods may be applied to additional years, locations, and potentially other biofuels and feedstocks.

  17. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  18. OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats

    Science.gov (United States)

    Erickson, T. A.; Koziol, B. W.; Rood, R. B.

    2011-12-01

    The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.

  19. 2D:4D digit ratio predicts delay of gratification in preschoolers.

    Directory of Open Access Journals (Sweden)

    Sergio Da Silva

    Full Text Available We replicate the Stanford marshmallow experiment with a sample of 141 preschoolers and find a correlation between lack of self-control and 2D:4D digit ratio. Children with low 2D:4D digit ratio are less likely to delay gratification. Low 2D:4D digit ratio may indicate high fetal testosterone. If this hypothesis is true, our finding means high fetal testosterone children are less likely to delay gratification.

  20. Interoperability in planetary research for geospatial data analysis

    Science.gov (United States)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  1. BPELPower—A BPEL execution engine for geospatial web services

    Science.gov (United States)

    Yu, Genong (Eugene); Zhao, Peisheng; Di, Liping; Chen, Aijun; Deng, Meixia; Bai, Yuqi

    2012-10-01

    The Business Process Execution Language (BPEL) has become a popular choice for orchestrating and executing workflows in the Web environment. As one special kind of scientific workflow, geospatial Web processing workflows are data-intensive, deal with complex structures in data and geographic features, and execute automatically with limited human intervention. To enable the proper execution and coordination of geospatial workflows, a specially enhanced BPEL execution engine is required. BPELPower was designed, developed, and implemented as a generic BPEL execution engine with enhancements for executing geospatial workflows. The enhancements are especially in its capabilities in handling Geography Markup Language (GML) and standard geospatial Web services, such as the Web Processing Service (WPS) and the Web Feature Service (WFS). BPELPower has been used in several demonstrations over the decade. Two scenarios were discussed in detail to demonstrate the capabilities of BPELPower. That study showed a standard-compliant, Web-based approach for properly supporting geospatial processing, with the only enhancement at the implementation level. Pattern-based evaluation and performance improvement of the engine are discussed: BPELPower directly supports 22 workflow control patterns and 17 workflow data patterns. In the future, the engine will be enhanced with high performance parallel processing and broad Web paradigms.

  2. Restful Implementation of Catalogue Service for Geospatial Data Provenance

    Science.gov (United States)

    Jiang, L. C.; Yue, P.; Lu, X. C.

    2013-10-01

    Provenance, also known as lineage, is important in understanding the derivation history of data products. Geospatial data provenance helps data consumers to evaluate the quality and reliability of geospatial data. In a service-oriented environment, where data are often consumed or produced by distributed services, provenance could be managed by following the same service-oriented paradigm. The Open Geospatial Consortium (OGC) Catalogue Service for the Web (CSW) is used for the registration and query of geospatial data provenance by extending ebXML Registry Information Model (ebRIM). Recent advance of the REpresentational State Transfer (REST) paradigm has shown great promise for the easy integration of distributed resources. RESTful Web Service aims to provide a standard way for Web clients to communicate with servers based on REST principles. The existing approach for provenance catalogue service could be improved by adopting the RESTful design. This paper presents the design and implementation of a catalogue service for geospatial data provenance following RESTful architecture style. A middleware named REST Converter is added on the top of the legacy catalogue service to support a RESTful style interface. The REST Converter is composed of a resource request dispatcher and six resource handlers. A prototype service is developed to demonstrate the applicability of the approach.

  3. Geospatial Technologies to Improve Urban Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Bharanidharan Hemachandran

    2011-07-01

    Full Text Available The HEAT (Home Energy Assessment Technologies pilot project is a FREE Geoweb mapping service, designed to empower the urban energy efficiency movement by allowing residents to visualize the amount and location of waste heat leaving their homes and communities as easily as clicking on their house in Google Maps. HEAT incorporates Geospatial solutions for residential waste heat monitoring using Geographic Object-Based Image Analysis (GEOBIA and Canadian built Thermal Airborne Broadband Imager technology (TABI-320 to provide users with timely, in-depth, easy to use, location-specific waste-heat information; as well as opportunities to save their money and reduce their green-house-gas emissions. We first report on the HEAT Phase I pilot project which evaluates 368 residences in the Brentwood community of Calgary, Alberta, Canada, and describe the development and implementation of interactive waste heat maps, energy use models, a Hot Spot tool able to view the 6+ hottest locations on each home and a new HEAT Score for inter-city waste heat comparisons. We then describe current challenges, lessons learned and new solutions as we begin Phase II and scale from 368 to 300,000+ homes with the newly developed TABI-1800. Specifically, we introduce a new object-based mosaicing strategy, an adaptation of Emissivity Modulation to correct for emissivity differences, a new Thermal Urban Road Normalization (TURN technique to correct for scene-wide microclimatic variation. We also describe a new Carbon Score and opportunities to update city cadastral errors with automatically defined thermal house objects.

  4. Geospatial Modelling for Micro Zonation of Groundwater Regime in Western Assam, India

    Science.gov (United States)

    Singh, R. P.

    2016-12-01

    Water, most precious natural resource on earth, is vital to sustain the natural system and human civilisation on the earth. The Assam state located in north-eastern part of India has a relatively good source of ground water due to their geographic and physiographic location but there is problem deterioration of groundwater quality causing major health problem in the area. In this study, I tried a integrated study of remote sensing and GIS and chemical analysis of groundwater samples to throw a light over groundwater regime and provides information for decision makers to make sustainable water resource management. The geospatial modelling performed by integrating hydrogeomorphic features. Geomorphology, lineament, Drainage, Landuse/landcover layer were generated through visual interpretation on satellite image (LISS III) based on tone, texture, shape, size, and arrangement of the features. Slope layer was prepared by using SRTM DEM data set .The LULC of the area were categories in to 6 classes of Agricultural field, Forest area ,River, Settlement , Tree-clad area and Wetlands. The geospatial modelling performed through weightage and rank method in GIS, depending on the influence of the features on ground water regime. To Assess the ground water quality of the area 45 groundwater samples have been collected from the field and chemical analysis performed through the standard method in the laboratory. The overall assessment of the ground water quality of the area analyse through Water Quality Index and found that about 70% samples are not potable for drinking purposes due to higher concentration Arsenic, Fluoride and Iron. It appears that, source of all these pollutants geologically and geomorphologically derived. Interpolated layer of Water Quality Index and geospatial modelled Groundwater potential layer provides a holistic view of groundwater scenario and provide direction for better planning and groundwater resource management. Study will be discussed in details

  5. GTP-binding-defective ARL4D alters mitochondrial morphology and membrane potential.

    Directory of Open Access Journals (Sweden)

    Chun-Chun Li

    Full Text Available ARL4D, ARL4A, and ARL4C are closely related members of the ADP-ribosylation factor/ARF-like protein (ARF/ARL family of GTPases. All three ARL4 proteins contain nuclear localization signals (NLSs at their C-termini and are primarily found at the plasma membrane, but they are also present in the nucleus and cytoplasm. ARF function and localization depends on their controlled binding and hydrolysis of GTP. Here we show that GTP-binding-defective ARL4D is targeted to the mitochondria, where it affects mitochondrial morphology and function. We found that a portion of endogenous ARL4D and the GTP-binding-defective ARL4D mutant ARL4D(T35N reside in the mitochondria. The N-terminal myristoylation of ARL4D(T35N was required for its localization to mitochondria. The localization of ARL4D(T35N to the mitochondria reduced the mitochondrial membrane potential (ΔΨm and caused mitochondrial fragmentation. Furthermore, the C-terminal NLS region of ARL4D(T35N was required for its effect on the mitochondria. This study is the first to demonstrate that the dysfunctional GTP-binding-defective ARL4D is targeted to mitochondria, where it subsequently alters mitochondrial morphology and membrane potential.

  6. The Relationship Between Digit Ratio (2D:4D) and Sexual Orientation in Men from China.

    Science.gov (United States)

    Xu, Yin; Zheng, Yong

    2016-04-01

    We examined the relationship between 2D:4D digit ratio and sexual orientation in men from China and analyzed the influences of the components used to assess sexual orientation and the criteria used to classify individuals as homosexual on this relationship. A total of 309 male and 110 female participants took part in a web-based survey. Our results showed that heterosexual men had a significantly lower 2D:4D than heterosexual women and exclusively homosexual men had a significantly higher left 2D:4D than heterosexual men whereas only exclusively homosexual men had a significantly higher right 2D:4D than heterosexual men when sexual orientation was assessed via sexual attraction. The left 2D:4D showed a significant positive correlation with sexual identity, sexual attraction, and sexual behavior, and the right 2D:4D showed a significant positive correlation with sexual attraction. The effect sizes for differences in 2D:4D between homosexual and heterosexual men varied according to criteria used to classify individuals as homosexual and sexual orientation components; the more stringent the criteria (scores closer to the homosexual category), the larger the effect sizes; further, sexual attraction yielded the largest effect size. There were no significant effects of age and latitude on Chinese 2D:4D. This study contributes to the current understanding of the relationship between 2D:4D and male sexual orientation.

  7. Compilation of geospatial data for the mineral industries and related infrastructure of Latin America and the Caribbean

    Science.gov (United States)

    Baker, Michael S.; Buteyn, Spencer D.; Freeman, Philip A.; Trippi, Michael H.; Trimmer III, Loyd M.

    2017-07-31

    This report describes the U.S. Geological Survey’s (USGS) ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports in Latin America and the Caribbean. The report includes an overview of data sources and an explanation of the geospatial PDF map format.The geodatabase and geospatial data layers described in this report create a new geographic information product in the form of a geospatial portable document format (PDF) map. The geodatabase contains additional data layers from USGS, foreign governmental, and open-source sources as follows: (1) coal occurrence areas, (2) electric power generating facilities, (3) electric power transmission lines, (4) hydrocarbon resource cumulative production data, (5) liquefied natural gas terminals, (6) oil and gas concession leasing areas, (7) oil and gas field center points, (8) oil and gas pipelines, (9) USGS petroleum provinces, (10) railroads, (11) recoverable proven plus probable hydrocarbon resources, (12) major cities, (13) major rivers, and (14) undiscovered porphyry copper tracts.

  8. Brokered virtual hubs for facilitating access and use of geospatial Open Data

    Science.gov (United States)

    Mazzetti, Paolo; Latre, Miguel; Kamali, Nargess; Brumana, Raffaella; Braumann, Stefan; Nativi, Stefano

    2016-04-01

    Open Data is a major trend in current information technology scenario and it is often publicised as one of the pillars of the information society in the near future. In particular, geospatial Open Data have a huge potential also for Earth Sciences, through the enablement of innovative applications and services integrating heterogeneous information. However, open does not mean usable. As it was recognized at the very beginning of the Web revolution, many different degrees of openness exist: from simple sharing in a proprietary format to advanced sharing in standard formats and including semantic information. Therefore, to fully unleash the potential of geospatial Open Data, advanced infrastructures are needed to increase the data openness degree, enhancing their usability. In October 2014, the ENERGIC OD (European NEtwork for Redistributing Geospatial Information to user Communities - Open Data) project, funded by the European Union under the Competitiveness and Innovation framework Programme (CIP), has started. In response to the EU call, the general objective of the project is to "facilitate the use of open (freely available) geographic data from different sources for the creation of innovative applications and services through the creation of Virtual Hubs". The ENERGIC OD Virtual Hubs aim to facilitate the use of geospatial Open Data by lowering and possibly removing the main barriers which hampers geo-information (GI) usage by end-users and application developers. Data and services heterogeneity is recognized as one of the major barriers to Open Data (re-)use. It imposes end-users and developers to spend a lot of effort in accessing different infrastructures and harmonizing datasets. Such heterogeneity cannot be completely removed through the adoption of standard specifications for service interfaces, metadata and data models, since different infrastructures adopt different standards to answer to specific challenges and to address specific use-cases. Thus

  9. Towards Geo-spatial Hypermedia: Concepts and Prototype Implementation

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Vestergaard, Peter Posselt; Ørbæk, Peter

    2002-01-01

    This paper combines spatial hypermedia with techniques from Geographical Information Systems and location based services. We describe the Topos 3D Spatial Hypermedia system and how it has been developed to support geo-spatial hypermedia coupling hypermedia information to model representations...... of real world buildings and landscapes. The prototype experiments are primarily aimed at supporting architects and landscape architects in their work on site. Here it is useful to be able to superimpose and add different layers of information to, e.g. a landscape depending on the task being worked on. We...... and indirect navigation. Finally, we conclude with a number of research issues which are central to the future development of geo-spatial hypermedia, including design issues in combining metaphorical and literal hypermedia space, as well as a discussion of the role of spatial parsing in a geo-spatial context....

  10. Representation of activity in images using geospatial temporal graphs

    Science.gov (United States)

    Brost, Randolph; McLendon, III, William C.; Parekh, Ojas D.; Rintoul, Mark Daniel; Watson, Jean-Paul; Strip, David R.; Diegert, Carl

    2018-05-01

    Various technologies pertaining to modeling patterns of activity observed in remote sensing images using geospatial-temporal graphs are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Activity patterns may be discerned from the graphs by coding nodes representing persistent objects like buildings differently from nodes representing ephemeral objects like vehicles, and examining the geospatial-temporal relationships of ephemeral nodes within the graph.

  11. Assessing the socioeconomic impact and value of open geospatial information

    Science.gov (United States)

    Pearlman, Francoise; Pearlman, Jay; Bernknopf, Richard; Coote, Andrew; Craglia, Massimo; Friedl, Lawrence; Gallo, Jason; Hertzfeld, Henry; Jolly, Claire; Macauley, Molly K.; Shapiro, Carl; Smart, Alan

    2016-03-10

    The production and accessibility of geospatial information including Earth observation is changing greatly both technically and in terms of human participation. Advances in technology have changed the way that geospatial data are produced and accessed, resulting in more efficient processes and greater accessibility than ever before. Improved technology has also created opportunities for increased participation in the gathering and interpretation of data through crowdsourcing and citizen science efforts. Increased accessibility has resulted in greater participation in the use of data as prices for Government-produced data have fallen and barriers to access have been reduced.

  12. A big data geospatial analytics platform - Physical Analytics Integrated Repository and Services (PAIRS)

    Science.gov (United States)

    Hamann, H.; Jimenez Marianno, F.; Klein, L.; Albrecht, C.; Freitag, M.; Hinds, N.; Lu, S.

    2015-12-01

    A big data geospatial analytics platform:Physical Analytics Information Repository and Services (PAIRS)Fernando Marianno, Levente Klein, Siyuan Lu, Conrad Albrecht, Marcus Freitag, Nigel Hinds, Hendrik HamannIBM TJ Watson Research Center, Yorktown Heights, NY 10598A major challenge in leveraging big geospatial data sets is the ability to quickly integrate multiple data sources into physical and statistical models and be run these models in real time. A geospatial data platform called Physical Analytics Information and Services (PAIRS) is developed on top of open source hardware and software stack to manage Terabyte of data. A new data interpolation and re gridding is implemented where any geospatial data layers can be associated with a set of global grid where the grid resolutions is doubling for consecutive layers. Each pixel on the PAIRS grid have an index that is a combination of locations and time stamp. The indexing allow quick access to data sets that are part of a global data layers and allowing to retrieve only the data of interest. PAIRS takes advantages of parallel processing framework (Hadoop) in a cloud environment to digest, curate, and analyze the data sets while being very robust and stable. The data is stored on a distributed no-SQL database (Hbase) across multiple server, data upload and retrieval is parallelized where the original analytics task is broken up is smaller areas/volume, analyzed independently, and then reassembled for the original geographical area. The differentiating aspect of PAIRS is the ability to accelerate model development across large geographical regions and spatial resolution ranging from 0.1 m up to hundreds of kilometer. System performance is benchmarked on real time automated data ingestion and retrieval of Modis and Landsat data layers. The data layers are curated for sensor error, verified for correctness, and analyzed statistically to detect local anomalies. Multi-layer query enable PAIRS to filter different data

  13. Teaching Tip: Managing Software Engineering Student Teams Using Pellerin's 4-D System

    Science.gov (United States)

    Doman, Marguerite; Besmer, Andrew; Olsen, Anne

    2015-01-01

    In this article, we discuss the use of Pellerin's Four Dimension Leadership System (4-D) as a way to manage teams in a classroom setting. Over a 5-year period, we used a modified version of the 4-D model to manage teams within a senior level Software Engineering capstone course. We found that this approach for team management in a classroom…

  14. 2D:4D in Men Is Related to Aggressive Dominance but Not to Sociable Dominance

    NARCIS (Netherlands)

    van der Meij, L.; Almela, M.; Buunk, A.P.; Dubbs, S.; Salvador, A.

    2012-01-01

    It has been shown that a smaller ratio between the length of the second and fourth digit (2D:4D) is an indicator of the exposure to prenatal testosterone (T). This study measured the 2D:4D of men and assessed dominance as a personality trait to investigate indirectly if the exposure to prenatal T is

  15. 2D : 4D in Men Is Related to Aggressive Dominance but Not to Sociable Dominance

    NARCIS (Netherlands)

    van der Meij, Leander; Almela, Mercedes; Buunk, Abraham P.; Dubbs, Shelli; Salvador, Alicia

    2012-01-01

    It has been shown that a smaller ratio between the length of the second and fourth digit (2D:4D) is an indicator of the exposure to prenatal testosterone (T). This study measured the 2D:4D of men and assessed dominance as a personality trait to investigate indirectly if the exposure to prenatal T is

  16. Impact of 4D image quality on the accuracy of target definition

    DEFF Research Database (Denmark)

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas

    2016-01-01

    that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal...

  17. Consistent reconstruction of 4D fetal heart ultrasound images to cope with fetal motion.

    Science.gov (United States)

    Tanner, Christine; Flach, Barbara; Eggenberger, Céline; Mattausch, Oliver; Bajka, Michael; Goksel, Orcun

    2017-08-01

    4D ultrasound imaging of the fetal heart relies on reconstructions from B-mode images. In the presence of fetal motion, current approaches suffer from artifacts, which are unrecoverable for single sweeps. We propose to use many sweeps and exploit the resulting redundancy to automatically recover from motion by reconstructing a 4D image which is consistent in phase, space, and time. An interactive visualization framework to view animated ultrasound slices from 4D reconstructions on arbitrary planes was developed using a magnetically tracked mock probe. We first quantified the performance of 10 4D reconstruction formulations on simulated data. Reconstructions of 14 in vivo sequences by a baseline, the current state-of-the-art, and the proposed approach were then visually ranked with respect to temporal quality on orthogonal views. Rankings from 5 observers showed that the proposed 4D reconstruction approach significantly improves temporal image quality in comparison with the baseline. The 4D reconstructions of the baseline and the proposed methods were then inspected interactively for accessibility to clinically important views and rated for their clinical usefulness by an ultrasound specialist in obstetrics and gynecology. The reconstructions by the proposed method were rated as 'very useful' in 71% and were statistically significantly more useful than the baseline reconstructions. Multi-sweep fetal heart ultrasound acquisitions in combination with consistent 4D image reconstruction improves quality as well as clinical usefulness of the resulting 4D images in the presence of fetal motion.

  18. Character of the intense 4d. -->. f resonances in atomic La and Tm

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, E R [Bonn Univ. (Germany, F.R.). Physikalisches Inst.

    1979-02-14

    Observations of the 4 d absorption spectra of atomic La and Tm are reported. It is shown that the RPAE predictions for the 4d..-->.. epsilonf cross section in La I are currently closest to experiment. In Tm I a quite sharp autoionising resonance is observed. The differences between the two spectra are discussed with reference to ab initio calculations.

  19. Challenges of radiotherapy: report on the 4D treatment planning workshop 2013

    NARCIS (Netherlands)

    Knopf, Antje; Nill, Simeon; Yohannes, Indra; Graeff, Christian; Dowdell, Stephen; Kurz, Christopher; Sonke, Jan-Jakob; Biegun, Aleksandra K; Lang, Stephanie; McClelland, Jamie R.; Champion, Benjamin; Fast, Martin; Wölfelschneider, Jens; Gianoli, Chiara; Rucinski, Antoni; Baroni, Guido; Richter, Christian; van de Water, Steven; Grassberger, Clemens; Weber, Damien; Poulsen, Per; Shimizu, Shinichi; Bert, Christoph

    2014-01-01

    This report, compiled by experts on the treatment of mobile targets with advanced radiotherapy, summarizes the main conclusions and innovations achieved during the 4D treatment planning workshop 2013. This annual workshop focuses on research aiming to advance 4D radiotherapy treatments, including

  20. Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis

    Science.gov (United States)

    2014-09-01

    ER-200717) Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis...N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data...8 2.1.2 The Geophysical Signatures of Bioremediation ......................................... 8 2.2 PRIOR

  1. An approach for heterogeneous and loosely coupled geospatial data distributed computing

    Science.gov (United States)

    Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui

    2010-07-01

    Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.

  2. Collective Sensing: Integrating Geospatial Technologies to Understand Urban Systems—An Overview

    Directory of Open Access Journals (Sweden)

    Geoffrey J. Hay

    2011-08-01

    Full Text Available Cities are complex systems composed of numerous interacting components that evolve over multiple spatio-temporal scales. Consequently, no single data source is sufficient to satisfy the information needs required to map, monitor, model, and ultimately understand and manage our interaction within such urban systems. Remote sensing technology provides a key data source for mapping such environments, but is not sufficient for fully understanding them. In this article we provide a condensed urban perspective of critical geospatial technologies and techniques: (i Remote Sensing; (ii Geographic Information Systems; (iii object-based image analysis; and (iv sensor webs, and recommend a holistic integration of these technologies within the language of open geospatial consortium (OGC standards in-order to more fully understand urban systems. We then discuss the potential of this integration and conclude that this extends the monitoring and mapping options beyond “hard infrastructure” by addressing “humans as sensors”, mobility and human-environment interactions, and future improvements to quality of life and of social infrastructures.

  3. Alaska GRIN project : development of geospatial data management interface for oil spill and emergency response

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, S. [Cook Inlet Regional Citizens Advisory Council, Kenai, AK (United States); Robertson, T.L. [Nuka Research and Planning Group LLC, Seldovia, AK (United States); DeCola, E. [Nuka Research and Planning Group LLC, Plymouth, MA (United States)

    2009-07-01

    A geographic response network (GRIN) project was conducted in 2005 to develop a computer-based tool for organizing maps and data related to oil spill and emergency response logistics and community resources. Originally conceived as an html-based website where information was organized based on incident command system divisions of responsibility, open source mapping applications are also being added to crate an interactive map interface with geospatially referenced information. GRIN information is organized by community. A locator map is embedded in the lower right-hand corner of each map. GRIN includes categories of information related to emergency management, air logistics, law enforcement, marine logistics, and shore-side logistics. A project is now being conducted by the Cook Inlet Regional Citizens' Advisory Council to convert the html-based GRIN into a geospatial data management tool. A prototype has now been populated with data for several Cook Inlet communities. GRIN can also be accessed on only computer with an Internet browser. It was concluded that the use of open source programming will make GRIN an easy tool for planners and emergency responders. 5 refs., 6 figs.

  4. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    International Nuclear Information System (INIS)

    Wang, Jing; Gu, Xuejun

    2013-01-01

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  5. Clear evidence of a continuum theory of 4D Euclidean simplicial quantum gravity

    International Nuclear Information System (INIS)

    Egawa, H.S.; Horata, S.; Yukawa, T.

    2002-01-01

    Four-dimensional (4D) simplicial quantum gravity coupled to both scalar fields (N X ) and gauge fields (N A ) has been studied using Monte-Carlo simulations. The matter dependence of the string susceptibility exponent γ (4) is estimated. Furthermore, we compare our numerical results with Background-Metric-Independent (BMI) formulation conjectured to describe the quantum field theory of gravity in 4D. The numerical results suggest that the 4D simplicial quantum gravity is related to the conformal gravity in 4D. Therefore, we propose a phase structure in detail with adding both scalar and gauge fields and discuss the possibility and the property of a continuum theory of 4D Euclidean simplicial quantum gravity

  6. Neo-Gramscian Approach and Geopolitics of ICT4D Agenda

    Directory of Open Access Journals (Sweden)

    Tokunbo Ojo

    2016-06-01

    Full Text Available For the last two decades, the notion of Information Communication Technologies for Development (ICT4D has had significant traction in both praxis and scholarly work of international development. While it has dystopia and utopia dimensions, ICT4D came out of particular history and intellectual climates. The historical and political contexts that shaped the ICT4D agenda deserve examination. Grounded within the canon of neo-Gramscian perspectives, this paper discusses the geopolitical construct of the ICT4D agenda and the agenda-building roles of international institutions in the process. In situating the ICT4D agenda in the geopolitical context, this paper highlights the institutional discursive structure and embedded geometries of power relations in the global communication and international development agenda.

  7. Multiple Behavior Phenotypes of the Fragile-X Syndrome Mouse Model Respond to Chronic Inhibition of Phosphodiesterase-4D (PDE4D)

    OpenAIRE

    Gurney, Mark E.; Cogram, Patricia; Deacon, Robert M; Rex, Christopher; Tranfaglia, Michael

    2017-01-01

    Fragile-X syndrome (FXS) patients display intellectual disability and autism spectrum disorder due to silencing of the X-linked, fragile-X mental retardation-1 (FMR1) gene. Dysregulation of cAMP metabolism is a consistent finding in patients and in the mouse and fly FXS models. We therefore explored if BPN14770, a prototypic phosphodiesterase-4D negative allosteric modulator (PDE4D-NAM) in early human clinical trials, might provide therapeutic benefit in the mouse FXS model. Daily treatment o...

  8. Complement activation in astrocytomas: deposition of C4d and patient outcome

    International Nuclear Information System (INIS)

    Mäkelä, Katri; Helén, Pauli; Haapasalo, Hannu; Paavonen, Timo

    2012-01-01

    C4d is a cleavage product of complement component C4 and is considered to serve as a marker for the site of complement activation. In this study C4d staining of grade I-IV astrocytic tumors was studied to explore if there is an association between complement activation and the grade of tumor, or patient survival. Tissue micro-array samples of 102 astrocytomas were stained immunohistochemically. The material consisted of 9 pilocytic astrocytomas and 93 grade II-IV astrocytomas, of which 67 were primary resections and 26 recurrent tumors. The intensity of C4d staining as well as extent of C4d and CD34 staining were evaluated. The intensity of C4d staining was scored semiquantitatively. The extent of the staining was counted morphometrically with a point counting grid yielding a percent of C4d and CD34 positive area of the sample. The intensity and extent of C4d staining increased in grade II-IV diffusely infiltrating astrocytoma tumors in line with the malignancy grade (p = 0.034 and p = 0.016, respectively, Kruskal-Wallis test). However, C4d positive tumor area percentages were higher in grade I pilocytic astrocytomas than in grade II-IV diffusely infiltrating astrocytomas (p = 0.041, Mann–Whitney test). There was a significant correlation between CD34 positive and C4d positive endothelial area fraction in diffusely infiltrating astrocytomas (p < 0.001, Pearson correlation). In these tumors, the increasing intensity of C4d staining was also associated with worsened patient outcome (p = 0.014, log-rank test). The worsening of patient outcome and malignant progression of tumor cells seem to be connected to microenvironmental changes evoked by chronically activated complement

  9. Simulation of spatiotemporal CT data sets using a 4D MRI-based lung motion model.

    Science.gov (United States)

    Marx, Mirko; Ehrhardt, Jan; Werner, René; Schlemmer, Heinz-Peter; Handels, Heinz

    2014-05-01

    Four-dimensional CT imaging is widely used to account for motion-related effects during radiotherapy planning of lung cancer patients. However, 4D CT often contains motion artifacts, cannot be used to measure motion variability, and leads to higher dose exposure. In this article, we propose using 4D MRI to acquire motion information for the radiotherapy planning process. From the 4D MRI images, we derive a time-continuous model of the average patient-specific respiratory motion, which is then applied to simulate 4D CT data based on a static 3D CT. The idea of the motion model is to represent the average lung motion over a respiratory cycle by cyclic B-spline curves. The model generation consists of motion field estimation in the 4D MRI data by nonlinear registration, assigning respiratory phases to the motion fields, and applying a B-spline approximation on a voxel-by-voxel basis to describe the average voxel motion over a breathing cycle. To simulate a patient-specific 4D CT based on a static CT of the patient, a multi-modal registration strategy is introduced to transfer the motion model from MRI to the static CT coordinates. Differences between model-based estimated and measured motion vectors are on average 1.39 mm for amplitude-based binning of the 4D MRI data of three patients. In addition, the MRI-to-CT registration strategy is shown to be suitable for the model transformation. The application of our 4D MRI-based motion model for simulating 4D CT images provides advantages over standard 4D CT (less motion artifacts, radiation-free). This makes it interesting for radiotherapy planning.

  10. Quantitation of respiratory motion during 4D-PET/CT acquisition

    International Nuclear Information System (INIS)

    Nehmeh, S.A.; Erdi, Y.E.; Pan, T.; Yorke, E.; Mageras, G.S.; Rosenzweig, K.E.; Schoder, H.; Mostafavi, H.; Squire, O.; Pevsner, A.; Larson, S.M.; Humm, J.L.

    2004-01-01

    We report on the variability of the respiratory motion during 4D-PET/CT acquisition. The respiratory motion for five lung cancer patients was monitored by tracking external markers placed on the abdomen. CT data were acquired over an entire respiratory cycle at each couch position. The x-ray tube status was recorded by the tracking system, for retrospective sorting of the CT data as a function of respiration phase. Each respiratory cycle was sampled in ten equal bins. 4D-PET data were acquired in gated mode, where each breathing cycle was divided into ten 500 ms bins. For both CT and PET acquisition, patients received audio prompting to regularize breathing. The 4D-CT and 4D-PET data were then correlated according to their respiratory phases. The respiratory periods, and average amplitude within each phase bin, acquired in both modality sessions were then analyzed. The average respiratory motion period during 4D-CT was within 18% from that in the 4D-PET sessions. This would reflect up to 1.8% fluctuation in the duration of each 4D-CT bin. This small uncertainty enabled good correlation between CT and PET data, on a phase-to-phase basis. Comparison of the average-amplitude within the respiration trace, between 4D-CT and 4D- PET, on a bin-by-bin basis show a maximum deviation of ∼15%. This study has proved the feasibility of performing 4D-PET/CT acquisition. Respiratory motion was in most cases consistent between PET and CT sessions, thereby improving both the attenuation correction of PET images, and co-registration of PET and CT images. On the other hand, in two patients, there was an increased partial irregularity in their breathing motion, which would prevent accurately correlating the corresponding PET and CT images

  11. TU-C-BRD-01: Image Guided SBRT I: Multi-Modality 4D Imaging

    International Nuclear Information System (INIS)

    Cai, J; Mageras, G; Pan, T

    2014-01-01

    Motion management is one of the critical technical challenges for radiation therapy. 4D imaging has been rapidly adopted as essential tool to assess organ motion associated with respiratory breathing. A variety of 4D imaging techniques have been developed and are currently under development based on different imaging modalities such as CT, MRI, PET, and CBCT. Each modality provides specific and complementary information about organ and tumor respiratory motion. Effective use of each different technique or combined use of different techniques can introduce a comprehensive management of tumor motion. Specifically, these techniques have afforded tremendous opportunities to better define and delineate tumor volumes, more accurately perform patient positioning, and effectively apply highly conformal therapy techniques such as IMRT and SBRT. Successful implementation requires good understanding of not only each technique, including unique features, limitations, artifacts, imaging acquisition and process, but also how to systematically apply the information obtained from different imaging modalities using proper tools such as deformable image registration. Furthermore, it is important to understand the differences in the effects of breathing variation between different imaging modalities. A comprehensive motion management strategy using multi-modality 4D imaging has shown promise in improving patient care, but at the same time faces significant challenges. This session will focuses on the current status and advances in imaging respiration-induced organ motion with different imaging modalities: 4D-CT, 4D-MRI, 4D-PET, and 4D-CBCT/DTS. Learning Objectives: Understand the need and role of multimodality 4D imaging in radiation therapy. Understand the underlying physics behind each 4D imaging technique. Recognize the advantages and limitations of each 4D imaging technique

  12. Estimation of Radiation Exposure of 128-Slice 4D-Perfusion CT for the Assessment of Tumor Vascularity

    Science.gov (United States)

    Horger, Marius; Buchgeister, Markus; Fenchel, Michael; Thomas, Christoph; Boehringer, Nadine; Schulze, Maximilian; Tsiflikas, Ilias; Claussen, Claus D.; Heuschmid, Martin

    2010-01-01

    Objective We aimed to estimate the effective dose of 4D-Perfusion-CT protocols of the lung, liver, and pelvis for the assessment of tumor vascularity. Materials and Methods An Alderson-Rando phantom equipped with thermoluminescent dosimeters was used to determine the effective dose values of 4D-Perfusion-CT. Phantom measurements were performed on a 128-slice single-source scanner in adaptive 4D-spiral-mode with bidirectional table movement and a total scan range of 69 mm over a time period of nearly 120 seconds (26 scans). Perfusion measurements were simulated for the lung, liver, and pelvis under the following conditions: lung (80 kV, 60 mAs), liver (80 kV/80 mAs and 80 kV/120 mAs), pelvis (100 kV/80 mAs and 100 kV/120 mAs). Results Depending on gender, the evaluated body region and scan protocol, an effective whole-body dose between 2.9-12.2 mSv, was determined. The radiation exposure administered to gender-specific organs like the female breast tissue (lung perfusion) or to the ovaries (pelvic perfusion) led to an increase in the female specific dose by 86% and 100% in perfusion scans of the lung and the pelvis, respectively. Conclusion Due to a significant radiation dose of 4D-perfusion-CT protocols, the responsible use of this new promising technique is mandatory. Gender- and organ-specific differences should be considered for indication and planning of tumor perfusion scans. PMID:20808699

  13. Estimation of Radiation Exposure of 128-Slice 4D-Perfusion CT for the Assessment of Tumor Vascularity

    Energy Technology Data Exchange (ETDEWEB)

    Ketelsen, Dominik; Horger, Marius; Buchgeister, Markus; Fenchel, Michael; Thomas, Christoph; Boehringer, Nadine; Schulze, Maximilian; Tsiflikas, Ilias; Claussen, Claus D.; Heuschmid, Martin [University Hospital Tuebingen, Tuebingen (Germany)

    2010-10-15

    We aimed to estimate the effective dose of 4D-Perfusion-CT protocols of the lung, liver, and pelvis for the assessment of tumor vascularity. An Alderson-Rando phantom equipped with thermoluminescent dosimeters was used to determine the effective dose values of 4D Perfusion-CT. Phantom measurements were performed on a 128-slice single source scanner in adaptive 4D-spiral-mode with bidirectional table movement and a total scan range of 69 mm over a time period of nearly 120 seconds (26 scans). Perfusion measurements were simulated for the lung, liver, and pelvis under the following conditions: lung (80 kV, 60 mAs), liver (80 kV/80 mAs and 80 kV/120 mAs), pelvis (100 kV/80 mAs and 100 kV/120 mAs). Depending on gender, the evaluated body region and scan protocol, an effective whole-body dose between 2.9-12.2 mSv, was determined. The radiation exposure administered to gender-specific organs like the female breast tissue (lung perfusion) or to the ovaries (pelvic perfusion) led to an increase in the female specific dose by 86% and 100% in perfusion scans of the lung and the pelvis, respectively. Due to a significant radiation dose of 4D-perfusion-CT protocols, the responsible use of this new promising technique is mandatory. Gender- and organ-specific differences should be considered for indication and planning of tumor perfusion scans

  14. 4D spiral imaging of flows in stenotic phantoms and subjects with aortic stenosis.

    Science.gov (United States)

    Negahdar, M J; Kadbi, Mo; Kendrick, Michael; Stoddard, Marcus F; Amini, Amir A

    2016-03-01

    The utility of four-dimensional (4D) spiral flow in imaging of stenotic flows in both phantoms and human subjects with aortic stenosis is investigated. The method performs 4D flow acquisitions through a stack of interleaved spiral k-space readouts. Relative to conventional 4D flow, which performs Cartesian readout, the method has reduced echo time. Thus, reduced flow artifacts are observed when imaging high-speed stenotic flows. Four-dimensional spiral flow also provides significant savings in scan times relative to conventional 4D flow. In vitro experiments were performed under both steady and pulsatile flows in a phantom model of severe stenosis (one inch diameter at the inlet, with 87% area reduction at the throat of the stenosis) while imaging a 6-cm axial extent of the phantom, which included the Gaussian-shaped stenotic narrowing. In all cases, gradient strength and slew rate for standard clinical acquisitions, and identical field of view and resolution were used. For low steady flow rates, quantitative and qualitative results showed a similar level of accuracy between 4D spiral flow (echo time [TE] = 2 ms, scan time = 40 s) and conventional 4D flow (TE = 3.6 ms, scan time = 1:01 min). However, in the case of high steady flow rates, 4D spiral flow (TE = 1.57 ms, scan time = 38 s) showed better visualization and accuracy as compared to conventional 4D flow (TE = 3.2 ms, scan time = 51 s). At low pulsatile flow rates, a good agreement was observed between 4D spiral flow (TE = 2 ms, scan time = 10:26 min) and conventional 4D flow (TE = 3.6 ms, scan time = 14:20 min). However, in the case of high flow-rate pulsatile flows, 4D spiral flow (TE = 1.57 ms, scan time = 10:26 min) demonstrated better visualization as compared to conventional 4D flow (TE = 3.2 ms, scan time = 14:20 min). The feasibility of 4D spiral flow was also investigated in five normal volunteers and four subjects with mild-to-moderate aortic stenosis. The approach achieved TE = 1.68 ms and scan

  15. 4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters

    Science.gov (United States)

    Werner, René

    2017-01-01

    Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to stereotactic treatment in a single or few fractions, often employing volumetric arc therapy (VMAT)-based techniques. Potential unintended interference of respiratory target motion and dynamically changing beam parameters during VMAT dose delivery motivates establishing 4D quality assurance (4D QA) procedures to assess appropriateness of generated VMAT treatment plans when taking into account patient-specific motion characteristics. Current approaches are motion phantom-based 4D QA and image-based 4D VMAT dose simulation. Whereas phantom-based 4D QA is usually restricted to a small number of measurements, the computational approaches allow simulating many motion scenarios. However, 4D VMAT dose simulation depends on various input parameters, influencing estimated doses along with mitigating simulation reliability. Thus, aiming at routine use of simulation-based 4D VMAT QA, the impact of such parameters as well as the overall accuracy of the 4D VMAT dose simulation has to be studied in detail–which is the topic of the present work. In detail, we introduce the principles of 4D VMAT dose simulation, identify influencing parameters and assess their impact on 4D dose simulation accuracy by comparison of simulated motion-affected dose distributions to corresponding dosimetric motion phantom measurements. Exploiting an ITV-based treatment planning approach, VMAT treatment plans were generated for a motion phantom and different motion scenarios (sinusoidal motion of different period/direction; regular/irregular motion). 4D VMAT dose simulation results and dose measurements were compared by local 3% / 3 mm γ-evaluation, with the measured dose distributions serving as ground truth. Overall γ-passing rates of simulations and dynamic measurements ranged from 97% to 100% (mean across all motion scenarios: 98% ± 1%); corresponding values for comparison of different day repeat measurements were

  16. 4-D modeling of CME expansion and EUV dimming observed with STEREO/EUVI

    Directory of Open Access Journals (Sweden)

    M. J. Aschwanden

    2009-08-01

    Full Text Available This is the first attempt to model the kinematics of a CME launch and the resulting EUV dimming quantitatively with a self-consistent model. Our 4-D-model assumes self-similar expansion of a spherical CME geometry that consists of a CME front with density compression and a cavity with density rarefaction, satisfying mass conservation of the total CME and swept-up corona. The model contains 14 free parameters and is fitted to the 25 March 2008 CME event observed with STEREO/A and B. Our model is able to reproduce the observed CME expansion and related EUV dimming during the initial phase from 18:30 UT to 19:00 UT. The CME kinematics can be characterized by a constant acceleration (i.e., a constant magnetic driving force. While the observations of EUVI/A are consistent with a spherical bubble geometry, we detect significant asymmetries and density inhomogeneities with EUVI/B. This new forward-modeling method demonstrates how the observed EUV dimming can be used to model physical parameters of the CME source region, the CME geometry, and CME kinematics.

  17. Mineralization of 2,4-Dichlorophenoxyacetic Acid (2,4-D) and Mixtures of 2,4-D and 2,4,5-Trichlorophenoxyacetic Acid by Phanerochaete chrysosporium

    Science.gov (United States)

    Yadav, J. S.; Reddy, C. A.

    1993-01-01

    Evidence is presented for mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) in nutrient-rich media (high-nitrogen and malt extract media) by wild-type Phanerochaete chrysosporium and by a peroxidase-negative mutant of this organism. Mass balance analysis of [U-ring-14C]2,4-D mineralization in malt extract cultures showed 82.7% recovery of radioactivity. Of this, 38.6% was released as 14CO2 and 27.0, 11.2, and 5.9% were present in the aqueous, methylene chloride, and mycelial fractions, respectively. 2,4-D and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) were simultaneously mineralized when presented as a mixture, and mutual inhibition of degradation was not observed. In contrast, a relatively higher rate of mineralization of 2,4-D and 2,4,5-T was observed when these compounds were tested as mixtures than when they were tested alone. PMID:16349039

  18. A resource-oriented architecture for a Geospatial Web

    Science.gov (United States)

    Mazzetti, Paolo; Nativi, Stefano

    2010-05-01

    In this presentation we discuss some architectural issues on the design of an architecture for a Geospatial Web, that is an information system for sharing geospatial resources according to the Web paradigm. The success of the Web in building a multi-purpose information space, has raised questions about the possibility of adopting the same approach for systems dedicated to the sharing of more specific resources, such as the geospatial information, that is information characterized by spatial/temporal reference. To this aim an investigation on the nature of the Web and on the validity of its paradigm for geospatial resources is required. The Web was born in the early 90's to provide "a shared information space through which people and machines could communicate" [Berners-Lee 1996]. It was originally built around a small set of specifications (e.g. URI, HTTP, HTML, etc.); however, in the last two decades several other technologies and specifications have been introduced in order to extend its capabilities. Most of them (e.g. the SOAP family) actually aimed to transform the Web in a generic Distributed Computing Infrastructure. While these efforts were definitely successful enabling the adoption of service-oriented approaches for machine-to-machine interactions supporting complex business processes (e.g. for e-Government and e-Business applications), they do not fit in the original concept of the Web. In the year 2000, R. T. Fielding, one of the designers of the original Web specifications, proposes a new architectural style for distributed systems, called REST (Representational State Transfer), aiming to capture the fundamental characteristics of the Web as it was originally conceived [Fielding 2000]. In this view, the nature of the Web lies not so much in the technologies, as in the way they are used. Maintaining the Web architecture conform to the REST style would then assure the scalability, extensibility and low entry barrier of the original Web. On the contrary

  19. Preparing Preservice Teachers to Incorporate Geospatial Technologies in Geography Teaching

    Science.gov (United States)

    Harte, Wendy

    2017-01-01

    This study evaluated the efficacy of geospatial technology (GT) learning experiences in two geography curriculum courses to determine their effectiveness for developing preservice teacher confidence and preparing preservice teachers to incorporate GT in their teaching practices. Surveys were used to collect data from preservice teachers at three…

  20. Crisp Clustering Algorithm for 3D Geospatial Vector Data Quantization

    DEFF Research Database (Denmark)

    Azri, Suhaibah; Anton, François; Ujang, Uznir

    2015-01-01

    In the next few years, 3D data is expected to be an intrinsic part of geospatial data. However, issues on 3D spatial data management are still in the research stage. One of the issues is performance deterioration during 3D data retrieval. Thus, a practical 3D index structure is required for effic...

  1. Geospatial Technology In Environmental Impact Assessments – Retrospective.

    Directory of Open Access Journals (Sweden)

    Goparaju Laxmi

    2015-10-01

    Full Text Available Environmental Impact Assessments are studies conducted to give us an insight into the various impacts caused by an upcoming industry or any developmental activity. It should address various social, economic and environmental issues ensuring that negative impacts are mitigated. In this context, geospatial technology has been used widely in recent times.

  2. Automated Geospatial Watershed Assessment Tool (AGWA) Poster Presentation

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA-Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona...

  3. Big Data analytics in the Geo-Spatial Domain

    NARCIS (Netherlands)

    R.A. Goncalves (Romulo); M.G. Ivanova (Milena); M.L. Kersten (Martin); H. Scholten; S. Zlatanova; F. Alvanaki (Foteini); P. Nourian (Pirouz); E. Dias

    2014-01-01

    htmlabstractBig data collections in many scientific domains have inherently rich spatial and geo-spatial features. Spatial location is among the core aspects of data in Earth observation sciences, astronomy, and seismology to name a few. The goal of our project is to design an efficient data

  4. A study on state of Geospatial courses in Indian Universities

    Science.gov (United States)

    Shekhar, S.

    2014-12-01

    Today the world is dominated by three technologies such as Nano technology, Bio technology and Geospatial technology. This increases the huge demand for experts in the respective field for disseminating the knowledge as well as for an innovative research. Therefore, the prime need is to train the existing fraternity to gain progressive knowledge in these technologies and impart the same to student community. The geospatial technology faces some peculiar problem than other two technologies because of its interdisciplinary, multi-disciplinary nature. It attracts students and mid career professionals from various disciplines including Physics, Computer science, Engineering, Geography, Geology, Agriculture, Forestry, Town Planning and so on. Hence there is always competition to crab and stabilize their position. The students of Master's degree in Geospatial science are facing two types of problem. The first one is no unique identity in the academic field. Neither they are exempted for National eligibility Test for Lecturer ship nor given an opportunity to have the exam in geospatial science. The second one is differential treatment by the industrial world. The students are either given low grade jobs or poorly paid for their job. Thus, it is a serious issue about the future of this course in the Universities and its recognition in the academic and industrial world. The universities should make this course towards more job oriented in consultation with the Industries and Industries should come forward to share their demands and requirements to the Universities, so that necessary changes in the curriculum can be made to meet the industrial requirements.

  5. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  6. A Research Agenda for Geospatial Technologies and Learning

    Science.gov (United States)

    Baker, Tom R.; Battersby, Sarah; Bednarz, Sarah W.; Bodzin, Alec M.; Kolvoord, Bob; Moore, Steven; Sinton, Diana; Uttal, David

    2015-01-01

    Knowledge around geospatial technologies and learning remains sparse, inconsistent, and overly anecdotal. Studies are needed that are better structured; more systematic and replicable; attentive to progress and findings in the cognate fields of science, technology, engineering, and math education; and coordinated for multidisciplinary approaches.…

  7. Theoretical multi-tier trust framework for the geospatial domain

    CSIR Research Space (South Africa)

    Umuhoza, D

    2010-01-01

    Full Text Available chain or workflow from data acquisition to knowledge discovery. The author’s present work in progress of a theoretical multi-tier trust framework for processing chain from data acquisition to knowledge discovery in geospatial domain. Holistic trust...

  8. Sextant: Visualizing time-evolving linked geospatial data

    NARCIS (Netherlands)

    C. Nikolaou (Charalampos); K. Dogani (Kallirroi); K. Bereta (Konstantina); G. Garbis (George); M. Karpathiotakis (Manos); K. Kyzirakos (Konstantinos); M. Koubarakis (Manolis)

    2015-01-01

    textabstractThe linked open data cloud is constantly evolving as datasets get continuously updated with newer versions. As a result, representing, querying, and visualizing the temporal dimension of linked data is crucial. This is especially important for geospatial datasets that form the backbone

  9. Shared Geospatial Metadata Repository for Ontario University Libraries: Collaborative Approaches

    Science.gov (United States)

    Forward, Erin; Leahey, Amber; Trimble, Leanne

    2015-01-01

    Successfully providing access to special collections of digital geospatial data in academic libraries relies upon complete and accurate metadata. Creating and maintaining metadata using specialized standards is a formidable challenge for libraries. The Ontario Council of University Libraries' Scholars GeoPortal project, which created a shared…

  10. Geospatial Data Repository. Sharing Data Across the Organization and Beyond

    National Research Council Canada - National Science Library

    Ruiz, Marilyn

    2001-01-01

    .... This short Technical Note discusses a five-part approach to creating a data repository that addresses the problems of the historical organizational framework for geospatial data. Fort Hood, Texas was the site used to develop the prototype. A report documenting the complete study will be available in late Spring 2001.

  11. Strategic Deconfliction of 4D Trajectory and Perturbation Analysis for Air Traffic Control and Automation System

    Directory of Open Access Journals (Sweden)

    Xinmin Tang

    2016-01-01

    Full Text Available Strategic 4D trajectory conflict-free planning is recognized as one of the core technologies of next-generation air traffic control and automation systems. To resolve potential conflicts during strategic 4D conflict-free trajectory planning, a protection-zone conflict-control model based on air traffic control separation constraints was proposed, in which relationships between expected arrival time and adjusted arrival time at conflicting waypoints for aircraft queues were built and transformed into dynamic linear equations under the definition of max-plus algebra. A method for strategic deconfliction of 4D trajectory was then proposed using two strategies: arrival time adjustment and departure time adjustment. In addition, departure time and flight duration perturbations were introduced to analyze the sensitivity of the planned strategic conflict-free 4D trajectories, and a robustness index for the conflict-free 4D trajectories was calculated. Finally, the proposed method was tested for the Shanghai air traffic control terminal area. The outcomes demonstrated that the planned strategic conflict-free 4D trajectories could avoid potential conflicts, and the slack time could be used to indicate their robustness. Complexity analysis demonstrated that deconfliction using max-plus algebra is more suitable for deconfliction of 4D trajectory with random sampling period in fix air route.

  12. SU-E-J-241: Creation of Ventilation CT From Daily 4D CTs Or 4D Conebeam CTs Acquired During IGRT for Thoracic Cancers

    International Nuclear Information System (INIS)

    Tai, A; Ahunbay, E; Li, X

    2014-01-01

    Purpose: To develop a method to create ventilation CTs from daily 4D CTs or 4D KV conebeam CTs (4DCBCT) acquired during image-guided radiation therapy (IGRT) for thoracic tumors, and to explore the potential for using the ventilation CTs as a means for early detection of lung injury during radiation treatment. Methods: 4DCT acquired using an in-room CT (CTVision, Siemens) and 4DCBCT acquired using the X-ray Volume Imaging (XVI) system (Infinity, Elekta) for representative lung cancer patients were analyzed. These 4D data sets were sorted into 10 phase images. A newly-available deformable image registration tool (ADMIRE, Elekta) is used to deform the phase images at the end of exhale (EE) to the phase images at the end of inhale (EI). The lung volumes at EI and EE were carefully contoured using an intensity-based auto-contour tool and then manually edited. The ventilation images were calculated from the variations of CT numbers of those voxels masked by the lung contour at EI between the registered phase images. The deformable image registration is also performed between the daily 4D images and planning 4DCT, and the resulting deformable field vector (DFV) is used to deform the planning doses to the daily images by an in-house Matlab program. Results: The ventilation images were successfully created. The tide volumes calculated using the ventilation images agree with those measured through volume difference of contours at EE and EI, indicating the accuracy of ventilation images. The association between the delivered doses and the change of lung ventilation from the daily ventilation CTs is identified. Conclusions: A method to create the ventilation CT using daily 4DCTs or 4D KV conebeam CTs was developed and demonstrated

  13. Preoperative 4D CT Localization of Nonlocalizing Parathyroid Adenomas by Ultrasound and SPECT-CT.

    Science.gov (United States)

    Hinson, Andrew M; Lee, David R; Hobbs, Bradley A; Fitzgerald, Ryan T; Bodenner, Donald L; Stack, Brendan C

    2015-11-01

    To evaluate 4-dimensional (4D) computed tomography (CT) for the localization of parathyroid adenomas previously considered nonlocalizing on ultrasound and single-photon emission CT with CT scanning (SPECT-CT). To measure radiation exposure associated with 4D-CT and compared it with SPECT-CT. Case series with chart review. University tertiary hospital. Nineteen adults with primary hyperparathyroidism who underwent preoperative 4D CT from November 2013 through July 2014 after nonlocalizing preoperative ultrasound and technetium-99m SPECT-CT scans. Sensitivity, specificity, predictive values, and accuracy of 4D CT were evaluated. Nineteen patients (16 women and 3 men) were included with a mean age of 66 years (range, 39-80 years). Mean preoperative parathyroid hormone level was 108.5 pg/mL (range, 59.3-220.9 pg/mL), and mean weight of the excised gland was 350 mg (range, 83-797 mg). 4D CT sensitivity and specificity for localization to the patient's correct side of the neck were 84.2% and 81.8%, respectively; accuracy was 82.9%. The sensitivity for localizing adenomas to the correct quadrant was 76.5% and 91.5%, respectively; accuracy was 88.2%. 4D CT radiation exposure was significantly less than the radiation associated with SPECT-CT (13.8 vs 18.4 mSv, P = 0.04). 4D CT localizes parathyroid adenomas with relatively high sensitivity and specificity and allows for the localization of some adenomas not observed on other sestamibi-based scans. 4D CT was also associated with less radiation exposure when compared with SPECT-CT based on our study protocol. 4D CT may be considered as first- or second-line imaging for localizing parathyroid adenomas in the setting of primary hyperparathyroidism. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  14. Comparing Dislodgeable 2,4-D Residues across Athletic Field Turfgrass Species and Time.

    Directory of Open Access Journals (Sweden)

    Matthew D Jeffries

    Full Text Available 2,4-dimethylamine salt (2,4-D is an herbicide commonly applied on athletic fields for broadleaf weed control that can dislodge from treated turfgrass. Dislodge potential is affected by numerous factors, including turfgrass canopy conditions. Building on previous research confirming herbicide-turfgrass dynamics can vary widely between species, field research was initiated in 2014 and 2015 in Raleigh, NC, USA to quantify dislodgeable 2,4-D residues from dormant hybrid bermudagrass (Cynodon dactylon L. x C. transvaalensis and hybrid bermudagrass overseeded with perennial ryegrass (Lolium perenne L., which are common athletic field playing surfaces in subtropical climates. Additionally, dislodgeable 2,4-D was compared at AM (7:00 eastern standard time and PM (14:00 sample timings within a day. Samples collected from perennial ryegrass consistently resulted in greater 2,4-D dislodgment immediately after application (9.4 to 9.9% of applied compared to dormant hybrid bermudagrass (2.3 to 2.9%, as well as at all AM compared to PM timings from 1 to 3 d after treatment (DAT; 0.4 to 6.3% compared to 0.1 to 0.8%. Dislodgeable 2,4-D did not differ across turfgrass species at PM sample collections, with ≤ 0.1% of the 2,4-D applied dislodged from 1 to 6 DAT, and 2,4-D detection did not occur at 12 and 24 DAT. In conclusion, dislodgeable 2,4-D from treated turfgrass can vary between species and over short time-scales within a day. This information should be taken into account in human exposure risk assessments, as well as by turfgrass managers and athletic field event coordinators to minimize 2,4-D exposure.

  15. A Geospatial Database for Wind and Solar Energy Applications: The Kingdom of Bahrain Study Case

    Science.gov (United States)

    Al-Joburi, Khalil; Dahman, Nidal

    2017-11-01

    This research is aimed at designing, implementing, and testing a geospatial database for wind and solar energy applications in the Kingdom of Bahrain. All decision making needed to determine economic feasibility and establish site location for wind turbines or solar panels depends primarily on geospatial feature theme information and non-spatial (attribute) data for wind, solar, rainfall, temperature and weather characteristics of a particular region. Spatial data includes, but is not limited to, digital elevation, slopes, land use, zonings, parks, population density, road utility maps, and other related information. Digital elevations for over 450,000 spot at 50 m spatial horizontal resolution plus field surveying and GPS (at selected locations) was obtained from the Surveying and Land Registration Bureau (SLRB). Road, utilities, and population density are obtained from the Central Information Organization (CIO). Land use zoning, recreational parks, and other data are obtained from the Ministry of Municipalities and Agricultural Affairs. Wind, solar, humidity, rainfall, and temperature data are obtained from the Ministry of Transportation, Civil Aviation Section. LandSat Satellite and others images are obtained from NASA and online sources respectively. The collected geospatial data was geo-referenced to Ain el-Abd UTM Zone 39 North. 3D Digital Elevation Model (DEM)-50 m spatial resolutions was created using SLRB spot elevations. Slope and aspect maps were generate based on the DEM. Supervised image classification to identify open spaces was performed utilizing satellite images. Other geospatial data was converted to raster format with the same cell resolution. Non-spatial data are entered as an attribute to spatial features. To eliminate ambiguous solution, multi-criteria GIS model is developed based on, vector (discrete point, line, and polygon representations) as well as raster model (continuous representation). The model was tested at the Al-Areen proposed

  16. A Geospatial Database for Wind and Solar Energy Applications: The Kingdom of Bahrain Study Case

    Directory of Open Access Journals (Sweden)

    Al-Joburi Khalil

    2017-01-01

    Full Text Available This research is aimed at designing, implementing, and testing a geospatial database for wind and solar energy applications in the Kingdom of Bahrain. All decision making needed to determine economic feasibility and establish site location for wind turbines or solar panels depends primarily on geospatial feature theme information and non-spatial (attribute data for wind, solar, rainfall, temperature and weather characteristics of a particular region. Spatial data includes, but is not limited to, digital elevation, slopes, land use, zonings, parks, population density, road utility maps, and other related information. Digital elevations for over 450,000 spot at 50 m spatial horizontal resolution plus field surveying and GPS (at selected locations was obtained from the Surveying and Land Registration Bureau (SLRB. Road, utilities, and population density are obtained from the Central Information Organization (CIO. Land use zoning, recreational parks, and other data are obtained from the Ministry of Municipalities and Agricultural Affairs. Wind, solar, humidity, rainfall, and temperature data are obtained from the Ministry of Transportation, Civil Aviation Section. LandSat Satellite and others images are obtained from NASA and online sources respectively. The collected geospatial data was geo-referenced to Ain el-Abd UTM Zone 39 North. 3D Digital Elevation Model (DEM-50 m spatial resolutions was created using SLRB spot elevations. Slope and aspect maps were generate based on the DEM. Supervised image classification to identify open spaces was performed utilizing satellite images. Other geospatial data was converted to raster format with the same cell resolution. Non-spatial data are entered as an attribute to spatial features. To eliminate ambiguous solution, multi-criteria GIS model is developed based on, vector (discrete point, line, and polygon representations as well as raster model (continuous representation. The model was tested at the Al

  17. 4D modeling of salt-sediment interactions during diapir evolution

    Energy Technology Data Exchange (ETDEWEB)

    Callot, J.P.; Rondon, D.; Letouzey, J. [IFP, Rueil Malmaison (France); Krajewski, P. [Gaz de France-PEG, Lingen (Germany); Rigollet, C. [Gaz de France, St. Denis la Plaine (France)

    2007-09-13

    We performed sand/silicon models imaged with X-ray tomography and reconstructed by 3D geomodelling for the study of (1) the interaction between host rock and salt diapir during diapir growth, and (2) the evolution of intra salt brittle rocks during diapir ascent. X-ray tomography is a non destructive imaging technique which allows us to follow the 4D evolution of the analogue model. Salt is modelled by Newtonian silicone putty and the internal rock layer, as well as the sedimentary host rock, by a granular Mohr-Coulomb material, generally coryndon. The analogue models are then compared to natural examples, the evolution of which is obtained through 3D restoration of the structures. (1) A 4D evolutionary scenario for a salt diapir development was originally proposed by Trusheim (1960) and discussed later on by Vendeville (1999) among others (Ge et al., 1997; Zirngast et al., 1996). This scenario is reproduced through analogue models to test the relative importance of (1) extensional tectonics, (2) sediment progradations, and (3) source layer depletion and rim-syncline touchdown, in the evolution of a diapir. The comparison of our results with the restored natural analogue shows that the main parameter remains (1) the rim-syncline touchdown and (2) the unloading of the diapir due to erosion. The latter accounts for a drop in strength necessary to allow for the flank rotation and down building of the diapir. Extensional stresses and sediment progradations will also amplify the halokinesis. (2) Salt diapirs from the Middle East or in Southern Permian Basin petroleum province show exotic blocks at outcrop and in salt mines, known as 'stringers' in subsurface data, usually composed of anhydrite, dolomite, marls or carbonates. These stringers, which constitute major structures inside the salt diapir, can reach a few km in size and originate from pre-existing brittle rock layers embedded in the salt layer. Stringers of the Ara carbonate within the Precambrian

  18. From 3D to 4D printing: approaches and typical applications

    International Nuclear Information System (INIS)

    Zhou, Ye; Huang, Wei Min; Kang Shu Feng; Wu, Xue Lian; Lu, Hai Bao; Fu, Jun; Cui, Haipo

    2015-01-01

    With the additional dimension, 4D printing is emerging as a novel technique to enable configuration switching in 3D printed items. In this paper, four major approaches, namely self-assembly of elements, deformation mismatch, bi-stability, and the Shape memory effect (SME), are identified as the generic approaches to achieve 4D printing. The main features of these approaches are briefly discussed. Utilizing these approaches either individually or in a combined manner, the potential of 4D printing to reshape product design is demonstrated by a few example applications.

  19. An Analysis of 4D Modeling for Use by the Naval Facilities Engineering Command

    OpenAIRE

    Jors, Patrick C.

    2004-01-01

    CIVINS (Civilian Institutions) Thesis document Approved for public release ; distribution is unlimited The purpose of this paper is to explain recent research on the costs and benefits of 4D CAD technology to determine if it can benefit the U.S. Navy in management of its construction projects. The report will begin with a brief history of project management and the development of 4D computer based models. Sections 3 and 4 will discuss advantages and disadvantages of using 4D programs. A...

  20. Fate of 2,4-D Residues in Turkish Soil-Plant Ecosystems

    International Nuclear Information System (INIS)

    Önal, Q.; Gözek, K.

    1981-01-01

    Full text: 2,4-D is the most frequently used herbicide in Turkish agriculture especially in Middle Anatolia. Studies on the behaviour of 2,4-D in the soil-plant ecosystem is being carried out under laboratory and field conditions. Some preliminary results are reported. After four weeks, recovery of radioactivity in carbon dioxide, aceton extract and bound residue was averaged for various soils: 20%, 15% and 48%, respectively. Barley, wheat and oat grown for four weeks on 2,4-D contaminated soil, contained from 0,6 up to 8% of the radioactivity applied. (author)

  1. From 3D to 4D printing: approaches and typical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye; Huang, Wei Min [Nanyang Technological University, Singapore (Singapore); Kang Shu Feng [Shenzhen Woer Heat-Shrinkable Material Co. Ltd, Shenzhen (China); Wu, Xue Lian [Jiangsu University, Zhenjiang (China); Lu, Hai Bao [Harbin Institute of Technology, Harbin (China); Fu, Jun [Chinese Academy of Sciences, Ningbo (China); Cui, Haipo [University of Shanghai for Science and Technology, Shanghai (China)

    2015-10-15

    With the additional dimension, 4D printing is emerging as a novel technique to enable configuration switching in 3D printed items. In this paper, four major approaches, namely self-assembly of elements, deformation mismatch, bi-stability, and the Shape memory effect (SME), are identified as the generic approaches to achieve 4D printing. The main features of these approaches are briefly discussed. Utilizing these approaches either individually or in a combined manner, the potential of 4D printing to reshape product design is demonstrated by a few example applications.

  2. Estimation of reservoir fluid volumes through 4-D seismic analysis on Gullfaks

    Energy Technology Data Exchange (ETDEWEB)

    Veire, H.S.; Reymond, S.B.; Signer, C.; Tenneboe, P.O.; Soenneland, L.; Schlumberger, Geco-Prakla

    1998-12-31

    4-D seismic has the potential to monitor hydrocarbon movement in reservoirs during production, and could thereby supplement the predictions of reservoir parameters offered by the reservoir simulator. However 4-D seismic is often more band limited than the vertical resolution required in the reservoir model. As a consequence the seismic data holds a composite response from reservoir parameter changes during production so that the inversion becomes non-unique. A procedure where data from the reservoir model are integrated with seismic data will be presented. The potential of such a procedure is demonstrated through a case study from a recent 4-D survey over the Gullfaks field. 2 figs.

  3. The geo-spatial information infrastructure at the Centre for Control and Prevention of Zoonoses, University of Ibadan, Nigeria: an emerging sustainable One-Health pavilion.

    Science.gov (United States)

    Olugasa, B O

    2014-12-01

    The World-Wide-Web as a contemporary means of information sharing offers a platform for geo-spatial information dissemination to improve education about spatio-temporal patterns of disease spread at the human-animal-environment interface in developing countries of West Africa. In assessing the quality of exposure to geospatial information applications among students in five purposively selected institutions in West Africa, this study reviewed course contents and postgraduate programmes in zoonoses surveillance. Geospatial information content and associated practical exercises in zoonoses surveillance were scored.. Seven criteria were used to categorize and score capability, namely, spatial data capture; thematic map design and interpretation; spatio-temporal analysis; remote sensing of data; statistical modelling; the management of spatial data-profile; and web-based map sharing operation within an organization. These criteria were used to compute weighted exposure during training at the institutions. A categorical description of institution with highest-scoring of computed Cumulative Exposure Point Average (CEPA) was based on an illustration with retrospective records of rabies cases, using data from humans, animals and the environment, that were sourced from Grand Bassa County, Liberia to create and share maps and information with faculty, staff, students and the neighbourhood about animal bite injury surveillance and spatial distribution of rabies-like illness. Uniformly low CEPA values (0-1.3) were observed across academic departments. The highest (3.8) was observed at the Centre for Control and Prevention of Zoonoses (CCPZ), University of Ibadan, Nigeria, where geospatial techniques were systematically taught, and thematic and predictive maps were produced and shared online with other institutions in West Africa. In addition, a short course in zoonosis surveillance, which offers inclusive learning in geospatial applications, is taught at CCPZ. The paper

  4. A NoSQL–SQL Hybrid Organization and Management Approach for Real-Time Geospatial Data: A Case Study of Public Security Video Surveillance

    Directory of Open Access Journals (Sweden)

    Chen Wu

    2017-01-01

    Full Text Available With the widespread deployment of ground, air and space sensor sources (internet of things or IoT, social networks, sensor networks, the integrated applications of real-time geospatial data from ubiquitous sensors, especially in public security and smart city domains, are becoming challenging issues. The traditional geographic information system (GIS mostly manages time-discretized geospatial data by means of the Structured Query Language (SQL database management system (DBMS and emphasizes query and retrieval of massive historical geospatial data on disk. This limits its capability for on-the-fly access of real-time geospatial data for online analysis in real time. This paper proposes a hybrid database organization and management approach with SQL relational databases (RDB and not only SQL (NoSQL databases (including the main memory database, MMDB, and distributed files system, DFS. This hybrid approach makes full use of the advantages of NoSQL and SQL DBMS for the real-time access of input data and structured on-the-fly analysis results which can meet the requirements of increased spatio-temporal big data linking analysis. The MMDB facilitates real-time access of the latest input data such as the sensor web and IoT, and supports the real-time query for online geospatial analysis. The RDB stores change information such as multi-modal features and abnormal events extracted from real-time input data. The DFS on disk manages the massive geospatial data, and the extensible storage architecture and distributed scheduling of a NoSQL database satisfy the performance requirements of incremental storage and multi-user concurrent access. A case study of geographic video (GeoVideo surveillance of public security is presented to prove the feasibility of this hybrid organization and management approach.

  5. The role of semaphorin 4D as a potential biomarker for antiangiogenic therapy in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Ding X

    2016-03-01

    Full Text Available Xiaojie Ding,1,2,* Lijuan Qiu,1,2,* Lijuan Zhang,3 Juemin Xi,1,2 Duo Li,1,2 Xinwei Huang,1,2 Yujiao Zhao,1,2 Xiaodang Wang,1,2 Qiangming Sun1,2 1Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 2Molecular Epidemiology Joint Laboratory, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, 3Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Provincial Tumor Hospital, Kunming, People’s Republic of China*These authors contributed equally to this workBackground: Semaphorin 4D (Sema4D belongs to the class IV semaphorins, and accumulating evidence has indicated that its elevated level may be one strategy by which tumors evade current antiangiogenic therapies. The biological roles of Sema4D in colorectal cancer (CRC, however, remain largely undefined. This study was designed to investigate the effects of Sema4D on tumor angiogenesis and growth in CRC, especially in different vascular endothelial growth factor (VEGF backgrounds.Methods: The expression of Sema4D in human CRC was evaluated by immunohistochemical analysis of tumors and their matching normal control tissues. The expression level of Sema4D and VEGF was investigated in different CRC cell lines. To evaluate the contributions of Sema4D to tumor-induced angiogenesis, two CRC cell lines with opposite VEGF backgrounds were infected with lentiviruses expressing Sema4D or Sema4D short hairpin RNA, followed by in vitro migration and in vivo tumor angiogenic assays.Results: Immunohistochemical analysis of human CRC revealed high levels of Sema4D in a cell surface pattern. In all, 84.85% of CRC samples analyzed exhibited moderate to strong Sema4D expression. The positive ratios of Sema4D staining for well, moderately, and poorly differentiated cancers were 71.43%, 96.67%, and 77.27%, respectively. Sema4D is highly expressed in five different CRC cell lines, while VEGF

  6. Global polar geospatial information service retrieval based on search engine and ontology reasoning

    Science.gov (United States)

    Chen, Nengcheng; E, Dongcheng; Di, Liping; Gong, Jianya; Chen, Zeqiang

    2007-01-01

    In order to improve the access precision of polar geospatial information service on web, a new methodology for retrieving global spatial information services based on geospatial service search and ontology reasoning is proposed, the geospatial service search is implemented to find the coarse service from web, the ontology reasoning is designed to find the refined service from the coarse service. The proposed framework includes standardized distributed geospatial web services, a geospatial service search engine, an extended UDDI registry, and a multi-protocol geospatial information service client. Some key technologies addressed include service discovery based on search engine and service ontology modeling and reasoning in the Antarctic geospatial context. Finally, an Antarctica multi protocol OWS portal prototype based on the proposed methodology is introduced.

  7. Automatic geospatial information Web service composition based on ontology interface matching

    Science.gov (United States)

    Xu, Xianbin; Wu, Qunyong; Wang, Qinmin

    2008-10-01

    With Web services technology the functions of WebGIS can be presented as a kind of geospatial information service, and helped to overcome the limitation of the information-isolated situation in geospatial information sharing field. Thus Geospatial Information Web service composition, which conglomerates outsourced services working in tandem to offer value-added service, plays the key role in fully taking advantage of geospatial information services. This paper proposes an automatic geospatial information web service composition algorithm that employed the ontology dictionary WordNet to analyze semantic distances among the interfaces. Through making matching between input/output parameters and the semantic meaning of pairs of service interfaces, a geospatial information web service chain can be created from a number of candidate services. A practice of the algorithm is also proposed and the result of it shows the feasibility of this algorithm and the great promise in the emerging demand for geospatial information web service composition.

  8. Design of a 4D Printing System Using Thermal Sensitive Smart Materials and Photoactivated Shape Changing Polymers

    Science.gov (United States)

    Leist, Steven Kyle

    research because of their ability to photoisomerize at room temperature and 3D printability. The physical properties of these polymers are characterized, photomechanical bending tests are performed, and the photo-generated stress is measured using a dynamic mechanical analyzer (DMA). The SCPs are deposited onto a passive layer to create bilayer films in order to actuate. The photomechanical efficiency of bilayer films is evaluated depending on the thickness of the passive layer film, type of azobenzene SCP, wavelength of the light source, intensity of the light source, and distance between the light and films. 4D printing can be used to streamline the design and manufacturing process of actuating parts. Complex heavy parts can be removed from actuation systems such as onboard power storage, motors, sensors, and processors by embedding these capabilities into the material themselves. This reduces the amount of required parts, the amount of materials, and reduces the cost of producing these parts. 4D printed products possess the properties of programmability, reaction and adaption to their environment, and automation. Therefore, they can find wider applications including foldable unmanned aerial vehicles, artificial muscles, grippers, biomedical drug delivery systems, stents, and minimally invasive surgeries.

  9. TH-EF-207A-05: Feasibility of Applying SMEIR Method On Small Animal 4D Cone Beam CT Imaging

    International Nuclear Information System (INIS)

    Zhong, Y; Zhang, Y; Shao, Y; Wang, J

    2016-01-01

    Purpose: Small animal cone beam CT imaging has been widely used in preclinical research. Due to the higher respiratory rate and heat beats of small animals, motion blurring is inevitable and needs to be corrected in the reconstruction. Simultaneous motion estimation and image reconstruction (SMEIR) method, which uses projection images of all phases, proved to be effective in motion model estimation and able to reconstruct motion-compensated images. We demonstrate the application of SMEIR for small animal 4D cone beam CT imaging by computer simulations on a digital rat model. Methods: The small animal CBCT imaging system was simulated with the source-to-detector distance of 300 mm and the source-to-object distance of 200 mm. A sequence of rat phantom were generated with 0.4 mm 3 voxel size. The respiratory cycle was taken as 1.0 second and the motions were simulated with a diaphragm motion of 2.4mm and an anterior-posterior expansion of 1.6 mm. The projection images were calculated using a ray-tracing method, and 4D-CBCT were reconstructed using SMEIR and FDK methods. The SMEIR method iterates over two alternating steps: 1) motion-compensated iterative image reconstruction by using projections from all respiration phases and 2) motion model estimation from projections directly through a 2D-3D deformable registration of the image obtained in the first step to projection images of other phases. Results: The images reconstructed using SMEIR method reproduced the features in the original phantom. Projections from the same phase were also reconstructed using FDK method. Compared with the FDK results, the images from SMEIR method substantially improve the image quality with minimum artifacts. Conclusion: We demonstrate that it is viable to apply SMEIR method to reconstruct small animal 4D-CBCT images.

  10. Facts and Misconceptions about 2D:4D, Social and Risk Preferences

    Science.gov (United States)

    Alonso, Judit; Di Paolo, Roberto; Ponti, Giovanni; Sartarelli, Marcello

    2018-01-01

    We study how the ratio between the length of the second and fourth digit (2D:4D) correlates with choices in social and risk preferences elicitation tasks by building a large dataset from five experimental projects with more than 800 subjects. Our results confirm the recent literature that downplays the link between 2D:4D and many domains of economic interest, such as social and risk preferences. As for the former, we find that social preferences are significantly lower when 2D:4D is above the median value only for subjects with low cognitive ability. As for the latter, we find that a high 2D:4D is not correlated with the frequency of subjects' risky choices. PMID:29487510

  11. Hyperfine structure in 5s4d 3D-5snf transitions of 87Sr

    International Nuclear Information System (INIS)

    Bushaw, B.A.; Kluge, H.J.; Lantzsch, J.; Schwalbach, R.; Stenner, J.; Stevens, H.; Wendt, K.; Zimmer, K.

    1993-01-01

    The hyperfine spectra of the 5s4d 3 D 1 -5s20f, 5s4d 3 D 2 -5s23f, and 5s4d 3 D 3 -5s32f transitions of 87 Sr (I=9/2) have been measured by collinear fast beam laser spectroscopy. The structure in the upper configurations is highly perturbed by fine structure splitting that is of comparable size to the hyperfine interaction energy. These perturbations can be adequately treated with conventional matrix diagonalization methods, using the 5s-electron magnetic dipole interaction term a 5s and the unperturbed fine structure splittings as input parameters. Additionally, hyperfine constants for the lower 5s4d 3 D configurations, including the A- and B-factors and a separation of the individual s- and d-electron contributions to these factors, are derived. (orig.)

  12. Attosecond relative delay among xenon 5p, 5s, and 4d photoionization

    Science.gov (United States)

    Magrakvelidze, Maia; Madjet, Mohamed; Chakraborty, Himadri

    2017-04-01

    Attosecond Wigner-Smith (WS) time delays of the photoemissions of Xe valence 5p, 5s, and core 4d electrons are investigated in details using the time-dependent local density approximation (TDLDA). Electron correlations determine the energy-dependent structures in ionization phases of the dipole channels and in the resulting WS delays at various shape resonances, induced by the collective motion of 4d electrons, and at various Cooper minima. We find that our calculation closely agrees with the streaking measurement for the delay of 4d relative to 5s, and predicts accelerated emission of 5p with respect to 4d as was experimentally observed at similar photon energies for Xe atoms adsorbed on the tungsten surface. This work was supported by the U.S. National Science Foundation.

  13. MILP-Based 4D Trajectory Planning for Tactical Trajectory Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to develop specialized algorithms and software decision-aiding tools for four-dimensional (4D) vehicle-centric, tactical trajectory...

  14. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.

    Science.gov (United States)

    Li, Yi-Chen; Zhang, Yu Shrike; Akpek, Ali; Shin, Su Ryon; Khademhosseini, Ali

    2016-12-02

    Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, 4D bioprinting aims to create dynamic 3D patterned biological structures that can transform their shapes or behavior under various stimuli. In this review, we highlight the potential use of various stimuli-responsive materials for 4D printing and their extension into biofabrication. We first discuss the state of the art and limitations associated with current 3D printing modalities and their transition into the inclusion of the additional time dimension. We then suggest the potential use of different stimuli-responsive biomaterials as the bioink that may achieve 4D bioprinting where transformation of fabricated biological constructs can be realized. We finally conclude with future perspectives.

  15. Low 2D:4D values are associated with video game addiction.

    Science.gov (United States)

    Kornhuber, Johannes; Zenses, Eva-Maria; Lenz, Bernd; Stoessel, Christina; Bouna-Pyrrou, Polyxeni; Rehbein, Florian; Kliem, Sören; Mößle, Thomas

    2013-01-01

    Androgen-dependent signaling regulates the growth of the fingers on the human hand during embryogenesis. A higher androgen load results in lower 2D:4D (second digit to fourth digit) ratio values. Prenatal androgen exposure also impacts brain development. 2D:4D values are usually lower in males and are viewed as a proxy of male brain organization. Here, we quantified video gaming behavior in young males. We found lower mean 2D:4D values in subjects who were classified according to the CSAS-II as having at-risk/addicted behavior (n = 27) compared with individuals with unproblematic video gaming behavior (n = 27). Thus, prenatal androgen exposure and a hyper-male brain organization, as represented by low 2D:4D values, are associated with problematic video gaming behavior. These results may be used to improve the diagnosis, prediction, and prevention of video game addiction.

  16. Low 2D:4D values are associated with video game addiction.

    Directory of Open Access Journals (Sweden)

    Johannes Kornhuber

    Full Text Available Androgen-dependent signaling regulates the growth of the fingers on the human hand during embryogenesis. A higher androgen load results in lower 2D:4D (second digit to fourth digit ratio values. Prenatal androgen exposure also impacts brain development. 2D:4D values are usually lower in males and are viewed as a proxy of male brain organization. Here, we quantified video gaming behavior in young males. We found lower mean 2D:4D values in subjects who were classified according to the CSAS-II as having at-risk/addicted behavior (n = 27 compared with individuals with unproblematic video gaming behavior (n = 27. Thus, prenatal androgen exposure and a hyper-male brain organization, as represented by low 2D:4D values, are associated with problematic video gaming behavior. These results may be used to improve the diagnosis, prediction, and prevention of video game addiction.

  17. 4D Trajectory Estimation for Air Traffic Control Automation System Based on Hybrid System Theory

    Directory of Open Access Journals (Sweden)

    Xin-Min Tang

    2012-03-01

    Full Text Available To resolve the problem of future airspace management under great traffic flow and high density condition, 4D trajectory estimation has become one of the core technologies of the next new generation air traffic control automation system. According to the flight profile and the dynamics models of different aircraft types under different flight conditions, a hybrid system model that switches the aircraft from one flight stage to another with aircraft state changing continuously in one state is constructed. Additionally, air temperature and wind speed are used to modify aircraft true airspeed as well as ground speed, and the hybrid system evolution simulation is used to estimate aircraft 4D trajectory. The case study proves that 4D trajectory estimated through hybrid system model can image the flight dynamic states of aircraft and satisfy the needs of the planned flight altitude profile.KEY WORDSair traffic management, 4D trajectory estimation, hybrid system model, aircraft dynamic model

  18. Dramatic distortion of the 4d giant resonance by the C{sub 60} fullerene shell

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Baltenkov, A S [Arifov Institute of Electronics, Akademgorodok, 700125 Tashkent (Uzbekistan); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St Petersburg 194021 (Russian Federation); Felfli, Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA 30314 (United States); Msezane, A Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2005-05-28

    The photoionization cross section for the endohedral Xe at C{sub 60} atom is investigated within the framework of representing the C{sub 60} by a delta-type potential. Results demonstrate that in Xe at C{sub 60}, the 4d giant resonance is distorted significantly when compared with that of the isolated Xe atom. The reflection of the photoelectron waves by the C{sub 60} causes strong oscillations in the photoionization cross section resulting in the replacement of the Xe 4d giant resonance by four prominent peaks. The approximation of C{sub 60} by an infinitely thin real potential preserves reasonably well the sum rule for the 4d electrons but modifies the dipole polarizability of the 4d shell. (letter to the editor)

  19. Calculation of the photoionization cross section of the 4d10 subshell of the La atom

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Sheftel, S.I.

    1976-01-01

    The photoionization cross section of 4d 10 subshell of La atom is calculated. The cross section curve near its threshold is strongly modified by rearrangement of outer shells in the process of photoionization. (Auth.)

  20. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling

    Science.gov (United States)

    ITO, TAKUJI; BAI, TAO; TANAKA, TETSUJI; YOSHIDA, KENJI; UEYAMA, TAKASHI; MIYAJIMA, MASAYASU; NEGISHI, TAKAYUKI; KAWASAKI, TAKAHIKO; TAKAMATSU, HYOTA; KIKUTANI, HITOSHI; KUMANOGOH, ATSUSHI; YUKAWA, KAZUNORI

    2015-01-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild-type (WT) mice. Administration of β-estradiol to infant Sema4D-deficient (Sema4D−/−) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β-estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin-B1, was examined as well as the level of apoptosis in the vaginal epithelia of five-week-old WT and Sema4D−/− mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin-B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase-3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five-week-old Sema4D−/− mice compared with WT mice. The addition of recombinant Sema4D to Sema4D−/− vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis-inducing activity of Sema4D. The experimental reduction of

  1. Residues of 2, 4-D in air samples from Saskatchewan: 1966-1975.

    Science.gov (United States)

    Grover, R; Kerr, L A; Wallace, K; Yoshida, K; Maybank, J

    1976-01-01

    Residues of 2,4-D (2,4-dichlorophenoxyacetic acid) in air samples from several sampling sites in central and southern Saskatchewan during the spraying seasons in the 1966-68 and 1970-75 periods were determined by gas-liquid chromatographic techniques. Initially, individual esters of 2,4-D were characterized by retention times and confirmed further by co-injection and dual column procedures. Since 1973, however, only total 2,4-D acid levels in air samples have been determined after esterification to the methyl ester and confirmed by gc/ms techniques whenever possible. Up to 50% of the daily samples collected during the spraying season at any of the locations and during any given year contained 2,4-D, with butyl esters being found most frequently. The daily 24-hr mean atmospheric concentrations of 2,4-D ranged from 0.01 to 1.22 mug/m3, 0.01 to 13.50 mug/m3, and 0.05 to 0.59 mug/m3 for the iso-propyl, mixed butyl and iso-octyl esters, respectively. Even when the samples were analysed for the total 2,4-D content, i.e. from 1973 onwards, the maximum level of the total acid reached only 23.14 mug/m3. In any given year and at any of the sampling sites, about 30% of the samples contained less than 0.01 mug/m3 of 2,4-D. In another 40% of the samples, the levels of 2,4-D ranged from 0.01 to 0.099 mug/m3. Only about 30% of the samples contained 2,4-D concentrations higher than 0.1 mug/m3, with only 10% or less exceeding 1 mug/m3. None of the samples, obtained with the high volume particulate sampler, showed any detectable levels of 2,4-D, indicating little or no transport of 2,4-D adsorbed on dust particles or as crystals of amine salts.

  2. Access-technology agnostic delivery platform for ICT4D services

    CSIR Research Space (South Africa)

    Makitla, I

    2012-10-01

    Full Text Available .kashan.co.za] CONTEXT Capitalising on target resource-constrained rural communities? technological capabilities can be considered a critical consideration when delivering Information and Communication Technology for Development (ICT4D) content and services... to these communities. The core approach of this research project, which is informed by the concept of ?digital difference?[1], is to leverage the existing technological infrastructure and capacity (know-how) in a community to enable delivery of ICT4D content...

  3. 4D CT and lung cancer surgical resectability: a technical innovation

    International Nuclear Information System (INIS)

    Troupis, John M.; Pasricha, Sundeep S.; Narayanan, Harish; Rybicki, Frank J.

    2014-01-01

    A 74-year-old man presents with a left upper lobe lung adenocarcinoma, which demonstrated a wide base intimately with the aortic arch. We utilised 4D CT technique with a wide field of view CT unit to preoperatively determine likely surgical resectability. We propose that 4D CT may be of use in further investigating lung cancer with likely invasion of adjacent structures.

  4. Hadza hunter-gatherer men do not have more masculine digit ratios (2D:4D).

    Science.gov (United States)

    Apicella, Coren L; Tobolsky, Victoria A; Marlowe, Frank W; Miller, Kathleen W

    2016-02-01

    The ratio between the length of the second and the length of the fourth digit (2D:4D) is sexually dimorphic such that males of many species possess a lower ratio than females, particularly in the right hand. Still, men and women often exhibit overlapping 2D:4D ranges and the ratio is highly variable between populations. In order to further explore populational variability, we chose to analyze 2D:4D in the Hadza, a population of hunter-gatherers living in Tanzania. Data were collected separately by two researchers over the course of three years (1998, 2001, 2006) from 152 adult participants (male: n = 76, female: n = 76). Independent samples t-tests were used to explore sex differences, paired samples t-tests were used to explore directional effects within each sex, and linear regression and one-way ANOVA were used to test possible age effects. In none of the years, or pooled (n = 152), did we find evidence that adult men have a lower 2D:4D than adult women. If anything, the data suggest that women in this population have a significantly lower right hand 2D:4D than men (P < 0.001, d = 0.57). In contrast, left hand 2D:4D did not exhibit a sex difference (P = 0.862, d = 0.03). These findings challenge the current view that lower 2D:4D in men is a uniform characteristic of our species. Cross-populational variance in 2D:4D may be related to known patterns of hormonal variation resulting from both genetic and environmental mechanisms, though this relationship merits further investigation. © 2015 Wiley Periodicals, Inc.

  5. Acute humoral rejection and C4d immunostaining in ABO blood type-incompatible liver transplantation.

    Science.gov (United States)

    Haga, Hironori; Egawa, Hiroto; Fujimoto, Yasuhiro; Ueda, Mikiko; Miyagawa-Hayashino, Aya; Sakurai, Takaki; Okuno, Tomoko; Koyanagi, Itsuko; Takada, Yasutsugu; Manabe, Toshiaki

    2006-03-01

    Complement C4d deposition in graft capillaries has been reported to be associated with antibody-mediated rejection in kidney and other solid organ transplantation. The correlation of C4d deposits and humoral rejection in liver transplants, however, is not well understood. We investigated the C4d immunostaining pattern in 34 patients whose liver biopsy was taken within the first 3 postoperative weeks for suspected acute rejection after ABO blood type-incompatible liver transplantation. The staining pattern was classified as positive (portal stromal staining), indeterminate (endothelial staining only), and negative (no staining). Positive C4d immunostaining was seen in 17 (50%) patients and was significantly associated with high (x64 or more) postoperative antidonor A/B antibody (immunoglobulin M (IgM)) titers (88 vs. 35%, P = 0.002) and poorer overall survival rate (41 vs. 88%, P = 0.007). Ten of 11 (91%) cases with histological acute humoral rejection (periportal edema and necrosis (PEN) or portal hemorrhagic edema) were positive for C4d, all of which showed high postoperative antibody titers. The other histologies associated with C4d positivity was purulent cholangitis (n = 4), coagulative hepatocyte necrosis (n = 1), acute cellular rejection (n = 1), and hepatocanalicular cholestasis (n = 1). Full clinical recovery was observed in only 6 of 17 (35%) C4d-positive patients, and tended to be associated with a lower rejection activity index (RAI). In conclusion, our study indicates that C4d deposits in the portal stroma can be a hallmark of acute humoral rejection in ABO-incompatible liver transplantation, and allograft damage can be reversible in a minority of cases. Copyright 2006 AASLD

  6. A Standardized Method for 4D Ultrasound-Guided Peripheral Nerve Blockade and Catheter Placement

    Directory of Open Access Journals (Sweden)

    N. J. Clendenen

    2014-01-01

    Full Text Available We present a standardized method for using four-dimensional ultrasound (4D US guidance for peripheral nerve blocks. 4D US allows for needle tracking in multiple planes simultaneously and accurate measurement of the local anesthetic volume surrounding the nerve following injection. Additionally, the morphology and proximity of local anesthetic spread around the target nerve is clearly seen with the described technique. This method provides additional spatial information in real time compared to standard two-dimensional ultrasound.

  7. Digit ratio (2D:4D) in primary brain tumor patients: A case-control study.

    Science.gov (United States)

    Bunevicius, Adomas; Tamasauskas, Sarunas; Deltuva, Vytenis Pranas; Tamasauskas, Arimantas; Sliauzys, Albertas; Bunevicius, Robertas

    2016-12-01

    The second-to-fourth digit ratio (2D:4D) reflects prenatal estrogen and testosterone exposure, and is established in utero. Sex steroids are implicated in development and progression of primary brain tumors. To investigate whether there is a link between 2D:4D ratio and primary brain tumors, and age at presentation. Digital images of the right and left palms of 85 primary brain tumor patients (age 56.96±13.68years; 71% women) and 106 (age 54.31±13.68years; 68% women) gender and age matched controls were obtained. The most common brain tumor diagnoses were meningioma (41%), glioblastoma (20%) and pituitary adenoma (16%). Right and left 2D:4D ratios, and right minus left 2D:4D (D r-l ) were compared between patients and controls, and were correlated with age. Right and left 2D:4D ratios were significantly lower in primary brain tumor patients relative to controls (t=-4.28, pbrain tumor patients and controls (p=0.27). In meningioma and glioma patients, age at presentation correlated negatively with left 2D:4D ratio (rho=-0.42, p=0.01 and rho=-0.36, p=0.02, respectively) and positively with D r-l (rho=0.45, p=0.009 and rho=0.65, p=0.04, respectively). Right and left hand 2D:4D ratios are lower in primary brain tumor patients relative to healthy individuals suggesting greater prenatal testosterone and lower prenatal estrogen exposure in brain tumor patients. Greater age at presentation is associated with greater D r-l and with lower left 2D:4D ratio of meningioma and glioma patients. Due to small sample size our results should be considered preliminary and interpreted with caution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. A geospatial database model for the management of remote sensing datasets at multiple spectral, spatial, and temporal scales

    Science.gov (United States)

    Ifimov, Gabriela; Pigeau, Grace; Arroyo-Mora, J. Pablo; Soffer, Raymond; Leblanc, George

    2017-10-01

    In this study the development and implementation of a geospatial database model for the management of multiscale datasets encompassing airborne imagery and associated metadata is presented. To develop the multi-source geospatial database we have used a Relational Database Management System (RDBMS) on a Structure Query Language (SQL) server which was then integrated into ArcGIS and implemented as a geodatabase. The acquired datasets were compiled, standardized, and integrated into the RDBMS, where logical associations between different types of information were linked (e.g. location, date, and instrument). Airborne data, at different processing levels (digital numbers through geocorrected reflectance), were implemented in the geospatial database where the datasets are linked spatially and temporally. An example dataset consisting of airborne hyperspectral imagery, collected for inter and intra-annual vegetation characterization and detection of potential hydrocarbon seepage events over pipeline areas, is presented. Our work provides a model for the management of airborne imagery, which is a challenging aspect of data management in remote sensing, especially when large volumes of data are collected.

  9. A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.

    Science.gov (United States)

    Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe

    2018-01-01

    Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.

  10. Photoionization of the 4d subshell of the La isonuclear sequence

    Science.gov (United States)

    Kalyadan, Sindhu; Varma, Hari R.; Deshmukh, P. C.; Costello, J. T.; Hayden, P.; Manson, S. T.

    2015-05-01

    Photoionization studies along isonuclear sequences provide the required systematic data which are useful in many practical applications and also for testing the accuracy of various theoretical models. In the present work, we report on 4d subshell photoionization studies of some of the members of La (Z = 57) isonuclear sequence (La3+, La9+ and La11+) using relativistic random phase approximation (RRPA). Photoionization cross sections, σ, angular distribution asymmetry parameters, β, and the individual dipole matrix elements for 4d3/2 and 4d5/2 subshells are presented along with the 4d branching ratios of these ions. It is found that in La3+, the branching ratios show significant departure from the statistical value 1.5 due to the presence of Cooper minimum in the 4d --> f ionization channels. This departure is minor for the case of La9+ and La11+ since the Cooper minimum in these cases occur in the discrete part of the 4d spectrum.

  11. New Techniques for Deep Learning with Geospatial Data using TensorFlow, Earth Engine, and Google Cloud Platform

    Science.gov (United States)

    Hancher, M.

    2017-12-01

    Recent years have seen promising results from many research teams applying deep learning techniques to geospatial data processing. In that same timeframe, TensorFlow has emerged as the most popular framework for deep learning in general, and Google has assembled petabytes of Earth observation data from a wide variety of sources and made them available in analysis-ready form in the cloud through Google Earth Engine. Nevertheless, developing and applying deep learning to geospatial data at scale has been somewhat cumbersome to date. We present a new set of tools and techniques that simplify this process. Our approach combines the strengths of several underlying tools: TensorFlow for its expressive deep learning framework; Earth Engine for data management, preprocessing, postprocessing, and visualization; and other tools in Google Cloud Platform to train TensorFlow models at scale, perform additional custom parallel data processing, and drive the entire process from a single familiar Python development environment. These tools can be used to easily apply standard deep neural networks, convolutional neural networks, and other custom model architectures to a variety of geospatial data structures. We discuss our experiences applying these and related tools to a range of machine learning problems, including classic problems like cloud detection, building detection, land cover classification, as well as more novel problems like illegal fishing detection. Our improved tools will make it easier for geospatial data scientists to apply modern deep learning techniques to their own problems, and will also make it easier for machine learning researchers to advance the state of the art of those techniques.

  12. Analysis of the 4d7 (4f + 6p) and 4p54d9 configurations of Sn VII, Sb VIII and Te IX

    International Nuclear Information System (INIS)

    Azarov, V.I.; Joshi, Y.N.; Churilov, S.S.; Ryabtsev, A.N.

    1994-01-01

    The spectra of tin, antimony and tellerium were photographed in the 120-200 A region on 10.7 m and 3 m grazing incidence spectrographs using a triggered spark source. The 4d 8 -4d 7 (4f + 6p) + 4p 5 4d 9 transitions of Sn VII, Sb VIII and Te IX were investigated. In the Sn VII spectrum 109 new lines were classified in the 152-192 A region and 34 new levels were established, in the Sb VIII spectrum 78 new lines were classified in the 138-158 A region and 21 new levels were established, and in the Te IX 76 new lines were classified in the 121-139 A region and 21 new levels were established. Strong configuration interaction among the 4d 7 (np + mf), and 4p 5 4d 9 (n = 5, 6; m = 4, 5) configurations was observed. Least-squares-fitting (LSF) parametric calculations involving configuration interaction were carried out to interpret the observed spectra. (orig.)

  13. Analytical methods for 2,4-D (Dichlorophenoxyacetic acid) determination; Metodos analiticos para la determinacion del 2,4-D (Acido diclorofenoxiacetico)

    Energy Technology Data Exchange (ETDEWEB)

    Martinez G, M.S.M

    1999-06-01

    The 2,4-D herbicide is one of the main pesticides for controlling the bad grass in crops such as the water undergrowth. In Mexico the allowed bound of this pesticide is 0.05 mg/l in water of 2,4-D so it is required to have methods trusts and exacts, which can used in order to detected low concentration of it. In this work we show some for the conventional techniques and for establishing the 2,4-D concentrations. The UV-Vis spectrometer and liquids chromatography due that they are the most common used nowadays. Beside, we introduce a now developed technique, which is based on the neutronic activation analysis. Though use of the UV-Vis spectrometer technique it was possible target the concentrations interval between 1 and 200 mg/l. In the liquids chromatography interval was between 0.1 and 0.9, and by the neutronic activation analysis the interval was between 0.01 and 200 mg/l. (Author)

  14. Zika virus infection and microcephaly: Evidence regarding geospatial associations.

    Science.gov (United States)

    Vissoci, João Ricardo Nickenig; Rocha, Thiago Augusto Hernandes; Silva, Núbia Cristina da; de Sousa Queiroz, Rejane Christine; Thomaz, Erika Bárbara Abreu Fonseca; Amaral, Pedro Vasconcelos Maia; Lein, Adriana; Branco, Maria Dos Remédios Freitas Carvalho; Aquino, José; Rodrigues, Zulimar Márita Ribeiro; da Silva, Antônio Augusto Moura; Staton, Catherine

    2018-04-01

    Although the Zika virus (ZIKV) epidemic ceased to be a public health emergency by the end of 2016, studies to improve knowledge about this emerging disease are still needed, especially those investigating a causal relationship between ZIKV in pregnant women and microcephaly in neonates. However, there are still many challenges in describing the relationship between ZIKV and microcephaly. The few studies focusing on the epidemiological profile of ZIKV and its changes over time are largely limited to systematic reviews of case reports and dispersal mapping of ZIKV spread over time without quantitative methods to analyze patterns and their covariates. Since Brazil has been at the epicenter of the ZIKV epidemic, this study examines the geospatial association between ZIKV and microcephaly in Brazil. Our study is categorized as a retrospective, ecological study based on secondary databases. Data were obtained from January to December 2016, from the following data sources: Brazilian System for Epidemiological Surveillance, Disease Notification System, System for Specialized Management Support, and Brazilian Institute of Geography and Statistics. Data were aggregated by municipality. Incidence rates were estimated per 100,000 inhabitants. Analyses consisted of mapping the aggregated incidence rates of ZIKV and microcephaly, followed by a Getis-Ord-Gi spatial cluster analysis and a Bivariate Local Moran's I analysis. The incidence of ZIKV cases is changing the virus's spatial pattern, shifting from Brazil's Northeast region to the Midwest and North regions. The number of municipalities in clusters of microcephaly incidence is also shifting from the Northeast region to the Midwest and North, after a time lag is considered. Our findings suggest an increase in microcephaly incidence in the Midwest and North regions, associated with high levels of ZIKV infection months before. The greatest burden of microcephaly shifted from the Northeast to other Brazilian regions at the

  15. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  16. Cloud-processed 4D CMR flow imaging for pulmonary flow quantification

    Energy Technology Data Exchange (ETDEWEB)

    Chelu, Raluca G., E-mail: ralucachelu@hotmail.com [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Wanambiro, Kevin W. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Radiology, Aga Khan University Hospital, Nairobi (Kenya); Hsiao, Albert [Department of Radiology, University of California, San Diego, CA (United States); Swart, Laurens E. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Voogd, Teun [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Hoven, Allard T. van den; Kranenburg, Matthijs van [Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Coenen, Adriaan [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Boccalini, Sara [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Radiology, University Hospital, Genoa (Italy); Wielopolski, Piotr A. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Vogel, Mika W. [MR Applications and Workflow – Europe, GE Healthcare B.V. Hoevelaken (Netherlands); Krestin, Gabriel P. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Vasanawala, Shreyas S. [Department of Radiology, Stanford University, Stanford, CA (United States); Budde, Ricardo P.J. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Roos-Hesselink, Jolien W. [Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Nieman, Koen [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands)

    2016-10-15

    Highlights: • With 4D flow, any plane of interest can be interactively chosen for quantitative measurements. • Anatomical and flow data are obtained during an approximately 10-min free-breathing scan. • 4D CMR flow measurements correlated well with the 2D PC ones. • Eddy current correction is important for good results with 4D flow. - Abstract: Objectives: In this study, we evaluated a cloud-based platform for cardiac magnetic resonance (CMR) four-dimensional (4D) flow imaging, with fully integrated correction for eddy currents, Maxwell phase effects, and gradient field non-linearity, to quantify forward flow, regurgitation, and peak systolic velocity over the pulmonary artery. Methods: We prospectively recruited 52 adult patients during one-year period from July 2014. The 4D flow and planar (2D) phase-contrast (PC) were acquired during same scanning session, but 4D flow was scanned after injection of a gadolinium-based contrast agent. Eddy-currents were semi-automatically corrected using the web-based software. Flow over pulmonary valve was measured and the 4D flow values were compared against the 2D PC ones. Results: The mean forward flow was 92 (±30) ml/cycle measured with 4D flow and 86 (±29) ml/cycle measured with 2D PC, with a correlation of 0.82 and a mean difference of −6 ml/cycle (−41–29). For the regurgitant fraction the correlation was 0.85 with a mean difference of −0.95% (−17–15). Mean peak systolic velocity measured with 4D flow was 92 (±49) cm/s and 108 (±56) cm/s with 2D PC, having a correlation of 0.93 and a mean difference of 16 cm/s (−24–55). Conclusion: 4D flow imaging post-processed with an integrated cloud-based application accurately quantifies pulmonary flow. However, it may underestimate the peak systolic velocity.

  17. Cloud-processed 4D CMR flow imaging for pulmonary flow quantification

    International Nuclear Information System (INIS)

    Chelu, Raluca G.; Wanambiro, Kevin W.; Hsiao, Albert; Swart, Laurens E.; Voogd, Teun; Hoven, Allard T. van den; Kranenburg, Matthijs van; Coenen, Adriaan; Boccalini, Sara; Wielopolski, Piotr A.; Vogel, Mika W.; Krestin, Gabriel P.; Vasanawala, Shreyas S.; Budde, Ricardo P.J.; Roos-Hesselink, Jolien W.; Nieman, Koen

    2016-01-01

    Highlights: • With 4D flow, any plane of interest can be interactively chosen for quantitative measurements. • Anatomical and flow data are obtained during an approximately 10-min free-breathing scan. • 4D CMR flow measurements correlated well with the 2D PC ones. • Eddy current correction is important for good results with 4D flow. - Abstract: Objectives: In this study, we evaluated a cloud-based platform for cardiac magnetic resonance (CMR) four-dimensional (4D) flow imaging, with fully integrated correction for eddy currents, Maxwell phase effects, and gradient field non-linearity, to quantify forward flow, regurgitation, and peak systolic velocity over the pulmonary artery. Methods: We prospectively recruited 52 adult patients during one-year period from July 2014. The 4D flow and planar (2D) phase-contrast (PC) were acquired during same scanning session, but 4D flow was scanned after injection of a gadolinium-based contrast agent. Eddy-currents were semi-automatically corrected using the web-based software. Flow over pulmonary valve was measured and the 4D flow values were compared against the 2D PC ones. Results: The mean forward flow was 92 (±30) ml/cycle measured with 4D flow and 86 (±29) ml/cycle measured with 2D PC, with a correlation of 0.82 and a mean difference of −6 ml/cycle (−41–29). For the regurgitant fraction the correlation was 0.85 with a mean difference of −0.95% (−17–15). Mean peak systolic velocity measured with 4D flow was 92 (±49) cm/s and 108 (±56) cm/s with 2D PC, having a correlation of 0.93 and a mean difference of 16 cm/s (−24–55). Conclusion: 4D flow imaging post-processed with an integrated cloud-based application accurately quantifies pulmonary flow. However, it may underestimate the peak systolic velocity.

  18. Dynamically accumulated dose and 4D accumulated dose for moving tumors

    International Nuclear Information System (INIS)

    Li Heng; Li Yupeng; Zhang Xiaodong; Li Xiaoqiang; Liu Wei; Gillin, Michael T.; Zhu, X. Ronald

    2012-01-01

    Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a “pulsed beam”; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a “continuous beam.” A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose

  19. Effects of Supplemental Energy on Protein Balance during 4-d Arctic Military Training.

    Science.gov (United States)

    Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Gundersen, Yngvar; Castellani, John W; Karl, J Philip; Carrigan, Christopher T; Teien, Hilde-Kristin; Madslien, Elisabeth-Henie; Montain, Scott J; Pasiakos, Stefan M

    2016-08-01

    Soldiers often experience negative energy balance during military operations that diminish whole-body protein retention, even when dietary protein is consumed within recommended levels (1.5-2.0 g·kg·d). The objective of this study is to determine whether providing supplemental nutrition spares whole-body protein by attenuating the level of negative energy balance induced by military training and to assess whether protein balance is differentially influenced by the macronutrient source. Soldiers participating in 4-d arctic military training (AMT) (51-km ski march) were randomized to receive three combat rations (CON) (n = 18), three combat rations plus four 250-kcal protein-based bars (PRO, 20 g protein) (n = 28), or three combat rations plus four 250-kcal carbohydrate-based bars daily (CHO, 48 g carbohydrate) (n = 27). Energy expenditure (D2O) and energy intake were measured daily. Nitrogen balance (NBAL) and protein turnover were determined at baseline (BL) and day 3 of AMT using 24-h urine and [N]-glycine. Protein and carbohydrate intakes were highest (P balance (-3313 ± 776 kcal·d), net protein balance (NET) (-0.24 ± 0.60 g·d), and NBAL (-68.5 ± 94.6 mg·kg·d) during AMT were similar between groups. In the combined cohort, energy intake was associated (P balance and NBAL during AMT. These data reinforce the importance of consuming sufficient energy during periods of high energy expenditure to mitigate the consequences of negative energy balance and attenuate whole-body protein loss.

  20. The Analysis of Geospatial Information for Validating Some Numbers of Islands in Indonesia

    Directory of Open Access Journals (Sweden)

    Sukendra - Martha

    2017-12-01

    Full Text Available This article discusses a comparison of various numbers of islands in Indonesia; and it addresses a valid method of accounting or enumerating numbers of islands in Indonesia. Methodology used is an analysis to compare the different number of islands from various sources.  First, some numbers of  Indonesian islands were derived from: (i Centre for Survey and Mapping- Indonesian Arm Forces (Pussurta ABRI recorded as 17,508 islands; (ii Agency for Geospatial Information (BIG previously known as National Coordinating Agency for Surveys and Mapping (Bakosurtanal as national mapping authority reported with 17,506 islands (after loosing islands of  Sipadan and Ligitan; (iii Ministry of Internal Affair published 17,504 islands. Many parties have referred the number of 17,504 islands even though it has not yet been supported by back-up documents; (iv Hidrographic Office of Indonesian Navy has released with numbers of 17,499; (v Other sources indicated different numbers of islands, and indeed will imply to people confusion. In the other hand, the number of 13,466 named islands has a strong document (Gazetteer. Second, enumerating the total number of islands in Indonesia can be proposed by three ways: (i island census through toponimic survey, (ii using map, and (iii applying remote sensing images. Third, the procedures of searching valid result in number of islands is by remote sensing approach - high resolution satellite images. The result of this work implies the needs of one geospatial data source (including total numbers of islands in the form of ‘One Map Policy’ that will impact in the improvement of  Indonesian geographic data administration.

  1. 4D flow MR imaging of the portal venous system: a feasibility study in children

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, Keyur; Rose, Michael; Popescu, Andrada; Rigsby, Cynthia K. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); McCormick School of Engineering, Northwestern University, Department of Biomedical Engineering, Chicago, IL (United States); Schnell, Susanne [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States)

    2017-02-15

    To determine the feasibility of 4D flow MRI for visualization and quantification of the portal venous haemodynamics in children and young adults. 4D flow was performed in 28 paediatric patients (median age, 8.5 years; interquartile range, 5.2-16.5), 15 with non-operated native portal system and 13 with surgically created portal shunt. Image quality assessment for 3D flow visualization and flow pattern analyses was performed. Regional 4D flow peak velocity and net flow were compared with 2D-cine phase contrast MRI (2D-PC MR) in the post-surgical patients. Mean 3D flow visualization quality score was excellent (mean ± SD, 4.2 ± 0.9) with good inter-rater agreement (κ,0.67). Image quality in children aged >10 years was better than children ≤10 years (p < 0.05). Flow pattern was defined for portal, superior mesenteric, splenic veins and splenic artery in all patients. 4D flow and 2D-PC MR peak velocity and net flow were similar with good correlation (peak velocity: 4D flow 22.2 ± 9.1 cm/s and 2D-PC MR 25.2 ± 11.2 cm/s, p = 0.46; r = 0.92, p < 0.0001; net flow: 4D flow 9.5 ± 7.4 ml/s and 2D-PC MR 10.1 ± 7.3 ml/s, p = 0.65; r = 0.81, p = 0.0007). 4D flow MRI is feasible and holds promise for the comprehensive 3D visualization and quantification of portal venous flow dynamics in children and young adults. (orig.)

  2. Risk Preferences and Predictions about Others: No Association with 2D:4D Ratio

    Directory of Open Access Journals (Sweden)

    Katharina Lima de Miranda

    2018-02-01

    Full Text Available Prenatal androgen exposure affects the brain development of the fetus which may facilitate certain behaviors and decision patterns in the later life. The ratio between the lengths of second and the fourth fingers (2D:4D is a negative biomarker of the ratio between prenatal androgen and estrogen exposure and men typically have lower ratios than women. In line with the typical findings suggesting that women are more risk averse than men, several studies have also shown negative relationships between 2D:4D and risk taking although the evidence is not conclusive. Previous studies have also reported that both men and women believe women are more risk averse than men. In the current study, we re-test the relationship between 2D:4D and risk preferences in a German student sample and also investigate whether the 2D:4D ratio is associated with people’s perceptions about others’ risk preferences. Following an incentivized risk elicitation task, we asked all participants their predictions about (i others’ responses (without sex specification, (ii men’s responses, and (iii women’s responses; then measured their 2D:4D ratios. In line with the previous findings, female participants in our sample were more risk averse. While both men and women underestimated other participants’ (non sex-specific and women’s risky decisions on average, their predictions about men were accurate. We also found evidence for the false consensus effect, as risky choices are positively correlated with predictions about other participants’ risky choices. The 2D:4D ratio was not directly associated either with risk preferences or the predictions of other participants’ choices. An unexpected finding was that women with mid-range levels of 2D:4D estimated significantly larger sex differences in participants’ decisions. This finding needs further testing in future studies.

  3. Risk Preferences and Predictions about Others: No Association with 2D:4D Ratio

    Science.gov (United States)

    Lima de Miranda, Katharina; Neyse, Levent; Schmidt, Ulrich

    2018-01-01

    Prenatal androgen exposure affects the brain development of the fetus which may facilitate certain behaviors and decision patterns in the later life. The ratio between the lengths of second and the fourth fingers (2D:4D) is a negative biomarker of the ratio between prenatal androgen and estrogen exposure and men typically have lower ratios than women. In line with the typical findings suggesting that women are more risk averse than men, several studies have also shown negative relationships between 2D:4D and risk taking although the evidence is not conclusive. Previous studies have also reported that both men and women believe women are more risk averse than men. In the current study, we re-test the relationship between 2D:4D and risk preferences in a German student sample and also investigate whether the 2D:4D ratio is associated with people’s perceptions about others’ risk preferences. Following an incentivized risk elicitation task, we asked all participants their predictions about (i) others’ responses (without sex specification), (ii) men’s responses, and (iii) women’s responses; then measured their 2D:4D ratios. In line with the previous findings, female participants in our sample were more risk averse. While both men and women underestimated other participants’ (non sex-specific) and women’s risky decisions on average, their predictions about men were accurate. We also found evidence for the false consensus effect, as risky choices are positively correlated with predictions about other participants’ risky choices. The 2D:4D ratio was not directly associated either with risk preferences or the predictions of other participants’ choices. An unexpected finding was that women with mid-range levels of 2D:4D estimated significantly larger sex differences in participants’ decisions. This finding needs further testing in future studies. PMID:29472846

  4. Reducing 4D CT artifacts using optimized sorting based on anatomic similarity.

    Science.gov (United States)

    Johnston, Eric; Diehn, Maximilian; Murphy, James D; Loo, Billy W; Maxim, Peter G

    2011-05-01

    Four-dimensional (4D) computed tomography (CT) has been widely used as a tool to characterize respiratory motion in radiotherapy. The two most commonly used 4D CT algorithms sort images by the associated respiratory phase or displacement into a predefined number of bins, and are prone to image artifacts at transitions between bed positions. The purpose of this work is to demonstrate a method of reducing motion artifacts in 4D CT by incorporating anatomic similarity into phase or displacement based sorting protocols. Ten patient datasets were retrospectively sorted using both the displacement and phase based sorting algorithms. Conventional sorting methods allow selection of only the nearest-neighbor image in time or displacement within each bin. In our method, for each bed position either the displacement or the phase defines the center of a bin range about which several candidate images are selected. The two dimensional correlation coefficients between slices bordering the interface between adjacent couch positions are then calculated for all candidate pairings. Two slices have a high correlation if they are anatomically similar. Candidates from each bin are then selected to maximize the slice correlation over the entire data set using the Dijkstra's shortest path algorithm. To assess the reduction of artifacts, two thoracic radiation oncologists independently compared the resorted 4D datasets pairwise with conventionally sorted datasets, blinded to the sorting method, to choose which had the least motion artifacts. Agreement between reviewers was evaluated using the weighted kappa score. Anatomically based image selection resulted in 4D CT datasets with significantly reduced motion artifacts with both displacement (P = 0.0063) and phase sorting (P = 0.00022). There was good agreement between the two reviewers, with complete agreement 34 times and complete disagreement 6 times. Optimized sorting using anatomic similarity significantly reduces 4D CT motion

  5. On the relation between 2D:4D and sex-dimorphic personality traits.

    Science.gov (United States)

    Hampson, Elizabeth; Ellis, Connie L; Tenk, Christine M

    2008-02-01

    Several personality traits, including aggressiveness and sensation seeking, have been hypothesized to be influenced by prenatal androgen exposure, though evidence for this proposition is limited. We investigated whether individual differences in aggressiveness, sensation seeking, and several prosocial personality traits can be predicted from differences in the 2D:4D digit ratio, a putative marker of prenatal androgen activity. A total of 164 undergraduates (87 men, 77 women) completed self-report measures of physical and verbal aggression, as well as a standardized measure of sensation seeking, and five scales to assess empathy, nurturance, expressivity/femininity, instrumentality/masculinity, and assertiveness. Two sex-dimorphic tests of spatial ability also were included. Men had a lower 2D:4D ratio than women, confirming the typical sex difference in digit proportions. Significant sex differences were observed on 10 of the 11 personality scales purported to show sex differences and on both tests of spatial ability. The 2D:4D ratio was a significant predictor of scores on three of the four aggression subscales, total aggression, thrill and adventure seeking, and total sensation-seeking, in the sample as a whole and in women. In men, correlations with 2D:4D were significant only for total sensation-seeking and verbal aggression. In both sexes, lower 2D:4D ratios were associated with increased aggressiveness and sensation seeking. For the spatial tests, there was no evidence of any association with 2D:4D in either men or women. The 2D:4D digit ratio may be a valid, though weak, predictor of selective sex-dependent traits that are sensitive to testosterone.

  6. 4D flow MR imaging of the portal venous system: a feasibility study in children

    International Nuclear Information System (INIS)

    Parekh, Keyur; Rose, Michael; Popescu, Andrada; Rigsby, Cynthia K.; Markl, Michael; Schnell, Susanne

    2017-01-01

    To determine the feasibility of 4D flow MRI for visualization and quantification of the portal venous haemodynamics in children and young adults. 4D flow was performed in 28 paediatric patients (median age, 8.5 years; interquartile range, 5.2-16.5), 15 with non-operated native portal system and 13 with surgically created portal shunt. Image quality assessment for 3D flow visualization and flow pattern analyses was performed. Regional 4D flow peak velocity and net flow were compared with 2D-cine phase contrast MRI (2D-PC MR) in the post-surgical patients. Mean 3D flow visualization quality score was excellent (mean ± SD, 4.2 ± 0.9) with good inter-rater agreement (κ,0.67). Image quality in children aged >10 years was better than children ≤10 years (p < 0.05). Flow pattern was defined for portal, superior mesenteric, splenic veins and splenic artery in all patients. 4D flow and 2D-PC MR peak velocity and net flow were similar with good correlation (peak velocity: 4D flow 22.2 ± 9.1 cm/s and 2D-PC MR 25.2 ± 11.2 cm/s, p = 0.46; r = 0.92, p < 0.0001; net flow: 4D flow 9.5 ± 7.4 ml/s and 2D-PC MR 10.1 ± 7.3 ml/s, p = 0.65; r = 0.81, p = 0.0007). 4D flow MRI is feasible and holds promise for the comprehensive 3D visualization and quantification of portal venous flow dynamics in children and young adults. (orig.)

  7. Finger length ratio (2D:4D) in adults with gender identity disorder.

    Science.gov (United States)

    Kraemer, Bernd; Noll, Thomas; Delsignore, Aba; Milos, Gabriella; Schnyder, Ulrich; Hepp, Urs

    2009-06-01

    From early childhood, gender identity and the 2nd to 4th finger length ratio (2D:4D) are discriminative characteristics between sexes. Both the human brain and 2D:4D may be influenced by prenatal testosterone levels. This calls for an examination of 2D:4D in patients with gender identity disorder (GID) to study the possible influence of prenatal testosterone on gender identity. Until now, the only study carried out on this issue suggests lower prenatal testosterone levels in right-handed male-to-female GID patients (MtF). We compared 2D:4D of 56 GID patients (39 MtF; 17 female-to-male GID patients, FtM) with data from a control sample of 176 men and 190 women. Bivariate group comparisons showed that right hand 2D:4D in MtF was significantly higher (feminized) than in male controls, but similar to female controls. The comparison of 2D:4D ratios of biological women revealed significantly higher (feminized) values for right hands of right handed FtM. Analysis of variance confirmed significant effects for sex and for gender identity on 2D:4D ratios but not for sexual orientation or for the interaction among variables. Our results indirectly point to the possibility of a weak influence of reduced prenatal testosterone as an etiological factor in the multifactorially influenced development of MtF GID. The development of FtM GID seems even more unlikely to be notably influenced by prenatal testosterone.

  8. Motion compensation for fully 4D PET reconstruction using PET superset data

    Energy Technology Data Exchange (ETDEWEB)

    Verhaeghe, J; Gravel, P; Mio, R; Fukasawa, R; Rosa-Neto, P; Soucy, J-P; Thompson, C J; Reader, A J, E-mail: jeroen.verhaeghe@mcgill.c [Montreal Neurological Institute, McGill University, Montreal (Canada)

    2010-07-21

    Fully 4D PET image reconstruction is receiving increasing research interest due to its ability to significantly reduce spatiotemporal noise in dynamic PET imaging. However, thus far in the literature, the important issue of correcting for subject head motion has not been considered. Specifically, as a direct consequence of using temporally extensive basis functions, a single instance of movement propagates to impair the reconstruction of multiple time frames, even if no further movement occurs in those frames. Existing 3D motion compensation strategies have not yet been adapted to 4D reconstruction, and as such the benefits of 4D algorithms have not yet been reaped in a clinical setting where head movement undoubtedly occurs. This work addresses this need, developing a motion compensation method suitable for fully 4D reconstruction methods which exploits an optical tracking system to measure the head motion along with PET superset data to store the motion compensated data. List-mode events are histogrammed as PET superset data according to the measured motion, and a specially devised normalization scheme for motion compensated reconstruction from the superset data is required. This work proceeds to propose the corresponding time-dependent normalization modifications which are required for a major class of fully 4D image reconstruction algorithms (those which use linear combinations of temporal basis functions). Using realistically simulated as well as real high-resolution PET data from the HRRT, we demonstrate both the detrimental impact of subject head motion in fully 4D PET reconstruction and the efficacy of our proposed modifications to 4D algorithms. Benefits are shown both for the individual PET image frames as well as for parametric images of tracer uptake and volume of distribution for {sup 18}F-FDG obtained from Patlak analysis.

  9. 4D scattering amplitudes and asymptotic symmetries from 2D CFT

    Science.gov (United States)

    Cheung, Clifford; de la Fuente, Anton; Sundrum, Raman

    2017-01-01

    We reformulate the scattering amplitudes of 4D flat space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D flat space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlators via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors of 4D gauge theory and gravity. Consistent with the topological nature of Chern-Simons theory, Aharonov-Bohm effects record the "tracks" of hard particles in the soft radiation, leading to a simple characterization of gauge and gravitational memories. Soft particle exchanges between hard processes define the Kac-Moody level and Virasoro central charge, which are thereby related to the 4D gauge coupling and gravitational strength in units of an infrared cutoff. Finally, we discuss a toy model for black hole horizons via a restriction to the Rindler region.

  10. Resolution enhancement of lung 4D-CT data using multiscale interphase iterative nonlocal means

    International Nuclear Information System (INIS)

    Zhang Yu; Yap, Pew-Thian; Wu Guorong; Feng Qianjin; Chen Wufan; Lian Jun; Shen Dinggang

    2013-01-01

    Purpose: Four-dimensional computer tomography (4D-CT) has been widely used in lung cancer radiotherapy due to its capability in providing important tumor motion information. However, the prolonged scanning duration required by 4D-CT causes considerable increase in radiation dose. To minimize the radiation-related health risk, radiation dose is often reduced at the expense of interslice spatial resolution. However, inadequate resolution in 4D-CT causes artifacts and increases uncertainty in tumor localization, which eventually results in extra damages of healthy tissues during radiotherapy. In this paper, the authors propose a novel postprocessing algorithm to enhance the resolution of lung 4D-CT data. Methods: The authors' premise is that anatomical information missing in one phase can be recovered from the complementary information embedded in other phases. The authors employ a patch-based mechanism to propagate information across phases for the reconstruction of intermediate slices in the longitudinal direction, where resolution is normally the lowest. Specifically, the structurally matching and spatially nearby patches are combined for reconstruction of each patch. For greater sensitivity to anatomical details, the authors employ a quad-tree technique to adaptively partition the image for more fine-grained refinement. The authors further devise an iterative strategy for significant enhancement of anatomical details. Results: The authors evaluated their algorithm using a publicly available lung data that consist of 10 4D-CT cases. The authors’ algorithm gives very promising results with significantly enhanced image structures and much less artifacts. Quantitative analysis shows that the authors’ algorithm increases peak signal-to-noise ratio by 3–4 dB and the structural similarity index by 3%–5% when compared with the standard interpolation-based algorithms. Conclusions: The authors have developed a new algorithm to improve the resolution of 4D-CT. It

  11. Creating 3D models of historical buildings using geospatial data

    Science.gov (United States)

    Alionescu, Adrian; Bǎlǎ, Alina Corina; Brebu, Floarea Maria; Moscovici, Anca-Maria

    2017-07-01

    Recently, a lot of interest has been shown to understand a real world object by acquiring its 3D images of using laser scanning technology and panoramic images. A realistic impression of geometric 3D data can be generated by draping real colour textures simultaneously captured by a colour camera images. In this context, a new concept of geospatial data acquisition has rapidly revolutionized the method of determining the spatial position of objects, which is based on panoramic images. This article describes an approach that comprises inusing terrestrial laser scanning and panoramic images captured with Trimble V10 Imaging Rover technology to enlarge the details and realism of the geospatial data set, in order to obtain 3D urban plans and virtual reality applications.

  12. NativeView: A Geospatial Curriculum for Native Nation Building

    Science.gov (United States)

    Rattling Leaf, J.

    2007-12-01

    In the spirit of collaboration and reciprocity, James Rattling Leaf of Sinte Gleska University on the Rosebud Reservation of South Dakota will present recent developments, experiences, insights and a vision for education in Indian Country. As a thirty-year young institution, Sinte Gleska University is founded by a strong vision of ancestral leadership and the values of the Lakota Way of Life. Sinte Gleska University (SGU) has initiated the development of a Geospatial Education Curriculum project. NativeView: A Geospatial Curriculum for Native Nation Building is a two-year project that entails a disciplined approach towards the development of a relevant Geospatial academic curriculum. This project is designed to meet the educational and land management needs of the Rosebud Lakota Tribe through the utilization of Geographic Information Systems (GIS), Remote Sensing (RS) and Global Positioning Systems (GPS). In conjunction with the strategy and progress of this academic project, a formal presentation and demonstration of the SGU based Geospatial software RezMapper software will exemplify an innovative example of state of the art information technology. RezMapper is an interactive CD software package focused toward the 21 Lakota communities on the Rosebud Reservation that utilizes an ingenious concept of multimedia mapping and state of the art data compression and presentation. This ongoing development utilizes geographic data, imagery from space, historical aerial photography and cultural features such as historic Lakota documents, language, song, video and historical photographs in a multimedia fashion. As a tangible product, RezMapper will be a project deliverable tool for use in the classroom and to a broad range of learners.

  13. Evaluation of Data Management Systems for Geospatial Big Data

    OpenAIRE

    Amirian, Pouria; Basiri, Anahid; Winstanley, Adam C.

    2014-01-01

    Big Data encompasses collection, management, processing and analysis of the huge amount of data that varies in types and changes with high frequency. Often data component of Big Data has a positional component as an important part of it in various forms, such as postal address, Internet Protocol (IP) address and geographical location. If the positional components in Big Data extensively used in storage, retrieval, analysis, processing, visualization and knowledge discovery (geospatial Big Dat...

  14. Inkjet-/3D-/4D-printed autonomous wearable RF modules for biomonitoring, positioning and sensing applications

    Science.gov (United States)

    Bito, Jo; Bahr, Ryan; Hester, Jimmy; Kimionis, John; Nauroze, Abdullah; Su, Wenjing; Tehrani, Bijan; Tentzeris, Manos M.

    2017-05-01

    In this paper, numerous inkjet-/3D-/4D-printed wearable flexible antennas, RF electronics, modules and sensors fabricated on paper and other polymer (e.g. LCP) substrates are introduced as a system-level solution for ultra-low-cost mass production of autonomous Biomonitoring, Positioning and Sensing applications. This paper briefly discusses the state-of-the-art area of fully-integrated wearable wireless sensor modules on paper or flexible LCP and show the first ever 4D sensor module integration on paper, as well as numerous 3D and 4D multilayer paper-based and LCP-based RF/microwave, flexible and wearable structures, that could potentially set the foundation for the truly convergent wireless sensor ad-hoc "on-body networks of the future with enhanced cognitive intelligence and "rugged" packaging. Also, some challenges concerning the power sources of "nearperpetual" wearable RF modules, including flexible miniaturized batteries as well as power-scavenging approaches involving electromagnetic and solar energy forms are discuessed. The final step of the paper will involve examples from mmW wearable (e.g. biomonitoring) antennas and RF modules, as well as the first examples of the integration of inkjet-printed nanotechnology-based (e.g.CNT) sensors on paper and organic substrates for Internet of Things (IoT) applications. It has to be noted that the paper will review and present challenges for inkjetprinted organic active and nonlinear devices as well as future directions in the area of environmentally-friendly "green") wearable RF electronics and "smart-skin conformal sensors.

  15. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling.

    Science.gov (United States)

    Ito, Takuji; Bai, Tao; Tanaka, Tetsuji; Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

    2015-02-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild‑type (WT) mice. Administration of β‑estradiol to infant Sema4D‑deficient (Sema4D‑/‑) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β‑estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin‑B1, was examined as well as the level of apoptosis in the vaginal epithelia of five‑week‑old WT and Sema4D‑/‑ mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin‑B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase‑3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five‑week‑old Sema4D‑/‑ mice compared with WT mice. The addition of recombinant Sema4D to Sema4D‑/‑ vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis‑inducing activity of Sema4D. The

  16. Enhanced 2,4-D Metabolism in Two Resistant Papaver rhoeas Populations from Spain

    Directory of Open Access Journals (Sweden)

    Joel Torra

    2017-09-01

    Full Text Available Corn poppy (Papaver rhoeas, the most problematic broadleaf weed in winter cereals in Southern Europe, has developed resistance to the widely-used herbicide, 2,4-D. The first reported resistance mechanism in this species to 2,4-D was reduced translocation from treated leaves to the rest of the plant. However, the presence of other non-target site resistance (NTSR mechanisms has not been investigated up to date. Therefore, the main objective of this research was to reveal if enhanced 2,4-D metabolism is also present in two Spanish resistant (R populations to synthetic auxins. With this aim, HPLC experiments at two 2,4-D rates (600 and 2,400 g ai ha−1 were conducted to identify and quantify the metabolites produced and evaluate possible differences in 2,4-D degradation between resistant (R and susceptible (S plants. Secondarily, to determine the role of cytochrome P450 in the resistance response, dose-response experiments were performed using malathion as its inhibitor. Three populations were used: S, only 2,4-D R (R-703 and multiple R to 2,4-D and ALS inhibitors (R-213. HPLC studies indicated the presence of two hydroxy metabolites in these R populations in shoots and roots, which were not detected in S plants, at both rates. Therefore, enhanced metabolism becomes a new NTSR mechanism in these two P. rhoeas populations from Spain. Results from the dose-response experiments also showed that pre-treatment of R plants with the cytochrome P450 (P450 inhibitor malathion reversed the phenotype to 2,4-D from resistant to susceptible in both R populations. Therefore, it could be hypothesized that a malathion inhibited P450 is responsible of the formation of the hydroxy metabolites detected in the metabolism studies. This and previous research indicate that two resistant mechanisms to 2,4-D could be present in populations R-703 and R-213: reduced translocation and enhanced metabolism. Future experiments are required to confirm these hypotheses

  17. Impact of 4D image quality on the accuracy of target definition

    International Nuclear Information System (INIS)

    Nielson, Tim B.; Hansen, Christian R.; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-01-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV–CTV expansions (0.5–1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  18. Using 2D: 4D digit ratios to determine motor skills in children.

    Science.gov (United States)

    Wang, Y; Wang, H-L; Li, Y-H; Zhu, F-L; Li, S-J; Ni, H

    2016-03-01

    In past few decades, there has an outburst of research surrounding second to fourth finger digit ratio (2D:4D) and its relation to prenatal sex steroids including both testosterone and estrogen. In utero, testosterone and estrogen are responsible for the differences in digit ratio between the genders. Recent research has tried to extend past the influence of steroids and look at the potential effect of digit ratios on fine and gross motor skills in children. We compiled the current understanding of the connection between sex hormones and the development of the 2D:4D ratio as well as the effect the ratio has on motor skills. There seems to be a significant positive correlation between 2D:4D digit ratio and precision of fine motor skill. In addition, there is a negative correlation between 2D:4D ratio and speed of fine motor activity. In this review, we will outline the use of 2D:4D ratio as a biomarker for prenatal sex steroids and through that, a proxy marker for fine and gross motor skills.

  19. Theoretical study on decay of the 4d core-excited states of Cs III

    International Nuclear Information System (INIS)

    Ding Xiaobin; Dong Chenzhong; Fritzsche, Stephan

    2008-01-01

    In a recent XUV photoabsorption spectrum of Cs III ions by Cummings and O'Sullivan [2001 J. Phys. B 34 199], rather large linewidths were found for the 4d 9 5s 2 5p 6 – 4d 10 5s 2 5p 5 transition which are quite in disagreement with corresponding quasi-relativistic multiconfiguration Hartree–Fock (MCHF) calculation. In the present work, a detailed multiconfiguration Dirac-Fock study has been carried out to explore this discrepancy. Owing to the detailed consideration of electron correlation effects, some 'forbidden' Auger decay channels, such as 4d 10 5s 2 5p 3 5d and 4d 10 5s 0 5p 6 , would become 'open'. As a result, remarkable improvement of the linewidths has been obtained in our calculation. Furthermore, the theoretical Auger spectrum of the 4d 9 5s 2 5p 6 core-excited states of Cs III ions is given in the present work

  20. Design of 4D x-ray tomography experiments for reconstruction using regularized iterative algorithms

    Science.gov (United States)

    Mohan, K. Aditya

    2017-10-01

    4D X-ray computed tomography (4D-XCT) is widely used to perform non-destructive characterization of time varying physical processes in various materials. The conventional approach to improving temporal resolution in 4D-XCT involves the development of expensive and complex instrumentation that acquire data faster with reduced noise. It is customary to acquire data with many tomographic views at a high signal to noise ratio. Instead, temporal resolution can be improved using regularized iterative algorithms that are less sensitive to noise and limited views. These algorithms benefit from optimization of other parameters such as the view sampling strategy while improving temporal resolution by reducing the total number of views or the detector exposure time. This paper presents the design principles of 4D-XCT experiments when using regularized iterative algorithms derived using the framework of model-based reconstruction. A strategy for performing 4D-XCT experiments is presented that allows for improving the temporal resolution by progressively reducing the number of views or the detector exposure time. Theoretical analysis of the effect of the data acquisition parameters on the detector signal to noise ratio, spatial reconstruction resolution, and temporal reconstruction resolution is also presented in this paper.

  1. Inter- and Intrarater Reliability Using Different Software Versions of E4D Compare in Dental Education.

    Science.gov (United States)

    Callan, Richard S; Cooper, Jeril R; Young, Nancy B; Mollica, Anthony G; Furness, Alan R; Looney, Stephen W

    2015-06-01

    The problems associated with intra- and interexaminer reliability when assessing preclinical performance continue to hinder dental educators' ability to provide accurate and meaningful feedback to students. Many studies have been conducted to evaluate the validity of utilizing various technologies to assist educators in achieving that goal. The purpose of this study was to compare two different versions of E4D Compare software to determine if either could be expected to deliver consistent and reliable comparative results, independent of the individual utilizing the technology. Five faculty members obtained E4D digital images of students' attempts (sample model) at ideal gold crown preparations for tooth #30 performed on typodont teeth. These images were compared to an ideal (master model) preparation utilizing two versions of E4D Compare software. The percent correlations between and within these faculty members were recorded and averaged. The intraclass correlation coefficient was used to measure both inter- and intrarater agreement among the examiners. The study found that using the older version of E4D Compare did not result in acceptable intra- or interrater agreement among the examiners. However, the newer version of E4D Compare, when combined with the Nevo scanner, resulted in a remarkable degree of agreement both between and within the examiners. These results suggest that consistent and reliable results can be expected when utilizing this technology under the protocol described in this study.

  2. Impact of 4D image quality on the accuracy of target definition.

    Science.gov (United States)

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-03-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  3. Effects of nozzle types and 2,4-D formulations on spray deposition.

    Science.gov (United States)

    Contiero, Robinson L; Biffe, Denis F; Constantin, Jamil; de Oliveira, Rubem S; Braz, Guilherme B P; Lucio, Felipe R; Schleier, Jerome J

    2016-12-01

    The objective of this study was to evaluate the effects of nozzle types and 2,4-D formulations on spray deposition on different targets. Two field experiments were carried out in a completely randomized design, and treatments were arranged in a factorial scheme. Species in experiment 1 were Sumatran fleabane (Conyza sumatrensis) and Brazil pusley (Richardia brasiliensis) and in experiment 2 were soybeans (Glycine max) and Benghal dayflower (Commelina benghalensis). For both experiments, the first factor corresponded to spray nozzles with different settings (AD 110.015 - 61 and 105 L ha -1 ; AD 015-D - 75 and 146 L ha -1 ; XR 110.0202 - 200 L ha -1 ; and ADIA-D 110.02 - 208 L ha -1 ) and the second factor consisted of two formulations of 2,4-D (amine and choline). The formulation of 2,4-D choline has contained Colex-D™ Technology. Similar or higher spray deposition was observed on the leaves and artificial targets when using 2,4-D choline as compared to the 2,4-D amine formulation, and these differences in deposition were more evident for nozzles applying lower spray volumes. Deposition was more affected by nozzle type when amine formulation was used, compared to choline formulation.

  4. Absorption and degradation of 14C-2, 4-D by some free-floating aquatic weeds

    International Nuclear Information System (INIS)

    Singh, S.P.

    1980-01-01

    Plants of Salvinia, Lemna, Azolla and Limnobium, which are free-floating aquatic weeds, were grown separately in glass dishes containing initially 400 ml of nutrient solution and 2 μCi of 14 C-2,4-D under controlled conditions of temperature, light and relative humidity. The total uptake of 2,4-D by these plant species increased with the increasing duration of exposure to herbicide. 2,4-D uptake, calculated on per unit dry weight of weed, was maximum in case of Limnobium, followed by Salvinia, Lemna and Azolla. After 20 days of treatment, the highest radioactivity (24%) was obtained in the organic fraction of the extracts of Limnobium and Azolla; followed by Salvinia (8%) and Lemna (6%). In a separate experiment, root uptake and subsequent translocation of 14 C-2,4-D was also studied. At all the stages of sampling, more than half to 3/4th of the absorbed 14 C-2,4-D was found in the roots, and the remaining was present in the shoot. (author)

  5. SU-E-T-300: Dosimetric Comparision of 4D Radiation Therapy and 3D Radiation Therapy for the Liver Tumor Based On 4D Medical Image

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C; Yin, Y [Shandong Tumor Hospital, Jinan, Shandong Provice (China)

    2015-06-15

    Purpose: The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking liver tumor dose in four dimensional radiation therapy (4DRT) on ten phases of four dimensional computer tomagraphy(4DCT) images. Methods: Target tracking each phase with the beam aperture for ten liver cancer patients were converted to cumulative plan and compared to the 3D plan with a merged target volume based on 4DCT image in radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the plan by using the parameters V5, V10, V15, V20,V25, V30, V35 and V40 (volumes receiving 5, 10, 15, 20, 25, 30, 35 and 40Gy, respectively) in the dose-volume histogram for the liver; mean dose for the following structures: liver, left kidney and right kidney; and maximum dose for the following structures: bowel, duodenum, esophagus, stomach and heart. Results: There was significant difference between 4D PTV(average 115.71cm3 )and ITV(169.86 cm3). When the planning objective is 95% volume of PTV covered by the prescription dose, the mean dose for the liver, left kidney and right kidney have an average decrease 23.13%, 49.51%, and 54.38%, respectively. The maximum dose for bowel, duodenum,esophagus, stomach and heart have an average decrease 16.77%, 28.07%, 24.28%, 4.89%, and 4.45%, respectively. Compared to 3D RT, radiation volume for the liver V5, V10, V15, V20, V25, V30, V35 and V40 by using the 4D plans have a significant decrease(P≤0.05). Conclusion: The 4D plan method creates plans that permit better sparing of the normal structures than the commonly used ITV method, which delivers the same dosimetric effects to the target.

  6. Seeing in 4D with electrons: development of ultrafast electron microscopy at Caltech

    International Nuclear Information System (INIS)

    Baskin, J.S.; Zewail, A.H.

    2014-01-01

    The vision to develop 4D electron microscopy, a union of the capabilities of electron microscopy with ultrafast techniques to capture clearly defined images of the nano-scale structure of a material at each step in the course of its chemical or physical transformations, has been pursued at Caltech for the last decade. In this contribution, we will give a brief overview of the capabilities of three currently active Caltech 4D microscopy laboratories. Ongoing work is illustrated by a description of the most recent application of photon-induced near-field electron microscopy (PINEM), a field made possible only by the development of the 4D ultrafast electron microscopy (UEM). An appendix gives the various applications made so far and the historic roots of the development at Caltech. (authors)

  7. Uptake of 2,4-D in higher plants from artificial rain

    International Nuclear Information System (INIS)

    Lokke, H.

    1984-01-01

    Sinapis alba L., Lapsana communis L., Achillea millefolium L., Brassica napus L., Lactuca sativa L., and Lycopersicum esculentum L. were exposed to 2,4-dichlorophenoxy [2- 14 C]acetic acid (2,4-D) at 10 micrograms liter-1 in artificial rain, pH 6.5 and 3.3. The 2,4-D was absorbed in all species tested. Concentrations of parent 2,4-D appeared at the highest level in Achillea (0.1 mg kg-1 dry wt), and at zero level in Lycopersicum. Twenty-one daily treatments at pH 6.5 for 30-min periods increased dry-matter concentrations in the leaves of Achillea and decreased those in Brassica. No change in dry-matter concentration was observed in the leaves of Brassica by seven daily treatments for 30-min periods at pH 3.3

  8. Potassium influx and efflux of 2,4-D and MCPA-treated rice plants

    International Nuclear Information System (INIS)

    Zsoldos, F.; Haunold, E.

    1976-10-01

    A study was made of the effects of the herbicides 2,4-D and MCPA on the ion uptake, leakage and growth of rice seedlings. The isotopically-labelled solution contained different concentrations of 2,4-D (2,4-dichlorophenoxyacetic acid) or MCPA (4-chloro-2-methylphenoxyacetic acid). It was established that in the presence of 10 -4 M 2,4-D or MCPA the potassium ion uptake was effectively inhibited, while the K-ion leakage from the roots occurred only at 10 -3 M treatment. The growth of the rice seedlings was markedly retarded even at lower (10 -6 M) concentrations, and the roots and shoots tolerated the herbidie-treatment to different extents. At 10 -8 M herbicide concentration, the effects exhibited were not injurious, but rather favourable. Reduction in root length by herbicides was not in accordance with dry matter production. (author)

  9. Development of software tools for 4-D visualization and quantitative analysis of PHITS simulation results

    International Nuclear Information System (INIS)

    Furutaka, Kazuyoshi

    2015-02-01

    A suite of software tools has been developed to facilitate the development of apparatus using a radiation transport simulation code PHITS by enabling 4D visualization (3D space and time) and quantitative analysis of so-called dieaway plots. To deliver useable tools as soon as possible, the existing software was utilized as much as possible; ParaView will be used for the 4D visualization of the results, whereas the analyses of dieaway plots will be done with ROOT toolkit with a tool named “diana”. To enable 4D visualization using ParaView, a group of tools (angel2vtk, DispDCAS1, CamPos) has been developed for the conversion of the data format to the one which can be read from ParaView and to ease the visualization. (author)

  10. Alur Kerja Tahap Produksi Karakter Animasi Serial 3D Menggunakan Perangkat Lunak Maxon Cinema 4D

    Directory of Open Access Journals (Sweden)

    Ardiyan Ardiyan

    2011-04-01

    Full Text Available 3D Animation serial for television needs have been showed in the national television program, especially fantasy theme and educational program for children. There are so many and sequential needs which tricked by instant and high quality production so the work flow in creating 3D animation serial are facilitating the producers. The article will explain specifically how the software of Maxon Cinema 4D in process production in 3D animation serial. The article will also clarify and focus on how the work flow of Maxon Cinema 4D software in processing production and post-production stages. The writer does research including audio visual tutorial, end-result comparison and rendering time between some software, self-observation of work flow in creating 3D animation serial using Maxon Cinema 4D software and digital literature study (e-book.  

  11. An Ontology-supported Approach for Automatic Chaining of Web Services in Geospatial Knowledge Discovery

    Science.gov (United States)

    di, L.; Yue, P.; Yang, W.; Yu, G.

    2006-12-01

    Recent developments in geospatial semantic Web have shown promise for automatic discovery, access, and use of geospatial Web services to quickly and efficiently solve particular application problems. With the semantic Web technology, it is highly feasible to construct intelligent geospatial knowledge systems that can provide answers to many geospatial application questions. A key challenge in constructing such intelligent knowledge system is to automate the creation of a chain or process workflow that involves multiple services and highly diversified data and can generate the answer to a specific question of users. This presentation discusses an approach for automating composition of geospatial Web service chains by employing geospatial semantics described by geospatial ontologies. It shows how ontology-based geospatial semantics are used for enabling the automatic discovery, mediation, and chaining of geospatial Web services. OWL-S is used to represent the geospatial semantics of individual Web services and the type of the services it belongs to and the type of the data it can handle. The hierarchy and classification of service types are described in the service ontology. The hierarchy and classification of data types are presented in the data ontology. For answering users' geospatial questions, an Artificial Intelligent (AI) planning algorithm is used to construct the service chain by using the service and data logics expressed in the ontologies. The chain can be expressed as a graph with nodes representing services and connection weights representing degrees of semantic matching between nodes. The graph is a visual representation of logical geo-processing path for answering users' questions. The graph can be instantiated to a physical service workflow for execution to generate the answer to a user's question. A prototype system, which includes real world geospatial applications, is implemented to demonstrate the concept and approach.

  12. The APSEL4D Monolithic Active Pixel Sensor and its Usage in a Single Electron Interference Experiment

    CERN Document Server

    Alberghi, Gian Luigi

    We have realized a Data Acquisition chain for the use and characterization of APSEL4D, a 32 x 128 Monolithic Active Pixel Sensor, developed as a prototype for frontier experiments in high energy particle physics. In particular a transition board was realized for the conversion between the chip and the FPGA voltage levels and for the signal quality enhancing. A Xilinx Spartan-3 FPGA was used for real time data processing, for the chip control and the communication with a Personal Computer through a 2.0 USB port. For this purpose a firmware code, developed in VHDL language, was written. Finally a Graphical User Interface for the online system monitoring, hit display and chip control, based on windows and widgets, was realized developing a C++ code and using Qt and Qwt dedicated libraries. APSEL4D and the full acquisition chain were characterized for the first time with the electron beam of the transmission electron microscope and with 55Fe and 90Sr radioactive sources. In addition, a beam test was performed at ...

  13. Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India

    Science.gov (United States)

    Mohan, M.

    2016-06-01

    In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  14. GEOSPATIAL INFORMATION FROM SATELLITE IMAGERY FOR GEOVISUALISATION OF SMART CITIES IN INDIA

    Directory of Open Access Journals (Sweden)

    M. Mohan

    2016-06-01

    Full Text Available In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  15. Advances in 4D treatment planning for scanned particle beam therapy - report of dedicated workshops.

    Science.gov (United States)

    Bert, Christoph; Graeff, Christian; Riboldi, Marco; Nill, Simeon; Baroni, Guido; Knopf, Antje-Christin

    2014-12-01

    We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle therapy delivery and development. The first workshop resulted in a summary of recommendations for the treatment of mobile targets, along with a list of requirements to apply these guidelines clinically. The increased interest in the treatment of mobile tumors led to a continuously growing number of attendees: the 2012 edition counted more than 60 participants from 20 institutions and commercial vendors. The focus of research discussions among workshop participants progressively moved from 4D treatment planning to complete 4D treatments, aiming at effective and safe treatment delivery. Current research perspectives on 4D treatments include all critical aspects of time resolved delivery, such as in-room imaging, motion detection, beam application, and quality assurance techniques. This was motivated by the start of first clinical treatments of hepato cellular tumors with a scanned particle beam, relying on gating or abdominal compression for motion mitigation. Up to date research activities emphasize significant efforts in investigating advanced motion mitigation techniques, with a specific interest in the development of dedicated tools for experimental validation. Potential improvements will be made possible in the near future through 4D optimized treatment plans that require upgrades of the currently established therapy control systems for time resolved delivery. But since also these novel optimization techniques rely on the validity of the 4DCT, research focusing on alternative 4D imaging technique, such as MRI based 4DCT generation will continue.

  16. Self-gated golden-angle spiral 4D flow MRI.

    Science.gov (United States)

    Bastkowski, Rene; Weiss, Kilian; Maintz, David; Giese, Daniel

    2018-01-17

    The acquisition of 4D flow magnetic resonance imaging (MRI) in cardiovascular applications has recently made large progress toward clinical feasibility. The need for simultaneous compensation of cardiac and breathing motion still poses a challenge for widespread clinical use. Especially, breathing motion, addressed by gating approaches, can lead to unpredictable and long scan times. The current work proposes a time-efficient self-gated 4D flow sequence that exploits up to 100% of the acquired data and operates at a predictable scan time. A self-gated golden-angle spiral 4D flow sequence was implemented and tested in 10 volunteers. Data were retrospectively binned into respiratory and cardiac states and reconstructed using a conjugate-gradient sensitivity encoding reconstruction. Net flow curves, stroke volumes, and peak flow in the aorta were evaluated and compared to a conventional Cartesian 4D flow sequence. Additionally, flow quantities reconstructed from 50% to 100% of the self-gated 4D flow data were compared. Self-gating signals for respiratory and cardiac motion were extracted for all volunteers. Flow quantities were in agreement with the standard Cartesian scan. Mean differences in stroke volumes and peak flow of 7.6 ± 11.5 and 4.0 ± 79.9 mL/s were obtained, respectively. By retrospectively increasing breathing navigator efficiency while decreasing acquisition times (15:06-07:33 minutes), 50% of the acquired data were sufficient to measure stroke volumes with errors under 9.6 mL. The feasibility to acquire respiratory and cardiac self-gated 4D flow data at a predictable scan time was demonstrated. Magn Reson Med, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  17. Grb2 mediates semaphorin-4D-dependent RhoA inactivation.

    Science.gov (United States)

    Sun, Tianliang; Krishnan, Rameshkumar; Swiercz, Jakub M

    2012-08-01

    Signaling through the semaphorin 4D (Sema4D) receptor plexin-B1 is modulated by its interaction with tyrosine kinases ErbB-2 and Met. In cells expressing the plexin-B1-ErbB-2 receptor complex, ligand stimulation results in the activation of small GTPase RhoA and stimulation of cellular migration. By contrast, in cells expressing plexin-B1 and Met, ligand stimulation results in an association with the RhoGTPase-activating protein p190 RhoGAP and subsequent RhoA inactivation--a process that involves the tyrosine phosphorylation of plexin-B1 by Met. Inactivation of RhoA is necessary for Sema4D-mediated inhibition of cellular migration. It is, however, unknown how plexin-B1 phosphorylation regulates RhoGAP interaction and activity. Here we show that the activation of plexin-B1 by Sema4D and its subsequent tyrosine phosphorylation by Met creates a docking site for the SH2 domain of growth factor receptor bound-2 (Grb2). Grb2 is thereby recruited into the plexin-B1 receptor complex and, through its SH3 domain, interacts with p190 RhoGAP and mediates RhoA deactivation. Phosphorylation of plexin-B1 by Met and the recruitment of Grb2 have no effect on the R-RasGAP activity of plexin-B1, but are required for Sema4D-induced, RhoA-dependent antimigratory effects of Sema4D on breast cancer cells. These data show Grb2 as a direct link between plexin and p190-RhoGAP-mediated downstream signaling.

  18. 2, 4-D Dichlorophenoxyacetic Acid Poisoning; Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Sujata Hiran

    2017-03-01

    Full Text Available Background: 2, 4-dichlorophenoxyacetic acid, (2, 4-D is a selective herbicide available as the acids, esters and several salts which vary in their chemical properties, environmental behaviour, and to a lesser extent toxicity. The salt and ester forms are derivatives of the parent acid. It is widely used as a weed killer. The 2, 4-D dimethylamine is one of the salts of this group. Case Presentation: We report a case of ingestion of 2, 4-D herbicide intentionally. The patient had presented in a local hospital but transferred to our hospital in a state of deep coma. CT scan head showed diffuse cerebral oedema. The patient recovered completely after treatment with forced alkaline diuresis. Discussion: Anticholinesterase compounds are the most commonly used insecticide and the commonest compound used as poison in India. This case report emphasizes that not all poisonings are caused by anticholinesterase compounds. The initial clinical manifestations of 2, 4-dichlorophenoxyacetic acid (2, 4-D poisoning are very similar to alcohol, sedative drugs, or aromatic chlorinated hydrocarbons making it even more difficult for the treating physician to suspect poisoning due to these compounds. It is thus important to identify the correct compound for proper management. Prompt diagnosis and correct treatment can save the life of a patient. The poisoning is also sometimes confused with poisoning due to anticholinesterase compound. Conclusion: 2, 4-D is a poison which carries a high mortality. Prolonged coma, metabolic complications, skeletal muscle injury and myotonia are some of the complications of 2, 4-D. Forced alkaline diuresis resulted in saving our patient which otherwise had poor prognosis.

  19. Impact of respiratory motion on variable relative biological effectiveness in 4D-dose distributions of proton therapy.

    Science.gov (United States)

    Ulrich, Silke; Wieser, Hans-Peter; Cao, Wenhua; Mohan, Radhe; Bangert, Mark

    2017-11-01

    Organ motion during radiation therapy with scanned protons leads to deviations between the planned and the delivered physical dose. Using a constant relative biological effectiveness (RBE) of 1.1 linearly maps these deviations into RBE-weighted dose. However, a constant value cannot account for potential nonlinear variations in RBE suggested by variable RBE models. Here, we study the impact of motion on recalculations of RBE-weighted dose distributions using a phenomenological variable RBE model. 4D-dose calculation including variable RBE was implemented in the open source treatment planning toolkit matRad. Four scenarios were compared for one field and two field proton treatments for a liver cancer patient assuming (α∕β) x  = 2 Gy and (α∕β) x  = 10 Gy: (A) the optimized static dose distribution with constant RBE, (B) a static recalculation with variable RBE, (C) a 4D-dose recalculation with constant RBE and (D) a 4D-dose recalculation with variable RBE. For (B) and (D), the variable RBE was calculated by the model proposed by McNamara. For (C), the physical dose was accumulated with direct dose mapping; for (D), dose-weighted radio-sensitivity parameters of the linear quadratic model were accumulated to model synergistic irradiation effects on RBE. Dose recalculation with variable RBE led to an elevated biological dose at the end of the proton field, while 4D-dose recalculation exhibited random deviations everywhere in the radiation field depending on the interplay of beam delivery and organ motion. For a single beam treatment assuming (α∕β) x  = 2 Gy, D 95 % was 1.98 Gy (RBE) (A), 2.15 Gy (RBE) (B), 1.81 Gy (RBE) (C) and 1.98 Gy (RBE) (D). The homogeneity index was 1.04 (A), 1.08 (B), 1.23 (C) and 1.25 (D). For the studied liver case, intrafractional motion did not reduce the modulation of the RBE-weighted dose postulated by variable RBE models for proton treatments.

  20. Exploring the relation between 4D and 5D BPS solutions

    Energy Technology Data Exchange (ETDEWEB)

    Behrndt, Klaus [Arnold-Sommerfeld-Center for Theoretical Physics, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Theresienstrasse 37, 80333 Munich (Germany)]. E-mail: behrndt@theorie.physik.uni-muenchen.de; Lopes Cardoso, Gabriel [Arnold-Sommerfeld-Center for Theoretical Physics, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Theresienstrasse 37, 80333 Munich (Germany)]. E-mail: gcardoso@theorie.physik.uni-muenchen.de; Mahapatra, Swapna [Physics Department, Utkal University, Bhubaneswar 751 004 (India)]. E-mail: swapna@iopb.res.in

    2006-01-02

    Based on recent proposals linking four and five-dimensional BPS solutions, we discuss the explicit dictionary between general stationary 4D and 5D supersymmetric solutions in N=2 supergravity theories with cubic prepotentials. All these solutions are completely determined in terms of the same set of harmonic functions and the same set of attractor equations. As an example, we discuss black holes and black rings in Godel-Taub-NUT spacetime. Then we consider corrections to the 4D solutions associated with more general prepotentials and comment on analogous corrections on the 5D side.

  1. Synthesis of novel pyrazolo[3,4-d]pyrimidinone derivatives as cytotoxic inhibitors

    OpenAIRE

    Ameur Rahmouni; Anis Romdhane; Malek Besbes; Nicolas Elie; David Touboul; Hichem Ben Jannet

    2014-01-01

    Various α-fonctionalized iminoethers 2 were easily prepared from ethyl 5-amino-3-substituted-1-phenyl-1H-pyrazole-4-carboxylate 1. The reaction of iminoethers 2 with ammonia afforded 3-substitued-1-phenyl-1H-pyrazolo[3,4-d] pyrimidin-4(5H)-ones 3 which were also synthesized by the addition of formamide to ethyl 5-amino-3-substituted-1-phenyl-1H-pyrazole-4-carboxylate 1. The 5-amino-3-substitued-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones 4 were obtained from hydrazonolysis of iminoether...

  2. Clinical Utility of 4D FDG-PET/CT Scans in Radiation Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Aristophanous, Michalis, E-mail: maristophanous@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center and Harvard Medical School, Boston, MA (United States); Berbeco, Ross I.; Killoran, Joseph H. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center and Harvard Medical School, Boston, MA (United States); Yap, Jeffrey T. [Department of Radiology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Sher, David J.; Allen, Aaron M.; Larson, Elysia; Chen, Aileen B. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center and Harvard Medical School, Boston, MA (United States)

    2012-01-01

    Purpose: The potential role of four-dimensional (4D) positron emission tomography (PET)/computed tomography (CT) in radiation treatment planning, relative to standard three-dimensional (3D) PET/CT, was examined. Methods and Materials: Ten patients with non-small-cell lung cancer had sequential 3D and 4D [{sup 18}F]fluorodeoxyglucose PET/CT scans in the treatment position prior to radiation therapy. The gross tumor volume and involved lymph nodes were contoured on the PET scan by use of three different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; a technique with a constant threshold of standardized uptake value (SUV) greater than 2.5; and an automatic segmentation technique. For each technique, the tumor volume was defined on the 3D scan (VOL3D) and on the 4D scan (VOL4D) by combining the volume defined on each of the five breathing phases individually. The range of tumor motion and the location of each lesion were also recorded, and their influence on the differences observed between VOL3D and VOL4D was investigated. Results: We identified and analyzed 22 distinct lesions, including 9 primary tumors and 13 mediastinal lymph nodes. Mean VOL4D was larger than mean VOL3D with all three techniques, and the difference was statistically significant (p < 0.01). The range of tumor motion and the location of the tumor affected the magnitude of the difference. For one case, all three tumor definition techniques identified volume of moderate uptake of approximately 1 mL in the hilar region on the 4D scan (SUV maximum, 3.3) but not on the 3D scan (SUV maximum, 2.3). Conclusions: In comparison to 3D PET, 4D PET may better define the full physiologic extent of moving tumors and improve radiation treatment planning for lung tumors. In addition, reduction of blurring from free-breathing images may reveal additional information regarding regional disease.

  3. Four-dimensional (4D) tracking of high-temperature microparticles

    International Nuclear Information System (INIS)

    Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.

    2016-01-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  4. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging.

    Science.gov (United States)

    Yan, Hao; Zhen, Xin; Folkerts, Michael; Li, Yongbao; Pan, Tinsu; Cervino, Laura; Jiang, Steve B; Jia, Xun

    2014-07-01

    4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3-0.5 mm for patients 1-3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1-1.5 min per phase. High-quality 4D-CBCT imaging based

  5. A method for improved 4D-computed tomography data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Kupper, Martin; Sprengel, Wolfgang [Technische Univ. Graz (Austria). Inst. fuer Materialphysik; Winkler, Peter; Zurl, Brigitte [Medizinische Univ. Graz (Austria). Comprehensive Cancer Center

    2017-05-01

    In four-dimensional time-dependent computed tomography (4D-CT) of the lungs, irregularities in breathing movements can cause errors in data acquisition, or even data loss. We present a method based on sending a synthetic, regular breathing signal to the CT instead of the real signal, which ensures 4D-CT data sets without data loss. Subsequent correction of the signal based on the real breathing curve enables an accurate reconstruction of the size and movement of the target volume. This makes it possible to plan radiation treatment based on the obtained data. The method was tested with dynamic thorax phantom measurements using synthetic and real breathing patterns.

  6. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hao; Folkerts, Michael; Jiang, Steve B., E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu; Jia, Xun, E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 (United States); Zhen, Xin [Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515 (China); Li, Yongbao [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Pan, Tinsu [Department of Imaging Physics, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77030 (United States); Cervino, Laura [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States)

    2014-07-15

    Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase

  7. Systematic comparisons between the 4d spectra of lanthanide atoms and solids

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, E R [Bonn Univ. (Germany, F.R.). Physikalisches Inst.

    1979-02-14

    It is shown that the lanthanides can be divided into two groups according to the occupation of the 4f subshell in the solid and in the atom. In the first group the 4d absorption spectrum in the atom and in the solid are similar. In the second group the atomic spectrum of the element with nuclear charge Z corresponds to the solid with nuclear charge (Z + 1). Predictions are made for the 4d spectra of those lanthanides which remain to be observed.

  8. Systematic comparisons between the 4d spectra of lanthanide atoms and solids

    International Nuclear Information System (INIS)

    Radtke, E.R.

    1979-01-01

    It is shown that the lanthanides can be divided into two groups according to the occupation of the 4f subshell in the solid and in the atom. In the first group the 4d absorption spectrum in the atom and in the solid are similar. In the second group the atomic spectrum of the element with nuclear charge Z corresponds to the solid with nuclear charge (Z + 1). Predictions are made for the 4d spectra of those lanthanides which remain to be observed. (author)

  9. Geo-Spatial Tactical Decision Aid Systems: Fuzzy Logic for Supporting Decision Making

    National Research Council Canada - National Science Library

    Grasso, Raffaele; Giannecchini, Simone

    2006-01-01

    .... This paper describes a tactical decision aid system based on fuzzy logic reasoning for data fusion and on current Open Geospatial Consortium specifications for interoperability, data dissemination...

  10. Multiple Behavior Phenotypes of the Fragile-X Syndrome Mouse Model Respond to Chronic Inhibition of Phosphodiesterase-4D (PDE4D).

    Science.gov (United States)

    Gurney, Mark E; Cogram, Patricia; Deacon, Robert M; Rex, Christopher; Tranfaglia, Michael

    2017-11-07

    Fragile-X syndrome (FXS) patients display intellectual disability and autism spectrum disorder due to silencing of the X-linked, fragile-X mental retardation-1 (FMR1) gene. Dysregulation of cAMP metabolism is a consistent finding in patients and in the mouse and fly FXS models. We therefore explored if BPN14770, a prototypic phosphodiesterase-4D negative allosteric modulator (PDE4D-NAM) in early human clinical trials, might provide therapeutic benefit in the mouse FXS model. Daily treatment of adult male fmr1 C57Bl6 knock-out mice with BPN14770 for 14 days reduced hyperarousal, improved social interaction, and improved natural behaviors such as nesting and marble burying as well as dendritic spine morphology. There was no decrement in behavioral scores in control C57Bl6 treated with BPN14770. The behavioral benefit of BPN14770 persisted two weeks after washout of the drug. Thus, BPN14770 may be useful for the treatment of fragile-X syndrome and other disorders with decreased cAMP signaling.

  11. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality : a digital phantom study

    NARCIS (Netherlands)

    Bernatowicz, K; Keall, P; Mishra, P; Knopf, A; Lomax, A; Kipritidis, J

    PURPOSE: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on

  12. A context dependent interpretation of inconsistencies in 2D : 4D findings: The moderating role of status relevance

    NARCIS (Netherlands)

    Millet, Kobe; Buehler, Florian

    2018-01-01

    Whereas direct relationships between 2D:4D and dominance related attitudes or behavior often turn out to be weak, some literature suggests that the relation between 2D:4D and dominance is context-specific. That is, especially in status-challenging situations 2D:4D may be related to dominant behavior

  13. Beyond being a proxy user: a look at NGOs‘ potential role in ICT4D deployment

    CSIR Research Space (South Africa)

    Gitau, S

    2010-01-01

    Full Text Available their programs to achieve desired results. However, ICT4D practitioners (researchers and technologist) have relegated this resource to primary means of getting into the community for logistical purposes which might explain the high levels of failed and mismatched...

  14. Advances in 4D treatment planning for scanned particle beam therapy - report of dedicated workshops

    NARCIS (Netherlands)

    Bert, Christoph; Graeff, Christian; Riboldi, Marco; Nill, Simeon; Baroni, Guido; Knopf, Antje-Christin

    2014-01-01

    We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle

  15. 4d quantum geometry from 3d supersymmetric gauge theory and holomorphic block

    International Nuclear Information System (INIS)

    Han, Muxin

    2016-01-01

    A class of 3d N=2 supersymmetric gauge theories are constructed and shown to encode the simplicial geometries in 4-dimensions. The gauge theories are defined by applying the Dimofte-Gaiotto-Gukov construction http://dx.doi.org/10.1007/s00220-013-1863-2 in 3d-3d correspondence to certain graph complement 3-manifolds. Given a gauge theory in this class, the massive supersymmetric vacua of the theory contain the classical geometries on a 4d simplicial complex. The corresponding 4d simplicial geometries are locally constant curvature (either dS or AdS), in the sense that they are made by gluing geometrical 4-simplices of the same constant curvature. When the simplicial complex is sufficiently refined, the simplicial geometries can approximate all possible smooth geometries on 4-manifold. At the quantum level, we propose that a class of holomorphic blocks defined in http://dx.doi.org/10.1007/JHEP12(2014)177 from the 3d N=2 gauge theories are wave functions of quantum 4d simplicial geometries. In the semiclassical limit, the asymptotic behavior of holomorphic block reproduces the classical action of 4d Einstein-Hilbert gravity in the simplicial context.

  16. Exploring 4D quantum Hall physics with a 2D topological charge pump

    Science.gov (United States)

    Lohse, Michael; Schweizer, Christian; Price, Hannah M.; Zilberberg, Oded; Bloch, Immanuel

    2018-01-01

    The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant—the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.

  17. BIM-Based 4D Simulation to Improve Module Manufacturing Productivity for Sustainable Building Projects

    Directory of Open Access Journals (Sweden)

    Joosung Lee

    2017-03-01

    Full Text Available Modular construction methods, where products are manufactured beforehand in a factory and then transported to the site for installation, are becoming increasingly popular for construction projects in many countries as this method facilitates the use of the advanced technologies that support sustainability in building projects. This approach requires dual factory–site process management to be carefully coordinated and the factory module manufacturing process must therefore be managed in a detailed and quantitative manner. However, currently, the limited algorithms available to support this process are based on mathematical methodologies that do not consider the complex mix of equipment, factories, personnel, and materials involved. This paper presents three new building information modeling-based 4D simulation frameworks to manage the three elements—process, quantity, and quality—that determine the productivity of factory module manufacturing. These frameworks leverage the advantages of 4D simulation and provide more precise information than existing conventional documents. By utilizing a 4D model that facilitates the visualization of a wide range of data variables, manufacturers can plan the module manufacturing process in detail and fully understand the material, equipment, and workflow needed to accomplish the manufacturing tasks. Managers can also access information about material quantities for each process and use this information for earned value management, warehousing/storage, fabrication, and assembly planning. By having a 4D view that connects 2D drawing models, manufacturing errors and rework can be minimized and problems such as construction delays, quality lapses, and cost overruns vastly reduced.

  18. Bianchi type A hyper-symplectic and hyper-Kaehler metrics in 4D

    International Nuclear Information System (INIS)

    De Andrés, L C; Fernández, M; Ivanov, S; Santisteban, J A; Ugarte, L; Vassilev, D

    2012-01-01

    We present a simple explicit construction of hyper-Kaehler and hyper-symplectic (also known as neutral hyper-Kaehler or hyper-para-Kaehler) metrics in 4D using the Bianchi type groups of class A. The construction underlies a correspondence between hyper-Kaehler and hyper-symplectic structures of dimension 4. (paper)

  19. Bianchi type A hyper-symplectic and hyper-K\\"ahler metrics in 4D

    OpenAIRE

    de Andrés, Luis C.; Fernández, Marisa; Ivanov, Stefan; Santisteban, José A.; Ugarte, Luis; Vassilev, Dimiter

    2011-01-01

    We present a simple explicit construction of hyper-Kaehler and hyper-symplectic (also known as neutral hyper-Kaehler or hyper-parakaehler) metrics in 4D using the Bianchi type groups of class A. The construction underlies a correspondence between hyper-Kaehler and hyper-symplectic structures in dimension four.

  20. Synthesis of novel pyrazolo[3,4-d]pyrimidinone derivatives as cytotoxic inhibitors

    Directory of Open Access Journals (Sweden)

    Ameur Rahmouni

    2014-02-01

    Full Text Available Various α-fonctionalized iminoethers 2 were easily prepared from ethyl 5-amino-3-substituted-1-phenyl-1H-pyrazole-4-carboxylate 1. The reaction of iminoethers 2 with ammonia afforded 3-substitued-1-phenyl-1H-pyrazolo[3,4-d] pyrimidin-4(5H-ones 3 which were also synthesized by the addition of formamide to ethyl 5-amino-3-substituted-1-phenyl-1H-pyrazole-4-carboxylate 1. The 5-amino-3-substitued-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H-ones 4 were obtained from hydrazonolysis of iminoethers 2. Otherwise, the condensation of these intermediates 2 with a series of some primary amines and hydroxylamine led respectively, to the corresponding 3,5-disubstitued-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H-ones 5 and the 3-substitued-5-hydroxy-1-phenyl-1H-pyrazolo[3,4-d] pyrimidin-4-(5H-ones 6. The synthesized compounds 1-6 were completely characterized by 1H NMR, 13C NMR, IR and HRMS. Some synthesized compounds were evaluated for their cytotoxic effect using the Human cervical adenocarcinoma Hela cell line.