WorldWideScience

Sample records for sounder hirdls instrument

  1. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    Science.gov (United States)

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a

  2. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    Directory of Open Access Journals (Sweden)

    C. I. Meyer

    2018-01-01

    Full Text Available We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are

  3. Mechanical Description of the Mars Climate Sounder Instrument

    Science.gov (United States)

    Jau, Bruno M.

    2008-01-01

    This paper introduces the Mars Climate Sounder (MCS) Instrument of the Mars Reconnaissance Orbiter (MRO) spacecraft. The instrument scans the Martian atmosphere almost continuously to systematically acquire weather and climate observations over time. Its primary components are an optical bench that houses dual telescopes with a total of nine channels for visible and infrared sensing, and a two axis gimbal that provides pointing capabilities. Both rotating joints consist of an integrated actuator with a hybrid planetary/harmonic transmission and a twist cap section that enables the electrical wiring to pass through the rotating joint. Micro stepping is used to reduce spacecraft disturbance torques to acceptable levels while driving the stepper motors. To ensure survivability over its four year life span, suitable mechanical components, lubrication, and an active temperature control system were incorporated. Some life test results and lessons learned are provided to serve as design guidelines for actuator parts and flex cables.

  4. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Radiation Measurement (ARM) Program

    2016-03-01

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm-1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm-1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm-1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141 seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.

  5. The JPSS CrIS Instrument and the Evolution of Space-Based Infrared Sounders

    Science.gov (United States)

    Glumb, Ronald; Suwinski, Lawrence; Wells, Steven; Glumb, Anna; Malloy, Rebecca; Colton, Marie

    2018-01-01

    This paper will summarize the development of infrared sounders since the 1970s, describe the technological hurdles that were overcome to provide ever-increasing performance capabilities, and highlight the radiometric performance of the CrIS instrument on JPSS-1 (CrIS-JPSS1). This includes details of the CrIS-JPSS1 measured noise-equivalent spectral radiance (NEdN) performance, radiometric uncertainty performance utilizing a new and improved internal calibration target, short-term and long-term repeatability, spectral uncertainty, and spectral stability. In addition, the full-resolution operating modes for CrIS-JPSS1 will be reviewed, including a discussion of how these modes will be used during on-orbit characterization tests. We will provide a brief update of CrIS-SNPP on-obit performance and the production status of the CrIS instruments for JPSS-2 through JPSS-4. Current technological challenges will also be reviewed, including how ongoing research and development is enabling improvements to future sounders. The expanding usage of infrared sounding data will also be discussed, including demonstration of value via data assimilation, the roles of the public/private sector in communicating the importance of sounding data for long-term observations, and the long road to success from research to operational data products.

  6. Performance of the HIRS/2 instrument on TIROS-N. [High Resolution Infrared Radiation Sounder

    Science.gov (United States)

    Koenig, E. W.

    1980-01-01

    The High Resolution Infrared Radiation Sounder (HIRS/2) was developed and flown on the TIROS-N satellite as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow radiation channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7 K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic features, operating characteristics and performance of the instrument in test are described. Early orbital information from the TIROS-N launched on October 13, 1978 is given and some observations on system quality are made.

  7. HIRDLS/Aura Level 3 Extinction at 12.1 Microns Zonal Fourier Coefficients V007

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Extinction at 12.1 Microns Zonal Fourier Coefficients" version 7 data product (H3ZFC12MEXT) contains the entire mission (~3 years) of HIRDLS...

  8. MIPAS detection of cloud and aerosol particle occurrence in the UTLS with comparison to HIRDLS and CALIOP

    Directory of Open Access Journals (Sweden)

    H. Sembhi

    2012-10-01

    detection of particle distributions in the UTLS, with extinction detection limits above 13 km often better than 10−4 km−1, with values approaching 10−5 km−1 in some cases.

    Comparisons of the new MIPAS results with cloud data from HIRDLS and CALIOP, outside of the poles, establish a good agreement in distributions (cloud and aerosol top heights and occurrence frequencies with an offset between MIPAS and the other instruments of 0.5 km to 1 km between 12 km and 20 km, consistent with vertical oversampling of extended cloud layers within the MIPAS field of view. We conclude that infrared limb sounders provide a very consistent picture of particles in the UTLS, allowing detection limits which are consistent with the lidar observations. Investigations of MIPAS data for the Mount Kasatochi volcanic eruption on the Aleutian Islands and the Black Saturday fires in Australia are used to exemplify how useful MIPAS limb sounding data were for monitoring aerosol injections into the UTLS. It is shown that the new thresholds allowed such events to be much more effectively derived from MIPAS with detection limits for these case studies of 1 × 10−5 km−1 at a wavelength of 12 μm.

  9. HIRDLS/Aura Level 3 Nitrogen Dioxide (NO2) 1deg Lat Zonal Fourier Coefficients V007 (H3ZFCNO2) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Nitrogen Dioxide (NO2) Zonal Fourier Coefficients" version 7 data product (H3ZFCNO2) contains the entire mission (~3 years) of HIRDLS data...

  10. Radiation budget studies using collocated observations from advanced Very High Resolution Radiometer, High-Resolution Infrared Sounder/2, and Earth Radiation Budget Experiment instruments

    Science.gov (United States)

    Ackerman, Steven A.; Frey, Richard A.; Smith, William L.

    1992-01-01

    Collocated observations from the Advanced Very High Resolution Radiometer (AVHRR), High-Resolution Infrared Sounder/2 (HIRS/2), and Earth Radiation Budget Experiment (ERBE) instruments onboard the NOAA 9 satellite are combined to describe the broadband and spectral radiative properties of the earth-atmosphere system. Broadband radiative properties are determined from the ERBE observations, while spectral properties are determined from the HIRS/2 and AVHRR observations. The presence of clouds, their areal coverage, and cloud top pressure are determined from a combination of the HIRS/2 and the AVHRR observations. The CO2 slicing method is applied to the HIRS/2 to determine the presence of upper level clouds and their effective emissivity. The AVHRR data collocated within the HIRS/2 field of view are utilized to determine the uniformity of the scene and retrieve sea surface temperature. Changes in the top of the atmosphere longwave and shortwave radiative energy budgets, and the spectral distribution of longwave radiation are presented as a function of cloud amount and cloud top pressure. The radiative characteristics of clear sky conditions over oceans are presented as a function of sea surface temperature and atmospheric water vapor structure.

  11. Investigating the possibility of the CONSERT instrument operating as a bi-static RADAR sounder during the seperation, descent and landing phase of the ROSETTA mission

    Science.gov (United States)

    Statz, C.; Hegler, S.; Plettemeier, D.; Berquin, Y. P.; Herique, A.; Kofman, W. W.

    2012-12-01

    The main scientific objective of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) is to determine the dielectric properties of comet 67P/Chuyurmov-Gerasimenko's nucleus. This will be achieved by performing a sounding of the comet's core between the lander "Philae" launched on the comet's surface and the orbiter "Rosetta". For the sounding the lander will receive, process and retransmit the radio signal emitted by the CONSERT instrument aboard the orbiter. With data measured during the first science phase, a three-dimensional model of the material distribution with regard to the complex dielectric permittivity of the comet's nucleus is to be reconstructed. In order to increase the scientific outcome of the experiment and to collect data beneficial for the main scientific objective, it may be considered to operate the CONSERT instrument as a bi-static RADAR sounder during the non mission-critical parts of the separation, descent and landing (SDL) phase, i.e. when the lander is launched onto the comet's surface, of the ROSETTA mission. The data measured during this phase will be mainly echoes from the comet's surface and first meters of subsurface. Based on this data, we intent to create an initial dielectric permittivity mapping of the comet's surface at and around the landing site In order to estimate the performance of the instrument in this special operational mode, simulations of a sounding in SDL configuration were performed. The simulations are based on a hybrid method-of-moments physical-optics (EFIE-DPO) approach for large dielectric bodies with consideration of the behavior of the instrument's antennas and coupling with the spacecraft as well as polarization effects. The simulated results are furthermore processed in a system-level-instrument-simulator to include effects such as a realistic sounding signal, pulse-compression and analog digital conversion in the estimation of the sounding capabilities. The main objective of the

  12. Premier's imaging IR limb sounder

    Science.gov (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2017-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  13. New isostatic mounting concept for a space born Three Mirror Anastigmat (TMA) on the Meteosat Third Generation Infrared Sounder Instrument (MTG-IRS)

    Science.gov (United States)

    Freudling, Maximilian; Klammer, Jesko; Lousberg, Gregory; Schumacher, Jean-Marc; Körner, Christian

    2016-07-01

    A novel isostatic mounting concept for a space born TMA of the Meteosat Third Generation Infrared Sounder is presented. The telescope is based on a light-weight all-aluminium design. The mounting concept accommodates the telescope onto a Carbon-Fiber-Reinforced Polymer (CRFP) structure. This design copes with the high CTE mismatch without introducing high stresses into the telescope structure. Furthermore a Line of Sight stability of a few microrads under geostationary orbit conditions is provided. The design operates with full performance at a temperature 20K below the temperature of the CFRP structure and 20K below the integration temperature. The mounting will sustain launch loads of 47g. This paper will provide the design of the Back Telescope Assembly (BTA) isostatic mounting and will summarise the consolidated technical baseline reached following a successful Preliminary Design Review (PDR).

  14. Total column ozone retrieval using INSAT-3D sounder in the tropics ...

    Indian Academy of Sciences (India)

    important for ozone estimation and lower instrument noise results in better ozone ... the Indian Space Research Organisation (ISRO) ... tivity of the sounder ozone band corresponding to .... NOAA Climate Monitoring and Diagnostics Labo-.

  15. 3D Reconfigurable NoC Multiprocessor Portable Sounder for Plasmaspheric Studies

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    The paper describes the development of a prototype imaging sounder for studying the irregularities of the ionospheric plasma. Cutting edge three-dimensional reconfigurable logic has been implemented allowing highly-intensive scientific calculations to be performed in hardware. The new parallel processing algorithms implemented offer a significant amount of performance improvement in the range of 80% compared to existing digital sounder implementations. The current system configuration is taking into consideration the modern scientific needs for portability during scientific campaigns. The prototype acts as a digital signal processing experimentation platform for future larger-scale digital sounder instrumentations for measuring complex planetary plasmaspheric environments.

  16. Science Study For A Low Cost Upper Atmosphere Sounder (LOCUS)

    Science.gov (United States)

    Gerber, D.; Swinyard, B. M.; Ellison, B. N.; Siddans, R.; Kerridge, B. J.; Plane, J. M. C.; Feng, W.

    2013-12-01

    We present the findings of an initial science study to define the spectral bands for the proposed Mesosphere / Lower Thermosphere (MLT) sounder LOCUS. The LOCUS mission (Fig 1) uses disruptive technologies to make key MLT species detectable globally by satellite remote sensing for the first time. This presentation summarises the technological and scientific foundation on which the current 4-band Terahertz (THz) and sub- millimetre wave (SMW) instrument configuration was conceived.

  17. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    Science.gov (United States)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  18. Microwave Atmospheric Sounder on CubeSat

    Science.gov (United States)

    Padmanabhan, S.; Brown, S. E.; Kangaslahti, P.; Cofield, R.; Russell, D.; Stachnik, R. A.; Su, H.; Wu, L.; Tanelli, S.; Niamsuwan, N.

    2014-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, a summary of radiometer calibration and retrieval techniques of temperature and humidity will be discussed. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a constellation which

  19. Investigation of Planets and Small Bodies Using Decameter Wavelength Radar Sounders

    Science.gov (United States)

    Safaeinili, A.

    2003-12-01

    Decameter wavelength radar sounders provide a unique capability for the exploration of subsurface of planets and internal structure of small bodies. Recently, a number of experimental radar sounding instruments have been proposed and/or are planned to become operational in the near future. The first of these radar sounders is MARSIS (Picardi et al.) that is about to arrive at Mars on ESA's Mars Express for a two-year mission. The second radar sounder, termed SHARAD (Seu et. al), will fly on NASA's Mars Reconnaissance orbiter in 2005. MARSIS and SHARAD have complementary science objectives in that MARSIS (0.1-5.5 MHz) is designed to explore the deep subsurface with a depth resolution of ˜100 m while SHARAD (15-25 MHz) focuses its investigation to near-surface (generation of radar sounders will benefit from high power and high data rate capability that is made available through the use of Nuclear Electric generators. An example of such high-capability mission is the Jovian Icy Moons Orbiter (JIMO) where, for example, the radar sounder can be used to explore beneath the icy surfaces of Europa in search of the ice/ocean interface. The decameter wave radar sounder is probably the only instrument that has the potential of providing an accurate estimate for the ocean depth. Another exciting and rewarding area of application for planetary radar sounding is the investigation of the deep interior of small bodies (asteroids and comets). The small size of asteroids and comets provides the opportunity to collect data in a manner that enables Radio Reflection Tomographic (RRT) reconstruction of the body in the same manner that a medical ultrasound probe can image the interior of our body. This paper provides an overview of current technical capabilities and challenges and the potential of radio sounders in the investigation of planets and small bodies.

  20. The microwave limb sounder for the Upper Atmosphere Research Satellite

    Science.gov (United States)

    Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.

    1988-01-01

    The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.

  1. Variability at Multiple Scales: Using an Array of Current and Pressure Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    Science.gov (United States)

    2016-11-29

    of Current- and Pressure - Sensor Equipped Inverted Echo Sounders to Measure the Ocean 5b. GRANT NUMBER NOOO 14-15-1-2857 5c. PROGRAM ELEMENT NUMBER...inverted echo sounders (lESs) equipped with pressure and current sensors (CPIESs). CPIESs are moored instruments that measure the round-trip acoustic...at a range of spatial and temporal scales. The goals of this project were to enhance the pool of pressure - sensor equipped lESs available at the

  2. Noise performance of microwave humidity sounders over their lifetime

    Science.gov (United States)

    Hans, Imke; Burgdorf, Martin; John, Viju O.; Mittaz, Jonathan; Buehler, Stefan A.

    2017-12-01

    The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2), Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs) of the instrument and the noise equivalent differential temperature (NEΔT) as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT processing to provide input values for the uncertainty propagation in the generation of a new set of Fundamental Climate Data Records (FCDRs) that are currently produced in the project Fidelity and Uncertainty in Climate data

  3. Mesoscale Phenomenon Revealed by an Acoustic Sounder

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Jensen, Niels Otto

    1976-01-01

    A particular phenomenon observed on an acoustic sounder record is analyzed, and is interpreted as being associated with the passing of a land breeze front. A simple physical explanation of the frontal movements is suggested. The actual existence of the land breeze is demonstrated by examination...

  4. Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements

    Science.gov (United States)

    Ai, Yufei; Li, Jun; Shi, Wenjing; Schmit, Timothy J.; Cao, Changyong; Li, Wanbiao

    2017-02-01

    Deep convective storms have contributed to airplane accidents, making them a threat to aviation safety. The most common method to identify deep convective clouds (DCCs) is using the brightness temperature difference (BTD) between the atmospheric infrared (IR) window band and the water vapor (WV) absorption band. The effectiveness of the BTD method for DCC detection is highly related to the spectral resolution and signal-to-noise ratio (SNR) of the WV band. In order to understand the sensitivity of BTD to spectral resolution and SNR for DCC detection, a BTD to noise ratio method using the difference between the WV and IR window radiances is developed to assess the uncertainty of DCC identification for different instruments. We examined the case of AirAsia Flight QZ8501. The brightness temperatures (Tbs) over DCCs from this case are simulated for BTD sensitivity studies by a fast forward radiative transfer model with an opaque cloud assumption for both broadband imager (e.g., Multifunction Transport Satellite imager, MTSAT-2 imager) and hyperspectral IR sounder (e.g., Atmospheric Infrared Sounder) instruments; we also examined the relationship between the simulated Tb and the cloud top height. Results show that despite the coarser spatial resolution, BTDs measured by a hyperspectral IR sounder are much more sensitive to high cloud tops than broadband BTDs. As demonstrated in this study, a hyperspectral IR sounder can identify DCCs with better accuracy.

  5. Evidence of Convective Redistribution of Carbon Monoxide in Aura Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) Observations

    Science.gov (United States)

    Manyin, Michael; Douglass, Anne; Schoeberl, Mark

    2010-01-01

    Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.

  6. Noise performance of microwave humidity sounders over their lifetime

    Directory of Open Access Journals (Sweden)

    I. Hans

    2017-12-01

    Full Text Available The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2, Advanced Microwave Sounding Unit-B (AMSU-B and Microwave Humidity Sounder (MHS to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs of the instrument and the noise equivalent differential temperature (NEΔT as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT  <  1 K. Due to overlapping life spans of the instruments, these reduced data records still cover without gaps the time since 1994 and may therefore serve as a first step for constructing long time

  7. Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1

    Science.gov (United States)

    Brann, C.; Kunkee, D.

    2008-12-01

    The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.

  8. Variability at Multiple Scales: Using an Array of Current- and Pressure-Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    Science.gov (United States)

    2016-11-29

    of Current- and Pressure - Sensor Equipped Inverted Echo Sounders to Measure the Ocean 5b. GRANT NUMBER NOOO 14-15-1-2857 5c. PROGRAM ELEMENT NUMBER...inverted echo sounders (lESs) equipped with pressure and current sensors (CPIESs). CPIESs are moored instruments that measure the round-trip acoustic...at a range of spatial and temporal scales. The goals of this project were to enhance the pool of pressure - sensor equipped lESs available at the

  9. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  10. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  11. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  12. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  13. The WHISPER Relaxation Sounder and the CLUSTER Active Archive

    Science.gov (United States)

    Trotignon, J. G.; Décréau, P. M. E.; Rauch, J. L.; Vallières, X.; Rochel, A.; Kougblénou, S.; Lointier, G.; Facskó, G.; Canu, P.; Darrouzet, F.; Masson, A.

    The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) instrument is part of the Wave Experiment Consortium (WEC) of the CLUSTER mission. With the help of the long double sphere antennae of the Electric Field and Wave (EFW) instrument and the Digital Wave Processor (DWP), it delivers active (sounding) and natural (transmitter off) electric field spectra, respectively from 4 to 82 kHz, and from 2 to 80 kHz. These frequency ranges have been chosen to include the electron plasma frequency, which is closely related to the total electron density, in most of the regions encountered by the CLUSTER spacecraft. Presented here is an overview of the WHISPER data products available in the CLUSTER Active Archive (CAA). The instrument and its performance are first recalled. The way the WHISPER products are obtained is then described, with particular attention being paid to the density determination. Both sounding and natural measurements are commonly used in this process, which depends on the ambient plasma regime. This is illustrated using drawings similar to the Bryant plots commonly used in the CLUSTER master science plan. These give a clear overview of typical density values and the parts of the orbits where they are obtained. More information on the applied software or on the quality/reliability of the density determination can also be highlighted.

  14. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  15. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  16. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  17. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  18. The Expected Impacts of NPOESS Microwave and Infrared Sounder Radiances on Operational Numerical Weather Prediction and Data Assimilation Systems

    Science.gov (United States)

    Swadley, S. D.; Baker, N.; Derber, J.; Collard, A.; Hilton, F.; Ruston, B.; Bell, W.; Candy, B.; Kleespies, T. J.

    2009-12-01

    The NPOESS atmospheric sounding functionality will be accomplished using two separate sensor suites, the combined infrared (IR) and microwave (MW) sensor suite (CrIMSS), and the Microwave Imager/Sounder (MIS) instrument. CrIMSS consists of the Cross Track Infrared Sounder (CrIS) and the cross track Advanced Technology Microwave Sounder (ATMS), and is scheduled to fly on the NPOESS Preparatory Project (NPP), and NPOESS operational flight units C1 and C3. The MIS is a conical scanning polarimetric imager and sounder patterned after the heritage WindSat, and DMSP Special Sensor Microwave Imagers and Sounders (SSMI and SSMIS), and is scheduled for flight units C2, C3 and C4. ATMS combines the current operational Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), but with an additional channel in the 51.76 GHz oxygen absorption region and 3 additional channels in the 165.5 and 183 GHz water vapor absorption band. CrIS is a Fourier Transform Spectrometer and will provide 159 shortwave IR channels, 433 mid-range IR channels, and 713 longwave IR channels. The heritage sensors for CrIS are the NASA Advanced Infrared Sounder (AIRS) and the MetOp-A Infrared Atmospheric Sounding Interferometer (IASI). Both AIRS and IASI are high quality, high spectral resolution sounders which represent a significant improvement in the effective vertical resolution over previous IR sounders. This presentation will give an overview of preparations underway for day-1 monitoring of NPP/NPOESS radiances, and subsequent operational radiance assimilation. These preparations capitalize on experience gained during the pre-launch preparations, sensor calibration/validation and operational assimilation for the heritage sensors. One important step is to use pre-flight sensor channel specifications, noise estimates and knowledge of the antenna patterns, to generate and test proxy NPP/NPOESS sensor observations in existing assimilation systems. Other critical factors for

  19. MTG infrared sounder detection chain: first radiometric test results

    Science.gov (United States)

    Dumestier, D.; Pistone, F.; Dartois, T.; Blazquez, E.

    2017-11-01

    Europe's next fleet of geostationary meteorological satellites, MeteoSat Third Generation, will introduce new functions in addition to continuity of high-resolution meteorological data. The atmosphere Infrared Sounder (IRS), as high -end instrument, is part of this challenging program. IRS principle is a Fourier Transform Interferometer, which allows recomposing atmospheric spectrum after infrared photons detection. Transmission spectrums will be used to support numerical weather prediction. IRS instrument is able to offer full disk coverage in one hour, an on-ground resolution of 4 by 4 km, in two spectral bands (MWIR: 1600 to 2175cm-1 and LWIR: 700 to 1210cm-1) with a spectral resolution of 0.6cm-1. Among critical technologies and processes, IRS detection chain shall offer outstanding characteristics in terms of radiometric performance like Signal to Noise Ratio (SNR), dynamic range and linearity. Selected detectors are HgCdTe two-dimensions arrays, cooled at 55 Kelvins, hybridized on snapshot silicon read-out circuit at 160x160 format. Video electronics present 16 bits resolution, and the whole detection chain (Detectors and electronics) permits to reach SNR between 2 000 and 10 000 as requested by the application. Radiometric onground test results performed on design representative detection chains are presented and are confirming the challenging phase A design choices.

  20. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  1. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  2. Measuring tropospheric wind with microwave sounders

    Science.gov (United States)

    Lambrigtsen, B.; Su, H.; Turk, J.; Hristova-Veleva, S. M.; Dang, V. T.

    2017-12-01

    In its 2007 "Decadal Survey" of earth science missions for NASA the U.S. National Research Council recommended that a Doppler wind lidar be developed for a three-dimensional tropospheric winds mission ("3D-Winds"). The technology required for such a mission has not yet been developed, and it is expected that the next Decadal Survey, planned to be released by the end of 2017, will put additional emphasis on the still pressing need for wind measurements from space. The first Decadal Survey also called for a geostationary microwave sounder (GMS) on a Precipitation and All-weather Temperature and Humidity (PATH) mission, which could be used to measure wind from space. Such a sounder, the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR), has been developed at the Jet Propulsion Laboratory (JPL). The PATH mission has not yet been funded by NASA, but a low-cost subset of PATH, GeoStorm has been proposed as a hosted payload on a commercial communications satellite. Both PATH and GeoStorm would obtain frequent (every 15 minutes of better) measurements of tropospheric water vapor profiles, and they can be used to derive atmospheric motion vector (AMV) wind profiles, even in the presence of clouds. Measurement of wind is particularly important in the tropics, where the atmosphere is largely not in thermal balance and wind estimates cannot generally be derived from temperature and pressure fields. We report on simulation studies of AMV wind vectors derived from a GMS and from a cluster of low-earth-orbiting (LEO) small satellites (e.g., CubeSats). The results of two separate simulation studies are very encouraging and show that a ±2 m/s wind speed precision is attainable, which would satisfy WMO requirements. A GMS observing system in particular, which can be implemented now, would enable significant progress in the study of atmospheric dynamics. Copyright 2017 California Institute of Technology. Government sponsorship acknowledged

  3. Combining Passive Microwave Sounders with CYGNSS information for improved retrievals: Observations during Hurricane Harvey

    Science.gov (United States)

    Schreier, M. M.

    2017-12-01

    The launch of CYGNSS (Cyclone Global Navigation Satellite System) has added an interesting component to satellite observations: it can provide wind speeds in the tropical area with a high repetition rate. Passive microwave sounders that are overpassing the same region can benefit from this information, when it comes to the retrieval of temperature or water profiles: the uncertainty about wind speeds has a strong impact on emissivity and reflectivity calculations with respect to surface temperature. This has strong influences on the uncertainty of retrieval of temperature and water content, especially under extreme weather conditions. Adding CYGNSS information to the retrieval can help to reduce errors and provide a significantly better sounder retrieval. Based on observations during Hurricane Harvey, we want to show the impact of CYGNSS data on the retrieval of passive microwave sensors. We will show examples on the impact on the retrieval from polar orbiting instruments, like the Advanced Technology Microwave Sounder (ATMS) and AMSU-A/B on NOAA-18 and 19. In addition we will also show the impact on retrievals from HAMSR (High Altitude MMIC Sounding Radiometer), which was flying on the Global Hawk during the EPOCH campaign. We will compare the results with other observations and estimate the impact of additional CYGNSS information on the microwave retrieval, especially on the impact in error and uncertainty reduction. We think, that a synergetic use of these different data sources could significantly help to produce better assimilation products for forecast assimilation.

  4. Scanning Mechanism of the FY-3 Microwave Humidity Sounder

    Science.gov (United States)

    Schmid, Manfred; Jing, Li; Hehr, Christian

    2010-01-01

    Astrium GmbH Germany, developed the scanning equipment for the instrument package of the MicroWave Humidity Sounder (MWHS) flying on the FY-3 meteorological satellite (FY means Feng Yun, Wind and Cloud) in a sun-synchronized orbit of 850-km altitude and at an inclination of 98.8 . The scanning mechanism rotates at variable velocity comprising several acceleration / deceleration phases during each revolution. The Scanning Mechanism contains two output shafts, each rotating a parabolic offset Antenna Reflector. The mechanism is operated in closed loop by means of redundant control electronics. MWHS is a sounding radiometer for measurement of global atmospheric water vapour profiles. An Engineering Qualification Model was developed and qualified and a first Flight Model was launched early 2008. The system is now working for more than two years successful in orbit. A second Flight Model of the Antenna Scanning Mechanism and of its associated control electronics was built and delivered to the customer for application on the follow-on spacecraft that will be launched by the end of 2010.

  5. NOAA JPSS Advanced Technology Microwave Sounder (ATMS) Remapped to Cross-track Infrared Sounder (CrIS) Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Technology Microwave Sounder (ATMS) is a 22 channel microwave sounder on board the Suomi NPP satellite that provides continuous cross-track scanning in...

  6. Study of Geological Analogues for Understanding the Radar Sounder Response of the RIME Targets

    Science.gov (United States)

    Thakur, S.; Bruzzone, L.

    2017-12-01

    Radar for Icy Moon Exploration (RIME), the radar sounder onboard the Jupiter Icy Moons Explorer (JUICE), is aimed at characterizing the ice shells of the Jovian moons - Ganymede, Europa and Callisto. RIME is optimized to operate at 9 MHz central frequency with bandwidth of 1 MHz and 2.7 MHz to achieve a penetration depth up to 9 km through ice. We have developed an approach to the definition of a database of simulated RIME radargrams by leveraging the data available from airborne and orbital radar sounder acquisitions over geological analogues of the expected icy moon features. These simulated radargrams are obtained by merging real radar sounder data with models of the subsurface of the Jupiter icy moons. They will be useful for geological interpretation of the RIME radargrams and for better predicting the performance of RIME. The database will also be useful in developing pre-processing and automatic feature extraction algorithms to support data analysis during the mission phase of RIME. Prior to the JUICE mission exploring the Jovian satellites with RIME, there exist radar sounders such as SHARAD (onboard MRO) and MARSIS (onboard MEX) probing Mars, the LRS (onboard SELENE) probing the Moon, and many airborne sounders probing the polar regions of Earth. Analogues have been identified in these places based on similarity in geo-morphological expression. Moreover, other analogues have been identified on the Earth for possible dedicated acquisition campaigns before the RIME operations. By assuming that the subsurface structure of the RIME targets is approximately represented in the analogue radargrams, the difference in composition is accounted for by imposing different dielectric and subsurface attenuation models. The RIME radargrams are simulated from the analogue radargrams using the radar equation and the RIME processing chain and accounting for different possible scenarios in terms of subsurface structure, dielectric properties and instrument parameters. For

  7. Special Sensor Microwave Imager/Sounder (SSMIS) Sensor Data Record (SDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  8. Special Sensor Microwave Imager/Sounder (SSMIS) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  9. Observation of the exhaust plume from the space shuttle main engines using the microwave limb sounder

    Directory of Open Access Journals (Sweden)

    H. C. Pumphrey

    2011-01-01

    Full Text Available A space shuttle launch deposits 700 tonnes of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS on the Aura satellite. Approximately 50%–65% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane 5, Proton are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  10. Nonlinear bias analysis and correction of microwave temperature sounder observations for FY-3C meteorological satellite

    Science.gov (United States)

    Hu, Taiyang; Lv, Rongchuan; Jin, Xu; Li, Hao; Chen, Wenxin

    2018-01-01

    The nonlinear bias analysis and correction of receiving channels in Chinese FY-3C meteorological satellite Microwave Temperature Sounder (MWTS) is a key technology of data assimilation for satellite radiance data. The thermal-vacuum chamber calibration data acquired from the MWTS can be analyzed to evaluate the instrument performance, including radiometric temperature sensitivity, channel nonlinearity and calibration accuracy. Especially, the nonlinearity parameters due to imperfect square-law detectors will be calculated from calibration data and further used to correct the nonlinear bias contributions of microwave receiving channels. Based upon the operational principles and thermalvacuum chamber calibration procedures of MWTS, this paper mainly focuses on the nonlinear bias analysis and correction methods for improving the calibration accuracy of the important instrument onboard FY-3C meteorological satellite, from the perspective of theoretical and experimental studies. Furthermore, a series of original results are presented to demonstrate the feasibility and significance of the methods.

  11. Identification of Critical Design Points for the EAP of a Space-based Doppler Lidar Wind Sounder

    Science.gov (United States)

    Emmitt, G. D.; Wood, S. A.

    1992-01-01

    The feasibility of making tropospheric wind measurements with a space-based Doppler lidar was studied by a number of agencies over the past 10-15 years. Currently NASA has a plan to launch such an instrument, the Laser Atmospheric Wind Sounder (LAWS), within the next decade. The design of the LAWS continues to undergo a series of iterations common to most instruments targeted for a space platform. In general, the constraints of available platform power, weight allowance, and project funds continue to change. With these changes the performance and design specifications also must change.

  12. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    Science.gov (United States)

    Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.

    1995-01-01

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.

  13. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    Science.gov (United States)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  14. Observations of atmospheric structure using an acoustic sounder

    International Nuclear Information System (INIS)

    Shaw, N.A.

    1974-11-01

    An acoustic sounder has been used to monitor the vertical temperature structure of the lowest 1.5 km of the atmosphere over the meteorological field site at Argonne National Laboratory since February 1972. Additional records were obtained near St. Louis, Mo., during the month of August. Sounder records obtained during cloudless days on which no major synoptic events occurred are separated into three characteristic phases. The first phase is the rise of the morning inversion associated with increasing solar heating of the surface after dawn. The second phase is the period of strong convective activity that usually exists between about 1100 and 1600 local time in summer and which typically destroys the inversion. The third phase includes the gradual regeneration of the low level inversion through radiation cooling of the lowest levels, followed by a period of persistence throughout the night until the first phase begins again after sunrise. Analysis of records obtained from a single acoustic sounder operating in the vertically-pointing, monostatic mode is subject to the usual ambiguity regarding the relative importance of advective effects and local changes with time. To provide a spatial sampling facility, a mobile acoustic sounding system was constructed during 1972. Details of the mobile antenna acoustic baffle or cuff are given in the Appendix. (19 figures, 1 table) (U.S.)

  15. Characteristics of monsoon inversions over the Arabian Sea observed by satellite sounder and reanalysis data sets

    Directory of Open Access Journals (Sweden)

    S. Dwivedi

    2016-04-01

    Full Text Available Monsoon inversion (MI over the Arabian Sea (AS is one of the important characteristics associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used 5 years (2009–2013 of temperature and water vapour measurement data obtained from satellite sounder instrument, an Infrared Atmospheric Sounding Interferometer (IASI onboard MetOp satellite, in addition to ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where MIs are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in the eastern AS (EAS and western AS (WAS to examine their contrasting features. The initiation and dissipation times of MIs, their percentage occurrence, strength, etc., has been examined using the huge database. The relation with monsoon activity (rainfall over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are  ∼  2 K less than those over the EAS, ΔT being the temperature difference between 950 and 850 hPa. A much larger contrast between the WAS and EAS in ΔT is noticed in ERA-Interim data set vis-à-vis those observed by satellites. The possibility of detecting MI from another parameter, refractivity N, obtained directly from another satellite constellation of GPS Radio Occultation (RO (COSMIC, has also been examined. MI detected from IASI and Atmospheric Infrared Sounder (AIRS onboard the NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semipermanent features of southwest monsoon along with the presently accepted six parameters.

  16. Automatic detection of subglacial lakes in radar sounder data acquired in Antarctica

    Science.gov (United States)

    Ilisei, Ana-Maria; Khodadadzadeh, Mahdi; Dalsasso, Emanuele; Bruzzone, Lorenzo

    2017-10-01

    Subglacial lakes decouple the ice sheet from the underlying bedrock, thus facilitating the sliding of the ice masses towards the borders of the continents, consequently raising the sea level. This motivated increasing attention in the detection of subglacial lakes. So far, about 70% of the total number of subglacial lakes in Antarctica have been detected by analysing radargrams acquired by radar sounder (RS) instruments. Although the amount of radargrams is expected to drastically increase, from both airborne and possible future Earth observation RS missions, currently the main approach to the detection of subglacial lakes in radargrams is by visual interpretation. This approach is subjective and extremely time consuming, thus difficult to apply to a large amount of radargrams. In order to address the limitations of the visual interpretation and to assist glaciologists in better understanding the relationship between the subglacial environment and the climate system, in this paper, we propose a technique for the automatic detection of subglacial lakes. The main contribution of the proposed technique is the extraction of features for discriminating between lake and non-lake basal interfaces. In particular, we propose the extraction of features that locally capture the topography of the basal interface, the shape and the correlation of the basal waveforms. Then, the extracted features are given as input to a supervised binary classifier based on Support Vector Machine to perform the automatic subglacial lake detection. The effectiveness of the proposed method is proven both quantitatively and qualitatively by applying it to a large dataset acquired in East Antarctica by the MultiChannel Coherent Radar Depth Sounder.

  17. Space Electron Density Gradient Studies using a 3D Embedded Reconfigurable Sounder and ESA/NASA CLUSTER Mission

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper provides a direct comparison between data captured by a new embedded reconfigurable digital sounder, different ground-based ionospheric sounders spread around Europe and the ESA/NASA CLUSTER mission. The CLUSTER mission consists of four identical space probes flying in a formation that allows measurements of the electron density gradient in the local magnetic field. Both the ground-based and the spacecraft instrumentations assist in studying the motion, geometry and boundaries of the plasmasphere. The comparison results are in accordance to each other. Some slight deviations among the captured data were expected from the beginning of this investigation. These small discrepancies are reasonable and seriatim analyzed. The results of this research are significant, since the level of the plasma's ionization, which is related to the solar activity, dominates the propagation of electromagnetic waves through it. Similarly, unusually high solar activity presents serious hazards to orbiting satellites, spaceborne instrumentation, satellite communications and infrastructure located on the Earth's surface. Long-term collaborative study of the data is required to continue, in order to identify and determine the enhanced risk in advance. This would allow scientists to propose an immediate cure.

  18. Impact of advanced technology microwave sounder data in the NCMRWF 4D-VAR data assimilation system

    Science.gov (United States)

    Rani, S. Indira; Srinivas, D.; Mallick, Swapan; George, John P.

    2016-05-01

    This study demonstrates the added benefits of assimilating the Advanced Technology Microwave Sounder (ATMS) radiances from the Suomi-NPP satellite in the NCMRWF Unified Model (NCUM). ATMS is a cross-track scanning microwave radiometer inherited the legacy of two very successful instrument namely, Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS). ATMS has 22 channels: 11 temperature sounding channels around 50-60 GHz oxygen band and 6 moisture sounding channels around the 183GHz water vapour band in addition to 5 channels sensitive to the surface in clear conditions, or to water vapour, rain, and cloud when conditions are not clear (at 23, 31, 50, 51 and 89 GHz). Before operational assimilation of any new observation by NWP centres it is standard practice to assess data quality with respect to NWP model background (short-forecast) fields. Quality of all channels is estimated against the model background and the biases are computed and compared against that from the similar observations. The impact of the ATMS data on global analyses and forecasts is tested by adding the ATMS data in the NCUM Observation Processing system (OPS) and 4D-Var variational assimilation (VAR) system. This paper also discusses the pre-operational numerical experiments conducted to assess the impact of ATMS radiances in the NCUM assimilation system. It is noted that the performance of ATMS is stable and it contributes to the performance of the model, complimenting observations from other instruments.

  19. The Box Model and the Acoustic Sounder, a Case Study

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Lundtang Petersen, Erik

    1979-01-01

    Concentrations of SO2 in a large city during a subsidence situation are predicted as a function of time by means of a simple box model and the predictions are compared to actual SO2 concentration measurements. The agreement between model results and measurements is found to be excellent. The mode...... uses the height of the mixing layer as measured by means of an acoustic sounder. It is demonstrated that this height is a dominant factor in determining the variation of the SO2 concentration...

  20. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.

    Science.gov (United States)

    Yu, Tianyan; Liu, Dingquan; Qin, Yang

    2014-10-01

    A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS.

  1. Airborne Deployment and Calibration of Microwave Atmospheric Sounder on 6U CubeSat

    Science.gov (United States)

    Padmanabhan, S.; Brown, S. T.; Lim, B.; Kangaslahti, P.; Russell, D.; Stachnik, R. A.

    2015-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, we will discuss the maiden airborne deployment of the instrument during the Plain Elevated Convection at Night (PECAN) experiment. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a

  2. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder

    KAUST Repository

    Rø stad, Anders; Kaartvedt, Stein

    2013-01-01

    We used a moored upward-facing 200 kHz echo sounder to address sedimentation of fecal pellets (FPs) from dielly migrating Meganyctiphanes norvegica. The echo sounder was located on the bottom at 150 m depth in the Oslofjord, Norway, and was cabled

  3. Plasma density measurements from the GEOS-1 relaxation sounder

    International Nuclear Information System (INIS)

    Etcheto, J.; Bloch, J.J.

    1978-01-01

    The relaxation sounder uses the characteristics of the propagation of radiowaves to sound the plasma surrounding the spacecraft. It determines, in particular, the plasma frequency, which gives the electron density. Measurements over the whole dayside of the magnetosphere, from the evening to the night sectors, are now available. The behaviour of the plasma resonance depends on local time, the nighttime echoes being generally weaker. Density measurements thus obtained are shown and discussed in the context of what is presently known about the plasma distribution in the magnetosphere. In particular, the density around apogee is studied as a function of magnetic activity. On the dayside, it appears to vary between a few and a few tens of electrons per cubic centimeter. The evolution of the density profile for several consecutive days is studied and interpreted tracing back the drift of the particles. (Auth.)

  4. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    Science.gov (United States)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  5. Use of INSAT-3D sounder and imager radiances in the 4D-VAR data assimilation system and its implications in the analyses and forecasts

    Science.gov (United States)

    Indira Rani, S.; Taylor, Ruth; George, John P.; Rajagopal, E. N.

    2016-05-01

    INSAT-3D, the first Indian geostationary satellite with sounding capability, provides valuable information over India and the surrounding oceanic regions which are pivotal to Numerical Weather Prediction. In collaboration with UK Met Office, NCMRWF developed the assimilation capability of INSAT-3D Clear Sky Brightness Temperature (CSBT), both from the sounder and imager, in the 4D-Var assimilation system being used at NCMRWF. Out of the 18 sounder channels, radiances from 9 channels are selected for assimilation depending on relevance of the information in each channel. The first three high peaking channels, the CO2 absorption channels and the three water vapor channels (channel no. 10, 11, and 12) are assimilated both over land and Ocean, whereas the window channels (channel no. 6, 7, and 8) are assimilated only over the Ocean. Measured satellite radiances are compared with that from short range forecasts to monitor the data quality. This is based on the assumption that the observed satellite radiances are free from calibration errors and the short range forecast provided by NWP model is free from systematic errors. Innovations (Observation - Forecast) before and after the bias correction are indicative of how well the bias correction works. Since the biases vary with air-masses, time, scan angle and also due to instrument degradation, an accurate bias correction algorithm for the assimilation of INSAT-3D sounder radiance is important. This paper discusses the bias correction methods and other quality controls used for the selected INSAT-3D sounder channels and the impact of bias corrected radiance in the data assimilation system particularly over India and surrounding oceanic regions.

  6. Validation of UARS Microwave Limb Sounder 183 GHz H2O Measurements

    Science.gov (United States)

    Lahoz, W. A.; Suttie, M. R.; Froidevaux, L.; Harwood, R. S.; Lau, C. L.; Lungu, T. A.; Peckham, G. E.; Pumphrey, H. C.; Read, W. G.; Shippony, Z.; hide

    1996-01-01

    The Upper Atmosphere Research Satellite (UARS) microwave limb sounder (MLS) makes measurements of thermal emission at 183.3 GHz which are used to infer the concentration of water vapor over a pressure range of 46-0.2hPa (approximately 20-60 km). We provide a validation of MLS H2O by analyzing the integrity of the measurements, by providing an error characterization, and by comparison with data from other instruments. It is estimated that version 3 MLS H2O retrievals are accurate to within 20-25% in the lower stratosphere and to within 8-13% in the upper stratosphere and lower mesosphere. The precision of a single profile is estimated to be approximately 0.15 parts per million by volume (ppmv) in the midstratosphere and 0.2 ppmv in the lower and upper stratosphere. In the lower mesosphere the estimate of a single profile precision is 0.25-0.45 ppmv. During polar winter conditions, H2O retrievals at 46 hPa can have a substantial contribution from climatology. The vertical resolution of MLS H2O retrievals is approximately 5 km.

  7. Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder

    Science.gov (United States)

    Cofield, Richard E.; Kasl, Eldon P.

    2011-01-01

    The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission in [180,680] GHz. SMLS, planned for the NRC Decadal Survey's Global Atmospheric Composition Mission, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. This provides better horizontal and temporal resolution and coverage than were possible with elevation-only scanning in the two previous MLS satellite instruments. SMLS is diffraction-limited in the vertical plane but highly astigmatic in the horizontal (beam aspect ratio approx. 1:20). Nadir symmetry ensures that beam shape is nearly invariant over plus or minus 65 deg azimuth. A low-noise receiver FOV is swept over the reflector system by a small azimuth-scanning mirror. We describe the fabrication and thermal-stability test of a composite demonstration primary reflector, having full 4m height and 1/3 the width planned for flight. Using finite-element models of reflectors and structure, we evaluate thermal deformations and optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during soak tests in a chamber. The test temperature range exceeds predicted orbital ranges by large factors, implying in-orbit thermal stability of 0.21 micron rms (root mean square)/C, which meets SMLS requirements.

  8. NOAA JPSS Advanced Technology Microwave Sounder (ATMS)-based Tropical Cyclone (TC) Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The JPSS Microwave Sounder-based Tropical Cyclone (TC) Products provide estimates of tropical cyclone maximum wind speed, minimum sea level pressure, radii of 34,...

  9. UARS Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AL V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AL data product consists of daily, 4 degree increment latitude-ordered vertical profiles of...

  10. UARS Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AT V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AT data product consists of daily, 65.536 second interval time-ordered vertical profiles of...

  11. Acoustic-sounder investigation of the effects of boundary-layer decoupling on long-distance polutant transport

    International Nuclear Information System (INIS)

    Miller, E.L.

    1976-01-01

    The formation of the nocturnal surface temperature inversion results in a decrease in vertical momentum transfer which, in turn, is accompanied by an associated reduction in the transfer of pollutants from the atmosphere to surface sinks, thus decoupling the surface layer from the layer above the inversion. The diurnal oscillation in the surface temperature profiles may therefore have a significant effect upon the transport of atmospheric pollutants over long distances. Flights of a large manned balloon with a diverse array of chemical and meteorological instrumentation aboard, known as Project de Vinci, provided a unique opportunity to combine acoustic-sounder observations of qualitative temperature structure in the atmospheric boundary layer with the chemical measurements necessary to gain increased understanding of this decoupling process and its consequences for pollutant transport. The data collected on ozone on the balloon and the grounds are reported

  12. Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder

    Energy Technology Data Exchange (ETDEWEB)

    De Lange, Gert; Boersma, Dick; Dercksen, Johannes; Ermakov, Andrey B; Golstein, Hans; Hoogeveen, Ruud W M; De Jong, Leo; Khudchenko, Andrey V; Kinev, Nickolay V; Kiselev, Oleg S; Van Kuik, Bart; De Lange, Arno; Van Rantwijk, Joris; Selig, Avri M; De Vries, Ed [SRON Netherlands Institute for Space Research, PO Box 800, 9700 AV Groningen (Netherlands); Birk, Manfred [DLR German Aerospace Centre, Remote Sensing Technology Institute, D-82234 Wessling (Germany); Dmitriev, Pavel; Filippenko, Lyudmila V; Sobolev, Alexander S; Torgashin, Mikhail Yu, E-mail: G.de.Lange@sron.n, E-mail: valery@hitech.cplire.r [Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Science, 11/7 Mokhovaya Street, 125009, Moscow (Russian Federation)

    2010-04-15

    The balloon-borne instrument TELIS (TErahertz and submillimetre LImb Sounder) is a three-channel superconducting heterodyne spectrometer for atmospheric research use. It detects spectral emission lines of stratospheric trace gases that have their rotational transitions at THz frequencies. One of the channels is based on the superconducting integrated receiver (SIR) technology. We demonstrate for the first time the capabilities of the SIR technology for heterodyne spectroscopy in general, and atmospheric limb sounding in particular. We also show that the application of SIR technology is not limited to laboratory environments, but that it is well suited for remote operation under harsh environmental conditions. Within a SIR the main components needed for a superconducting heterodyne receiver such as a superconductor-insulator-superconductor (SIS) mixer with a quasi-optical antenna, a flux-flow oscillator (FFO) as the local oscillator, and a harmonic mixer to phase lock the FFO are integrated on a single chip. Light weight and low power consumption combined with broadband operation and nearly quantum limited sensitivity make the SIR a perfect candidate for use in future airborne and space-borne missions. The noise temperature of the SIR was measured to be as low as 120 K, with an intermediate frequency band of 4-8 GHz in double-sideband operation. The spectral resolution is well below 1 MHz, confirmed by our measurements. Remote control of the SIR under flight conditions has been demonstrated in a successful balloon flight in Kiruna, Sweden. The sensor and instrument design are presented, as well as the preliminary science results from the first flight.

  13. Satellite Atmospheric Sounder IRFS-2 1. Analysis of Outgoing Radiation Spectra Measurements

    Science.gov (United States)

    Polyakov, A. V.; Timofeyev, Yu. M.; Virolainen, Ya. A.; Uspensky, A. B.; Zavelevich, F. S.; Golovin, Yu. M.; Kozlov, D. A.; Rublev, A. N.; Kukharsky, A. V.

    2017-12-01

    The outgoing radiation spectra measured by the IRFS-2 spectrometer onboard Meteor-M no. 2 satellite have been analyzed. Some statistical parameters of more than 106 spectra measured in spring in 2015 have been calculated. The radiation brightness temperature varied from ˜300 K (surface temperature) up to ˜210 K (tropopause temperature). The quite high variability of the longwave measured radiation has been demonstrated. The signal-to-noise ratio distinctively decreases in the shortwave region (higher than 1300 cm-1). Intercomparisons of IR sounders IRFS-2 with IASI and CrIS spectra showed that the discrepancies in the average spectra and their variability do not exceed measurement errors in the spectral region 660-1300 cm-1. A comparison of specially chosen pairs of the simultaneously measured spectra showed that the differences between IRFS-2 and European instruments in the region of the 15-μm CO2 band and the transparency windows 8-12 μm are less than 1 mW/(m2 sr cm-1) and no more than the differences between the two IASI instruments (-A and -B). The differences between measured and simulated spectra are less than 1 mW/(m2 sr cm-1) in the mean part of CO2 band. However, starting from 720 cm-1, values appear that reach 2-4 mW/(m2 sr cm-1). This is caused by the absence of precise information about the surface temperature. Further investigations into the possible reasons for the observed disagreements are required in order to improve both the method of initial processing and the radiative model of the atmosphere.

  14. Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder

    International Nuclear Information System (INIS)

    De Lange, Gert; Boersma, Dick; Dercksen, Johannes; Ermakov, Andrey B; Golstein, Hans; Hoogeveen, Ruud W M; De Jong, Leo; Khudchenko, Andrey V; Kinev, Nickolay V; Kiselev, Oleg S; Van Kuik, Bart; De Lange, Arno; Van Rantwijk, Joris; Selig, Avri M; De Vries, Ed; Birk, Manfred; Dmitriev, Pavel; Filippenko, Lyudmila V; Sobolev, Alexander S; Torgashin, Mikhail Yu

    2010-01-01

    The balloon-borne instrument TELIS (TErahertz and submillimetre LImb Sounder) is a three-channel superconducting heterodyne spectrometer for atmospheric research use. It detects spectral emission lines of stratospheric trace gases that have their rotational transitions at THz frequencies. One of the channels is based on the superconducting integrated receiver (SIR) technology. We demonstrate for the first time the capabilities of the SIR technology for heterodyne spectroscopy in general, and atmospheric limb sounding in particular. We also show that the application of SIR technology is not limited to laboratory environments, but that it is well suited for remote operation under harsh environmental conditions. Within a SIR the main components needed for a superconducting heterodyne receiver such as a superconductor-insulator-superconductor (SIS) mixer with a quasi-optical antenna, a flux-flow oscillator (FFO) as the local oscillator, and a harmonic mixer to phase lock the FFO are integrated on a single chip. Light weight and low power consumption combined with broadband operation and nearly quantum limited sensitivity make the SIR a perfect candidate for use in future airborne and space-borne missions. The noise temperature of the SIR was measured to be as low as 120 K, with an intermediate frequency band of 4-8 GHz in double-sideband operation. The spectral resolution is well below 1 MHz, confirmed by our measurements. Remote control of the SIR under flight conditions has been demonstrated in a successful balloon flight in Kiruna, Sweden. The sensor and instrument design are presented, as well as the preliminary science results from the first flight.

  15. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    Science.gov (United States)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  16. The 2003 edition of geisa: a spectroscopic database system for the second generation vertical sounders radiance simulation

    Science.gov (United States)

    Jacquinet-Husson, N.; Lmd Team

    The GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer accessible database system, in its former 1997 and 2001 versions, has been updated in 2003 (GEISA-03). It is developed by the ARA (Atmospheric Radiation Analysis) group at LMD (Laboratoire de Météorologie Dynamique, France) since 1974. This early effort implemented the so-called `` line-by-line and layer-by-layer '' approach for forward radiative transfer modelling action. The GEISA 2003 system comprises three databases with their associated management softwares: a database of spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located in a spectral range from the microwave to the limit of the visible. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the Giant Planets. a database of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. a database of refractive indices of basic atmospheric aerosol components. Illustrations will be given of GEISA-03, data archiving method, contents, management softwares and Web access facilities at: http://ara.lmd.polytechnique.fr The performance of instruments like AIRS (Atmospheric Infrared Sounder; http://www-airs.jpl.nasa.gov) in the USA, and IASI (Infrared Atmospheric Sounding Interferometer; http://smsc.cnes.fr/IASI/index.htm) in Europe, which have a better vertical resolution and accuracy, compared to the presently existing satellite infrared vertical sounders, is directly related to the quality of the spectroscopic parameters of the optically active gases, since these are essential input in the forward models used to simulate recorded radiance spectra. For these upcoming atmospheric sounders, the so-called GEISA/IASI sub-database system has been elaborated

  17. Validation of Aura Microwave Limb Sounder stratospheric water vapor measurements by the NOAA frost point hygrometer.

    Science.gov (United States)

    Hurst, Dale F; Lambert, Alyn; Read, William G; Davis, Sean M; Rosenlof, Karen H; Hall, Emrys G; Jordan, Allen F; Oltmans, Samuel J

    2014-02-16

    Differences between stratospheric water vapor measurements by NOAA frost point hygrometers (FPHs) and the Aura Microwave Limb Sounder (MLS) are evaluated for the period August 2004 through December 2012 at Boulder, Colorado, Hilo, Hawaii, and Lauder, New Zealand. Two groups of MLS profiles coincident with the FPH soundings at each site are identified using unique sets of spatiotemporal criteria. Before evaluating the differences between coincident FPH and MLS profiles, each FPH profile is convolved with the MLS averaging kernels for eight pressure levels from 100 to 26 hPa (~16 to 25 km) to reduce its vertical resolution to that of the MLS water vapor retrievals. The mean FPH - MLS differences at every pressure level (100 to 26 hPa) are well within the combined measurement uncertainties of the two instruments. However, the mean differences at 100 and 83 hPa are statistically significant and negative, ranging from -0.46 ± 0.22 ppmv (-10.3 ± 4.8%) to -0.10 ± 0.05 ppmv (-2.2 ± 1.2%). Mean differences at the six pressure levels from 68 to 26 hPa are on average 0.8% (0.04 ppmv), and only a few are statistically significant. The FPH - MLS differences at each site are examined for temporal trends using weighted linear regression analyses. The vast majority of trends determined here are not statistically significant, and most are smaller than the minimum trends detectable in this analysis. Except at 100 and 83 hPa, the average agreement between MLS retrievals and FPH measurements of stratospheric water vapor is better than 1%.

  18. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder

    KAUST Repository

    Røstad, Anders

    2013-11-01

    We used a moored upward-facing 200 kHz echo sounder to address sedimentation of fecal pellets (FPs) from dielly migrating Meganyctiphanes norvegica. The echo sounder was located on the bottom at 150 m depth in the Oslofjord, Norway, and was cabled to shore for continuous measurements during winter and spring. Records of sinking pellets were for the first time observed with an echo sounder. Seasonal patterns of sedimentation of krill FPs were strongly correlated with data from continuous measurement of fluorescence, which illustrate the development of the spring bloom. Sedimenting particles were first observed as fluorescence values started to increase at the end of February and continued to increase until the bloom suddenly culminated at the end of March. This collapse of the bloom was detected on the echo sounder as a pulse of slowly sinking acoustic targets over a 2 d period. Prior to this event, there was a strong diel pattern in sedimentation, which correlated, with some time lag, with the diel migration of krill foraging at night near the surface. Pellet average sinking speeds ranged between 423 m d−1 and 804 m d−1, with a strong relation to pellet target strength, which is an acoustic proxy for size. This novel approach shows that echo sounders may be a valuable tool in studies of vertical pellet flux and, thereby, carbon flux, providing temporal resolution and direct observation of the sedimentation process, which are not obtained from standard methods.

  19. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.

    2010-01-01

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  20. A microwave pressure sounder. [for remote measurement of atmospheric pressure

    Science.gov (United States)

    Peckham, G. E.; Flower, D. A.

    1981-01-01

    A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.

  1. P-sounder: an airborne P-band ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Kusk, Anders

    2007-01-01

    is to test new ice sounding techniques, e.g. polarimetry, synthetic aperture processing, and coherent clutter suppression. A system analysis involving ice scattering models confirms that it is feasible to detect the bedrock through 4 km of ice and to detect deep ice layers. The ice sounder design features...

  2. Using multi-beam echo sounder backscatter data for sediment classification in very shallow water environments

    NARCIS (Netherlands)

    Amiri-Simkooei, A.R.; Snellen, M.; Simons, D.G.

    2009-01-01

    In a recent work described in Ref. [1], an angle-independent methodology was developed to use the multi-beam echo sounder backscatter (MBES) data for the seabed sediment classification. The method employs the backscatter data at a certain angle to obtain the number of sediment classes and to

  3. Direction-of-Arrival Analysis of Airborne Ice Depth Sounder Data

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Yan, Jie-Bang; Gogineni, Sivaprasad

    2017-01-01

    In this paper, we analyze the direction-of arrival(DOA) of the ice-sheet data collected over Jakobshavn Glacier with the airborne Multichannel Radar Depth Sounder (MCRDS) during the 2006 field season. We extracted weak ice–bed echoes buried in signals scattered by the rough surface of the fast...

  4. High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft

    Science.gov (United States)

    Koenig, E. W.

    1975-01-01

    Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.

  5. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    Science.gov (United States)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  6. IASI instrument: technical description and measured performances

    Science.gov (United States)

    Hébert, Ph.; Blumstein, D.; Buil, C.; Carlier, T.; Chalon, G.; Astruc, P.; Clauss, A.; Siméoni, D.; Tournier, B.

    2017-11-01

    IASI is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The IASI system includes 3 instruments that will be mounted on the Metop satellite series, a data processing software integrated in the EPS (EUMETSAT Polar System) ground segment and a technical expertise centre implemented in CNES Toulouse. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The optical configuration is based on a Michelson interferometer and the interferograms are processed by an on-board digital processing subsystem, which performs the inverse Fourier transforms and the radiometric calibration. The infrared imager co-registers the IASI soundings with AVHRR imager (AVHRR is another instrument on the Metop satellite). The presentation will focus on the architectures of the instrument, the description of the implemented technologies and the measured performance of the first flight model. CNES is leading the IASI program in association with EUMETSAT. The instrument Prime is ALCATEL SPACE.

  7. Land Surface Temperature and Emissivity Separation from Cross-Track Infrared Sounder Data with Atmospheric Reanalysis Data and ISSTES Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-Ze Zhang

    2017-01-01

    Full Text Available The Cross-track Infrared Sounder (CrIS is one of the most advanced hyperspectral instruments and has been used for various atmospheric applications such as atmospheric retrievals and weather forecast modeling. However, because of the specific design purpose of CrIS, little attention has been paid to retrieving land surface parameters from CrIS data. To take full advantage of the rich spectral information in CrIS data to improve the land surface retrievals, particularly the acquisition of a continuous Land Surface Emissivity (LSE spectrum, this paper attempts to simultaneously retrieve a continuous LSE spectrum and the Land Surface Temperature (LST from CrIS data with the atmospheric reanalysis data and the Iterative Spectrally Smooth Temperature and Emissivity Separation (ISSTES algorithm. The results show that the accuracy of the retrieved LSEs and LST is comparable with the current land products. The overall differences of the LST and LSE retrievals are approximately 1.3 K and 1.48%, respectively. However, the LSEs in our study can be provided as a continuum spectrum instead of the single-channel values in traditional products. The retrieved LST and LSEs now can be better used to further analyze the surface properties or improve the retrieval of atmospheric parameters.

  8. Detection of Earth-rotation Doppler shift from Suomi National Polar-Orbiting Partnership Cross-Track Infrared Sounder.

    Science.gov (United States)

    Chen, Yong; Han, Yong; Weng, Fuzhong

    2013-09-01

    The Cross-Track Infrared Sounder (CrIS) on the Suomi National Polar-Orbiting Partnership Satellite is a Fourier transform spectrometer and provides a total of 1305 channels for sounding the atmosphere. Quantifying the CrIS spectral accuracy, which is directly related to radiometric accuracy, is crucial for improving its data assimilation in numerical weather prediction. In this study, a cross-correlation method is used for detecting the effect of Earth-rotation Doppler shift (ERDS) on CrIS observations. Based on a theoretical calculation, the ERDS can be as large as about 1.3 parts in 10(6) (ppm) near Earth's equator and at the satellite scan edge for a field of regard (FOR) of 1 or 30. The CrIS observations exhibit a relative Doppler shift as large as 2.6 ppm for a FOR pair of 1 and 30 near the equator. The variation of the ERDS with latitude and scan position detected from CrIS observations is similar to that derived theoretically, which indicates that the spectral stability of the CrIS instrument is very high. To accurately calibrate CrIS spectral accuracy, the ERDS effect should be removed. Since the ERDS is easily predictable, the Doppler shift is correctable in the CrIS spectra.

  9. Mechanical design and qualification of IR filter mounts and filter wheel of INSAT-3D sounder for low temperature

    Science.gov (United States)

    Vora, A. P.; Rami, J. B.; Hait, A. K.; Dewan, C. P.; Subrahmanyam, D.; Kirankumar, A. S.

    2017-11-01

    Next generation Indian Meteorological Satellite will carry Sounder instrument having subsystem of filter wheel measuring Ø260mm and carrying 18 filters arranged in three concentric rings. These filters made from Germanium, are used to separate spectral channels in IR band. Filter wheel is required to be cooled to 214K and rotated at 600 rpm. This Paper discusses the challenges faced in mechanical design of the filter wheel, mainly filter mount design to protect brittle germanium filters from failure under stresses due to very low temperature, compactness of the wheel and casings for improved thermal efficiency, survival under vibration loads and material selection to keep it lighter in weight. Properties of Titanium, Kovar, Invar and Aluminium materials are considered for design. The mount has been designed to accommodate both thermal and dynamic loadings without introducing significant aberrations into the optics or incurring permanent alignment shifts. Detailed finite element analysis of mounts was carried out for stress verification. Results of the qualification tests are discussed for given temperature range of 100K and vibration loads of 12g in Sine and 11.8grms in Random at mount level. Results of the filter wheel qualification as mounted in Electro Optics Module (EOM) are also presented.

  10. UARS Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AL V010 (UARIS3AL) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AL data product consists of daily, 4 degree increment latitude-ordered vertical profiles of...

  11. UARS Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AT V010 (UARIS3AT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AT data product consists of daily, 65.536 second interval time-ordered vertical profiles of...

  12. Early results from the Whisper instrument on Cluster: An overview

    DEFF Research Database (Denmark)

    Decreau, P.M.E.; Fergeau, P.; Krasnoselskikh, V.

    2001-01-01

    The Whisper instrument yields two data sets: (i) the electron density determined via the relaxation sounder, and (ii) the spectrum of natural plasma emissions in the frequency band 2-80 kHz. Both data sets allow for the three-dimensional exploration of the magnetosphere by the Cluster mission...... the drift velocity of density structures. Wave observations are also of crucial interest for studying small-scale structures, as demonstrated in an example in the fore-shock region. Early results from the Whisper instrument are very encouraging, and demonstrate that the four-point Cluster measurements...... largely overcomes the limited telemetry allocation. The natural emissions are usually related to the plasma frequency, as identified by the sounder, and the combination of an active sounding operation and a passive survey operation provides a time resolution for the total density determination of 2.2 s...

  13. Space Plasma Slab Studies using a new 3D Embedded Reconfigurable MPSoC Sounder

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper presents recent ionospheric slab thickness measurements using a new mobile digital sounder system. The datasets obtained have been compared to the results of existing sounders in operation. The data validity has been verified. The slab thickness data allow constant monitoring of the lower ionosphere revealing the dynamic trends of the physical processes being involved. The prototype offers a tremendous amount of hardware processing power and a previously unseen response time in servicing the input and output data interfaces. This has been enabled by incorporating the latest three-dimensional Ultrascale+ technologies available commercially from the reconfigurable Field Programmable Gate Array (FPGA) computing industry. Furthermore, a previously developed Network-on-Chip (NoC) design methodology has been incorporated for connecting and controlling the application driven multiprocessor network. The system determines electron distributions, aggregate electromagnetic field gradients and plasma current density.

  14. An Assessment of Data from the Advanced Technology Microwave Sounder at the Met Office

    Directory of Open Access Journals (Sweden)

    Amy Doherty

    2015-01-01

    Full Text Available An appraisal of the Advanced Technology Microwave Sounder (ATMS for use in numerical weather prediction (NWP is presented, including an assessment of the data quality, the impact on Met Office global forecasts in preoperational trials, and a summary of performance over a period of 17 months operational use. After remapping, the noise performance (NEΔT of the tropospheric temperature sounding channels is evaluated to be approximately 0.1 K, comparing favourably with AMSU-A. However, the noise is not random, differences between observations and simulations based on short-range forecast fields show a spurious striping effect, due to 1/f noise in the receiver. The amplitude of this signal is several tenths of a Kelvin, potentially a concern for NWP applications. In preoperational tests, adding ATMS data to a full Met Office system already exploiting data from four microwave sounders improves southern hemisphere mean sea level pressure forecasts in the 2- to 5-day range by 1-2%. In operational use, where data from five other microwave sounders is assimilated, forecast impact is typically between −0.05 and −0.1 J/kg (3.4% of total mean impact per day over the period 1 April to 31 July 2013. This suggests benefits beyond redundancy, associated with reducing already small analysis errors.

  15. Troc: a proposed tropospheric sounder for chemistry and climate

    Science.gov (United States)

    Camy-Peyret, C.

    TROC has been submitted to ESA in the last call for proposals of the Earth Explorer Opportunity Missions and its focus is on tropospheric composition and chemistry-climate interactions. The mission objectives of TROC cover four research subjects. Global tropospheric chemistry: perform global measurements from space of tropospheric composition in order to improve our understanding and to constrain models of tropospheric chemistry with emphasis on tropospheric ozone. Pollution: establish the impact of mega cities of industrialised or developing countries by monitoring their pollution plumes. Biomass burning: monitor the chemical species and aerosols injected in the free troposphere during major burning episodes in the intertropical region as well as by major forest fires at other latitudes. Chemistry-climate interactions: quantify on a global scale the distributions and the sources of greenhouse gases like CO2, CH4, O3, N2O and the CFCs. Contribute to demonstration studies for monitoring from space how Montreal and Kyoto protocols are enforced as far as human impacts on atmospheric chemistry and climate are concerned. To fulfil these objectives, passive remote sensing of the troposphere has been selected as the best compromise between technical maturity and multi-species coverage. The main elements of TROC are a Fourier transform infrared (FTIR) instrument and an ultraviolet-visible (UV-vis) spectrometer, both operating in the downward-looking geometry with a 10 km diameter footprint at nadir. An ``intelligent'' pointing mirror coupled to an infrared imager is used to optimise day/night sounding down to the surface. The FTIR instrument covers at 0.1 cm-1 apodised spectral resolution 3 bands from 14 to 3.3 μ m in thermal emission and one band in solar reflected light around 2.3 μ m. The UV-vis instrument covers the regions 290-490 nm (1 nm resolution) and 520-1030 nm (2.5 nm resolution) with 43 array detectors (2 bands × 2 polarizations) in reflected

  16. Neutral wind and density perturbations in the thermosphere created by gravity waves observed by the TIDDBIT sounder

    Science.gov (United States)

    Vadas, Sharon L.; Crowley, Geoff

    2017-06-01

    In this paper, we study the 10 traveling ionospheric disturbances (TIDs) observed at zobs˜283 km by the TIDDBIT ionospheric sounder on 30 October 2007 at 0400-0700 UT near Wallops Island, USA. These TIDs propagated northwest/northward and were previously found to be secondary gravity waves (GWs) from tropical storm Noel. An instrumented sounding rocket simultaneously measured a large neutral wind peak uH' with a similar azimuth at z ˜ 325 km. Using the measured TID amplitudes and wave vectors from the TIDDBIT system, together with ion-neutral theory, GW dissipative polarization relations and ray tracing, we determine the GW neutral horizontal wind and density perturbations as a function of altitude from 220 to 380 km. We find that there is a serious discrepancy between the GW dissipative theory and the observations unless the molecular viscosity, μ, decreases with altitude in the middle to upper thermosphere. Assuming that μ∝ρ¯q, where ρ¯ is the density, we find using GW dissipative theory that the GWs could have been observed at zobs and that one or more of the GWs could have caused the uH' wind peak at z≃325 km if q ˜ 0.67 for z≥220 km. This implies that the kinematic viscosity, ν=μ/ρ¯, increases less rapidly with altitude for z≥220 km: ν∝1/ρ¯0.33. This dependence makes sense because as ρ¯→0, the distance between molecules goes to infinity, which implies no molecular collisions and therefore no molecular viscosity μ.

  17. Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder.

    Science.gov (United States)

    Hurst, Dale F; Read, William G; Vömel, Holger; Selkirk, Henry B; Rosenlof, Karen H; Davis, Sean M; Hall, Emrys G; Jordan, Allen F; Oltmans, Samuel J

    2016-09-08

    Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) - from August 2004 through December 2012 not only demonstrated agreement better than 1% between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10% at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year -1 (0.6 to 1.5% year -1 ) from ~2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor (~ 1% year -1 ) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.

  18. Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.

    Science.gov (United States)

    Wang, Likun; Chen, Yong; Han, Yong

    2016-09-01

    Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation.

  19. An FPGA-Based Adaptable 200 MHz Bandwidth Channel Sounder for Wireless Communication Channel Characterisation

    Directory of Open Access Journals (Sweden)

    David L. Ndzi

    2011-01-01

    Full Text Available This paper describes the development of a fast adaptable FPGA-based wideband channel sounder with signal bandwidths of up to 200 MHz and channel sampling rates up to 5.4 kHz. The application of FPGA allows the user to vary the number of real-time channel response averages, channel sampling interval, and duration of measurement. The waveform, bandwidth, and frequency resolution of the sounder can be adapted for any channel under investigation. The design approach and technology used has led to a reduction in size and weight by more than 60%. This makes the sounder ideal for mobile time-variant wireless communication channels studies. Averaging allows processing gains of up to 30 dB to be achieved for measurement in weak signal conditions. The technique applied also improves reliability, reduces power consumption, and has shifted sounder design complexity from hardware to software. Test results show that the sounder can detect very small-scale variations in channels.

  20. The Improvement of Brass Instrument Teaching Through the Use of a Profile of the Physical Aspects Involved. Final Report.

    Science.gov (United States)

    Nichols, Russell L.; And Others

    To aid in providing a sounder methodological program in the teaching of trumpet playing, a study was made of the profiles of physical parameters involved in playing the instrument. Data were collected while beginning, intermediate, or advanced players performed scales in F, D, and B-flat and two etudes in both staccato and legato. The means used…

  1. Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO

    Science.gov (United States)

    Choi, Michael K.

    2014-01-01

    This paper uses phase change material (PCM) in the scan cavity of an imager or sounder on satellites in geostationary orbit (GEO) to maintain the telescope temperature stable. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the telescope warm. It has no moving parts or bimetallic springs. It reduces heater power required to make up the heat lost by radiation to space through the aperture. It is an attractive thermal control option to a radiator with a louver and a sunshade.

  2. Whisper, a resonance sounder and wave analyser: Performances and perspectives for the Cluster mission

    DEFF Research Database (Denmark)

    Decreau, P.M.E.; Fergeau, P.; KrannoselsKikh, V.

    1997-01-01

    The WHISPER sounder on the Cluster spacecraft is primarily designed to provide an absolute measurement of the total plasma density within the range 0.2-80 cm(-3). This is achieved by means of a resonance sounding technique which has already proved successful in the regions to be explored. The wav...... in the electron foreshock and solar wind, to investigations about small-scale structures via density and high-frequency emission signatures, and to the analysis of the non-thermal continuum in the magnetosphere....

  3. Performance of a 1-micron, 1-joule Coherent Launch Site Atmospheric Wind Sounder

    Science.gov (United States)

    Hawley, James G.; Targ, Russell; Bruner, Richard; Henderson, Sammy W.; Hale, Charles P.; Vetorino, Steven; Lee, R. W.; Harper, Scott; Khan, Tayyab

    1992-01-01

    The paper describes the design and performance of the Coherent Launch Site Atmospheric Wind Sounder (CLAWS), which is a test and demonstration program designed for monitoring winds with a solid-state lidar in real time for the launch site vehicle guidance and control application. Analyses were conducted to trade off CO2 (9.11- and 10.6-microns), Ho:YAG (2.09 microns), and Nd:YAG (1.06-micron) laser-based lidars. The measurements set a new altitude record (26 km) for coherent wind measurements in the stratosphere.

  4. The Whisper Relaxation Sounder onboard Cluster: A Powerful Tool for Space Plasma Diagnosis around the Earth

    International Nuclear Information System (INIS)

    Trotignon, J.G.; Decreau, P.M.E.; Rauch, J.L.; LeGuirriec, E.; Canu, P.; Darrouzet, F.

    2001-01-01

    The WHISPER relaxation sounder that is onboard the four CLUSTER spacecraft has for main scientific objectives to monitor the natural waves in the 2 kHz - 80 kHz frequency range and, mostly, to determine the total plasma density from the solar wind down to the Earth's plasmasphere. To fulfil these objectives, the WHISPER uses the two long double sphere antennae of the Electric Field and Wave experiment as transmitting and receiving sensors. In its active working mode, the WHISPER works according to principles that have been worked out for topside sounding. A radio wave transmitter sends an almost monochromatic and short wave train. A few milliseconds after, a receiver listens to the surrounding plasma response. Strong and long lasting echoes are actually received whenever the transmitting frequencies coincide with characteristic plasma frequencies. Provided that these echoes, also called resonances, may be identified, the WHISPER relaxation sounder becomes a reliable and powerful tool for plasma diagnosis. When the transmitter is off, the WHISPER behaves like a passive receiver, allowing natural waves to be monitored. The paper aims mainly at the resonance identification process description and the WHISPER capabilities and performance highlighting. (author)

  5. Counter electrojet features in the Brazilian sector: simultaneous observation by radar, digital sounder and magnetometers

    Directory of Open Access Journals (Sweden)

    C. M. Denardini

    2009-04-01

    Full Text Available In the present work we show new results regarding equatorial counter electrojet (CEJ events in the Brazilian sector, based on the RESCO radar, two set of fluxgate magnetometer systems and a digital sounder. RESCO radar is a 50 MHz backscatter coherent radar installed in 1998 at São Luís (SLZ, 2.33° S, 44.60° W, an equatorial site. The Digital sounder routinely monitors the electron density profile at the radar site. The magnetometer systems are fluxgate-type installed at SLZ and Eusébio (EUS, 03.89° S, 38.44° W. From the difference between the horizontal component of magnetic field at SLZ station and the same component at EUS (EEJ ground strength several cases of westward morning electrojet and its normal inversion to the eastward equatorial electrojet (EEJ have been observed. Also, the EEJ ground strength has shown some cases of CEJ events, which been detected with the RESCO radar too. Detection of these events were investigated with respect to their time and height of occurrence, correlation with sporadic E (Es layers at the same time, and their spectral characteristics as well as the radar echo power intensity.

  6. Assimilation of Feng-Yun-3B satellite microwave humidity sounder data over land

    Science.gov (United States)

    Chen, Keyi; Bormann, Niels; English, Stephen; Zhu, Jiang

    2018-03-01

    The ECMWF has been assimilating Feng-Yun-3B (FY-3B) satellite microwave humidity sounder (MWHS) data over ocean in an operational forecasting system since 24 September 2014. It is more difficult, however, to assimilate microwave observations over land and sea ice than over the open ocean due to higher uncertainties in land surface temperature, surface emissivity and less effective cloud screening. We compare approaches in which the emissivity is retrieved dynamically from MWHS channel 1 [150 GHz (vertical polarization)] with the use of an evolving emissivity atlas from 89 GHz observations from the MWHS onboard NOAA and EUMETSAT satellites. The assimilation of the additional data over land improves the fit of short-range forecasts to other observations, notably ATMS (Advanced Technology Microwave Sounder) humidity channels, and the forecast impacts are mainly neutral to slightly positive over the first five days. The forecast impacts are better in boreal summer and the Southern Hemisphere. These results suggest that the techniques tested allow for effective assimilation of MWHS/FY-3B data over land.

  7. Interpreting Observations of Large-Scale Traveling Ionospheric Disturbances by Ionospheric Sounders

    Science.gov (United States)

    Pederick, L. H.; Cervera, M. A.; Harris, T. J.

    2017-12-01

    From July to October 2015, the Australian Defence Science and Technology Group conducted an experiment during which a vertical incidence sounder (VIS) was set up at Alice Springs Airport. During September 2015 this VIS observed the passage of many large-scale traveling ionospheric disturbances (TIDs). By plotting the measured virtual heights across multiple frequencies as a function of time, the passage of the TID can be clearly displayed. Using this plotting method, we show that all the TIDs observed during the campaign by the VIS at Alice Springs show an apparent downward phase progression of the crests and troughs. The passage of the TID can be more clearly interpreted by plotting the true height of iso-ionic contours across multiple plasma frequencies; the true heights can be obtained by inverting each ionogram to obtain an electron density profile. These plots can be used to measure the vertical phase speed of a TID and also reveal a time lag between events seen in true height compared to virtual height. To the best of our knowledge, this style of analysis has not previously been applied to other swept-frequency sounder observations. We develop a simple model to investigate the effect of the passage of a large-scale TID on a VIS. The model confirms that for a TID with a downward vertical phase progression, the crests and troughs will appear earlier in virtual height than in true height and will have a smaller apparent speed in true height than in virtual height.

  8. Applications and Lessons Learned using Data from the Atmospheric Infrared Sounder

    Science.gov (United States)

    Ray, S. E.; Fetzer, E. J.; Olsen, E. T.; Lambrigtsen, B.; Pagano, T. S.; Teixeira, J.; Licata, S. J.; Hall, J. R.

    2016-12-01

    Applications and Lessons Learned using Data from the Atmospheric Infrared SounderSharon Ray, Jet Propulsion Laboratory, California Institute of Technology The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With a 12-year data record and daily, global observations in near real-time, AIRS can play a role in applications that fall under many of the NASA Applied Sciences focus areas. AIRS' involvement in applications is two years in, so what have we learned and what are the pitfalls? AIRS has made gains in drought applications with products under consideration for inclusion in the U.S. Drought Monitor national map, as also with volcano rapid response with an internal alert system and automated products to help characterize plume extent. Efforts are underway with cold air aloft for aviation, influenza outbreak prediction, and vector borne disease. But challenges have occurred both in validation and in crossing the "valley of death" between products and decision makers. AIRS now has improved maps of standard products to be distributed in near real-time via NASA LANCE and by the Goddard DAAC as part of the Obama's administration Big Earth Data Initiative. In addition internal tools have been developed to support development and distribution of our application products. This talk will communicate the status of the AIRS applications effort along with lessons learned, and provide examples of new product imagery designed to best communicate AIRS data.

  9. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    Science.gov (United States)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  10. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  11. The Impact of Upper Tropospheric Humidity from Microwave Limb Sounder on the Midlatitude Greenhouse Effect

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1998-01-01

    This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.

  12. Preliminary Regional Analysis of the Kaguya Lunar Radar Sounder (LRS) Data through Eastern Mare Imbrium

    Science.gov (United States)

    Cooper, B.L.; Antonenko, I.; Yamaguchi, Y.; Osinski, G.; Ono, T.; Ku-mamoto, A.

    2009-01-01

    The Lunar Radar Sounder (LRS) experiment on board the Kaguya spacecraft is observing the subsurface structure of the Moon, using ground-penetrating radar operating in the frequency range of 5 MHz [1]. Because LRS data provides in-formation about lunar features below the surface, it allows us to improve our understanding of the processes that formed the Moon, and the post-formation changes that have occurred (such as basin formation and volcanism). We look at a swath of preliminary LRS data, that spans from 7 to 72 N, and from 2 to 10 W, passing through the eastern portion of Mare Imbrium (Figure 1). Using software, designed for the mineral exploration industry, we produce a preliminary, coarse 3D model, showing the regional structure beneath the study area. Future research will involve smaller subsets of the data in regions of interest, where finer structures, such as those identified in [2], can be studied.

  13. Toward a standard line for use in multibeam echo sounder calibration

    Science.gov (United States)

    Weber, Thomas C.; Rice, Glen; Smith, Michael

    2018-06-01

    A procedure is suggested in which a relative calibration for the intensity output of a multibeam echo sounder (MBES) can be performed. This procedure identifies a common survey line (i.e., a standard line), over which acoustic backscatter from the seafloor is collected with multiple MBES systems or by the same system multiple times. A location on the standard line which exhibits temporal stability in its seafloor backscatter response is used to bring the intensity output of the multiple MBES systems to a common reference. This relative calibration procedure has utility for MBES users wishing to generate an aggregate seafloor backscatter mosaic using multiple systems, revisiting an area to detect changes in substrate type, and comparing substrate types in the same general area but with different systems or different system settings. The calibration procedure is demonstrated using three different MBES systems over 3 different years in New Castle, NH, USA.

  14. Carbon Monoxide Distribution over Peninsular Malaysia from the Atmospheric Infrared Sounder (AIRS)

    Science.gov (United States)

    Rajab, Jaso M.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.

    2009-07-01

    The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. It daily coverage of ˜70% of the planet represents a significant evolutionary advance in satellite traces gas remote sensing. AIRS, the part of a large international investment to upgrade the operational meteorological satellite systems, is first of the new generation of meteorological advanced sounders for operational and research use, Providing New Insights into Weather and Climate for the 21st Century. Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant, is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidization in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. It produced by the incomplete combustion of fossil fuels and biomass burning, and that it has a role as a smog. The aim of this investigation is to study the (CO) carbon monoxide distribution over Peninsular Malaysia. The land use map of the Peninsular Malaysia was conducted by using CO total column amount, obtained from AIRS data, the map & data was processed and analyzed by using Photoshop & SigmaPlot 11.0 programs and compared for timing of various (day time) (28 August 2005 & 29 August 2007) for both direct comparison and the comparison using the same a priori profile, the CO concentrations in 28/8/2005 higher. The CO maps were generated using Kriging Interpolation technique. This interpolation technique produced high correlation coefficient, R2 and low root mean square error, RMS for CO. This study provided useful information for influence change of CO concentration on varies temperature.

  15. A global climatology of stratospheric gravity waves from Atmospheric Infrared Sounder observations

    Science.gov (United States)

    Hoffmann, Lars; Xue, Xianghui; Alexander, M. Joan

    2014-05-01

    We present the results of a new study that aims on the detection and classification of `hotspots' of stratospheric gravity waves on a global scale. The analysis is based on a nine-year record (2003 to 2011) of radiance measurements by the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite. We detect the presence of stratospheric gravity waves based on 4.3 micron brightness temperature variances. Our method is optimized for peak events, i.e., strong gravity wave events for which the local variance considerably exceeds background levels. We estimated the occurrence frequencies of these peak events for different seasons and time of day and used the results to find local maxima of gravity wave activity. In addition, we use AIRS radiances at 8.1 micron to simultaneously detect convective events, including deep convection in the tropics and mesoscale convective systems at mid latitudes. We classified the gravity waves according to their sources, based on seasonal occurrence frequencies for convection and by means of topographic data. Our study reproduces well-known hotspots of gravity waves, e.g., the mountain wave hotspots at the Andes and the Antarctic Peninsula or the convective hotspot during the thunderstorm season over the North American Great Plains. However, the high horizontal resolution of the AIRS observations also helped us to locate several smaller hotspots, which were partly unknown or poorly studied so far. Most of these smaller hotspots are found near orographic features like small mountain ranges, in coastal regions, in desert areas, or near isolated islands. This new study will help to select the most promising regions and seasons for future observational studies of gravity waves. Reference: Hoffmann, L., X. Xue, and M. J. Alexander, A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res., 118, 416-434, doi:10.1029/2012JD018658, 2013.

  16. Instrumental interaction

    OpenAIRE

    Luciani , Annie

    2007-01-01

    International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...

  17. NOAA Climate Data Record (CDR) of Intersatellite Calibrated Clear-Sky High Resolution Infrared Radiation Sounder (HIRS) Channel 12 Brightness Temperature Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The High-Resolution Infrared Radiation Sounder (HIRS) of intersatellite calibrated channel 12 brightness temperature (TB) product is a gridded global monthly time...

  18. Sound velocity from inverted echo sounders (IES) in the western Pacific Ocean from 1992-08-26 to 1993-03-22 (NODC Accession 9300159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains inverted echo sounder data collected from two stations in the western Pacific, TPW nominally @ 2S and 154E and TPE nominally @ 2S and 164E....

  19. Instrumentation for optical remote sensing from space; Proceedings of the Meeting, Cannes, France, November 27-29, 1985

    Science.gov (United States)

    Seeley, John S. (Editor); Lear, John W. (Editor); Russak, Sidney L. (Editor); Monfils, Andre (Editor)

    1986-01-01

    Papers are presented on such topics as the development of the Imaging Spectrometer for Shuttle and space platform applications; the in-flight calibration of pushbroom remote sensing instruments for the SPOT program; buttable detector arrays for 1.55-1.7 micron imaging; the design of the Improved Stratospheric and Mesospheric Sounder on the Upper Atmosphere Research Satellite; and SAGE II design and in-orbit performance. Consideration is also given to the Shuttle Imaging Radar-B/C instruments; the Venus Radar Mapper multimode radar system design; various ISO instruments (ISOCAM, ISOPHOT, and SWS and LWS); and instrumentation for the Space Infrared Telescope Facility.

  20. The Global Structure of UTLS Ozone in GEOS-5: A Multi-Year Assimilation of EOS Aura Data

    Science.gov (United States)

    Wargan, Krzysztof; Pawson, Steven; Olsen, Mark A.; Witte, Jacquelyn C.; Douglass, Anne R.; Ziemke, Jerald R.; Strahan, Susan E.; Nielsen, J. Eric

    2015-01-01

    Eight years of ozone measurements retrieved from the Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder, both on the EOS Aura satellite, have been assimilated into the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. This study thoroughly evaluates this assimilated product, highlighting its potential for science. The impact of observations on the GEOS-5 system is explored by examining the spatial distribution of the observation-minus-forecast statistics. Independent data are used for product validation. The correlation coefficient of the lower-stratospheric ozone column with ozonesondes is 0.99 and the bias is 0.5%, indicating the success of the assimilation in reproducing the ozone variability in that layer. The upper-tropospheric assimilated ozone column is about 10% lower than the ozonesonde column but the correlation is still high (0.87). The assimilation is shown to realistically capture the sharp cross-tropopause gradient in ozone mixing ratio. Occurrence of transport-driven low ozone laminae in the assimilation system is similar to that obtained from the High Resolution Dynamics Limb Sounder (HIRDLS) above the 400 K potential temperature surface but the assimilation produces fewer laminae than seen by HIRDLS below that surface. Although the assimilation produces 5 - 8 fewer occurrences per day (up to approximately 20%) during the three years of HIRDLS data, the interannual variability is captured correctly. This data-driven assimilated product is complementary to ozone fields generated from chemistry and transport models. Applications include study of the radiative forcing by ozone and tracer transport near the tropopause.

  1. Satellite Sounder Observations of Contrasting Tropospheric Moisture Transport Regimes: Saharan Air Layers, Hadley Cells, and Atmospheric Rivers

    Energy Technology Data Exchange (ETDEWEB)

    Nalli, Nicholas R.; Barnet, Christopher D.; Reale, Tony; Liu, Quanhua; Morris, Vernon R.; Spackman, J. Ryan; Joseph, Everette; Tan, Changyi; Sun, Bomin; Tilley, Frank; Leung, L. Ruby; Wolfe, Daniel

    2016-12-01

    This paper examines the performance of satellite sounder atmospheric vertical moisture proles (AVMP) under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs) and Pacific Ocean moisture conveyer belts (MCBs) commonly referred to as atmospheric rivers (ARs), both of these being mesoscale to synoptic meteorological phenomena within the vicinity of subtropical Hadley subsidence zones. Operational AVMP environmental data records retrieved from the Suomi National Polar-orbiting Partnership (SNPP) NOAA-Unique Combined Atmospheric Processing System (NUCAPS) are collocated with dedicated radiosonde observations (RAOBs) obtained from ocean-based intensive field campaigns; these RAOBs provide uniquely independent correlative truth data not assimilated into numerical weather prediction models for satellite sounder validation over open ocean. Using these marine-based data, we empirically assess the performance of the operational NUCAPS AVMP product for detecting and resolving these tropospheric moisture features over otherwise RAOB-sparse regions.

  2. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    Science.gov (United States)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  3. Space-Time Variations in Water Vapor as Observed by the UARS Microwave Limb Sounder

    Science.gov (United States)

    Elson, Lee S.; Read, William G.; Waters, Joe W.; Mote, Philip W.; Kinnersley, Jonathan S.; Harwood, Robert S.

    1996-01-01

    Water vapor in the upper troposphere has a significant impact on the climate system. Difficulties in making accurate global measurements have led to uncertainty in understanding water vapor's coupling to the hydrologic cycle in the lower troposphere and its role in radiative energy balance. The Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite is able to retrieve water vapor concentration in the upper troposphere with good sensitivity and nearly global coverage. An analysis of these preliminary retrievals based on 3 years of observations shows the water vapor distribution to be similar to that measured by other techniques and to model results. The primary MLS water vapor measurements were made in the stratosphere, where this species acts as a conserved tracer under certain conditions. As is the case for the upper troposphere, most of the stratospheric discussion focuses on the time evolution of the zonal mean and zonally varying water vapor. Stratospheric results span a 19-month period and tropospheric results a 36-month period, both beginning in October of 1991. Comparisons with stratospheric model calculations show general agreement, with some differences in the amplitude and phase of long-term variations. At certain times and places, the evolution of water vapor distributions in the lower stratosphere suggests the presence of meridional transport.

  4. The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.

  5. Dedicated Low Latitude Diurnal CO2 Frost Observation Campaigns by the Mars Climate Sounder

    Science.gov (United States)

    Piqueux, S.; Kass, D. M.; Kleinboehl, A.; Hayne, P. O.; Heavens, N. G.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.

    2017-12-01

    In December 2016 (Ls≈280, MY33) and July 2017 (Ls≈30, MY34), the Mars Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter (MRO) conducted two distinct observation campaigns. The first one aimed at 1) confirming the presence of low latitude diurnal CO2 frost on Mars, and 2) refining the estimated mass of carbon dioxide condensed at the surface, whereas the second campaign was designed to 3) search for temporally and spatially varying spectral characteristics indicative of frost properties (i.e., crystal size, contamination, etc.) and relationship to the regolith. To meet these goals, MCS acquired thermal infrared observations of the surface and atmosphere at variable local times (≈1.70-3.80 h Local True Solar Time) and in the 10°-50°N latitude band where very low thermal inertia material (frost distribution and spectral properties. In addition, pre-frost deposition surface cooling rates are found to be consistent with those predicted by numerical models (i.e., 1-2K per hour). Finally, we observe buffered surface temperatures near the local frost point, indicating a surface emissivity ≈1. (i.e., optically thin frost layers, or dust contaminated frost, or slab-like ice) and no discernable frost metamorphism. We will present a detailed analysis of these new and unique observations, and elaborate on the potential relationship between the regolith and this recurring frost cycle.

  6. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    Science.gov (United States)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  7. User expectations for multibeam echo sounders backscatter strength data-looking back into the future

    Science.gov (United States)

    Lucieer, Vanessa; Roche, Marc; Degrendele, Koen; Malik, Mashkoor; Dolan, Margaret; Lamarche, Geoffroy

    2018-06-01

    With the ability of multibeam echo sounders (MBES) to measure backscatter strength (BS) as a function of true angle of insonification across the seafloor, came a new recognition of the potential of backscatter measurements to remotely characterize the properties of the seafloor. Advances in transducer design, digital electronics, signal processing capabilities, navigation, and graphic display devices, have improved the resolution and particularly the dynamic range available to sonar and processing software manufacturers. Alongside these improvements the expectations of what the data can deliver has also grown. In this paper, we identify these user-expectations and explore how MBES backscatter is utilized by different communities involved in marine seabed research at present, and the aspirations that these communities have for the data in the future. The results presented here are based on a user survey conducted by the GeoHab (Marine Geological and Biological Habitat Mapping) association. This paper summarises the different processing procedures employed to extract useful information from MBES backscatter data and the various intentions for which the user community collect the data. We show how a range of backscatter output products are generated from the different processing procedures, and how these results are taken up by different scientific disciplines, and also identify common constraints in handling MBES BS data. Finally, we outline our expectations for the future of this unique and important data source for seafloor mapping and characterisation.

  8. Design and Implementation of a Mechanical Control System for the Scanning Microwave Limb Sounder

    Science.gov (United States)

    Bowden, William

    2011-01-01

    The Scanning Microwave Limb Sounder (SMLS) will use technological improvements in low noise mixers to provide precise data on the Earth's atmospheric composition with high spatial resolution. This project focuses on the design and implementation of a real time control system needed for airborne engineering tests of the SMLS. The system must coordinate the actuation of optical components using four motors with encoder readback, while collecting synchronized telemetric data from a GPS receiver and 3-axis gyrometric system. A graphical user interface for testing the control system was also designed using Python. Although the system could have been implemented with a FPGA-based setup, we chose to use a low cost processor development kit manufactured by XMOS. The XMOS architecture allows parallel execution of multiple tasks on separate threads-making it ideal for this application and is easily programmed using XC (a subset of C). The necessary communication interfaces were implemented in software, including Ethernet, with significant cost and time reduction compared to an FPGA-based approach. For these reasons, the XMOS technology is an attractive, cost effective, alternative to FPGA-based technologies for this design and similar rapid prototyping projects.

  9. THz limb sounder (TLS) for lower thermospheric wind, oxygen density, and temperature

    Science.gov (United States)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-07-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium (LTE) at altitudes up to 350 km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP) mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  10. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    Science.gov (United States)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  11. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  12. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  13. Simulation study for the Stratospheric Inferred Wind (SIW) sub-millimeter limb sounder

    Science.gov (United States)

    Baron, Philippe; Murtagh, Donal; Eriksson, Patrick; Ochiai, Satoshi

    2017-04-01

    -and-aac-microtec-to-develop-the-innosat-platform-and-implement-its-first-mission-named-mats.html [2] Wu D., et al.: Mesospheric Doppler wind measurements from Aura Microwave Limb Sounder (MLS), Advanced in Space Research, 42, 1246-1252, 2008 [3] Baron P., et al.: Observation of horizontal winds in the middle-atmosphere between 30S and 55N during the northern winter 2009-2010, Atmospheric Chemistry and Physics 13(13), 6049-6064, 2013, doi:10.5194/acp-13-6049-2013 [4] Baron P., et al.: Definition of an uncooled submillimeter/terahertz limb sounder for measuring middle atmospheric winds, Proceedings of ESA Living Planet Symposium, Edinburgh, UK, 9-13 September 2013, (ESA SP-722, December 2013)

  14. Space weather and HF propagation along different paths of the Russian chirp sounders network

    Science.gov (United States)

    Kurkin, V. I.; Litovkin, G. I.; Matyushonok, S. M.; Vertogradov, G. G.; Ivanov, V. A.; Poddelsky, I. N.; Rozanov, S. V.; Uryadov, V. P.

    This paper presents experimental data obtained on long paths (from 2200 km to 5700 km range) of Russian frequency modulated continues wave (chirp) sounders network for the period from 1998 to 2003. Four transmitters (near Magadan, Khabarovsk, Irkutsk, Norilsk) and four receivers (near Irkutsk, Yoshkar-Ola, Nizhny Novgorod, Rostov-on-Don) were combined into single network to investigate a influence of geomagnetic storms and substorms on HF propagation in Asian region of Russia. In this region the geographic latitudes are in greatest excess of magnetic latitudes. As a consequence, elements of the large-scale structure, such as the main ionospheric trough, and the zone of auroral ionization, are produced in the ionosphere at the background of a low electron ionization. Coordinated experiments were carried out using 3-day Solar-Geophysical activity forecast presented by NOAA Space Environment Center in Internet. Sounding operations were conducted in the frequency band 4 -- 30 MHz on a round-the-clock basis at 15-min intervals. Oblique-incidence sounding (OIS) ionograms were recorded during 5-7 days every season for some years. The comparison between experimental data and simulation of OIS ionograms using International Reference Ionospheric model (IRI-2001) allowed to estimate the forecast of HF propagation errors both under quiet condition and during geomagnetic disturbances. Strong deviations from median values of maximum observed frequencies on mid-latitude paths in daytime present a real challenge to ionospheric forecast. Subauroral and mid-latitude chirp-sounding paths run, respectively, near the northward and southward walls of the main ionospheric trough. This make sit possible to study the dynamics of the trough's boundaries under different geophysical conditions and assess the influence of ionization gradients and small-scale turbulence on HF signal characteristics. The signals off-great circle propagation were registered over a wide frequency range and for

  15. Instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-15

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  16. Instrumental analysis

    International Nuclear Information System (INIS)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-01

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  17. LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed. (orig.) 891 HP/orig. 892 BRE [de

  18. Tropospheric Carbon Monoxide Measurements from the Scanning High-resolution Interferometer Sounder on 7 September 2000 in Southern Africa during SAFARI 2000

    Science.gov (United States)

    McMillan, W. W.; McCourt, M. L.; Revercomb, H. E.; Knuteson, R. O.; Christian, T. J.; Doddridge, B. G.; Hobbs, P. V.; Lukovich, P. C.; Novelli, P. C.; Piketh, S. J.

    2003-01-01

    Retrieved tropospheric carbon monoxide (CO) column densities are presented for more than 9000 spectra obtained by the University of Wisconsin-Madison (UWis) Scanning High-Resolution Interferometer Sounder (SHIS) during a flight on the NASA ER-2 on 7 September 2000 as part of the Southern African Regional Science Initiative (SAFARI 2000) dry season field campaign. Enhancements in tropospheric column CO were detected in the vicinity of a controlled biomass burn in the Timbavati Game Reserve in northeastern South Africa and over the edge of the river of smoke in south central Mozambique. Relatively clean air was observed over the far southern coast of Mozambique. Quantitative comparisons are presented with in situ measurements from five different instruments flying on two other aircraft: the University of Washington Convair-580 (CV) and the South African Aerocommander JRB in the vicinity of the Timbavati fire. Measured tropospheric CO columns (extrapolated from 337 to 100 mb) of 2.1 x 10(exp 18) per square centimeter in background air and up to 1.5 x 10(exp 19) per square centimeter in the smoke plume agree well with SHIS retrieved tropospheric CO columns of (2.3 plus or minus 0.25) x 10(exp 18) per square centimeter over background air near the fire and (1.5 plus or minus 0.35) x 10(exp 19) per square centimeter over the smoke plume. Qualitative comparisons are presented with three other in situ CO profiles obtained by the South African JRA aircraft over Mozambique and northern South Africa showing the influence of the river of smoke.

  19. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  20. HF doppler sounder measurements of the ionospheric signatures of small scale ULF waves

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    2005-07-01

    Full Text Available An HF Doppler sounder, DOPE (DOppler Pulsation Experiment with three azimuthally-separated propagation paths is used to provide the first statistical examination of small scale-sized, high m waves where a direct measurement of the azimuthal wavenumber m, is made in the ionosphere. The study presents 27 events, predominantly in the post-noon sector. The majority of events are Pc4 waves with azimuthal m numbers ranging from –100 to –200, representing some of the smallest scale waves ever observed in the ionosphere. 4 Pc5 waves are observed in the post-noon sector. The fact that measurements for the wave azimuthal m number and the wave angular frequency are available allows the drift-bounce resonance condition to be used to hypothesise potential particle populations which could drive the waves through either a drift or drift-bounce resonance interaction mechanism. These results are compared with the statistical study presented by Baddeley et al. (2004 which investigated the statistical likelihood of such driving particle populations occurring in the magnetospheric ring current. The combination of these two studies indicates that any wave which requires a possible drift resonance interaction with particles of energies >60 keV, is statistically unlikely to be generated by such a mechanism. The evidence presented in this paper therefore suggests that in the pre-noon sector the drift-bounce resonance mechanism is statistically more likely implying an anti-symmetric standing wave structure while in the post-noon sector both a drift or drift-bounce resonance interaction is statistically possible, indicating both symmetric and anti-symmetric standing mode structures. A case study is also presented investigating simultaneous observations of a ULF wave in ground magnetometer and DOPE data. The event is in the lower m range of the statistical study and displays giant pulsation (Pg characteristics.

    Keywords

  1. HF doppler sounder measurements of the ionospheric signatures of small scale ULF waves

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    2005-07-01

    Full Text Available An HF Doppler sounder, DOPE (DOppler Pulsation Experiment with three azimuthally-separated propagation paths is used to provide the first statistical examination of small scale-sized, high m waves where a direct measurement of the azimuthal wavenumber m, is made in the ionosphere. The study presents 27 events, predominantly in the post-noon sector. The majority of events are Pc4 waves with azimuthal m numbers ranging from –100 to –200, representing some of the smallest scale waves ever observed in the ionosphere. 4 Pc5 waves are observed in the post-noon sector. The fact that measurements for the wave azimuthal m number and the wave angular frequency are available allows the drift-bounce resonance condition to be used to hypothesise potential particle populations which could drive the waves through either a drift or drift-bounce resonance interaction mechanism. These results are compared with the statistical study presented by Baddeley et al. (2004 which investigated the statistical likelihood of such driving particle populations occurring in the magnetospheric ring current. The combination of these two studies indicates that any wave which requires a possible drift resonance interaction with particles of energies >60 keV, is statistically unlikely to be generated by such a mechanism. The evidence presented in this paper therefore suggests that in the pre-noon sector the drift-bounce resonance mechanism is statistically more likely implying an anti-symmetric standing wave structure while in the post-noon sector both a drift or drift-bounce resonance interaction is statistically possible, indicating both symmetric and anti-symmetric standing mode structures. A case study is also presented investigating simultaneous observations of a ULF wave in ground magnetometer and DOPE data. The event is in the lower m range of the statistical study and displays giant pulsation (Pg characteristics. Keywords. Ionosphere (Ionosphere

  2. Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var

    Science.gov (United States)

    Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2008-01-01

    The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture

  3. Innovative instrumentation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all

  4. Innovative instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1983-11-15

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all.

  5. Instrumental aspects

    Directory of Open Access Journals (Sweden)

    Qureshi Navid

    2017-01-01

    Full Text Available Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  6. Surgical Instrument

    NARCIS (Netherlands)

    Dankelman, J.; Horeman, T.

    2009-01-01

    The present invention relates to a surgical instrument for minimall-invasive surgery, comprising a handle, a shaft and an actuating part, characterised by a gastight cover surrounding the shaft, wherein the cover is provided with a coupler that has a feed- through opening with a loskable seal,

  7. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  8. S-NPP ATMS Instrument Prelaunch and On-Orbit Performance Evaluation

    Science.gov (United States)

    Kim, Edward; Lyu, Cheng-Hsuan; Anderson, Kent; Leslie, Vincent R.; Blackwell, William J.

    2014-01-01

    The first of a new generation of microwave sounders was launched aboard the Suomi-National Polar-Orbiting Partnership satellite in October 2011. The Advanced Technology Microwave Sounder (ATMS) combines the capabilities and channel sets of three predecessor sounders into a single package to provide information on the atmospheric vertical temperature and moisture profiles that are the most critical observations needed for numerical weather forecast models. Enhancements include size/mass/power approximately one third of the previous total, three new sounding channels, the first space-based, Nyquist-sampled cross-track microwave temperature soundings for improved fusion with infrared soundings, plus improved temperature control and reliability. This paper describes the ATMS characteristics versus its predecessor, the advanced microwave sounding unit (AMSU), and presents the first comprehensive evaluation of key prelaunch and on-orbit performance parameters. Two-year on-orbit performance shows that the ATMS has maintained very stable radiometric sensitivity, in agreement with prelaunch data, meeting requirements for all channels (with margins of 40% for channels 1-15), and improvements over AMSU-A when processed for equivalent spatial resolution. The radiometric accuracy, determined by analysis from ground test measurements, and using on-orbit instrument temperatures, also shows large margins relative to requirements (specified as ATMS is especially important for this first proto-flight model unit of what will eventually be a series of ATMS sensors providing operational sounding capability for the U.S. and its international partners well into the next decade.

  9. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Weill, Jacky; Fabre, Rene.

    1981-01-01

    This article sums up the Research and Development effort at present being carried out in the five following fields of applications: Health physics and Radioprospection, Control of nuclear reactors, Plant control (preparation and reprocessing of the fuel, testing of nuclear substances, etc.), Research laboratory instrumentation, Detectors. It also sets the place of French industrial activities by means of an estimate of the French market, production and flow of trading with other countries [fr

  10. Divided Instruments

    Science.gov (United States)

    Chapman, A.; Murdin, P.

    2000-11-01

    Although the division of the zodiac into 360° probably derives from Egypt or Assyria around 2000 BC, there is no surviving evidence of Mesopotamian cultures embodying this division into a mathematical instrument. Almost certainly, however, it was from Babylonia that the Greek geometers learned of the 360° circle, and by c. 80 BC they had incorporated it into that remarkably elaborate device gener...

  11. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  12. Instrumentation maintenance

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-09-01

    It is essential to any research activity that accurate and efficient measurements be made for the experimental parameters under consideration for each individual experiment or test. Satisfactory measurements in turn depend upon having the necessary instruments and the capability of ensuring that they are performing within their intended specifications. This latter requirement can only be achieved by providing an adequate maintenance facility, staffed with personnel competent to understand the problems associated with instrument adjustment and repair. The Instrument Repair Shop at the Lawrence Berkeley Laboratory is designed to achieve this end. The organization, staffing and operation of this system is discussed. Maintenance policy should be based on studies of (1) preventive vs. catastrophic maintenance, (2) records indicating when equipment should be replaced rather than repaired and (3) priorities established to indicate the order in which equipment should be repaired. Upon establishing a workable maintenance policy, the staff should be instructed so that they may provide appropriate scheduled preventive maintenance, calibration and corrective procedures, and emergency repairs. The education, training and experience of the maintenance staff is discussed along with the organization for an efficient operation. The layout of the various repair shops is described in the light of laboratory space and financial constraints

  13. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  14. Discrimination of fish layers using the three-dimensional information obtained by a split-beam echo-sounder

    DEFF Research Database (Denmark)

    Pedersen, Jens

    1996-01-01

    separation angle between neighbours around a reference fish was 68 degrees and 74 degrees, respectively. The estimated mean target strength (TS) was found to be significantly different for the two layers and conforms to the theoretical TS calculated from the diurnal species and size composition of the layers......This study attempts to illustrate the three-dimensional pattern of a ''pelagic'' and a ''benthic'' layer of fish using single- target information obtained using a split-beam echo-sounder. Parameters such as the nearest-neighbour distance and separation angle between the two nearest neighbours...... around a reference fish were used to discriminate between the two layers. The parameters estimated were found to be significantly different between the two layers. The mean nearest-neighbour distance estimated was 6.3 m and 5.8 m for the ''benthic'' and the ''pelagic'' layers, respectively, and the mean...

  15. Stratigraphy and structural evolution of southern Mare Serenitatis - A reinterpretation based on Apollo Lunar Sounder Experiment data

    Science.gov (United States)

    Sharpton, V. L.; Head, J. W., III

    1983-01-01

    Two subsurface reflecting horizons have been detected by the Apollo Lunar Sounder Experiment (ALSE) in the southern Mare Serenitatis which appear to be regolith layers more than 2 m thick, and are correlated with major stratigraphic boundaries in the southeastern Mare Serenitatis. The present stratigraphic boundaries in the southeastern Mare Serenitatis. The present analysis implies that the lower horizon represents the interface between the earliest mare unit and the modified Serenitatis basin material below. The depth of volcanic fill within Serenitatis is highly variable, with an average thickness of mare basalts under the ALSE ground track of 1.6 km. Comparisons with the Orientale basin topography suggests that a major increaae in load thickness could occur a few km basinward of the innermost extent of the traverse. The history of volcanic infilling of Mare Serenitatis was characterized by three major episodes of volcanism.

  16. An extended Kalman-Bucy filter for atmospheric temperature profile retrieval with a passive microwave sounder

    Science.gov (United States)

    Ledsham, W. H.; Staelin, D. H.

    1978-01-01

    An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.

  17. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  18. Meteorological instrumentation

    International Nuclear Information System (INIS)

    1982-06-01

    RFS or ''Regles Fondamentales de Surete'' (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety , while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the ''Service Central de Surete des Installations Nucleaires'' or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the meteorological instrumentation required at the site of each nuclear power plant equipped with at least one pressurized water reactor

  19. Radiological instrument

    International Nuclear Information System (INIS)

    Kronenberg, S.; McLaughlin, W.L.; Seibentritt, C.R. Jr.

    1986-01-01

    An instrument is described for measuring radiation, particularly nuclear radiation, comprising: a radiation sensitive structure pivoted toward one end and including a pair of elongated solid members contiguously joined together along their length dimensions and having a common planar interface therebetween. One of the pairs of members is comprised of radiochromic material whose index of refraction changes due to anomolous dispersion as a result of being exposed to nuclear radiation. The pair of members further has mutually different indices of refraction with the member having the larger index of refraction further being transparent for the passage of light and of energy therethrough; means located toward the other end of the structure for varying the angle of longitudinal elevation of the pair of members; means for generating and projecting a beam of light into one end of the member having the larger index of refraction. The beam of light is projected toward the planar interface where it is reflected out of the other end of the same member as a first output beam; means projecting a portion of the beam of light into one end of the member having the larger index of refraction where it traverses therethrough without reflection and out of the other end of the same member as a second output beam; and means adjacent the structure for receiving the first and second output beams, whereby a calibrated change in the angle of elevation of the structure between positions of equal intensity of the first and second output beams prior to and following exposure provides a measure of the radiation sensed due to a change of refraction of the radiochromic material

  20. Radiation Budget Instrument (RBI) for JPSS-2

    Science.gov (United States)

    Georgieva, Elena; Priestley, Kory; Dunn, Barry; Cageao, Richard; Barki, Anum; Osmundsen, Jim; Turczynski, Craig; Abedin, Nurul

    2015-01-01

    Radiation Budget Instrument (RBI) will be one of five instruments flying aboard the JPSS-2 spacecraft, a polar-orbiting sun-synchronous satellite in Low Earth Orbit. RBI is a passive remote sensing instrument that will follow the successful legacy of the Clouds and Earth's Radiant Energy System (CERES) instruments to make measurement of Earth's short and longwave radiation budget. The goal of RBI is to provide an independent measurement of the broadband reflected solar radiance and Earth's emitted thermal radiance by using three spectral bands (Shortwave, Longwave, and Total) that will have the same overlapped point spread function (PSF) footprint on Earth. To ensure precise NIST-traceable calibration in space the RBI sensor is designed to use a visible calibration target (VCT), a solar calibration target (SCT), and an infrared calibration target (ICT) containing phase change cells (PCC) to enable on-board temperature calibration. The VCT is a thermally controlled integrating sphere with space grade Spectralon covering the inner surface. Two sides of the sphere will have fiber-coupled laser diodes in the UV to IR wavelength region. An electrical substitution radiometer on the integrating sphere will monitor the long term stability of the sources and the possible degradation of the Spectralon in space. In addition the radiometric calibration operations will use the Spectralon diffusers of the SCT to provide accurate measurements of Solar degradation. All those stable on-orbit references will ensure that calibration stability is maintained over the RBI sensor lifetime. For the preflight calibration the RBI will view five calibration sources - two integrating spheres and three CrIS (Cross-track Infrared Sounder ) -like blackbodies whose outputs will be validated with NIST calibration approach. Thermopile are the selected detectors for the RBI. The sensor has a requirement to perform lunar calibration in addition to solar calibration in space in a way similar to CERES

  1. A New Inversion Routine to Produce Vertical Electron-Density Profiles from Ionospheric Topside-Sounder Data

    Science.gov (United States)

    Wang, Yongli; Benson, Robert F.

    2011-01-01

    Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into vertical electron-density profiles Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) profiles produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height profile fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined profile shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global profile to keep the monotone nature of the profile, which also ensures better smoothness

  2. Impact of local and non-local sources of pollution on background US Ozone: synergy of a low-earth orbiting and geostationary sounder constellation

    Science.gov (United States)

    Bowman, K. W.; Lee, M.

    2015-12-01

    Dramatic changes in the global distribution of emissions over the last decade have fundamentally altered source-receptor pollution impacts. A new generation of low-earth orbiting (LEO) sounders complimented by geostationary sounders over North America, Europe, and Asia providing a unique opportunity to quantify the current and future trajectory of emissions and their impact on global pollution. We examine the potential of this constellation of air quality sounders to quantify the role of local and non-local sources of pollution on background ozone in the US. Based upon an adjoint sensitivity method, we quantify the role synoptic scale transport of non-US pollution on US background ozone over months representative of different source-receptor relationships. This analysis allows us distinguish emission trajectories from megacities, e.g. Beijing, or regions, e.g., western China, from natural trends on downwind ozone. We subsequently explore how a combination of LEO and GEO observations could help quantify the balance of local emissions against changes in distant sources . These results show how this unprecedented new international ozone observing system can monitor the changing structure of emissions and their impact on global pollution.

  3. Snpp CrIS Instrumental Status and Raw Data Record Quality Since the Mission

    Science.gov (United States)

    Jin, X.; Han, Y.; Sun, N.; Weng, F.; Wang, L.; Chen, Y.; Tremblay, D. A.

    2014-12-01

    The SNPP CrIS (cross-track infrared sounder) has been in service for more than two years. As the first operational interferometric hyper-spectral sounder onboard the new-generation polar-orbit meteorological satellite, CrIS's instrumental performance and data quality are widely concerned. NOAA/NESDIS/STAR CrIS Cal/Val team have been actively involved since the beginning of the mission. An intact record of the CrIS instrumental performance and raw data record (RDR) has been established. In this presentation, the continuous records of some critical indicators such as noise, gain, laser wavelength drifting and many other parameters related to the internal thermal status, are presented. It is found that the hardware performance is extremely stable in the past two years and the degradation is very small. These features make CrIS a great candidate for long-term climate studies. Moreover, the completeness of RDR data is another advantage of taking CrIS for climate studies. NOAA/NESDIS/STAR has recorded all of the CrIS RDR data since the launch and has been dedicated to improving the data quality.

  4. Buried CO2 Ice traces in South Polar Layered Deposits of Mars detected by radar sounder

    Science.gov (United States)

    Castaldo, L.; Mège, D.; Orosei, R.; Séjourné, A.

    2014-12-01

    SHARAD (SHAllow RADar) is the subsurface sounding radar provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). The Reduced Data Record of SHARAD data covering the area of the South Polar Layered Deposits (SPLD), has been used. The elaboration and interpretation of the data, aimed to estimate electromagnetic properties of surface layers, has been performed in terms of permittivity. The theory of electromagnetic scattering from fractal surfaces, and the estimation of geometric parameters from topographic data by Mars Orbiter Laser Altimeter (MOLA) which was one of five instruments on board the Mars Global Surveyor (MGS) spacecraft, has been used. A deep analysis of inversion has been made on all Mars and extended to the South Polar Caps in order to extract the area with a permittivity constant of CO2 ice. Several corrections have been applied to the data, moreover the calibration of the signal requires the determination of a constant that takes into account the power gain due to the radar system and the surface in order to compensate the power losses due to the orbitographic phenomena. The determination of regions with high probability of buried CO2 ice in the first layer of the Martian surface, is obtained extracting the real part of the permittivity constant of the CO2 ice (~2), estimated by other means. The permittivity of CO2ice is extracted from the Global Permittivity Map of Mars using the global standard deviation of itself as following: ɛCO2ice=ɛCO2ice+ Σ (1)where Σ=±std(ɛMapMars)/2Figure 1(a) shows the south polar areas where the values of the permittivity point to the possibility of a CO2 ice layer. Figure 1(b) is the corresponding geologic map. The comparison between the two maps indicates that the area with probable buried CO2 overlaps Hesperian and Amazonian polar units (Hp, Hesperian plains-forming deposits marked by narrow sinuous, anabranching ridges and irregular depressions, and

  5. Investigating the Water Vapor Component of the Greenhouse Effect from the Atmospheric InfraRed Sounder (AIRS)

    Science.gov (United States)

    Gambacorta, A.; Barnet, C.; Sun, F.; Goldberg, M.

    2009-12-01

    We investigate the water vapor component of the greenhouse effect in the tropical region using data from the Atmospheric InfraRed Sounder (AIRS). Differently from previous studies who have relayed on the assumption of constant lapse rate and performed coarse layer or total column sensitivity analysis, we resort to AIRS high vertical resolution to measure the greenhouse effect sensitivity to water vapor along the vertical column. We employ a "partial radiative perturbation" methodology and discriminate between two different dynamic regimes, convective and non-convective. This analysis provides useful insights on the occurrence and strength of the water vapor greenhouse effect and its sensitivity to spatial variations of surface temperature. By comparison with the clear-sky computation conducted in previous works, we attempt to confine an estimate for the cloud contribution to the greenhouse effect. Our results compare well with the current literature, falling in the upper range of the existing global circulation model estimates. We value the results of this analysis as a useful reference to help discriminate among model simulations and improve our capability to make predictions about the future of our climate.

  6. Detection of heavy oil on the seabed by application of a 400 kHz multibeam echo sounder

    International Nuclear Information System (INIS)

    Wendelboe, G.; Fonseca, L.; Eriksen, M.; Mutschler, M.; Hvidbak, F.

    2009-01-01

    Marine spills of heavy oil that sink to the sea floor can have significant impacts on marine ecosystems. This paper described a program implemented by the United States Coast Guard to improve operational techniques for the detection, monitoring, and recovery of sunken oil. The program has developed an algorithm based on data from a multibeam echo sounder. The algorithm used calibrated backscatter strengths (BS) to produce a mosaic of the seabed. Values below a pre-specified threshold were sorted into groups using morphological filtering techniques. The angular response curves from each group were then analyzed and compared to a reference BS curve for heavy oil. Response curves below the upper bound curve were defined as oil. The algorithm had a 90 per cent accuracy rate at a recent demonstration using oil 6, Tesoro, Sundex, and asphalt samples. It was concluded that processing times per square mile are approximately 12 hours. Further studies will be conducted to reduce computation times by replacing raw beam-formed data with data that originated solely from the region near the seabed. 15 refs., 15 tabs., 18 figs

  7. Retrieval of total water vapour in the Arctic using microwave humidity sounders

    Science.gov (United States)

    Cristian Scarlat, Raul; Melsheimer, Christian; Heygster, Georg

    2018-04-01

    Quantitative retrievals of atmospheric water vapour in the Arctic present numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above-mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we aim to extend the coverage to partially ice-covered and ice-free areas. By using modelled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open-ocean areas. The new algorithm extends the spatial coverage of the retrieval throughout the year but especially in the warmer months when higher TWV values are frequent. The high TWV measurements over both sea-ice and open-water surfaces are, however, connected to larger uncertainties as the retrieval values are close to the instrument saturation limits.This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.

  8. Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 1: Executive summary

    Science.gov (United States)

    1992-01-01

    The LAWS phase 1 and phase 2 studies have been completed on schedule and have led to significant advances in CO2 laser development. The Phase 2 Design Definition Study has shown that a large scanning mirror/high pulse energy laser LAWS Instrument is feasible and within the existing technology. The capability to monitor wind velocities with backscatter ratios of 10(exp 11) m(exp -1) SR(exp -1) is feasible. The weight budget allocated for the baseline LAWS is adequate, and sufficient reserves exist with the potential downsized configuration. With the possible decrease in available power from the baseline of 2.2 kW guideline, power and shot management is critical for the baseline configuration (15 to 20 J). This is particularly true during the 100 day occultation period each year. With the downsized configurations (5 to 7 J), power management is still necessary during the occultation but is primarily limited to shot management over the polar regions. The breadboard effort has produced significant laser advances for a tight 18 month schedule and the minimum budgets available from NASA, Lockheed, and TDS. Using the NASA funds and Lockheed and TDS fixed assets budgets, the breadboard was designed, fabricated, and brought on-line with first laser light within 16 months after ATP. First laser beam was obtained on 21 April 1992 at a 5 J power level. Tests since then have been conducted at sustained, repetitive pulse levels of over 7 J and 20 Hz. This is an increase of over two or three times greater than any system previously developed from this type laser. Increased power levels and additional life tests will be accomplished in the next LAWS phase. The Lockheed LAWS design will operate in the gravity gradient mode on-orbit, and all possible instrument vibration and jitter modes have been considered. Adequate pointing stability and control is state-of-the-art technology for the critical time periods, frequency rates, and control responses required by LAWS. Lockheed

  9. Evaluating musical instruments

    International Nuclear Information System (INIS)

    Campbell, D. Murray

    2014-01-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians

  10. Instrumental concept and preliminary performances of SIFTI: static infrared fourier transform interferometer

    Science.gov (United States)

    Hébert, Philippe-Jean; Cansot, E.; Pierangelo, C.; Buil, C.; Bernard, F.; Loesel, J.; Trémas, T.; Perrin, L.; Courau, E.; Casteras, C.; Maussang, I.; Simeoni, D.

    2017-11-01

    The SIFTI (Static Infrared Fourier Transform Interferometer) instrument aims at supporting an important part in a mission for atmospheric pollution sounding from space, by providing high spectral resolution and high Signal to Noise Ratio spectra of the atmosphere. They will allow to resolve tropospheric profiles of ozone (03) and carbon monoxide (C0), especially down to the planetary boundary layer (PBL), an altitude region of very high interest, though poorly monitored to date, for air quality and pollution monitoring. The retrieved profile of ozone, resp. C0, will contain 5 to 7, resp. 2.5 to 4, independent pieces of information. The French space agency CNES (Centre National d'Etudes Spatiales) has proposed and is studying an instrument concept for SIFTI based on a static interferometer, where the needed optical path are generated by a pair of crossed staircase fixed mirrors (replacing the moving reflector of dynamic Fourier transform interferometers like IASI or MIPAS). With the SIFTI design, a very high spectral resolution ( 0.1 cm-1 apodised) is achieved in a very compact optical setup, allowing a large throughput, hence a high SNR. The measurements are performed in the 9.5 μm band for 03 and in the 4.6 μm band for C0. The science return of the sounder can be further increased if an "intelligent pointing" process is implemented. This consists in combining the TIR sounder with a companion TIR imager, providing information on the cloud coverage in the next observed scene. 0nboard, real-time analysis of the IR image is used to command the sounder staring mirror to cloud free areas, which will maximize the probability for probing down to the surface. After the first part of the phase A, the architecture of SIFTI was studied as a trade-off between performance and resource budget. We review the main architecture and functional choices, and their advantages. The preliminary instrument concept is then presented in its main aspects and in terms of main subsystem

  11. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  12. Health physics instrument manual

    International Nuclear Information System (INIS)

    Gupton, E.D.

    1978-08-01

    The purpose of this manual is to provide apprentice health physics surveyors and other operating groups not directly concerned with radiation detection instruments a working knowledge of the radiation detection and measuring instruments in use at the Laboratory. The characteristics and applications of the instruments are given. Portable instruments, stationary instruments, personnel monitoring instruments, sample counters, and miscellaneous instruments are described. Also, information sheets on calibration sources, procedures, and devices are included. Gamma sources, beta sources, alpha sources, neutron sources, special sources, a gamma calibration device for badge dosimeters, and a calibration device for ionization chambers are described

  13. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  14. The Impact of Cross-track Infrared Sounder (CrIS) Cloud-Cleared Radiances on Hurricane Joaquin (2015) and Matthew (2016) Forecasts

    Science.gov (United States)

    Wang, Pei; Li, Jun; Li, Zhenglong; Lim, Agnes H. N.; Li, Jinlong; Schmit, Timothy J.; Goldberg, Mitchell D.

    2017-12-01

    Hyperspectral infrared (IR) sounders provide high vertical resolution atmospheric sounding information that can improve the forecast skill in numerical weather prediction. Commonly, only clear radiances are assimilated, because IR sounder observations are highly affected by clouds. A cloud-clearing (CC) technique, which removes the cloud effects from an IR cloudy field of view (FOV) and derives the cloud-cleared radiances (CCRs) or clear-sky equivalent radiances, can be an alternative yet effective way to take advantage of the thermodynamic information from cloudy skies in data assimilation. This study develops a Visible Infrared Imaging Radiometer Suite (VIIRS)-based CC method for deriving Cross-track Infrared Sounder (CrIS) CCRs under partially cloudy conditions. Due to the lack of absorption bands on VIIRS, two important quality control steps are implemented in the CC process. Validation using VIIRS clear radiances indicates that the CC method can effectively obtain the CrIS CCRs for FOVs with partial cloud cover. To compare the impacts from assimilation of CrIS original radiances and CCRs, three experiments are carried out on two storm cases, Hurricane Joaquin (2015) and Hurricane Matthew (2016), using Gridpoint Statistical Interpolation assimilation system and Weather Research and Forecasting-Advanced Research Version models. At the analysis time, more CrIS observations are assimilated when using CrIS CCRs than with CrIS original radiances. Comparing temperature, specific humidity, and U/V winds with radiosondes indicates that the data impacts are growing larger with longer time forecasts (beyond 72 h forecast). Hurricane track forecasts also show improvements from the assimilation of CrIS CCRs due to better weather system forecasts. The impacts of CCRs on intensity are basically neutral with mixed positive and negative results.

  15. Troubleshooting in nuclear instruments

    International Nuclear Information System (INIS)

    1987-06-01

    This report on troubleshooting of nuclear instruments is the product of several scientists and engineers, who are closely associated with nuclear instrumentation and with the IAEA activities in the field. The text covers the following topics: Preamplifiers, amplifiers, scalers, timers, ratemeters, multichannel analyzers, dedicated instruments, tools, instruments, accessories, components, skills, interfaces, power supplies, preventive maintenance, troubleshooting in systems, radiation detectors. The troubleshooting and repair of instruments is illustrated by some real examples

  16. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    can empower performers by producing super instrument works that allow the concert instrument to become an ensemble controlled by a single player. The existing instrumental skills of the performer can be multiplied and the qualities of regular acoustic instruments extended or modified. Such a situation......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...

  17. Atmospheric Infrared Sounder on NASA's Aqua Satellite: Applications for Volcano Rapid Response, Influenza Outbreak Prediction, and Drought Onset Prediction

    Science.gov (United States)

    Ray, S. E.; Fetzer, E. J.; Lambrigtsen, B.; Olsen, E. T.; Licata, S. J.; Hall, J. R.; Penteado, P. F.; Realmuto, V. J.; Thrastarson, H. T.; Teixeira, J.; Granger, S. L.; Behrangi, A.; Farahmand, A.

    2017-12-01

    The Atmospheric Infrared Sounder (AIRS) has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With its 15-year data record and near real-time capability, AIRS data are being used in the development of applications that fall within many of the NASA Applied Science focus areas. An automated alert system for volcanic plumes has been developed that triggers on threshold breaches of SO2, ash and dust in granules of AIRS data. The system generates a suite of granule-scale maps that depict both plume and clouds, all accessible from the AIRS web site. Alerts are sent to a curated list of volcano community members, and links to views in NASA Worldview and Google Earth are also available. Seasonal influenza epidemics are major public health concern with millions of cases of severe illness and large economic impact. Recent studies have highlighted the role of absolute or specific humidity as a likely player in the seasonal nature of these outbreaks. A quasi-operational influenza outbreak prediction system has been developed based on the SIRS model which uses AIRS and NCEP humidity data, Center for Disease Control reports on flu and flu-like illnesses, and results from Google Flu Trends. Work is underway to account for diffusion (spatial) in addition to the temporal spreading of influenza. The US Drought Monitor (USDM) is generated weekly by the National Drought Mitigation Center (NDMC) and is used by policymakers for drought decision-making. AIRS data have demonstrated utility in monitoring the development and detection of meteorological drought with both AIRS-derived standardized vapor pressure deficit and standardized relative humidity, showing early detection lead times of up to two months. An agreement was secured with the NDMC to begin a trial period using AIRS products in the production of the USDM, and in July of 2017 the operational delivery of weekly CONUS AIRS images of Relative Humidity, Surface Air Temperature

  18. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  19. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1975-01-01

    A liquid metal cooled nuclear reactor is described which has an equal number of fuel sub-assemblies and sensing instruments. Each instrument senses temperature and rate of coolant flow of a coolant derived from a group of three sub-assemblies so that an abnormal value for one sub-assembly will be indicated on three instruments thereby providing for redundancy of up to two of the three instruments. The abnormal value may be a precurser to unstable boiling of coolant

  20. Aeroacoustics of Musical Instruments

    NARCIS (Netherlands)

    Fabre, B.; Gilbert, J.; Hirschberg, Abraham; Pelorson, X.

    2012-01-01

    We are interested in the quality of sound produced by musical instruments and their playability. In wind instruments, a hydrodynamic source of sound is coupled to an acoustic resonator. Linear acoustics can predict the pitch of an instrument. This can significantly reduce the trial-and-error process

  1. Status of safeguards instrumentation

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    The International Atomic Energy Agency is performing safeguards at some nuclear power reactors, 50 bulk processing facilities, and 170 research facilities. Its verification activities require the use of instruments to measure nuclear materials and of surveillance instruments to maintain continuity of knowledge of the locations of nuclear materials. Instruments that are in use and under development to measure weight, volume, concentration, and isotopic composition of nuclear materials, and the major surveillance instruments, are described in connection with their uses at representative nuclear facilities. The current status of safeguards instrumentation and the needs for future development are discussed

  2. Early modern mathematical instruments.

    Science.gov (United States)

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  3. Bathymetric surveys at highway bridges crossing the Missouri River in Kansas City, Missouri, using a multibeam echo sounder, 2010

    Science.gov (United States)

    Huizinga, Richard J.

    2010-01-01

    Bathymetric surveys were conducted by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, on the Missouri River in the vicinity of nine bridges at seven highway crossings in Kansas City, Missouri, in March 2010. A multibeam echo sounder mapping system was used to obtain channel-bed elevations for river reaches that ranged from 1,640 to 1,800 feet long and extending from bank to bank in the main channel of the Missouri River. These bathymetric scans will be used by the Missouri Department of Transportation to assess the condition of the bridges for stability and integrity with respect to bridge scour. Bathymetric data were collected around every pier that was in water, except those at the edge of the water or in extremely shallow water, and one pier that was surrounded by a large debris raft. A scour hole was present at every pier for which bathymetric data could be obtained. The scour hole at a given pier varied in depth relative to the upstream channel bed, depending on the presence and proximity of other piers or structures upstream from the pier in question. The surveyed channel bed at the bottom of the scour hole was between 5 and 50 feet above bedrock. At bridges with drilled shaft foundations, generally there was exposure of the upstream end of the seal course and the seal course often was undermined to some extent. At one site, the minimum elevation of the scour hole at the main channel pier was about 10 feet below the bottom of the seal course, and the sides of the drilled shafts were evident in a point cloud visualization of the data at that pier. However, drilled shafts generally penetrated 20 feet into bedrock. Undermining of the seal course was evident as a sonic 'shadow' in the point cloud visualization of several of the piers. Large dune features were present in the channel at nearly all of the surveyed sites, as were numerous smaller dunes and many ripples. Several of the sites are on or near bends in the river

  4. Surface Clutter Suppression Techniques Applied to P-band Multi-Channel SAR Ice Sounder Data from East Antarctica

    DEFF Research Database (Denmark)

    Lin, Chung-Chi; Bekaert, David; Gebert, Nicolas

    ., Lausanne, developed and built the radiator-elements of the enhanced POLARIS. Several datasets were acquired in the multi-channel configuration during the Feb. 2011 campaign over East Antarctica. The POLARIS instrument will be briefly introduced, followed by an overview of the sounding campaign. Finally...

  5. Instrumentation a reader

    CERN Document Server

    Pope, P

    1990-01-01

    This book contains a selection of papers and articles in instrumentation previously pub­ lished in technical periodicals and journals of learned societies. Our selection has been made to illustrate aspects of current practice and applications of instrumentation. The book does not attempt to be encyclopaedic in its coverage of the subject, but to provide some examples of general transduction techniques, of the sensing of particular measurands, of components of instrumentation systems and of instrumentation practice in two very different environments, the food industry and the nuclear power industry. We have made the selection particularly to provide papers appropriate to the study of the Open University course T292 Instrumentation. The papers have been chosen so that the book covers a wide spectrum of instrumentation techniques. Because of this, the book should be of value not only to students of instrumen­ tation, but also to practising engineers and scientists wishing to glean ideas from areas of instrumen...

  6. Instrumentation for Nuclear Applications

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project was to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There was particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, U.S. activity involving the CAMAC international standard dataway system, the FASTBUS modular high-speed data acquisition and control system and processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. The principal accomplishments were the development and maintenance of the NIM instrumentation system that is the predominant instrumentation system in the nuclear and radiation fields worldwide, the CAMAC digital interface system in coordination with the ESONE Committee of European Laboratories, the FASTBUS high-speed system and numerous national and international nuclear instrumentation standards

  7. VIRUS instrument enclosures

    Science.gov (United States)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  8. Radiation protection instrument 1993

    International Nuclear Information System (INIS)

    1993-04-01

    The Radiation Protection Instrument, 1993 (Legislative Instrument 1559) prescribes the powers and functions of the Radiation Protection Board established under the Ghana Atomic Energy Commission by the Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C. Law 308). Also included in the Legislative Instrument are schedules on control and use of ionising radiation and radiation sources as well as procedures for notification, licensing and inspection of ionising radiation facilities. (EAA)

  9. Verification of small-scale water vapor features in VAS imagery using high resolution MAMS imagery. [VISSR Atmospheric Sounder - Multispectral Atmospheric Mapping Sensor

    Science.gov (United States)

    Menzel, Paul W.; Jedlovec, Gary; Wilson, Gregory

    1986-01-01

    The Multispectral Atmospheric Mapping Sensor (MAMS), a modification of NASA's Airborne Thematic Mapper, is described, and radiances from the MAMS and the VISSR Atmospheric Sounder (VAS) are compared which were collected simultaneously on May 18, 1985. Thermal emission from the earth atmosphere system in eight visible and three infrared spectral bands (12.3, 11.2 and 6.5 microns) are measured by the MAMS at up to 50 m horizontal resolution, and the infrared bands are similar to three of the VAS infrared bands. Similar radiometric performance was found for the two systems, though the MAMS showed somewhat less attenuation from water vapor than VAS because its spectral bands are shifted to shorter wavelengths away from the absorption band center.

  10. Networked Instrumentation Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers have developed a networked instrumentation system that connects modern experimental payloads to existing analog and digital communications...

  11. Instrument validation project

    International Nuclear Information System (INIS)

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells

  12. Instrument performance evaluation

    International Nuclear Information System (INIS)

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program

  13. [Controlling instruments in radiology].

    Science.gov (United States)

    Maurer, M

    2013-10-01

    Due to the rising costs and competitive pressures radiological clinics and practices are now facing, controlling instruments are gaining importance in the optimization of structures and processes of the various diagnostic examinations and interventional procedures. It will be shown how the use of selected controlling instruments can secure and improve the performance of radiological facilities. A definition of the concept of controlling will be provided. It will be shown which controlling instruments can be applied in radiological departments and practices. As an example, two of the controlling instruments, material cost analysis and benchmarking, will be illustrated.

  14. Ocean Optics Instrumentation Systems

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation suites for a wide variety of measurements to characterize the ocean’s optical environment. These packages have been developed to...

  15. Overview of LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed

  16. Instrumentation reference book

    CERN Document Server

    Boyes, Walt

    2002-01-01

    Instrumentation is not a clearly defined subject, having a 'fuzzy' boundary with a number of other disciplines. Often categorized as either 'techniques' or 'applications' this book addresses the various applications that may be needed with reference to the practical techniques that are available for the instrumentation or measurement of a specific physical quantity or quality. This makes it of direct interest to anyone working in the process, control and instrumentation fields where these measurements are essential.* Comprehensive and authoritative collection of technical information* Writte

  17. The latest radiation instrument

    International Nuclear Information System (INIS)

    Kang, Se Sik; Gwon, Dal Gwan; Kim, Gyeong Geum

    2008-08-01

    This book deals with the latest radiation instrument, which is comprised of eight chapters. It explains X rays instrument for medial treatment, X-ray tube instrument and permissible burden with its history, structure and characteristic high voltage apparatus with high voltage rectifier circuit, X-ray control apparatus for medical treatment, X-ray image equipment X-ray television apparatus and CCD 205, X-ray apparatus of install and types, Digital X-ray apparatus with CR 261 and DR 269, performance management on X-ray for medical treatment with its history, necessity and management in the radiation field.

  18. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1980-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities as well as wastes from old waste burial ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. Because of the topic of this workshop, only the assay instrumentation applied specifically to soil monitoring will be discussed here. Four types of soil monitors are described

  19. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1981-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities, as well as from old waste-burial-ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. The assay instrumentation that is applied specifically to soil monitoring is discussed

  20. Jones' instrument technology

    CERN Document Server

    Jones, Ernest Beachcroft; Kingham, Edward G; Radnai, Rudolf

    1985-01-01

    Jones' Instrument Technology, Volume 5: Automatic Instruments and Measuring Systems deals with general trends in automatic instruments and measuring systems. Specific examples are provided to illustrate the principles of such devices. A brief review of a considerable number of standards is undertaken, with emphasis on the IEC625 Interface System. Other relevant standards are reviewed, including the interface and backplane bus standards. This volume is comprised of seven chapters and begins with a short introduction to the principles of automatic measurements, classification of measuring system

  1. Medical instruments in museums

    DEFF Research Database (Denmark)

    Söderqvist, Thomas; Arnold, Ken

    2011-01-01

    This essay proposes that our understanding of medical instruments might benefit from adding a more forthright concern with their immediate presence to the current historical focus on simply decoding their meanings and context. This approach is applied to the intriguingly tricky question of what...... actually is meant by a "medical instrument." It is suggested that a pragmatic part of the answer might lie simply in reconsidering the holdings of medical museums, where the significance of the physical actuality of instruments comes readily to hand....

  2. Environment for the instruments

    International Nuclear Information System (INIS)

    Ambro, P.

    1992-01-01

    A properly conditioned AC power supply is necessary for reliable functioning of instruments. Electric mains power is produced primarily for industry, workshops, lighting and household uses. Its quality is adjusted to these uses. In areas sand countries with a fast growing demand for electric power, these requirements are far from being met. Electronic instruments and computers, especially in these countries, need protection against disturbances of the mains supply. A clean and dry environment is needed for reliable functioning and long life of instruments. High humidity, specially at higher temperatures, changes the characteristics of electronic components. Moreover, under these conditions fungal growth causes leakage of currents and corrosion causes poor contacts. The presence of dust enhances these effects. They give rise to malfunction of instruments, particularly of high voltage equipment

  3. CCAT Heterodyne Instrument Development

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will extend and proof-out the design concept for a high pixel count (128 pixels in 2 bands) submillimeter-wave heterodyne receiver array instrument for the...

  4. Environment for the instruments

    Energy Technology Data Exchange (ETDEWEB)

    Ambro, P

    1993-12-31

    A properly conditioned AC power supply is necessary for reliable functioning of instruments. Electric mains power is produced primarily for industry, workshops, lighting and household uses. Its quality is adjusted to these uses. In areas sand countries with a fast growing demand for electric power, these requirements are far from being met. Electronic instruments and computers, especially in these countries, need protection against disturbances of the mains supply. A clean and dry environment is needed for reliable functioning and long life of instruments. High humidity, specially at higher temperatures, changes the characteristics of electronic components. Moreover, under these conditions fungal growth causes leakage of currents and corrosion causes poor contacts. The presence of dust enhances these effects. They give rise to malfunction of instruments, particularly of high voltage equipment

  5. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  6. Nuclear instrument technician training

    International Nuclear Information System (INIS)

    Wollesen, E.S.

    1991-01-01

    This paper reports on Nuclear Instrument Technician (NIT) training that has developed at an accelerated rate over the past three decades. During the 1960's commercial nuclear power plants were in their infancy. For that reason, there is little wonder that NIT training had little structure and little creditability. NIT training, in many early plants, was little more than On-The Job Training (OJT). The seventies brought changes in Instrumentation and Controls as well as emphasis on the requirements for more in depth training and documentation. As in the seventies, the eighties saw not only changes in technologies but tighter requirements, standardized training and the development of accredited Nuclear Instrument Training; thus the conclusion: Nuclear Instrument Training Isn't What It Used To Be

  7. Carbon Footprint Reduction Instruments

    Science.gov (United States)

    This page outlines the major differences between Renewable Energy Certificates (REC) and Project Offsets and what types of claims each instrument allows the organization to make in regards to environmental emissions claims.

  8. Feasibility of modifying the high resolution infrared radiation sounder (HIRS/2) for measuring spectral components of Earth radiation budget

    Science.gov (United States)

    Koenig, E. W.; Holman, K. A.

    1980-01-01

    The concept of adding four spectral channels to the 20 channel HIRS/2 instrument for the purpose of determining the origin and profile of radiant existence from the Earth's atmosphere is considered. Methods of addition of three channels at 0.5, 1.0 and 1.6 micron m to the present 0.7 micron m visible channel and an 18-25 micron m channel to the present 19 channels spaced from 3.7 micron m to 15 micron m are addressed. Optical components and physical positions were found that permit inclusion of these added channels with negligible effect on the performance of the present 20 channels. Data format changes permit inclusion of the ERB data in the 288 bits allocated to HIRS for each scan element. A lamp and collimating optic assembly may replace one of the on board radiometric black bodies to provide a reference source for the albedo channels. Some increase in instrument dimensions, weight and power will be required to accommodate the modifications.

  9. Instrument care: everyone's responsibility

    Directory of Open Access Journals (Sweden)

    Renée du Toit

    2011-12-01

    Full Text Available Everyone working in an ophthalmic operating theatre must be competent in the care, handling, storage, and maintenance of instruments. This will help to improve surgical outcomes, maintain an economic and affordable service for patients, and provide a safe environment for the wellbeing of patients and staff.Including instrument care in theatre courses and in-service training is one way of ensuring staff competence.

  10. Instrument uncertainty predictions

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1991-07-01

    The accuracy of measurements and correlations should normally be provided for most experimental activities. The uncertainty is a measure of the accuracy of a stated value or equation. The uncertainty term reflects a combination of instrument errors, modeling limitations, and phenomena understanding deficiencies. This report provides several methodologies to estimate an instrument's uncertainty when used in experimental work. Methods are shown to predict both the pretest and post-test uncertainty

  11. Experimenting with woodwind instruments

    Science.gov (United States)

    Lo Presto, Michael C.

    2007-05-01

    Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects of holes in the tubing and other factors that make simple tubes useful as musical instruments.

  12. Maintenance of scientific instruments

    International Nuclear Information System (INIS)

    Lucero, E.

    1986-01-01

    During the last years Colombia has increased the use of nuclear techniques, instruments and equipment in ambitious health programs, as well as in research centers, industry and education; this has resulted in numerous maintenance problems. As an alternative solution IAN has established a Central Maintenance Laboratory for nuclear instruments within an International Atomic Energy Agency program for eight Latin American and nine Asian Countries. Established strategies and some results are detailed in this writing

  13. Advanced optical instruments technology

    Science.gov (United States)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-08-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  14. Bottom pressure, vertical acoustic round-trip travel time, and near-bottom currents data collected by Current-and-Pressure-recording Inverted Echo Sounders (CPIES), as part of the Kuroshio Extension System Study (KESS), from 26 April 2004 to 25 June 2006 in the Kuroshio Extension east of Japan (NODC Accession 0073269)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains Current and Pressure recording Inverted Echo Sounder (CPIES) measurements collected during the Kuroshio Extension System Study (KESS) under...

  15. Problems with radiological surveillance instrumentation

    International Nuclear Information System (INIS)

    Swinth, K.L.; Tanner, J.E.; Fleming, D.M.

    1984-09-01

    Many radiological surveillance instruments are in use at DOE facilities throughout the country. These instruments are an essential part of all health physics programs, and poor instrument performance can increase program costs or compromise program effectiveness. Generic data from simple tests on newly purchased instruments shows that many instruments will not meet requirements due to manufacturing defects. In other cases, lack of consideration of instrument use has resulted in poor acceptance of instruments and poor reliability. The performance of instruments is highly variable for electronic and mechanical performance, radiation response, susceptibility to interferences and response to environmental factors. Poor instrument performance in these areas can lead to errors or poor accuracy in measurements

  16. Problems with radiological surveillance instrumentation

    International Nuclear Information System (INIS)

    Swinth, K.L.; Tanner, J.E.; Fleming, D.M.

    1985-01-01

    Many radiological surveillance instruments are in use at DOE facilities throughout the country. These instruments are an essential part of all health physics programs, and poor instrument performance can increase program costs or compromise program effectiveness. Generic data from simple tests on newly purchased instruments shows that many instruments will not meet requirements due to manufacturing defects. In other cases, lack of consideration of instrument use has resulted in poor acceptance of instruments and poor reliability. The performance of instruments is highly variable for electronic and mechanical performance, radiation response, susceptibility to interferences and response to environmental factors. Poor instrument performance in these areas can lead to errors or poor accuracy in measurements

  17. Some emergency instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, P H

    1986-10-01

    The widespread release of activity and the resultant spread of contamination after the Chernobyl accident resulted in requests to NRPB to provide instruments for, and expertise in, the measurement of radiation. The most common request was for advice on the usefulness of existing instruments, but Board staff were also involved in their adaptation or in the development of new instruments specially to meet the circumstances of the accident. The accident occurred on 26 April. On 1 May, NRPB was involved at Heathrow Airport in the monitoring of the British students who had returned from Kiev and Minsk. The main purpose was to reassure the students by checking that their persons and belongings did not have significant surface contamination. Additional measurements were also made of iodine activity in thyroid using hand-held detectors or a mobile body monitor. This operation was arranged with the Foreign and Commonwealth Office, which had also received numerous requests for instruments from embassies and consulates in countries close to the scene of the accident. There was concern for the well-being of staff and other United Kingdom nationals who resided in or intended to visit the most affected countries. The board supplied suitable instruments, and the FCO distributed them to embassies. The frequency of environmental monitoring was increased from 29 April in anticipation of contamination and appropriate Board instrumentation was deployed. After the Chernobyl cloud arrived in the UK on 2 May, there were numerous requests from local government, public authorities, private companies and members of the public for information and advice on monitoring equipment and procedures. Some of these requirements could be met with existing equipment but members of the public were usually advised not to proceed. At a later stage, the contamination of foodstuffs and livestock required the development of an instrument capable of detecting low levels of {sup 137}Cs and {sup 134}Cs in food

  18. First Airborne IPDA Lidar Measurements of Methane and Carbon Dioxide Applying the DLR Greenhouse Gas Sounder CHARM-F

    Science.gov (United States)

    Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Quatrevalet, M.; Büdenbender, C.; Kiemle, C.; Loehring, J.; Gerbig, C.

    2015-12-01

    First airborne measurement using CHARM-F, the four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4, were performed in Spring 2015 onboard the German research aircraft HALO. The lidar is designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between aircraft and ground. HALO's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, enable the CHARM-F system to be an airborne demonstrator for future spaceborne greenhouse gas lidars. Due to a high technological conformity this applies in particular to the French-German satellite mission MERLIN, the spaceborne methane IPDA lidar. The successfully completed flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. The flights covered different ground cover types, different orography types as well as the sea. Additionally, we captured different cloud conditions, at which the broken cloud case is a matter of particular interest. This dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on technical details of the system. These activities are supported by another instrument onboard: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the lidar. Additionally the onboard instrumentation of HALO gives information about pressure and temperature for cross-checking the ECMWF data, which are intended to be used for calculating the weighting function, the key quantity for the retrieval of gas column mixing ratios from the measured gas optical depths. In combination with dedicated descents into the boundary layer and subsequent ascents, a self-contained dataset for characterizations of CHARM-F is available.

  19. Reactor instrumentation and control

    International Nuclear Information System (INIS)

    Wach, D.; Beraha, D.

    1980-01-01

    The methods for measuring radiation are shortly reviewed. The instrumentation for neutron flux measurement is classified into out-of-core and in-core instrumentation. The out-of-core instrumentation monitors the operational range from the subcritical reactor to full power. This large range is covered by several measurement channels which derive their signals from counter tubes and ionization chambers. The in-core instrumentation provides more detailed information on the power distribution in the core. The self-powered neutron detectors and the aeroball system in PWR reactors are discussed. Temperature and pressure measurement devices are briefly discussed. The different methods for leak detection are described. In concluding the plant instrumentation part some new monitoring systems and analysis methods are presented: early failure detection methods by noise analysis, acoustic monitoring and vibration monitoring. The presentation of the control starts from an qualitative assessment of the reactor dynamics. The chosen control strategy leads to the definition of the part-load diagram, which provides the set-points for the different control systems. The tasks and the functions of these control systems are described. In additiion to the control, a number of limiting systems is employed to keep the reactor in a safe operating region. Finally, an outlook is given on future developments in control, concerning mainly the increased application of process computers. (orig./RW)

  20. Instrumental analysis, second edition

    International Nuclear Information System (INIS)

    Christian, G.D.; O'Reilly, J.E.

    1988-01-01

    The second edition of Instrumental Analysis is a survey of the major instrument-based methods of chemical analysis. It appears to be aimed at undergraduates but would be equally useful in a graduate course. The volume explores all of the classical quantitative methods and contains sections on techniques that usually are not included in a semester course in instrumentation (such as electron spectroscopy and the kinetic methods). Adequate coverage of all of the methods contained in this book would require several semesters of focused study. The 25 chapters were written by different authors, yet the style throughout the book is more uniform than in the earlier edition. With the exception of a two-chapter course in analog and digital circuits, the book purports to de-emphasize instrumentation, focusing more on the theory behind the methods and the application of the methods to analytical problems. However, a detailed analysis of the instruments used in each method is by no means absent. The book has the favor of a user's guide to analysis

  1. Biochemistry Instrumentation Core Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — The UCLA-DOE Biochemistry Instrumentation Core Facility provides the UCLA biochemistry community with easy access to sophisticated instrumentation for a wide variety...

  2. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  3. Characteristics of protective instrumentation

    International Nuclear Information System (INIS)

    Reichart, G.

    1982-01-01

    Protective Instrumentation (PI) for Nuclear Power Plants (NPP) is a general term for an highly reliable instrumentation, which provides information for keeping the system within safe limits, for initation of countermeasures in the case of an incident or for mitigation of consequences of an accident. In German NPPs one can find a hierarchical structure of protective instrumentation, wherein the Reactor Protection System (RPS) has the highest priority. To meet the reliability requirements different design principles are used, like - redundancy - diversity - fail safe - decoupling. The presentation gives an overview about the different design principles and characterizes their reliability aspects. As an example for the technical realization the RPS of a German NPP is discussed in some detail. Furthermore some information about other type of PI is given and reliability aspects of the interaction of operating personell with these systems are mentioned. (orig.)

  4. Aethalometer™ Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The Aethalometer is an instrument that provides a real-time readout of the concentration of “Black” or “Elemental” carbon aerosol particles (BC or E) in an air stream (see Figure 1 and Figure 2). It is a self-contained instrument that measures the rate of change of optical transmission through a spot on a filter where aerosol is being continuously collected and uses the information to calculate the concentration of optically absorbing material in the sampled air stream. The instrument measures the transmitted light intensities through the “sensing” portion of the filter, on which the aerosol spot is being collected, and a “reference” portion of the filter as a check on the stability of the optical source. A mass flowmeter monitors the sample air flow rate. The data from these three measurements is used to determine the mean BC content of the air stream.

  5. The IKARUS instrument

    International Nuclear Information System (INIS)

    Gerster, H.J.; Stein, G.

    1994-01-01

    When the Federal Government decided on a 25% reduction of CO 2 emissions till 2005 in 1990 the necessity resulted that an instrument has to be developed for the analysis and assessment of the ecological, economic and energetic impact of different reduction strategies. The development task was awarded by the BMFT to the Research Centre Juelich in cooperation with well-known institutions of energy system research. The total instrument is scheduled to be finished by the end of 1994. For the decentral use of the instrument by a wide specialist public the developed models and data banks which are equipped with a user-friendly surface are suited for larger PCs (486, 16 MB RAM/500-1000 MB ROM). (orig.) [de

  6. ISSUERS OF FINANCIAL INSTRUMENTS

    Directory of Open Access Journals (Sweden)

    Cristian GHEORGHE

    2016-05-01

    Full Text Available The rules laid down by Romanian Capital Market Law and the regulations put in force for its implementation apply to issuers of financial instruments admitted to trading on the regulated market established in Romania. But the issuers remain companies incorporated under Company Law of 1990. Such dual regulations need increased attention in order to observe the legal status of the issuers/companies and financial instruments/shares. Romanian legislator has chosen to implement in Capital Market Law special rules regarding the administration of the issuers of financial instruments, not only rules regarding admitting and maintaining to a regulated market. Thus issuers are, in Romanian Law perspective, special company that should comply special rule regarding board of administration and general shareholders meeting.

  7. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  8. ICFA: Instrumentation school

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-10-15

    74 students, including 45 from developing countries, ten lecturers and nine laboratory instructors participated in the novel instrumentation school held in June at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, sponsored by ICTP and arranged through the Instrumentation Panel of the International Committee for Future Accelerators (ICF). During the two weeks of the course, students had the chance to construct and test a proportional chamber, measure the lifetime of cosmic ray muons, operate and analyse the performance of an 8-wire imaging drift chamber, or study noise and signal processing using a silicon photodiode.

  9. Interfacing to accelerator instrumentation

    International Nuclear Information System (INIS)

    Shea, T.J.

    1995-01-01

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed

  10. Spectroelectrochemical Instrument Measures TOC

    Science.gov (United States)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  11. Neutron multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1983-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  12. Standard NIM instrumentation system

    International Nuclear Information System (INIS)

    1990-05-01

    NIM is a standard modular instrumentation system that is in wide use throughout the world. As the NIM system developed and accommodations were made to a dynamic instrumentation field and a rapidly advancing technology, additions, revisions and clarifications were made. These were incorporated into the standard in the form of addenda and errata. This standard is a revision of the NIM document, AEC Report TID-20893 (Rev. 4) dated July 1974. It includes all the addenda and errata items that were previously issued as well as numerous additional items to make the standard current with modern technology and manufacturing practice

  13. Virtual Reality Musical Instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low-cost technologies have created a wide interest in virtual reality. In the field of computer music, the term “virtual musical instruments” has been used for a long time to describe software simulations, extensions of existing musical instruments......, and ways to control them with new interfaces for musical expression. Virtual reality musical instruments (VRMIs) that include a simulated visual component delivered via a head-mounted display or other forms of immersive visualization have not yet received much attention. In this article, we present a field...

  14. ICFA: Instrumentation school

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    74 students, including 45 from developing countries, ten lecturers and nine laboratory instructors participated in the novel instrumentation school held in June at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, sponsored by ICTP and arranged through the Instrumentation Panel of the International Committee for Future Accelerators (ICF). During the two weeks of the course, students had the chance to construct and test a proportional chamber, measure the lifetime of cosmic ray muons, operate and analyse the performance of an 8-wire imaging drift chamber, or study noise and signal processing using a silicon photodiode

  15. Instrumentation Cables Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  16. Celadon Figurines Play Instruments

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    This group of figurines, each 0.15m tall, were unearthed from a Tang Dynasty tomb in Changsha in 1977. Music was very developed in the Tang Dynasty. Colorful musical instruments and dances were popular both among the people and in the palace. These vivid-looking figurines wear pleated skirts with small sleeves and open chest, a style influenced by the non-Han nationalities living in the north and west of China. Some of the musical instruments were brought from the Western Regions. The figurines are playing the xiao (a vertical bamboo flute), the konghou (an

  17. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. An inspector-instrument interface design that allows communication of procedures, responses, and results between the instrument and user is presented. This capability has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  18. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. This report describes an inspector-instrument interface design which allows communication of procedures, responses, and results between the instrument and user. The interface has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  19. Use of Fourier transforms for asynoptic mapping: Applications to the Upper Atmosphere Research Satellite microwave limb sounder

    Science.gov (United States)

    Elson, Lee S.; Froidevaux, Lucien

    1993-01-01

    Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (O3), chlorine monoxide (ClO), temperature, and water vapor have been transformed by this process. The transforms have been inverted to provide maps of these quantities at selected times, providing a method of accurate time interpolation. Maps obtained by this process show evidence of both horizontal and vertical transport of important trace species such as O3 and ClO. An examination of the polar regions indicates that large-scale planetary variations are likely to play a significant role in transporting midstratospheric O3 into the polar regions. There is also evidence that downward transport occurs, providing a means of moving O3 into the polar vortex at lower altitudes. The transforms themselves show the structure and propagation characteristics of wave variations.

  20. Power station instrumentation

    International Nuclear Information System (INIS)

    Jervis, M.W.

    1993-01-01

    Power stations are characterized by a wide variety of mechanical and electrical plant operating with structures, liquids and gases working at high pressures and temperatures and with large mass flows. The voltages and currents are also the highest that occur in most industries. In order to achieve maximum economy, the plant is operated with relatively small margins from conditions that can cause rapid plant damage, safety implications, and very high financial penalties. In common with other process industries, power stations depend heavily on control and instrumentation. These systems have become particularly significant, in the cost-conscious privatized environment, for providing the means to implement the automation implicit in maintaining safety standards, improving generation efficiency and reducing operating manpower costs. This book is for professional instrumentation engineers who need to known about their use in power stations and power station engineers requiring information about the principles and choice of instrumentation available. There are 8 chapters; chapter 4 on instrumentation for nuclear steam supply systems is indexed separately. (Author)

  1. University Reactor Instrumentation Program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1992-11-01

    Recognizing that the University Reactor Instrumentation Program was developed in response to widespread needs in the academic community for modernization and improvement of research and training reactors at institutions such as the University of Florida, the items proposed to be supported by this grant over its two year period have been selected as those most likely to reduce foreed outages, to meet regulatory concerns that had been expressed in recent years by Nuclear Regulatory Commission inspectors or to correct other facility problems and limitations. Department of Energy Grant Number DE-FG07-90ER129969 was provided to the University of Florida Training Reactor(UFTR) facility through the US Department of Energy's University Reactor Instrumentation Program. The original proposal submitted in February, 1990 requested support for UFTR facility instrumentation and equipment upgrades for seven items in the amount of $107,530 with $13,800 of this amount to be the subject of cost sharing by the University of Florida and $93,730 requested as support from the Department of Energy. A breakdown of the items requested and total cost for the proposed UFTR facility instrumentation and equipment improvements is presented

  2. Neutron instrumentation for biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, S.A. [Institut Laue-Langevin, Grenoble (France)

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  3. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  4. Economic Policy Instruments

    DEFF Research Database (Denmark)

    Klemmensen, Børge

    2007-01-01

    Økonomiske instrumenter begrundes med behovet for politiske indgreb, der muliggør internaliseringen af omkostningerne ved de miljøpåvirkninger, produktion and levevis afstedkommer, således at hensyntagen til miljøet bliver en del af virksomheders og husholdningers omkostninger og dermed en tilsky...

  5. Radiometric well logging instruments

    International Nuclear Information System (INIS)

    Davydov, A.V.

    1975-01-01

    The technical properties of well instruments for radioactive logging used in the radiometric logging complexes PKS-1000-1 (''Sond-1'') and PRKS-2 (''Vitok-2'') are described. The main features of the electric circuit of the measuring channels are given

  6. Advanced instrumentation and teleoperation

    International Nuclear Information System (INIS)

    Decreton, M.

    1998-01-01

    SCK-CEN's advanced instrumentation and teleoperation project aims at evaluating the potential of a telerobotic approach in a nuclear environment and, in particular, the use of remote-perception systems. Main achievements in 1997 in the areas of R and D on radiation tolerance for remote sensing, optical fibres and optical-fibre sensors, and computer-aided teleoperation are reported

  7. Health physics instrumentation needs

    International Nuclear Information System (INIS)

    Selby, J.M.; Swinth, K.L.; Kenoyer, J.L.

    1984-10-01

    Deficiencies and desirable improvements can be identified in every technical area in which health physics instruments are employed. The needed improvements cover the full spectrum including long-term reliability, human factors, accuracy, ruggedness, ease of calibration, improved radiation response, and improved mixed field response. Some specific areas of deficiency noted along with needed improvements. 17 references

  8. Virtual reality musical instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low cost technologies has created a wide interest in virtual reality (VR), but how to design and evaluate multisensory interactions in VR remains as a challenge. In this paper, we focus on virtual reality musical instruments, present an overview of our...

  9. Creating a Super Instrument

    DEFF Research Database (Denmark)

    Kallionpää, Maria; Gasselseder, Hans-Peter

    2015-01-01

    Thanks to the development of new technology, musical instruments are no more tied to their existing acoustic or technical limitations as almost all parameters can be augmented or modified in real time. An increasing number of composers, performers, and computer programmers have thus become intere...

  10. CMO Site: Ocean Instrumentation

    Science.gov (United States)

    1997-02-01

    Precipitation , Lightning, Visibility 0150 A InterOcea Hawser Strain 1.. systems, inc. and more... n 1946 3540 aero court san diego ca 92123-1799 usa phone: (619...AGU’s Microgal culture Association, P.O. Box 1004, April 8-10, 1997-Underwater Gravimetry : Instruments, Observa- Niland, CA 92257; (619) 359-3474

  11. Instrumentation in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Julius, H.W.

    1986-01-01

    In the performance of a thermoluminescence dosimetry (TLD) system the equipment plays an important role. Crucial parameters of instrumentation in TLD are discussed in some detail. A review is given of equipment available on the market today - with some emphasis on automation - which is partly based on information from industry and others involved in research and development. (author)

  12. Ion chamber instrument

    International Nuclear Information System (INIS)

    Stephan, D.H.

    1975-01-01

    An electrical ionization chamber is described having a self-supporting wall of cellular material which is of uniform areal density and formed of material, such as foamed polystyrene, having an average effective atomic number between about 4 and about 9, and easily replaceable when on the instrument. (auth)

  13. Integrating Nephelometer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Integrating Nephelometer (Figure 1) is an instrument that measures aerosol light scattering. It measures aerosol optical scattering properties by detecting (with a wide angular integration – from 7 to 170°) the light scattered by the aerosol and subtracting the light scattered by the carrier gas, the instrument walls and the background noise in the detector (zeroing). Zeroing is typically performed for 5 minutes every day at midnight UTC. The scattered light is split into red (700 nm), green (550 nm), and blue (450 nm) wavelengths and captured by three photomultiplier tubes. The instrument can measure total scatter as well as backscatter only (from 90 to 170°) (Heintzenberg and Charlson 1996; Anderson et al. 1996; Anderson and Ogren 1998; TSI 3563 2015) At ARM (Atmospheric Radiation Measurement), two identical Nephelometers are usually run in series with a sample relative humidity (RH) conditioner between them. This is possible because Nephelometer sampling is non-destructive and the sample can be passed on to another instrument. The sample RH conditioner scans through multiple RH values in cycles, treating the sample. This kind of setup allows to study how aerosol particles’ light scattering properties are affected by humidification (Anderson et al. 1996). For historical reasons, the two Nephelometers in this setup are labeled “wet” and “dry”, with the “dry” Nephelometer usually being the one before the conditioner and sampling ambient air (the names are switched for the MAOS measurement site due to the high RH of the ambient air).

  14. Measurement and Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Harold

    2018-01-02

    This is a chapter for a book called the Standard Handbook for Electrical Engineering. Though it is not obvious from the title, the book deals mainly with power engineering. The first chapter (not mine) is about the fundamental quantities used in measurement. This chapter is about the process and the instrumentation.

  15. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  16. CRISP instrument manual

    International Nuclear Information System (INIS)

    Bucknall, D.G.; Langridge, Sean

    1997-05-01

    This document is a user manual for CRISP, one of the two neutron reflectomers at ISIS. CRISP is highly automated allowing precision reproducible measurements. The manual provides detailed instructions for the setting-up and running of the instrument and advice on data analysis. (UK)

  17. The Science of String Instruments

    CERN Document Server

    Rossing, Thomas D

    2010-01-01

    Many performing musicians, as well as instrument builders, are coming to realize the importance of understanding the science of musical instruments. This book explains how string instruments produce sound. It presents basic ideas in simple language, and it also translates some more sophisticated ideas in non-technical language. It should be of interest to performers, researchers, and instrument makers alike.

  18. netherland hydrological modeling instrument

    Science.gov (United States)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  19. Developments in analytical instrumentation

    Science.gov (United States)

    Petrie, G.

    The situation regarding photogrammetric instrumentation has changed quite dramatically over the last 2 or 3 years with the withdrawal of most analogue stereo-plotting machines from the market place and their replacement by analytically based instrumentation. While there have been few new developments in the field of comparators, there has been an explosive development in the area of small, relatively inexpensive analytical stereo-plotters based on the use of microcomputers. In particular, a number of new instruments have been introduced by manufacturers who mostly have not been associated previously with photogrammetry. Several innovative concepts have been introduced in these small but capable instruments, many of which are aimed at specialised applications, e.g. in close-range photogrammetry (using small-format cameras); for thematic mapping (by organisations engaged in environmental monitoring or resources exploitation); for map revision, etc. Another innovative and possibly significant development has been the production of conversion kits to convert suitable analogue stereo-plotting machines such as the Topocart, PG-2 and B-8 into fully fledged analytical plotters. The larger and more sophisticated analytical stereo-plotters are mostly being produced by the traditional mainstream photogrammetric systems suppliers with several new instruments and developments being introduced at the top end of the market. These include the use of enlarged photo stages to handle images up to 25 × 50 cm format; the complete integration of graphics workstations into the analytical plotter design; the introduction of graphics superimposition and stereo-superimposition; the addition of correlators for the automatic measurement of height, etc. The software associated with this new analytical instrumentation is now undergoing extensive re-development with the need to supply photogrammetric data as input to the more sophisticated G.I.S. systems now being installed by clients, instead

  20. Climate variability and trends in biogenic emissions imprinted on satellite observations of formaldehyde from SCIAMACHY and OMI sounders

    Science.gov (United States)

    Stavrakou, Trissevgeni; Müller, Jean-François; Bauwens, Maite; De Smedt, Isabelle; Van Roozendael, Michel

    2017-04-01

    Biogenic hydrocarbon emissions (BVOC) respond to temperature, photosynthetically active radiation, leaf area index, as well as to factors like leaf age, soil moisture, and ambient CO2 concentrations. Isoprene is the principal contributor to BVOC emissions and accounts for about half of the estimated total emissions on the global scale, whereas monoterpenes are also significant over boreal ecosystems. Due to their large emissions, their major role in the tropospheric ozone formation and contribution to secondary organic aerosols, BVOCs are highly relevant to both air quality and climate. Their oxidation in the atmosphere leads to the formation of formaldehyde (HCHO) at high yields. Satellite observations of HCHO abundances can therefore inform us on the spatial and temporal variability of the underlying sources and on their emission trends. The main objective of this study is to investigate the interannual variability and trends of observed HCHO columns during the growing season, when BVOC emissions are dominant, and interpret them in terms of BVOC emission flux variability. To this aim, we use the MEGAN-MOHYCAN model driven by the ECMWF ERA-interim meteorology to calculate bottom-up BVOC fluxes on the global scale (Müller et al. 2008, Stavrakou et al. 2014) over 2003-2015, and satellite HCHO observations from SCIAMACHY (2003-2011) and OMI (2005-2015) instruments (De Smedt et al. 2008, 2015). We focus on mid- and high-latitude regions of the Northern Hemisphere in summertime, as well as tropical regions taking care to exclude biomass burning events which also lead to HCHO column enhancements. We find generally a very strong temporal correlation (>0.7) between the simulated BVOC emissions and the observed HCHO columns over temperate and boreal ecosystems. Positive BVOC emission trends associated to warming climate are found in almost all regions and are well corroborated by the observations. Furthermore, using OMI HCHO observations over 2005-2015 as constraints in

  1. A GC Instrument Simulator

    Science.gov (United States)

    Armitage, D. Bruce

    1999-02-01

    This simulator was developed to help students beginning the study of gas chromatographic instruments to understand their operation. It is not meant to teach chromatographic theory. The instrument simulator is divided into 5 sections. One is for sample preparation. Another is used to manage carrier gases and choose a detector and column. The third sets the conditions for either isothermal or programmed temperature operation. A fourth section models manual injections, and the fifth is the autosampler. The operator has a choice among 6 columns of differing diameters and packing polarities and a choice of either isothermal or simple one-stage temperature programming. The simulator can be operated in either single-sample mode or as a 10-sample autosampler. The integrator has two modes of operation, a "dumb" mode in which only the retention time, area of the peak, and percentage area are listed and a "smart" mode that also lists the components' identities. The identities are obtained from a list of names and retention times created by the operator. Without this list only the percentages and areas are listed. The percentages are based on the areas obtained from the chromatogram and not on the actual percentages assigned during sample preparation. The data files for the compounds used in the simulator are ASCII files and can be edited easily to add more compounds than the 11 included with the simulator. A maximum of 10 components can be used in any one sample. Sample mixtures can be made on a percent-by-volume basis, but not by mass of sample per volume of solvent. A maximum of 30 compounds can be present in any one file, but the number of files is limited only by the operating system. (I suggest that not more than 20 compounds be used in any one file, as scrolling through large numbers of compounds is annoying to say the least.) File construction and layout are discussed in detail in the User's Manual. Chromatograms are generated by calculating a retention time based on

  2. Data acquisition instruments: Psychopharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  3. Social Responsibility Instruments

    Directory of Open Access Journals (Sweden)

    Katarzyna Mizera

    2008-09-01

    Full Text Available Responsible business notion is more and more present in Polish economy, however the results of the research carried out in Polish business still shows a low level of CRS idea knowledge, especially in small and medium companies. Although responsible business notion is generally known, its details, ways of preparing strategy, instruments and what is more its benefits are still narrowly spread. Many business people face the lack of knowledge and information, which on one hand make it easier to spread and deepen wrong stereotypes connected with this notion and on the other hand make business people unwilling to implement CRS in their companies. The subjects of this article are examples of instruments which are responsible for realization of social responsibility strategy.

  4. Radiation measuring instrument

    International Nuclear Information System (INIS)

    Genrich, V.

    1985-01-01

    A highly sensitive and compactly structured radiation measuring instrument for detecting ionizing radiation, in particular for measuring dose rates and contamination. The laminar structure of the associated counter tube, using only a few, simple plastic parts and a highly elastic counter wire, makes it possible to use the simplest manufacturing techniques. The service life of the counter tube construction, which is completely and permanently sealed and filled with gas, is expected to be more than 12 years. The described counter tube can be adapted in optimal fashion to the available space in a pocket instrument if it is used in combination with a specialized high-voltage generator which is low in interference voltage and with a pulse evaluation circuit having a means of compensating for interference voltage

  5. Radon-Instrumentation

    International Nuclear Information System (INIS)

    Moreno y Moreno, A.

    2003-01-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  6. Testing Aircraft Instruments.

    Science.gov (United States)

    1981-02-11

    1. Have test data been collected, recorded, and presented in accordance with this TOP? Yes No Comment : 2. Were the facilities, test equipment...instrumentation, and support accommodations adequate to accomplish the test objectives? Yes No Comment : 3. Have all data collected been reviewed for...correctness and completeness? Yes No Comment : 4. Were the test results compromised in any way due to insufficient test planning? Yes No Comment : 5. Were the

  7. Transgressive or Instrumental?

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2018-01-01

    Contemporary practices that connect the arts with learning are widespread at all level of educational systems and in organisations, but they include very diverse approaches, multiple methods and background values. Regardless of explicit learning benefits, the arts/learning partnerships bring about...... creativity and the other on practices of arts-integration. My final point rests on the belief that the opposition of transgression and instrumentality is a deceiving perspective on the arts, against the background of the aesthetic plurality and hybridity....

  8. EPRTM Reactor neutron instrumentation

    International Nuclear Information System (INIS)

    Pfeiffer, Maxime; SALA, Stephanie

    2013-06-01

    The core safety during operation is linked, in particular, to the respect of criteria related to the heat generated in fuel rods and to the heat exchange between the rods and the coolant. This local power information is linked to the power distribution in the core. In order to evaluate the core power distribution, the EPR TM reactor relies on several types of neutron detectors: - ionization chambers located outside the vessel and used for protection and monitoring - a fixed in-core instrumentation based on Cobalt Self Powered Neutron Detectors used for protection and monitoring - a mobile reference in-core instrumentation based on Vanadium aero-balls This document provides a description of this instrumentation and its use in core protection, limitation, monitoring and control functions. In particular, a description of the detectors and the principles of their signal generation is supplied as well as the description of the treatments related to these detectors in the EPR TM reactor I and C systems (including periodical calibration). (authors)

  9. Mandolin Family Instruments

    Science.gov (United States)

    Cohen, David J.; Rossing, Thomas D.

    The mandolin family of instruments consists of plucked chordophones, each having eight strings in four double courses. With the exception of the mandobass, the courses are tuned in intervals of fifths, as are the strings in violin family instruments. The soprano member of the family is the mandolin, tuned G3-D4-A4-E5. The alto member of the family is the mandola, tuned C3-G3-D4-A4. The mandola is usually referred to simply as the mandola in the USA, but is called the tenor mandola in Europe. The tenor member of the family is the octave mandolin, tuned G2-D3-A3-E4. It is referred to as the octave mandolin in the USA, and as the octave mandola in Europe. The baritone member of the family is the mandocello, or mandoloncello, tuned C2-G2-D3-A3. A variant of the mandocello not common in the USA is the five-course liuto moderno, or simply liuto, designed for solo repertoire. Its courses are tuned C2-G2-D3-A3-E4. A mandobass was also made by more than one manufacturer during the early twentieth century, though none are manufactured today. They were fretted instruments with single string courses tuned E1-A1-D2-G2. There are currently a few luthiers making piccolo mandolins, tuned C4-G4-D5-A5.

  10. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1976-01-01

    Reference is made to the instrumentation of liquid metal cooled fast reactors. In order to ensure the safe operation of such reactors it is necessary to constantly monitor the coolant flowing through the fuel assemblies for temperature and rate of flow, requiring a large number of sensors. An improved and simplified arrangement is claimed in which the fuel assemblies feed a fraction of coolant to three instrument units arranged to sense the temperature and rate of flow of samples of coolant. Each instrument unit comprises a sleeve housing a sensing unit and has a number of inlet ducts arranged for receiving coolant from a fuel assembly together with a single outlet. The sensing unit has three thermocouple hot junctions connected in series, the hot junctions and inlet ducts being arranged in pairs. Electromagnetic windings around an inductive core are arranged to sense variation in flow of liquid metal by flux distortion. Fission product sensing means may also be provided. Full constructional details are given. (U.K.)

  11. Recreational Fish-Finders--An Inexpensive Alternative to Scientific Echo-Sounders for Unravelling the Links between Marine Top Predators and Their Prey.

    Directory of Open Access Journals (Sweden)

    Alistair M McInnes

    Full Text Available Studies investigating how mobile marine predators respond to their prey are limited due to the challenging nature of the environment. While marine top predators are increasingly easy to study thanks to developments in bio-logging technology, typically there is scant information on the distribution and abundance of their prey, largely due to the specialised nature of acquiring this information. We explore the potential of using single-beam recreational fish-finders (RFF to quantify relative forage fish abundance and draw inferences of the prey distribution at a fine spatial scale. We compared fish school characteristics as inferred from the RFF with that of a calibrated scientific split-beam echo-sounder (SES by simultaneously operating both systems from the same vessel in Algoa Bay, South Africa. Customized open-source software was developed to extract fish school information from the echo returns of the RFF. For schools insonified by both systems, there was close correspondence between estimates of mean school depth (R2 = 0.98 and school area (R2 = 0.70. Estimates of relative school density (mean volume backscattering strength; Sv measured by the RFF were negatively biased through saturation of this system given its smaller dynamic range. A correction factor applied to the RFF-derived density estimates improved the comparability between the two systems. Relative abundance estimates using all schools from both systems were congruent at scales from 0.5 km to 18 km with a strong positive linear trend in model fit estimates with increasing scale. Although absolute estimates of fish abundance cannot be derived from these systems, they are effective at describing prey school characteristics and have good potential for mapping forage fish distribution and relative abundance. Using such relatively inexpensive systems could greatly enhance our understanding of predator-prey interactions.

  12. A comprehensive overview of the climatological composition of the Asian summer monsoon anticyclone based on 10 years of Aura Microwave Limb Sounder measurements

    Science.gov (United States)

    Santee, M. L.; Manney, G. L.; Livesey, N. J.; Schwartz, M. J.; Neu, J. L.; Read, W. G.

    2017-05-01

    Intense deep convection associated with the Asian summer monsoon (ASM) lofts surface pollutants to the upper troposphere/lower stratosphere (UTLS), where strong winds and long chemical lifetimes allow intercontinental transport, affecting atmospheric composition around the globe. The Aura Microwave Limb Sounder (MLS), launched in 2004, makes simultaneous colocated measurements of trace gases and cloud ice water content (a proxy for deep convection) in the UTLS on a daily basis. Here we exploit the dense spatial and temporal coverage, long-term data record, extensive measurement suite, and insensitivity to aerosol and most clouds of Aura MLS to characterize the climatological (2005-2014) composition of the ASM anticyclone throughout its annual life cycle. We use version 4 MLS data to quantify spatial and temporal variations in both tropospheric (H2O, CO, CH3Cl, CH3CN, CH3OH) and stratospheric (O3, HNO3, HCl) tracers on four potential temperature surfaces (350-410 K). Inside the mature anticyclone, all species exhibit substantial changes, not only from their premonsoon distributions in the ASM region but also from their summertime distributions in the rest of the hemisphere. Different tracers exhibit dissimilar seasonal evolution, and the exact location and timing of their extreme values vary. Although individual aspects of the anticyclone have been described previously, we present a uniquely comprehensive overview of the climatological seasonal evolution of the ASM and its impact on UTLS composition. This work provides valuable context for planned in situ measurements as well as a benchmark for model evaluation and future investigations of interannual variability and long-term changes in monsoon processes.

  13. Interrelated variations of O3, CO and deep convection in the tropical/subtropical upper troposphere observed by the Aura Microwave Limb Sounder (MLS during 2004–2011

    Directory of Open Access Journals (Sweden)

    L. Froidevaux

    2013-01-01

    Full Text Available The interrelated geographic and temporal variability seen in more than seven years of tropical and subtropical upper tropospheric (215 hPa ozone, carbon monoxide and cloud ice water content (IWC observations by the Aura Microwave Limb Sounder (MLS are presented. Observed ozone abundances and their variability (geographic and temporal agree to within 10–15 ppbv with records from sonde observations. MLS complements these (and other observations with global coverage and simultaneous measurements of related parameters. Previously-reported phenomena such as the ozone "wave one" feature are clearly seen in the MLS observations, as is a double peak in ozone abundance over tropical East Africa, with enhanced abundances in both May to June and September to November. While repeatable seasonal cycles are seen in many regions, they are often accompanied by significant interannual variability. Ozone seasonal cycles in the southern tropics and subtropics tend to be more distinct (i.e., annually repeatable than in the northern. By contrast, carbon monoxide shows distinct seasonal cycles in many northern subtropical regions, notably from India to the Eastern Pacific. Deep convection (as indicated by large values of IWC is typically associated with reductions in upper tropospheric ozone. Convection over polluted regions is seen to significantly enhance upper tropospheric carbon monoxide. While some regions show statistically significant correlations among ozone, carbon monoxide and IWC, simple correlations fall well short of accounting for the observed variability. The observed interrelated variations and metrics of annual and interannual variability described here represent a new resource for validation of atmospheric chemistry models.

  14. Recreational Fish-Finders—An Inexpensive Alternative to Scientific Echo-Sounders for Unravelling the Links between Marine Top Predators and Their Prey

    Science.gov (United States)

    McInnes, Alistair M.; Khoosal, Arjun; Murrell, Ben; Merkle, Dagmar; Lacerda, Miguel; Nyengera, Reason; Coetzee, Janet C.; Edwards, Loyd C.; Ryan, Peter G.; Rademan, Johan; van der Westhuizen, Jan J; Pichegru, Lorien

    2015-01-01

    Studies investigating how mobile marine predators respond to their prey are limited due to the challenging nature of the environment. While marine top predators are increasingly easy to study thanks to developments in bio-logging technology, typically there is scant information on the distribution and abundance of their prey, largely due to the specialised nature of acquiring this information. We explore the potential of using single-beam recreational fish-finders (RFF) to quantify relative forage fish abundance and draw inferences of the prey distribution at a fine spatial scale. We compared fish school characteristics as inferred from the RFF with that of a calibrated scientific split-beam echo-sounder (SES) by simultaneously operating both systems from the same vessel in Algoa Bay, South Africa. Customized open-source software was developed to extract fish school information from the echo returns of the RFF. For schools insonified by both systems, there was close correspondence between estimates of mean school depth (R2 = 0.98) and school area (R2 = 0.70). Estimates of relative school density (mean volume backscattering strength; Sv) measured by the RFF were negatively biased through saturation of this system given its smaller dynamic range. A correction factor applied to the RFF-derived density estimates improved the comparability between the two systems. Relative abundance estimates using all schools from both systems were congruent at scales from 0.5 km to 18 km with a strong positive linear trend in model fit estimates with increasing scale. Although absolute estimates of fish abundance cannot be derived from these systems, they are effective at describing prey school characteristics and have good potential for mapping forage fish distribution and relative abundance. Using such relatively inexpensive systems could greatly enhance our understanding of predator-prey interactions. PMID:26600300

  15. Heard Island and McDonald Islands Acoustic Plumes: Split-beam Echo sounder and Deep Tow Camera Observations of Gas Seeps on the Central Kerguelen Plateau

    Science.gov (United States)

    Watson, S. J.; Spain, E. A.; Coffin, M. F.; Whittaker, J. M.; Fox, J. M.; Bowie, A. R.

    2016-12-01

    Heard and McDonald islands (HIMI) are two active volcanic edifices on the Central Kerguelen Plateau. Scientists aboard the Heard Earth-Ocean-Biosphere Interactions voyage in early 2016 explored how this volcanic activity manifests itself near HIMI. Using Simrad EK60 split-beam echo sounder and deep tow camera data from RV Investigator, we recorded the distribution of seafloor emissions, providing the first direct evidence of seabed discharge around HIMI, mapping >244 acoustic plume signals. Northeast of Heard, three distinct plume clusters are associated with bubbles (towed camera) and the largest directly overlies a sub-seafloor opaque zone (sub-bottom profiler) with >140 zones observed within 6.5 km. Large temperature anomalies did not characterize any of the acoustic plumes where temperature data were recorded. We therefore suggest that these plumes are cold methane seeps. Acoustic properties - mean volume backscattering and target strength - and morphology - height, width, depth to surface - of plumes around McDonald resembled those northeast of Heard, also suggesting gas bubbles. We observed no bubbles on extremely limited towed camera data around McDonald; however, visibility was poor. The acoustic response of the plumes at different frequencies (120 kHz vs. 18 kHz), a technique used to classify water column scatterers, differed between HIMI, suggestiing dissimilar target size (bubble radii) distributions. Environmental context and temporal characteristics of the plumes differed between HIMI. Heard plumes were concentrated on flat, sediment rich plains, whereas around McDonald plumes emanated from sea knolls and mounds with hard volcanic seafloor. The Heard plumes were consistent temporally, while the McDonald plumes varied temporally possibly related to tides or subsurface processes. Our data and analyses suggest that HIMI acoustic plumes were likely caused by gas bubbles; however, the bubbles may originate from two or more distinct processes.

  16. The Application of a Multi-Beam Echo-Sounder in the Analysis of the Sedimentation Situation of a Large Reservoir after an Earthquake

    Directory of Open Access Journals (Sweden)

    Zhong-Luan Yan

    2018-04-01

    Full Text Available The Wenchuan Earthquake took place in the upper reach catchment of the Min River. It resulted in large amounts of loose materials gathering in the river channel, leading to changes in the sediment transport system in this area. The Zipingpu Reservoir is the last and the largest reservoir located in the upper reach of the Min River. It is near the epicenter and receives sediment from upstream. This paper puts forward a study on the reservoir sedimentation and storage capacity of the Zipingpu Reservoir, employing a multi-beam echo-sounder system in December 2012. Then, the data were merged with digital line graphics and shuttle radar topography mission data in ArcGIS to build a digital elevation model and triangulate the irregular network of Zipingpu Reservoir. Via the analysis of the bathymetric data, the results show the following: (1 The main channels of the reservoir gradually aggrade to a flat bottom from the deep-cutting valley. Sedimentation forms a reach with a W-shaped longitudinal thalweg profile and an almost zero slope reach in the upstream section of the reservoir due to the natural barrier induced by a landslide; (2 The loss ratios of the wetted cross-section surface are higher than 10% in the upstream section of the reservoir and higher than 40% in the natural barrier area; (3 Comparing the surveyed area storage capacity of December 2012 with March 2008, the Zipingpu Reservoir has lost 15.28% of its capacity at the dead storage water level and 10.49% of its capacity at the flood limit water level.

  17. CARMENES instrument overview

    Science.gov (United States)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ~ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The

  18. Instrumentation for environmental monitoring: biomedical

    International Nuclear Information System (INIS)

    1979-05-01

    An update is presented to Volume four of the six-volume series devoted to a survey of instruments useful for measurements in biomedicine related to environmental research and monitoring. Results of the survey are given as descriptions of the physical and operating characteristics of available instruments, critical comparisons among instrumentation methods, and recommendations of promising methodology and development of new instrumentation. Methods of detection and analysis of gaseous organic pollutants and metals, including Ni and As are presented. Instrument techniques and notes are included on atomic spectrometry and uv and visible absorption instrumentation

  19. Payment Instrument Characteristics

    DEFF Research Database (Denmark)

    Holst, Jacques; Kjeldsen, Martin; Hedman, Jonas

    2015-01-01

    Over the last decade, we have witnessed payment innovations that fundamentally have changed the ways we pay. Payment innovations, such as mobile payments and on-line banking, include characteristics or features that are essential to understand if we want to know how and why payers choose among...... payment innovations. Using the Repertory Grid technique to explore 15 payers’ perception of six payment instruments, including coins, banknotes, debit cards, credit cards, mobile payments, and on-line banking, we identify 16 payment characteristics. The characteristics aggregate seventy-six unique...

  20. Operational Test Instrumentation Guide.

    Science.gov (United States)

    1981-11-01

    System. A topographic, transit-level measuring system, instrumented with altimeter, clinometers, compasses , and an alidade, plane table, and stadia rod...dual hangar 250 x 135 feet with two door openings, 80 feet each. There is no compass swing base, no electronic landing aids, ro aircraft wash or...month) of SDG &E) Haybarn Canyon 15,000 6,183,870 Lan Pulgas 1,500 433,890 Las Pulgas Well #41621 100 4,258 Las Pulgas Well #41611 150 7,548 Las Flores

  1. Beam Instrumentation and Diagnostics

    CERN Document Server

    Strehl, Peter

    2006-01-01

    This treatise covers all aspects of the design and the daily operations of a beam diagnostic system for a large particle accelerator. A very interdisciplinary field, it involves contributions from physicists, electrical and mechanical engineers and computer experts alike so as to satisfy the ever-increasing demands for beam parameter variability for a vast range of operation modi and particles. The author draws upon 40 years of research and work, most of them spent as the head of the beam diagnostics group at GSI. He has illustrated the more theoretical aspects with many real-life examples that will provide beam instrumentation designers with ideas and tools for their work.

  2. Instrumentation for tomograph positioning

    International Nuclear Information System (INIS)

    Frenkel, A.D.B.; Castello Branco, L.M.; Reznik, D.S.; Santos, C.A.C.; Borges, J.C.

    1986-01-01

    The COPPE's Nuclear Instrumentation Lab. has been developing researches directed towards the implementation of a Computer-Based Tomography System. Basically, the system reported in this paper can be divided into three major parts: the mechanical part, responsible for the physical movement (Stepper-Motors, table, etc.); the electronic part, which controls the mechanical part and handles the data-acquisition process (microcomputer, interfaces, etc.); and finally, the support of a software-oriented system, including control programs and information processing routines. (Author) [pt

  3. Easy instrumental analysis

    International Nuclear Information System (INIS)

    Ko, Myeong Su; Kim, Tae Hwa; Park, Gyu Hyeon; Yang, Jong Beom; Oh, Chang Hwan; Lee, Kyoung Hye

    2010-04-01

    This textbook describes instrument analysis in easy way with twelve chapters. The contents of the book are pH measurement on principle, pH meter, pH measurement, examples of the experiments, centrifugation, Absorptiometry, Fluorescent method, Atomic absorption analysis, Gas-chromatography, Gas chromatography-mass spectrometry, High performance liquid chromatography liquid chromatograph-mass spectrometry, Electrophoresis on practical case and analysis of the result and examples, PCR on principle, device, application and examples and Enzyme-linked immunosorbent assay with indirect ELISA, sandwich ELISA and ELISA reader.

  4. Maintenance of nuclear instruments

    International Nuclear Information System (INIS)

    Oliveira Rebelo, A.M. de; Santos, C.J.F. dos; Jesus, E.F.O. de; Silva, L.E.M.C.; Borges, J.C.

    1988-01-01

    A program to design and repairing of nuclear instruments for teaching and research was founded in the UFRJ to find solutions for technical support problem - The GEMD-RADIACOES. This group has assisted to several groups of the University in recuperation and conservation of devices like: Linear scanner, Cromatograph and system of radiation detection in general. Recuperation of these devices had required a study of theirs operations modes, to make it possible the setting up of a similar system. Recuperation also involves operation tests, calibration and technical for users, orienting them to get the best performance. (Author) [pt

  5. Easy instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Myeong Su; Kim, Tae Hwa; Park, Gyu Hyeon; Yang, Jong Beom; Oh, Chang Hwan; Lee, Kyoung Hye

    2010-04-15

    This textbook describes instrument analysis in easy way with twelve chapters. The contents of the book are pH measurement on principle, pH meter, pH measurement, examples of the experiments, centrifugation, Absorptiometry, Fluorescent method, Atomic absorption analysis, Gas-chromatography, Gas chromatography-mass spectrometry, High performance liquid chromatography liquid chromatograph-mass spectrometry, Electrophoresis on practical case and analysis of the result and examples, PCR on principle, device, application and examples and Enzyme-linked immunosorbent assay with indirect ELISA, sandwich ELISA and ELISA reader.

  6. Instruments of Transformative Governance

    DEFF Research Database (Denmark)

    Borrás, Susana

    production and distribution channels. PDPs aim at overcoming current market and government failures by pooling resources in the attempt to solve this global social challenge. Thus, PDPs are a case of instruments of transformative research and innovation, operating in a transnational governance context....... They exhibit three novelties: they address strategic long-term problems in a holistic manner, set substantive output-oriented goals, and are implemented through new organizational structures. After characterizing the different types of current PDPs and the context in which they emerged, the paper examines...

  7. Diamonds for beam instrumentation

    International Nuclear Information System (INIS)

    Griesmayer, Erich

    2013-01-01

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  8. Pesticide reducing instruments

    DEFF Research Database (Denmark)

    Jacobsen, Lars-Bo; Jensen, Jørgen Dejgård; Andersen, Martin

    2005-01-01

    -mentioned models and tools. All three scenarios are constructed such that they result in the same welfare implication (measured by national consumption in the CGE model). The scenarios are: 1) pesticide taxes resulting in a 25 percent overall reduction; 2) use of unsprayed field margins, resulting in the same...... for improving bio-diversity and securing drinking water. That is, combining economic modeling with physical biological modeling and geological evaluation allows us to select unsprayed field margins as the most effective instrument. Sensitivity analysis conducted on bio-diversity suggest that this result...

  9. Calibration of radiation monitoring instruments

    International Nuclear Information System (INIS)

    1973-01-01

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  10. Calibration of "Babyline" RP instruments

    CERN Multimedia

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  11. Calibration of radiation monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-12-31

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  12. Instruments for Water Quality Monitoring

    Science.gov (United States)

    Ballinger, Dwight G.

    1972-01-01

    Presents information regarding available instruments for industries and agencies who must monitor numerous aquatic parameters. Charts denote examples of parameters sampled, testing methods, range and accuracy of test methods, cost analysis, and reliability of instruments. (BL)

  13. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  14. The QUIET Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, C.; et al.

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  15. Nuclear electronic instrumentation

    International Nuclear Information System (INIS)

    Ramirez J, F. J.

    2010-01-01

    The activities carried out in the Instituto Nacional de Investigaciones Nucleares (ININ) in the field of the nuclear electronic instrumentation included those activities corresponding to the design and production of nuclear instruments in a first stage, as well as the internal activities of design, repair and maintenance that have supported to other projects of the institution during many years. It is mentioned of the presence and constant collaboration of the ININ with the IAEA in different projects and programs. Also, it is mentioned on the establishment of the Radiation Detectors Laboratory, which for their characteristics and repair capacities of radiation detectors of cooled semiconductor, it is only in their specialty. It is emphasized the investigation and the development in the field of new radiation detectors and applications, as well as the important contribution in this field, in institutions like: Mexican Petroleum, National Commission of Nuclear Safety and Safeguards and Federal Commission of Electricity. Finally a position of the future of these activities is made, considering the speed of the advances of the electronic and nuclear technology. (Author)

  16. Neutron instrumentation system

    International Nuclear Information System (INIS)

    Akiyama, Takao; Arita, Setsuo; Yuchi, Hiroyuki

    1989-01-01

    The neutron instrumentation system of this invention can greatly reduce the possibility that the shutdown flux is increased greater than a predetermiend value to cause scram due to vibrations caused by earthquakes or shocks in the neutron instrumentation system without injuring the reactor safety. That is, a sensor having a zero sensitivity to a neutron flux which is an object to be detected by the sensor (dummy sensor) is used together with a conventional sensor (a sensor having predetermined sensitivity to a neutron flux as an object to be measured ----- true sensor). Further, identical signal transmission cables, connector and the signal processing circuits are used for both of true sensor and the dummy sensor. The signal from the dummy sensor is subtracted from the signal from the true sensor at the output of the signal processing circuit. Since the output of the dummy sensor is zero during normal operation, the subtracted value is the same as the value from the true sensor. If the true sensor causes an output with the reason other than the neutron flux, this is outputted also from the dummy sensor but does not appear in the subtracted value. (I.S.)

  17. Incore instrument device

    International Nuclear Information System (INIS)

    Sakima, Naoki

    1996-01-01

    An incore instrument device has an integrally disposed touch panel having a function of displaying an operation indication method such as for setting of conditions for incore measurement and information processing and results of the incore measurement and a function capable of conducting operation indication such as for setting conditions and information processing for incore measurement relative to a control section upon touching an information position on a displayed information. In addition, an information processing section comprising a man-machine function program formed so as to recognize the content of the operation indication for the incore measurement by touching and let the control section to conduct it is disposed to the outside by way of a communication interface. In addition, a programming device is disposed for forming and rewriting the program of the man-machine function relative to the information processing section. Then, when various indication operations are conducted upon performing incore measurement, a view point can be concentrated to one predetermined point thereby enabling to improve the operationability without danger. In addition, the programming of the man-machine function does not apply unnecessary load to the control section in the incore instrumentation device. (N.H.)

  18. Balances instruments, manufacturers, history

    CERN Document Server

    Robens, Erich; Kiefer, Susanne

    2014-01-01

    The book deals mainly with direct mass determination by means of a conventional balances. It covers the history of the balance from the beginnings in Egypt earlier than 3000 BC to recent developments. All balance types are described with emphasis on scientific balances. Methods of indirect mass determination, which are applied to very light objects like molecules and the basic particles of matter and celestial bodies, are included.  As additional guidance, today’s manufacturers are listed and the profile of important companies is reviewed. Several hundred photographs, reproductions and drawings show instruments and their uses. This book includes commercial weighing instruments for merchandise and raw materials in workshops as well as symbolic weighing in the ancient Egyptian’s ceremony of ‘Weighing of the Heart’, the Greek fate balance, the Roman  Justitia, Juno Moneta and Middle Ages scenes of the Last Judgement with Jesus or St. Michael and of modern balances. The photographs are selected from the...

  19. Advancements in Actuated Musical Instruments

    DEFF Research Database (Denmark)

    Overholt, Daniel; Berdahl, Edgar; Hamilton, Robert

    2011-01-01

    are physical instruments that have been endowed with virtual qualities controlled by a computer in real-time but which are nevertheless tangible. These instruments provide intuitive and engaging new forms of interaction. They are different from traditional (acoustic) and fully automated (robotic) instruments...

  20. Rio de Janeiro: Instrumentation school

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Students from Latin America were able to get hands-on experience in state-of-the-art physics instrumentation in this year's School on Instrumentation for High Energy Physics organized by the active Instrumentation Panel of ICFA (the International Committee for Future Accelerators) at the Centro Brasileiro de Pesquicas Fisicas (CBPF), Rio de Janeiro, in July

  1. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  2. MIPAS: an instrument for atmospheric and climate research

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2008-04-01

    Full Text Available MIPAS, the Michelson Interferometer for Passive Atmospheric Sounding, is a mid-infrared emission spectrometer which is part of the core payload of ENVISAT. It is a limb sounder, i.e. it scans across the horizon detecting atmospheric spectral radiances which are inverted to vertical temperature, trace species and cloud distributions. These data can be used for scientific investigations in various research fields including dynamics and chemistry in the altitude region between upper troposphere and lower thermosphere.

    The instrument is a well calibrated and characterized Fourier transform spectrometer which is able to detect many trace constituents simultaneously. The different concepts of retrieval methods are described including multi-target and two-dimensional retrievals. Operationally generated data sets consist of temperature, H2O, O3, CH4, N2O, HNO3, and NO2 profiles. Measurement errors are investigated in detail and random and systematic errors are specified. The results are validated by independent instrumentation which has been operated at ground stations or aboard balloon gondolas and aircraft. Intercomparisons of MIPAS measurements with other satellite data have been carried out, too. As a result, it has been proven that the MIPAS data are of good quality.

    MIPAS can be operated in different measurement modes in order to optimize the scientific output. Due to the wealth of information in the MIPAS spectra, many scientific results have already been published. They include intercomparisons of temperature distributions with ECMWF data, the derivation of the whole NOy family, the study of atmospheric processes during the Antarctic vortex split in September~2002, the determination of properties of Polar Stratospheric Clouds, the downward transport of NOx in the middle atmosphere, the stratosphere-troposphere exchange, the influence of

  3. Astronomical Instrumentation System Markup Language

    Science.gov (United States)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  4. Control of training instrument

    International Nuclear Information System (INIS)

    Seo, K. W.; Joo, Y. C.; Park, J. C.; Hong, C. S.; Choi, I. K.; Cho, B. J.; Lee, H. Y.; Seo, I. S.; Park, N. K.

    1996-01-01

    This report describes the annual results on control of training instrument. The scope and contents are the following: 1. Control of Compact Nuclear Simulator 2. Control of Radiation/Radioactivity Measurement 3. Control of Non-Destructive Testing Equipment 4. Control of Chemical Equipment 5. Control of Personal Computer 6. Other related Lecture Aid Equipment. Efforts were employed to upgrade the training environment through retrofitting experimental facilities, compiling teaching materials and reforcing audio-visual aids. The Nuclear Training Center executed the open-door training courses for 2,496 engineers/scientists from the nuclear regulatory, nuclear industries, research institutes and other related organizations by means of offering 45 training courses during the fiscal year 1995. (author). 15 tabs., 7 figs., 13 refs

  5. Portable musical instrument amplifier

    Science.gov (United States)

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  6. Instrument design and automation

    International Nuclear Information System (INIS)

    Wernlund, R.F.

    1984-01-01

    The ion mobility spectrometer-mass spectrometer (IMS-MS) is described and consists of two separate instruments coupled in tandem: an ion mobility spectrometer coupled to a quadrupole mass spectrometer. The two insturments operate at different pressures in a synergistic manner, supplying both drift time and mass information about ions which are formed at atmospheric pressure in the ion mobility spectrometer tube. Two types of ion intensity signals are presented to the data processor. The IMS produces an analog voltage with major components from dc to 5 KHz. The mass spectrometer signal output resides in the pulse count rate derived from a series of TTL level pulses where each pulse represents the arrival of a single ion. The hardware, software, interfacing capabilities and basic data acquisition program are described in detail

  7. FMIT diagnostic instrumentation

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.; Chamberlin, D.D.

    1985-01-01

    The Fusion Materials Irradiation Test facility (FMIT) cw prototype accelerator has noninterceptive beamline instrumentation to measure beam parameters. The transverse emittances and beam profiles are measured with an array of photodiode sensors viewing light emitted from the beam region. Tomographic reconstructions of both spatial-density distributions and of transverse-emittance distributions are performed throughout a quadrupole focusing section. Beam bunches passing through capacitive probes produce bipolar waveforms whose zero crossing corresponds to the bunch's longitudinal centroid. By measuring the time required for a bunch to travel the known distance between two probes, velocity and energy are determined. A toroidal transformer measures the average ac beam current. Beam spill is measured by a set of movable jaws that intercept the beam edges. Each jaw contains a water flow channel whose flow rate and differential temperature are measured to derive a transverse power distribution. Beam centroid position is measured by a four-lobe, magnetic-loop pickup. 5 refs., 6 figs

  8. Instrumented Pipeline Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  9. BOMBAY: Instrumentation school

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Promising students had a foretaste of the latest laboratory techniques at the ICFA 1993 India School on Instrumentation in High Energy Physics held from February 15-26 and hosted by the Tata Institute of Fundamental Research (TIFR), Bombay. The scientific programme was put together by the ICFA Panel for Future Instrumentation, Innovation and Development, chaired by Tord Ekelof (Uppsala). The programme included lectures and topical seminars covering a wide range of detector subjects. In small groups, students got acquainted with modern detector technologies in the laboratory sessions, using experimental setups assembled in various institutes world-wide and shipped to Bombay for the School. The techniques covered included multiwire proportional chambers for detection of particles and photons, gaseous detectors for UV photons and X-ray imaging, the study of charge drift in silicon detectors, measurement of the muon lifetime using liquid scintillators, tracking using scintillating fibres, and electronics for sensitive detectors. The India School was attended by around 80 students from 20 countries; 34 came from Indian universities. It was the fifth in this series, previous Schools having been at Trieste (1987, 1989 and 1991) organized by the ICFA Panel and hosted and sponsored by the International Centre for Theoretical Physics, and in 1990, organized at Rio de Janeiro in collaboration with the Centro Brasileiro de Pesquisas Fisicas. The School was jointly directed by Suresh Tonwar (TIFR), Fabio Sauli (CERN) and Marleigh Sheaff (University of Wisconsin), and sponsored by TIFR and DAE (India), CERN (Switzerland), ICTP and INFN (Italy), British Council and RAL (UK), NSF and DOE (USA), KEK (Japan), IPP (Canada) and DESY (Germany)

  10. Ideology as instrument.

    Science.gov (United States)

    Glassman, Michael; Karno, Donna

    2007-12-01

    Comments on the article by J. T. Jost, which argued that the end-of-ideology claims that emerged in the aftermath of World War II were both incorrect and detrimental to the field of political psychology. M. Glassman and D. Karno make three critical points. First, Jost objectified ideology as a grand strategy implemented at the individual level, rather than as an instrument used for a specific purpose in activity. In doing so, he set ideology up as an "object" that guides human behavior rather than as a rational part of human experience. Second, they take issue with the idea that, because somebody acts in a manner that can be categorized as ideological, there actually is such a thing as ideology separate from that event and/or political experience and that psychologists ought to understand the meaning of ideology in order to understand future human activities as outside observers. Third, Jost seems to see this objective ideology as a unidirectional, causal mechanism for activity, a mechanism that assumes individuals act according to ideology, which eclipses the possibility that immediate ideological positions are the residue of purposeful activity. Glassman and Karno suggest that it may be better to take a pluralistic view of ideology in human action. Where ideology does exist, it is as a purposeful instrument--part of a logically based action to meet some ends-in-view--a mixture of immediate goals tied to secondary belief systems (which have been integrated to serve the material purposes of the purveyors of these ideologies). So if we are to understand ideology, we can only understand it through its use in human activity. (Copyright) 2007 APA.

  11. Pancreatitis Quality of Life Instrument: Development of a new instrument

    Directory of Open Access Journals (Sweden)

    Wahid Wassef

    2014-02-01

    Full Text Available Objectives: The goal of this project was to develop the first disease-specific instrument for the evaluation of quality of life in chronic pancreatitis. Methods: Focus groups and interview sessions were conducted, with chronic pancreatitis patients, to identify items felt to impact quality of life which were subsequently formatted into a paper-and-pencil instrument. This instrument was used to conduct an online survey by an expert panel of pancreatologists to evaluate its content validity. Finally, the modified instrument was presented to patients during precognitive testing interviews to evaluate its clarity and appropriateness. Results: In total, 10 patients were enrolled in the focus groups and interview sessions where they identified 50 items. Once redundant items were removed, the 40 remaining items were made into a paper-and-pencil instrument referred to as the Pancreatitis Quality of Life Instrument. Through the processes of content validation and precognitive testing, the number of items in the instrument was reduced to 24. Conclusions: This marks the development of the first disease-specific instrument to evaluate quality of life in chronic pancreatitis. It includes unique features not found in generic instruments (economic factors, stigma, and spiritual factors. Although this marks a giant step forward, psychometric evaluation is still needed prior to its clinical use.

  12. Industrial instrumentation principles and design

    CERN Document Server

    Padmanabhan, Tattamangalam R

    2000-01-01

    Pneumatic, hydraulic and allied instrumentation schemes have given way to electronic schemes in recent years thanks to the rapid strides in electronics and allied areas. Principles, design and applications of such state-of-the-art instrumentation schemes form the subject matter of this book. Through representative examples, the basic building blocks of instrumentation schemes are identified and each of these building blocks discussed in terms of its design and interface characteristics. The common generic schemes synthesized with such building blocks are dealt with subsequently. This forms the scope of Part I. The focus in Part II is on application. Displacement and allied instrumentation, force and allied instrumentation and process instrumentation in terms of temperature, flow, pressure level and other common process variables are dealt with separately and exhaustively. Despite the diversity in the sensor principles and characteristics and the variety in the applications and their environments, it is possib...

  13. Impact Disdrometers Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility has been collecting observations of the drop size spectra of rain events since early in 2006. Impact disdrometers were the initial choice due to their reliability, ease of maintenance, and relatively low cost. Each of the two units deployed was accompanied by a nearby tipping bucket. In 2010, the tipping buckets were replaced by weighing buckets rain gauges. Five video disdrometers were subsequently purchased and are described in ARM’s VDIS Handbook.1 As of April 2011, three of the weighing bucket instruments were deployed, one was to travel with the second ARM Mobile Facility, and the fifth was a spare. Two of the video disdrometers were deployed, a third was to be deployed later in the spring of 2011, one was to travel with the second ARM Mobile Facility, and the last was a spare. Detailed descriptions of impact disdrometers and their datastreams are provided in this document.

  14. TFTR CAMAC instrumentation system

    International Nuclear Information System (INIS)

    Del Gatto, H.J.; Bradish, C.J.

    1983-01-01

    The TFTR Central Instrumentation Control and Data Acquisition (CICADA) system makes extensive use of CAMAC equipment. The system consists of eight CAMAC highways operating from eight Gould 75/32 computers. Links up to 3.5 miles in length with more than fifty CAMAC crates have been implemented and are currently in use. Data transfer along the highway is implemented in bit serial format. The link speed is run at 5MHz. The length and complexity of the link requires the reformatting of the NRZ input/output format of the L-2 crate controller. U-Port adapter modules are used to interface the modified serial highway to the L-2 controllers. The modified serial highway uses a transmission technique that requires the distribution of both Bi-Phase encoded data and a 5MHz clock. The Serial Driver interfaces to the GOULD computer through use of a High Speed Data (HSD) interface board which attaches to the computers internal bus. All transfers to and from the computer are accomplished by direct memory access (DMA). In addition to the standard CAMAC link the system also includes a Block Transfer (BT) system. This system provides an alternate path for transferring data between the computers and the CAMAC modules. The BT system is interfaced to the host computers through HSD boards and to the CAMAC crates through use of an auxiliary crate controllers

  15. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  16. Measurement, instrumentation, and sensors handbook

    CERN Document Server

    Eren, Halit

    2014-01-01

    The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized acco

  17. Experimenting with string musical instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  18. Evaluating the Relational Coordination instrument

    DEFF Research Database (Denmark)

    Edwards, Kasper; Lundstrøm, Sanne Lykke

    2014-01-01

    consistency, interrater agreement and reliability, structural validity, content validity. However as relational coordination is being used as a diagnostics tool it is important to examine further if the instrument can measure changes. Indeed we need to know how precise and sensitive the instrument is when....... We distinguish between statistical and clinical significance. Statistical significance is calculated using T-test. Clinical significance is the minimal amount of change in relational coordination score that is not considered noise. Sensitivity of the instrument i.e. the ability of the instrument...

  19. Sea surface temperature as a proxy for convective gravity wave excitation: a study based on global gravity wave observations in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    J. Y. Jia

    2014-11-01

    Full Text Available Absolute values of gravity wave momentum flux (GWMF deduced from satellite measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument and the High Resolution Dynamics Limb Sounder (HIRDLS are correlated with sea surface temperature (SST with the aim of identifying those oceanic regions for which convection is a major source of gravity waves (GWs. Our study identifies those latitude bands where high correlation coefficients indicate convective excitation with confidence. This is based on a global ray-tracing simulation, which is used to delineate the source and wind-filtering effects. Convective GWs are identified at the eastern coasts of the continents and over the warm water regions formed by the warm ocean currents, in particular the Gulf Stream and the Kuroshio. Potential contributions of tropical cyclones to the excitation of the GWs are discussed. Convective excitation can be identified well into the mid-mesosphere. In propagating upward, the centers of GWMF formed by convection shift poleward. Some indications of the main forcing regions are even shown for the upper mesosphere/lower thermosphere (MLT.

  20. Instruments to assess integrated care

    DEFF Research Database (Denmark)

    Lyngsø, Anne Marie; Godtfredsen, Nina Skavlan; Høst, Dorte

    2014-01-01

    INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how to mea...... was prevalent. It is uncertain whether development of a single 'all-inclusive' model for assessing integrated care is desirable. We emphasise the continuing need for validated instruments embedded in theoretical contexts.......INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how...... to measure the level of integration across health-care sectors and to assess and evaluate the organisational elements within the instruments identified. METHODS: An extensive, systematic literature review in PubMed, CINAHL, PsycINFO, Cochrane Library, Web of Science for the years 1980-2011. Selected...

  1. Atomic absorption instrument functional description

    International Nuclear Information System (INIS)

    Bystroff, R.I.; Boyle, W.G. Jr.; Barton, G.W. Jr.

    1976-01-01

    This report describes a proposed system for automating atomic absorption analysis. The system consists of two atomic absorption instruments and an automatic sampler that can be attached to either instrument. A computer program controls the sampling and gathers data. The program then uses the data to perform bookkeeping, data processing, and report writing

  2. Nuclear instrumentation evaluation and analysis

    International Nuclear Information System (INIS)

    Park, Suk Jun; Han, Sang Joon; Chung, Chong Eun; Han, Kwang Soo; Kim, Dong Hwa; Park, Byung Hae; Moon, Je Sun; Lee, Chel Kwon; Song, Ki Sang; Choi, Myung Jin; Kim, Seung Bok; Kim, Jung Bok

    1986-12-01

    This project provides the program for improving instrumentation reliability as well as developing a cost-effective preventive maintenance activity through evaluation and analysis of nuclear instrumentation concerning pilot plants, large-scale test facilities and various laboratories on KAERI site. In addition, it discusses the program for enhancing safe operations and improving facility availability through establishment of maintenance technology. (Author)

  3. A Database Management Assessment Instrument

    Science.gov (United States)

    Landry, Jeffrey P.; Pardue, J. Harold; Daigle, Roy; Longenecker, Herbert E., Jr.

    2013-01-01

    This paper describes an instrument designed for assessing learning outcomes in data management. In addition to assessment of student learning and ABET outcomes, we have also found the instrument to be effective for determining database placement of incoming information systems (IS) graduate students. Each of these three uses is discussed in this…

  4. Experimenting with String Musical Instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  5. Developing a workplace resilience instrument.

    Science.gov (United States)

    Mallak, Larry A; Yildiz, Mustafa

    2016-05-27

    Resilience benefits from the use of protective factors, as opposed to risk factors, which are associated with vulnerability. Considerable research and instrument development has been conducted in clinical settings for patients. The need existed for an instrument to be developed in a workplace setting to measure resilience of employees. This study developed and tested a resilience instrument for employees in the workplace. The research instrument was distributed to executives and nurses working in the United States in hospital settings. Five-hundred-forty completed and usable responses were obtained. The instrument contained an inventory of workplace resilience, a job stress questionnaire, and relevant demographics. The resilience items were written based on previous work by the lead author and inspired by Weick's [1] sense-making theory. A four-factor model yielded an instrument having psychometric properties showing good model fit. Twenty items were retained for the resulting Workplace Resilience Instrument (WRI). Parallel analysis was conducted with successive iterations of exploratory and confirmatory factor analyses. Respondents were classified based on their employment with either a rural or an urban hospital. Executives had significantly higher WRI scores than nurses, controlling for gender. WRI scores were positively and significantly correlated with years of experience and the Brief Job Stress Questionnaire. An instrument to measure individual resilience in the workplace (WRI) was developed. The WRI's four factors identify dimensions of workplace resilience for use in subsequent investigations: Active Problem-Solving, Team Efficacy, Confident Sense-Making, and Bricolage.

  6. Smart antennas for nuclear instruments

    International Nuclear Information System (INIS)

    Jain, Ranjan Bala; Singhi, B.M.

    2005-01-01

    The advances in the field of computer and communications are leading to the development of smart embedded nuclear instruments. These instruments have highly sophisticated signal-processing algorithms based on FPGA and ASICS, provisions of present day connectivity and user interfaces. The developments in the connectivity, standards and bus technologies have made possible to access these instruments on LAN and WAN with suitable reliability and security. To get rid of wires i.e. in order to access these instruments, without wires at any place, wireless technology has evolved and become integral part of day-to-day activities. The environment monitoring can be done remotely, if smart antennas are incorporated on these instruments

  7. How discriminating are discriminative instruments?

    Science.gov (United States)

    Hankins, Matthew

    2008-05-27

    The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL). The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness), but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta) is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  8. How discriminating are discriminative instruments?

    Directory of Open Access Journals (Sweden)

    Hankins Matthew

    2008-05-01

    Full Text Available Abstract The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL. The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness, but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  9. Instrumentation in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Fabjan, C W [European Organization for Nuclear Research, Geneva (Switzerland); Pilcher, J E [Chicago Univ., IL (United States); eds.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs.

  10. Adjustable extender for instrument module

    International Nuclear Information System (INIS)

    Sevec, J.B.; Stein, A.D.

    1975-01-01

    A blank extender module used to mount an instrument module in front of its console for repair or test purposes has been equipped with a rotatable mount and means for locking the mount at various angles of rotation for easy accessibility. The rotatable mount includes a horizontal conduit supported by bearings within the blank module. The conduit is spring-biased in a retracted position within the blank module and in this position a small gear mounted on the conduit periphery is locked by a fixed pawl. The conduit and instrument mount can be pulled into an extended position with the gear clearing the pawl to permit rotation and adjustment of the instrument

  11. Instrumentation in elementary particle physics

    International Nuclear Information System (INIS)

    Fabjan, C.W.; Pilcher, J.E.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs

  12. Traceability of radiation protection instruments

    Science.gov (United States)

    Hino, Y.; Kurosawa, T.

    2007-08-01

    Radiation protection instruments are used in daily measurement of dose and activities in workplaces and environments for safety management. The requirements for calibration certificates with traceability are increasing for these instruments to ensure the consistency and reliabilities of the measurement results. The present traceability scheme of radiation protection instruments for dose and activity measurements is described with related IEC/ISO requirements. Some examples of desirable future calibration systems with recent new technologies are also discussed to establish the traceability with reasonable costs and reliabilities.

  13. Steam 80 steam generator instrumentation

    International Nuclear Information System (INIS)

    Carson, W.H.; Harris, H.H.

    1980-01-01

    This paper describes two special instrumentation packages in an integral economizer (preheater) steam generator of one of the first System 80 plants scheduled to go into commercial operation. The purpose of the instrumentation is to obtain accurate operating information from regions of the secondary side of the steam generator inaccessible to normal plant instrumentation. In addition to verification of the System 80 steam generator design predictions, the data obtained will assist in verification of steam generator thermal/hydraulic computer codes developed for generic use in the industry

  14. Commissioning Instrument for the GTC

    Science.gov (United States)

    Cuevas, S.; Sánchez, B.; Bringas, V.; Espejo, C.; Flores, R.; Chapa, O.; Lara, G.; Chavolla, A.; Anguiano, G.; Arciniega, S.; Dorantes, A.; González, J. L.; Montoya, J. M.; Toral, R.; Hernández, H.; Nava, R.; Devaney, N.; Castro, J.; Cavaller-Marqués, L.

    2005-12-01

    During the GTC integration phase, the Commissioning Instrument (CI) will be a diagnostic tool for performance verification. The CI features four operation modes: imaging, pupil imaging, Curvature WFS, and high resolution Shack-Hartmann WFS. This instrument was built by the Instituto de Astronomía UNAM and the Centro de Ingeniería y Desarrollo Industrial (CIDESI) under GRANTECAN contract after a public bid. In this paper we made a general instrument overview and we show some of the performance final results obtained when the Factory Acceptance tests previous to its transport to La Palma.

  15. Development Challenges of Utilizing a Corner Cube Mechanism Design with Successful IASI Flight Heritage for the Infrared Sounder (IRS) on MTG: Recurrent Mechanical Design not Correlated to Recurrent Development

    Science.gov (United States)

    Spanoudakis, Peter; Schwab, Philippe; Kiener, Lionel; Saudan, Herve; Perruchoud, Gerald

    2015-09-01

    The Corner Cube Mechanism (CCM) design for the Infra-Red Sounder (IRS) on MTG is based on the successful mechanism currently in orbit on the Infrared Atmospheric Sounding Interferometers (IASI) on the Metop satellites. The overall CCM performance is described with attention given to the specific design developments for the MTG project. A description is presented of the modifications introduced and challenges encountered to adapt the IASI space heritage design (which is only 15 years old) to meet the MTG specifications. A detailed account is provided regarding the tests performed on the adapted components for the new programme. The major issues encountered and solutions proposed are illustrated concerning the voice- coil actuator development, optical switch design, fatigue life of the flexure components and the adaptation of the launch locking device. Nevertheless, an Engineering Qualification Model was rapidly manufactured and now undergoing a qualification test campaign.

  16. Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments

    Directory of Open Access Journals (Sweden)

    M. Lainer

    2015-08-01

    Full Text Available The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change. Keeping in mind that the instruments are based on different hardware and calibration setups, a height-dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different data sets, the Microwave Limb Sounder (MLS on the Aura satellite is used to serve as a kind of traveling standard. A domain-averaging TM (trajectory mapping method is applied which simplifies the subsequent validation of the quality of the trajectory-mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW accompanied by the polar vortex breakdown; a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high

  17. Instrumentation for Air Pollution Monitoring

    Science.gov (United States)

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  18. Survey of instruments for micrometeorology

    National Research Council Canada - National Science Library

    Monteith, John Lennox

    1972-01-01

    ... have been developed for micrometeorological measurements. Many of these instruments can be used by ecologists to measure and define the environment of plants and animals and to explore the ways in which organisms modify the environment they are exposed...

  19. Digital instrumentation for retrofit applications

    International Nuclear Information System (INIS)

    Dennis, U.E.

    1986-01-01

    There can be many reasons for applying retrofit designs to existing power plants. Whatever the reasons, care in planning and instrument design will be required in order to derive the full benefits afforded by today's technology. Specifically, the availability of microprocessors and their related integrated circuits make possible capabilities, accuracies, reliabilities, maintainability and user interfaces not achievable when original equipment was designed. Some of the motives for the replacement of current instrumentation are examined and the various benefits and pitfalls of applying present day microprocessor technology to new designs are discussed. From this, a set of design objectives can be formulated that can best take advantage of modern technology. General Electric's design solution, a family of instruments called NUMAC (Nuclear Measurement, Analysis and Control) is described, followed by descriptions of instruments currently in production and those contemplated for design in the near future

  20. Economic instruments for environmental mitigation

    International Nuclear Information System (INIS)

    Wilkinson, A.

    1995-01-01

    A joint International Chamber of Commerce (ICC)/World Energy Council (WEC) Working Group has been studying a range of policy instruments which are being used or considered for use to address the question of ever increasing energy demand versus environmental protection, and pollution reduction. Economic instruments for such environmental protection include direct regulation, market-based instruments, and voluntary approaches. No single policy or device was likely to suffice in addressing the diversity of environmental problems currently faced. Altering energy prices must be seen in a social context, but some direct regulation may also be inevitable. Generally economic instruments of change were preferred as these were viewed as more flexible and cost-effective. (UK)

  1. PEP instrumentation and control system

    Energy Technology Data Exchange (ETDEWEB)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems.

  2. Technical Training seminar: Texas Instruments

    CERN Multimedia

    2006-01-01

    Monday 6 November TECHNICAL TRAINING SEMINAR 14:00 to 17:30 - Training Centre Auditorium (bldg. 593) Texas Instruments Technical Seminar Michael Scholtholt, Field Application Engineer / TEXAS INSTRUMENTS (US, D, CH) POWER - A short approach to Texas Instruments power products Voltage mode vs. current mode control Differentiating DC/DC converters by analyzing control and compensation schemes: line / load regulation, transient response, BOM, board space, ease-of-use Introduction to the SWIFT software FPGA + CPLD power solutions WIRELESS / CHIPCON Decision criteria when choosing a RF platform Introduction to Texas Instruments wireless products: standardized platforms proprietary platforms ( 2.4 GHz / sub 1 GHz) development tools Antenna design: example for 2.4 GHz questions, discussion Industrial partners: Robert Medioni, François Caloz / Spoerle Electronic, CH-1440 Montagny (VD), Switzerland Phone: +41 24 447 0137, email: RMedioni@spoerle.com, http://www.spoerle.com Language: English. Free s...

  3. PEP instrumentation and control system

    International Nuclear Information System (INIS)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems

  4. Intelligent instrumentation principles and applications

    CERN Document Server

    Bhuyan, Manabendra

    2011-01-01

    With the advent of microprocessors and digital-processing technologies as catalyst, classical sensors capable of simple signal conditioning operations have evolved rapidly to take on higher and more specialized functions including validation, compensation, and classification. This new category of sensor expands the scope of incorporating intelligence into instrumentation systems, yet with such rapid changes, there has developed no universal standard for design, definition, or requirement with which to unify intelligent instrumentation. Explaining the underlying design methodologies of intelligent instrumentation, Intelligent Instrumentation: Principles and Applications provides a comprehensive and authoritative resource on the scientific foundations from which to coordinate and advance the field. Employing a textbook-like language, this book translates methodologies to more than 80 numerical examples, and provides applications in 14 case studies for a complete and working understanding of the material. Beginn...

  5. A Finescale Lagrangian Instrument System

    National Research Council Canada - National Science Library

    Toole, John

    2003-01-01

    ... from conventional, bottom-anchored moorings. An initial trial of the concept targeting the upper ocean was carried out off Bermuda in November 2001 with an instrument profiling between 12 and 28O-m depth...

  6. Instrumental development and data processing

    International Nuclear Information System (INIS)

    Franzen, J.

    1978-01-01

    A review of recent developments in mass spectrometry instrumentation is presented under the following headings: introduction (scope of mass spectrometry compared with neighbouring fields); ion sources and ionization techniques; spectrometers (instrumental developments); measuring procedures; coupling techniques; data systems; conclusions (that mass spectrometry should have a broader basis and that there would be mutual profit from a better penetration of mass spectrometry into fields of routine application). (U.K.)

  7. MITS instrumentation error analysis report

    International Nuclear Information System (INIS)

    Nelson, D.W.; Hillon, D.D.

    1980-01-01

    The MITS (Machine Interface Test System) installation consists of three types of process monitoring and control instrumentation: flow, pressure, and temperature. An effort has been made to assess the various instruments used and assign a value to the accuracy that can be expected. Efforts were also made to analyze the calibration and installation procedures to be used and determine how these might effect the system accuracy

  8. Notes on instrumentation and control

    CERN Document Server

    Roy, G J

    2013-01-01

    Notes on Instrumentation and Control presents topics on pressure (i.e., U-tube manometers and elastic type gauges), temperature (i.e. glass thermometer, bi-metallic strip thermometer, filled system thermometer, vapor pressure thermometer), level, and flow measuring devices. The book describes other miscellaneous instruments, signal transmitting devices, supply and control systems, and monitoring systems. The theory of automatic control and semi-conductor devices are also considered. Marine engineers will find the book useful.

  9. Nucleonic instruments from VUPJT Tesla

    International Nuclear Information System (INIS)

    Smola, J.

    1986-01-01

    The instruments currently produced by Tesla Premysleni are listed and briefly characterized. They include a low level alpha-beta counter, an automatic low level alpha-beta counter, detection units for environmental sample counting, instruments for measuring specific activity of liquids and radon concentration in water, a radioactive aerosol meter, dose ratemeters, portable alpha-beta indicators for surface contamintion monitoring, neutron monitors, single-, two- and three-channel spectrometric units. (M.D.)

  10. Early data from Aura and continuity from UARS and TOMS

    NARCIS (Netherlands)

    Hilsenrath, E.; Schoeberl, M.R.; Douglass, A.R.; Bhartia, P.K.; Barnett, J.J.; Beer, R.; Waters, J.W.; Gunson, M.R.; Froidevaux, L.; Gille, J.C.; Levelt, P.F.

    2006-01-01

    Aura, the last of the large EOS observatories, was launched on July 15, 2004. Aura is designed to make comprehensive stratospheric and tropospheric composition measurements from its four instruments, HIRDLS, MLS, OMI and TES. These four instruments work in synergy to provide data on ozone trends,

  11. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  12. Isotope-equipped measuring instruments

    International Nuclear Information System (INIS)

    Miyagawa, Kazuo; Amano, Hiroshi

    1980-01-01

    In the steel industry, though the investment in isotope-equipped measuring instruments is small as compared with that in machinery, they play important role in the moisture measurement in sintering and blast furnaces, the thickness measurement in rolling process and others in automatic control systems. The economic aspect of the isotope-equipped measuring instruments is described on the basis of the practices in Kimitsu Works of Nippon Steel Corporation: distribution of such instruments, evaluation of economic effects, usefulness evaluation in view of raising the accuracy, and usefulness evaluation viewed from the failure of the isotope instruments. The evaluation of economic effects was made under the premise that the isotope-equipped measuring instruments are not employed. Then, the effects of raising the accuracy are evaluated for a γ-ray plate thickness gauge and a neutron moisture gauge for coke in a blast furnace. Finally, the usefulness was evaluated, assuming possible failure of the isotope-equipped measuring instruments. (J.P.N.)

  13. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    Science.gov (United States)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  14. Musical Sound, Instruments, and Equipment

    Science.gov (United States)

    Photinos, Panos

    2017-12-01

    'Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding. The development is focused on musical instruments and acoustics. The construction of musical scales and the frequency relations are reviewed and applied in the description of musical instruments. The frequency spectrum of selected instruments is explored using freely available sound analysis software. Sound amplification and sound recording, including analog and digital approaches, are discussed in two separate chapters. The book concludes with a chapter on acoustics, the physical factors that affect the quality of the music experience, and practical ways to improve the acoustics at home or small recording studios. A brief technical section is provided at the end of each chapter, where the interested reader can find the relevant physics and sample calculations. These quantitative sections can be skipped without affecting the comprehension of the basic material. Questions are provided to test the reader's understanding of the material. Answers are given in the appendix.

  15. Apical instrumentation in endodontic therapy

    Directory of Open Access Journals (Sweden)

    Kurniasri Darliana

    2007-07-01

    Full Text Available Cleaning and shaping of the root canal as the foundation for successful endodontic therapy. Cleaning of the root canal as the removal of all the contents of the root canal systems before and during shaping. Mechanical cleaning as the most important part of the root canal therapy. Instrumentation of the apical region has long been considered to be an essential component in the cleaning and shaping process. The apical area as the critical zone for instrumentation. The apical portion of the root canal system can retain microorganisms that could potentially cause periradicular inflammation. The nickel-titanium rotary instrumentation system to facilitate the cleaning and shaping process. Larger instrumentation sizes not only allow proper irrigation but also significantly decrease remaining bacteria in the canal system. How the larger apical sizes preparation must be achieved to clinical success. This paper will describe the major factors impacting the selection of final apical size, the factors are the anatomy of the apical constriction, root canal diameter, apical instrumentation, and bacteria in dentin tubuli.

  16. 31 CFR 596.307 - Monetary instruments.

    Science.gov (United States)

    2010-07-01

    ... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TERRORISM LIST GOVERNMENTS SANCTIONS REGULATIONS General Definitions § 596.307 Monetary instruments. The term monetary instruments shall have the meaning...

  17. Refabricated and instrumented fuel rods

    International Nuclear Information System (INIS)

    Silberstein, K.

    2005-01-01

    Nuclear Fuel for power reactors capabilities evaluation is strongly based on the intimate knowledge of its behaviour under irradiation. This knowledge can be acquired from refabricated and instrumented fuel rods irradiated at different levels in commercial reactors. This paper presents the development and qualification of a new technique called RECTO related to a double-instrumented rod re-fabrication process developed by CEA/LECA hot laboratory facility at CADARACHE. The technique development includes manufacturing of the properly dimensioned cavity in the fuel pellet stack to house the thermocouple and the use of a newly designed pressure transducer. An analytic irradiation of such a double-instrumented fuel rod will be performed in OSIRIS test reactor starting October 2004. (Author)

  18. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  19. Seismic Instrumentation Placement Recommendations Report

    International Nuclear Information System (INIS)

    Kennedy, W.N.

    1998-01-01

    DOE Order 420.1, ''Facility Safety'', requires that facilities or sites with hazardous materials be provided with instrumentation or other means to detect and record the occurrences and severity of seismic events. These requirements assure that necessary records are available after an earthquake for evaluation purposes and to supplement other data to justify a facility restart or curtailing plant operations after an earthquake. This report documents the basis for the selection of Savannah River Site areas and existing facilities to be instrumented. The need to install instrumentation in new facilities such as the Actinide Packaging and Storage Facility, Commercial Light Water Reactor Tritium Extraction Facility and the Accelerator Production of Tritium Facility will be assessed separately

  20. Introduction to instrumentation and measurements

    CERN Document Server

    Northrop, Robert B

    2014-01-01

    Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors' 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What's New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describ...

  1. Technical presentation - KEITHLEY Instruments - CANCELLED

    CERN Multimedia

    FI Department

    2009-01-01

    10 March 2009 13:30 – 15:30, Council Chamber, Bldg. 503 Keithley markets highly accurate instruments and data acquisition products, as well as complete system solutions for high-volume production and assembly testing. Keithley Instruments, Inc. designs, develops, manufactures and markets complex electronic instruments and systems geared to the specialized needs of electronics manufacturers for high-performance production testing, process monitoring, product development and research. Products and Services: Digital Multimeters and Data Acquisition Systems Current / Voltage Source and Measure Products Low Current / High Resistance Measurement Products Function/Pulse/Arbitrary/Pattern Generators Low Voltage/Low Resistance Measurement Products RF Spectrum Analyzer / RF Signal Generator / RF Switching Semiconductor Device Characterization Program: Topic 1: Welcome and short overview of new Products SMU 26XXA / ARB Generator 3390 / DMM 3706 / E-Meter 6517B Topic 2a: Te...

  2. Safeguards instrumentation: past, present, future

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    1982-01-01

    Instruments are essential for accounting, for surveillance and for protection of nuclear materials. The development and application of such instrumentation is reviewed, with special attention to international safeguards applications. Active and passive nondestructive assay techniques are some 25 years of age. The important advances have been in learning how to use them effectively for specific applications, accompanied by major advances in radiation detectors, electronics, and, more recently, in mini-computers. The progress in seals has been disappointingly slow. Surveillance cameras have been widely used for many applications other than safeguards. The revolution in TV technology will have important implications. More sophisticated containment/surveillance equipment is being developed but has yet to be exploited. On the basis of this history, some expectations for instrumentation in the near future are presented

  3. Solution assay instrument operations manual

    International Nuclear Information System (INIS)

    Li, T.K.; Marks, T.; Parker, J.L.

    1983-09-01

    An at-line solution assay instrument (SAI) has been developed and installed in a plutonium purification and americium recovery process area in the Los Alamos Plutonium Processing Facility. The instrument was designed for accurate, timely, and simultaneous nondestructive analysis of plutonium and americium in process solutions that have a wide range of concentrations and americium/plutonium ratios and for routine operation by process technicians who lack instrumentation background. The SAI, based on transmission-corrected, high-resolution gamma-ray spectroscopy, has two measurement stations attached to a single multichannel analyzer/computer system. To ensure the quality of assay results, the SAI has an internal measurement control program, which requires daily and weekly check runs and monitors key aspects of all assay runs. For a 25-ml sample, the assay precision is 5 g/l within a 2000-s count time

  4. Recent developments in nuclear instruments

    International Nuclear Information System (INIS)

    Vaidya, P.P.

    2004-01-01

    Full text : Nuclear Instrumentation is a field of vital importance for DAE. It has important applications in many areas of interest such as Reactor Monitoring and control, Accelerator based research, Laser and nuclear physics experiments, Health and environmental monitoring, Astrophysics experiments etc. It is a specialized field involving expertise in detection of radioactivity down to the level of few events per minute as well as processing and analysis of signals which can be as small as few hundred micro volts embedded in noise. Some applications involve digitizing and processing these signals with 0.001% accuracy and timing accuracies of a fraction of nano sec. Rapid developments in semiconductor related technologies have influenced the field of nuclear instrumentation. Development of FPGA's and ASIC's have made it possible to develop miniaturized smart and portable instruments for field applications. Advancements in field of computers, communications and various field buses have been successfully utilized for smart, portable and DSP based instrumentation. Smart sensor with detector and front-end electronics on a single silicon chip is now a reality. These instruments are also made intelligent by addition of fuzzy logic, artificial neural networks and expert systems. Electronics Division of BARC has made significant contribution to the field of nuclear instrumentation to achieve self-reliance in this area. This has also led to development of several new methods, which have been published in international journals and appreciated worldwide. As a step towards achieving complete self-reliance a programme for development of FPGA's, HMC's and ASIC's has been undertaken and is being followed with special emphasis. This also includes development of detector and front- end electronics on a single chip. This talk brings out details of these developments and describes the 'state of art' work done in India

  5. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Young, S.E.; Becker, C.H.; Coggiola, M.J. [SRI International, Menlo Park, CA (United States); Wollnik, H. [Giessen Univ. (Germany)

    1997-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  6. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z; Young, S E; Becker, C H; Coggiola, M J [SRI International, Menlo Park, CA (United States); Wollnik, H [Giessen Univ. (Germany)

    1998-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  7. Neutron-multiplication measurement instrument

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results.

  8. Neutron-multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  9. Practical course on reactor instrumentation

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2004-06-01

    This course is based on the description of the instrumentation of the TRIGA-reactor Vienna, which is used for training research and isotope production. It comprises the following chapters: 1. instrumentation, 2. calibration of the nuclear channels, 3. rod drop time of the control rods, 4. neutron flux density measurements using compensated ionization, 5. neutron flux density measurement with fission chambers (FC), 6. neutron flux density measurement with self-powered neutron detectors (SPND), 7. pressurized water reactor simulator, 8. verification of the radiation level during reactor operation. There is one appendix about neutron-sensitive thermocouples. (nevyjel)

  10. Formation Flying and Deformable Instruments

    International Nuclear Information System (INIS)

    Rio, Yvon

    2009-01-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  11. Formation Flying and Deformable Instruments

    Science.gov (United States)

    Rio, Yvon

    2009-05-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  12. Neutron beam instruments at Harwell

    International Nuclear Information System (INIS)

    Baston, A.H.; Harris, D.H.C.

    1978-11-01

    A list and brief descriptions are given of the neutron beam facilities for U.K. scientists at Harwell and in academic institutions, available under an agreement between the Science Research Council and AERE (Harwell). The list falls under the following headings: reactor instruments (single crystal diffractometers, powder diffractometers, triple axis spectrometers, time-of-flight cold neutron twin rotor spectrometer, beryllium filter spectrometer, MARX spectrometer, Harwell small-angle scattering spectrometer); LINAC instruments (total scattering spectrometer, back scattering spectrometer, active sample spectrometer, inelastic rotor spectrometer, constant Q spectrometer); ancillary equipment (cryostats, superconducting magnets, electromagnets, furnaces). (U.K.)

  13. An introduction to biomedical instrumentation

    CERN Document Server

    Dewhurst, D J

    1976-01-01

    An Introduction to Biomedical Instrumentation presents a course of study and applications covering the basic principles of medical and biological instrumentation, as well as the typical features of its design and construction. The book aims to aid not only the cognitive domain of the readers, but also their psychomotor domain as well. Aside from the seminar topics provided, which are divided into 27 chapters, the book complements these topics with practical applications of the discussions. Figures and mathematical formulas are also given. Major topics discussed include the construction, handli

  14. New instruments for radiation protection

    International Nuclear Information System (INIS)

    Bartos, D.; Ciobanu, M.; Constantin, F.; Petcu, M.; Plostinaru, V.D.; Rusu, Al.; Lupu, A.C.; Lupu, F.

    2003-01-01

    Though a century old, the radiation protection is actual by its purpose: a dose as low as reasonable achievable is to be received either by involved professionals or population. This threshold is dependent on the technical progress. Some major developments like surface mounted device technology, consumer almost ideal operational amplifiers, microcontrollers and the news signal digital processing techniques, offer the opportunity to design improved instruments for radioprotection. To put in a light portable instrument both the whole measuring system and the 'intelligence' - a microcontroller and the associated software - are the main ideas applied by the authors. The result is presented: a family of eight members, at least, based on two parents. (authors)

  15. Advances in control and instrumentation

    International Nuclear Information System (INIS)

    Surendar, Ch.

    1994-01-01

    Control and instrumentation systems have seen significant changes from pneumatic to electronic with the advent of transistors and integrated circuits. Miniaturization was realised. With the introduction of microprocessors there has been a revolutionary change in the approach in instrumentation and control systems in the areas of sensors, data acquisition/transmission, processing for control, and presentation of the information to the operator. An effort is made to give some insight into these areas, with some idea of the advantages to which these systems are being put to use in the nuclear facilities, particularly nuclear power reactors. (author)

  16. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Developments discussed include a transistorized- power supply for the Beckman DU spectrophotometer, a master clock pulse generator, a modular printing unit, a flash photolysis setup, a glove box assembly for a Perkin-Elmer infrared spectrophotometer, and a Faraday balance for measuring the magnetic susceptibilities of actinide compounds. (WHK)

  17. Meteorological instrumentation for nuclear facilities

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. An analysis of the problems associated with grounding of a typical meteorological station is presented. (Author) [pt

  18. Loyaliteitsprogramma's: zinvol CRM-instrument?

    NARCIS (Netherlands)

    Leenheer, J.

    2006-01-01

    Loyalty programs have been widely adopted by companies and their customers. A loyalty program is a relational marketing instrument that aims to enhance customer loyalty. However, skepticism exists about the implementation and effectiveness of loyalty programs. This paper studies for whom, when and

  19. Literature Review of Multicultural Instrumentation

    Science.gov (United States)

    Sarraj, Huda; Carter, Stacy; Burley, Hansel

    2015-01-01

    Demographic changes at the national level emphasize a critical need for multicultural education to be included as part of undergraduate education. This critical review of the literature examines 10 multicultural instruments that are suitable for use in K-12 or higher education institutions. This is a novel literature review in that it is the first…

  20. Meteorological instrumentation for nuclear installations

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. Finally, it is presented an analysis of the problems associated with grounding of a typical meteorological station. (Author) [pt

  1. Mobile Instruments Measure Atmospheric Pollutants

    Science.gov (United States)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  2. Market-based Economic Instruments

    DEFF Research Database (Denmark)

    Klemmensen, Børge

    2007-01-01

    Grundkategorien her er markedet som den optimale allokeringsmekanisme for de belastninger, som de økonomiske instrumenter / miljøskatterne påfører. Det mest omfattende og spektakulære eksempel på markedet som allokatorer af skatter er EU's børs for forureningstilladelser, dvs reelt CO-2 beskatnin...

  3. Alternative instruments for the CAP?

    NARCIS (Netherlands)

    Silvis, H.J.; Rijswick, van C.W.J.; Bont, de C.J.A.M.

    2001-01-01

    With parallel negotiations taking place on enlargement of the EU and a new WTO agreement, EU's Common Agricultural Policy is facing further reforms. This report addresses the issue of whether any alternatives can be found for the instruments of this policy, and looks at decoupled payments, a net

  4. Management system of instrument database

    International Nuclear Information System (INIS)

    Zhang Xin

    1997-01-01

    The author introduces a management system of instrument database. This system has been developed using with Foxpro on network. The system has some characters such as clear structure, easy operation, flexible and convenient query, as well as the data safety and reliability

  5. Maintenance of nuclear medicine instruments

    Energy Technology Data Exchange (ETDEWEB)

    Ambro, P

    1993-12-31

    Maintenance of instruments is generally of two kinds: (a) corrective maintenance, on a non-scheduled basis, to restore equipment to a functional status by repairs; (b) preventive maintenance, to keep equipment in a specified functional condition by providing systematic inspection, quality control, detection and correction of early malfunctions. Most of the instruments used in nuclear medicine are rather complex systems built from mechanical, electrical and electronic parts. Any one of these components is liable to fail at some time or other. Repair could be done only by a specialist who is able to evaluate the condition of the various parts ranging from cables to connectors, from scintillators to photomultipliers, from microprocessors to microswitches. The knowledge of the intricacies of the various electronic components required for their repairs is quite wide and varied. The electronics industry turns out more and more multi-purpose chips which can carry out the functions of many parts used in the instruments of the earlier generation. This provides protection against unauthorized copying of the circuits but it serves another purpose as well of inhibiting repairs by non-factory personnel. These trends of the instrument design should be taken into consideration when a policy has to be developed for the repairs of the hospital based equipment 1 fig., 1 tab

  6. Maintenance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Ambro, P.

    1992-01-01

    Maintenance of instruments is generally of two kinds: (a) corrective maintenance, on a non-scheduled basis, to restore equipment to a functional status by repairs; (b) preventive maintenance, to keep equipment in a specified functional condition by providing systematic inspection, quality control, detection and correction of early malfunctions. Most of the instruments used in nuclear medicine are rather complex systems built from mechanical, electrical and electronic parts. Any one of these components is liable to fail at some time or other. Repair could be done only by a specialist who is able to evaluate the condition of the various parts ranging from cables to connectors, from scintillators to photomultipliers, from microprocessors to microswitches. The knowledge of the intricacies of the various electronic components required for their repairs is quite wide and varied. The electronics industry turns out more and more multi-purpose chips which can carry out the functions of many parts used in the instruments of the earlier generation. This provides protection against unauthorized copying of the circuits but it serves another purpose as well of inhibiting repairs by non-factory personnel. These trends of the instrument design should be taken into consideration when a policy has to be developed for the repairs of the hospital based equipment

  7. A portable luminescence dating instrument

    DEFF Research Database (Denmark)

    Kook, M.H.; Murray, A.S.; Lapp, Torben

    2011-01-01

    We describe a portable luminescence reader suitable for use in remote localities in the field. The instrument weighs about 8kg and is based around a 30mm bialkali photomultiplier detecting signals through a glass filter centered on 340nm. Stimulation is by 470nm blue LEDs (24W in total) operating...

  8. [Organising an instrumental elective abortion].

    Science.gov (United States)

    Brûlé, Annie

    2015-12-01

    Family planning centres are structures designed to receive and care for women requesting elective abortions. Here the specially trained, dedicated teams offer personalised care. The instrumental elective abortion is prepared in the same way as a surgical procedure and is subject to the same monitoring. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Experimenting with Brass Musical Instruments.

    Science.gov (United States)

    LoPresto, Michael C.

    2003-01-01

    Describes experiments to address the properties of brass musical instruments that can be used to demonstrate sound in any level physics course. The experiments demonstrate in a quantitative fashion the effects of the mouthpiece and bell on the frequencies of sound waves and thus the musical pitches produced. (Author/NB)

  10. A Musical instrument in MEMS

    NARCIS (Netherlands)

    Engelen, Johannes Bernardus Charles; de Boer, Hans L.; de Boer, H.; Beekman, J.G.; Been, A.J.; Folkertsma, Gerrit Adriaan; Folkertsma, G.A.; Fortgens, L.; de Graaf, D.; Vocke, S.; Woldering, L.A.; Abelmann, Leon; Elwenspoek, Michael Curt

    In this work we describe a MEMS instrument that resonates at audible frequencies, and with which music can be made. The sounds are generated by mechanical resonators and capacitive displacement sensors. Damping by air scales unfavourably for generating audible frequencies with small devices.

  11. Instrumental activation analysis of molybdenites

    International Nuclear Information System (INIS)

    Geisler, M.; Schelhorn, H.

    1981-01-01

    Na, K, Sc, Cr, Fe, Co, Se, Rb, Ag, Cs, Ba, La, Ce, Eu, Yb, Hf, W, Re, and Th have been determined in 6 molybdenite samples by instrumental activation analysis. The samples were of different origin and showed K, Sc, W, and Re values with differences of more than two orders of magnitude, whereas Sc values were within one order of magnitude

  12. Scientific Instruments and Epistemology Engines

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Tomáš

    2012-01-01

    Roč. 34, č. 4 (2012), s. 529-540 ISSN 1210-0250 R&D Projects: GA ČR(CZ) GAP401/11/2338 Institutional support: RVO:67985955 Keywords : material culture of science * scientific instruments * epistemology engines * experimental systems Subject RIV: AA - Philosophy ; Religion

  13. Instrumentation for PIXE and RBS

    International Nuclear Information System (INIS)

    2000-12-01

    The purpose of this document is to give an overview of instrumentation for PIXE and Rutherford backscattering analysis, including hardware and software needed to perform the analysis, including detectors, analyzers, data acquisition systems and data analysis software. It also provides some information on accelerators needed for these applications

  14. Technological considerations in emergency instrument preparedness

    International Nuclear Information System (INIS)

    Selby, J.M.

    1975-01-01

    The types of emergency instrumentation systems necessary to characterize the severity and extent of radiation accidents and to aid in the protection of operating personnel and personnel living near the plant are discussed. These include instruments for direct measurement of the airborne radioactive material within the facility, fixed instrumentation for ambient dose rate monitoring or area monitoring, and portable instruments for environmental monitoring

  15. Temperature documentation - instrument for quality assurance; Temperaturdokumentation - Instrument der Qualitaetssicherung

    Energy Technology Data Exchange (ETDEWEB)

    Hegglin, A [Wurm AG, Winterthur (Switzerland)

    2000-10-01

    Important inspection points of a HACCP concept are the temperatures. On the basis of the demands for a systematic temperature documentation, the application of control systems and instruments is described by several examples. (orig.) [German] Wichtige Kontrollpunkte eines HACCP-Konzepts sind die Temperaturen. Ausgehend von den Anforderungen, die an eine systematische Temperaturedokumentation gestellt werden, wird der Einsatz geeigneter Regel- und Ueberwachungsgeraete an mehreren Beispielen erlaeutert. (orig.)

  16. Instrumentation requirements for the ESF thermomechanical experiments

    International Nuclear Information System (INIS)

    Pott, J.; Brechtel, C.E.

    1992-01-01

    In situ thermomechanical experiments are planned as part of the Yucca Mountain Site Characterization Project that require instruments to measure stress and displacement at temperatures that exceed the typical specifications of existing geotechnical instruments. A high degree of instrument reliability will also be required to satisfy the objectives of the experiments, therefore a study was undertaken to identify areas where improvement in instrument performance was required. A preliminary list of instruments required for the experiments was developed, based on existing test planning and analysis. Projected temperature requirements were compared to specifications of existing instruments to identify instrumentation development needs. Different instrument technologies, not currently employed in geotechnical instrumentation, were reviewed to identify potential improvements of existing designs for the high temperature environment. Technologies with strong potentials to improve instrument performance with relatively high reliability include graphite fiber composite materials, fiber optics, and video imagery

  17. Analysis of instrumentation technology for SMART

    International Nuclear Information System (INIS)

    Hur, Seop; Koo, I. S.; Park, H. Y.; Lee, C. K.; Kim, D. H.; Suh, Y. S.; Seong, S. H.; Jang, G. S.

    1998-03-01

    It is necessary that development requirements, techniques to be developed, and development tasks and approach are established to develop the SMART instrumentation system. It is important to establish the development strategies for input for developing SMART instrumentation system. To meet above needs, the industry general and nuclear instrumentation techniques were analyzed and reviewed, respectively, based on the classification of instrumentation to analyze the industrial instrumentation techniques, and analysis results which described the inherent merits and demerits of each technique can be used for inputs to select the instruments for SMART. For the instrumentation techniques for nuclear environments, the major instrumentation techniques were reviewed, and the instrumentation system were established. The following development approaches were established based on the development requirements and the analysis results of research and development trends of industrial and nuclear instrumentation techniques. (author). 90 refs., 38 tabs., 33 figs

  18. The history of thoracic surgical instruments and instrumentation.

    Science.gov (United States)

    Hagopian, E J; Mann, C; Galibert, L A; Steichen, F M

    2000-02-01

    Thoracic surgical practice has evolved from the innovations of its pioneers. Beginning with the stethoscope discovered by Laënnec with his system of auscultation, to the tools we use in the dissection and control of the hilum of the lung for resection, our practice of thoracic surgery has been entwined with the development of instruments and instrumentation. The development of strategies to prevent death from the open pneumothorax began with manual control of the mediastinum and progressed through differential pressure to, finally, the technique of intubation and the methods of positive-pressure and insufflation anesthesia. The instruments we place in our hands are not enough to define our art. Entry into the chest would not be possible without the use of rib retractors, rib shears, and even periosteal elevators. Finally, to the present day of minimally invasive techniques and the application of thoracoscopy for therapeutic purposes, we find the efforts of our predecessors well developed. For the progression from the fear of the open pneumothorax to the present-day state of the ease of thoracotomy for lung resection we are indebted to those who gave so much of their time and, for some, their lives to death from tuberculosis, to allow the advancement of our practice of surgery. These great people should be remembered not only for their acceptance of novel ideas but also, more importantly, for their lack of fear of testing them.

  19. Development of CAMAC and Fastbus instrumentation

    International Nuclear Information System (INIS)

    Venkateswaran, Aruna; Behere, Anita; Ghodgaonkar, M.D.; Bairi, B.R.

    1987-01-01

    This report describes the work being done towards the development of CAMAC and Fast Bus Instrumentation under the VII Five Year Plan Project 'Modernisation of Reactor Control Instrumentation and Development of CAMAC and FAST BUS Instrumentation'. The report summarises the goals, objectives, principles and concepts of CAMAC and Fast Bus Instrumentation. While emphasizing the motivation behind the development of CAMAC and Fast Bus Instrumentation, the report brings out the current status and future plans of this development program. (author)

  20. ACRF Instrumentation Status and Information September 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2009-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  1. ACRF Instrumentation Status and Information April 2009

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2009-05-07

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  2. ACRF Instrumentation Status and Information August 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2009-09-09

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  3. ACRF Instrumentation Status and Information July 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2009-08-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  4. ACRF Instrumentation Status and Information - June 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2009-06-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  5. ACRF Instrumentation Status and Information May 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2009-05-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  6. Robust Instrumentation[Water treatment for power plant]; Robust Instrumentering

    Energy Technology Data Exchange (ETDEWEB)

    Wik, Anders [Vattenfall Utveckling AB, Stockholm (Sweden)

    2003-08-01

    Cementa Slite Power Station is a heat recovery steam generator (HRSG) with moderate steam data; 3.0 MPa and 420 deg C. The heat is recovered from Cementa, a cement industry, without any usage of auxiliary fuel. The Power station commenced operation in 2001. The layout of the plant is unusual, there are no similar in Sweden and very few world-wide, so the operational experiences are limited. In connection with the commissioning of the power plant a R and D project was identified with the objective to minimise the manpower needed for chemistry management of the plant. The lean chemistry management is based on robust instrumentation and chemical-free water treatment plant. The concept with robust instrumentation consists of the following components; choice of on-line instrumentation with a minimum of O and M and a chemical-free water treatment. The parameters are specific conductivity, cation conductivity, oxygen and pH. In addition to that, two fairly new on-line instruments were included; corrosion monitors and differential pH calculated from specific and cation conductivity. The chemical-free water treatment plant consists of softening, reverse osmosis and electro-deionisation. The operational experience shows that the cycle chemistry is not within the guidelines due to major problems with the operation of the power plant. These problems have made it impossible to reach steady state and thereby not viable to fully verify and validate the concept with robust instrumentation. From readings on the panel of the online analysers some conclusions may be drawn, e.g. the differential pH measurements have fulfilled the expectations. The other on-line analysers have been working satisfactorily apart from contamination with turbine oil, which has been noticed at least twice. The corrosion monitors seem to be working but the lack of trend curves from the mainframe computer system makes it hard to draw any clear conclusions. The chemical-free water treatment has met all

  7. CERCA's fuel elements instrumentation manufacturing

    International Nuclear Information System (INIS)

    Harbonnier, G.; Jarousse, C.; Pin, T.; Febvre, M.; Colomb, P.

    2005-01-01

    When research and test reactors wish to further understand the Fuel Elements behavior when operating as well as mastering their irradiation conditions, operators carry out neutron and thermo hydraulic analysis. For thermal calculation, the codes used have to be preliminary validated, at least in the range of the reactor safety operational limits. When some further investigations are requested either by safety authorities or for its own reactor needs, instrumented tools are the ultimate solution for providing representative measurements. Such measurements can be conducted for validating thermal calculation codes, at nominal operating condition as well as during transients ones, or for providing numerous and useful data in the frame of a new products qualification program. CERCA, with many years of experience for implanting thermocouples in various products design, states in this poster his manufacturing background on instrumented elements, plates or targets. (author)

  8. Nuclear instrumentation for radiation measurement

    International Nuclear Information System (INIS)

    Madan, V.K.

    2012-01-01

    Nuclear radiation cannot be detected by human senses. Nuclear detectors and associated electronics facilitate detection and measurement of different types of radiation like alpha particles, beta particles, gamma radiation, and detection of neutrons. Nuclear instrumentation has evolved greatly since the discovery of radioactivity. There has been tremendous advancement in detector technology, electronics, computer technology, and development of efficient algorithms and methods for spectral processing to extract precisely qualitative and quantitative information of the radiation. Various types of detectors and nuclear instruments are presently available and are used for different applications. This paper describes nuclear radiation, its detection and measurement and associated electronics, spectral information extraction, and advances in these fields. The paper also describes challenges in this field

  9. Modernization of ILL instrument electronics

    International Nuclear Information System (INIS)

    Descamps, F.

    1999-01-01

    We have built new general purpose cards for data acquisition taking advantage of recent developments in electronics. At the end of the year, most scheduled instruments at the ILL will be running under UNIX with VME electronics front-end. As the VME electronics of the ILL was designed at the beginning of the eighties, the instrument control section (SCI) at ILL has prepared a renewal plan for two reasons: - first, all the processor cards of the Institute are based on MIZAR processor boards and MIZAR stopped the production of this card last year, as the market was shrinking; - in addition, processors and programmable electronics are now 10 times faster. The electronics services want to take full advantage of these new performances. (author)

  10. Evaluation Framework for Search Instruments

    International Nuclear Information System (INIS)

    Warren, Glen A.; Smith, Leon E.; Cooper, Matt W.; Kaye, William R.

    2005-01-01

    A framework for quantitatively evaluating current and proposed gamma-ray search instrument designs has been developed. The framework is designed to generate a large library of ''virtual neighborhoods'' that can be used to test and evaluate nearly any gamma-ray sensor type. Calculating nuisance-source emissions and combining various sources to create a large number of random virtual scenes places a significant computational burden on the development of the framework. To reduce this burden, a number of radiation transport simplifications have been made which maintain the essential physics ingredients for the quantitative assessment of search instruments while significantly reducing computational times. The various components of the framework, from the simulation and benchmarking of nuisance source emissions to the computational engine for generating the gigabytes of simulated search scenes, are discussed

  11. Instrumental Landing Using Audio Indication

    Science.gov (United States)

    Burlak, E. A.; Nabatchikov, A. M.; Korsun, O. N.

    2018-02-01

    The paper proposes an audio indication method for presenting to a pilot the information regarding the relative positions of an aircraft in the tasks of precision piloting. The implementation of the method is presented, the use of such parameters of audio signal as loudness, frequency and modulation are discussed. To confirm the operability of the audio indication channel the experiments using modern aircraft simulation facility were carried out. The simulated performed the instrument landing using the proposed audio method to indicate the aircraft deviations in relation to the slide path. The results proved compatible with the simulated instrumental landings using the traditional glidescope pointers. It inspires to develop the method in order to solve other precision piloting tasks.

  12. Nuclear instrumentation for uranium exploration

    International Nuclear Information System (INIS)

    Sarma, Ch. V.N.; Sarma, C.V.R.; Sreehari, R.

    1999-01-01

    Instrumentation required for uranium exploration may be broadly classified based on surface and sub-surface measurement of gamma-ray intensity. Surface measurement of gross and spectral gamma intensity are carried out by employing portable Geiger Mueller/scintillation counters and four-channel spectrometers. Measurement of thoron ( 220 Rn) and radon ( 222 Rn) in the soil gas is being carried out by closed circuit technique using radon measuring system. Radiometric mapping of trenches, pits and mine-faces are carried out using shielded probe with 2π source geometry, whereas logging sonde with instruments through the steel armoured cable are employed for point to 4π geometry. Spectral borehole logging system with built-in multi-channel analyser (MCA) has been developed for the uranium exploration programme for AMD. Note-book PC based high sensitivity air-borne gamma-ray spectrometric survey system has been designed, developed and test flown. (author)

  13. Epithermal neutron instrumentation at ISIS

    International Nuclear Information System (INIS)

    Gorini, G; Festa, G; Andreani, C

    2014-01-01

    The advent of pulsed neutron sources makes available high epithermal neutron fluxes (in the energy range between 500 meV and 100 eV). New dedicated instrumentation, such as Resonance Detectors, was developed at ISIS spallation neutron source in the last years to apply the specific properties of this kind of neutron beam to the study of condensed matter. New detection strategies like Filter Difference method and Foil Cycling Technique were also developed in parallel to the detector improvement at the VESUVIO beamline. Recently, epithermal neutron beams were also used at the INES beamline to study elemental and isotopic composition of materials, with special application to cultural heritage studies. In this paper we review a series of epithermal neutron instrumentation developed at ISIS, their evolution over time and main results obtained

  14. Holy Trinity of Instrumentation Development

    International Nuclear Information System (INIS)

    Ursic, Rok; Solar, Borut

    2004-01-01

    Being user friendly should be the main guidance, beside the self-understood high performance, in today's instrumentation development. Here we identify three components of the user-friendly policy: the all-in-one concept, customization, and connectivity. All-in-one is the concept of unification of various building blocks and thus various functionalities in one product. The customization is enabled by the product's reconfigurability that allows a product to grow and support new requirements and applications without changing hardware. The consequence of the two is the capacity of the single instrument to perform a variety of tasks that before were split among different devices. The last of the three is connectivity that improves the relationship between controls and beam diagnostics, brings out-of-the-crate freedom, and opens unforeseen possibilities for intra-accelerator cooperation and remote technical support

  15. Digital readout alpha survey instrument

    International Nuclear Information System (INIS)

    Jacobs, M.E.

    1976-01-01

    A prototype solid-state digital readout alpha particle survey instrument has been designed and constructed. The meter incorporates a Ludlum alpha scintillator as a detector, digital logic circuits for control and timing, and a Digilin counting module with reflective liquid crystal display. The device is used to monitor alpha radiation from a surface. Sample counts are totalized over 10-second intervals and displayed digitally in counts per minute up to 19,999. Tests over source samples with counts to 15,600 cpm have shown the device to be rapid, versatile and accurate. The instrument can be fabricated in one man-week and requires about $835 in material costs. A complete set of drawings is included

  16. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  17. Mass Spectrometry Instrumentation in Proteomics

    DEFF Research Database (Denmark)

    Sprenger, Richard Remko; Roepstorff, Peter

    2012-01-01

    Mass spectrometry has evolved into a crucial technology for the field of proteomics, enabling the comprehensive study of proteins in biological systems. Innovative developments have yielded flexible and versatile mass spectrometric tools, including quadrupole time-of-flight, linear ion trap......, Orbitrap and ion mobility instruments. Together they offer various and complementary capabilities in terms of ionization, sensitivity, speed, resolution, mass accuracy, dynamic range and methods of fragmentation. Mass spectrometers can acquire qualitative and quantitative information on a large scale...

  18. Beam diagnostic instruments of TARN

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi.

    1987-09-01

    The paper summarizes the beam diagnostic instruments of the low energy ion accumulation ring; TARN. With these monitors, position, profiles, bunch structure, intensity, emittance and momentum spread were measured to evaluate the injection and stacking experiments. The monitors provide the sensitivity of a few μA for the nondestructive and a few nA for the destructive monitors. Discussions on monitor probe and electronics are presented on the basis of an achievement of the beam stacking experiments. (author)

  19. Peer Learning in Instrumental Practicing

    Science.gov (United States)

    Nielsen, Siw G.; Johansen, Guro G.; Jørgensen, Harald

    2018-01-01

    In higher music education (HME), the notion of “private teaching, private learning” has a long tradition, where the learning part rests on the student's individual practicing between instrumental lessons. However, recent research suggests that collaborative learning among peers is beneficial in several aspects, such as sense of belonging, motivation and self-efficacy. This is consistent with the concept of vicarious learning. In this study, we conducted a survey among bachelor music students in church music, performance or music education programs enrolled in a music academy (N = 96), where parts of the questionnaire addressed peer learning and peer's influence on the students's instrumental practicing, and the degree of satisfaction with their practicing. These issues were seen in relation to gender, musical genre and study program. Overall, the students reported engaging in peer learning related to their instrumental practicing, to various degrees. This involved discussing practicing matters with peers, and practicing together with peers. However, student's reports of their views on peer learning, show that they perceive it more beneficial than the amount of time reported doing it would indicate. No significant gender differences were found, but students within improvised music/jazz engaged the most in peer learning, and church music students the least. Neither the degree of engaging in peer learning nor reported influence from peers correlated significantly with the degree of satisfaction. We discuss whether a general dissatisfaction is caused by being in a competitive learning environment combined with a privatized culture for learning. Finally, we suggest that collaborative forums for instrumental practicing within HME institutions can function as constructive and supportive arenas to enhance students learning and inner motivation. PMID:29599738

  20. Nuclear instrumentation cable end seal

    International Nuclear Information System (INIS)

    Cannon, C.P.; Brown, D.P.

    1979-01-01

    An improved coaxial end seal for hermetically sealed nuclear instrumentation cable exhibiting an improved breakdown pulse noise characteristic under high voltage, high temperature conditions is described. A tubular insulator body has metallized interior and exterior surface portions which are braze sealed to a center conductor and an outer conductive sheath. The end surface of the insulator body which is directed toward the coaxial cable to which it is sealed has a recessed surface portion within which the braze seal material terminates

  1. Peer Learning in Instrumental Practicing.

    Science.gov (United States)

    Nielsen, Siw G; Johansen, Guro G; Jørgensen, Harald

    2018-01-01

    In higher music education (HME), the notion of "private teaching, private learning" has a long tradition, where the learning part rests on the student's individual practicing between instrumental lessons. However, recent research suggests that collaborative learning among peers is beneficial in several aspects, such as sense of belonging, motivation and self-efficacy. This is consistent with the concept of vicarious learning. In this study, we conducted a survey among bachelor music students in church music, performance or music education programs enrolled in a music academy ( N = 96), where parts of the questionnaire addressed peer learning and peer's influence on the students's instrumental practicing, and the degree of satisfaction with their practicing. These issues were seen in relation to gender, musical genre and study program. Overall, the students reported engaging in peer learning related to their instrumental practicing, to various degrees. This involved discussing practicing matters with peers, and practicing together with peers. However, student's reports of their views on peer learning, show that they perceive it more beneficial than the amount of time reported doing it would indicate. No significant gender differences were found, but students within improvised music/jazz engaged the most in peer learning, and church music students the least. Neither the degree of engaging in peer learning nor reported influence from peers correlated significantly with the degree of satisfaction. We discuss whether a general dissatisfaction is caused by being in a competitive learning environment combined with a privatized culture for learning. Finally, we suggest that collaborative forums for instrumental practicing within HME institutions can function as constructive and supportive arenas to enhance students learning and inner motivation.

  2. Virtual Instrumentation in Biomedical Equipment

    Directory of Open Access Journals (Sweden)

    Tiago Faustino Andrade

    2013-01-01

    Full Text Available Nowadays, the assessment of body composition by estimating the percentage of body fat has a great impact in many fields such as nutrition, health, sports, chronic diseases and others. The main purpose for this work is the development of a virtual instrument that permits more effective assessment of body fat, automatic data processing, recording results and storage in a database, with high potential to conduct new studies, http://lipotool.com.

  3. SMAP Instrument Mechanical System Engineering

    Science.gov (United States)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  4. Soil analysis. Modern instrumental technique

    International Nuclear Information System (INIS)

    Smith, K.A.

    1993-01-01

    This book covers traditional methods of analysis and specialist monographs on individual instrumental techniques, which are usually not written with soil or plant analysis specifically in mind. The principles of the techniques are combined with discussions of sample preparation and matrix problems, and critical reviews of applications in soil science and related disciplines. Individual chapters are processed separately for inclusion in the appropriate data bases

  5. Peer Learning in Instrumental Practicing

    Directory of Open Access Journals (Sweden)

    Siw G. Nielsen

    2018-03-01

    Full Text Available In higher music education (HME, the notion of “private teaching, private learning” has a long tradition, where the learning part rests on the student's individual practicing between instrumental lessons. However, recent research suggests that collaborative learning among peers is beneficial in several aspects, such as sense of belonging, motivation and self-efficacy. This is consistent with the concept of vicarious learning. In this study, we conducted a survey among bachelor music students in church music, performance or music education programs enrolled in a music academy (N = 96, where parts of the questionnaire addressed peer learning and peer's influence on the students's instrumental practicing, and the degree of satisfaction with their practicing. These issues were seen in relation to gender, musical genre and study program. Overall, the students reported engaging in peer learning related to their instrumental practicing, to various degrees. This involved discussing practicing matters with peers, and practicing together with peers. However, student's reports of their views on peer learning, show that they perceive it more beneficial than the amount of time reported doing it would indicate. No significant gender differences were found, but students within improvised music/jazz engaged the most in peer learning, and church music students the least. Neither the degree of engaging in peer learning nor reported influence from peers correlated significantly with the degree of satisfaction. We discuss whether a general dissatisfaction is caused by being in a competitive learning environment combined with a privatized culture for learning. Finally, we suggest that collaborative forums for instrumental practicing within HME institutions can function as constructive and supportive arenas to enhance students learning and inner motivation.

  6. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  7. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  8. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    Directory of Open Access Journals (Sweden)

    M. Ern

    2018-04-01

    Full Text Available Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs and chemistry climate models (CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE. GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER. Typical distributions (zonal averages and global maps of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.

  9. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    Science.gov (United States)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin

    2018-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658" target="_blank">https://doi.org/10.1594/PANGAEA.879658.

  10. TECHNICAL TRAINING SEMINAR: National Instruments

    CERN Multimedia

    Monique Duval

    2004-01-01

    From 9:30 to 12:00 and from 13:00 to 16:00 hrs - Council Chamber, Salle B, Salle des Pas Perdus National Instruments (NI) on Tour 2004 Claudia Jüngel, Evrem Yarkin, Joel Clerc, Hervé Baour / NATIONAL INSTRUMENTS The special event NI on Tour 2004, run in Germany, Austria and Switzerland, will be at CERN on March 30. Technical seminars and free introductory courses will be offered all day long in the Council Chamber, Salle B, and Salle des Pas Perdus (buildings 61 and 503). Data acquisition systems on PCs, industrial measurement and control techniques, advanced LabVIEW software and PXI instrumentation, and system components for tests and automation will be presented. Walk-in courses will address DIAdem, LabVIEW and data acquisition. Language: English and French Free seminars and courses, no registration Organisers: Rolf Stampfli / IT-CO / 78102 & 160367 / Rolf.Stampfli@cern.ch Davide Vitè / HR-PMD-ATT / 75141 Davide.Vite@cern.ch For more information and the complete event programme, please visit the...

  11. Geotechnical instrumentation for repository shafts

    International Nuclear Information System (INIS)

    Lentell, R.L.; Byrne, J.

    1993-01-01

    The US Congress passed the Nuclear Waste Policy Act in 1980, which required that three distinctly different geologic media be investigated as potential candidate sites for the permanent disposal of high-level nuclear waste. The three media that were selected for study were basalt (WA), salt (TX, LA, MS, UT), and tuff (NV). Preliminary Exploratory Shaft Facilities (ESF) designs were prepared for seven candidate salt sites, including bedded and domal salt environments. A bedded-salt site was selected in Deaf Smith County, TX for detailed site characterization studies and ESF Final Design. Although Congress terminated the Salt Repository Program in 1988, Final Design for the Deaf Smith ESF was completed, and much of the design rationale can be applied to subsequent deep repository shafts. This paper presents the rationale for the geotechnical instrumentation that was designed for construction and operational performance monitoring of the deep shafts of the in-situ test facility. The instrumentation design described herein can be used as a general framework in designing subsequent instrumentation programs for future high-level nuclear waste repository shafts

  12. The instrumentation of fast reactor

    International Nuclear Information System (INIS)

    Endo, Akira

    2003-03-01

    The author has been engaged in the development of fast reactors over the last 30 years with both an involvement with the early technology development on the experimental breeder reactor Joyo, and latterly continuing this work on the prototype breeder reactor, Monju. In order to pass on this experience to younger engineers this paper is produced to outline this experience in the sincere hope that the information given will be utilised in future educational training material. The paper discusses the wide diversity on the associated instrument technology which the fast breeder reactor requires. The first chapter outlines the fast reactor system, followed by discussions on reactor instrumentation, measurement principles, temperature dependencies, and verification response characteristics from various viewpoints, are discussed in chapters two and three. The important issues of failed fuel location detection, and sodium leak detection from steam generators are discussed in chapters 4 and 5 respectively. Appended to this report is an explanation on the methods of measuring response characteristics on instrumentation systems using error analysis, random signal theory and measuring method of response characteristic by AR (autoregressive) model on which it appears is becoming an indispensable problem for persons involved with this technology in the future. (author)

  13. Measuring instruments of corporate reputation

    Directory of Open Access Journals (Sweden)

    Damir Grgić

    2008-12-01

    Full Text Available The subject of this paper is focused on the instruments for the measurement of corporate reputation. Recent research of the elements which influence the success of a company shows a growing interest in intangible values. Corporate reputation itself has been identified as one of the key intangible assets which create the company’s added value. Understanding of the importance of corporate reputation has been determined as a significant component of the company’s competitiveness, that is, of its competitive edge. Reputation is a normal part of our life and an integral part of our society. Our interest in the honesty and integrity of others is firmly established in all cultures and nowadays the focus of this interest is switching increasingly on companies. Corporate reputation can be acquired by means of strong, well-developed strategies, which are crucial for the opinion of stakeholders regarding future stability and competitive sustainability of the company. On the other hand, it should be emphasized that in order to manage it, corporate reputation has to be measured first. However, although the concept of corporate reputation is universally accepted and its significance has been recognized especially in the last two decades, the process of its measurement is still at an early stage and there is no universally accepted instrument for its measurement. Therefore, the author of this paper gives an overview of the instruments used for the measurement of corporate reputation which have gained a foothold through former practical usage.

  14. Tool – Material, Metaphor – Metonymy, Instrument(ness)

    DEFF Research Database (Denmark)

    Bertelsen, Olav Wedege; Breinbjerg, Morten; Pold, Søren

    2008-01-01

    creativity , supported by analysis of, and interviews with, musical composers. Instrumentness is explained through discussions of materiality and metonymy as central strategies for computer mediated creativity. The paper is contributing to an investigation of the aesthetics of use in relation to software...... are controlled and conceptualized through values such as virtuosity and palyability, which are important for computer-mediated creative work supporting development in use beyond what is initially designed for. The papet performs a conceptual investigation into qualities in software interfaces that support...

  15. Multimodality instrument for tissue characterization

    Science.gov (United States)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2004-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.

  16. Electrolytic preconcentration in instrumental analysis.

    Science.gov (United States)

    Sioda, R E; Batley, G E; Lund, W; Wang, J; Leach, S C

    1986-05-01

    The use of electrolytic deposition as a separation and preconcentration step in trace metal analysis is reviewed. Both the principles and applications of the technique are dealt with in some detail. Electrolytic preconcentration can be combined with a variety of instrumental techniques. Special attention is given to stripping voltammetry, potentiometric stripping analysis, different combinations with atomic-absorption spectrometry, and the use of flow-through porous electrodes. It is pointed out that the electrolytic preconcentration technique deserves more extensive use as well as fundamental investigation.

  17. In-pile Instrumentation Development

    International Nuclear Information System (INIS)

    Vermeeren, L.

    2005-01-01

    Advanced irradiations in research reactors require the on-line monitoring of crucial parameters like neutron fluxes, gamma dose rates, central fuel rod temperatures, fission gas release pressures and small geometry changes. Our activities in this field aim at a detailed understanding of the sensor behaviour in the irradiation conditions in order to extract reliable real-time information. The objectives of work performed by SCK-CEN are to study of the on-line in-pile measurement of gamma and neutron fluxes in real time and to investigate parasitic radiation-induced signals in instrumentation cables

  18. Tevatron instrumentation: boosting collider performance

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  19. Instrumentation in high energy physics

    International Nuclear Information System (INIS)

    Serin, L.

    2007-01-01

    The instrumentation in high energy physics is a wide and advanced domain which cannot be covered in a single lesson. The main basic physics processes for charged and neutral particles are recalled with the definition of a few concepts needed to understand or design a detector. The application of these principles to charged particle measurement devices (momentum), light detection or energy measurement are presented mostly with examples from collider experiments. The particle identification which is often the combination of different techniques in a same experiment is also discussed. Finally in a very short section, a few considerations about electronics/processing with their impact on the detector performance are given

  20. Rapidly Adaptable Instrumentation Tester (RAIT)

    International Nuclear Information System (INIS)

    Vargo, Timothy D.

    1999-01-01

    Emerging technologies in the field of ''Test ampersand Measurement'' have recently enabled the development of the Rapidly Adaptable Instrumentation Tester (RAIT). Based on software developed with LabVIEW, the RAIT design enables quick reconfiguration to test and calibrate a wide variety of telemetry systems. The consequences of inadequate testing could be devastating if a telemetry system were to fail during an expensive flight mission. Supporting both open-bench testing as well as automated test sequences, the RAIT has significantly lowered total time required to test and calibrate a system. This has resulted in an overall lower per unit testing cost than has been achievable in the past

  1. Financial instrument pricing using C++

    CERN Document Server

    Duffy, Daniel J

    2004-01-01

    One of the best languages for the development of financial engineering and instrument pricing applications is C++. This book has several features that allow developers to write robust, flexible and extensible software systems. The book is an ANSI/ISO standard, fully object-oriented and interfaces with many third-party applications. It has support for templates and generic programming, massive reusability using templates (?write once?) and support for legacy C applications. In this book, author Daniel J. Duffy brings C++ to the next level by applying it to the design and implementation of class

  2. Performing instrumentation and controls upgrades

    International Nuclear Information System (INIS)

    Kessler, F. M.; Connell, T. J.; Ryan, M. P.

    1992-01-01

    I and C upgrades are comprised of a varying range of content, complexity, expansiveness, and criticality. There are common threads in all upgrades which can be simplified by the development of a long term I and C upgrade plan. The development of a such a plan can establish effective ground rules for upgrades, large and small. It can be the basis from which to begin an upgrade evaluation and the standard which is used to compare the degree of compliance of any upgrade regarding the plan or to define the differences from the plan and an individual upgrade. Primary motivation for I and C upgrades are obsolescence and unavailability of spare parts. Numerous other areas of consideration are also involved in an upgrade. Today's technology results in most upgrades largely or totally utilizing digital equipment. The use of digital equipment is fairly new in many I and C applications and requires an elaborate evaluation from functional, qualification, operational, and licensing perspectives as well as others. A well defined upgrade plan developed as a basis for I and C upgrades is a significant start to ensuring an effective upgrade process. Properly developed and implemented, the plan will support I and C upgrade efforts to ensure that the intricacies associated with such tasks eliminate the existing problems which require the upgrade to be performed. The upgrade plan also results in ensuring the maximum benefit from all perspectives of the plant enhancements being carried out and considered for future implementation. Instrumentation and controls aging and replacement are issues of growing importance due to the potential for significant impact on plant operation and efficiency. Obsolescence and unavailability of spare parts are major drivers towards evaluating the cost benefits of upgrading current equipment. In addition to these two primary factors, the advantages of utilizing digital equipment have also become of prime importance when evaluating instrumentation and

  3. The 2007 ESO Instrument Calibration Workshop

    CERN Document Server

    Kaufer, Andreas; ESO Workshop

    2008-01-01

    The 2007 ESO Instrument Calibration workshop brought together more than 120 participants with the objective to a) foster the sharing of information, experience and techniques between observers, instrument developers and instrument operation teams, b) review the actual precision and limitations of the applied instrument calibration plans, and c) collect the current and future requirements by the ESO users. These present proceedings include the majority of the workshop’s contributions and document the status quo of instrument calibration at ESO in large detail. Topics covered are: Optical Spectro-Imagers, Optical Multi-Object Spectrographs, NIR and MIR Spectro-Imagers, High-Resolution Spectrographs, Integral Field Spectrographs, Adaptive Optics Instruments, Polarimetric Instruments, Wide Field Imagers, Interferometric Instruments as well as other crucial aspects such as data flow, quality control, data reduction software and atmospheric effects. It was stated in the workshop that "calibration is a life-long l...

  4. GRIP LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Lightning Instrument Package (LIP) dataset was collected by the Lightning Instrument Package (LIP), which consists of 6 rotating vane type electric field...

  5. GRIP LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lightning Instrument Package (LIP) consists of 6 rotating vane type electric field sensors along with a central computer to record and monitor the instruments....

  6. Instrumentation for three-dimensional tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.

    1981-01-01

    The Donner 280-crystal positron tomograph is described and its operation is explained. The instrument was put into operation in 1978. Possible uses of this instrument in human and animal studies are given

  7. IAEA safeguards instrumentation: Development, implementation and control

    International Nuclear Information System (INIS)

    Rundquist, D.E.

    1983-01-01

    Extensive development efforts over the last 5 years have produced a number of new instruments to help the IAEA meet its safeguards obligations. Implementation of these new instruments is proceeding at a necessarily slower pace. To optimize the performance and reliability of the instrumentation systems when used in safeguards applications, increasing attention is needed to be spent on performance monitoring and control of the instruments. (author)

  8. Digital study of nuclear reactor instrument

    International Nuclear Information System (INIS)

    Lv Gongxiang; Yang Zhijun

    2006-01-01

    The paper introduces the design method of nuclear reactor's digital instrument developed by authors based on the AT89C52 single chip microcomputer. Also the instrument system hardware structure and software framework are given. The instrument apply DDC112 which is responsible for the measure of lower current. When designing the instrument system, anti-interference measure of software, especially hardware is considered seriously. (authors)

  9. A new Loan-Stock Financial Instrument

    OpenAIRE

    Morozovsky, Alexander; Narasimhan, Rajan; Kholodenko, Yuri

    2000-01-01

    A new financial instrument (a new kind of a loan) is introduced. The loan-stock instrument (LSI) combines fixed rate instruments (loans, etc.) with other financial instruments that have higher volatilities and returns (stocks, mutual funds, currencies, derivatives, options, etc.). This new loan depends on the value of underlying security (for example, stock) in such a way that when underlying security increases, the value of loan decreases and backwards. The procedure to create a risk free po...

  10. Marketing instruments of foreign trade promotion

    OpenAIRE

    Bjelić Predrag

    2011-01-01

    Instruments of promotion as a part of marketing mix are usually associated with companies but more and more countries use this instrument in order to boost their exports. These foreign trade promotion instruments are now popular in many countries in the world since their use is not opposed to any World Trade Organization rules. Marketing instruments of trade promotions are the most important. They include National Exhibitions and National labels of origin and quality. In order to coordinate t...

  11. Development on experimental VHTR instrumentation

    International Nuclear Information System (INIS)

    Wakayama, N.; Ara, K.; Terada, H.; Yamagishi, H.; Tomoda, T.

    1982-06-01

    This paper describes developmental works on the instrumentation of the Experimental VHTR. In the area of the nuclear instrumentation for the reactor control, high temperature fission counter-chambers have been developed. These withstood the accelerated irradiation life tests at 600 deg. C, the long term in-reactor operating test at 600 deg. C and the 800 deg. C-operating tests for several hundred hours in a simulated accident condition. Platinum-Molybdenum alloy thermocouples have been studied as a neutron-irradiation-resistant high-temperature thermocouple for the in-core temperature distribution monitoring of the VHTR in the temperature range between 1000 deg. C and 1350 deg. C. The instability problems of the Pt-5% Mo/Pt-0.1% Mo thermocouple seem to be overcome by introducing a double sheath structure and adopting a better material to the inner sheath. A local failure and abnormality monitoring method for the HTR fuel is also studied using a gas-sweeping irradiation rig for the CPF compacts. This study aims mainly at the development of a method to compensate for the dependency of the FP-release rate on the fuel temperature, the neutron flux density, the burn-up and others, in order to increase the detection sensitivity of fuel failures. (author)

  12. Economic instruments for waste management

    International Nuclear Information System (INIS)

    Malaman, R.

    1991-01-01

    Economic instruments for the implementation of environmental policies distinguish themselves from traditional tools (the 'command and control' type) for the reason that: they influence the costs and the benefits of the economic agents in question; they change the behaviour of the subjects in question in a way that they guarantee behaviour trends less harmful to the environment; they guarantee the assignment of adequate prices to the natural resources that traditionally don't have a price and therefore are consumed excessively by the economic subjects; normally they impose the transfer of economic resources to the disadvantage of the subjects responsible for the phenomena of pollution; certain objective pollution reduction data guarantee the minimization of the social costs of pollution abatement, that is, of the total costs on the economic system in general (economists define this characteristic as the 'static efficiency'); they guarantee what is called in economical jargon, the dynamic efficiency, i.e., in practice, they determine a continuous incentive for the reduction of the emission of the various pollutants and for the realization of the technological innovations that are able to control the pollution; they are more flexible than the instruments of direct regulation, because they leave the subjects a freedom of choice under different price conditions than in the past; they are flexible as well for the reason that the public operator can intervene rapidly to change the way of application

  13. Bicep2. III. INSTRUMENTAL SYSTEMATICS

    International Nuclear Information System (INIS)

    Ade, P. A. R.; Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Buder, I.; Karkare, K. S.; Bullock, E.; Dowell, C. D.; Duband, L.; Fliescher, S.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Irwin, K. D.

    2015-01-01

    In a companion paper, we have reported a >5σ detection of degree scale B-mode polarization at 150 GHz by the Bicep2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call “deprojection,” for filtering the leading order beam-induced contamination from time-ordered data, and show that it reduces power in Bicep2's actual and null-test BB spectra consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on BB contamination from individual sources of potential systematics. We find that systematics contribute BB power that is a factor of ∼10× below Bicep2's three-year statistical uncertainty, and negligible compared to the observed BB signal. The contribution to the best-fit tensor/scalar ratio is at a level equivalent to r = (3–6) × 10 −3

  14. Bicep2. III. INSTRUMENTAL SYSTEMATICS

    Energy Technology Data Exchange (ETDEWEB)

    Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R. [Department of Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Barkats, D. [Joint ALMA Observatory, ESO, Santiago (Chile); Benton, S. J. [Department of Physics, University of Toronto, Toronto, ON (Canada); Bischoff, C. A.; Buder, I.; Karkare, K. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 42, Cambridge, MA 02138 (United States); Bullock, E. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Dowell, C. D. [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Duband, L. [SBT, Commissariat à l’Energie Atomique, Grenoble (France); Fliescher, S. [Department of Physics, University of Minnesota, Minneapolis, MN 55455 (United States); Halpern, M.; Hasselfield, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC (Canada); Hilton, G. C.; Irwin, K. D., E-mail: csheehy@uchicago.edu [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Collaboration: Bicep2 Collaboration; and others

    2015-12-01

    In a companion paper, we have reported a >5σ detection of degree scale B-mode polarization at 150 GHz by the Bicep2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call “deprojection,” for filtering the leading order beam-induced contamination from time-ordered data, and show that it reduces power in Bicep2's actual and null-test BB spectra consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on BB contamination from individual sources of potential systematics. We find that systematics contribute BB power that is a factor of ∼10× below Bicep2's three-year statistical uncertainty, and negligible compared to the observed BB signal. The contribution to the best-fit tensor/scalar ratio is at a level equivalent to r = (3–6) × 10{sup −3}.

  15. Instrument for measuring flow velocities

    International Nuclear Information System (INIS)

    Griffo, J.

    1977-01-01

    The design described here means to produce a 'more satisfying instrument with less cost' than comparable instruments known up to now. Instead of one single turbine rotor, two similar ones but with opposite blade inclination and sense of rotation are to be used. A cylindrical measuring body is carrying in its axis two bearing blocks whose shape is offering little flow resistance. On the shaft, supported by them, the two rotors run in opposite direction a relatively small axial distance apart. The speed of each rotor is picked up as pulse recurrence frequency by a transmitter and fed to an electronic measuring unit. Measuring errors as they are caused for single rotors by turbulent flow, profile distortion of the velocity, or viscous flow are to be eliminated by means of the contrarotating turbines and the subsequently added electronic unit, because in these cases the adulterating increase of the angular velocity of one rotor is compensated by a corresponding deceleration of the other rotor. The mean value then indicated by the electronic unit has high accurancy of measurement. (RW) [de

  16. PACMAN: PRIMA astrometric instrument software

    Science.gov (United States)

    Abuter, Roberto; Sahlmann, Johannes; Pozna, Eszter

    2010-07-01

    The dual feed astrometric instrument software of PRIMA (PACMAN) that is currently being integrated at the VLTI will use two spatially modulated fringe sensor units and a laser metrology system to carry out differential astrometry. Its software and hardware compromises a distributed system involving many real time computers and workstations operating in a synchronized manner. Its architecture has been designed to allow the construction of efficient and flexible calibration and observation procedures. In parallel, a novel scheme of integrating M-code (MATLAB/OCTAVE) with standard VLT (Very Large Telescope) control software applications had to be devised in order to support numerically intensive operations and to have the capacity of adapting to fast varying strategies and algorithms. This paper presents the instrument software, including the current operational sequences for the laboratory calibration and sky calibration. Finally, a detailed description of the algorithms with their implementation, both under M and C code, are shown together with a comparative analysis of their performance and maintainability.

  17. Tamper indicating radiation surveillance instrumentation

    International Nuclear Information System (INIS)

    Chambers, W.H.; Ney, J.F.

    1975-01-01

    Prototype personnel and shipping dock portal monitors suitable for unattended use were fabricated and tested. The requirement for continuous operation with only periodic inspection along with a desire for minimum costs and minimum interference with normal plant operation imposed unique design constraints. The design, operation, and performance of the detection and data recording instrumentation are described, as well as the tamper indicating techniques required to protect the collected data. The essential elements of either of the two instruments include a gamma detector array, signal conditioning electronics, digital alarm logic circuitry, power supplies, a microwave occupancy monitor, surveillance camera, irreversible electromechanical counters, and the appropriate tamper indicating envelope protecting these elements. Attempts to penetrate the tamper indicating envelope require material removal, and undetectable repair is very difficult, if not impossible. The techniques for joining major subassemblies and providing unique seals are also described. The personnel doorway uses a double pole array of NaI(Tl) detectors, and outputs are taken from a single channel pulse height analyzer with a window set at 60 to 250 keV and the lower level discriminator at greater than 60 keV. A sliding interval counter is used to make comparisons to an accumulated background at the 4sigma level. Logic design, sensitivity for special nuclear materials, false alarm data, and test procedures are described in detail. The shipping dock monitor had different design constraints and therefore uses a single, long, cylindrical plastic scintillator. Some differences in signal conditioning and processing are also described. (auth)

  18. Instrumentation for mass spectrometry: 1997

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  19. ICFA Instrumentation Bulletin, Volume 14, Spring 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The publication of the ICFA Instrumentation Bulletin is an activity of the Panel on Future Innovation and Development of ICFA (International Committee for Future Accelerators). The Bulletin reports on research and progress in the field of instrumentation with emphasis on application in the field of high-energy physics. It encourages issues of generic instrumentation.

  20. The Squiggle: A Digital Musical Instrument

    OpenAIRE

    Sheehan, Brian

    2004-01-01

    This paper discusses some of the issues pertaining to thedesign of digital musical instruments that are to effectively fillthe role of traditional instruments (i.e. those based on physicalsound production mechanisms). The design andimplementation of a musical instrument that addresses some ofthese issues, using scanned synthesis coupled to a "smart"physical system, is described.

  1. Automated testing of health physics instruments

    International Nuclear Information System (INIS)

    Swinth, K.L.; Endres, A.W.; Hadley, R.T.; Kenoyer, J.L.

    1983-12-01

    A microcomputer controlled CAMAC system has been adapted for automated testing of health physics survey instruments. Once the survey instrument is positioned, the system automatically performs tests for angular dependence or battery lifetime. Rotation of the instrument is performed by a computer controlled stepping motor while readout is performed by an auto ranging digital volt meter and data stored on computer disks

  2. Report of the Instrumentation Service - Annex C

    International Nuclear Information System (INIS)

    Majstorovic, D.

    1987-01-01

    This report describes the tasks and organizational structure of the Instrumentation service. The most important task of this Service is control and maintenance of the reactor control and protection instruments, operation control, and dosimetry system. Besides data about this basic instrumentation, the report includes data about control and maintenance of other electronic equipment related to experimental facilities [sr

  3. Simulation tools for detector and instrument design

    DEFF Research Database (Denmark)

    Kanaki, Kalliopi; Kittelmann, Thomas; Cai, Xiao Xiao

    2018-01-01

    The high performance requirements at the European Spallation Source have been driving the technological advances on the neutron detector front. Now more than ever is it important to optimize the design of detectors and instruments, to fully exploit the ESS source brilliance. Most of the simulation...... a powerful set of tools to tailor the detector and instrument design to the instrument application....

  4. Are Musical Instrument Gender Associations Changing?

    Science.gov (United States)

    Abeles, Hal

    2009-01-01

    The researcher sought to examine gender associations across three decades to determine if changes in the sex stereotyping of musical instruments has occurred. First, the study examined the paired comparison gender-instrument rankings of 180 college students. The results confirmed a reduction of instrument gender associations reported in the 1990s.…

  5. Adult Perspectives of Learning Musical Instruments

    Science.gov (United States)

    Roulston, Kathryn; Jutras, Peter; Kim, Seon Joo

    2015-01-01

    This article reports findings from a qualitative study of adults' perceptions and experiences of learning musical instruments. Conducted in the south-east United States, 15 adults who were learning instruments were recruited via community music groups and private instrumental teachers. Analysis of transcripts of semi-structured interviews…

  6. The scientific use of technological instruments

    NARCIS (Netherlands)

    Boon, Mieke; Hansson, Sven Ove

    2015-01-01

    One of the most obvious ways in which the natural sciences depend on technology is through the use of instruments. This chapter presents a philosophical analysis of the role of technological instruments in science. Two roles of technological instruments in scientific practices are distinguished:

  7. Software-Enabled Modular Instrumentation Systems

    NARCIS (Netherlands)

    Soijer, M.W.

    2003-01-01

    Like most other types of instrumentation systems, flight test instrumentation is not produced in series; its development is a one-time achievement by a test department. With the introduction of powerful digital computers, instrumentation systems have included data analysis tasks that were previously

  8. Aspects of progress in neutron instrumentation

    International Nuclear Information System (INIS)

    Carlile, C.J.

    1999-01-01

    The capability of neutron instrumentation in coming years will depend upon many factors, the main ones being the neutron source the instrument is sited on, the quality of the instrument itself, the quality of the support provided and the protocol for instrument operation. All of these factors must be optimised and improved upon to ensure consistently high quality scientific exploitation of an instrument. Examples of progress in each of these fields are given and a subjective view of possible future trends are hazarded. (author)

  9. Advanced neutron instrumentation at FRM-II

    International Nuclear Information System (INIS)

    Petry, Winfried

    2003-01-01

    The construction of the new German high flux neutron source FRM-II is finished and FRM-II is waiting for its licence to start nuclear operation. With the beginning of the routine operation 22 instruments will be in action, including 5 irradiation facilities and 17 beam tube instruments, most of them use neutron scattering techniques. Additional instruments are under construction. Some of these instruments are unique, others are expected to be the best of their kind, all instruments are based on innovative techniques. (author)

  10. MITIGATING INNOVATION RISKS CONCERNING INTELLECTUAL PROPERTY INSTRUMENTS

    Directory of Open Access Journals (Sweden)

    Andreea DUMITRESCU

    2014-11-01

    Full Text Available As protection of innovation is possible using a variety of intellectual property instruments, the current paper aims at emphasizing the vulnerabilities of these instruments in order to facilitate the right choice in terms of protection, exploitation and dissemination of innovation. Based on a review of the intellectual property instruments and their related risk factors, the study identifies and formulates specific proactive strategies which arise from the fact that an instrument alone does not allow for effective protection, exploitation and dissemination and oftentimes the owners of innovation should combine traditional and alternative instruments. Therefore, the results of this analysis represent a helpful tool for managers in the decisional process.

  11. Smart instrumentation development at Los Alamos

    International Nuclear Information System (INIS)

    Erkkila, B.

    1984-01-01

    For several years Los Alamos has incorporated microprocessors into instruments to expand the capability of portable survey type equipment. Beginning with portable pulse height analyzers, the developments have expanded to small dedicated instruments which handle the measurement and interpretation of various radiation fields. So far, instruments to measure gamma rays, neutrons, and beta particles have been produced. The computer capability built into these instruments provides significant computational power into the instruments. Capability unheard of a few years ago in small portable instruments is routine today. Large computer-based laboratory measurement systems which required much space and electrical power can now be incorporated in a portable hand-held instrument. The microprocessor developments at Los Alamos are now restricted to radiation monitoring equipment but can be expanded to chemical and biological applications as well. Applications for radiation monitoring equipment and others are discussed

  12. The Choice of Innovation Policy Instruments

    DEFF Research Database (Denmark)

    Borrás, Susana; Edquist, Charles

    The purpose of this article is to discuss the different types of instruments of innovation policy, to examine how governments and public agencies in different countries and different times have used these instruments differently, to explore the political nature of instrument choice and design (and...... associated issues), and to elaborate a set of criteria for the selection and design of the instruments in relation to the formulation of innovation policy. The article argues that innovation policy instruments must be designed and combined into mixes in ways that address the problems of the innovation system....... These mixes are often called “policy mix”. The problem-oriented nature of the design of instrument mixes is what makes innovation policy instruments ‘systemic’....

  13. The Choice of Innovation Policy Instruments

    DEFF Research Database (Denmark)

    Borrás, Susana; Edquist, Charles

    2013-01-01

    The purpose of this article is to discuss the different types of instruments of innovation policy, to examine how governments and public agencies in different countries and different times have used these instruments differently, to explore the political nature of instrument choice and design (and...... associated issues), and to elaborate a set of criteria for the selection and design of the instruments in relation to the formulation of innovation policy. The article argues that innovation policy instruments must be designed and combined into mixes in ways that address the problems of the innovation system....... These mixes are often called “policy mix”. The problem-oriented nature of the design of instrument mixes is what makes innovation policy instruments ‘systemic’....

  14. Asteroid electrostatic instrumentation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L; Bowles, N E; Urbak, E [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Keane, D; Sawyer, E C, E-mail: k.aplin1@physics.ox.ac.uk [RAL Space, R25, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2011-06-23

    Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.

  15. Nuclear reactor instrumentation power monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1989-01-01

    The present invention concerns a nuclear reactor instrumentation power monitor that can be used in, for example, BWR type nuclear power plants. Signals from multi-channel detectors disposed on field units are converted respectively by LPRM signal circuits. Then, the converted signals are further converted by a multiplexer into digital signals and transmitted as serial data to a central monitor unit. The thus transmitted serial data are converted into parallel data in the signal processing section of the central monitor unit. Then, LPRM signals are taken out from each of channel detectors to conduct mathematical processing such as trip judgment or averaging. Accordingly, the field unit and the central monitor unit can be connected by way of only one data transmission cable thereby enabling to reduce the number of cables. Further, since the data are transmitted on digital form, it less undergoes effect of noises. (I.S.)

  16. Anàlisi instrumental

    OpenAIRE

    Casas Sabata, Josep M.

    1994-01-01

    Conté: 2. Cromatografia i electroforesi Aquest text pretén donar una visió general de l'ampli camp dels mètodes instrumentals de separació aplicats al laboratori d'anàlis segons un concepte eminentment pràctic. S'ha dividit en cinc capítols temàtics: teoria de la cromatografia, cromatografia clàssica, cromatografia de gasos, cromatografia de líquids i electroforesi. Va destinat als estudiants d'enginyeria i de les facultats de ciències que dins el seu pla d'estudis incorporin la matèria d'...

  17. Presentation of a new instrument

    DEFF Research Database (Denmark)

    Russell, M B; Rasmussen, B K; Brennum, J

    1992-01-01

    A new instrument, the Diagnostic Headache Diary, based on the operational diagnostic criteria of the International Headache Society (IHS), was tested in 61 migraine patients from a headache research clinic using the clinical diagnosis (IHS criteria) for comparison. All patients kept the diary...... for one to eight months. The clinical and diary diagnosis of migraine with and without aura was the same in, respectively, 72 and 87% of the patients. Nausea, photophobia and phonophobia tended to be more pronounced at the clinical interview. The diary identified 20 more cases of episodic tension......-type headache and 15 fewer cases of chronic tension-type headache than the clinical interview. Two blinded observers always made the same IHS diagnoses when interpreting the diagnostic headache diary. A combination of a clinical interview and the diagnostic headache diary gives a qualitatively...

  18. Application of Fiber Optic Instrumentation

    Science.gov (United States)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  19. Forward instrumentation for ILC detectors

    International Nuclear Information System (INIS)

    Abramowicz, Halina; Abusleme, Angel; Afanaciev, Konstantin

    2010-09-01

    Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10 -3 and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised. (orig.)

  20. The Bering Target Tracking Instrumentation

    DEFF Research Database (Denmark)

    Denver, Troelz; Jørgensen, John Leif; Betto, Maurizio

    2003-01-01

    The key science instrument on the Bering satellite mission is a relative small telescope with an entrance aperture of 300 mm and a focal length between 500 and 1000 mm. The detection of potential targets is performed by one of the target scanning advanced stellar compasses (ASCs). This procedure...... results in a simple prioritized list of right ascension, declination, proper motion and intensity of each prospective target. The telescope itself has a dedicated ASC Camera Head Unit (CHU) mounted on the secondary mirror, largely co-aligned with the telescope. This CHU accurately determines the telescope......'s pointing direction. To achieve fast tracking over a large solid angle, the telescope pointing is achieved by means of a folding mirror in the optical pathway. When a prospective target approaches the telescope FOV, the ASC on the secondary will guide the folding mirror into position such that the target...

  1. Online Personalization of Hearing Instruments

    Directory of Open Access Journals (Sweden)

    Bert de Vries

    2008-09-01

    Full Text Available Online personalization of hearing instruments refers to learning preferred tuning parameter values from user feedback through a control wheel (or remote control, during normal operation of the hearing aid. We perform hearing aid parameter steering by applying a linear map from acoustic features to tuning parameters. We formulate personalization of the steering parameters as the maximization of an expected utility function. A sparse Bayesian approach is then investigated for its suitability to find efficient feature representations. The feasibility of our approach is demonstrated in an application to online personalization of a noise reduction algorithm. A patient trial indicates that the acoustic features chosen for learning noise control are meaningful, that environmental steering of noise reduction makes sense, and that our personalization algorithm learns proper values for tuning parameters.

  2. Forward Instrumentation for ILC Detectors

    CERN Document Server

    Abramowicz, Halina; Afanaciev, Konstantin; Aguilar, Jonathan; Ambalathankandy, Prasoon; Bambade, Philip; Bergholz, Matthias; Bozovic-Jelisavcic, Ivanka; Castro, Elena; Chelkov, Georgy; Coca, Cornelia; Daniluk, Witold; Dragone, Angelo; Dumitru, Laurentiu; Elsener, Konrad; Emeliantchik, Igor; Fiutowski, Tomasz; Gostkin, Mikhail; Grah, Christian; Grzelak, Grzegorz; Haller, Gunter; Henschel, Hans; Ignatenko, Alexandr; Idzik, Marek; Ito, Kazutoshi; Jovin, Tatjana; Kielar, Eryk; Kotula, Jerzy; Krumstein, Zinovi; Kulis, Szymon; Lange, Wolfgang; Lohmann, Wolfgang; Levy, Aharon; Moszczynski, Arkadiusz; Nauenberg, Uriel; Novgorodova, Olga; Ohlerich, Marin; Orlandea, Marius; Oleinik, Gleb; Oliwa, Krzysztof; Olshevski, Alexander; Pandurovic, Mila; Pawlik, Bogdan; Przyborowski, Dominik; Sato, Yutaro; Sadeh, Iftach; Sailer, Andre; Schmidt, Ringo; Schumm, Bruce; Schuwalow, Sergey; Smiljanic, Ivan; Swientek, Krzysztof; Takubo, Yosuke; Teodorescu, Eliza; Wierba, Wojciech; Yamamoto, Hitoshi; Zawiejski, Leszek; Zhang, Jinlong

    2010-01-01

    Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10-3 and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised.

  3. The Atacama Cosmology Telescope: Instrument

    Science.gov (United States)

    Thornton, Robert J.; Atacama Cosmology Telescope Team

    2010-01-01

    The 6-meter Atacama Cosmology Telescope (ACT) is making detailed maps of the Cosmic Microwave Background at Cerro Toco in northern Chile. In this talk, I focus on the design and operation of the telescope and its commissioning instrument, the Millimeter Bolometer Array Camera. The camera contains three independent sets of optics that operate at 148 GHz, 217 GHz, and 277 GHz with arcminute resolution, each of which couples to a 1024-element array of Transition Edge Sensor (TES) bolometers. I will report on the camera performance, including the beam patterns, optical efficiencies, and detector sensitivities. Under development for ACT is a new polarimeter based on feedhorn-coupled TES devices that have improved sensitivity and are planned to operate at 0.1 K.

  4. Industrial Products for Beam Instrumentation

    CERN Document Server

    Schmickler, Hermann

    2001-01-01

    In various branches of high technology industry there has been considerable progress in the past years which could be used for beam instrumentation. The subject will be introduced by two short demonstrations: a demonstration of modern audio electronics with 24bit-96kHz ADC, digital signal electronics and application programs under windows on a PC, which allow to change the parameters of the signal treatment. Potential applications are data monitoring at constant sampling frequency, orbit feedbacks (including high power audio amplifiers), noise reduction on beam current transformers... digital treatment of video signals webcams, frame grabbers, CCD-data via USB, all one needs for image acquisitions, in particular interesting for profile measurements. These introductory demonstrations will not last longer than 30 minutes. The remaining time will be used to pass through the audience collecting information into a two dimensional table, which shall contain as row index the accelerator and as column index the t...

  5. EPRI instruments reach commercial market

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Electric Power Research Institute has developed instruments capable of verifying time responses of power plant pressure sensors and temperature sensors. A patent is pending on the pressure-sensor device, and the temperature-sensor device is already commercially available. The devices, EPRI's first hardware products to be marketed, are the result of research to find technological solutions to the problems of knowing the time period when temperature and pressure changes occur in light water reactors. The hydraulic pressure-sensor device is a portable unit that can conveniently test equipment in place. Utilities can obtain detailed information from EPRI's project report to construct their own. The loop current step response (LCSR), measuring resistance temperature, is also a compact system suitable for in-plant testing

  6. Laparoscopic splenectomy using conventional instruments

    Directory of Open Access Journals (Sweden)

    Dalvi A

    2005-01-01

    Full Text Available INTRODUCTION : Laparoscopic splenectomy (LS is an accepted procedure for elective splenectomy. Advancement in technology has extended the possibility of LS in massive splenomegaly [Choy et al., J Laparoendosc Adv Surg Tech A 14(4, 197-200 (2004], trauma [Ren et al., Surg Endosc 15(3, 324 (2001; Mostafa et al., Surg Laparosc Endosc Percutan Tech 12(4, 283-286 (2002], and cirrhosis with portal hypertension [Hashizume et al., Hepatogastroenterology 49(45, 847-852 (2002]. In a developing country, these advanced gadgets may not be always available. We performed LS using conventional and reusable instruments in a public teaching the hospital without the use of the advanced technology. The technique of LS and the outcome in these patients is reported. MATERIALS AND METHODS : Patients undergoing LS for various hematological disorders from 1998 to 2004 were included. Electrocoagulation, clips, and intracorporeal knotting were the techniques used for tackling short-gastric vessels and splenic pedicle. Specimen was delivered through a Pfannensteil incision. RESULTS : A total of 26 patients underwent LS. Twenty-two (85% of patients had spleen size more than 500 g (average weight being 942.55 g. Mean operative time was 214 min (45-390 min. The conversion rate was 11.5% ( n = 3. Average duration of stay was 5.65 days (3-30 days. Accessory spleen was detected and successfully removed in two patients. One patient developed subphrenic abscess. There was no mortality. There was no recurrence of hematological disease. CONCLUSION : Laparoscopic splenectomy using conventional equipment and instruments is safe and effective. Advanced technology has a definite advantage but is not a deterrent to the practice of LS.

  7. MC and A instrumentation catalog

    International Nuclear Information System (INIS)

    Neymotin, L.; Sviridova, V.

    1998-01-01

    In 1981 and 1985, two editions of a catalog of non-destructive nuclear measurement instrumentation, and material control and surveillance equipment, were published by Brookhaven National Laboratory (BNL). The last edition of the catalog included one hundred and twenty-five entries covering a wide range of devices developed in the US and abroad. More than ten years have elapsed since the publication of the more recent Catalog. Devices described in it have undergone significant modifications, and new devices have been developed. Therefore, in order to assist specialists in the field of Material Control and Accounting (MC and A), a new catalog has been created. Work on this instrumentation catalog started in 1997 as a cooperative effort of Brookhaven National Laboratory (BNL), operated by Brookhaven Science Associates under contract to the US Department of Energy, and the All-Russian Research Institute of Automatics (VNIIA), subordinate institute of the Atomic Energy Ministry of the Russian Federation, within the collaborative US-Russia Material Protection, Control, and Accounting (MPC and A) Program. Most of the equipment included in the Catalog are non-destructive assay (NDA) measurement devices employed for purposes of accounting, confirmation, and verification of nuclear materials. Other devices also included in the Catalog are employed in the detection and deterrence of unauthorized access to or removal of nuclear materials (material control: containment and surveillance). Equipment found in the Catalog comprises either: (1) complete devices or systems that can be used for MC and A applications; or (2) parts or components of complete systems, such as multi-channel analyzers, detectors, neutron generators, and software. All devices are categorized by their status of development--from prototype to serial production

  8. MC and A instrumentation catalog

    Energy Technology Data Exchange (ETDEWEB)

    Neymotin, L. [ed.] [Brookhaven National Lab., Upton, NY (United States); Sviridova, V. [ed.] [All-Russian Research Inst. of Automatics, Moscow (Russian Federation)

    1998-06-01

    In 1981 and 1985, two editions of a catalog of non-destructive nuclear measurement instrumentation, and material control and surveillance equipment, were published by Brookhaven National Laboratory (BNL). The last edition of the catalog included one hundred and twenty-five entries covering a wide range of devices developed in the US and abroad. More than ten years have elapsed since the publication of the more recent Catalog. Devices described in it have undergone significant modifications, and new devices have been developed. Therefore, in order to assist specialists in the field of Material Control and Accounting (MC and A), a new catalog has been created. Work on this instrumentation catalog started in 1997 as a cooperative effort of Brookhaven National Laboratory (BNL), operated by Brookhaven Science Associates under contract to the US Department of Energy, and the All-Russian Research Institute of Automatics (VNIIA), subordinate institute of the Atomic Energy Ministry of the Russian Federation, within the collaborative US-Russia Material Protection, Control, and Accounting (MPC and A) Program. Most of the equipment included in the Catalog are non-destructive assay (NDA) measurement devices employed for purposes of accounting, confirmation, and verification of nuclear materials. Other devices also included in the Catalog are employed in the detection and deterrence of unauthorized access to or removal of nuclear materials (material control: containment and surveillance). Equipment found in the Catalog comprises either: (1) complete devices or systems that can be used for MC and A applications; or (2) parts or components of complete systems, such as multi-channel analyzers, detectors, neutron generators, and software. All devices are categorized by their status of development--from prototype to serial production.

  9. Hybrid microcircuits for nuclear instrumentation

    International Nuclear Information System (INIS)

    Kulkarni, R.G.

    2005-01-01

    Hybrid microcircuits (HMCs) have distinct advantages over their rival products like printed circuit boards (PCBs) and integrated circuits (ICs), and are able to survive the onslaught of Moore's law, by retaining the niche market for themselves. The ASIC development cost is normally huge and when the volumes are small (less than ten thousand or so), the prohibitively high unit cost deters the potential customers. However the HMCs can be developed at a small fraction of an ASIC development cost and thus they are attractive when the volumes are small, as in the case of professional electronics industries like defense, broadcast, or instrumentation industries. The hybrid microcircuit (HMC) technology can involve one of the two processes: thick-film and thin- film. Broadly the thick-film process consists of printing and firing of, conductor and resistor pastes, on an Alumina substrate. The thin-film process consists of photo lithographic etching of, conductor and resistor patterns, on a metal/resistor sputtered high purity Alumina substrate. The active devices, either in die-form or in surface-mount form, are attached to the thick-film or the thin-film substrate. The passive devices like chip inductors and chip capacitors are also attached to the substrate. This paper discusses in detail the thick-film and the thin-film processes and their relative merits and demerits. The associated qualification and screening procedures followed to provide reliable HMCs to the customer are described. The existing HMC facilities and the product range available in Bharat Electronics including the HMCs developed for nuclear instrumentation are presented. (author)

  10. Origins, transformations and key foci in instrumental genesis

    DEFF Research Database (Denmark)

    Tamborg, Andreas Lindenskov

    This paper investigates the origins of the instrumental genesis and instrumental orchestrations frameworks. This is done by reviewing instrumented activity situations, instrumental genesis, and instrumental orchestrations with the purpose of identifying their epistemological assumptions, what the...... and instrumental orchestrations have potential shortcomings since the technologies that currently exist in school contexts are rather different from the technologies instrumental genesis was originally developed to study.......This paper investigates the origins of the instrumental genesis and instrumental orchestrations frameworks. This is done by reviewing instrumented activity situations, instrumental genesis, and instrumental orchestrations with the purpose of identifying their epistemological assumptions, what...

  11. Distributions of δD observations from IASI/MetOp across the globe and intercomparison with other instruments/measurements

    Science.gov (United States)

    Lacour, Jean-Lionel; Clarisse, Lieven; Hurtmans, Daniel; Clerbaux, Cathy; Worden, John; Schneider, Matthias; Risi, Camille; Coheur, Pierre-François

    2014-05-01

    The Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp, through its observations of the water isotopologues, has great potential to support research on hydrological processes responsible for the moistening/drying of the atmosphere. The instrumental characteristics of the spectrometer (low radiometric noise and good spectral resolution) combined with its high sampling (global coverage twice a day) make it particularly suitable for providing numerous observations of the isotopologues ratio (δD) of water vapour in the troposphere. Retrieving isotopologues ratios at the required accuracy is, however, a challenging task. To get meaningful results, the retrieval needs to be well constrained. This can be achieved, with the optimal estimation method, by using an a priori probability density function containing correlation information between HDO and H2O. In this presentation, first, we will show that the measurements are mainly sensitive to δD in the troposphere between 3 and 6 km. We will illustrate the capabilities of IASI to provide δD observations at high spatio-temporal resolution with some distributions across the globe and we will discuss their added values to constrain hydrological processes. Second, we will document how IASI observations compare to other remote sounding observations of δD in the troposphere. Comparisons of IASI observations with the TES sounder and with three ground-based NDACC FTIR (Izaña, Kalsruhe and Kiruna, data generated within the project MUSICA) will be presented. The differences between the instruments as well as the methodology to compare them will be exposed. We will show that the different instruments agree within their own uncertainties and vertical sensitivities, asserting the use of IASI δD observations for scientific purposes.

  12. Instrumentation for Sodium Circuits; Instrumentation des Circuits de Sodium

    Energy Technology Data Exchange (ETDEWEB)

    Cambillard, E. [CEA, Centre d' Etudes Nucleaires de Fontenay-aux-Roses (France); Lions, N. [CEA, Centre d' Etudes Nucleaires de Cadarache (France)

    1967-06-15

    Electromagnetic flow meters, level gauges and differential pressure gauges are among the main measurement instruments designed and tested at the Commissariat a l'Energie Atomique (CEA) for sodium reactors. The main characteristics of the flow meters used with RAPSODIE are indicated. The instruments used in this connection are of the permanent -magnet or electromagnet type (in the primary circuits). A description is given of the calibration methods employed - use is made of diaphragms or Venturi tubes as standard flow meters - and information is given on the results measured for maximum sodium flows of 400 m{sup 3}/h. Three types of continuous level gauge have been studied. Resistance gauge. Two varieties used for the 1 - and 10-MW test circuits of RAPSODIE are described. In one there is a compensation resistance along the whole height of the measuring element (the continuous gauges used with the RAPSODIE reactor are at present of this type). In the other type of gauge a device is incorporated to heat the measurement element and prevent the formation of conducting deposits (prototype sodium tests have been completed). Induction gauge. This type has two coupled coils and is fitted with a device to compensate for temperature effects. A description is given of a prototype which has been built and the results obtained in the course of sodium tests are described. Ultrasonic gauge. With this type, a transmitter is fitted on top of the outside of the sodium container; there is also a vertical wave guide, the bottom of which is immersed in the liquid metal and possesses a reflector system which returns the ultrasonic beam towards the surface. Fixed reference marks provide a permanent means of calibration and the whole apparatus is welded. This type of gauge is now being constructed. The differential pressure gauges that have been built, and used in particular with Venturi tube flow meters, are modified versions of the devices employed with the 1 - and 10-MW test circuits of

  13. Operational and reliability experience with reactor instrumentation

    International Nuclear Information System (INIS)

    Dixon, F.; Gow, R.S.

    1978-01-01

    In the last 15 years the CEGB has experienced progressive plant development, integration and changes in operating regime through nine nuclear (gas-cooled reactor) power stations with corresponding instrumentation advances leading towards more refined centralized control. Operation and reliability experience with reactor instrumentation is reported in this paper with reference to the progressive changes related to the early magnox, late magnox and AGR periods. Data on instrumentation reliability in terms of reactor forced outages are presented and show that the instrumentation contributions to loss of generating plant availability are small. Reactor safety circuits, neutron flux and temperature measurements, gas analysis and vibration monitoring are discussed. In reviewing the reactor instrumentation the emphasis is on reporting recent experience, particularly on AGR equipment, but overall performance and changes to magnox equipment are included so that some appreciation can be obtained of instrumentation requirements with respect to plant lifetimes. (author)

  14. Recent advances in radiation protection instrumentation

    International Nuclear Information System (INIS)

    Babu, D.A.R.

    2012-01-01

    Radiation protection instrumentation plays very important role in radiation protection and surveillance programme. Radiation detector, which appears at the frontal end of the instrument, is an essential component of these instruments. The instrumental requirement of protection level radiation monitoring is different from conventional radiation measuring instruments. Present paper discusses the new type of nuclear radiation detectors, new protection level instruments and associated electronic modules for various applications. Occupational exposure to ionizing radiation can occur in a range of industries, such as nuclear power plants; mining and milling; medical institutions; educational and research establishments; and nuclear fuel cycle facilities. Adequate radiation protection to workers is essential for the safe and acceptable use of radioactive materials for different applications. The radiation exposures to the individual radiation workers and records of their cumulative radiation doses need to be routinely monitored and recorded

  15. The JEM-EUSO instrument

    Science.gov (United States)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    In this paper we describe the main characteristics of the JEM-EUSO instrument. The Extreme Universe Space Observatory on the Japanese Experiment Module (JEM-EUSO) of the International Space Station (ISS) will observe Ultra High-Energy Cosmic Rays (UHECR) from space. It will detect UV-light of Extensive Air Showers (EAS) produced by UHECRs traversing the Earth's atmosphere. For each event, the detector will determine the energy, arrival direction and the type of the primary particle. The advantage of a space-borne detector resides in the large field of view, using a target volume of about 1012 tons of atmosphere, far greater than what is achievable from ground. Another advantage is a nearly uniform sampling of the whole celestial sphere. The corresponding increase in statistics will help to clarify the origin and sources of UHECRs and characterize the environment traversed during their production and propagation. JEM-EUSO is a 1.1 ton refractor telescope using an optics of 2.5 m diameter Fresnel lenses to focus the UV-light from EAS on a focal surface composed of about 5,000 multi-anode photomultipliers, for a total of ≃3ṡ105 channels. A multi-layer parallel architecture handles front-end acquisition, selecting and storing valid triggers. Each processing level filters the events with increasingly complex algorithms using FPGAs and DSPs to reject spurious events and reduce the data rate to a value compatible with downlink constraints.

  16. Human pavlovian-instrumental transfer.

    Science.gov (United States)

    Talmi, Deborah; Seymour, Ben; Dayan, Peter; Dolan, Raymond J

    2008-01-09

    The vigor with which a participant performs actions that produce valuable outcomes is subject to a complex set of motivational influences. Many of these are believed to involve the amygdala and the nucleus accumbens, which act as an interface between limbic and motor systems. One prominent class of influences is called pavlovian-instrumental transfer (PIT), in which the motivational characteristics of a predictor influence the vigor of an action with respect to which it is formally completely independent. We provide a demonstration of behavioral PIT in humans, with an audiovisual predictor of the noncontingent delivery of money inducing participants to perform more avidly an action involving squeezing a handgrip to earn money. Furthermore, using functional magnetic resonance imaging, we show that this enhanced motivation was associated with a trial-by-trial correlation with the blood oxygenation level-dependent (BOLD) signal in the nucleus accumbens and a subject-by-subject correlation with the BOLD signal in the amygdala. Our data dovetails well with the animal literature and sheds light on the neural control of vigor.

  17. Human Pavlovian–Instrumental Transfer

    Science.gov (United States)

    Talmi, Deborah; Seymour, Ben; Dayan, Peter; Dolan, Raymond J.

    2009-01-01

    The vigor with which a participant performs actions that produce valuable outcomes is subject to a complex set of motivational influences. Many of these are believed to involve the amygdala and the nucleus accumbens, which act as an interface between limbic and motor systems. One prominent class of influences is called pavlovian–instrumental transfer (PIT), in which the motivational characteristics of a predictor influence the vigor of an action with respect to which it is formally completely independent. We provide a demonstration of behavioral PIT in humans, with an audiovisual predictor of the noncontingent delivery of money inducing participants to perform more avidly an action involving squeezing a handgrip to earn money. Furthermore, using functional magnetic resonance imaging, we show that this enhanced motivation was associated with a trial-by-trial correlation with the blood oxygenation level-dependent (BOLD) signal in the nucleus accumbens and a subject-by-subject correlation with the BOLD signal in the amygdala. Our data dovetails well with the animal literature and sheds light on the neural control of vigor. PMID:18184778

  18. Forward instrumentation for ILC detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, Halina [Tel Aviv Univ. (Israel); Abusleme, Angel [Stanford Univ., CA (United States); Afanaciev, Konstantin [NCPHEP, Minsk (BY)] (and others)

    2010-09-15

    Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10{sup -3} and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised. (orig.)

  19. LISA Pathfinder instrument data analysis

    Science.gov (United States)

    Guzman, Felipe

    LISA Pathfinder (LPF) is an ESA-launched demonstration mission of key technologies required for the joint NASA-ESA gravitational wave observatory in space, LISA. As part of the LPF interferometry investigations, analytic models of noise sources and corresponding noise subtrac-tion techniques have been developed to correct for effects like the coupling of test mass jitter into displacement readout, and fluctuations of the laser frequency or optical pathlength difference. Ground testing of pre-flight hardware of the Optical Metrology Subsystem is currently ongoing at the Albert Einstein Institute Hannover. In collaboration with NASA Goddard Space Flight Center, the LPF mission data analysis tool LTPDA is being used to analyze the data product of these tests. Furthermore, the noise subtraction techniques and in-flight experiment runs for noise characterization are being defined as part of the mission experiment master plan. We will present the data analysis outcome of pre-flight hardware ground tests and possible noise subtraction strategies for in-flight instrument operations.

  20. Internal communication: challenges and instruments

    International Nuclear Information System (INIS)

    Stiopol, Mihaela; Rizea, Lavinia

    2007-01-01

    Mike Hughes, the publisher for Publicity Express once said that 'Without Public Relations a terrible thing happens: nothing'. The term 'Public Relations' describes the efficient and coherent organization of external and internal communication. A company has an external public and an internal one as well. The employees of an organization are important carriers of the message the organization wants to transmit, but moreover, they are the driving engine behind the success of an enterprise. Better informed employees are more confident and prepared to get involved in challenging tasks such as obtaining public support for nuclear power. Internal communication is the continuous flux of information on all hierarchic levels both horizontally and vertically. The efficient usage of internal communication tools brings great advantages and benefits for the managers and the personnel of an organization. Despite this, organizing an integrated internal communication strategy is a challenging effort for any PR department. The paper deals with the instruments of internal communication, the obstacles usually encountered and the possibilities to apply an integrated strategy in large companies operating in the nuclear field. (authors)