WorldWideScience

Sample records for sound waves propagate

  1. Propagation of sound waves in ducts

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    2000-01-01

    Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....

  2. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.

    Science.gov (United States)

    Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh

    2015-04-01

    We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.

  3. Simulation of sound waves using the Lattice Boltzmann Method for fluid flow: Benchmark cases for outdoor sound propagation

    NARCIS (Netherlands)

    Salomons, E.M.; Lohman, W.J.A.; Zhou, H.

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases:

  4. The energy transport by the propagation of sound waves in wave guides with a moving medium

    NARCIS (Netherlands)

    le Grand, P.

    1977-01-01

    The problem of the propagation of sound waves radiated by a source in a fluid moving with subsonic velocity between two parallel walls or inside a cylindrical tube is considered in [2], The most interesting thing of this problem is that waves may occur with constant amplitude coming from infinity.

  5. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation.

    Science.gov (United States)

    Salomons, Erik M; Lohman, Walter J A; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

  6. On propagation of sound waves in Q2D conductors in a quantizing magnetic field

    CERN Document Server

    Kirichenko, O V; Galbova, O; Ivanovski, G; Krstovska, D

    2003-01-01

    The attenuation of sound waves propagating normally to the layers of a Q2D conductor is analysed at low enough temperatures when quantization of the energy of conduction electrons results in an oscillatory dependence of the sound attenuation rate on the inverse magnetic field. The sound wave decrement is found for different orientations of the magnetic field with respect to the layers. A layered conductor is shown to be most transparent in the case when the magnetic field is orthogonal to the layers.

  7. On propagation of sound waves in Q2D conductors in a quantizing magnetic field

    International Nuclear Information System (INIS)

    Kirichenko, O.V.; Peschansky, V.G.; Galbova, O.; Ivanovski, G.; Krstovska, D.

    2003-01-01

    The attenuation of sound waves propagating normally to the layers of a Q2D conductor is analysed at low enough temperatures when quantization of the energy of conduction electrons results in an oscillatory dependence of the sound attenuation rate on the inverse magnetic field. The sound wave decrement is found for different orientations of the magnetic field with respect to the layers. A layered conductor is shown to be most transparent in the case when the magnetic field is orthogonal to the layers

  8. Efficient techniques for wave-based sound propagation in interactive applications

    Science.gov (United States)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  9. Propagation and attenuation of sound waves as well as spectrally resolved Rayleigh scattering in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Kopainsky, J.

    1975-01-01

    In weakly ionized plasmas the scattering of electromagnetic waves on free electrons (Thompson scattering) can be neglected as compared with the scattering on bound electrons (Rayleigh scattering). If the scattering process can be described by a fluid dynamical model it is caused by sound waves which are generated or annihilated by the incident electromagnetic wave. The propagation of sound waves results in a shift of the scattered line whereas their absorption within the plasma produces the broadening of the scattered line. The theory of propagation of sound in weakly ionized plasmas is developed and extended to Rayleigh scattering. The results are applied to laser scattering in a weakly ionized hydrogen plasma. (Auth.)

  10. Propagation of sound wave in high density deuterium at high temperatures

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Ariyasu, Tomio

    1986-01-01

    The velocity and the attenuation constant of sound wave have been calculated for high density (10 24 ∼ 10 27 /cm 3 ) deuterium at high temperatures (10 -1 ∼ 10 4 eV). This calculation was made to understand the fuel properties in inertial confinement fusion and to obtain the basic data for pellet design. The isentropic sound wave which propagates in deuterium in plasma state at temperature T i = T e , is dealt with. The velocity is derived using the modulus of bulk elasticity of the whole system and the modulus of shear elasticity due to ion-ion interaction. For the calculation of attenuation constant, the bulk and shear viscosity due to ion-ion interaction, the shear viscosity of free electron gas, and the thermal conductivity due to free electrons are considered. The condition of frequency for the existence of such isentropic sound wave is discussed. The possibility of penetration into the fuel pellet in inertial confinement fusion is also discussed. The followings have been found: (1) The sound velocity is determined mainly from the bulk elasticity. The contribution of the shear elasticity is small. The velocity ranges from 2.8 x 10 6 to 1.5 x 10 8 cm/s in the above mentioned temperature and density regions. (2) The coefficient of attenuation constant with respect to ω 2 /2ρu 3 plotted versus temperature with the parameter of density shows a minimum. At temperatures below this minimum, the attenuation comes mainly from the bulk viscosity due to ion-ion interaction and the shear viscosity due to free electron gas. At temperatures above this minimum, the sound is attenuated mainly by the thermal conductivity due to electrons. (3) The condition for the existence of such adiabatic sound wave, is satisfied with the frequency less than 10 10 Hz. But, as for the pellet design, the wave length of sound with frequency less than 10 10 Hz is longer than the diameter of pellet when compressed highly. (author)

  11. Third sound: the propagation of waves on the surface of superfluid helium with healing and relaxation

    International Nuclear Information System (INIS)

    Johnson, R.S.

    1984-01-01

    The propagation of surface waves - that is 'third' sound -on superfluid helium is considered. The fluid is treated as a continuum, using the two-fluid model of Landau, and incorporating the effects of healing, relaxation, thermal conductivity and Newtonian viscosity. A linear theory is developed which includes some discussion of the matching to the outer regions of the vapour. This results in a comprehensive propagation speed for linear waves, although a few properties of the flow are left undetermined at this order. A nonlinear theory is then outlined which leads to the Burgers equation in an appropriate far field, and enables the leading-order theory to be concluded. Some numerical results, for two temperatures, are presented by first recording the Helmholtz free energy as a polynomial in densities, but only the equilibrium state can be satisfactorily reproduced. The propagation speed, as a function of film thickness, is roughly estimated. The looked-for reduction in the predicted speeds is evident, but the magnitude of this reduction is too large for very thin films. However, these analytical results should prove more effective when a complete and accurate description of the Helmholtz free energy is available. (author)

  12. Sound propagation in cities

    NARCIS (Netherlands)

    Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.

    2009-01-01

    A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak

  13. Propagation of sound and thermal waves in an ionizing-recombining hydrogen plasma: Revision of results

    International Nuclear Information System (INIS)

    Di Sigalotti, Leonardo G.; Sira, Eloy; Tremola, Ciro

    2002-01-01

    The propagation of acoustic and thermal waves in a heat conducting, hydrogen plasma, in which photoionization and photorecombination [H + +e - H+hν(χ)] processes are progressing, is re-examined here using linear analysis. The resulting dispersion equation is solved analytically and the results are compared with previous solutions for the same plasma model. In particular, it is found that wave propagation in a slightly and highly ionized hydrogen plasma is affected by crossing between acoustic and thermal modes. At temperatures where the plasma is partially ionized, waves of all frequencies propagate without the occurrence of mode crossing. These results disagree with those reported in previous work, thereby leading to a different physical interpretation of the propagation of small linear disturbances in a conducting, ionizing-recombining, hydrogen plasma

  14. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    Science.gov (United States)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  15. Sound Propagation An impedance Based Approach

    CERN Document Server

    Kim, Yang-Hann

    2010-01-01

    In Sound Propagation: An Impedance Based Approach , Professor Yang-Hann Kim introduces acoustics and sound fields by using the concept of impedance. Kim starts with vibrations and waves, demonstrating how vibration can be envisaged as a kind of wave, mathematically and physically. One-dimensional waves are used to convey the fundamental concepts. Readers can then understand wave propagation in terms of characteristic and driving point impedance. The essential measures for acoustic waves, such as dB scale, octave scale, acoustic pressure, energy, and intensity, are explained. These measures are

  16. Propagation of sound

    DEFF Research Database (Denmark)

    Wahlberg, Magnus; Larsen, Ole Næsbye

    2017-01-01

    properties can be modified by sound absorption, refraction, and interference from multi paths caused by reflections.The path from the source to the receiver may be bent due to refraction. Besides geometrical attenuation, the ground effect and turbulence are the most important mechanisms to influence...... communication sounds for airborne acoustics and bottom and surface effects for underwater sounds. Refraction becomes very important close to shadow zones. For echolocation signals, geometric attenuation and sound absorption have the largest effects on the signals....

  17. CFD-DEM Simulation of Propagation of Sound Waves in Fluid Particles Fluidised Medium

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available In this work, speed of sound in 2 phase mixture has been explored using CFD-DEM (Computational Fluid Dynamcis - Discrete Element Modelling. In this method volume averaged Navier Stokes, continuity and energy equations are solved for fluid. Particles are simulated as individual entities; their behaviour is captured by Newton's laws of motion and classical contact mechanics. Particle-fluid interaction is captured using drag laws given in literature. The speed of sound in a medium depends on physical properties. It has been found experimentally that speed of sound drops significantly in 2 phase mixture of fluidised particles because of its increased density relative to gas while maintaining its compressibility. Due to the high rate of heat transfer within 2 phase medium as given in Roy et al. (1990, it has been assumed that the fluidised gas-particle medium is isothermal. The similar phenomenon has been tried to be captured using CFD-DEM numerical simulation. The disturbance is introduced and fundamental frequency in the medium is noted to measure the speed of sound for e.g. organ pipe. It has been found that speed of sound is in agreement with the relationship given in Roy et al. (1990. Their assumption that the system is isothermal also appears to be valid.

  18. Sound wave transmission (image)

    Science.gov (United States)

    When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...

  19. Sound propagation in elongated superfluid fermionic clouds

    International Nuclear Information System (INIS)

    Capuzzi, P.; Vignolo, P.; Federici, F.; Tosi, M. P.

    2006-01-01

    We use hydrodynamic equations to study sound propagation in a superfluid Fermi gas at zero temperature inside a strongly elongated cigar-shaped trap, with main attention to the transition from the BCS to the unitary regime. First, we treat the role of the radial density profile in the limit of a cylindrical geometry and then evaluate numerically the effect of the axial confinement in a configuration in which a hole is present in the gas density at the center of the trap. We find that in a strongly elongated trap the speed of sound in both the BCS and the unitary regime differs by a factor √(3/5) from that in a homogeneous three-dimensional superfluid. The predictions of the theory could be tested by measurements of sound-wave propagation in a setup such as that exploited by Andrews et al. [Phys. Rev. Lett. 79, 553 (1997)] for an atomic Bose-Einstein condensate

  20. Propagation of waves

    CERN Document Server

    David, P

    2013-01-01

    Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear

  1. Underwater Sound Propagation from Marine Pile Driving.

    Science.gov (United States)

    Reyff, James A

    2016-01-01

    Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.

  2. Wave Propagation in Bimodular Geomaterials

    Science.gov (United States)

    Kuznetsova, Maria; Pasternak, Elena; Dyskin, Arcady; Pelinovsky, Efim

    2016-04-01

    Observations and laboratory experiments show that fragmented or layered geomaterials have the mechanical response dependent on the sign of the load. The most adequate model accounting for this effect is the theory of bimodular (bilinear) elasticity - a hyperelastic model with different elastic moduli for tension and compression. For most of geo- and structural materials (cohesionless soils, rocks, concrete, etc.) the difference between elastic moduli is such that their modulus in compression is considerably higher than that in tension. This feature has a profound effect on oscillations [1]; however, its effect on wave propagation has not been comprehensively investigated. It is believed that incorporation of bilinear elastic constitutive equations within theory of wave dynamics will bring a deeper insight to the study of mechanical behaviour of many geomaterials. The aim of this paper is to construct a mathematical model and develop analytical methods and numerical algorithms for analysing wave propagation in bimodular materials. Geophysical and exploration applications and applications in structural engineering are envisaged. The FEM modelling of wave propagation in a 1D semi-infinite bimodular material has been performed with the use of Marlow potential [2]. In the case of the initial load expressed by a harmonic pulse loading strong dependence on the pulse sign is observed: when tension is applied before compression, the phenomenon of disappearance of negative (compressive) strains takes place. References 1. Dyskin, A., Pasternak, E., & Pelinovsky, E. (2012). Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration, 331(12), 2856-2873. 2. Marlow, R. S. (2008). A Second-Invariant Extension of the Marlow Model: Representing Tension and Compression Data Exactly. In ABAQUS Users' Conference.

  3. Nonlocal nonlinear coupling of kinetic sound waves

    Directory of Open Access Journals (Sweden)

    O. Lyubchyk

    2014-11-01

    Full Text Available We study three-wave resonant interactions among kinetic-scale oblique sound waves in the low-frequency range below the ion cyclotron frequency. The nonlinear eigenmode equation is derived in the framework of a two-fluid plasma model. Because of dispersive modifications at small wavelengths perpendicular to the background magnetic field, these waves become a decay-type mode. We found two decay channels, one into co-propagating product waves (forward decay, and another into counter-propagating product waves (reverse decay. All wavenumbers in the forward decay are similar and hence this decay is local in wavenumber space. On the contrary, the reverse decay generates waves with wavenumbers that are much larger than in the original pump waves and is therefore intrinsically nonlocal. In general, the reverse decay is significantly faster than the forward one, suggesting a nonlocal spectral transport induced by oblique sound waves. Even with low-amplitude sound waves the nonlinear interaction rate is larger than the collisionless dissipation rate. Possible applications regarding acoustic waves observed in the solar corona, solar wind, and topside ionosphere are briefly discussed.

  4. Interactive Sound Propagation using Precomputation and Statistical Approximations

    Science.gov (United States)

    Antani, Lakulish

    Acoustic phenomena such as early reflections, diffraction, and reverberation have been shown to improve the user experience in interactive virtual environments and video games. These effects arise due to repeated interactions between sound waves and objects in the environment. In interactive applications, these effects must be simulated within a prescribed time budget. We present two complementary approaches for computing such acoustic effects in real time, with plausible variation in the sound field throughout the scene. The first approach, Precomputed Acoustic Radiance Transfer, precomputes a matrix that accounts for multiple acoustic interactions between all scene objects. The matrix is used at run time to provide sound propagation effects that vary smoothly as sources and listeners move. The second approach couples two techniques---Ambient Reverberance, and Aural Proxies---to provide approximate sound propagation effects in real time, based on only the portion of the environment immediately visible to the listener. These approaches lie at different ends of a space of interactive sound propagation techniques for modeling sound propagation effects in interactive applications. The first approach emphasizes accuracy by modeling acoustic interactions between all parts of the scene; the second approach emphasizes efficiency by only taking the local environment of the listener into account. These methods have been used to efficiently generate acoustic walkthroughs of architectural models. They have also been integrated into a modern game engine, and can enable realistic, interactive sound propagation on commodity desktop PCs.

  5. Wave propagation in elastic solids

    CERN Document Server

    Achenbach, Jan

    1984-01-01

    The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat

  6. Wave propagation in a magnetically structured atmosphere. Pt. 2

    International Nuclear Information System (INIS)

    Roberts, B.

    1981-01-01

    Magnetic fields may introduce structure (inhomogeneity) into an otherwise uniform medium and thus change the nature of wave propagation in that medium. As an example of such structuring, wave propagation in an isolated magnetic slab is considered. It is supposed that disturbances outside the slab are laterally non-propagating. The effect of gravity is ignored. The field can support the propagation of both body and surface waves. The existence and nature of these waves depends upon the relative magnitudes of the sound speed c 0 and Alfven speed upsilonsub(A) inside the slab, and the sound speed csub(e) in the field-free environment. (orig./WL)

  7. Wave propagation in electromagnetic media

    CERN Document Server

    Davis, Julian L

    1990-01-01

    This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro­ magnetic materials. Since these volumes were designed to be relatively self­ contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...

  8. Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.

    Science.gov (United States)

    van Doren, Thomas Walter

    1993-01-01

    This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.

  9. Calculation of sound propagation in fibrous materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1996-01-01

    Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements.......Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements....

  10. Propagation of sound in oceans

    Digital Repository Service at National Institute of Oceanography (India)

    Advilkar, P.J.

    prestigious institute. I am privileged to express my sincere thanks to JRF’s Roshin Sir, Bajish Sir, for training me both practically and theoretically about various techniques, without which my work would not have reached its completion. I am equally... wrote his Mathematical Principles of Natural Philosophy which included the first mathematical treatment of sound. The modern study of underwater acoustics can be considered to have started in early 19 th century. In 1826, on Lake Geneva, the speed...

  11. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  12. Boundary effects on sound propagation in superfluids

    International Nuclear Information System (INIS)

    Jensen, H.H.; Smith, H.; Woelfle, P.

    1983-01-01

    The attenuation of fourth sound propagating in a superfluid confined within a channel is determined on a microscopic basis, taking into account the scatter of the quasiparticles from the walls. The Q value of a fourth-sound resonance is shown to be inversely proportional to the stationary flow of thermal excitations through the channel due to an external force. Our theoretical estimates of Q are compared with experimentally observed values for 3 He. The transition between first and fourth sound is studied in detail on the basis of two-fluid hydrodynamics, including the slip of the normal component at the walls. The slip is shown to have a strong influence on the velocity and attenuation in the transition region between first and fourth sound, offering a means to examine the interaction of quasiparticles with a solid surface

  13. Efficient Geometric Sound Propagation Using Visibility Culling

    Science.gov (United States)

    Chandak, Anish

    2011-07-01

    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying

  14. Testing Cosmology with Cosmic Sound Waves

    CERN Document Server

    Corasaniti, Pier Stefano

    2008-01-01

    WMAP observations have accurately determined the position of the first two peaks and dips in the CMB temperature power spectrum. These encode information on the ratio of the distance to the last scattering surface to the sound horizon at decoupling. However pre-recombination processes can contaminate this distance information. In order to assess the amplitude of these effects we use the WMAP data and evaluate the relative differences of the CMB peaks and dips multipoles. We find that the position of the first peak is largely displaced with the respect to the expected position of the sound horizon scale at decoupling. In contrast the relative spacings of the higher extrema are statistically consistent with those expected from perfect harmonic oscillations. This provides evidence for a scale dependent phase shift of the CMB oscillations which is caused by gravitational driving forces affecting the propagation of sound waves before recombination. By accounting for these effects we have performed a MCMC likelihoo...

  15. Nonlinear acoustic wave propagating in one-dimensional layered system

    International Nuclear Information System (INIS)

    Yun, Y.; Miao, G.Q.; Zhang, P.; Huang, K.; Wei, R.J.

    2005-01-01

    The propagation of finite-amplitude plane sound in one-dimensional layered media is studied by the extended method of transfer matrix formalism. For the periodic layered system consisting of two alternate types of liquid, the energy distribution and the phase vectors of the interface vibration are computed and analyzed. It is found that in the pass-band, the second harmonic of sound wave can propagate with the characteristic modulation

  16. Sound propagation in the steam generator - A theoretical approach

    International Nuclear Information System (INIS)

    Heckl, M.

    1990-01-01

    In order to assess the suitability of acoustic tomography in the steam generator, detailed information on its acoustic transmission properties is needed. We have developed a model which allows one to calculate the sound field produced by an incident wave in the steam generator. In our model we consider the steam generator as a medium consisting of a two-dimensional array of infinitely long cylindrical tubes. They are thin-walled, made of metal and are immersed in a liquid. Inside them there is a liquid or a gas. The incident wave is plane and perpendicular to the cylindrical tubes. When a sound wave crosses the tube bundle, each individual tube is exposed to a fluctuating pressure field and scatters sound which, together with the incident wave, influences the pressure at all surrounding tubes. The motion of an individual tube is given by differential equations (Heckl 1989) and the pressure difference between inside and outside. The interaction of a tube wall with the fluid inside and outside is treated by imposing suitable boundary conditions. Since the cylinder array is periodic, it can be considered as consisting of a large number of tube rows with a constant distance between adjacent cylinders within a row and constant spacing of the rows. The sound propagates from row to row, each time getting partly transmitted and partly reflected. A single row is similar to a diffraction grating known from optics. The transmission properties of one row or grating depend on the ratio between spacing and wavelength. If the wavelength is larger than the spacing, then the wave is transmitted only in the original direction. However, for wavelengths smaller than the spacing, the transmitted wave has components travelling in several discrete directions. The response of one row to sound scattered from a neighbouring row is calculated from Kirchhoff's theorem. An iteration scheme has been developed to take the reflection and transmission at several rows into account. 7 refs, figs and

  17. Propagation of gravity waves and spread F in the low-latitude ionosphere over Tucumán, Argentina, by continuous Doppler sounding: First results

    Czech Academy of Sciences Publication Activity Database

    Chum, Jaroslav; Bonomi, F. A. M.; Fišer, Jiří; Cabrera, M. A.; Ezquer, R. G.; Burešová, Dalia; Laštovička, Jan; Baše, Jiří; Hruška, František; Molina, M. G.; Ise, J. E.; Cangemi, J. I.; Šindelářová, Tereza

    2014-01-01

    Roč. 119, č. 8 (2014), s. 6954-6965 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/12/2440; GA ČR GP13-09778P Institutional support: RVO:68378289 Keywords : low latitude ionosphere * Ionospheric irregularities * equatorial spread F * gravity waves * scintillation * remote sensing * Doppler sounding Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.426, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020184/abstract

  18. Wave equations for pulse propagation

    International Nuclear Information System (INIS)

    Shore, B.W.

    1987-01-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation

  19. The Effects of Seamounts on Sound Propagation in Deep Water

    International Nuclear Information System (INIS)

    Li Wen; Li Zheng-Lin; Zhang Ren-He; Qin Ji-Xing; Li Jun; Nan Ming-Xing

    2015-01-01

    A propagation experiment was conducted in the South China Sea in 2014 with a flat bottom and seamounts respectively by using explosive sources. The effects of seamounts on sound propagation are analyzed by using the broadband signals. It is observed that the transmission loss (TL) decreases up to 7 dB for the signals in the first shadow zone due to the seamount reflection. Moreover, the TL might increase more than 30 dB in the converge zone due to the shadowing by seamounts. Abnormal TLs and pulse arrival structures at different ranges are explained by using the ray and wave theory. The experimental TLs and arrival pulses are compared with the numerical results and found to be in good agreement. (paper)

  20. Radio wave propagation and parabolic equation modeling

    CERN Document Server

    Apaydin, Gokhan

    2018-01-01

    A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...

  1. Surface effects on the propagation of sound in Fermi liquids

    International Nuclear Information System (INIS)

    Nagai, K.; Woelfle, P.

    1981-01-01

    The propagation of sound in a resonator is discussed in both the normal and superfluid Fermi liquids. A set of model hydrodynamic equations is developed for describing the transition from the hydrodynamic regime to the collisionless regime. Surface effects are incorporated by using a slip boundary condition. The resonance condition for the sound propagation in a cylindrical resonator is derived

  2. Lamb wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Fromme, P.; Pizzolato, M.; Robyr, J-L; Masserey, B.

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness a...

  3. Correspondence between sound propagation in discrete and continuous random media with application to forest acoustics.

    Science.gov (United States)

    Ostashev, Vladimir E; Wilson, D Keith; Muhlestein, Michael B; Attenborough, Keith

    2018-02-01

    Although sound propagation in a forest is important in several applications, there are currently no rigorous yet computationally tractable prediction methods. Due to the complexity of sound scattering in a forest, it is natural to formulate the problem stochastically. In this paper, it is demonstrated that the equations for the statistical moments of the sound field propagating in a forest have the same form as those for sound propagation in a turbulent atmosphere if the scattering properties of the two media are expressed in terms of the differential scattering and total cross sections. Using the existing theories for sound propagation in a turbulent atmosphere, this analogy enables the derivation of several results for predicting forest acoustics. In particular, the second-moment parabolic equation is formulated for the spatial correlation function of the sound field propagating above an impedance ground in a forest with micrometeorology. Effective numerical techniques for solving this equation have been developed in atmospheric acoustics. In another example, formulas are obtained that describe the effect of a forest on the interference between the direct and ground-reflected waves. The formulated correspondence between wave propagation in discrete and continuous random media can also be used in other fields of physics.

  4. Nonlinear effects in the propagation of shortwave transverse sound in pure superconductors

    International Nuclear Information System (INIS)

    Gal'perin, Y.

    1982-01-01

    Various mechanisms are analyzed which lead to nonlinear phenomena (e.g., the dependence of the absorption coefficient and of the velocity of sound on its intensity) in the propagation of transverse shortwave sound in pure superconductors (the wavelength of the sound being much less than the mean free path of the quasiparticles). It is shown that the basic mechanism, over a wide range of superconductor parameters and of the sound intensity, is the so-called momentum nonlinearity. The latter is due to the distortion (induced by the sound wave) of the quasimomentum distribution of resonant electrons interacting with the wave. The dependences of the absorption coefficient and of the sound velocity on its intensity and on the temperature are analyzed in the vicinity of the superconducting transition point. The feasibility of an experimental study of nonlinear acoustic phenomena in the case of transverse sound is considered

  5. The propagation of sound in tunnels

    Science.gov (United States)

    Li, Kai Ming; Iu, King Kwong

    2002-11-01

    The sound propagation in tunnels is addressed theoretically and experimentally. In many previous studies, the image source method is frequently used. However, these early theoretical models are somewhat inadequate because the effect of multiple reflections in long enclosures is often modeled by the incoherent summation of contributions from all image sources. Ignoring the phase effect, these numerical models are unlikely to be satisfactory for predicting the intricate interference patterns due to contributions from each image source. In the present paper, the interference effect is incorporated by summing the contributions from the image sources coherently. To develop a simple numerical model, tunnels are represented by long rectangular enclosures with either geometrically reflecting or impedance boundaries. Scale model experiments are conducted for the validation of the numerical model. In some of the scale model experiments, the enclosure walls are lined with a carpet for simulating the impedance boundary condition. Large-scale outdoor measurements have also been conducted in two tunnels designed originally for road traffic use. It has been shown that the proposed numerical model agrees reasonably well with experimental data. [Work supported by the Research Grants Council, The Industry Department, NAP Acoustics (Far East) Ltd., and The Hong Kong Polytechnic University.

  6. Sound waves in (2+1) dimensional holographic magnetic fluids

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex; Vazquez, Samuel E.

    2008-01-01

    We use the AdS/CFT correspondence to study propagation of sound waves in strongly coupled (2+1) dimensional conformal magnetic fluids. Our computation provides a nontrivial consistency check of the viscous magneto-hydrodynamics of Hartnoll-Kovtun-Mueller-Sachdev to leading order in the external field. Depending on the behavior of the magnetic field in the hydrodynamic limit, we show that it can lead to further attenuation of sound waves in the (2+1) dimensional conformal plasma, or reduce the speed of sound. We present both field theory and dual supergravity descriptions of these phenomena. While to the leading order in momenta the dispersion of the sound waves obtained from the dual supergravity description agrees with the one predicted from field theory, we find a discrepancy at higher order. This suggests that further corrections to HKMS magneto-hydrodynamics are necessary.

  7. Sound waves in hadronic matter

    Science.gov (United States)

    Wilk, Grzegorz; Włodarczyk, Zbigniew

    2018-01-01

    We argue that recent high energy CERN LHC experiments on transverse momenta distributions of produced particles provide us new, so far unnoticed and not fully appreciated, information on the underlying production processes. To this end we concentrate on the small (but persistent) log-periodic oscillations decorating the observed pT spectra and visible in the measured ratios R = σdata(pT) / σfit (pT). Because such spectra are described by quasi-power-like formulas characterised by two parameters: the power index n and scale parameter T (usually identified with temperature T), the observed logperiodic behaviour of the ratios R can originate either from suitable modifications of n or T (or both, but such a possibility is not discussed). In the first case n becomes a complex number and this can be related to scale invariance in the system, in the second the scale parameter T exhibits itself log-periodic oscillations which can be interpreted as the presence of some kind of sound waves forming in the collision system during the collision process, the wave number of which has a so-called self similar solution of the second kind. Because the first case was already widely discussed we concentrate on the second one and on its possible experimental consequences.

  8. Propagation of Sound in a Bose-Einstein Condensate

    International Nuclear Information System (INIS)

    Andrews, M.R.; Kurn, D.M.; Miesner, H.; Durfee, D.S.; Townsend, C.G.; Inouye, S.; Ketterle, W.

    1997-01-01

    Sound propagation has been studied in a magnetically trapped dilute Bose-Einstein condensate. Localized excitations were induced by suddenly modifying the trapping potential using the optical dipole force of a focused laser beam. The resulting propagation of sound was observed using a novel technique, rapid sequencing of nondestructive phase-contrast images. The speed of sound was determined as a function of density and found to be consistent with Bogoliubov theory. This method may generally be used to observe high-lying modes and perhaps second sound. copyright 1997 The American Physical Society

  9. Topology optimization of wave-propagation problems

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures.......Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures....

  10. Wave propagation in thermoelastic saturated porous medium

    Indian Academy of Sciences (India)

    the existence and propagation of four waves in the medium. Three of the waves are ... predicted infinite speed for propagation of ther- mal signals. Lord and ..... saturated reservoir rock (North-sea Sandstone) is chosen for the numerical model ...

  11. Terrestrial propagation of long electromagnetic waves

    CERN Document Server

    Galejs, Janis; Fock, V A

    2013-01-01

    Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte

  12. Quasinormal modes and classical wave propagation in analogue black holes

    International Nuclear Information System (INIS)

    Berti, Emanuele; Cardoso, Vitor; Lemos, Jose P.S.

    2004-01-01

    Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the 'draining bathtub' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Because of the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute superradiant reflection coefficients and instability time scales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a nonrotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow

  13. Determining the speed of sound in the air by sound wave interference

    Science.gov (United States)

    Silva, Abel A.

    2017-07-01

    Mechanical waves propagate through material media. Sound is an example of a mechanical wave. In fluids like air, sound waves propagate through successive longitudinal perturbations of compression and decompression. Audible sound frequencies for human ears range from 20 to 20 000 Hz. In this study, the speed of sound v in the air is determined using the identification of maxima of interference from two synchronous waves at frequency f. The values of v were correct to 0 °C. The experimental average value of {\\bar{ν }}\\exp =336 +/- 4 {{m}} {{{s}}}-1 was found. It is 1.5% larger than the reference value. The standard deviation of 4 m s-1 (1.2% of {\\bar{ν }}\\exp ) is an improved value by the use of the concept of the central limit theorem. The proposed procedure to determine the speed of sound in the air aims to be an academic activity for physics classes of scientific and technological courses in college.

  14. Identifying students’ mental models of sound propagation: The role of conceptual blending in understanding conceptual change

    Directory of Open Access Journals (Sweden)

    Zdeslav Hrepic

    2010-09-01

    Full Text Available We investigated introductory physics students’ mental models of sound propagation. We used a phenomenographic method to analyze the data in the study. In addition to the scientifically accepted Wave model, students used the “Entity” model to describe the propagation of sound. In this latter model sound is a self-standing entity, different from the medium through which it propagates. All other observed alternative models contain elements of both Entity and Wave models, but at the same time are distinct from each of the constituent models. We called these models “hybrid” or “blend” models. We discuss how students use these models in various contexts before and after instruction and how our findings contribute to the understanding of conceptual change. Implications of our findings for teaching are summarized.

  15. Fundamental plasma emission involving ion sound waves

    International Nuclear Information System (INIS)

    Cairns, I.H.

    1987-01-01

    The theory for fundamental plasma emission by the three-wave processes L ± S → T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived. (author)

  16. Kinetic-sound propagation in dilute gas mixtures

    International Nuclear Information System (INIS)

    Campa, A.; Cohen, E.G.D.

    1989-01-01

    Kinetic sound is predicted in dilute disparate-mass binary gas mixtures, propagating exclusively in the light compound and much faster than ordinary sound. It should be detectable by light-scattering experiments, as an extended shoulder in the scattering cross section for large frequencies. As an example, H 2 -Ar mixtures are discussed

  17. Nonlinear magnetoacoustic wave propagation with chemical reactions

    Science.gov (United States)

    Margulies, Timothy Scott

    2002-11-01

    The magnetoacoustic problem with an application to sound wave propagation through electrically conducting fluids such as the ocean in the Earth's magnetic field, liquid metals, or plasmas has been addressed taking into account several simultaneous chemical reactions. Using continuum balance equations for the total mass, linear momentum, energy; as well as Maxwell's electrodynamic equations, a nonlinear beam equation has been developed to generalize the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a fluid with linear viscosity but nonlinear and diffraction effects. Thermodynamic parameters are used and not tailored to only an adiabatic fluid case. The chemical kinetic equations build on a relaxing media approach presented, for example, by K. Naugolnukh and L. Ostrovsky [Nonlinear Wave Processes in Acoustics (Cambridge Univ. Press, Cambridge, 1998)] for a linearized single reaction and thermodynamic pressure equation of state. Approximations for large and small relaxation times and for magnetohydrodynamic parameters [Korsunskii, Sov. Phys. Acoust. 36 (1990)] are examined. Additionally, Cattaneo's equation for heat conduction and its generalization for a memory process rather than a Fourier's law are taken into account. It was introduced for the heat flux depends on the temperature gradient at an earlier time to generate heat pulses of finite speed.

  18. Sound propagation in dry granular materials : discrete element simulations, theory, and experiments

    NARCIS (Netherlands)

    Mouraille, O.J.P.

    2009-01-01

    In this study sound wave propagation through different types of dry confined granular systems is studied. With three-dimensional discrete element simulations, theory and experiments, the influence of several micro-scale properties: friction, dissipation, particle rotation, and contact disorder, on

  19. Teaching about Mechanical Waves and Sound with a Tuning Fork and the Sun

    Science.gov (United States)

    Leccia, Silvio; Colantonio, Arturo; Puddu, Emanuella; Galano, Silvia; Testa, Italo

    2015-01-01

    Literature in "Physics Education" has shown that students encounter many difficulties in understanding wave propagation. Such difficulties lead to misconceptions also in understanding sound, often used as context to teach wave propagation. To address these issues, we present in this paper a module in which the students are engaged in…

  20. Wave propagation of spectral energy content in a granular chain

    NARCIS (Netherlands)

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-01-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like

  1. Some considerations of wave propagation

    Science.gov (United States)

    Verdonk, P. L. F. M.

    The meaning of group velocity and its relation to conserved quantities are demonstrated. The origin of wave dispersion in terms of nonlocal and relaxation phenomena are clarified. The character of a wave described by an equation with a general type of nonlinearity and general dispersion terms is explained. The steepening of a wave flank and the occurrence of stationary waves are discussed.

  2. Propagation of SLF/ELF electromagnetic waves

    CERN Document Server

    Pan, Weiyan

    2014-01-01

    This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).

  3. Sound Propagation Around Off-Shore Wind Turbines. Long-Range Parabolic Equation Calculations for Baltic Sea Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lisa

    2003-07-01

    Low-frequency, long-range sound propagation over a sea surface has been calculated using a wide-angel Cranck-Nicholson Parabolic Equation method. The model is developed to investigate noise from off-shore wind turbines. The calculations are made using normal meteorological conditions of the Baltic Sea. Special consideration has been made to a wind phenomenon called low level jet with strong winds on rather low altitude. The effects of water waves on sound propagation have been incorporated in the ground boundary condition using a boss model. This way of including roughness in sound propagation models is valid for water wave heights that are small compared to the wave length of the sound. Nevertheless, since only low frequency sound is considered, waves up to the mean wave height of the Baltic Sea can be included in this manner. The calculation model has been tested against benchmark cases and agrees well with measurements. The calculations show that channelling of sound occurs at downwind conditions and that the sound propagation tends towards cylindrical spreading. The effects of the water waves are found to be fairly small.

  4. Wave propagation and scattering in random media

    CERN Document Server

    Ishimaru, Akira

    1978-01-01

    Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an

  5. Coupled seismic and electromagnetic wave propagation

    NARCIS (Netherlands)

    Schakel, M.D.

    2011-01-01

    Coupled seismic and electromagnetic wave propagation is studied theoretically and experimentally. This coupling arises because of the electrochemical double layer, which exists along the solid-grain/fluid-electrolyte boundaries of porous media. Within the double layer, charge is redistributed,

  6. Reversed phase propagation for hyperbolic surface waves

    DEFF Research Database (Denmark)

    Repän, Taavi; Novitsky, Andrey; Willatzen, Morten

    2018-01-01

    Magnetic properties can be used to control phase propagation in hyperbolic metamaterials. However, in the visible spectrum magnetic properties are difficult to obtain. We discuss hyperbolic surface waves allowing for a similar control over phase, achieved without magnetic properties....

  7. Measurement of sound propagation in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1995-01-01

    A new acoustic method for directly measuring the flow resistance, and the compressibility of fibrous materials such as glass wool, is given. Measured results for monochromatic sound in glass wool are presented and compared with theoretically calculated results. The agreement between experimental...

  8. Search for fourth sound propagation in supersolid 4He

    International Nuclear Information System (INIS)

    Aoki, Y.; Kojima, H.; Lin, X.

    2008-01-01

    A systematic study is carried out to search for fourth sound propagation solid 4 He samples below 500 mK down to 40 mK between 25 and 56 bar using the techniques of heat pulse generator and titanium superconducting transition edge bolometer. If solid 4 He is endowed with superfluidity below 200 mK, as indicated by recent torsional oscillator experiments, theories predict fourth sound propagation in such a supersolid state. If found, fourth sound would provide convincing evidence for superfluidity and a new tool for studying the new phase. The search for a fourth sound-like mode is based on the response of the bolometers to heat pulses traveling through cylindrical samples of solids grown with different crystal qualities. Bolometers with increasing sensitivity are constructed. The heater generator amplitude is reduced to the sensitivity limit to search for any critical velocity effects. The fourth sound velocity is expected to vary as ∞ √ Ρ s /ρ. Searches for a signature in the bolometer response with such a characteristic temperature dependence are made. The measured response signal has not so far revealed any signature of a new propagating mode within a temperature excursion of 5 μK from the background signal shape. Possible reasons for this negative result are discussed. Prior to the fourth sound search, the temperature dependence of heat pulse propagation was studied as it transformed from 'second sound' in the normal solid 4 He to transverse ballistic phonon propagation. Our work extends the studies of [V. Narayanamurti and R. C. Dynes, Phys. Rev. B 12, 1731 (1975)] to higher pressures and to lower temperatures. The measured transverse ballistic phonon propagation velocity is found to remain constant (within the 0.3% scatter of the data) below 100 mK at all pressures and reveals no indication of an onset of supersolidity. The overall dynamic thermal response of solid to heat input is found to depend strongly on the sample preparation procedure

  9. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    Science.gov (United States)

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  10. Harmonic surface wave propagation in plasma

    International Nuclear Information System (INIS)

    Shivarova, A.; Stoychev, T.

    1980-01-01

    Second order harmonic surface waves generated by one fundamental high-frequency surface wave are investigated experimentally in gas discharge plasma. Two types of harmonic waves of equal frequency, associated with the linear dispersion relation and the synchronism conditions relatively propagate. The experimental conditions and the different space damping rates of the waves ensure the existence of different spatial regions (consecutively arranged along the plasma column) of a dominant propagation of each one of these two waves. Experimental data are obtained both for the wavenumbers and the space damping rates by relatively precise methods for wave investigations such as the methods of time-space diagrams and of phase shift measurements. The results are explained by the theoretical model for nonlinear mixing of dispersive waves. (author)

  11. Effect of Sound Waves on Decarburization Rate of Fe-C Melt

    Science.gov (United States)

    Komarov, Sergey V.; Sano, Masamichi

    2018-02-01

    Sound waves have the ability to propagate through a gas phase and, thus, to supply the acoustic energy from a sound generator to materials being processed. This offers an attractive tool, for example, for controlling the rates of interfacial reactions in steelmaking processes. This study investigates the kinetics of decarburization in molten Fe-C alloys, the surface of which was exposed to sound waves and Ar-O2 gas blown onto the melt surface. The main emphasis is placed on clarifying effects of sound frequency, sound pressure, and gas flow rate. A series of water model experiments and numerical simulations are also performed to explain the results of high-temperature experiments and to elucidate the mechanism of sound wave application. This is explained by two phenomena that occur simultaneously: (1) turbulization of Ar-O2 gas flow by sound wave above the melt surface and (2) motion and agitation of the melt surface when exposed to sound wave. It is found that sound waves can both accelerate and inhibit the decarburization rate depending on the Ar-O2 gas flow rate and the presence of oxide film on the melt surface. The effect of sound waves is clearly observed only at higher sound pressures on resonance frequencies, which are defined by geometrical features of the experimental setup. The resonance phenomenon makes it difficult to separate the effect of sound frequency from that of sound pressure under the present experimental conditions.

  12. Inward propagating chemical waves in Taylor vortices.

    Science.gov (United States)

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  13. Variation principle for nonlinear wave propagation

    International Nuclear Information System (INIS)

    Watanabe, T.; Lee, Y.C.; Nishikawa, Kyoji; Hojo, H.; Yoshida, Y.

    1976-01-01

    Variation principle is derived which determines stationary nonlinear propagation of electrostatic waves in the self-consistent density profile. Example is given for lower-hybrid waves and the relation to the variation principle for the Lagrangian density of electromagnetic fluids is discussed

  14. The parabolic equation method for outdoor sound propagation

    DEFF Research Database (Denmark)

    Arranz, Marta Galindo

    The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations of the g......The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations...

  15. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten

    2008-01-01

    A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...

  16. Radiation and propagation of electromagnetic waves

    CERN Document Server

    Tyras, George; Declaris, Nicholas

    1969-01-01

    Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a

  17. Lamb wave propagation in monocrystalline silicon wafers.

    Science.gov (United States)

    Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.

  18. Noise barriers and the harmonoise sound propagation model

    NARCIS (Netherlands)

    Salomons, E.M.; Maercke, D. van; Randrianoelina, A.

    2009-01-01

    The Harmonoise sound propagation model ('the Harmonoise engineering model') was developed in the European project Harmonoise (2001-2004) for road and rail traffic noise. In 2008, CSTB Grenoble and TNO Delft have prepared a detailed description of the various steps involved in a calculation with the

  19. Effects of wind turbine wake on atmospheric sound propagation

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2017-01-01

    In this paper, we investigate the sound propagation from a wind turbine considering the effects of wake-induced velocity deficit and turbulence. In order to address this issue, an advanced approach was developed in which both scalar and vector parabolic equations in two dimensions are solved. Flow...

  20. Metric approach for sound propagation in nematic liquid crystals

    Science.gov (United States)

    Pereira, E.; Fumeron, S.; Moraes, F.

    2013-02-01

    In the eikonal approach, we describe sound propagation near topological defects of nematic liquid crystals as geodesics of a non-Euclidian manifold endowed with an effective metric tensor. The relation between the acoustics of the medium and this geometrical description is given by Fermat's principle. We calculate the ray trajectories and propose a diffraction experiment to retrieve information about the elastic constants.

  1. Nonlinear radial propagation of drift wave turbulence

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    We study the linear and the nonlinear radial propagation of drift wave energy in an inhomogeneous plasma. The drift mode excited in such a plasma is dispersive in nature. The drift wave energy spreads out symmetrically along the direction of inhomogeneity with a finite group velocity. To study the effect of the nonlinear coupling on the propagation of energy in a collision free plasma, we solve the Hasegawa-Mima equation as a mixed initial boundary-value problem. The solutions of the linearized equation are used to check the reliability of our numerical calculations. Additional checks are also performed on the invariants of the system. Our results reveal that a pulse gets distorted as it propagates through the medium. The peak of the pulse propagates with a finite velocity that depends on the amplitude of the initial pulse. The polarity of propagation depends on the initial parameters of the pulse. We have also studied drift wave propagation in a resistive plasma. The Hasegawa-Wakatani equations are used to investigate this problem

  2. Negative ion sound solitary waves revisited

    Science.gov (United States)

    Cairns, R. A.; Cairns

    2013-12-01

    Some years ago, a group including the present author and Padma Shukla showed that a suitable non-thermal electron distribution allows the formation of ion sound solitary waves with either positive or negative density perturbations, whereas with Maxwellian electrons only a positive density perturbation is possible. The present paper discusses the qualitative features of this distribution allowing the negative waves and shared with suitable two-temperature distributions.

  3. Submillimeter wave propagation in tokamak plasmas

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.

    1985-01-01

    The propagation of submillimeter-waves (smm) in tokamak plasmas has been investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses have been carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system has been employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes have been developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements

  4. Submillimeter wave propagation in tokamak plasmas

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.

    1986-01-01

    Propagation of submillimeter waves (smm) in tokamak plasma was investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses were carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system was employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes were developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements. 5 references, 2 figures

  5. Wave propagation in non-linear media

    NARCIS (Netherlands)

    Broer, L.J.F.

    1965-01-01

    The problem of the propagation of electromagnetic waves through solids is essentially one of interaction between light quanta and matter. The most fundamental and general treatment of this subject is therefore undoubtedly based on the quantummechanical theory of this interaction. Nevertheless, a

  6. Wave propagation retrieval method for chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2010-01-01

    In this paper we present the wave propagation method for the retrieving of effective properties of media with circularly polarized eigenwaves, in particularly for chiral metamaterials. The method is applied for thick slabs and provides bulk effective parameters. Its strong sides are the absence...

  7. Wave propagation in complex structures with LEGO

    NARCIS (Netherlands)

    Lancellotti, V.; Hon, de B.P.; Tijhuis, A.G.

    2012-01-01

    We present the extension of the linear embedding via Green's operators (LEGO) scheme to problems that involve elementary sources localized inside complex structures made of different dielectric media with inclusions. We show how this new feature allows solving problems of wave propagation within,

  8. Electromagnetic Wave Propagation in Random Media

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1984-01-01

    The propagation of a narrow frequency band beam of electromagnetic waves in a medium with randomly varying index of refraction is considered. A novel formulation of the governing equation is proposed. An equation for the average Green function (or transition probability) can then be derived...

  9. Thermoelastic wave propagation in laminated composites plates

    Directory of Open Access Journals (Sweden)

    Verma K. L.

    2012-12-01

    Full Text Available The dispersion of thermoelastic waves propagation in an arbitrary direction in laminated composites plates is studied in the framework of generalized thermoelasticity in this article. Three dimensional field equations of thermoelasticity with relaxation times are considered. Characteristic equation is obtained on employing the continuity of displacements, temperature, stresses and thermal gradient at the layers’ interfaces. Some important particular cases such as of free waves on reducing plates to single layer and the surface waves when thickness tends to infinity are also discussed. Uncoupled and coupled thermoelasticity are the particular cases of the obtained results. Numerical results are also obtained and represented graphically.

  10. Wave propagation in elastic layers with damping

    DEFF Research Database (Denmark)

    Sorokin, Sergey; Darula, Radoslav

    2016-01-01

    The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...... for alternative excitation cases. The differences between two regimes, the low frequency one, when a waveguide supports only one propagating wave, and the high frequency one, when several waves are supported, are demonstrated and explained....

  11. Counterstreaming magnetized plasmas. II. Perpendicular wave propagation

    International Nuclear Information System (INIS)

    Tautz, R.C.; Schlickeiser, R.

    2006-01-01

    The properties of longitudinal and transverse oscillations in magnetized symmetric counterstreaming Maxwellian plasmas with equal thermal velocities for waves propagating perpendicular to the stream direction are investigated on the basis of Maxwell equations and the nonrelativistic Vlasov equation. With the constraint of vanishing particle flux in the stream direction, three distinct dispersion relations are known, which are the ordinary-wave mode, the Bernstein wave mode, and the extraordinary electromagnetic wave mode, where the latter two are only approximations. In this article, all three dispersion relations are evaluated for a counterstreaming Maxwellian distribution function in terms of the hypergeometric function 2 F 2 . The growth rates for the ordinary-wave mode are compared to earlier results by Bornatici and Lee [Phys. Fluids 13, 3007 (1970)], who derived approximate results, whereas in this article the exact dispersion relation is solved numerically. The original results are therefore improved and show differences of up to 21% to the results obtained in this article

  12. Propagation of an ionizing surface electromagnetic wave

    Energy Technology Data Exchange (ETDEWEB)

    Boev, A.G.; Prokopov, A.V.

    1976-11-01

    The propagation of an rf surface wave in a plasma which is ionized by the wave itself is analyzed. The exact solution of the nonlinear Maxwell equations is discussed for the case in which the density of plasma electrons is an exponential function of the square of the electric field. The range over which the surface wave exists and the frequency dependence of the phase velocity are found. A detailed analysis is given for the case of a plasma whose initial density exceeds the critical density at the wave frequency. An increase in the wave amplitude is shown to expand the frequency range over which the plasma is transparent; The energy flux in the plasma tends toward a certain finite value which is governed by the effective ionization field.

  13. Rarefaction and compression waves of the first sound in superfluid He-II

    International Nuclear Information System (INIS)

    Efimov, V.F.; Kolmakov, G.V.; Lebedeva, E.V.; Mezhov-Deglin, L.P.; Trusov, A.B.

    1999-01-01

    The evolution of the form of the first sound waves, excited by the pulse heater in the superfluid He-II with increase in the thermal pulse Q-capacity, is studied. Propagation of the first sound rarefaction wave (heating wave), subsequent transformation of the rarefaction wave into the compression wave and further into the compression shock wave with Q growth are observed in the fluid, compressed up to 13.3 atm., i.e. it is possible to judge about the change in the heat transfer conditions at the solid body - He-II interface by the change in the sound wave form. It is established that heat expansion of the He-I normal fluid layer, originating at the interface between He-II and the heater by the Q-capacity exceeding certain critical one, is the basic cause of the compression waves excitation in He-II by the pressures of P ≥ 1 atm [ru

  14. Determination of particle size distributions from acoustic wave propagation measurements

    International Nuclear Information System (INIS)

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-01-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. 51, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. copyright 1999 American Institute of Physics

  15. Topology Optimization for Wave Propagation Problems with Experimental Validation

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk

    designed using the proposed method is provided. A novel approach for designing meta material slabs with selectively tuned negative refractive behavior is outlined. Numerical examples demonstrating the behavior of a slab under different conditions is provided. Results from an experimental studydemonstrating...... agreement with numerical predictions are presented. Finally an approach for designing acoustic wave shaping devices is treated. Three examples of applications are presented, a directional sound emission device, a wave splitting device and a flat focusing lens. Experimental results for the first two devices......This Thesis treats the development and experimental validation of density-based topology optimization methods for wave propagation problems. Problems in the frequency regime where design dimensions are between approximately one fourth and ten wavelengths are considered. All examples treat problems...

  16. Transformation of second sound into surface waves in superfluid helium

    International Nuclear Information System (INIS)

    Khalatnikov, I.M.; Kolmakov, G.V.; Pokrovsky, V.L.

    1995-01-01

    The Hamiltonian theory of superfluid liquid with a free boundary is developed. Nonlinear amplitudes of parametric Cherenkov radiation of a surface wave by second sound and the inner decay of second sound waves are found. Threshold amplitudes of second sound waves for these two processes are determined. 4 refs

  17. Surface acoustic wave propagation in graphene film

    International Nuclear Information System (INIS)

    Roshchupkin, Dmitry; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-01-01

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals

  18. The effect of lower-hybrid waves on the propagation of hydromagnetic waves

    International Nuclear Information System (INIS)

    Hamabata, Hiromitsu; Namikawa, Tomikazu; Mori, Kazuhiro

    1988-01-01

    Propagation characteristics of hydromagnetic waves in a magnetic plasma are investigated using the two-plasma fluid equations including the effect of lower-hybrid waves propagating perpendicularly to the magnetic field. The effect of lower-hybrid waves on the propagation of hydromagnetic waves is analysed in terms of phase speed, growth rate, refractive index, polarization and the amplitude relation between the density perturbation and the magnetic-field perturbation for the cases when hydromagnetic waves propagate in the plane whose normal is perpendicular to both the magnetic field and the propagation direction of lower-hybrid waves and in the plane perpendicular to the propagation direction of lower-hybrid waves. It is shown that hydromagnetic waves propagating at small angles to the propagation direction of lower-hybrid waves can be excited by the effect of lower-hybrid waves and the energy of excited waves propagates nearly parallel to the propagation direction of lower-hybrid waves. (author)

  19. Wave propagation in spatially modulated tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ziepke, A., E-mail: ziepke@itp.tu-berlin.de; Martens, S.; Engel, H. [Institut für Theoretische Physik, Hardenbergstraße 36, EW 7-1, Technische Universität Berlin, 10623 Berlin (Germany)

    2016-09-07

    We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube’s modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.

  20. The propagation of sound in narrow street canyons

    Science.gov (United States)

    Iu, K. K.; Li, K. M.

    2002-08-01

    This paper addresses an important problem of predicting sound propagation in narrow street canyons with width less than 10 m, which are commonly found in a built-up urban district. Major noise sources are, for example, air conditioners installed on building facades and powered mechanical equipment for repair and construction work. Interference effects due to multiple reflections from building facades and ground surfaces are important contributions in these complex environments. Although the studies of sound transmission in urban areas can be traced back to as early as the 1960s, the resulting mathematical and numerical models are still unable to predict sound fields accurately in city streets. This is understandable because sound propagation in city streets involves many intriguing phenomena such as reflections and scattering at the building facades, diffusion effects due to recessions and protrusions of building surfaces, geometric spreading, and atmospheric absorption. This paper describes the development of a numerical model for the prediction of sound fields in city streets. To simplify the problem, a typical city street is represented by two parallel reflecting walls and a flat impedance ground. The numerical model is based on a simple ray theory that takes account of multiple reflections from the building facades. The sound fields due to the point source and its images are summed coherently such that mutual interference effects between contributing rays can be included in the analysis. Indoor experiments are conducted in an anechoic chamber. Experimental data are compared with theoretical predictions to establish the validity and usefulness of this simple model. Outdoor experimental measurements have also been conducted to further validate the model. copyright 2002 Acoustical Society of America.

  1. Supersonic propagation of ionization waves in an underdense, laser-produced plasma

    International Nuclear Information System (INIS)

    Constantin, C.; Back, C.A.; Fournier, K.B.; Gregori, G.; Landen, O.L.; Glenzer, S.H.; Dewald, E.L.; Miller, M.C.

    2005-01-01

    A laser-driven supersonic ionization wave propagating through a millimeter-scale plasma of subcritical density up to 2-3 keV electron temperatures was observed. Propagation velocities initially ten times the sound speed were measured by means of time-resolved x-ray imaging diagnostics. The measured ionization wave trajectory is modeled analytically and by a two-dimensional radiation-hydrodynamics code. The comparison to the modeling suggests that nonlocal heat transport effects may contribute to the attenuation of the heat-wave propagation

  2. Experimental Investigation of Propagation and Reflection Phenomena in Finite Amplitude Sound Beams.

    Science.gov (United States)

    Averkiou, Michalakis Andrea

    Measurements of finite amplitude sound beams are compared with theoretical predictions based on the KZK equation. Attention is devoted to harmonic generation and shock formation related to a variety of propagation and reflection phenomena. Both focused and unfocused piston sources were used in the experiments. The nominal source parameters are piston radii of 6-25 mm, frequencies of 1-5 MHz, and focal lengths of 10-20 cm. The research may be divided into two parts: propagation and reflection of continuous-wave focused sound beams, and propagation of pulsed sound beams. In the first part, measurements of propagation curves and beam patterns of focused pistons in water, both in the free field and following reflection from curved targets, are presented. The measurements are compared with predictions from a computer model that solves the KZK equation in the frequency domain. A novel method for using focused beams to measure target curvature is developed. In the second part, measurements of pulsed sound beams from plane pistons in both water and glycerin are presented. Very short pulses (less than 2 cycles), tone bursts (5-30 cycles), and frequency modulated (FM) pulses (10-30 cycles) were measured. Acoustic saturation of pulse propagation in water is investigated. Self-demodulation of tone bursts and FM pulses was measured in glycerin, both in the near and far fields, on and off axis. All pulse measurements are compared with numerical results from a computer code that solves the KZK equation in the time domain. A quasilinear analytical solution for the entire axial field of a self-demodulating pulse is derived in the limit of strong absorption. Taken as a whole, the measurements provide a broad data base for sound beams of finite amplitude. Overall, outstanding agreement is obtained between theory and experiment.

  3. RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, S G [Physics Department, University of Auckland (New Zealand); Huenerbein, S v; Waddington, D [Research Institute for the Built and Human Environment, University of Salford (United Kingdom)], E-mail: s.vonhunerbein@salford.ac.uk

    2008-05-01

    The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group.

  4. RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models

    International Nuclear Information System (INIS)

    Bradley, S G; Huenerbein, S v; Waddington, D

    2008-01-01

    The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group

  5. Theoretical Model of Acoustic Wave Propagation in Shallow Water

    Directory of Open Access Journals (Sweden)

    Kozaczka Eugeniusz

    2017-06-01

    Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.

  6. Propagating wave correlations in complex systems

    International Nuclear Information System (INIS)

    Creagh, Stephen C; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor

    2017-01-01

    We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures. (paper)

  7. Pressure wave propagation in sodium loop

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1989-01-01

    A study was done on the pressure wave propagation within the pipes and mixture vessel of a termohydraulic loop for thermal shock with sodium. It was used the characteristic method to solve the one-dimensional continuity and momentum equations. The numerical model includes the pipes and the effects of valves and other accidents on pressure losses. The study was based on designer informations and engineering tables. It was evaluated the pressure wave sizes, parametrically as a function of the draining valve closure times. (author) [pt

  8. Electromagnetic wave propagating along a space curve

    Science.gov (United States)

    Lai, Meng-Yun; Wang, Yong-Long; Liang, Guo-Hua; Wang, Fan; Zong, Hong-Shi

    2018-03-01

    By using the thin-layer approach, we derive the effective equation for the electromagnetic wave propagating along a space curve. We find intrinsic spin-orbit, extrinsic spin-orbit, and extrinsic orbital angular-momentum and intrinsic orbital angular-momentum couplings induced by torsion, which can lead to geometric phase, spin, and orbital Hall effects. And we show the helicity inversion induced by curvature that can convert a right-handed circularly polarized electromagnetic wave into a left-handed polarized one, vice versa. Finally, we demonstrate that the gauge invariance of the effective dynamics is protected by the geometrically induced gauge potential.

  9. Obliquely propagating dust-density waves

    International Nuclear Information System (INIS)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-01-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models

  10. Seismic Wave Propagation in Layered Viscoelastic Media

    Science.gov (United States)

    Borcherdt, R. D.

    2008-12-01

    Advances in the general theory of wave propagation in layered viscoelastic media reveal new insights regarding seismic waves in the Earth. For example, the theory predicts: 1) P and S waves are predominantly inhomogeneous in a layered anelastic Earth with seismic travel times, particle-motion orbits, energy speeds, Q, and amplitude characteristics that vary with angle of incidence and hence, travel path through the layers, 2) two types of shear waves exist, one with linear and the other with elliptical particle motions each with different absorption coefficients, and 3) surface waves with amplitude and particle motion characteristics not predicted by elasticity, such as Rayleigh-Type waves with tilted elliptical particle motion orbits and Love-Type waves with superimposed sinusoidal amplitude dependencies that decay exponentially with depth. The general theory provides closed-form analytic solutions for body waves, reflection-refraction problems, response of multiple layers, and surface wave problems valid for any material with a viscoelastic response, including the infinite number of models, derivable from various configurations of springs and dashpots, such as elastic, Voight, Maxwell, and Standard Linear. The theory provides solutions independent of the amount of intrinsic absorption and explicit analytic expressions for physical characteristics of body waves in low-loss media such as the deep Earth. The results explain laboratory and seismic observations, such as travel-time and wide-angle reflection amplitude anomalies, not explained by elasticity or one dimensional Q models. They have important implications for some forward modeling and inverse problems. Theoretical advances and corresponding numerical results as recently compiled (Borcherdt, 2008, Viscoelastic Waves in Layered Media, Cambridge University Press) will be reviewed.

  11. Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network

    Science.gov (United States)

    Wei, Qi; Tian, Ye; Zuo, Shu-Yu; Cheng, Ying; Liu, Xiao-Jun

    2017-03-01

    Acoustic topological states support sound propagation along the boundary in a one-way direction with inherent robustness against defects and disorders, leading to the revolution of the manipulation on acoustic waves. A variety of acoustic topological states relying on circulating fluid, chiral coupling, or temporal modulation have been proposed theoretically. However, experimental demonstration has so far remained a significant challenge, due to the critical limitations such as structural complexity and high losses. Here, we experimentally demonstrate an acoustic anomalous Floquet topological insulator in a waveguide network. The acoustic gapless edge states can be found in the band gap when the waveguides are strongly coupled. The scheme features simple structure and high-energy throughput, leading to the experimental demonstration of efficient and robust topologically protected sound propagation along the boundary. The proposal may offer a unique, promising application for design of acoustic devices in acoustic guiding, switching, isolating, filtering, etc.

  12. Wave Propagation in Jointed Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  13. Wave propagation in the magnetosphere of Jupiter

    Science.gov (United States)

    Liemohn, H. B.

    1972-01-01

    A systematic procedure is developed for identifying the spatial regimes of various modes of wave propagation in the Jupiter magnetosphere that may be encountered by flyby missions. The Clemmow-Mullaly-Allis (CMA) diagram of plasma physics is utilized to identify the frequency regimes in which different modes of propagation occur in the magnetoplasma. The Gledhill model and the Ioannidis and Brice model of the magnetoplasma are summarized, and configuration-space CMA diagrams are constructed for each model for frequencies from 10 Hz to 1 MHz. The distinctive propagation features, the radio noise regimes, and the wave-particle interactions are discussed. It is concluded that the concentration of plasma in the equatorial plane makes this region of vital importance for radio observations with flyby missions. Local radio noise around the electron cyclotron frequency will probably differ appreciably from its terrestrial counterpart due to the lack of field-line guidance. Hydromagnetic wave properties at frequencies near the ion cyclotron frequency and below will probably be similar to the terrestrial case.

  14. Sound and sound sources

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...

  15. A problem-based approach to elastic wave propagation: the role of constraints

    International Nuclear Information System (INIS)

    Fazio, Claudio; Guastella, Ivan; Tarantino, Giovanni

    2009-01-01

    A problem-based approach to the teaching of mechanical wave propagation, focused on observation and measurement of wave properties in solids and on modelling of these properties, is presented. In particular, some experimental results, originally aimed at measuring the propagation speed of sound waves in metallic rods, are used in order to deepen the role of constraints in mechanical wave propagation. Interpretative models of the results obtained in the laboratory are built and implemented by using a well-known simulation environment. The simulation results are, then, compared with experimental data. The approach has been developed and experimented in the context of a workshop on mechanical wave propagation of the two-year Graduate Program for Physics Teacher Education at University of Palermo.

  16. Underwater Sound Propagation Modeling Methods for Predicting Marine Animal Exposure.

    Science.gov (United States)

    Hamm, Craig A; McCammon, Diana F; Taillefer, Martin L

    2016-01-01

    The offshore exploration and production (E&P) industry requires comprehensive and accurate ocean acoustic models for determining the exposure of marine life to the high levels of sound used in seismic surveys and other E&P activities. This paper reviews the types of acoustic models most useful for predicting the propagation of undersea noise sources and describes current exposure models. The severe problems caused by model sensitivity to the uncertainty in the environment are highlighted to support the conclusion that it is vital that risk assessments include transmission loss estimates with statistical measures of confidence.

  17. Enhancing propagation characteristics of truncated localized waves in silica

    KAUST Repository

    Salem, Mohamed

    2011-07-01

    The spectral characteristics of truncated Localized Waves propagating in dispersive silica are analyzed. Numerical experiments show that the immunity of the truncated Localized Waves propagating in dispersive silica to decay and distortion is enhanced as the non-linearity of the relation between the transverse spatial spectral components and the wave vector gets stronger, in contrast to free-space propagating waves, which suffer from early decay and distortion. © 2011 IEEE.

  18. Is Brenner's Modification to the Classical Navier–Stokes Equations Able to Describe Sound Propagation in Gases?

    International Nuclear Information System (INIS)

    Marques, W. Jr.

    2008-01-01

    We analyse the problem concerning the propagation of sound waves in gases by using the modified hydrodynamic theory proposed recently by Brenner for single-component fluids. The modifications introduced by Brenner are based on his proposal that the translational momentum in fluid motion is not given by the mass flux. Comparison of the sound propagation results derived from Brenner's theory with available experimental data for monatomic gases shows that this modified continuum theory is unable to describe the acoustic measurements not even in the low-frequency limit, a result that from our point of view makes Brenner's proposal questionable

  19. Full wave simulations of lower hybrid wave propagation in tokamaks

    International Nuclear Information System (INIS)

    Wright, J. C.; Bonoli, P. T.; Phillips, C. K.; Valeo, E.; Harvey, R. W.

    2009-01-01

    Lower hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons at (2.5-3)xv te , where v te ≡ (2T e /m e ) 1/2 is the electron thermal speed. Consequently these waves are well-suited to driving current in the plasma periphery where the electron temperature is lower, making LH current drive (LHCD) a promising technique for off-axis (r/a≥0.60) current profile control in reactor grade plasmas. Established techniques for computing wave propagation and absorption use WKB expansions with non-Maxwellian self-consistent distributions.In typical plasma conditions with electron densities of several 10 19 m -3 and toroidal magnetic fields strengths of 4 Telsa, the perpendicular wavelength is of the order of 1 mm and the parallel wavelength is of the order of 1 cm. Even in a relatively small device such as Alcator C-Mod with a minor radius of 22 cm, the number of wavelengths that must be resolved requires large amounts of computational resources for the full wave treatment. These requirements are met with a massively parallel version of the TORIC full wave code that has been adapted specifically for the simulation of LH waves [J. C. Wright, et al., Commun. Comput. Phys., 4, 545 (2008), J. C. Wright, et al., Phys. Plasmas 16 July (2009)]. This model accurately represents the effects of focusing and diffraction that occur in LH propagation. It is also coupled with a Fokker-Planck solver, CQL3D, to provide self-consistent distribution functions for the plasma dielectric as well as a synthetic hard X-ray (HXR) diagnostic for direct comparisons with experimental measurements of LH waves.The wave solutions from the TORIC-LH zero FLR model will be compared to the results from ray tracing from the GENRAY/CQL3D code via the synthetic HXR diagnostic and power deposition.

  20. Long Range Sound Propagation over Sea: Application to Wind Turbine Noise

    Energy Technology Data Exchange (ETDEWEB)

    Boue, Matieu

    2007-12-13

    The classical theory of spherical wave propagation is not valid at large distances from a sound source due to the influence of wind and temperature gradients that refract, i.e., bend the sound waves. This will in the downwind direction lead to a cylindrical type of wave spreading for large distances (> 1 km). Cylindrical spreading will give a smaller damping with distance as compared to spherical spreading (3 dB/distance doubling instead of 6 dB). But over areas with soft ground, i.e., grass land, the effect of ground reflections will increase the damping so that, if the effect of atmospheric damping is removed, a behavior close to a free field spherical spreading often is observed. This is the standard assumption used in most national recommendations for predicting outdoor sound propagation, e.g., noise from wind turbines. Over areas with hard surfaces, e.g., desserts or the sea, the effect of ground damping is small and therefore cylindrical propagation could be expected in the downwind direction. This observation backed by a limited number of measurements is the background for the Swedish recommendation, which suggests that cylindrical wave spreading should be assumed for distances larger than 200 m for sea based wind turbines. The purpose of this work was to develop measurement procedures for long range sound transmission and to apply this to investigate the occurrence of cylindrical wave spreading in the Baltic Sea. This work has been successfully finished and is described in this report. Another ambition was to develop models for long range sound transmission based on the parabolic equation. Here the work is not finished but must be continued in another project. Long term measurements were performed in the Kalmar strait, Sweden, located between the mainland and Oeland, during 2005 and 2006. Two different directive sound sources placed on a lighthouse in the middle of the strait produced low frequency tones at 80, 200 and 400 Hz. At the reception point on

  1. Investigation into stress wave propagation in metal foams

    Directory of Open Access Journals (Sweden)

    Li Lang

    2015-01-01

    Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  2. Topology Optimization for Transient Wave Propagation Problems

    DEFF Research Database (Denmark)

    Matzen, René

    The study of elastic and optical waves together with intensive material research has revolutionized everyday as well as cutting edge technology in very tangible ways within the last century. Therefore it is important to continue the investigative work towards improving existing as well as innovate...... new technology, by designing new materials and their layout. The thesis presents a general framework for applying topology optimization in the design of material layouts for transient wave propagation problems. In contrast to the high level of modeling in the frequency domain, time domain topology...... optimization is still in its infancy. A generic optimization problem is formulated with an objective function that can be field, velocity, and acceleration dependent, as well as it can accommodate the dependency of filtered signals essential in signal shape optimization [P3]. The analytical design gradients...

  3. Seismic wave propagation in granular media

    Science.gov (United States)

    Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion

    2016-10-01

    Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in

  4. Propagation and scattering of electromagnetic waves by the ionospheric irregularities

    International Nuclear Information System (INIS)

    Ho, A.Y.; Kuo, S.P.; Lee, M.C.

    1993-01-01

    The problem of wave propagation and scattering in the ionosphere is particularly important in the areas of communications, remote-sensing and detection. The ionosphere is often perturbed with coherently structured (quasiperiodic) density irregularities. Experimental observations suggest that these irregularities could give rise to significant ionospheric effect on wave propagation such as causing spread-F of the probing HF sounding signals and scintillation of beacon satellite signals. It was show by the latter that scintillation index S 4 ∼ 0.5 and may be as high as 0.8. In this work a quasi-particle theory is developed to study the scintillation phenomenon. A Wigner distribution function for the wave intensity in the (k,r) space is introduced and its governing equation is derived with an effective collision term giving rise to the attenuation and scattering of the wave. This kinetic equation leads to a hierarchy of moment equations in r space. This systems of equations is then truncated to the second moment which is equivalent to assuming a cold quasi-particle distribution In this analysis, the irregularities are modeled as a two dimensional density modulation on an uniform background plasma. The analysis shows that this two dimensional density grating, effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then contributes to the scintillation of the beacon satellite signals. Using the proper plasma parameters and equatorial measured data of irregularities, it is shown that the scintillation index defined by S4=( 2 >- 2 )/ 2 where stands for spatial average over an irregularity wavelength is in the range of the experimentally detected values

  5. On the propagation of truncated localized waves in dispersive silica

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2010-01-01

    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial

  6. Acoustic wave propagation in fluids with coupled chemical reactions

    International Nuclear Information System (INIS)

    Margulies, T.S.; Schwarz, W.H.

    1984-08-01

    This investigation presents a hydroacoustic theory which accounts for sound absorption and dispersion in a multicomponent mixture of reacting fluids (assuming a set of first-order acoustic equations without diffusion) such that several coupled reactions can occur simultaneously. General results are obtained in the form of a biquadratic characteristic equation (called the Kirchhoff-Langevin equation) for the complex propagation variable chi = - (α + iω/c) in which α is the attenuation coefficient, c is the phase speed of the progressive wave and ω is the angular frequency. Computer simulations of sound absorption spectra have been made for three different chemical systems, each comprised of two-step chemical reactions using physico-chemical data available in the literature. The chemical systems studied include: (1) water-dioxane, (2) aqueous solutions of glycine and (3) cobalt polyphosphate mixtures. Explicit comparisons are made between the exact biquadratic characteristic solution and the approximate equation (sometimes referred to as a Debye equation) previously applied to interpret the experimental data for the chemical reaction contribution to the absorption versus frequency. The relative chemical reaction and classical viscothermal contributions to the sound absorption are also presented. Several discrepancies that can arise when estimating thermodynamic data (chemical reaction heats or volume changes) for multistep chemical reaction systems when making dilute solution or constant density assumptions are discussed

  7. The influence of air-filled structures on wave propagation and beam formation of a pygmy sperm whale (Kogia breviceps) in horizontal and vertical planes.

    Science.gov (United States)

    Song, Zhongchang; Zhang, Yu; Thornton, Steven W; Li, Songhai; Dong, Jianchen

    2017-10-01

    The wave propagation, sound field, and transmission beam pattern of a pygmy sperm whale (Kogia breviceps) were investigated in both the horizontal and vertical planes. Results suggested that the signals obtained at both planes were similarly characterized with a high peak frequency and a relatively narrow bandwidth, close to the ones recorded from live animals. The sound beam measured outside the head in the vertical plane was narrower than that of the horizontal one. Cases with different combinations of air-filled structures in both planes were used to study the respective roles in controlling wave propagation and beam formation. The wave propagations and beam patterns in the horizontal and vertical planes elucidated the important reflection effect of the spermaceti and vocal chambers on sound waves, which was highly significant in forming intensive forward sound beams. The air-filled structures, the forehead soft tissues and skull structures formed wave guides in these two planes for emitted sounds to propagate forward.

  8. Direct FVM Simulation for Sound Propagation in an Ideal Wedge

    Directory of Open Access Journals (Sweden)

    Hongyu Ji

    2016-01-01

    Full Text Available The sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range-dependent problems with an analytical solution. This provides a benchmark for the theoretical and computational studies on the simulation of ocean acoustic applications. We present a direct finite volume method (FVM simulation for the ideal wedge problem, and both time and frequency domain results are analyzed. We also study the broadband problem with large-scale parallel simulations. The results presented in this paper validate the accuracy of the numerical techniques and show that the direct FVM simulation could be applied to large-scale complex acoustic applications with a high performance computing platform.

  9. Two-dimensional wave propagation in layered periodic media

    KAUST Repository

    Quezada de Luna, Manuel

    2014-09-16

    We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.

  10. Electromagnetic wave propagation in relativistic magnetized plasmas

    International Nuclear Information System (INIS)

    Weiss, I.

    1985-01-01

    An improved mathematical technique and a new code for deriving the conductivity tensor for collisionless plasmas have been developed. The method is applicable to a very general case, including both hot (relativistic) and cold magnetized plasmas, with only isotropic equilibrium distributions being considered here. The usual derivation starts from the relativistic Vlasov equation and leads to an integration over an infinite sum of Bessel functions which has to be done numerically. In the new solution the integration is carried out over a product of two Bessel functions only. This reduces the computing time very significantly. An added advantage over existing codes is our capability to perform the computations for waves propagating obliquely to the magnetic field. Both improvements greatly facilitate investigations of properties of the plasma under conditions hitherto unexplored

  11. Statistical Characterization of Electromagnetic Wave Propagation in Mine Environments

    KAUST Repository

    Yucel, Abdulkadir C.; Liu, Yang; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation method with a full-wave fast Fourier

  12. Viscosity and attenuation of sound wave in high density deuterium

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Ariyasu, Tomio

    1985-01-01

    The penetration of low frequency sound wave into the fuel deuterium is discussed as for laser fusion. The sound velocity and the attenuation constant due to viscosity are calculated for high density (n = 10 24 -- 10 27 cm -3 , T = 10 -1 -- 10 4 eV) deuterium. The shear viscosity of free electron gas and the bulk viscosity due to ion-ion interaction mainly contribute to the attenuation of sound wave. The sound wave of the frequency below 10 10 Hz can easily penetrate through the compressed fuel deuterium of diameter 1 -- 10 3 μm. (author)

  13. Sound propagation through a rarefied gas. Influence of the gas–surface interaction

    International Nuclear Information System (INIS)

    Kalempa, Denize; Sharipov, Felix

    2012-01-01

    Highlights: ► Non-equilibrium gas properties due to sound propagation. ► Influence of gas–surface accommodation coefficients. ► Heat transfer due to thermo-acoustic waves. ► Reciprocal relations. ► Range of validity of the Navier–Stokes equations. - Abstract: Acoustic waves propagating through a rarefied gas between two plates induced by both oscillation and unsteady heating of one of them are considered on the basis of a model of the linearized Boltzmann equation. The gas flow is considered as fully established so that the dependence of all quantities on time is harmonical. The problem is solved for several values of two main parameters determining its solution, namely, the gas rarefaction defined as the ratio of the distance between the plates to the equivalent free path of gaseous molecules, and the oscillation parameter given as the ratio of the intermolecular collision frequency to the wave frequency. The reciprocal relation for such flows is obtained and verified numerically. An influence of the gas–surface accommodation coefficients on the wave characteristics is analyzed by employing the Cercignani–Lampis scattering kernel to the boundary conditions.

  14. E3D, 3-D Elastic Seismic Wave Propagation Code

    International Nuclear Information System (INIS)

    Larsen, S.; Harris, D.; Schultz, C.; Maddix, D.; Bakowsky, T.; Bent, L.

    2004-01-01

    1 - Description of program or function: E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output. 2 - Methods: The software simulates wave propagation by solving the elasto-dynamic formulation of the full wave equation on a staggered grid. The solution scheme is 4-order accurate in space, 2-order accurate in time

  15. Wave propagation on a plasma media

    International Nuclear Information System (INIS)

    Torres-Silva, H.; Villarroel-Gonzalez, C.; Reggiani, N.; Sakanaka, P.H.

    1995-01-01

    Chiral-media and ferrite media have been studied over the last decade for many applications. Chiral-media have been examined as coating for reducing radar cross section, for antennas and arrays, for antenna radomes in waveguides and for microstrip substrate. Here, we examine a chiral-plasma medium, where the plasma part of the composite medium is non-reciprocal due to the external magnetic field, to find the general dispersion relation giving the ω against K behavior, vector phasor Helmholtz based equations are derived. We determine the modal eigenvalue properties in the chiral-plasma medium, which is doubly anisotropic. For the case of waves which propagate parallel to the magnetic field is a cold magnetized chiro-plasma. We compare our results with the typical results obtained for a cold plasma. Also we obtain the chiral-Faraday rotation which can be compared with the typical Faraday rotation for a pair of right-and left-handed circularly polarized waves. (author). 5 refs., 2 figs

  16. Mathematical problems in wave propagation theory

    CERN Document Server

    1970-01-01

    The papers comprising this collection are directly or indirectly related to an important branch of mathematical physics - the mathematical theory of wave propagation and diffraction. The paper by V. M. Babich is concerned with the application of the parabolic-equation method (of Academician V. A. Fok and M. A, Leontovich) to the problem of the asymptotic behavior of eigenfunc­ tions concentrated in a neighborhood of a closed geodesie in a Riemannian space. The techniques used in this paper have been föund useful in solving certain problems in the theory of open resonators. The topic of G. P. Astrakhantsev's paper is similar to that of the paper by V. M. Babich. Here also the parabolic-equation method is used to find the asymptotic solution of the elasticity equations which describes Love waves concentrated in a neighborhood of some surface ray. The paper of T. F. Pankratova is concerned with finding the asymptotic behavior of th~ eigenfunc­ tions of the Laplace operator from the exact solution for the surf...

  17. Model for small arms fire muzzle blast wave propagation in air

    Science.gov (United States)

    Aguilar, Juan R.; Desai, Sachi V.

    2011-11-01

    Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.

  18. Experiments on second-sound shock waves in superfluid helium

    International Nuclear Information System (INIS)

    Cummings, J.C.; Schmidt, D.W.; Wagner, W.J.

    1978-01-01

    The waveform and velocity of second-sound waves in superfluid helium have been studied experimentally using superconducting, thin-film probes. The second-sound waves were generated with electrical pulses through a resistive film. Variations in pulse power, pulse duration, and bath temperature were examined. As predicted theoretically, the formation of a shock was observed at the leading or trailing edge of the waves depending on bath temperature. Breakdown of the theoretical model was observed for large pulse powers. Accurate data for the acoustic second-sound speed were derived from the measurements of shock-wave velocities and are compared with previous results

  19. Second sound shock waves in rotating superfluid helium

    International Nuclear Information System (INIS)

    Torczynski, J.R.

    1983-01-01

    Second sound shock waves have been used to examine the breakdown of superfluidity in bulk He II. The maximum counterflow velocity achieved in this manner was measured at a variety of temperatures and pressures. The results are found to agree with predictions of vortex nucleation theories (Langer and Fisher, 1967) in their pressure and temperature dependences although it was shown that dissipation occurred only near the heater. A simple scaling argument is suggested, assuming breakdown occurs near the heater. A vortex dynamics model of breakdown (following the method of Turner, private communication) is developed. To examine the effect of vorticity on breakdown, second sound shocks were produced in rotating helium. Experiments were performed in which the shocks propagated either along or normal to the axis of rotation, called axial and transverse cases, respectively. In both cases the decay was seen to increase monotonically with the rotation rate. Furthermore, the decay was ongoing rather than being confined to a narrow region near the heater. However, the extraordinary dissipation in the transverse case seemed to be related primarily to the arrival of secondary waves from the heater-sidewall boundary. An explanation of this difference is put forth in terms of vortex nucleation in the bulk fluid, using ideas similar to Crocco's Theorem. In order to examine the breakdown of superfluidity away from walls in nonrotation fluid, spherically converging second shocks were produced. The temperature jumps of the waves were measured, and exact numerical solutions of the two-fluid jump conditions (Moody, 1983) were used to calculate the relative velocity in each case

  20. Models for seismic wave propagation in periodically layered porous media

    NARCIS (Netherlands)

    Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.

    2014-01-01

    Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation

  1. APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Yokoyama, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Goossens, M.; Doorsselaere, T. Van [Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, Bus 2400, B-3001 Herverlee (Belgium); Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Wright, A. N., E-mail: kaneko@eps.s.u-tokyo.ac.jp [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)

    2015-10-20

    In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation across the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.

  2. Propagation of ionization waves during ignition of fluorescent lamps

    International Nuclear Information System (INIS)

    Langer, R; Tidecks, R; Horn, S; Garner, R; Hilscher, A

    2008-01-01

    The propagation of the first ionization wave in a compact fluorescent lamp (T4 tube with standard electrodes) during ignition was investigated for various initial dc-voltages (both polarities measured against ground) and gas compositions (with and without mercury). In addition the effect of the presence of a fluorescent powder coating was studied. The propagation velocity of the initial wave was measured by an assembly of photomultipliers installed along the tube, which detected the light emitted by the wave head. The propagation was found to be faster for positive than for negative polarity. This effect is explained involving processes in the electrode region as well as in the wave head. Waves propagate faster in the presence of a fluorescent powder coating than without it and gases of lighter mass show a faster propagation than gases with higher mass

  3. Wave propagation in plasma-filled wave-guide

    International Nuclear Information System (INIS)

    Leprince, Philippe

    1966-01-01

    This research thesis reports the study of wave propagation along a plasma column without external magnetic field. The author first present and comment various theoretical results, and dispersion curves plotted for the main modes (particularly, the bipolar mode). He tries to define fundamental magnitudes which characterise a plasma-filled wave-guide. He reports the comparison of some experimental results with the previous theoretical results. Based on the study of the bipolar mode, the author develops a method of measurement of plasma column density. In the last part, the author reports the study of the resonance of a plasma-containing cavity. Several resonances are highlighted and new dispersion curves are plotted by using a varying length cavity. He also addresses the coupling of plasma modes with guide modes, and thus indicates the shape of Brillouin diagrams for a plasma-filled wave-guide. Moreover, some phenomena highlighted during plasma column density measurements by using the cavity method could then be explained [fr

  4. A quasi-one-dimensional theory of sound propagation in lined ducts with mean flow

    Science.gov (United States)

    Dokumaci, Erkan

    2018-04-01

    Sound propagation in ducts with locally-reacting liners has received the attention of many authors proposing two- and three-dimensional solutions of the convected wave equation and of the Pridmore-Brown equation. One-dimensional lined duct models appear to have received less attention. The present paper proposes a quasi-one-dimensional theory for lined uniform ducts with parallel sheared mean flow. The basic assumption of the theory is that the effects of refraction and wall compliance on the fundamental mode remain within ranges in which the acoustic fluctuations are essentially uniform over a duct section. This restricts the model to subsonic low Mach numbers and Helmholtz numbers of less than about unity. The axial propagation constants and the wave transfer matrix of the duct are given by simple explicit expressions and can be applied with no-slip, full-slip or partial slip boundary conditions. The limitations of the theory are discussed and its predictions are compared with the fundamental mode solutions of the convected wave equation, the Pridmore-Brown equation and measurements where available.

  5. The Green-function transform and wave propagation

    Directory of Open Access Journals (Sweden)

    Colin eSheppard

    2014-11-01

    Full Text Available Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogeneous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given.

  6. Wave propagation in nanostructures nonlocal continuum mechanics formulations

    CERN Document Server

    Gopalakrishnan, Srinivasan

    2013-01-01

    Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...

  7. TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION

    OpenAIRE

    Lorand Catalin STOENESCU

    2011-01-01

    The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D) of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishi...

  8. A wave propagation matrix method in semiclassical theory

    International Nuclear Information System (INIS)

    Lee, S.Y.; Takigawa, N.

    1977-05-01

    A wave propagation matrix method is used to derive the semiclassical formulae of the multiturning point problem. A phase shift matrix and a barrier transformation matrix are introduced to describe the processes of a particle travelling through a potential well and crossing a potential barrier respectively. The wave propagation matrix is given by the products of phase shift matrices and barrier transformation matrices. The method to study scattering by surface transparent potentials and the Bloch wave in solids is then applied

  9. Propagation of Axially Symmetric Detonation Waves

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R L; Roeske, F; Souers, P C; Tarver, C M; Chow, C T S; Lee, R S; McGuire, E M; Overturf, G E; Vitello, P A

    2002-06-26

    We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakout time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.

  10. Propagation law of impact elastic wave based on specific materials

    Directory of Open Access Journals (Sweden)

    Chunmin CHEN

    2017-02-01

    Full Text Available In order to explore the propagation law of the impact elastic wave on the platform, the experimental platform is built by using the specific isotropic materials and anisotropic materials. The glass cloth epoxy laminated plate is used for anisotropic material, and an organic glass plate is used for isotropic material. The PVDF sensors adhered on the specific materials are utilized to collect data, and the elastic wave propagation law of different thick plates and laminated plates under impact conditions is analyzed. The Experimental results show that in anisotropic material, transverse wave propagation speed along the fiber arrangement direction is the fastest, while longitudinal wave propagation speed is the slowest. The longitudinal wave propagation speed in anisotropic laminates is much slower than that in the laminated thick plates. In the test channel arranged along a particular angle away from the central region of the material, transverse wave propagation speed is larger. Based on the experimental results, this paper proposes a material combination mode which is advantageous to elastic wave propagation and diffusion in shock-isolating materials. It is proposed to design a composite material with high acoustic velocity by adding regularly arranged fibrous materials. The overall design of the barrier material is a layered structure and a certain number of 90°zigzag structure.

  11. Ion stochastic heating by obliquely propagating magnetosonic waves

    International Nuclear Information System (INIS)

    Gao Xinliang; Lu Quanming; Wu Mingyu; Wang Shui

    2012-01-01

    The ion motions in obliquely propagating Alfven waves with sufficiently large amplitudes have already been studied by Chen et al.[Phys. Plasmas 8, 4713 (2001)], and it was found that the ion motions are stochastic when the wave frequency is at a fraction of the ion gyro-frequency. In this paper, with test particle simulations, we investigate the ion motions in obliquely propagating magnetosonic waves and find that the ion motions also become stochastic when the amplitude of the magnetosonic waves is sufficiently large due to the resonance at sub-cyclotron frequencies. Similar to the Alfven wave, the increase of the propagating angle, wave frequency, and the number of the wave modes can lower the stochastic threshold of the ion motions. However, because the magnetosonic waves become more and more compressive with the increase of the propagating angle, the decrease of the stochastic threshold with the increase of the propagating angle is more obvious in the magnetosonic waves than that in the Alfven waves.

  12. Effects of lung elasticity on the sound propagation in the lung

    International Nuclear Information System (INIS)

    Yoneda, Takahiro; Wada, Shigeo; Nakamura, Masanori; Horii, Noriaki; Mizushima, Koichiro

    2011-01-01

    Sound propagation in the lung was simulated for gaining insight into its acoustic properties. A thorax model consisting of lung parenchyma, thoracic bones, trachea and other tissues was made from human CT images. Acoustic nature of the lung parenchyma and bones was expressed with the Biot model of poroelastic material, whereas trachea and tissues were modeled with gas and an elastic material. A point sound source of white noises was placed in the first bifurcation of trachea. The sound propagation in the thorax model was simulated in a frequency domain. The results demonstrated the significant attenuation of sound especially in frequencies larger than 1,000 Hz. Simulations with a stiffened lung demonstrated suppression of the sound attenuation for higher frequencies observed in the normal lung. These results indicate that the normal lung has the nature of a low-pass filter, and stiffening helps the sound at higher frequencies to propagate without attenuations. (author)

  13. On the propagation of truncated localized waves in dispersive silica

    KAUST Repository

    Salem, Mohamed

    2010-01-01

    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.

  14. Propagation and dispersion of shock waves in magnetoelastic materials

    Science.gov (United States)

    Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.

    2017-12-01

    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.

  15. Thermal and viscous effects on sound waves: revised classical theory.

    Science.gov (United States)

    Davis, Anthony M J; Brenner, Howard

    2012-11-01

    In this paper the recently developed, bi-velocity model of fluid mechanics based on the principles of linear irreversible thermodynamics (LIT) is applied to sound propagation in gases taking account of first-order thermal and viscous dissipation effects. The results are compared and contrasted with the classical Navier-Stokes-Fourier results of Pierce for this same situation cited in his textbook. Comparisons are also made with the recent analyses of Dadzie and Reese, whose molecularly based sound propagation calculations furnish results virtually identical with the purely macroscopic LIT-based bi-velocity results below, as well as being well-supported by experimental data. Illustrative dissipative sound propagation examples involving application of the bi-velocity model to several elementary situations are also provided, showing the disjoint entropy mode and the additional, evanescent viscous mode.

  16. The generation of sound by vorticity waves in swirling duct flows

    Science.gov (United States)

    Howe, M. S.; Liu, J. T. C.

    1977-01-01

    Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.

  17. Kinetic theory for radiation interacting with sound waves in ultrarelativistic pair plasmas

    International Nuclear Information System (INIS)

    Marklund, Mattias; Shukla, Padma K.; Stenflo, Lennart

    2006-01-01

    A kinetic theory for radiation interacting with sound waves in an ultrarelativistic electron-positron plasma is developed. It is shown that the effect of a spatial spectral broadening of the electromagnetic pulse is to introduce a reduction of the growth rates for the decay and modulational instabilities. Such spectral broadening could be due to a finite pulse coherence length, or through the use of random phase filters, and would stabilize the propagation of electromagnetic pulses

  18. A model for calculating specular and diffuse reflections in outdoor sound propagation

    NARCIS (Netherlands)

    Salomons, E.M.

    2006-01-01

    In many practical outdoor situations, the direct sound path between a noise source and a receiver is screened by an obstacle. In these situations indirect sound paths become important, in particular reflections of sound waves. Reflections may occur at objects such as a vertical wall, but also at the

  19. Guided propagation of Alfven waves in a toroidal plasma

    International Nuclear Information System (INIS)

    Borg, G.G.; Brennan, M.H.; Cross, R.C.; Giannone, L.; Donnelly, I.J.

    1985-01-01

    Experimental results are presented which show that the Alfven wave is strongly guided by magnetic fields. The experiment was conducted in a Tokamak plasma using a small dipole loop antenna to generate a localised Alfven ray. The ray was observed, with magnetic probes, to propagate as a localised disturbance along the curved lines of the steady magnetic field without significant refraction due to the effects of finite frequency, resistivity or magnetic field gradients. These results agree with theoretical predictions and demonstrate that a localised Alfven wave may be excited, and may propagate, independently of the fast wave, as expected. The implication of these results for the Alfven wave heating scheme is discussed. (author)

  20. Guided propagation of Alfven waves in a toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Borg, G G; Brennan, M H; Cross, R C; Giannone, L.; Donnelly, I J

    1985-10-01

    Experimental results are presented which show that the Alfven wave is strongly guided by magnetic fields. The experiment was conducted in a Tokamak plasma using a small dipole loop antenna to generate a localised Alfven ray. The ray was observed, with magnetic probes, to propagate as a localised disturbance along the curved lines of the steady magnetic field without significant refraction due to the effects of finite frequency, resistivity or magnetic field gradients. These results agree with theoretical predictions and demonstrate that a localised Alfven wave may be excited, and may propagate, independently of the fast wave, as expected. The implication of these results for the Alfven wave heating scheme is discussed.

  1. The propagation of travelling waves for stochastic generalized KPP equations

    International Nuclear Information System (INIS)

    Elworthy, K.D.; Zhao, H.Z.

    1993-09-01

    We study the existence and propagation of approximate travelling waves of generalized KPP equations with seasonal multiplicative white noise perturbations of Ito type. Three regimes of perturbation are considered: weak, milk, and strong. We show that weak perturbations have little effect on the wave like solutions of the unperturbed equations while strong perturbations essentially destroy the wave and force the solutions to die down. For mild perturbations we show that there is a residual wave form but propagating at a different speed to that of the unperturbed equation. In the appendix J.G. Gaines illustrates these different regimes by computer simulations. (author). 27 refs, 13 figs

  2. Use of conformal mapping to describe MHD wave propagation

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Pegoraro, F.

    1993-01-01

    A method is proposed for finding explicit exact solutions of the magnetohydrodynamic equations describing the propagation of magnetoacoustic waves in a plasma in a magnetic potential that depends on two spatial coordinates. This method is based on the use of conformal mappings to transform the wave equation into an equation describing the propagation of waves in a uniform magnetic field. The basic properties of magnetoacoustic and Alfven waves near the critical points, magnetic separatrices, and in configuration with magnetic islands are discussed. Expressions are found for the dimensionless parameters which determine the relative roles of the plasma pressure, nonlinearity, and dissipation near the critical points. 30 refs

  3. Propagation and scattering of waves in dusty plasmas

    International Nuclear Information System (INIS)

    Vladimirov, S.V.

    1994-01-01

    Wave propagation and scattering in dusty plasmas with variable charges on dust particles are considered. New kinetic theory including instant charge of a dust particle as a new independent variable is further developed. (author). 9 refs

  4. Topics in Computational Modeling of Shock and Wave Propagation

    National Research Council Canada - National Science Library

    Gazonas, George A; Main, Joseph A; Laverty, Rich; Su, Dan; Santare, Michael H; Raghupathy, R; Molinari, J. F; Zhou, F

    2006-01-01

    This report contains reprints of four papers that focus on various aspects of shock and wave propagation in cellular, viscoelastic, microcracked, and fragmented media that appear in the Proceedings...

  5. The nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores

    International Nuclear Information System (INIS)

    Yu-Lin, Feng; Xiao-Zhou, Liu; Jie-Hui, Liu; Li, Ma

    2009-01-01

    Based on an equivalent medium approach, this paper presents a model describing the nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores. The influences of pores' nonlinear oscillations on sound attenuation, sound dispersion and an equivalent acoustic nonlinearity parameter are discussed. The calculated results show that the attenuation increases with an increasing volume fraction of micropores. The peak of sound velocity and attenuation occurs at the resonant frequency of the micropores while the peak of the equivalent acoustic nonlinearity parameter occurs at the half of the resonant frequency of the micropores. Furthermore, multiple scattering has been taken into account, which leads to a modification to the effective wave number in the equivalent medium approach. We find that these linear and nonlinear acoustic parameters need to be corrected when the volume fraction of micropores is larger than 0.1%

  6. Numerical simulation methods for wave propagation through optical waveguides

    International Nuclear Information System (INIS)

    Sharma, A.

    1993-01-01

    The simulation of the field propagation through waveguides requires numerical solutions of the Helmholtz equation. For this purpose a method based on the principle of orthogonal collocation was recently developed. The method is also applicable to nonlinear pulse propagation through optical fibers. Some of the salient features of this method and its application to both linear and nonlinear wave propagation through optical waveguides are discussed in this report. 51 refs, 8 figs, 2 tabs

  7. Topology optimization of vibration and wave propagation problems

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2007-01-01

    The method of topology optimization is a versatile method to determine optimal material layouts in mechanical structures. The method relies on, in principle, unlimited design freedom that can be used to design materials, structures and devices with significantly improved performance and sometimes...... novel functionality. This paper addresses basic issues in simulation and topology design of vibration and wave propagation problems. Steady-state and transient wave propagation problems are addressed and application examples for both cases are presented....

  8. Free wave propagation in continuous pipes carrying a flowing fluid

    International Nuclear Information System (INIS)

    Espindola, J.J. de; Silva, J.B. da

    1982-01-01

    The propagation constants of a periodically supported pipe are computed. Use is made of a general free wave-propagation theory, based on transfer matrices. Comparison is made with previously published results, computed through a simpler, limited scope theory. (Author) [pt

  9. The linear potential propagator via wave function expansion

    International Nuclear Information System (INIS)

    Nassar, Antonio B.; Cattani, Mauro S.D.

    2002-01-01

    We evaluate the quantum propagator for the motion of a particle in a linear potential via a recently developed formalism [A.B. Nassar et al., Phys. Rev. E56, 1230, (1997)]. In this formalism, the propagator comes about as a type of expansion of the wave function over the space of the initial velocities. (author)

  10. Wave propagation of spectral energy content in a granular chain

    Directory of Open Access Journals (Sweden)

    Shrivastava Rohit Kumar

    2017-01-01

    Full Text Available A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.

  11. Analytical Lie-algebraic solution of a 3D sound propagation problem in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, P.S., E-mail: petrov@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Prants, S.V., E-mail: prants@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Petrova, T.N., E-mail: petrova.tn@dvfu.ru [Far Eastern Federal University, 8 Sukhanova str., 690950, Vladivostok (Russian Federation)

    2017-06-21

    The problem of sound propagation in a shallow sea with variable bottom slope is considered. The sound pressure field produced by a time-harmonic point source in such inhomogeneous 3D waveguide is expressed in the form of a modal expansion. The expansion coefficients are computed using the adiabatic mode parabolic equation theory. The mode parabolic equations are solved explicitly, and the analytical expressions for the modal coefficients are obtained using a Lie-algebraic technique. - Highlights: • A group-theoretical approach is applied to a problem of sound propagation in a shallow sea with variable bottom slope. • An analytical solution of this problem is obtained in the form of modal expansion with analytical expressions of the coefficients. • Our result is the only analytical solution of the 3D sound propagation problem with no translational invariance. • This solution can be used for the validation of the numerical propagation models.

  12. Wave propagation through a dielectric layer containing densely packed fibers

    International Nuclear Information System (INIS)

    Lee, Siu-Chun

    2011-01-01

    This paper presents the theoretical formulation for the propagation of electromagnetic wave through a dielectric layer containing a random dense distribution of fibers. The diameter of the fibers is comparable to the inter-fiber spacing and wavelength of the incident radiation, but is much smaller than the thickness of the layer. Discontinuity of refractive index across the boundaries of the dielectric layer resulted in multiple internal reflection of both the primary source wave and the scattered waves. As a result the incident waves on the fibers consist of the multiply-reflected primary waves, scattered waves from other fibers, and scattered-reflected waves from the boundaries. The effective propagation constant of the dielectric fiber layer was developed by utilizing the Effective field-Quasicrystalline approximation. The influence of the refractive index of the dielectric medium on the radiative properties of a dense fiber layer was examined by means of numerical analyses.

  13. Influence of Plasma Pressure Fluctuation on RF Wave Propagation

    International Nuclear Information System (INIS)

    Liu Zhiwei; Bao Weimin; Li Xiaoping; Liu Donglin; Zhou Hui

    2016-01-01

    Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. (paper)

  14. Controlling wave propagation through nonlinear engineered granular systems

    Science.gov (United States)

    Leonard, Andrea

    We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave

  15. Propagation-invariant waves in acoustic, optical, and radio-wave fields

    OpenAIRE

    Salo, Janne

    2003-01-01

    The physical phenomena considered in this thesis are associated with electromagnetic and acoustic waves that propagate in free space or in homogeneous media without diffraction. The concept of rotationally periodic wave propagation is introduced in the first journal article included in the thesis and it is subsequently used to analyse waves that avoid diffractive deterioration by repeatedly returning to their initial shape, possibly rotated around the optical axis. Such waves constitute an es...

  16. Stress Wave Propagation Through Heterogeneous Media

    National Research Council Canada - National Science Library

    2002-01-01

    .... In this work the influence of interface scattering on finite-amplitude shock waves was experimentally investigated by impacting flyer plates onto periodically layered polycarbonate/6061 aluminum...

  17. Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation

    Science.gov (United States)

    Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu

    2015-01-01

    In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...

  18. Nonlinear wave propagation through a ferromagnet with damping in ...

    Indian Academy of Sciences (India)

    magnetic waves in a ferromagnet can be reduced to an integro-differential equation. Keywords. Solitons; integro-differential equations; reductive perturbation method. PACS Nos 41.20 Jb; 05.45 Yv; 03.50 De; 78.20 Ls. 1. Introduction. The phenomenon of propagation of electromagnetic waves in ferromagnets are not only.

  19. Statistical Characterization of Electromagnetic Wave Propagation in Mine Environments

    KAUST Repository

    Yucel, Abdulkadir C.

    2013-01-01

    A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation method with a full-wave fast Fourier transform and fast multipole method accelerated surface integral equation-based EM simulator to statistically characterize fields from wireless transmitters in complex mine environments. 1536-1225 © 2013 IEEE.

  20. Nonlinear propagation of short wavelength drift-Alfven waves

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two-dim...

  1. Effect of surface conditions on blast wave propagation

    International Nuclear Information System (INIS)

    Song, Seung Ho; Li, Yi Bao; Lee, Chang Hoon; Choi, Jung Il

    2016-01-01

    We performed numerical simulations of blast wave propagations on surfaces by solving axisymmetric two-dimensional Euler equations. Assuming the initial stage of fireball at the breakaway point after an explosion, we investigated the effect of surface conditions considering surface convex or concave elements and thermal conditions on blast wave propagations near the ground surface. Parametric studies were performed by varying the geometrical factors of the surface element as well as thermal layer characteristics. We found that the peak overpressure near the ground zero was increased due to the surface elements, while modulations of the blast wave propagations were limited within a region for the surface elements. Because of the thermal layer, the precursor was formed in the propagations, which led to the attenuation of the peak overpressure on the ground surface

  2. Characteristics of coupled acoustic wave propagation in metal pipe

    International Nuclear Information System (INIS)

    Kim, Ho Wuk; Kim, Min Soo; Lee, Sang Kwon

    2008-01-01

    The circular cylinder pipes are used in the many industrial areas. In this paper, the acoustic wave propagation in the pipe containing gas is researched. First of all, the theory for the coupled acoustic wave propagation in a pipe is investigated. Acoustic wave propagation in pipe can not be occurred independently between the wave of the fluid and the shell. It requires complicated analysis. However, as a special case, the coupled wave in a high density pipe containing a light density medium is corresponded closely to the uncoupled in-vacuo shell waves and to the rigid-walled duct fluid waves. The coincidence frequencies of acoustic and shell modes contribute to the predominant energy transmission. The coincidence frequency means the frequency corresponding to the coincidence of the wavenumber in both acoustic and shell. In this paper, it is assumed that the internal medium is much lighter than the pipe shell. After the uncoupled acoustic wave in the internal medium and uncoupled shell wave are considered, the coincidence frequencies are found. The analysis is successfully confirmed by the verification of the experiment using the real long steel pipe. This work verifies that the coupled wave characteristic of the shell and the fluid is occurred as predominant energy transmission at the coincidence frequencies

  3. Impact induced solitary wave propagation through a woodpile structure

    International Nuclear Information System (INIS)

    Kore, R; Waychal, A; Yadav, P; Shelke, A; Agarwal, S; Sahoo, N; Uddin, Ahsan

    2016-01-01

    In this paper, we investigate solitary wave propagation through a one-dimensional woodpile structure excited by low and high velocity impact. Woodpile structures are a sub-class of granular metamaterial, which supports propagation of nonlinear waves. Hertz contact law governs the behavior of the solitary wave propagation through the granular media. Towards an experimental study, a woodpile structure was fabricated by orthogonally stacking cylindrical rods. A shock tube facility has been developed to launch an impactor on the woodpile structure at a velocity of 30 m s −1 . Embedded granular chain sensors were fabricated to study the behavior of the solitary wave. The impact induced stress wave is studied to investigate solitary wave parameters, i.e. contact force, contact time, and solitary wave velocity. With the aid of the experimental setup, numerical simulations, and a theoretical solution based on the long wavelength approximation, formation of the solitary wave in the woodpile structure is validated to a reasonable degree of accuracy. The nondispersive and compact supported solitary waves traveling at sonic wave velocity offer unique properties that could be leveraged for application in nondestructive testing and structural health monitoring. (paper)

  4. Propagation and dispersion of electrostatic waves in the ionospheric E region

    Directory of Open Access Journals (Sweden)

    K. Iranpour

    Full Text Available Low-frequency electrostatic fluctuations in the ionospheric E region were detected by instruments on the ROSE rockets. The phase velocity and dispersion of plasma waves in the ionospheric E region are determined by band-pass filtering and cross-correlating data of the electric-field fluctuations detected by the probes on the ROSE F4 rocket. The results were confirmed by a different method of analysis of the same data. The results show that the waves propagate in the Hall-current direction with a velocity somewhat below the ion sound speed obtained for ionospheric conditions during the flight. It is also found that the waves are dispersive, with the longest wavelengths propagating with the lowest velocity.

  5. Propagation and dispersion of electrostatic waves in the ionospheric E region

    Directory of Open Access Journals (Sweden)

    K. Iranpour

    1997-07-01

    Full Text Available Low-frequency electrostatic fluctuations in the ionospheric E region were detected by instruments on the ROSE rockets. The phase velocity and dispersion of plasma waves in the ionospheric E region are determined by band-pass filtering and cross-correlating data of the electric-field fluctuations detected by the probes on the ROSE F4 rocket. The results were confirmed by a different method of analysis of the same data. The results show that the waves propagate in the Hall-current direction with a velocity somewhat below the ion sound speed obtained for ionospheric conditions during the flight. It is also found that the waves are dispersive, with the longest wavelengths propagating with the lowest velocity.

  6. Finite Element Analysis of the Propagation of Acoustic Waves Along Waveguides Immersed in Water

    Science.gov (United States)

    Hladky-Hennion, A.-C.; Langlet, P.; de Billy, M.

    1997-03-01

    The finite element approach has previously been used, with the help of the ATILA code, to model the propagation of acoustic waves in waveguides [A.-C. Hladky-Hennion, Journal of Sound and Vibration, 194,119-136 (1996)]. In this paper an extension of the technique to the analysis of the propagation of acoustic waves in immersed waveguides is presented. In the proposed approach, the problem is reduced to a bidimensional problem, in which only the cross-section of the guide and the surrounding fluid domain are meshed by using finite elements. Then, wedges the top angles of which vary, are studied and the finite element results of the wedge wave speed are compared with experimental results. Finally, the conclusion indicates a way to extend this approach to waveguides of any cross-section.

  7. A theory of coherent propagation of light wave in semiconductors

    International Nuclear Information System (INIS)

    Zi-zhao, G.; Guo-zhen, Y.

    1980-05-01

    In this paper, we suggest a theory to describe the pheonmena of coherent propagation of light wave in semiconductors. Basing on two band system and considering the interband and intraband transitions induced by light wave and the interaction between electrons, we obtain the nonlinear equations for the description of interaction between carriers and coherent light wave. We have made use of the equations to analyse the phenomena which arise from the interaction between semiconductors and coherent light, for example, the multiphoton transitions, the saturation of light absorption of exciton, the shift of exciton line in intense light field, and the coherent propagation phenomena such as self-induced transparency, etc. (author)

  8. Directional bending wave propagation in periodically perforated plates

    DEFF Research Database (Denmark)

    Andreassen, Erik; Manktelow, Kevin; Ruzzene, Massimo

    2015-01-01

    We report on the investigation of wave propagation in a periodically perforated plate. A unit cell with double-C perforations is selected as a test article suitable to investigate two-dimensional dispersion characteristics, group velocities, and internal resonances. A numerical model, formulated...... using Mindlin plate elements, is developed to predict relevant wave characteristics such as dispersion, and group velocity variation as a function of frequency and direction of propagation. Experimental tests are conducted through a scanning laser vibrometer, which provides full wave field information...... for the design of phononic waveguides with directional and internal resonant characteristics....

  9. Propagation of ionizing waves in glow discharge

    International Nuclear Information System (INIS)

    Suzuki, T.

    1977-01-01

    Ionizing waves were produced along the positive column of a glow discharge in air by applying an impulse voltage to an electrode at one end of the column. Five photomultipliers and three current-sensing coils were used to observe how the waves were affected by the rise time and the magnitude of the applied impulses and by the electron density in the positive column of the glow discharge. It is shown that the speed of the ionizing waves increases with the slope of the applied impulses and with the preexisting electron density. The electron density is augmented about 100--200 times due to the buildup of ionization at the front of the waves. The theory was developed to explain the property of ionizing waves

  10. 2D full wave simulation on electromagnetic wave propagation in toroidal plasma

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Uruta, Go; Nakayama, Kazunori; Mase, Atsushi

    2002-01-01

    Global full-wave simulation on electromagnetic wave propagation in toroidal plasma with an external magnetic field imaging a tokamak configuration is performed in two dimensions. The temporal behavior of an electromagnetic wave launched into plasma from a wave-guiding region is obtained. (author)

  11. Shear wave propagation in piezoelectric-piezoelectric composite layered structure

    Directory of Open Access Journals (Sweden)

    Anshu Mli Gaur

    Full Text Available The propagation behavior of shear wave in piezoelectric composite structure is investigated by two layer model presented in this approach. The composite structure comprises of piezoelectric layers of two different materials bonded alternatively. Dispersion equations are derived for propagation along the direction normal to the layering and in direction of layering. It has been revealed that thickness and elastic constants have significant influence on propagation behavior of shear wave. The phase velocity and wave number is numerically calculated for alternative layer of Polyvinylidene Difluoride (PVDF and Lead Zirconate Titanate (PZT-5H in composite layered structure. The analysis carried out in this paper evaluates the effect of volume fraction on the phase velocity of shear wave.

  12. Computer modeling of inelastic wave propagation in porous rock

    International Nuclear Information System (INIS)

    Cheney, J.A.; Schatz, J.F.; Snell, C.

    1979-01-01

    Computer modeling of wave propagation in porous rock has several important applications. Among them are prediction of fragmentation and permeability changes to be caused by chemical explosions used for in situ resource recovery, and the understanding of nuclear explosion effects such as seismic wave generation, containment, and site hardness. Of interest in all these applications are the distance from the source to which inelastic effects persist and the amount of porosity change within the inelastic region. In order to study phenomena related to these applications, the Cam Clay family of models developed at Cambridge University was used to develop a similar model that is applicable to wave propagation in porous rock. That model was incorporated into a finite-difference wave propagation computer code SOC. 10 figures, 1 table

  13. High frequency ion sound waves associated with Langmuir waves in type III radio burst source regions

    Directory of Open Access Journals (Sweden)

    G. Thejappa

    2004-01-01

    Full Text Available Short wavelength ion sound waves (2-4kHz are detected in association with the Langmuir waves (~15-30kHz in the source regions of several local type III radio bursts. They are most probably not due to any resonant wave-wave interactions such as the electrostatic decay instability because their wavelengths are much shorter than those of Langmuir waves. The Langmuir waves occur as coherent field structures with peak intensities exceeding the Langmuir collapse thresholds. Their scale sizes are of the order of the wavelength of an ion sound wave. These Langmuir wave field characteristics indicate that the observed short wavelength ion sound waves are most probably generated during the thermalization of the burnt-out cavitons left behind by the Langmuir collapse. Moreover, the peak intensities of the observed short wavelength ion sound waves are comparable to the expected intensities of those ion sound waves radiated by the burnt-out cavitons. However, the speeds of the electron beams derived from the frequency drift of type III radio bursts are too slow to satisfy the needed adiabatic ion approximation. Therefore, some non-linear process such as the induced scattering on thermal ions most probably pumps the beam excited Langmuir waves towards the lower wavenumbers, where the adiabatic ion approximation is justified.

  14. Intermittent large amplitude internal waves observed in Port Susan, Puget Sound

    Science.gov (United States)

    Harris, J. C.; Decker, L.

    2017-07-01

    A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.

  15. Propagation of waves in shear flows

    CERN Document Server

    Fabrikant, A L

    1998-01-01

    The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside

  16. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Directory of Open Access Journals (Sweden)

    Magdalena Ryżak

    Full Text Available The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa. We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop. The highest sound pressure level (and the greatest variability was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  17. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Science.gov (United States)

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  18. Spectral transfer functions of body waves propagating through a stratified medium. Part 1: Basic theory by means of matrix propagators

    International Nuclear Information System (INIS)

    Macia, R.; Correig, A.M.

    1987-01-01

    Seismic wave propagation is described by a second order differential equation for medium displacement. By Fourier transforming with respect to time and space, wave equation transforms into a system of first order linear differential equations for the Fourier transform of displacement and stress. This system of differential equations is solved by means of Matrix Propagator and applied to the propagation of body waves in stratified media. The matrix propagators corresponding to P-SV and SH waves in homogeneous medium are found as an intermediate step to obtain the spectral response of body waves propagating through a stratified medium with homogeneous layers. (author) 14 refs

  19. Propagation of nonlinear ion acoustic wave with generation of long-wavelength waves

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu; Kamimura, Tetsuo

    1978-01-01

    The nonlinear propagation of the wave packet of an ion acoustic wave with wavenumber k 0 asymptotically equals k sub(De) (the electron Debye wavenumber) is investigated by computer simulations. From the wave packet of the ion acoustic wave, waves with long wavelengths are observed to be produced within a few periods for the amplitude oscillation of the original wave packet. These waves are generated in the region where the original wave packet exists. Their characteristic wavelength is of the order of the length of the wave packet, and their propagation velocity is almost equal to the ion acoustic speed. The long-wavelength waves thus produced strongly affect the nonlinear evolution of the original wave packet. (auth.)

  20. Wave propagation in the Lorenz-96 model

    Science.gov (United States)

    van Kekem, Dirk L.; Sterk, Alef E.

    2018-04-01

    In this paper we study the spatiotemporal properties of waves in the Lorenz-96 model and their dependence on the dimension parameter n and the forcing parameter F. For F > 0 the first bifurcation is either a supercritical Hopf or a double-Hopf bifurcation and the periodic attractor born at these bifurcations represents a traveling wave. Its spatial wave number increases linearly with n, but its period tends to a finite limit as n → ∞. For F traveling wave also grows linearly with n. For F < 0 and even n, however, a Hopf bifurcation is preceded by either one or two pitchfork bifurcations, where the number of the latter bifurcations depends on whether n has remainder 2 or 0 upon division by 4. This bifurcation sequence leads to stationary waves and their spatiotemporal properties also depend on the remainder after dividing n by 4. Finally, we explain how the double-Hopf bifurcation can generate two or more stable waves with different spatiotemporal properties that coexist for the same parameter values n and F.

  1. Wave propagation in the Lorenz-96 model

    Directory of Open Access Journals (Sweden)

    D. L. van Kekem

    2018-04-01

    Full Text Available In this paper we study the spatiotemporal properties of waves in the Lorenz-96 model and their dependence on the dimension parameter n and the forcing parameter F. For F > 0 the first bifurcation is either a supercritical Hopf or a double-Hopf bifurcation and the periodic attractor born at these bifurcations represents a traveling wave. Its spatial wave number increases linearly with n, but its period tends to a finite limit as n → ∞. For F < 0 and odd n, the first bifurcation is again a supercritical Hopf bifurcation, but in this case the period of the traveling wave also grows linearly with n. For F < 0 and even n, however, a Hopf bifurcation is preceded by either one or two pitchfork bifurcations, where the number of the latter bifurcations depends on whether n has remainder 2 or 0 upon division by 4. This bifurcation sequence leads to stationary waves and their spatiotemporal properties also depend on the remainder after dividing n by 4. Finally, we explain how the double-Hopf bifurcation can generate two or more stable waves with different spatiotemporal properties that coexist for the same parameter values n and F.

  2. Propagation of inertial-gravity waves on an island shelf

    Science.gov (United States)

    Bondur, V. G.; Sabinin, K. D.; Grebenyuk, Yu. V.

    2015-09-01

    The propagation of inertial-gravity waves (IGV) at the boundary of the Pacific shelf near the island of Oahu (Hawaii), whose generation was studied in the first part of this work [1], is analyzed. It is shown that a significant role there is played by the plane oblique waves; whose characteristics were identified by the method of estimating 3D wave parameters for the cases when the measurements are available only for two verticals. It is established that along with the descending propagation of energy that is typical of IGVs, wave packets ascend from the bottom to the upper layers, which is caused by the emission of waves from intense jets of discharged waters flowing out of a diffusor located at the bottom.

  3. Shock wave propagation in neutral and ionized gases

    International Nuclear Information System (INIS)

    Podder, N. K.; Wilson IV, R. B.; Bletzinger, P.

    2008-01-01

    Preliminary measurements on a recently built shock tube are presented. Planar shock waves are excited by the spark discharge of a capacitor, and launched into the neutral argon or nitrogen gas as well as its ionized glow discharge in the pressure region 1-17 Torr. For the shock wave propagation in the neutral argon at fixed capacitor charging voltage, the shock wave velocity is found to increase nonlinearly at the lower pressures, reach a maximum at an intermediate pressure, and then decrease almost linearly at the higher pressures, whereas the shock wave strength continues to increase at a nonlinear rate over the entire range of pressure. However, at fixed gas pressure the shock wave velocity increases almost monotonically as the capacitor charging voltage is increased. For the shock wave propagation in the ionized argon glow, the shock wave is found to be most influenced by the glow discharge plasma current. As the plasma current is increased, both the shock wave propagation velocity and the dispersion width are observed to increase nonlinearly

  4. On Viscosity, Conduction and Sound Waves in the Intracluster Medium

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, A.

    2005-01-25

    Recent X-ray and optical observations of the Perseus cluster indicate that the viscous and conductive dissipation of sound waves is the mechanism responsible for heating the intracluster medium and thus balancing radiative cooling of cluster cores. We discuss this mechanism more generally and show how the specific heating and cooling rates vary with temperature and radius. It appears that the heating mechanism is most effective above 10{sup 7}K, which allows for radiative cooling to proceed within normal galaxy formation but will stifle the growth of very massive galaxies. The scaling of the wavelength of sound waves with cluster temperature and feedback in the system are investigated.

  5. Propagation of electromagnetic waves in a weakly ionized dusty plasma

    International Nuclear Information System (INIS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Liu, Yaoze; Gao, Junying; Zhou, Zhongxiang; Sun, Xiudong; Li, Hui; Wu, Jian; Pu, Shaozhi

    2015-01-01

    Propagation properties of electromagnetic (EM) waves in weakly ionized dusty plasmas are the subject of this study. Dielectric relation for EM waves propagating at a weakly ionized dusty plasma is derived based on the Boltzmann distribution law while considering the collision and charging effects of dust grains. The propagation properties of EM energy in dusty plasma of rocket exhaust are numerically calculated and studied, utilizing the parameters of rocket exhaust plasma. Results indicate that increase of dust radius and density enhance the reflection and absorption coefficient. High dust radius and density make the wave hardly transmit through the dusty plasmas. Interaction enhancements between wave and dusty plasmas are developed through effective collision frequency improvements. Numerical results coincide with observed results by indicating that GHz band wave communication is effected by dusty plasma as the presence of dust grains significantly affect propagation of EM waves in the dusty plasmas. The results are helpful to analyze the effect of dust in plasmas and also provide a theoretical basis for the experiments. (paper)

  6. Wave propagation in elastic medium with heterogeneous quadratic nonlinearity

    International Nuclear Information System (INIS)

    Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin

    2011-01-01

    This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter β when the nonlinearity distribution in the layer is a stochastic process.

  7. Wave fields in real media wave propagation in anisotropic, anelastic, porous and electromagnetic media

    CERN Document Server

    Carcione, José M

    2014-01-01

    Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and ...

  8. On the propagation of hydromagnetic waves in a plasma of thermal and suprathermal components

    Science.gov (United States)

    Kumar, Nagendra; Sikka, Himanshu

    2007-12-01

    The propagation of MHD waves is studied when two ideal fluids, thermal and suprathermal gases, coupled by magnetic field are moving with the steady flow velocity. The fluids move independently in a direction perpendicular to the magnetic field but gets coupled along the field. Due to the presence of flow in suprathermal and thermal fluids there appears forward and backward waves. All the forward and backward modes propagate in such a way that their rate of change of phase speed with the thermal Mach number is same. It is also found that besides the usual hydromagnetic modes there appears a suprathermal mode which propagates with faster speed. Surface waves are also examined on an interface formed with composite plasma (suprathermal and thermal gases) on one side and the other is a non-magnetized plasma. In this case, the modes obtained are two or three depending on whether the sound velocity in thermal gas is equal to or greater than the sound velocity in suprathermal gas. The results lead to the conclusion that the interaction of thermal and suprathermal components may lead to the occurrence of an additional mode called suprathermal mode whose phase velocity is higher than all the other modes.

  9. Pressure wave propagation in the discharge piping with water pool

    International Nuclear Information System (INIS)

    Bang, Young S.; Seul, Kwang W.; Kim, In Goo

    2004-01-01

    Pressure wave propagation in the discharge piping with a sparger submerged in a water pool, following the opening of a safety relief valve, is analyzed. To predict the pressure transient behavior, a RELAP5/MOD3 code is used. The applicability of the RELAP5 code and the adequacy of the present modeling scheme are confirmed by simulating the applicable experiment on a water hammer with voiding. As a base case, the modeling scheme was used to calculate the wave propagation inside a vertical pipe with sparger holes and submerged within a water pool. In addition, the effects on wave propagation of geometric factors, such as the loss coefficient, the pipe configuration, and the subdivision of sparger pipe, are investigated. The effects of inflow conditions, such as water slug inflow and the slow opening of a safety relief valve are also examined

  10. Detecting electromagnetic cloaks using backward-propagating waves

    KAUST Repository

    Salem, Mohamed

    2011-08-01

    A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.

  11. Detecting electromagnetic cloaks using backward-propagating waves

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2011-01-01

    A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.

  12. Sound Propagation Considerations for a Deep-Ocean Acoustic Network

    Science.gov (United States)

    2009-12-01

    classic “ tea cup” surveillance volume for a bottom sensor. 27 Figure 18. TL of a 100-Hz, 3995-m source using a 4000-m Munk sound speed profile B...18. LTJG Pongaskorn Sommai, Royal Thai Navy Naval Postgraduate School Monterey, California 19. ENS William Jenkins, USN Naval Postgraduate School

  13. Wave propagation model of heat conduction and group speed

    Science.gov (United States)

    Zhang, Long; Zhang, Xiaomin; Peng, Song

    2018-03-01

    In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.

  14. DEMETER observations of manmade waves that propagate in the ionosphere

    Science.gov (United States)

    Parrot, Michel

    2018-01-01

    This paper is a review of manmade waves observed by the ionospheric satellite DEMETER. It concerns waves emitted by the ground-based VLF and ELF transmitters, by broadcasting stations, by the power line harmonic radiation, by industrial noise, and by active experiments. Examples are shown including, for the first time, the record of a wave coming from an ELF transmitter. These waves propagate upwards in the magnetosphere and they can be observed in the magnetically conjugated region of emission. Depending on their frequencies, they perturb the ionosphere and the particles in the radiation belts, and additional emissions are triggered. xml:lang="fr"

  15. Parabolic approximation method for fast magnetosonic wave propagation in tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.

    1985-07-01

    Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters

  16. Transient Aspects of Wave Propagation Connected with Spatial Coherence

    Directory of Open Access Journals (Sweden)

    Ezzat G. Bakhoum

    2013-01-01

    Full Text Available This study presents transient aspects of light wave propagation connected with spatial coherence. It is shown that reflection and refraction phenomena involve spatial patterns which are created within a certain transient time interval. After this transient time interval, these patterns act like a memory, determining the wave vector for subsequent sets of reflected/refracted waves. The validity of this model is based on intuitive aspects regarding phase conservation of energy for waves reflected/refracted by multiple centers in a certain material medium.

  17. Wave propagation through an electron cyclotron resonance layer

    International Nuclear Information System (INIS)

    Westerhof, E.

    1997-01-01

    The propagation of a wave beam through an electron cyclotron resonance layer is analysed in two-dimensional slab geometry in order to assess the deviation from cold plasma propagation due to resonant, warm plasma changes in wave dispersion. For quasi-perpendicular propagation, N ' 'parallel to'' ≅ v t /c, an O-mode beam is shown to exhibit a strong wiggle in the trajectory of the centre of the beam when passing through the fundamental electron cyclotron resonance. The effects are largest for low temperatures and close to perpendicular propagation. Predictions from standard dielectric wave energy fluxes are inconsistent with the trajectory of the beam. Qualitatively identical results are obtained for the X-mode second harmonic. In contrast, the X-mode at the fundamental resonance shows significant deviations form cold plasma propagation only for strongly oblique propagation and/or high temperatures. On the basis of the obtained results a practical suggestion is made for ray tracing near electron cyclotron resonance. (Author)

  18. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  19. Studying Electromechanical Wave Propagation and Transport Delays in Power Systems

    Science.gov (United States)

    Dasgupta, Kalyan; Kulkarni, A. M.; Soman, Shreevardhan

    2013-05-01

    Abstract: In this paper, we make an attempt to describe the phenomenon of wave propagation when a disturbance is introduced in an electromechanical system. The focus is mainly on generator trips in a power system. Ordering of the generators is first done using a sensitivity matrix. Thereafter, orthogonal decomposition of the ordered generators is done to group them based on their participation in different modes. Finally, we find the velocity of propagation of the wave and the transport delay associated with it using the ESPRIT method. The analysis done on generators from the eastern and western regions of India.1

  20. 24 GHz cmWave Radio Propagation Through Vegetation

    DEFF Research Database (Denmark)

    Rodriguez, Ignacio; Abreu, Renato Barbosa; Portela Lopes de Almeida, Erika

    2016-01-01

    This paper presents a measurement-based analysis of cm-wave radio propagation through vegetation at 24 GHz. A set of dedicated directional measurements were performed with horn antennas located close to street level inside a densely-vegetated area illuminated from above. The full azimuth was exam......This paper presents a measurement-based analysis of cm-wave radio propagation through vegetation at 24 GHz. A set of dedicated directional measurements were performed with horn antennas located close to street level inside a densely-vegetated area illuminated from above. The full azimuth...

  1. A nonlinear wave equation in nonadiabatic flame propagation

    International Nuclear Information System (INIS)

    Booty, M.R.; Matalon, M.; Matkowsky, B.J.

    1988-01-01

    The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time

  2. Measurements of anisotropic sound propagation in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2000-01-01

    to the glass wool sheets was 75 dB/m, and for propagation parallel with the sheets 57 dB/m. For mass density 30 kg/m3, the corresponding numbers were 140 and 100 dB/m. The measured values were compared with calculated ones taking into account the movements of the fiber skeleton. The calculations need...

  3. Slow Wave Propagation and Sheath Interaction for ICRF Waves in the Tokamak SOL

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    2009-01-01

    In previous work we studied the propagation of slow-wave resonance cones launched parasitically by a fast-wave antenna into a tenuous magnetized plasma. Here we extend the previous calculation to ''dense'' scrape-off-layer (SOL) plasmas where the usual slow wave is evanescent. Using the sheath boundary condition, it is shown that for sufficiently close limiters, the slow wave couples to a sheath plasma wave and is no longer evanescent, but radially propagating. A self-consistent calculation of the rf-sheath width yields the resulting sheath voltage in terms of the amplitude of the launched SW, plasma parameters and connection length.

  4. High frequency guided wave propagation in monocrystalline silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  5. Sound wave contours around wind turbine arrays

    International Nuclear Information System (INIS)

    Van Beek, A.; Van Blokland, G.J.

    1993-02-01

    Noise pollution is an important factor in selecting suitable sites for wind turbines in order to realize 1000 MW of wind power as planned by the Dutch government for the year 2000. Therefore an accurate assessment of wind turbine noise is important. The amount of noise pollution from a wind turbine depends on the wind conditions. An existing standard method to assess wind turbine noise is supplemented and adjusted. In the first part of the investigation the method was developed and applied for a solitary sound source. In the second part attention is paid to the use of the method for wind turbine arrays. It appears that the adjusted method results in a shift of the contours of the permitted noise level. In general the contours are 15-25% closer to the wind farm, which means that the minimal permitted distance between houses and wind turbine arrays can be reduced. 14 figs., 1 tab., 4 appendices, 7 refs

  6. TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION

    Directory of Open Access Journals (Sweden)

    Lorand Catalin STOENESCU

    2011-05-01

    Full Text Available The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishing of the flood wave is important in the case of sinuous courses of water or with urban settlements very close to the minor river bed. In the case of Poiana Uzului dam, 2 scenarios were simulated with the help of Ph.D. Eng. Dan Stematiu, plausible scenarios but with very little chances of actually producing. The results were presented as animations with flooded surfaces at certain time steps successively.

  7. Propagation of thermal and hydromagnetic waves in an ionizing-recombining hydrogen plasma

    International Nuclear Information System (INIS)

    Di Sigalotti, Leonardo G.; Sira, Eloy; Rendon, Otto; Tremola, Ciro; Mendoza-Briceno, Cesar A.

    2004-01-01

    The propagation of thermal and magnetohydrodynamic (MHD) waves in a heat-conducting, hydrogen plasma, threaded by an external uniform magnetic field (B) and in which photoionization and photorecombination [H + +e - H+hν(χ)] processes are progressing, is investigated here using linear analysis. The resulting dispersion equation is solved analytically for varied strength (β<<1 and ∼1) and orientation of the magnetic field, where β denotes the ratio of plasma to magnetic pressures. Application of this model to the interstellar medium shows that heat conduction governs the propagation of thermal waves only at relatively high frequencies regardless of the plasma temperature, strength, and orientation of the magnetic field. When the direction of wave propagation is held perpendicular to B (i.e., k perpendicular B), the magnetosonic phase velocity is closely Alfvenic for β<<1, while for β∼1 both the hydrostatic and magnetic pressures determine the wave velocity. As long as k parallel B, the fast (transverse) magnetosonic wave becomes an Alfven wave for all frequencies independent of the plasma temperature and field strength, while the slow (longitudinal) magnetosonic wave becomes a pure sound wave. Amplification of thermal and MHD waves always occur at low frequencies and preferentially at temperatures for which the plasma is either weakly or partially ionized. Compared to previous analysis for the same hydrogen plasma model with B=0, the presence of the magnetic field makes the functional dependence of the physical quantities span a longer range of frequencies, which becomes progressively longer as the field strength is increased

  8. Stress wave propagation in linear viscoelasticity

    International Nuclear Information System (INIS)

    Asada, Kazuo; Fukuoka, Hidekazu.

    1992-01-01

    Decreasing characteristics of both stress and stress gradient with propagation distance at a 2-dimensional linear viscoelasticity wavefront are derived by using our 3-dimensional theoretical equation for particle velocity discontinuities. By finite-element method code DYNA3D, stress at a noncurvature dilatation wavefront of linear viscoelasticity is shown to decrease exponentially. This result is in good accordance with our theory. By dynamic photoelasticity experiment, stress gradients of urethane rubber plates at 3 types of wavefronts are shown to decrease exponentially at a noncurvature wavefront and are shown to be a decreasing function of (1/√R) exp (α 1 2 /(2α 0 3 ξ)) at a curvature wavefront. These experiment results are in good accordance with our theory. (author)

  9. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  10. Observations of apparent superslow wave propagation in solar prominences

    Science.gov (United States)

    Raes, J. O.; Van Doorsselaere, T.; Baes, M.; Wright, A. N.

    2017-06-01

    Context. Phase mixing of standing continuum Alfvén waves and/or continuum slow waves in atmospheric magnetic structures such as coronal arcades can create the apparent effect of a wave propagating across the magnetic field. Aims: We observe a prominence with SDO/AIA on 2015 March 15 and find the presence of oscillatory motion. We aim to demonstrate that interpreting this motion as a magneto hydrodynamic (MHD) wave is faulty. We also connect the decrease of the apparent velocity over time with the phase mixing process, which depends on the curvature of the magnetic field lines. Methods: By measuring the displacement of the prominence at different heights to calculate the apparent velocity, we show that the propagation slows down over time, in accordance with the theoretical work of Kaneko et al. We also show that this propagation speed drops below what is to be expected for even slow MHD waves for those circumstances. We use a modified Kippenhahn-Schlüter prominence model to calculate the curvature of the magnetic field and fit our observations accordingly. Results: Measuring three of the apparent waves, we get apparent velocities of 14, 8, and 4 km s-1. Fitting a simple model for the magnetic field configuration, we obtain that the filament is located 103 Mm below the magnetic centre. We also obtain that the scale of the magnetic field strength in the vertical direction plays no role in the concept of apparent superslow waves and that the moment of excitation of the waves happened roughly one oscillation period before the end of the eruption that excited the oscillation. Conclusions: Some of the observed phase velocities are lower than expected for slow modes for the circumstances, showing that they rather fit with the concept of apparent superslow propagation. A fit with our magnetic field model allows for inferring the magnetic geometry of the prominence. The movie attached to Fig. 1 is available at http://www.aanda.org

  11. High frequency guided wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Pizzolato, M.; Masserey, B.; Robyr, J. L.; Fromme, P.

    2017-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full...

  12. Sound propagation in narrow tubes including effects of viscothermal and turbulent damping with application to charge air coolers

    Science.gov (United States)

    Knutsson, Magnus; Åbom, Mats

    2009-02-01

    Charge air coolers (CACs) are used on turbocharged internal combustion engines to enhance the overall gas-exchange performance. The cooling of the charged air results in higher density and thus volumetric efficiency. It is also important for petrol engines that the knock margin increases with reduced charge air temperature. A property that is still not very well investigated is the sound transmission through a CAC. The losses, due to viscous and thermal boundary layers as well as turbulence, in the narrow cooling tubes result in frequency dependent attenuation of the transmitted sound that is significant and dependent on the flow conditions. Normally, the cross-sections of the cooling tubes are neither circular nor rectangular, which is why no analytical solution accounting for a superimposed mean flow exists. The cross-dimensions of the connecting tanks, located on each side of the cooling tubes, are large compared to the diameters of the inlet and outlet ducts. Three-dimensional effects will therefore be important at frequencies significantly lower than the cut-on frequencies of the inlet/outlet ducts. In this study the two-dimensional finite element solution scheme for sound propagation in narrow tubes, including the effect of viscous and thermal boundary layers, originally derived by Astley and Cummings [Wave propagation in catalytic converters: Formulation of the problem and finite element scheme, Journal of Sound and Vibration 188 (5) (1995) 635-657] is used to extract two-ports to represent the cooling tubes. The approximate solutions for sound propagation, accounting for viscothermal and turbulent boundary layers derived by Dokumaci [Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters, Journal of Sound and Vibration 182 (5) (1995) 799-808] and Howe [The damping of sound by wall turbulent shear layers, Journal of the Acoustical Society of America 98 (3) (1995) 1723-1730], are

  13. Demonstration of slow sound propagation and acoustic transparency with a series of detuned resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2014-01-01

    We present experimental results demonstrating the phenomenon of acoustic transparency with a significant slowdown of sound propagation realized with a series of paired detuned acoustic resonators (DAR) side-attached to a waveguide. The phenomenon mimics the electromagnetically induced transparency...... than 20 dB on both sides of the transparency window, and we quantify directly (using a pulse propagation) the acoustic slowdown effect, resulting in the sound group velocity of 9.8 m/s (i.e. in the group refractive index of 35). We find very similar values of the group refractive index by using...

  14. Seismic Wave Propagation in Icy Ocean Worlds

    Science.gov (United States)

    Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon

    2018-01-01

    Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.

  15. Plasma waves observed by sounding rockets

    International Nuclear Information System (INIS)

    Kimura, I.

    1977-01-01

    Observations of plasma wave phenomena have been conducted with several rockets launched at Kagoshima Space Center, Kyushu, Japan, and at Showa Base, Antarctica. This report presents some results of the observations in anticipation of having valuable comments from other plasma physicists, especially from those who are concerned with laboratory plasma. In the K-9M-41 rocket experiment, VLF plasma waves were observed. In this experiment, the electron beam of several tens of uA was emitted from a hot cathode when a positive dc bias changing from 0 to 10V at 1V interval each second was applied to a receiving dipole antenna. The discrete emissions with 'U' shaped frequency spectrum were observed for the dc bias over 3 volts. The U emissions appeared twice per spin period of the rocket. Similar rocket experiment was performed at Showa Base using a loop and dipole antenna and without hot cathode. Emissions were observed with varying conditions. At present, the authors postulate that such emissions may be produced just in the vicinity of a rocket due to a kind of wake effect. (Aoki, K.)

  16. Propagation of waves in a multicomponent plasma having charged ...

    Indian Academy of Sciences (India)

    Propagation of waves in a multicomponent plasma having charged dust particles has been investigated by various authors in recent times as the presence of charged dust grains give rise to a new kind of modes called dust modes and it has wide applications in magneto- sphere and space plasma [1–3]. In fact, Rao et al [4] ...

  17. Chiral metamaterials characterisation using the wave propagation retrieval method

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei; Malureanu, Radu

    2010-01-01

    In this presentation we extend the wave propagation method for the retrieval of the effective properties to the case of chiral metamaterials with circularly polarised eigenwaves. The method is unambiguous, simple and provides bulk effective parameters. Advantages and constraints are discussed...

  18. Surface wave propagation in a fluid-saturated incompressible ...

    Indian Academy of Sciences (India)

    dilatational and one rotational elastic waves in fluid-saturated porous solids. Biot theory ..... If the pore liquid is absent or gas is filled in the pores, then ρF ..... Biot M A (1962) Mechanics of deformation and acoustic propagation in porous media.

  19. Seismic wave propagation in fractured media: A discontinuous Galerkin approach

    KAUST Repository

    De Basabe, Jonás D.

    2011-01-01

    We formulate and implement a discontinuous Galekin method for elastic wave propagation that allows for discontinuities in the displacement field to simulate fractures or faults using the linear- slip model. We show numerical results using a 2D model with one linear- slip discontinuity and different frequencies. The results show a good agreement with analytic solutions. © 2011 Society of Exploration Geophysicists.

  20. Statistical characterization of wave propagation in mine environments

    KAUST Repository

    Bakir, Onur

    2012-07-01

    A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation (ME-PC) method with a novel domain-decomposition (DD) integral equation-based EM simulator to obtain statistics of electric fields due to wireless transmitters in realistic mine environments. © 2012 IEEE.

  1. Wave propagation in coated cylinders with reference to fretting fatigue

    Indian Academy of Sciences (India)

    is to study stress wave propagation in cylinders with reference to high frequency fretting. ... The motivation for studying of fretting fatigue at higher frequency is to investigate the ... Hence focus in this work is given to thin rods and cylinders. The.

  2. Study of Temperature Wave Propagation in Superfluid Helium Focusing on Radio-Frequency Cavity Cooling

    CERN Document Server

    Koettig, T; Avellino, S; Junginger, T; Bremer, J

    2015-01-01

    Oscillating Superleak Transducers (OSTs) can be used to localize quenches of superconducting radio-frequency cavities. Local hot spots at the cavity surface initiate temperature waves in the surrounding superfluid helium that acts as cooling fluid at typical temperatures in the range of 1.6 K to 2 K. The temperature wave is characterised by the properties of superfluid helium such as the second sound velocity. For high heat load densities second sound velocities greater than the standard literature values are observed. This fast propagation has been verified in dedicated small scale experiments. Resistors were used to simulate the quench spots under controlled conditions. The three dimensional propagation of second sound is linked to OST signals. The aim of this study is to improve the understanding of the OST signal especially the incident angle dependency. The characterised OSTs are used as a tool for quench localisation on a real size cavity. Their sensitivity as well as the time resolution was proven to b...

  3. Analytical and Numerical Modeling of Tsunami Wave Propagation for double layer state in Bore

    Science.gov (United States)

    Yuvaraj, V.; Rajasekaran, S.; Nagarajan, D.

    2018-04-01

    Tsunami wave enters into the river bore in the landslide. Tsunami wave propagation are described in two-layer states. The velocity and amplitude of the tsunami wave propagation are calculated using the double layer. The numerical and analytical solutions are given for the nonlinear equation of motion of the wave propagation in a bore.

  4. Sound Propagation in Shallow Water. Volume 2. Unclassified Papers

    Science.gov (United States)

    1974-11-15

    range. If ßj and Bs are given in dB/WL, Eq. 9 becomes a v: Pi n (JU 2n ci(20 Ige C ^ eu 2TTC2 (20 Ige) [ nT1 ] [E, 𔃺 where Ci is the...elementary "resolution cell ". The echo and the reverberation level are thus affected in the same wa; by the variations of propagation loss. The fact that...the area of the resolution cell increases proportionally with the range is more or less compensated by the decrease of the scattering strength which

  5. Earthquake wave propagation in immiscibly compressible porous soil

    International Nuclear Information System (INIS)

    Xue, S.; Kurita, S.; Izumi, M.

    1993-01-01

    This paper utilizes the formalism of the theory of immiscible compressible mixtures to formulate the wave propagation equation for the soil where the soil has been assumed as a binary mixture consisting of one solid phase and one fluid phase. The method is developed to solve the one dimensional wave equation by the above theory. The relations between the wave attenuating characteristic value Q and the volume fraction, the relative motion of two phases have been shown. It is concluded that based on such theory we can solve more precisely the soil behaviors while considering the interaction of structure and soil of immiscible mixture. (author)

  6. Effective constants for wave propagation through partially saturated porous media

    International Nuclear Information System (INIS)

    Berryman, J.G.; Thigpen, L.

    1985-01-01

    The multipole scattering coefficients for elastic wave scattering from a spherical inhomogeneity in a fluid-saturated porous medium have been calculated. These coefficients may be used to obtain estimates of the effective macroscopic constants for long-wavelength propagation of elastic waves through partially saturated media. If the volume average of the single scattering from spherical bubbles of gas and liquid is required to vanish, the resulting equations determine the effective bulk modulus, density, and viscosity of the multiphase fluid filling the pores. The formula for the effective viscosity during compressional wave excitation is apparently new

  7. Interaction of Sound with Sound by Novel Mechanisms: Ultrasonic Four-Wave Mixing Mediated by a Suspension and Ultrasonic Three-Wave Mixing at a Free Surface

    Science.gov (United States)

    Simpson, Harry Jay

    Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially

  8. Linear theory of sound waves with evaporation and condensation

    International Nuclear Information System (INIS)

    Inaba, Masashi; Watanabe, Masao; Yano, Takeru

    2012-01-01

    An asymptotic analysis of a boundary-value problem of the Boltzmann equation for small Knudsen number is carried out for the case when an unsteady flow of polyatomic vapour induces reciprocal evaporation and condensation at the interface between the vapour and its liquid phase. The polyatomic version of the Boltzmann equation of the ellipsoidal statistical Bhatnagar–Gross–Krook (ES-BGK) model is used and the asymptotic expansions for small Knudsen numbers are applied on the assumptions that the Mach number is sufficiently small compared with the Knudsen number and the characteristic length scale divided by the characteristic time scale is comparable with the speed of sound in a reference state, as in the case of sound waves. In the leading order of approximation, we derive a set of the linearized Euler equations for the entire flow field and a set of the boundary-layer equations near the boundaries (the vapour–liquid interface and simple solid boundary). The boundary conditions for the Euler and boundary-layer equations are obtained at the same time when the solutions of the Knudsen layers on the boundaries are determined. The slip coefficients in the boundary conditions are evaluated for water vapour. A simple example of the standing sound wave in water vapour bounded by a liquid water film and an oscillating piston is demonstrated and the effect of evaporation and condensation on the sound wave is discussed. (paper)

  9. Sound

    CERN Document Server

    Robertson, William C

    2003-01-01

    Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...

  10. Alfven wave propagation in a partially ionized plasma

    International Nuclear Information System (INIS)

    Watts, Christopher; Hanna, Jeremy

    2004-01-01

    Results from a laboratory study of the dispersion relation of Alfven waves propagating through a partially ionized plasma are presented. The plasma is generated using a helicon source, creating a high density, current-free discharge, where the source can be adjusted to one of several modes with varying neutral fraction. Depending on the neutral fraction, the measured dispersion curve of shear Alfven waves can change significantly. Measurement results are compared with theoretical predictions of the effect of neutral particles on Alfven wave propagation. In fitting the theory, the neutral fraction is independently estimated using two simple particle transport models, one collisionless, the other collisional. The two models predict comparable neutral fractions, and agree well with the neutral fraction required for the Alfven dispersion theory

  11. Propagation and application of waves in the ionosphere.

    Science.gov (United States)

    Yeh, K. C.; Liu, C. H.

    1972-01-01

    This review deals with the propagation of waves, especially radio waves in the ionosphere. In the macroscopic electromagnetic theory, the mathematical structure of wave propagation problems depends entirely on the properties of the dielectric operator in a magnetically nonpermeable medium. These properties can be deduced from general discussions of symmetry and considerations of physical principles. When the medium is specifically the ionosphere, various physical phenomena may occur. Because of a large number of parameters, it is desirable to define a parameter space. A point in the parameter space corresponds to a specific plasma. The parameter space is subdivided into regions whose boundaries correspond to conditions of resonance and cutoff. As the point crosses these boundaries, the refractive index surface transforms continuously.

  12. Excitation of coherent propagating spin waves by pure spin currents.

    Science.gov (United States)

    Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O

    2016-01-28

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.

  13. Sound topology, duality, coherence and wave-mixing an introduction to the emerging new science of sound

    CERN Document Server

    Deymier, Pierre

    2017-01-01

    This book offers an essential introduction to the notions of sound wave topology, duality, coherence and wave-mixing, which constitute the emerging new science of sound. It includes general principles and specific examples that illuminate new non-conventional forms of sound (sound topology), unconventional quantum-like behavior of phonons (duality), radical linear and nonlinear phenomena associated with loss and its control (coherence), and exquisite effects that emerge from the interaction of sound with other physical and biological waves (wave mixing).  The book provides the reader with the foundations needed to master these complex notions through simple yet meaningful examples. General principles for unraveling and describing the topology of acoustic wave functions in the space of their Eigen values are presented. These principles are then applied to uncover intrinsic and extrinsic approaches to achieving non-conventional topologies by breaking the time revers al symmetry of acoustic waves. Symmetry brea...

  14. Modal analysis of wave propagation in dispersive media

    Science.gov (United States)

    Abdelrahman, M. Ismail; Gralak, B.

    2018-01-01

    Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914), 10.1002/andp.19143491002] by the presence of branches in the integral expression of the wave function. In this article a method is proposed to eliminate these critical branches and hence to establish a modal expansion of the time-dependent wave function. The different components of the transient waves are physically interpreted as the contributions of distinct sets of modes and characterized accordingly. Then, the modal expansion is used to derive a modified analytical expression of the Sommerfeld precursor improving significantly the description of the amplitude and the oscillating period up to the arrival of the Brillouin precursor. The proposed method and results apply to all waves governed by the Helmholtz equations.

  15. A two dimension model of the uterine electrical wave propagation.

    Science.gov (United States)

    Rihana, S; Lefrançois, E; Marque, C

    2007-01-01

    The uterus, usually quiescent during pregnancy, exhibits forceful contractions at term leading to delivery. These contractions are caused by the synchronized propagation of electrical waves from the pacemaker cells to its neighbors inducing the whole coordinated contraction of the uterus wall leading to labor. In a previous work, we simulate the electrical activity of a single uterine cell by a set of ordinary differential equations. Then, this model has been used to simulate the electrical activity propagation. In the present work, the uterine cell tissue is assumed to have uniform and isotropic propagation, and constant electrical membrane properties. The stability of the numerical solution imposes the choice of a critical temporal step. A wave starts at a pacemaker cell; this electrical activity is initiated by the injection of an external stimulation current to the cell membrane. We observe synchronous wave propagation for axial resistance values around 0.5 GOmega or less and propoagation blocking for values greater than 0.7 GOmega. We compute the conduction velocity of the excitation, for different axial resistance values, and obtain a velocity about 10 cm/sec, approaching the one described by the literature for the rat at end of term.

  16. Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts

    DEFF Research Database (Denmark)

    Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten

    2015-01-01

    We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation in ...

  17. A didactically novel derivation of the telegraph equation to describe sound propagation in rigid tubes

    International Nuclear Information System (INIS)

    Till, Bernie C; Driessen, Peter F

    2014-01-01

    Starting from first principles, we derive the telegraph equation to describe the propagation of sound waves in rigid tubes by using a simple approach that yields a lossy transmission line model with frequency-independent parameters. The approach is novel in the sense that it has not been found in the literature or textbooks. To derive the lossy acoustic telegraph equation from the lossless wave equation, we need only to relax the assumption that the dynamical variables are constant over the entire cross-sectional area of the tube. In this paper, we do this by introducing a relatively narrow boundary layer at the wall of the tube, over which the dynamical variables decrease linearly from the constant value to zero. This allows us to make very simple corrections to the lossless case, and to express them in terms of two parameters, namely the viscous diffusion time constant and the thermal diffusion time constant. The coefficients of the resulting telegraph equation are frequency-independent. A comparison with the telegraph equation for the electrical transmission line establishes precise relationships between the electrical circuit elements and the physical properties of the fluid. These relationships are thus proven a posteriori rather than asserted a priori. In this way, we arrive at an instructive and useful derivation of the acoustic telegraph equation, which takes viscous damping and thermal dissipation into account, and is accessible to students at the undergraduate level. This derivation does not resort to the combined heavy machinery of fluid dynamics and thermodynamics, does not assume that the waveforms are sinusoidal, and does not assume any particular cross-sectional shape of the tube. Surprisingly, we have been unable to find a comparable treatment in the standard introductory physics and acoustics texts, or in the literature. (paper)

  18. Topics in the Analysis of Shear-Wave Propagation in Oblique-Plate Impact Tests

    National Research Council Canada - National Science Library

    Scheidler, Mike

    2007-01-01

    This report addresses several topics in the theoretical analysis of shock waves, acceleration waves, and centered simple waves, with emphasis on the propagation of shear waves generated in oblique-plate impact tests...

  19. Temporal Talbot effect in propagation of attosecond electron waves

    International Nuclear Information System (INIS)

    Varro, S.

    2010-01-01

    Complete text of publication follows. The rapid development in extreme strong-field and extreme short-pulse laser physics provide us with many potentials to explore the dynamics of fundamental processes taking place in light-matter interactions and in propagation of electromagnetic or matter waves. The present paper discusses the propagation of above-threshold electron waves generated by (not necessary ultra-short) strong laser fields. Recently we have shown that - in analogy with the formation of attosecond light pulses by interference of high-order harmonics - the wave components of photoelectrons are naturally assembled in attosecond spikes, through the Fourier synthesis of these de Broglie waves. We would like to emphasize that the proposed scheme does not presupposes an a priori ultrashort excitation. Owing to the inherent dispersion of electron waves even in vacuum, the clean attosecond structure (emanating perpendicularly from a metal target surface) is gradually spoiled due to destructive interference. Fortunately the collapsed fine structure recovers itself at certain distances from the source within well-defined 'revival layers'. This is a temporal analogon of the optical Talbot effect representing the self-imaging of a grating, which is illuminated by stationary plane waves, in the near field. The 'collaps bands' and the 'revival layers' introduced in ref. 3 have been found merely on the basis of some attosecond layers turned out to show certain regularities. In the meantime we have derived approximate analytic formulae for the propagation characteristics, with the help of which we can keep track of the locations of the 'collaps bands' and the 'revival layers' on a larger scale. We shall report on these semiclassical results, and also discuss their possible connection with the recently found entropy remnants in multiphoton Compton scattering by electronic wave packets. Acknowledgement. This work has been supported by the Hungarian National Scientific

  20. Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report

    National Research Council Canada - National Science Library

    Demirbilek, Zeki; Nwogu, Okey G

    2007-01-01

    ..., for waves propagating over fringing reefs. The model evaluation had two goals: (a) investigate differences between laboratory and field characteristics of wave transformation processes over reefs, and (b...

  1. Book Review: Wave propagation in materials and structures

    Science.gov (United States)

    Ferguson, Neil

    2018-02-01

    This book's remit is to provide a very extensive and detailed coverage of many one and two dimensional wave propagating behaviours primarily in structures such as rods, beams and plates of complexity covering laminated, sandwich plates, smart configurations and complex material compositions. This is potentially where the detailed presentation, including the derivation of the governing equations of motion from first principles, i.e. Hamilton's method, for example, distracts slightly from the subsequent wave solutions, the numerical simulations showing time responses, the wave speeds and importantly the dispersion characteristics. The author introduces a number of known analytical methodologies and means to obtain wave solutions, including the spectral finite element approach and also provides numerical examples showing the approach being applied to joints and framed structures.

  2. Dynamic PIV measurement on the effect of sound wave in upper plenum of boiling water reactor

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    In one of the power uprated plants in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In the preliminary study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on the flow. (author)

  3. On the lamb wave propagation in anisotropic laminated composite plates

    International Nuclear Information System (INIS)

    Park, Soo Keun; Jeong, Hyun Jo; Kim, Moon Saeng

    1998-01-01

    This paper examines the propagation of Lamb (or plate) waves in anisotropic laminated composite plates. The dispersion relations are explicitly derived using the classical plate theory (CLT), the first-order shear deformation theory (FSDT) and the exact solution (ES), Attention is paid to the lowest antisymmetric (flexural) and lowest symmetric(extensional) modes in the low frequency, long wavelength limit. Different values of shear correction factor were tested in FSDT and comparisons between flexural wave dispersion curves were made with exact results to asses the range of validity of approximate plate theories in the frequency domain.

  4. Wave propagation in a quasi-chemical equilibrium plasma

    Science.gov (United States)

    Fang, T.-M.; Baum, H. R.

    1975-01-01

    Wave propagation in a quasi-chemical equilibrium plasma is studied. The plasma is infinite and without external fields. The chemical reactions are assumed to result from the ionization and recombination processes. When the gas is near equilibrium, the dominant role describing the evolution of a reacting plasma is played by the global conservation equations. These equations are first derived and then used to study the small amplitude wave motion for a near-equilibrium situation. Nontrivial damping effects have been obtained by including the conduction current terms.

  5. Theory for stationary nonlinear wave propagation in complex magnetic geometry

    International Nuclear Information System (INIS)

    Watanabe, T.; Hojo, H.; Nishikawa, Kyoji.

    1977-08-01

    We present our recent efforts to derive a systematic calculation scheme for nonlinear wave propagation in the self-consistent plasma profile in complex magnetic-field geometry. Basic assumptions and/or approximations are i) use of the collisionless two-fluid model with an equation of state; ii) restriction to a steady state propagation and iii) existence of modified magnetic surface, modification due to Coriolis' force. We discuss four situations: i) weak-field propagation without static flow, ii) arbitrary field strength with flow in axisymmetric system, iii) weak field limit of case ii) and iv) arbitrary field strength in nonaxisymmetric torus. Except for case iii), we derive a simple variation principle, similar to that of Seligar and Whitham, by introducing appropriate coordinates. In cases i) and iii), we derive explicit results for quasilinear profile modification. (auth.)

  6. Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali

    2018-04-01

    In this article, an analytical approach is developed to study the effects of thermal loading on the wave propagation characteristics of an embedded functionally graded (FG) nanoplate based on refined four-variable plate theory. The heat conduction equation is solved to derive the nonlinear temperature distribution across the thickness. Temperature-dependent material properties of nanoplate are graded using Mori-Tanaka model. The nonlocal elasticity theory of Eringen is introduced to consider small-scale effects. The governing equations are derived by the means of Hamilton's principle. Obtained frequencies are validated with those of previously published works. Effects of different parameters such as temperature distribution, foundation parameters, nonlocal parameter, and gradient index on the wave propagation response of size-dependent FG nanoplates have been investigated.

  7. Wave fields in real media wave propagation in anisotropic, anelastic, porous and electromagnetic media

    CERN Document Server

    Carcione, José M

    2007-01-01

    This book examines the differences between an ideal and a real description of wave propagation, where ideal means an elastic (lossless), isotropic and single-phase medium, and real means an anelastic, anisotropic and multi-phase medium. The analysis starts by introducing the relevant stress-strain relation. This relation and the equations of momentum conservation are combined to give the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. The book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may als...

  8. Simulation of the acoustic wave propagation using a meshless method

    Directory of Open Access Journals (Sweden)

    Bajko J.

    2017-01-01

    Full Text Available This paper presents numerical simulations of the acoustic wave propagation phenomenon modelled via Linearized Euler equations. A meshless method based on collocation of the strong form of the equation system is adopted. Moreover, the Weighted least squares method is used for local approximation of derivatives as well as stabilization technique in a form of spatial ltering. The accuracy and robustness of the method is examined on several benchmark problems.

  9. Wave Propagation of Coupled Modes in the DNA Double Helix

    International Nuclear Information System (INIS)

    Tabi, Conrad B.; Mohamadou, Alidou; Kofane, Timoleon C.

    2010-06-01

    The dynamics of waves propagating along the DNA molecule is described by the coupled nonlinear Schroedinger equations. We consider both the single and the coupled nonlinear excitation modes, and we discuss their biological implications. Furthermore, the characteristics of the coupled mode solution are discussed and we show that such a solution can describe the local opening observed within the transcription and the replication phenomena. (author)

  10. Singular value decomposition methods for wave propagation analysis

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Parrot, M.; Lefeuvre, F.

    2003-01-01

    Roč. 38, č. 1 (2003), s. 10-1-10-13 ISSN 0048-6604 R&D Projects: GA ČR GA205/01/1064 Grant - others:Barrande(CZ) 98039/98055 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : wave propagation * singular value decomposition Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.832, year: 2003

  11. Nonlinear propagation of Alfven waves in cometary plasmas

    International Nuclear Information System (INIS)

    Lakhina, G.S.; Shukla, P.K.

    1987-07-01

    Large amplitude Alfven waves propagating along the guide magnetic field in a three-component plasma are shown to be modulationally unstable due to their nonlinear interaction with nonresonant electrostatic density fluctuations. A new class of subsonic Alfven soliton solutions are found to exist in the three-component plasma. The Alfven solitons can be relevant in explaining the properties of hydromagnetic turbulence near the comets. (author). 15 refs

  12. Wave propagation in layered anisotropic media with application to composites

    CERN Document Server

    Nayfeh, AH

    1995-01-01

    Recent advances in the study of the dynamic behavior of layered materials in general, and laminated fibrous composites in particular, are presented in this book. The need to understand the microstructural behavior of such classes of materials has brought a new challenge to existing analytical tools. This book explores the fundamental question of how mechanical waves propagate and interact with layered anisotropic media. The chapters are organized in a logical sequence depending upon the complexity of the physical model and its mathematical treatment.

  13. Wave propagation in fluids models and numerical techniques

    CERN Document Server

    Guinot, Vincent

    2012-01-01

    This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite

  14. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    Science.gov (United States)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  15. Radio Wave Propagation Handbook for Communication on and Around Mars

    Science.gov (United States)

    Ho, Christian; Golshan, Nasser; Kliore, Arvydas

    2002-01-01

    This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.

  16. Thermal effects on parallel-propagating electron cyclotron waves

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1987-01-01

    Thermal effects on the dispersion of right-handed electron cyclotron waves propagating parallel to a uniform, ambient magnetic field are investigated in the strictly non-relativistic ('classical') and weakly relativistic approximations for real frequency and complex wave vector. In each approximation, the two branches of the RH mode reconnect near the cyclotron frequency as the plasma temperature is increased or the density is lowered. This reconnection occurs in a manner different from that previously assumed at parallel propagation and from that at perpendicular propagation, giving rise to a new mode near the cold plasma cut-off frequency ωsub(xC). For both parallel and perpendicular propagation, it is noted that reconnection occurs approximately when the cyclotron linewidth equals the width of the stop-band in the cold plasma dispersion relation. Inclusion of weakly relativistic effects is found to be necessary for quantitative calculations and for an accurate treatment of the new mode near ωsub(xC). Weakly relativistic effects also modify the analytic properties of the dispersion relation so as to introduce a new family of weakly damped and undamped solutions. (author)

  17. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation.

    Science.gov (United States)

    Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T

    2016-05-01

    Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.

  18. Propagation of extensional waves in a piezoelectric semiconductor rod

    Directory of Open Access Journals (Sweden)

    C.L. Zhang

    2016-04-01

    Full Text Available We studied the propagation of extensional waves in a thin piezoelectric semiconductor rod of ZnO whose c-axis is along the axis of the rod. The macroscopic theory of piezoelectric semiconductors was used which consists of the coupled equations of piezoelectricity and the conservation of charge. The problem is nonlinear because the drift current is the product of the unknown electric field and the unknown carrier density. A perturbation procedure was used which resulted in two one-way coupled linear problems of piezoelectricity and the conservation of charge, respectively. The acoustic wave and the accompanying electric field were obtained from the equations of piezoelectricity. The motion of carriers was then determined from the conservation of charge using a trigonometric series. It was found that while the acoustic wave was approximated by a sinusoidal wave, the motion of carriers deviates from a sinusoidal wave qualitatively because of the contributions of higher harmonics arising from the originally nonlinear terms. The wave crests become higher and sharper while the troughs are shallower and wider. This deviation is more pronounced for acoustic waves with larger amplitudes.

  19. Propagation of electromagnetic radiation in a random field of gravitational waves and space radio interferometry

    International Nuclear Information System (INIS)

    Braginsky, V.B.; Kardashev, N.S.; Polnarev, A.G.; Novikov, I.D.

    1989-12-01

    Propagation of an electromagnetic wave in the field of gravitational waves is considered. Attention is given to the principal difference between the electromagnetic wave propagation in the field of random gravitational waves and the electromagnetic wave propagation in a medium with a randomly-inhomogeneous refraction index. It is shown that in the case of the gravitation wave field the phase shift of an electromagnetic wave does not increase with distance. The capability of space radio interferometry to detect relic gravitational waves as well as gravitational wave bursts of non cosmological origin are analyzed. (author). 64 refs, 2 figs

  20. Excitation and Propagation of Alfven Waves in a Helicon Discharge

    International Nuclear Information System (INIS)

    Grulke, Olaf; Klinger, Thomas; Franck, Christian M.

    2003-01-01

    An experimental study of shear Alfven waves in a linearly magnetized plasma is presented. Shear Alfven waves are electromagnetic waves propagating parallel to the background magnetic field without compression of the plasma at a frequency well below the ion cyclotron frequency and a wavelength inversely proportional to the square root of the plasma density. A basic condition on laboratory investigations is that the Alfven wavelength must be significantly smaller than the device dimension. This makes Alfven waves difficult to investigate in laboratory experiments and most studies are performed in space, where typical Alfven wavelengths of several kilometers are observed. The results of these studies are often ambiguous due to difficulties concerning the measurements of plasma parameters and the magnetic field geometry. The primary motivation for the present paper is the investigation of Alfven wave propagation in a well defined laboratory situation. The experiments are conducted in the linear VINETA device. The necessary operational regime is achieved by the large axial device length of 4.5m and the use of a helicon plasma source providing high density plasmas with ionization degrees of up to 100%. The Argon plasma is magnetized by a set of 36 magnetic field coils, which produce a maximum magnetic field of 0.1T on the device axis. With this configuration a plasma-β of ≥ 10-4 is achieved, which exceeds the electron to ion mass ration, and the ion cyclotron frequency is ≅ 250kHz. Langmuir probes provide detailed informations on the time-averaged plasma profiles. Magnetic field perturbations for the excitation of Alfven waves are generated by a current loop, which is introduced into the plasma. The surface normal of the current loop is directed perpendicular to the magnetic field. The waves's dispersion relation in dependence of plasma parameters is determined by spatially resolved B probe measurements

  1. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  2. Van Allen Probe observations of EMIC wave propagation in the inner magnetosphere

    Science.gov (United States)

    Saikin, A.; Zhang, J.; Smith, C. W.; Spence, H. E.; Torbert, R. B.; Kletzing, C.; Wygant, J. R.

    2017-12-01

    This study examines the propagation of inner magnetosphere (L vector, , analysis on all observed EMIC wave events to determine the direction of propagation, with bi-directionally propagating EMIC waves indicating the presence of the EMIC wave source region. EMIC waves were considered bi-directional (i.e., in the source region) if at least two wave packets exhibited opposing flux components, and (W/km2), consistently for 60 seconds. Events not observed to have opposing flux components are considered unidirectional. EMIC wave events observed at relatively high magnetic latitudes, generally, are found to propagate away from the magnetic equator (i.e., unidirectional). Bi-directionally propagating EMIC waves are preferably observed at lower magnetic latitudes. The occurrence rate, spatial distribution, and the energy propagation angle of both unidirectionally and bi-directionally propagating EMIC waves are examined with respect to L, MLT, and MLAT.

  3. Some problems in generalized electromagnetic thermoelasticity and wave propagation

    International Nuclear Information System (INIS)

    Mohamed, S.E.S.

    2012-01-01

    The first chapter contains a review of the classical theory of elasticity, the theory of thermodynamics, the theory of uncoupled thermoelasticity, the coupled theory of thermoelasticity, the generalized theory of thermoelasticity with one relaxation time, electromagneto thermoelasticity and an introduction to wave propagation in elastic media. Chapter two is devoted to the study of wave propagation for a problem of an infinitely long solid conducting circular cylinder whose lateral surface is traction free and subjected to a known surrounding temperatures in the presence of a uniform magnetic field in the direction of the axis of the cylinder. Laplace transform techniques are used to derive the solution in the Laplace transform domain. The inversion process is carried out using asymptotic expansions valid for short tines. Numerical results are computed for the temperature, displacement, stress,induced magnetic field and induced electric field distributions. The chapter contains also a study of the wave propagation in the elastic medium. In chapter three, we consider the two-dimensional problem of an infinitely long conducting solid cylinder. The lateral surface of the cylinder is taken to be traction free and is subjected to a known temperature distribution independent of z in the presence of a uniform magnetic field in the direction of the axis of the cylinder. Laplace transform techniques are used. The inversion process is carried out using a numerical method based on Fourier series expansions. Numerical results are computed and represented graphically. The chapter contains also a study of the wave propagation in the elastic medium. In chapter four, we consider a two-dimensional problem for an infinity long cylinder. The lateral surface of the cylinder is taken to be traction free and is subjected to a known temperature distribution independent of φ in the presence of a uniform electric field in the direction of the binomial of the cylinder axis. Laplace and

  4. The 2011 marine heat wave in Cockburn Sound, southwest Australia

    Directory of Open Access Journals (Sweden)

    T. H. Rose

    2012-07-01

    Full Text Available Over 2000 km of Western Australian coastline experienced a significant marine heat wave in February and March 2011. Seawater temperature anomalies of +2–4 °C were recorded at a number of locations, and satellite-derived SSTs (sea surface temperatures were the highest on record. Here, we present seawater temperatures from southwestern Australia and describe, in detail, the marine climatology of Cockburn Sound, a large, multiple-use coastal embayment. We compared temperature and dissolved oxygen levels in 2011 with data from routine monitoring conducted from 2002–2010. A significant warming event, 2–4 °C in magnitude, persisted for > 8 weeks, and seawater temperatures at 10 to 20 m depth were significantly higher than those recorded in the previous 9 yr. Dissolved oxygen levels were depressed at most monitoring sites, being ~ 2 mg l−1 lower than usual in early March 2011. Ecological responses to short-term extreme events are poorly understood, but evidence from elsewhere along the Western Australian coastline suggests that the heat wave was associated with high rates of coral bleaching; fish, invertebrate and macroalgae mortalities; and algal blooms. However, there is a paucity of historical information on ecologically-sensitive habitats and taxa in Cockburn Sound, so that formal examinations of biological responses to the heat wave were not possible. The 2011 heat wave provided insights into conditions that may become more prevalent in Cockburn Sound, and elsewhere, if the intensity and frequency of short-term extreme events increases as predicted.

  5. 4He adsorption and third-sound propagation on rough CaF2 surfaces

    International Nuclear Information System (INIS)

    Herrmann, J.C.; Hallock, R.B.

    2003-01-01

    We have investigated the propagation of third sound on well characterized rough CaF 2 surfaces as a function of 4 He film thickness. In addition we have measured the adsorption of 4 He to the CaF 2 surfaces using quartz crystal microbalances. We report values for the superfluid depletion thickness D for the three surfaces examined here. A model for the reduction of the third-sound speed due to the increased helium adsorption on rough CaF 2 is explored

  6. Numerical simulation of ultrasonic wave propagation in elastically anisotropic media

    International Nuclear Information System (INIS)

    Jacob, Victoria Cristina Cheade; Jospin, Reinaldo Jacques; Bittencourt, Marcelo de Siqueira Queiroz

    2013-01-01

    The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment valuation associated to boundary conditions and from these results, the comparison can be made. (author)

  7. Low frequency piezoresonance defined dynamic control of terahertz wave propagation

    Science.gov (United States)

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan

    2016-11-01

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  8. Theory of electromagnetic wave propagation in ferromagnetic Rashba conductor

    Science.gov (United States)

    Shibata, Junya; Takeuchi, Akihito; Kohno, Hiroshi; Tatara, Gen

    2018-02-01

    We present a comprehensive study of various electromagnetic wave propagation phenomena in a ferromagnetic bulk Rashba conductor from the perspective of quantum mechanical transport. In this system, both the space inversion and time reversal symmetries are broken, as characterized by the Rashba field α and magnetization M, respectively. First, we present a general phenomenological analysis of electromagnetic wave propagation in media with broken space inversion and time reversal symmetries based on the dielectric tensor. The dependence of the dielectric tensor on the wave vector q and M is retained to first order. Then, we calculate the microscopic electromagnetic response of the current and spin of conduction electrons subjected to α and M, based on linear response theory and the Green's function method; the results are used to study the system optical properties. First, it is found that a large α enhances the anisotropic properties of the system and enlarges the frequency range in which the electromagnetic waves have hyperbolic dispersion surfaces and exhibit unusual propagations known as negative refraction and backward waves. Second, we consider the electromagnetic cross-correlation effects (direct and inverse Edelstein effects) on the wave propagation. These effects stem from the lack of space inversion symmetry and yield q-linear off-diagonal components in the dielectric tensor. This induces a Rashba-induced birefringence, in which the polarization vector rotates around the vector (α ×q ) . In the presence of M, which breaks time reversal symmetry, there arises an anomalous Hall effect and the dielectric tensor acquires off-diagonal components linear in M. For α ∥M , these components yield the Faraday effect for the Faraday configuration q ∥M and the Cotton-Mouton effect for the Voigt configuration ( q ⊥M ). When α and M are noncollinear, M- and q-induced optical phenomena are possible, which include nonreciprocal directional dichroism in the

  9. Induced wave propagation from a vibrating containment envelope

    International Nuclear Information System (INIS)

    Stout, R.B.; Thigpen, L.; Rambo, J.T.

    1985-09-01

    Low frequency wave forms are observed in the particle velocity measurements around the cavity and containment envelope formed by an underground nuclear test. The vibration solution for a spherical shell is used to formulate a model for the low frequency wave that propagates outward from this region. In this model the containment envelope is the zone of material that is crushed by the compressive shock wave of the nuclear explosion. The containment envelope is approximated by a spherical shell of material. The material in the spherical shell is densified and is given a relatively high kinetic energy density because of the high compressive stress and particle velocity of the shock wave. After the shock wave has propagated through the spherical shell, the spherical shell vibrates in order to dissipate the kinetic energy acquired from the shock wave. Based on the model, the frequency of vibration depends on the dimensions and material properties of the spherical shell. The model can also be applied in an inverse mode to obtain global estimates of averaged materials properties. This requires using experimental data and semi-empirical relationships involving the material properties. A particular case of estimating a value for shear strength is described. Finally, the oscillation time period of the lowest frequency from five nuclear tests is correlated with the energy of the explosion. The correlation provides another diagnostic to estimate the energy of a nuclear explosion. Also, the longest oscillation time period measurement provides additional experimental data that can be used to assess and validate various computer models. 11 refs., 2 figs

  10. A phase space approach to wave propagation with dispersion.

    Science.gov (United States)

    Ben-Benjamin, Jonathan S; Cohen, Leon; Loughlin, Patrick J

    2015-08-01

    A phase space approximation method for linear dispersive wave propagation with arbitrary initial conditions is developed. The results expand on a previous approximation in terms of the Wigner distribution of a single mode. In contrast to this previously considered single-mode case, the approximation presented here is for the full wave and is obtained by a different approach. This solution requires one to obtain (i) the initial modal functions from the given initial wave, and (ii) the initial cross-Wigner distribution between different modal functions. The full wave is the sum of modal functions. The approximation is obtained for general linear wave equations by transforming the equations to phase space, and then solving in the new domain. It is shown that each modal function of the wave satisfies a Schrödinger-type equation where the equivalent "Hamiltonian" operator is the dispersion relation corresponding to the mode and where the wavenumber is replaced by the wavenumber operator. Application to the beam equation is considered to illustrate the approach.

  11. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  12. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    Science.gov (United States)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the

  13. Oblique Propagation of Fast Surface Waves in a Low-Beta Hall-Magnetohydrodynamics Plasma Slab

    International Nuclear Information System (INIS)

    Zhelyazkov, I.; Mann, G.

    1999-01-01

    The oblique propagation of fast sausage and kink magnetohydrodynamics (MHD) surface waves in an ideal magnetized plasma slab in the low-beta plasma limit is studied considering the Hall term in the generalized Ohm's law. It is found that the combined action of the Hall effect and oblique wave propagation makes possible the existence of multivalued solutions to the wave dispersion relations - some of them corresponding to positive values of the transfer wave number, k y , undergo a 'propagation stop' at specific (numerically found) full wave numbers. It is also shown that with growing wave number the waves change their nature - from bulk modes to pseudosurface or pure surface waves. (author)

  14. Nonlinear effects during sound propagation in n-InSb at 4.20K

    International Nuclear Information System (INIS)

    Ilisavskij, Yu.V.; Chiplis, D.

    1975-01-01

    The absorption of transverse sound and the influence of longitudinal electric and magnetic fields thereon were studied in n-InSb at 4.2 0 K over a wide range of frequencies and intensities. The electron absorption of sound was found to depend strongly on input intensity due to the heating of electrons by the sound wave. It was discovered that the observed non-linearity was suppressed by the electric field. On the basis of comparison of the experimental results with the existing theories it is concluded that during the heating of electrons by sound, apart from changes in mobility, the carrier concentration in the conductivity band is also substantially changed. The measurements in the magnetic field agree qualitatively with the two-band conductivity model. (author)

  15. Digitizing Sound: How Can Sound Waves be Turned into Ones and Zeros?

    Science.gov (United States)

    Vick, Matthew

    2010-10-01

    From MP3 players to cell phones to computer games, we're surrounded by a constant stream of ones and zeros. Do we really need to know how this technology works? While nobody can understand everything, digital technology is increasingly making our lives a collection of "black boxes" that we can use but have no idea how they work. Pursuing scientific literacy should propel us to open up a few of these metaphorical boxes. High school physics offers opportunities to connect the curriculum to sports, art, music, and electricity, but it also offers connections to computers and digital music. Learning activities about digitizing sounds offer wonderful opportunities for technology integration and student problem solving. I used this series of lessons in high school physics after teaching about waves and sound but before optics and total internal reflection so that the concepts could be further extended when learning about fiber optics.

  16. Application of electromagnetic and sound waves in nutritional assessment

    International Nuclear Information System (INIS)

    Heymsfield, S.B.; Rolandelli, R.; Casper, K.; Settle, R.G.; Koruda, M.

    1987-01-01

    Four relatively new techniques that apply electromagnetic or sound waves promise to play a major role in the study of human body composition and in clinical nutritional assessment. Computerized axial tomography, nuclear magnetic resonance, infrared interactance, and ultrasonography provide capabilities for measuring the following: total body and regional fat volume; regional skeletal muscle volume; brain, liver, kidney, heart, spleen, and tumor volume; lean tissue content of triglyceride, iron, and high-energy intermediates; bone density; and cardiac function. Each method is reviewed with regard to basic principles, research and clinical applications, strengths, and limitations.33 references

  17. Modeling of shock wave propagation in large amplitude ultrasound.

    Science.gov (United States)

    Pinton, Gianmarco F; Trahey, Gregg E

    2008-01-01

    The Rankine-Hugoniot relation for shock wave propagation describes the shock speed of a nonlinear wave. This paper investigates time-domain numerical methods that solve the nonlinear parabolic wave equation, or the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and the conditions they require to satisfy the Rankine-Hugoniot relation. Two numerical methods commonly used in hyperbolic conservation laws are adapted to solve the KZK equation: Godunov's method and the monotonic upwind scheme for conservation laws (MUSCL). It is shown that they satisfy the Rankine-Hugoniot relation regardless of attenuation. These two methods are compared with the current implicit solution based method. When the attenuation is small, such as in water, the current method requires a degree of grid refinement that is computationally impractical. All three numerical methods are compared in simulations for lithotripters and high intensity focused ultrasound (HIFU) where the attenuation is small compared to the nonlinearity because much of the propagation occurs in water. The simulations are performed on grid sizes that are consistent with present-day computational resources but are not sufficiently refined for the current method to satisfy the Rankine-Hugoniot condition. It is shown that satisfying the Rankine-Hugoniot conditions has a significant impact on metrics relevant to lithotripsy (such as peak pressures) and HIFU (intensity). Because the Godunov and MUSCL schemes satisfy the Rankine-Hugoniot conditions on coarse grids, they are particularly advantageous for three-dimensional simulations.

  18. Propagation of three-dimensional electron-acoustic solitary waves

    International Nuclear Information System (INIS)

    Shalaby, M.; El-Sherif, L. S.; El-Labany, S. K.; Sabry, R.

    2011-01-01

    Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.

  19. Linear wave propagation in a hot axisymmetric toroidal plasma

    International Nuclear Information System (INIS)

    Jaun, A.

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell's equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models' resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs

  20. Linear wave propagation in a hot axisymmetric toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jaun, A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell`s equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models` resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs.

  1. Propagation of internal gravity waves in the inhomogeneous atmosphere

    International Nuclear Information System (INIS)

    Deminov, M.G.; Ponomareva, L.I.

    1988-01-01

    Equations for disturbances of the density, temperature and speed of large-scale horizontally propagating internal gravity wave (IGM) wind are presented with regard to non-linearity, dispersion, molecular viscosity, thermal conductivity and background horizontal density and wind speed gradients. It is shown that values of wind speed and background atmosphere density decrease, typical of night conditions, provide for IGV amplitude increase near 250 km above the equator about 1.5 times, which with regard to the both hemispheres, fully compensates the effect of viscosity and thermal conductivity under increased solar activity. Speed and density decrease along IGW propagation can be provided both by background distribution of thermosphere parameters and by the front of a large-scale IGW on the background of which isolated IGW amplitude can grow

  2. Propagation of spiral waves pinned to circular and rectangular obstacles.

    Science.gov (United States)

    Sutthiopad, Malee; Luengviriya, Jiraporn; Porjai, Porramain; Phantu, Metinee; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya

    2015-05-01

    We present an investigation of spiral waves pinned to circular and rectangular obstacles with different circumferences in both thin layers of the Belousov-Zhabotinsky reaction and numerical simulations with the Oregonator model. For circular objects, the area always increases with the circumference. In contrast, we varied the circumference of rectangles with equal areas by adjusting their width w and height h. For both obstacle forms, the propagating parameters (i.e., wavelength, wave period, and velocity of pinned spiral waves) increase with the circumference, regardless of the obstacle area. Despite these common features of the parameters, the forms of pinned spiral waves depend on the obstacle shapes. The structures of spiral waves pinned to circles as well as rectangles with the ratio w/h∼1 are similar to Archimedean spirals. When w/h increases, deformations of the spiral shapes are observed. For extremely thin rectangles with w/h≫1, these shapes can be constructed by employing semicircles with different radii which relate to the obstacle width and the core diameter of free spirals.

  3. Wave propagation downstream of a high power helicon in a dipolelike magnetic field

    International Nuclear Information System (INIS)

    Prager, James; Winglee, Robert; Roberson, B. Race; Ziemba, Timothy

    2010-01-01

    The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.

  4. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice

    Science.gov (United States)

    Khanikaev, Alexander B.; Fleury, Romain; Mousavi, S. Hossein; Alù, Andrea

    2015-10-01

    Topological insulators do not allow conduction in the bulk, yet they support edge modes that travel along the boundary only in one direction, determined by the carried electron spin, with inherent robustness to defects and disorder. Topological insulators have inspired analogues in photonics and optics, in which one-way edge propagation in topologically protected two-dimensional materials is achieved breaking time-reversal symmetry with a magnetic bias. Here, we introduce the concept of topological order in classical acoustics, realizing robust topological protection and one-way edge propagation of sound in a suitably designed resonator lattice biased with angular momentum, forming the acoustic analogue of a magnetically biased graphene layer. Extending the concept of an acoustic nonreciprocal circulator based on angular-momentum bias, time-reversal symmetry is broken here using moderate rotational motion of air within each element of the lattice, which takes the role of the electron spin in determining the direction of modal edge propagation.

  5. Numerical simulation of stress wave propagation from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, J T; Petersen, F L [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    This paper presents a numerical model of stress wave propagation (SOC) which uses material properties data from a preshot testing program to predict the stress-induced effects on the rock mass involved in a Plowshare application. SOC calculates stress and particle velocity history, cavity radius, extent of brittle failure, and the rock's efficiency for transmitting stress. The calculations are based on an equation of state for the rock, which is developed from preshot field and laboratory measurements of the rock properties. The field measurements, made by hole logging, determine in situ values of the rock's density, water content, and propagation velocity for elastic waves. These logs also are useful in judging the layering of the rock and in choosing which core samples to test in the laboratory. The laboratory analysis of rock cores includes determination of hydrostatic compressibility to 40 kb, triaxial strength data, tensile strength, Hugoniot elastic limit, and, for the rock near the point of detonation, high-pressure Hugoniot data. Equation-of-state data are presented for rock from three sites subjected to high explosive or underground nuclear shots, including the Hardhat and Gasbuggy sites. SOC calculations of the effects of these two shots on the surrounding rock are compared with the observed effects. In both cases SOC predicts the size of the cavity quite closely. Results of the Gasbuggy calculations indicate that useful predictions of cavity size and chimney height can be made when an adequate preshot testing program is run to determine the rock's equation of state. Seismic coupling is very sensitive to the low-pressure part of the equation of state, and its successful prediction depends on agreement between the logging data and the static compressibility data. In general, it appears that enough progress has been made in calculating stress wave propagation to begin looking at derived numbers, such as number of cracks per zone, for some insight into the

  6. Numerical simulation of stress wave propagation from underground nuclear explosions

    International Nuclear Information System (INIS)

    Cherry, J.T.; Petersen, F.L.

    1970-01-01

    This paper presents a numerical model of stress wave propagation (SOC) which uses material properties data from a preshot testing program to predict the stress-induced effects on the rock mass involved in a Plowshare application. SOC calculates stress and particle velocity history, cavity radius, extent of brittle failure, and the rock's efficiency for transmitting stress. The calculations are based on an equation of state for the rock, which is developed from preshot field and laboratory measurements of the rock properties. The field measurements, made by hole logging, determine in situ values of the rock's density, water content, and propagation velocity for elastic waves. These logs also are useful in judging the layering of the rock and in choosing which core samples to test in the laboratory. The laboratory analysis of rock cores includes determination of hydrostatic compressibility to 40 kb, triaxial strength data, tensile strength, Hugoniot elastic limit, and, for the rock near the point of detonation, high-pressure Hugoniot data. Equation-of-state data are presented for rock from three sites subjected to high explosive or underground nuclear shots, including the Hardhat and Gasbuggy sites. SOC calculations of the effects of these two shots on the surrounding rock are compared with the observed effects. In both cases SOC predicts the size of the cavity quite closely. Results of the Gasbuggy calculations indicate that useful predictions of cavity size and chimney height can be made when an adequate preshot testing program is run to determine the rock's equation of state. Seismic coupling is very sensitive to the low-pressure part of the equation of state, and its successful prediction depends on agreement between the logging data and the static compressibility data. In general, it appears that enough progress has been made in calculating stress wave propagation to begin looking at derived numbers, such as number of cracks per zone, for some insight into the

  7. Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets

    Science.gov (United States)

    Kadri, Usama; Abdolali, Ali; Kirby, James T.

    2017-04-01

    We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234

  8. Jump in the amplitude of a sound wave associated with contraction of a nitrogen discharge

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Mkrtchyan, A.R.; Tavakalyan, L.B.

    1993-01-01

    The use of a sound wave created by an external source and directed along the positive column of a nitrogen discharge in order to make the discharge pass to the contracted state is studied experimentally. A phenomenon involving a jump in the sound wave amplitude, caused by the discharge contraction, is observed and studied. It is established that the amplitude of the sound wave as a function of the discharge current near the jump exhibits hysteresis. It is shown that in the field of a high-intensity sound wave causing the discharge to expand eliminates the jump in the sound amplitude. The dependence of the growth time of the sound amplitude caused by the jump in this quantity on the sound wave intensity is determined. 24 refs., 4 figs., 1 tab

  9. Development of an analysis code for pressure wave propagation, (1)

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Sakano, Kosuke; Shindo, Yoshihisa

    1974-11-01

    We analyzed the propagation of the pressure-wave in the piping system of SWAT-1B rig by using SWAC-5 Code. We carried out analyses on the following parts. 1) A straight pipe 2) Branches 3) A piping system The results obtained in these analyses are as follows. 1) The present our model simulates well the straight pipe and the branch with the same diameters. 2) The present our model simulates approximately the branch with the different diameters and the piping system. (auth.)

  10. Investigation of guided waves propagation in pipe buried in sand

    International Nuclear Information System (INIS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.

    2014-01-01

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence

  11. Acoustic Wave Propagation Modeling by a Two-dimensional Finite-difference Summation-by-parts Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.

  12. Propagation of nonlinear waves over submerged step: wave separation and subharmonic generation

    Science.gov (United States)

    Monsalve, Eduardo; Maurel, Agnes; Pagneux, Vincent; Petitjeans, Philippe

    2015-11-01

    Water waves can be described in simplified cases by the Helmholtz equation. However, even in these cases, they present a high complexity, among which their dispersive character and their nonlinearities are the subject of the present study. Using Fourier Transform Profilometry, we study experimentally the propagation of waves passing over a submerged step. Because of the small water depth after the step, the wave enters in a nonlinear regime. In the shallow water region, the second harmonic leads to two types of waves: bound waves which are slaves of the fundamental frequency with wavenumber 2 k (ω) , and free waves which propagate according to the usual dispersion relation with wavenumber k (2 ω) . Because of the presence of these two waves, beats are produced at the second harmonic with characteristic beat length. In this work, for the first time we extended this analysis to the third and higher harmonics. Next, the region after the step is limited to a finite size L with a reflecting wall. For certain frequencies and L- values, the spectral component becomes involved, with the appearance of sub harmonics. This regime is analyzed in more details, suggesting a transition to a chaotic and quasi-periodic wave behavior.

  13. Dirac equation and optical wave propagation in one dimension

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Gabriel [Catedras CONACYT, Universidad Autonoma de San Luis Potosi (Mexico); Coordinacion para la Innovacion y la Aplicacion de la Ciencia y la Tecnologia, Universidad Autonoma de San Luis Potosi (Mexico)

    2018-02-15

    We show that the propagation of transverse electric (TE) polarized waves in one-dimensional inhomogeneous settings can be written in the form of the Dirac equation in one space dimension with a Lorentz scalar potential, and consequently perform photonic simulations of the Dirac equation in optical structures. In particular, we propose how the zero energy state of the Jackiw-Rebbi model can be generated in an optical set-up by controlling the refractive index landscape, where TE-polarized waves mimic the Dirac particles and the soliton field can be tuned by adjusting the refractive index. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Measurements on wave propagation characteristics of spiraling electron beams

    Science.gov (United States)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  15. Propagation characteristic of THz wave in camouflage net material

    Science.gov (United States)

    Dong, Hailong; Wang, Jiachun; Chen, Zongsheng; Lin, Zhidan; Zhao, Dapeng; Liu, Ruihuang

    2017-10-01

    Terahertz (THz) radar system, with excellent potentials such as high-resolution and strong penetration capability, is promising in the field of anti-camouflage. Camouflage net is processed by cutting the camouflage net material, which is fabricated on pre-processing substrate by depositing coatings with camouflage abilities in different bands, such as visible, infrared and radar. In this paper, we concentrate on the propagation characteristic of THz wave in camouflage net material. Firstly, function and structure of camouflage net were analyzed. Then the advantage and appliance of terahertz time-domain spectroscopy (THz-TDS) was introduced. And the relevant experiments were conducted by utilizing THz-TDS. The results obtained indicate that THz wave has better penetration capacity in camouflage net material, which demonstrates the feasibility of using THz radar to detect those targets covered with camouflage net.

  16. Fully resolved simulations of expansion waves propagating into particle beds

    Science.gov (United States)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.

    2017-11-01

    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  17. Rigorous vector wave propagation for arbitrary flat media

    Science.gov (United States)

    Bos, Steven P.; Haffert, Sebastiaan Y.; Keller, Christoph U.

    2017-08-01

    Precise modelling of the (off-axis) point spread function (PSF) to identify geometrical and polarization aberrations is important for many optical systems. In order to characterise the PSF of the system in all Stokes parameters, an end-to-end simulation of the system has to be performed in which Maxwell's equations are rigorously solved. We present the first results of a python code that we are developing to perform multiscale end-to-end wave propagation simulations that include all relevant physics. Currently we can handle plane-parallel near- and far-field vector diffraction effects of propagating waves in homogeneous isotropic and anisotropic materials, refraction and reflection of flat parallel surfaces, interference effects in thin films and unpolarized light. We show that the code has a numerical precision on the order of 10-16 for non-absorbing isotropic and anisotropic materials. For absorbing materials the precision is on the order of 10-8. The capabilities of the code are demonstrated by simulating a converging beam reflecting from a flat aluminium mirror at normal incidence.

  18. Obliquely propagating large amplitude solitary waves in charge neutral plasmas

    Directory of Open Access Journals (Sweden)

    F. Verheest

    2007-01-01

    Full Text Available This paper deals in a consistent way with the implications, for the existence of large amplitude stationary structures in general plasmas, of assuming strict charge neutrality between electrons and ions. With the limit of pair plasmas in mind, electron inertia is retained. Combining in a fluid dynamic treatment the conservation of mass, momentum and energy with strict charge neutrality has indicated that nonlinear solitary waves (as e.g. oscillitons cannot exist in electron-ion plasmas, at no angle of propagation with respect to the static magnetic field. Specifically for oblique propagation, the proof has turned out to be more involved than for parallel or perpendicular modes. The only exception is pair plasmas that are able to support large charge neutral solitons, owing to the high degree of symmetry naturally inherent in such plasmas. The nonexistence, in particular, of oscillitons is attributed to the breakdown of the plasma approximation in dealing with Poisson's law, rather than to relativistic effects. It is hoped that future space observations will allow to discriminate between oscillitons and large wave packets, by focusing on the time variability (or not of the phase, since the amplitude or envelope graphs look very similar.

  19. Surface Waves Propagating on Grounded Anisotropic Dielectric Slab

    Directory of Open Access Journals (Sweden)

    Zhuozhu Chen

    2018-01-01

    Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.

  20. Numerical Simulations of Upstream Propagating Solitary Waves and Wave Breaking In A Stratified Fjord

    Science.gov (United States)

    Stastna, M.; Peltier, W. R.

    In this talk we will discuss ongoing numerical modeling of the flow of a stratified fluid over large scale topography motivated by observations in Knight Inlet, a fjord in British Columbia, Canada. After briefly surveying the work done on the topic in the past we will discuss our latest set of simulations in which we have observed the gener- ation and breaking of three different types of nonlinear internal waves in the lee of the sill topography. The first type of wave observed is a large lee wave in the weakly strat- ified main portion of the water column, The second is an upward propagating internal wave forced by topography that breaks in the strong, near-surface pycnocline. The third is a train of upstream propagating solitary waves that, in certain circumstances, form as breaking waves consisting of a nearly solitary wave envelope and a highly unsteady core near the surface. Time premitting, we will comment on the implications of these results for our long term goal of quantifying tidally driven mixing in Knight Inlet.

  1. Propagation of waves at the loosely bonded interface of two porous elastic half-spaces

    International Nuclear Information System (INIS)

    Tajuddin, M.

    1993-10-01

    Employing Biot's theory for wave propagation in porous solids, the propagation of waves at the loosely bonded interface between two poroelastic half-spaces is examined theoretically. The analogous study of Stoneley waves for smooth interface and bonded interface form a limiting case. The results due to classical theory are shown as a special case. (author). 13 refs

  2. Parametric Excitations of Fast Plasma Waves by Counter-propagating Laser Beams

    International Nuclear Information System (INIS)

    Shvets, G.; Fisch, N.J.

    2001-01-01

    Short- and long-wavelength plasma waves can become strongly coupled in the presence of two counter-propagating laser pump pulses detuned by twice the cold plasma frequency. What makes this four-wave interaction important is that the growth rate of the plasma waves occurs much faster than in the more obvious co-propagating geometry

  3. Computational study of nonlinear plasma waves. I. Simulation model and monochromatic wave propagation

    International Nuclear Information System (INIS)

    Matsuda, Y.; Crawford, F.W.

    1975-01-01

    An economical low-noise plasma simulation model originated by Denavit is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation. These tests serve to establish the low-noise features of the model, and to verify the theoretical linear dispersion relation at wave energy levels as low as 10 -6 of the plasma thermal energy: Better quantitative results are obtained, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories

  4. Propagation of stationary Rossby waves in the Martian lower atmosphere

    Science.gov (United States)

    Ghosh, Priyanka; Thokuluwa, Ramkumar

    The Martian lower atmospheric (-1.5 km to 29.3 km) temperature, measured by radio occultation technique during the Mars Global Surveyor (MGS) mission launched by US in November 1996, at the Northern winter hemispheric latitude of about 63(°) N clearly shows a statistically significant (above 95 percent confidential level white noise) and strong 3.5-day oscillation during 1-10 January 2006. This strong signal occurs in the longitudinal sectors of 0-30(°) E and 190-230(°) E but statistically insignificant in almost all the other longitudes. This 180 degree separation between the two peaks of occurrence of strong 3.5 day oscillation indicates that this may be associated with zonal wave number 2 structure global scale wave. At the lowest height of -1.5 km, the power observed in the longitude of 0-30(°) E is 50 K (2) and it increased gradually to the maximum power of 130 K (2) at the height of 0.8 - 1.7 km. Above this height, the power decreased monotonously and gradually to insignificant level at the height of 3.7 km (20 K (2) ). This gradual decrease of power above the height of 1.7 km indicates that radiative damping (infra red cooling due to large abundance of CO _{2} molecules and dust particles) would have played an important role in the dissipation of waves. The height and longitudinal profiles of phase of the 3.5-day wave indicate that this wave is a vertically standing and eastward propagating planetary wave respectively. Since the statistically significant spectral amplitude occurs near the high topography structures, it seems that the wave is generated by flows over the topography. In the Northern winter, it is possible that the large gradient of temperature between the low and high latitudes would lead to flow of winds from the tropical to polar latitudes. Due to the Coriolis effect, this flow would in turn move towards the right and incite wave generation when the air flows over the high topographic structures. This lead to speculate that the observed 3

  5. Experimental implementation of a low-frequency global sound equalization method based on free field propagation

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Pedersen, Christian Sejer; Lydolf, Morten

    2007-01-01

    An experimental implementation of a global sound equalization method in a rectangular room using active control is described in this paper. The main purpose of the work has been to provide experimental evidence that sound can be equalized in a continuous three-dimensional region, the listening zone......, which occupies a considerable part of the complete volume of the room. The equalization method, based on the simulation of a progressive plane wave, was implemented in a room with inner dimensions of 2.70 m x 2.74 m x 2.40 m. With this method,the sound was reproduced by a matrix of 4 x 5 loudspeakers...... in one of the walls. After traveling through the room, the sound wave was absorbed on the opposite wall, which had a similar arrangement of loudspeakers, by means of active control. A set of 40 digital FIR filters was used to modify the original input signal before it was fed to the loudspeakers, one...

  6. SIMULATION OF NEGATIVE PRESSURE WAVE PROPAGATION IN WATER PIPE NETWORK

    Directory of Open Access Journals (Sweden)

    Tang Van Lam

    2017-11-01

    Full Text Available Subject: factors such as pipe wall roughness, mechanical properties of pipe materials, physical properties of water affect the pressure surge in the water supply pipes. These factors make it difficult to analyze the transient problem of pressure evolution using simple programming language, especially in the studies that consider only the magnitude of the positive pressure surge with the negative pressure phase being neglected. Research objectives: determine the magnitude of the negative pressure in the pipes on the experimental model. The propagation distance of the negative pressure wave will be simulated by the valve closure scenarios with the help of the HAMMER software and it is compared with an experimental model to verify the quality the results. Materials and methods: academic version of the Bentley HAMMER software is used to simulate the pressure surge wave propagation due to closure of the valve in water supply pipe network. The method of characteristics is used to solve the governing equations of transient process of pressure change in the pipeline. This method is implemented in the HAMMER software to calculate the pressure surge value in the pipes. Results: the method has been applied for water pipe networks of experimental model, the results show the affected area of negative pressure wave from valve closure and thereby we assess the largest negative pressure that may appear in water supply pipes. Conclusions: the experiment simulates the water pipe network with a consumption node for various valve closure scenarios to determine possibility of appearance of maximum negative pressure value in the pipes. Determination of these values in real-life network is relatively costly and time-consuming but nevertheless necessary for identification of the risk of pipe failure, and therefore, this paper proposes using the simulation model by the HAMMER software. Initial calibration of the model combined with the software simulation results and

  7. Wave propagation simulation of radio occultations based on ECMWF refractivity profiles

    DEFF Research Database (Denmark)

    von Benzon, Hans-Henrik; Høeg, Per

    2015-01-01

    This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated...... of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get...... a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise...

  8. Coronal Seismology: The Search for Propagating Waves in Coronal Loops

    Science.gov (United States)

    Schad, Thomas A.; Seeley, D.; Keil, S. L.; Tomczyk, S.

    2007-05-01

    We report on Doppler observations of the solar corona obtained in the Fe XeXIII 1074.7nm coronal emission line with the HAO Coronal Multi-Channel Polarimeter (CoMP) mounted on the NSO Coronal One Shot coronagraph located in the Hilltop Facility of NSO/Sacramento Peak. The COMP is a tunable filtergraph instrument that records the entire corona from the edge of the occulting disk at approximately 1.03 Rsun out to 1.4 Rsun with a spatial resolution of about 4” x 4”. COMP can be rapidly scanned through the spectral line while recording orthogonal states of linear and circular polarization. The two dimensional spatial resolution allows us to correlate temporal fluctuations observed in one part of the corona with those seen at other locations, in particular along coronal loops. Using cross spectral analysis we find that the observations reveal upward propagating waves that are characterized by Doppler shifts with rms velocities of 0.3 km/s, peak wave power in the 3-5 mHz frequency range, and phase speeds 1-3 Mm/s. The wave trajectories are consistent with the direction of the magnetic field inferred from the linear polarization measurements. We discuss the phase and coherence of these waves as a function of height in the corona and relate our findings to previous observations. The observed waves appear to be Alfvenic in character. "Thomas Schad was supported through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program." Daniel Seeley was supported through the National Solar Observatory Research Experience for Teachers (RET) site program, which is funded by the National Science Foundation RET program.

  9. Measurement on the effect of sound wave in upper plenum of boiling water reactor

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    In recent years, the power uprate of Boiling Water Reactors have been conducted at several existing power plants as a way to improve plant economy. In one of the power uprated plants (117.8% uprates) in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In this study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on natural convection and forced convection. Especially, when the phases of acoustic sources were different, various acoustic wave effects were checked. (author)

  10. Investigation on ultrasonic guided waves propagation in elbow pipe

    International Nuclear Information System (INIS)

    Qi, Minxin; Zhou, Shaoping; Ni, Jing; Li, Yong

    2016-01-01

    Pipeline plays an indispensable role in process industries, whose structural integrity is of great significance for the safe production. In this paper, the axial crack-like defects in 90° elbows are inspected by using the T (0, 1) mode guided waves. The detection sensitivity for different defect locations is firstly investigated by guided waves experimentally. The propagation of guided waves in the bent pipe is then simulated by using finite element method. The results show that the rates of T (0, 1) mode passing through elbow correlate strongly with the excitation frequency. Less mode conversion is generated at the frequency of 38 kHz when passing through the elbow, while most of energy converted into F (1, 2) mode at the frequency of 75 kHz. The crack in different locations of the elbow can affect the rates of mode conversion. It can be found that the crack in the middle of the elbow inhibits mode conversion and shares the highest detection sensitivity, while the crack in the extrados of elbow causes more mode conversion.

  11. FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma

    Science.gov (United States)

    Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun

    2016-08-01

    The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)

  12. Propagation of a hybrid inferior wave in axisymmetrical plasma

    International Nuclear Information System (INIS)

    Fivaz, M.; Appert, K.; Krlin, L.

    1990-05-01

    The linear propagation of hybrid inferior waves in an axisymmetrical plasma (magnetohydrodynamic equilibrium of the Soloviev type) has been numerically simulated. The evolution of k // (component of the wave vector k parallel to the magnetic field B), important for current drive modelling, has been studied as a function of the geometric parameters of the equilibrium: aspect ratio, ellipticity and triangularity. The results show that k // depends abruptly on the parameters; the engendered structures are very rich. Two mechanisms by which k // increases have been shown: the 'resonance' occurring in small bands of the space of the parameters and which is associated with trajectories in (R,Z) near stabilization; a stochastic evolution resembling diffusion in equlibriums of very high triangularity. However, a strong increase of k // of a part of the waves, susceptible of engendering a current in the plasma, has only been observed in a minority of cases. In literature current drive experiments have been reported which work and whose parameters are a priori such that our model cannot be expected to show the desired growth of k // . Consequently, our model, which is similar to normally used models, does not explain the current drive. 5 refs., 16 figs

  13. Bulk elastic wave propagation in partially saturated porous solids

    International Nuclear Information System (INIS)

    Berryman, J.G.; Thigpen, L.; Chin, R.C.Y.

    1988-01-01

    The linear equations of motion that describe the behavior of small disturbances in a porous solid containing both liquid and gas are solved for bulk wave propagation. The equations have been simplified by neglecting effects due to changes in capillary pressure. With this simplifying assumption, the equations reduce to two coupled (vector) equations of the form found in Biot's equations (for full saturation) but with more complicated coefficients. As in fully saturated solids, two shear waves with the same speed but different polarizations exist as do two compressional waves with distinct speeds. Attenuation effects can be enhanced in the partially saturated solid, depending on the distribution of gas in the pore space. Two models of the liquid/gas spatial distribution are considered: a segregated-fluids model and a mixed-fluids model. The two models predict comparable attentuation when the gas saturation is low, but the segregated-fluids model predicts a more rapid roll-off of attenuation as the gas saturation increases

  14. Experimental study of the fast wave propagation in TFR

    International Nuclear Information System (INIS)

    1981-02-01

    Several experiments (PLT, DIVA, ERASMUS, TFR) have shown that the heating mechanism of ICRF is dominated in Tokamaks by the presence of the ion-ion hybrid layer. The first experimental evidence of this effect came from propagation studies: a very strong damping was observed on magnetic probes since the hybrid layer was inside the plasma. Comparison with simple models which do not take into account boundary conditions have been undertaken. Recently a new theoretical model has been developped. Based on a plane, inhomogeneous, bounded plasma, it shows that the radial structure of the fast wave and hence the loading impedance of the launching coil depends on the position of the hybrid layer with respect to the plasma boundaries. This result is obtained by solving the wave equation, in the cold plasma approximation. We present here, a serie of experiments, performed in TFR. It confirms the validity of that model underlining thus the importance of radial eigenmodes, when the wave conversion layer is inside the plasma

  15. Investigation of fourth sound propagation in HeII in the presence of superflow

    International Nuclear Information System (INIS)

    Andrei, Y.E.

    1980-01-01

    The temperature dependence of a superflow-induced downshift of the fourth sound velocity in HeII confined in various restrictive media was measured. We found that the magnitude of the downshift strongly depends on the restrictive medium, whereas the temperature dependence is universal. The results are interpreted in terms of local superflow velocities approaching the Landau critical velocity. This model provides and understanding of the nature of the downshift and correctly predicts temperature dependence. The results show that the Landau excitation model, even when used at high velocities, where interactions between elementary excitations are substantial, hield good agreement with experiment when a first order correction is introduced to account for these interactions. In a separate series of experiments, fourth sound-like propagation in HeII in a grafoil-filled resonator was observed. The sound velocity was found to be more than an order of magnitude smaller than that of ordinary fourth sound. This significant reduction is explained in terms of a model in which the pore structure in grafoil is pictured as an ensemble of coupled Helmholz resonators

  16. Development of a Finite-Difference Time Domain (FDTD) Model for Propagation of Transient Sounds in Very Shallow Water.

    Science.gov (United States)

    Sprague, Mark W; Luczkovich, Joseph J

    2016-01-01

    This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources.

  17. Plasma oscillations and sound waves in collision-dominated two-component plasmas

    International Nuclear Information System (INIS)

    Hansen, J.P.; Sjoegren, L.

    1982-01-01

    Charge, mass, and electron density fluctuation spectra of strongly correlated, fully ionized two-component plasmas within the framework of the Mori--Zwanzig memory function formalism are analyzed. All dynamical correlation functions are expressed in terms of the memory functions of the ion and electron velocity autocorrelation functions by a generalized effective field approximation which preserves the exact initial values (i.e., static correlations). The theory reduces correctly to the mean field (or collisionless Vlasov) results in the weak coupling limit, and yields charge density fluctuation spectra in good agreement with available computer simulation data, as well as reasonable estimates of the transport coefficients. The collisional damping and frequency shift of the plasma oscillation mode are sizeable, even in the long wavelength limit. The theory also predicts the propagation of well-defined sound waves in dense plasmas in thermal equilibrium

  18. Method of synthesizing silica nanofibers using sound waves

    Science.gov (United States)

    Sharma, Jaswinder K.; Datskos, Panos G.

    2015-09-15

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  19. Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers

    International Nuclear Information System (INIS)

    Jou, D.; Cimmelli, V.A.; Sellitto, A.

    2009-01-01

    It is shown that the dispersion relation of heat waves along nanowires or thin layers could allow to compare two different definitions of nonequilibrium temperature, since thermal waves are predicted to propagate with different phase speed depending on the definition of nonequilibrium temperature being used. The difference is small, but it could be in principle measurable in nanosystems, as for instance nanowires and thin layers, in a given frequency range. Such an experiment could provide a deeper view on the problem of the definition of temperature in nonequilibrium situations.

  20. Ducted electromagnetic waves in the Martian ionosphere detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar

    Science.gov (United States)

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2016-07-01

    In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.

  1. Variational structure of inverse problems in wave propagation and vibration

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    1995-03-01

    Practical algorithms for solving realistic inverse problems may often be viewed as problems in nonlinear programming with the data serving as constraints. Such problems are most easily analyzed when it is possible to segment the solution space into regions that are feasible (satisfying all the known constraints) and infeasible (violating some of the constraints). Then, if the feasible set is convex or at least compact, the solution to the problem will normally lie on the boundary of the feasible set. A nonlinear program may seek the solution by systematically exploring the boundary while satisfying progressively more constraints. Examples of inverse problems in wave propagation (traveltime tomography) and vibration (modal analysis) will be presented to illustrate how the variational structure of these problems may be used to create nonlinear programs using implicit variational constraints.

  2. Radio-wave propagation for space communications systems

    Science.gov (United States)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  3. Modes in light wave propagating in semiconductor laser

    Science.gov (United States)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  4. Dynamic PIV measurement of the effect of sound waves in the upper plenum of the boiling water reactor

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    In recent years, power uprating of boiling power reactors has been conducted at several existing power plants in order to improve plant economy. In one power uprated plant (117.8% uprate) in the United States, steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound waves into the steam-dome. The resonance among the structure, the flow, and the pressure fluctuation resulted in the breakages. In order to clarify the basic mechanism of the resonance, previous studies were performed by conducting a point measurement of the pressure and a phase averaged measurement of the flow, although detecting the interaction among the structure, the flow, and the pressure fluctuation by the conventional method was difficult. In a preliminary study, a dynamic Particle Image Velocimetry (PIV) system was used to investigate the effect of sound on the flow. A dynamic PIV system is the newest entrant to the field of fluid flow measurement. Its paramount advantage is the instantaneous global evaluation of conditions over a plane extended across the entire velocity field. Using the dynamic PIV system, the influence of sound waves on the flow field was measured. As a result, when two speakers were placed diagonally and sound waves were presented in the same phase, vertical motion was strongly observed compared to horizontal motion. (author)

  5. On propagation of electromagnetic and gravitational waves in the expanding Universe

    International Nuclear Information System (INIS)

    Gladyshev, V O

    2016-01-01

    The purpose of this study was to obtain an equation for the propagation time of electromagnetic and gravitational waves in the expanding Universe. The velocity of electromagnetic waves propagation depends on the velocity of the interstellar medium in the observer's frame of reference. Gravitational radiation interacts weakly with the substance, so electromagnetic and gravitational waves propagate from a remote astrophysical object to the terrestrial observer at different time. Gravitational waves registration enables the inverse problem solution - by the difference in arrival time of electromagnetic and gravitational-wave signal, we can determine the characteristics of the emitting area of the astrophysical object. (paper)

  6. Propagation of fast ionization waves in long discharge tubes filled with a preionized gas

    International Nuclear Information System (INIS)

    Boutine, O.V.; Vasilyak, L.M.

    1999-01-01

    The propagation of fast ionization waves in discharge tubes is modeled with allowance for radial variations in the electric potential, nonlocal dependence of the plasma parameters on the electric field, and nonsteady nature of the electron energy distribution. The wave propagation dynamics and the wave attenuation in helium are described. The plasma parameters at the wave front and behind the front and the energy deposition in the discharge are found. The results obtained are compared with experimental data

  7. Universal instability of dust ion-sound waves and dust-acoustic waves

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Watanabe, K.

    2002-01-01

    It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)

  8. Modeling the propagation of electromagnetic waves over the surface of the human body

    Science.gov (United States)

    Vendik, I. B.; Vendik, O. G.; Kirillov, V. V.; Pleskachev, V. V.; Tural'chuk, P. A.

    2016-12-01

    The results of modeling and an experimental study of electromagnetic (EM) waves in microwave range propagating along the surface of the human body have been presented. The parameters of wave propagation, such as the attenuation and phase velocity, have also been investigated. The calculation of the propagation of EM waves by the numerical method FDTD (finite difference time domain), as well as the use of the analytical model of the propagation of the EM wave along flat and curved surfaces has been fulfilled. An experimental study on a human body has been conducted. It has been shown that creeping waves are slow and exhibit a noticeable dispersion, while the surface waves are dispersionless and propagate at the speed of light in free space. A comparison of the results of numerical simulation, analytical calculation, and experimental investigations at a frequency of 2.55 GHz has been carried out.

  9. Shock Wave Propagation in Layered Planetary Interiors: Revisited

    Science.gov (United States)

    Arkani-Hamed, J.; Monteux, J.

    2017-12-01

    The end of the terrestrial planet accretion is characterized by numerous large impacts. About 90% of the mass of a large planet is accreted while the core mantle separation is occurring, because of the accretionary and the short-lived radio-isotope heating. The characteristics of the shockwave propagation, hence the existing scaling laws are poorly known within the layered planets. Here, we use iSALE-2D hydrocode simulations to calculate shock pressure in a differentiated Mars type body for impact velocities of 5-20 km/s, and impactor sizes of 100-400 km. We use two different rheologies for the target interior, an inviscid model ("no-stress model") and a pressure and damage-dependent strength model ("elaborated model"). To better characterize the shock pressure within the whole mantle as a function of distance from the impact site, we propose the following distribution: (1) a near field zone larger than the isobaric core that extends to 7-15 times the projectile radius into the target, where the peak shock pressure decays exponentially with increasing distance, (2) a far field zone where the pressure decays with distance following a power law. The shock pressure decreases more rapidly with distance in the near field for the elaborated model than for the no-stress model because of the influence of acoustic fluidization and damage. However to better illustrate the influence of the rheology on the shock propagation, we use the same expressions to fit the shock pressure with distance for both models. At the core-mantle boundary, CMB, the peak shock pressure jumps as the shock wave enters the core. We derived the boundary condition at CMB for the peak shock pressure. It is less sensitive to the impact velocity or the impactor size, but strongly depends on the rheology of the planet's mantle. Because of the lower shock wave velocity in the core compared to that in the mantle, the refracted shockwave propagates toward the symmetry axis of the planet, and the shock

  10. Dispersion analysis for waves propagated in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Lesniak, A; Niitsuma, H [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-05-01

    Dispersion of velocity is defined as a variation of the phase velocity with frequency. This paper describes the dispersion analysis of compressional body waves propagated in the heterogeneous fractured media. The new method proposed and discussed here permitted the evaluation of the variation in P wave arrival with frequency. For this processing method, any information about the attenuation of the medium are not required, and only an assumption of weak heterogeneity is important. It was shown that different mechanisms of dispersion can be distinguished and its value can be quantitatively estimated. Although the frequency used in this study was lower than those in most previous experiments reported in literature, the evaluated dispersion was large. It was suggested that such a large dispersion may be caused by the velocity structure of the media studied and by frequency dependent processes in a highly fractured zone. It was demonstrated that the present method can be used in the evaluation of subsurface fracture systems or characterization of any kind of heterogeneities. 10 refs., 6 figs.

  11. Modelling viscoacoustic wave propagation with the lattice Boltzmann method.

    Science.gov (United States)

    Xia, Muming; Wang, Shucheng; Zhou, Hui; Shan, Xiaowen; Chen, Hanming; Li, Qingqing; Zhang, Qingchen

    2017-08-31

    In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states of a large number of discrete particles. By choosing different relaxation times in LBM experiments and using spectrum ratio method, we can reveal the relationship between the quality factor Q and the parameter τ in LBM. A two-dimensional (2D) homogeneous model and a two-layered model are tested in the numerical experiments, and the LBM results are compared against the reference solution of the viscoacoustic equations based on the Kelvin-Voigt model calculated by finite difference method (FDM). The wavefields and amplitude spectra obtained by LBM coincide with those by FDM, which demonstrates the capability of the LBM with one relaxation time. The new scheme is relatively simple and efficient to implement compared with the traditional lattice methods. In addition, through a mass of experiments, we find that the relaxation time of LBM has a quantitative relationship with Q. Such a novel scheme offers an alternative forward modelling kernel for seismic inversion and a new model to describe the underground media.

  12. Wave propagation in a strongly nonlinear locally resonant granular crystal

    Science.gov (United States)

    Vorotnikov, K.; Starosvetsky, Y.; Theocharis, G.; Kevrekidis, P. G.

    2018-02-01

    In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and examined through a combination of analytical approximations (based on ODE and nonlinear map analysis) and of numerical results. The generic dynamics of the system involves a degradation of the well-known traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer, in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference "distills" a weakly nonlocal solitary wave (a "nanopteron"). This motivates the consideration of such nonlinear structures through a separate Fourier space technique, whose results suggest the existence of such entities not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and its internal linear attachment.

  13. Surface wave propagation effects on buried segmented pipelines

    Directory of Open Access Journals (Sweden)

    Peixin Shi

    2015-08-01

    Full Text Available This paper deals with surface wave propagation (WP effects on buried segmented pipelines. Both simplified analytical model and finite element (FE model are developed for estimating the axial joint pullout movement of jointed concrete cylinder pipelines (JCCPs of which the joints have a brittle tensile failure mode under the surface WP effects. The models account for the effects of peak ground velocity (PGV, WP velocity, predominant period of seismic excitation, shear transfer between soil and pipelines, axial stiffness of pipelines, joint characteristics, and cracking strain of concrete mortar. FE simulation of the JCCP interaction with surface waves recorded during the 1985 Michoacan earthquake results in joint pullout movement, which is consistent with the field observations. The models are expanded to estimate the joint axial pullout movement of cast iron (CI pipelines of which the joints have a ductile tensile failure mode. Simplified analytical equation and FE model are developed for estimating the joint pullout movement of CI pipelines. The joint pullout movement of the CI pipelines is mainly affected by the variability of the joint tensile capacity and accumulates at local weak joints in the pipeline.

  14. Numerical Investigation of Pulse Wave Propagation in Arteries Using Fluid Structure Interaction Capabilities

    Directory of Open Access Journals (Sweden)

    Hisham Elkenani

    2017-01-01

    Full Text Available The aim of this study is to present a reliable computational scheme to serve in pulse wave velocity (PWV assessment in large arteries. Clinicians considered it as an indication of human blood vessels’ stiffness. The simulation of PWV was conducted using a 3D elastic tube representing an artery. The constitutive material model specific for vascular applications was applied to the tube material. The fluid was defined with an equation of state representing the blood material. The onset of a velocity pulse was applied at the tube inlet to produce wave propagation. The Coupled Eulerian-Lagrangian (CEL modeling technique with fluid structure interaction (FSI was implemented. The scaling of sound speed and its effect on results and computing time is discussed and concluded that a value of 60 m/s was suitable for simulating vascular biomechanical problems. Two methods were used: foot-to-foot measurement of velocity waveforms and slope of the regression line of the wall radial deflection wave peaks throughout a contour plot. Both methods showed coincident results. Results were approximately 6% less than those calculated from the Moens-Korteweg equation. The proposed method was able to describe the increase in the stiffness of the walls of large human arteries via the PWV estimates.

  15. Anisotropy, propagation failure, and wave speedup in traveling waves of discretizations of a Nagumo PDE

    International Nuclear Information System (INIS)

    Elmer, Christopher E.; Vleck, Erik S. van

    2003-01-01

    This article is concerned with effect of spatial and temporal discretizations on traveling wave solutions to parabolic PDEs (Nagumo type) possessing piecewise linear bistable nonlinearities. Solution behavior is compared in terms of waveforms and in terms of the so-called (a,c) relationship where a is a parameter controlling the bistable nonlinearity by varying the potential energy difference of the two phases and c is the wave speed of the traveling wave. Uniform spatial discretizations and A(α) stable linear multistep methods in time are considered. Results obtained show that although the traveling wave solutions to parabolic PDEs are stationary for only one value of the parameter a,a 0 , spatial discretization of these PDEs produce traveling waves which are stationary for a nontrivial interval of a values which include a 0 , i.e., failure of the solution to propagate in the presence of a driving force. This is true no matter how wide the interface is with respect to the discretization. For temporal discretizations at large wave speeds the set of parameter a values for which there are traveling wave solutions is constrained. An analysis of a complete discretization points out the potential for nonuniqueness in the (a,c) relationship

  16. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    Energy Technology Data Exchange (ETDEWEB)

    Luquet, David; Marchiano, Régis; Coulouvrat, François, E-mail: francois.coulouvrat@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris (France)

    2015-10-28

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  17. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    International Nuclear Information System (INIS)

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-01-01

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  18. The development of efficient numerical time-domain modeling methods for geophysical wave propagation

    Science.gov (United States)

    Zhu, Lieyuan

    This Ph.D. dissertation focuses on the numerical simulation of geophysical wave propagation in the time domain including elastic waves in solid media, the acoustic waves in fluid media, and the electromagnetic waves in dielectric media. This thesis shows that a linear system model can describe accurately the physical processes of those geophysical waves' propagation and can be used as a sound basis for modeling geophysical wave propagation phenomena. The generalized stability condition for numerical modeling of wave propagation is therefore discussed in the context of linear system theory. The efficiency of a series of different numerical algorithms in the time-domain for modeling geophysical wave propagation are discussed and compared. These algorithms include the finite-difference time-domain method, pseudospectral time domain method, alternating directional implicit (ADI) finite-difference time domain method. The advantages and disadvantages of these numerical methods are discussed and the specific stability condition for each modeling scheme is carefully derived in the context of the linear system theory. Based on the review and discussion of these existing approaches, the split step, ADI pseudospectral time domain (SS-ADI-PSTD) method is developed and tested for several cases. Moreover, the state-of-the-art stretched-coordinate perfect matched layer (SCPML) has also been implemented in SS-ADI-PSTD algorithm as the absorbing boundary condition for truncating the computational domain and absorbing the artificial reflection from the domain boundaries. After algorithmic development, a few case studies serve as the real-world examples to verify the capacities of the numerical algorithms and understand the capabilities and limitations of geophysical methods for detection of subsurface contamination. The first case is a study using ground penetrating radar (GPR) amplitude variation with offset (AVO) for subsurface non-aqueous-liquid (NAPL) contamination. The

  19. Modeling stress wave propagation in rocks by distinct lattice spring model

    Directory of Open Access Journals (Sweden)

    Gaofeng Zhao

    2014-08-01

    Full Text Available In this paper, the ability of the distinct lattice spring model (DLSM for modeling stress wave propagation in rocks was fully investigated. The influence of particle size on simulation of different types of stress waves (e.g. one-dimensional (1D P-wave, 1D S-wave and two-dimensional (2D cylindrical wave was studied through comparing results predicted by the DLSM with different mesh ratios (lr and those obtained from the corresponding analytical solutions. Suggested values of lr were obtained for modeling these stress waves accurately. Moreover, the weak material layer method and virtual joint plane method were used to model P-wave and S-wave propagating through a single discontinuity. The results were compared with the classical analytical solutions, indicating that the virtual joint plane method can give better results and is recommended. Finally, some remarks of the DLSM on modeling of stress wave propagation in rocks were provided.

  20. Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate

    International Nuclear Information System (INIS)

    Xiang Yanxun; Deng Mingxi

    2008-01-01

    The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface. In general, the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur. However, the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied. Through boundary condition and initial condition of excitation, the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined. Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns. (classical areas of phenomenology)

  1. Ferroics and Multiferroics for Dynamically Controlled Terahertz Wave Propagation

    Science.gov (United States)

    Dutta, Moumita

    The terahertz (THz) region of electromagnetic spectra, referred roughly to the frequency range of 100 GHz (0.1 THz) to 10 THz, is the bridging gap between the microwave and infrared spectral bands. Previously confined only to astronomy and analytical sciences due to the unavailability of technology, with the recent advancements in non-linear optics, this novel field has now started emerging as a promising area of research and study. Considerable efforts are underway to fill this 'THz gap' by developing efficient THz sources, detectors, switches, modulators etc. Be it any field, to realize this regime as one of the active frontiers, it is essential to have an efficient control over the wave propagation. In this research, functional materials (ferroics/multiferroics) have been explored to attain dynamic control over the THz beam propagation. The objective is to expand the horizon by enabling different family of materials to be incorporated in the design of THz modulators, exploiting the novel properties they exhibit. To reach that goal, following a comprehensive but selective (to dielectrics) review on the current-status of this research field, some preliminary studies on ferroic materials have been performed to understand the crux of ferroism and the novel functionalities they have to offer. An analytical study on microstructural and nanoscale properties of solid-solution ferroelectric Pb(Zr0.52Ti 0.48)O3 (PZT) and composite bio-ferroic seashells have been performed to elucidate the significance of structure-property relationship in intrinsic ferroelectrics. Moving forward, engineered ferroelectricity has been demonstrated. A precise control over fabrication parameters has been exploited to introduce oxygen-vacancy defined nanoscale polar-domains in centrosymmetric BaZrO3. Realizing that structure-property relationship can significantly influence the material properties and therefore the device performance, models for figure of merit analysis have been developed for

  2. Studies of elasticity, sound propagation and attenuation of acoustic modes in granular media: final report

    Energy Technology Data Exchange (ETDEWEB)

    Makse, Hernan A. [City College of New York, NY (United States). Levich Inst., Dept. of Physcis; Johnson, David L. [Schlumberger-Doll Research, Cambridge, MA (United States)

    2014-09-03

    This is the final report describing the results of DOE Grant # DE-FG02-03ER15458 with original termination date of April 31, 2013, which has been extended to April 31, 2014. The goal of this project is to develop a theoretical and experimental understanding of sound propagation, elasticity and dissipation in granular materials. The topic is relevant for the efficient production of hydrocarbon and for identifying and characterizing the underground formation for storage of either CO2 or nuclear waste material. Furthermore, understanding the basic properties of acoustic propagation in granular media is of importance not only to the energy industry, but also to the pharmaceutical, chemical and agricultural industries. We employ a set of experimental, theoretical and computational tools to develop a study of acoustics and dissipation in granular media. These include the concept effective mass of granular media, normal modes analysis, statistical mechanics frameworks and numerical simulations based on Discrete Element Methods. Effective mass measurements allow us to study the mechanisms of the elastic response and attenuation of acoustic modes in granular media. We perform experiments and simulations under varying conditions, including humidity and vacuum, and different interparticle force-laws to develop a fundamental understanding of the mechanisms of damping and acoustic propagation in granular media. A theoretical statistical approach studies the necessary phase space of configurations in pressure, volume fraction to classify granular materials.

  3. Quantifying Electromagnetic Wave Propagation Environment Using Measurements From A Small Buoy

    Science.gov (United States)

    2017-06-01

    ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A SMALL BUOY by Andrew E. Sweeney June 2017 Thesis Advisor: Qing Wang...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE QUANTIFYING ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A...the Coupled Air Sea Processes and Electromagnetic (EM) ducting Research (CASPER), to understand air-sea interaction processes and their representation

  4. Guided wave propagation as a measure of axial loads in rails

    CSIR Research Space (South Africa)

    Loveday, PW

    2010-03-01

    Full Text Available Guided wave propagation has been proposed as a means to monitor the axial loads in continuously welded railway rails although no practical system has been developed. In this paper, the influence of axial load on the guided wave propagation...

  5. geometric optics and WKB method for electromagnetic wave propagation in an inhomogeneous plasma near cutoff

    Energy Technology Data Exchange (ETDEWEB)

    Light, Max Eugene [Los Alamos National Laboratory

    2017-04-13

    This report outlines the theory underlying electromagnetic (EM) wave propagation in an unmagnetized, inhomogeneous plasma. The inhomogeneity is given by a spatially nonuniform plasma electron density ne(r), which will modify the wave propagation in the direction of the gradient rne(r).

  6. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingnan [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  7. Simulation and Prediction of Weather Radar Clutter Using a Wave Propagator on High Resolution NWP Data

    DEFF Research Database (Denmark)

    Benzon, Hans-Henrik; Bovith, Thomas

    2008-01-01

    for prediction of this type of weather radar clutter is presented. The method uses a wave propagator to identify areas of potential non-standard propagation. The wave propagator uses a three dimensional refractivity field derived from the geophysical parameters: temperature, humidity, and pressure obtained from......Weather radars are essential sensors for observation of precipitation in the troposphere and play a major part in weather forecasting and hydrological modelling. Clutter caused by non-standard wave propagation is a common problem in weather radar applications, and in this paper a method...... a high-resolution Numerical Weather Prediction (NWP) model. The wave propagator is based on the parabolic equation approximation to the electromagnetic wave equation. The parabolic equation is solved using the well-known Fourier split-step method. Finally, the radar clutter prediction technique is used...

  8. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.

    Science.gov (United States)

    Cleveland, Robin O; Sapozhnikov, Oleg A

    2005-10-01

    A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.

  9. Influence of Sea Surface Roughness on the Electromagnetic Wave Propagation in the Duct Environment

    OpenAIRE

    Zhao, X.; Huang, S.

    2010-01-01

    This paper deals with a study of the influence of sea surface roughness on the electromagnetic wave propagation in the duct environment. The problem of electromagnetic wave propagation is modeled by using the parabolic equation method. The roughness of the sea surface is computed by modifying the smooth surface Fresnel reflection coefficient to account for the reduction in the specular reflection due to the roughness resulting from sea wind speed. The propagation model is solved by the mixed ...

  10. The nonlinear distortion of propagation cones of lower hybrid wave in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Sanuki, Heiji; Ogino, Tatsuki.

    1976-12-01

    Nonlinear propagation of externally driven waves in the lower hybrid frequency range in an inhomogeneous plasma are investigated. The results of finite temperature, inhomogeneity of the plasma and density depression due to the ponderomotive force are emphasized since these effects are responsible for the propagation characteristics of the waves. The results shows that the waves are localized in a spatial wave packet that propagates into the plasma center along the conical trajectory which makes a small angle with respect to the confining magnetic field. (auth.)

  11. Longitudinal sound waves in a collisionless, quasineutral plasma

    Science.gov (United States)

    Ramos, J. J.

    2017-12-01

    The time evolution of slow sound waves in a homogeneous, collisionless and quasineutral plasma, in particular their Landau damping, is investigated using the kinetic-magnetohydrodynamics formulation of Ramos (J. Plasma Phys. vol. 81, 2015 p. 905810325; vol. 82, 2016 p. 905820607). In this approach, the electric field is eliminated from a closed, hybrid fluid-kinetic system that ensures automatically the fulfilment of the charge neutrality condition. Considering the time dependence of a spatial-Fourier-mode linear perturbation with wavevector parallel to the equilibrium magnetic field, this can be cast as a second-order self-adjoint problem with a continuum spectrum of real and positive squared frequencies. Therefore, a conventional resolution of the identity with a continuum basis of singular normal modes is guaranteed, which simplifies significantly a Van Kampen-like treatment of the Landau damping. The explicit form of such singular normal modes is obtained, along with their orthogonality relations. These are used to derive the damped time evolution of the fluid moments of solutions of initial-value problems, for the most general kinds of initial conditions. The non-zero parallel electric field is not used explicitly in this analysis, but it is calculated from any given solution after the later has been obtained.

  12. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    Science.gov (United States)

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  13. Mechanisms of ignition by transient energy deposition: Regimes of combustion wave propagation

    OpenAIRE

    Kiverin, A. D.; Kassoy, D. R.; Ivanov, M. F.; Liberman, M. A.

    2013-01-01

    Regimes of chemical reaction wave propagating in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied depending on the characteristics of a transient thermal energy deposition localized in a finite volume of reactive gas. Different regimes of the reaction wave propagation are initiated depending on the amount of deposited thermal energy, power of the source, and the size of the hot spot. The main parameters which define regimes of the combustion wave...

  14. On the propagation of low-hybrid waves of finite amplitude

    International Nuclear Information System (INIS)

    Kozyrev, A.N.; Piliya, A.D.; Fedorov, V.I.

    1979-01-01

    Propagation of low-hybrid waves of a finite amplitude with allowance for variation in plasma density caused by HF field pressure is studied. Considered is wave ''overturning'' which takes place in the absence of space dispersion. With taking account of dispersion the wave propagation is described by the third-order nonlinear equation which differs in shape from the complex modified Korteweg-de-Vries (Hirota) equation. Solutions of this equation of the space solution type are found

  15. Electromagnetic wave propagation over an inhomogeneous flat earth (two-dimensional integral equation formulation)

    International Nuclear Information System (INIS)

    de Jong, G.

    1975-01-01

    With the aid of a two-dimensional integral equation formulation, the ground wave propagation of electromagnetic waves transmitted by a vertical electric dipole over an inhomogeneous flat earth is investigated. For the configuration in which a ground wave is propagating across an ''island'' on a flat earth, the modulus and argument of the attenuation function have been computed. The results for the two-dimensional treatment are significantly more accurate in detail than the calculations using a one-dimensional integral equation

  16. Stress wave propagation and mitigation in two polymeric foams

    Science.gov (United States)

    Pradel, Pierre; Malaise, Frederic; Cadilhon, Baptiste; Quessada, Jean-Hugues; de Resseguier, Thibaut; Delhomme, Catherine; Le Blanc, Gael

    2017-06-01

    Polymeric foams are widely used in industry for thermal insulation or shock mitigation. This paper investigates the ability of a syntactic epoxy foam and an expanded polyurethane foam to mitigate intense (several GPa) and short duration (<10-6 s) stress pulses. Plate impact and electron beam irradiation experiments have been conducted to study the dynamic mechanical responses of both foams. Interferometer Doppler Laser method is used to record the target rear surface velocity. A two-wave structure associated with the propagation of an elastic precursor followed by the compaction of the pores has been observed. The compaction stress level deduced from the velocity measurement is a good indicator of mitigation capability of the foams. Quasi-static tests and dynamic soft recovery experiments have also been performed to determine the compaction mechanisms. In the polyurethane foam, the pores are closed by elastic buckling of the matrix and damage of the structure. In the epoxy foam, the compaction is due to the crushing of glass microspheres. Two porous material models successfully represent the macroscopic response of these polymeric foams.

  17. Shock Wave Propagation in Functionally Graded Mineralized Tissue

    Science.gov (United States)

    Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.

    2017-06-01

    In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.

  18. REFLECTION OF PROPAGATING SLOW MAGNETO-ACOUSTIC WAVES IN HOT CORONAL LOOPS: MULTI-INSTRUMENT OBSERVATIONS AND NUMERICAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Banerjee, Dipankar; Pant, Vaibhav [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Yuan, Ding; Fang, Xia; Doorsselaere, Tom Van, E-mail: sudip@iiap.res.in, E-mail: xia.fang@wis.kuleuven.be [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, bus 2400, 3001, Leuven (Belgium)

    2016-09-10

    Slow MHD waves are important tools for understanding coronal structures and dynamics. In this paper, we report a number of observations from the X-Ray Telescope (XRT) on board HINODE and Solar Dynamic Observatory /Atmospheric Imaging Assembly (AIA) of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and temperature of the loop plasma by performing differential emission measure (DEM) analysis on the AIA image sequence. The estimated speed of propagation is comparable to or lower than the local sound speed, suggesting it to be a propagating slow wave. The intensity perturbation amplitude, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observation as inputs, and perform forward modeling to synthesize AIA 94 Å images. Analyzing the synthesized images, we obtain the same properties of the observables as for the real observation. From the analysis we conclude that a footpoint heating can generate a slow wave which then reflects back and forth in the coronal loop before fading. Our analysis of the simulated data shows that the main agent for this damping is anisotropic thermal conduction.

  19. Coupling Hydrodynamic and Wave Propagation Codes for Modeling of Seismic Waves recorded at the SPE Test.

    Science.gov (United States)

    Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.

    2016-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).

  20. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  1. Paracousti-UQ: A Stochastic 3-D Acoustic Wave Propagation Algorithm.

    Energy Technology Data Exchange (ETDEWEB)

    Preston, Leiph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Acoustic full waveform algorithms, such as Paracousti, provide deterministic solutions in complex, 3-D variable environments. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected sound levels within an environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. Performing Monte Carlo (MC) simulations is one method of assessing this uncertainty, but it can quickly become computationally intractable for realistic problems. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a fraction of the computational cost of MC. Paracousti-UQ solves the SPDE system of 3-D acoustic wave propagation equations and provides estimates of the uncertainty of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated probability distributions of the input medium and source parameters. This report describes the derivation of the stochastic partial differential equations, their implementation, and comparison of Paracousti-UQ results with MC simulations using simple models.

  2. Supersonic Heat Wave Propagation in Laser-Produced Underdense Plasma for Efficient X-Ray Generation

    International Nuclear Information System (INIS)

    Tanabe, M.; Nishimura, H.; Fujioka, S.; Nagai, K.; Iwamae, A.; Ohnishi, N.; Fournier, K.B.; Girard, F.; Primout, M.; Villette, B.; Tobin, M.; Mima, K.

    2008-01-01

    We have observed supersonic heat wave propagation in a low-density aerogel target (ρ ∼ 3.2 mg/cc) irradiated at the intensity of 4 x 10 14 W/cm 2 . The heat wave propagation was measured with a time-resolved x-ray imaging diagnostics, and the results were compared with simulations made with the two-dimensional radiation-hydrodynamic code, RAICHO. Propagation velocity of the ionization front gradually decreased as the wave propagates into the target. The reason of decrease is due to increase of laser absorption region as the front propagates and interplay of hydrodynamic motion and reflection of laser propagation. These features are well reported with the simulation

  3. Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks

    DEFF Research Database (Denmark)

    Wright, J.C.; Bonoli, P.T.; Brambilla, M.

    2004-01-01

    Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k...

  4. Remarks on nonlinear relation among phases and frequencies in modulational instabilities of parallel propagating Alfvén waves

    Directory of Open Access Journals (Sweden)

    Y. Nariyuki

    2006-01-01

    Full Text Available Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfvén waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfvén waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation. We first discuss the modulational instability within the derivative nonlinear Schrödinger (DNLS equation, which is a subset of the Hall-MHD system including the right- and left-hand polarized, nearly degenerate quasi-parallel Alfvén waves. The dominant nonlinear process within this model is the four wave interaction, in which a quartet of waves in resonance can exchange energy. By numerically time integrating the DNLS equation with periodic boundary conditions, and by evaluating relative phase among the quartet of waves, we show that the phase coherence is generated when the waves exchange energy among the quartet of waves. As a result, coherent structures (solitons appear in the real space, while in the phase space of the wave frequency and the wave number, the wave power is seen to be distributed around a straight line. The slope of the line corresponds to the propagation speed of the coherent structures. Numerical time integration of the Hall-MHD system with periodic boundary conditions reveals that, wave power of transverse modes and that of longitudinal modes are aligned with a single straight line in the dispersion relation phase space, suggesting that efficient exchange of energy among transverse and longitudinal wave modes is realized in the Hall-MHD. Generation of the longitudinal wave modes violates the assumptions employed in deriving the DNLS such as the quasi

  5. Oblique propagation of nonlinear hydromagnetic waves: One- and two-dimensional behavior

    International Nuclear Information System (INIS)

    Malara, F.; Elaoufir, J.

    1991-01-01

    The one- and two-dimensional behavior of obliquely propagating hydromagnetic waves is analyzed by means of analytical theory and numerical simulations. It is shown that the nonlinear evolution of a one-dimensional MHD wave leads to the formation of a rotational discontinuity and a compressive steepened quasi-linearly polarized pulse whose structure is similar to that of a finite amplitude magnetosonic simple wave. For small propagation angles, the pulse mode (fast or slow) depends on the value of β with respect to unity while for large propagation angles the wave mode is fixed by the sign of the initial density-field correlation. The two-dimensional evolution shows that an MHD wave is unstable against a small-amplitude long-wavelength modulation in the direction transverse to the wave propagation direction. A two-dimensional magnetosonic wave solution is found, in which the density fluctuation is driven by the corresponding total pressure fluctuation, exactly as in the one-dimensional simple wave. Along with the steepening effect, the wave experiences both wave front deformation and a self-focusing effect which may eventually lead to the collapse of the wave. The results compare well with observations of MHD waves in the Earth's foreshock and at comets

  6. Metastable modular metastructures for on-demand reconfiguration of band structures and nonreciprocal wave propagation

    Science.gov (United States)

    Wu, Z.; Zheng, Y.; Wang, K. W.

    2018-02-01

    We present an approach to achieve adaptable band structures and nonreciprocal wave propagation by exploring and exploiting the concept of metastable modular metastructures. Through studying the dynamics of wave propagation in a chain composed of finite metastable modules, we provide experimental and analytical results on nonreciprocal wave propagation and unveil the underlying mechanisms that facilitate such unidirectional energy transmission. In addition, we demonstrate that via transitioning among the numerous metastable states, the proposed metastructure is endowed with a large number of bandgap reconfiguration possibilities. As a result, we illustrate that unprecedented adaptable nonreciprocal wave propagation can be realized using the metastable modular metastructure. Overall, this research elucidates the rich dynamics attainable through the combinations of periodicity, nonlinearity, spatial asymmetry, and metastability and creates a class of adaptive structural and material systems capable of realizing tunable bandgaps and nonreciprocal wave transmissions.

  7. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    DEFF Research Database (Denmark)

    Bertelli, N.; Balakin, A.A.; Westerhof, E.

    2010-01-01

    are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi......A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...

  8. The directional propagation characteristics of elastic wave in two-dimensional thin plate phononic crystals

    International Nuclear Information System (INIS)

    Wen Jihong; Yu, Dianlong; Wang Gang; Zhao Honggang; Liu Yaozong; Wen Xisen

    2007-01-01

    The directional propagation characteristics of elastic wave during pass bands in two-dimensional thin plate phononic crystals are analyzed by using the lumped-mass method to yield the phase constant surface. The directions and regions of wave propagation in phononic crystals for certain frequencies during pass bands are predicted with the iso-frequency contour lines of the phase constant surface, which are then validated with the harmonic responses of a finite two-dimensional thin plate phononic crystals with 16x16 unit cells. These results are useful for controlling the wave propagation in the pass bands of phononic crystals

  9. Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media

    KAUST Repository

    Luna, Manuel

    2011-05-01

    Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.

  10. Near-Field Ground Motion Modal versus Wave Propagation Analysis

    Directory of Open Access Journals (Sweden)

    Artur Cichowicz

    2010-01-01

    Full Text Available The response spectrum generally provides a good estimate of the global displacement and acceleration demand of far-field ground motion on a structure. However, it does not provide accurate information on the local shape or internal deformation of the response of the structure. Near-field pulse-like ground motion will propagate through the structure as waves, causing large, localized deformation. Therefore, the response spectrum alone is not a sufficient representation of near-field ground motion features. Results show that the drift-response technique based on a continuous shear-beam model has to be employed here to estimate structure-demand parameters when structure is exposed to the pulse like ground motion. Conduced modeling shows limited applicability of the drift spectrum based on the SDOF approximation. The SDOF drift spectrum approximation can only be applied to structures with smaller natural periods than the dominant period of the ground motion. For periods larger than the dominant period of ground motion the SDOF drift spectra model significantly underestimates maximum deformation. Strong pulse-type motions are observed in the near-source region of large earthquakes; however, there is a lack of waveforms collected from small earthquakes at very close distances that were recorded underground in mines. The results presented in this paper are relevant for structures with a height of a few meters, placed in an underground excavation. The strong ground motion sensors recorded mine-induced earthquakes in a deep gold mine, South Africa. The strongest monitored horizontal ground motion was caused by an event of magnitude 2 at a distance of 90 m with PGA 123 m/s2, causing drifts of 0.25%–0.35%. The weak underground motion has spectral characteristics similar to the strong ground motion observed on the earth's surface; the drift spectrum has a maximum value less than 0.02%.

  11. FDTD simulation of EM wave propagation in 3-D media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.; Tripp, A.C. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics

    1996-01-01

    A finite-difference, time-domain solution to Maxwell`s equations has been developed for simulating electromagnetic wave propagation in 3-D media. The algorithm allows arbitrary electrical conductivity and permittivity variations within a model. The staggered grid technique of Yee is used to sample the fields. A new optimized second-order difference scheme is designed to approximate the spatial derivatives. Like the conventional fourth-order difference scheme, the optimized second-order scheme needs four discrete values to calculate a single derivative. However, the optimized scheme is accurate over a wider wavenumber range. Compared to the fourth-order scheme, the optimized scheme imposes stricter limitations on the time step sizes but allows coarser grids. The net effect is that the optimized scheme is more efficient in terms of computation time and memory requirement than the fourth-order scheme. The temporal derivatives are approximated by second-order central differences throughout. The Liao transmitting boundary conditions are used to truncate an open problem. A reflection coefficient analysis shows that this transmitting boundary condition works very well. However, it is subject to instability. A method that can be easily implemented is proposed to stabilize the boundary condition. The finite-difference solution is compared to closed-form solutions for conducting and nonconducting whole spaces and to an integral-equation solution for a 3-D body in a homogeneous half-space. In all cases, the finite-difference solutions are in good agreement with the other solutions. Finally, the use of the algorithm is demonstrated with a 3-D model. Numerical results show that both the magnetic field response and electric field response can be useful for shallow-depth and small-scale investigations.

  12. Two-wave propagation in in vitro swine distal ulna

    Science.gov (United States)

    Mano, Isao; Horii, Kaoru; Matsukawa, Mami; Otani, Takahiko

    2015-07-01

    Ultrasonic transmitted waves were obtained in an in vitro swine distal ulna specimen, which mimics a human distal radius, that consists of interconnected cortical bone and cancellous bone. The transmitted waveforms appeared similar to the fast waves, slow waves, and overlapping fast and slow waves measured in the specimen after removing the surface cortical bone (only cancellous bone). In addition, the circumferential waves in the cortical bone and water did not affect the fast and slow waves. This suggests that the fast-and-slow-wave phenomenon can be observed in an in vivo human distal radius.

  13. Interface waves propagating along tensile fractures in dolomite

    International Nuclear Information System (INIS)

    Roy, S.; Pyrak-Nolte, L.J.

    1995-01-01

    Elastic interface waves have been observed in induced tensile fractures in dolomite rock cores. Multiscaling wavelet analysis distinguishes the interface wave from bulk shear waves, quantifies the interface wave spectral content, and determines the arrival time of peak energy. The dominant seismic energy is concentrated in the slow interface wave, with little or no detectable energy in the fast wave. As stress across the fracture increases, the slow interface wave velocity increases, and the frequency of the spectral peak shifts to higher frequencies. The shear dynamic specific stiffness of the fracture was calculated from the peak energy arrival time as a function of stress. 13 refs., 5 figs., 1 tab

  14. Numerical and experimental study on atmospheric pressure ionization waves propagating through a U-shape channel

    International Nuclear Information System (INIS)

    Yan, Wen; Xia, Yang; Bi, Zhenhua; Song, Ying; Liu, Dongping; Wang, Dezhen; Sosnin, Eduard A; Skakun, Victor S

    2017-01-01

    A 2D computational study of ionization waves propagating in U-shape channels at atmospheric pressure was performed, with emphasis on the effect of voltage polarity and the curvature of the bend. The discharge was ignited by a HV needle electrode inside the channel, and power was applied in the form of a trapezoidal pulse lasting 2 µ s. We have shown that behavior of ionization waves propagating in U-shape channels was quite different with that in straight tubes. For positive polarity of applied voltage, the ionization waves tended to propagate along one side of walls rather than filling the channel. The propagation velocity of ionization waves predicted by the simulation was in good agreement with the experiment results; the velocity was first increasing rapidly in the vicinity of the needle tip and then decreasing with the increment of propagation distance. Then we have studied the influence of voltage polarity on discharge characteristics. For negative polarity, the ionization waves tended to propagate along the opposite side of the wall, while the discharge was more diffusive and volume-filling compared with the positive case. It was found that the propagation velocity for the negative ionization wave was higher than that for the positive one. Meanwhile, the propagation of the negative ionization wave depended less on the pre-ionization level than the positive ionization wave. Finally, the effect of the radius of curvature was studied. Simulations have shown that the propagation speeds were sensitive to the radii of the curvature of the channels for both polarities. Higher radii of curvature tended to have higher speed and longer length of plasma. The simulation results were supported by experimental observations under similar discharge conditions. (paper)

  15. Propagation of edge waves in a thinly layered laminated medium with stress couples under initial stresses

    Directory of Open Access Journals (Sweden)

    Pijush Pal Roy

    1987-01-01

    Full Text Available The propagation of edge waves in a thinly layered laminated medium with stress couples under initial stresses is examined. Based upon an approximate representation of a laminated medium by an equivalent anisotropic continuum with average initial and couple stresses, an explicit form of frequency equation is obtained to derive the phase velocity of edge waves. Edge waves exist under certain conditions. The inclusion of couple stresses increases the velocity of wave propagation. For a specific compression, the presence of couple stresses increases the velocity of wave propagation with the increase of wave number, whereas the reverse is the case when there is no couple stress. Numerical computation is performed with graphical representations. Several special cases are also examined.

  16. Effect of material parameters on stress wave propagation during fast upsetting

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-jin; CHENG Li-dong

    2008-01-01

    Based'on a dynamic analysis method and an explicit algorithm, a dynamic explicit finite element code was developed for modeling the fast upsetting process of block under drop hammer impact, in which the hammer velocity during the deformation was calculated by energy conservation law according to the operating principle of hammer equipment. The stress wave propagation and its effect on the deformation were analyzed by the stress and strain distributions. Industrial pure lead, oxygen-free high-conductivity (OFHC) copper and 7039 aluminum alloy were chosen to investigate the effect of material parameters on the stress wave propagation. The results show that the stress wave propagates from top to bottom of block, and then reflects back when it reaches the bottom surface. After that, stress wave propagates and reflects repeatedly between the upper surface and bottom surface. The stress wave propagation has a significant effect on the deformation at the initial stage, and then becomes weak at the middle-final stage. When the ratio of elastic modulus or the slope of stress-strain curve to mass density becomes larger, the velocity of stress wave propagation increases, and the influence of stress wave on the deformation becomes small.

  17. On the sound absorption coefficient of porous asphalt pavements for oblique incident sound waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Bekke, Dirk; Davy, J.; Don, Ch.; McMinn, T.; Dowsett, L.; Broner, N.; Burgess, M.

    2014-01-01

    A rolling tyre will radiate noise in all directions. However, conventional measurement techniques for the sound absorption of surfaces only give the absorption coefficient for normal incidence. In this paper, a measurement technique is described with which it is possible to perform in situ sound

  18. Propagation characteristics of electromagnetic waves in dusty plasma with full ionization

    Science.gov (United States)

    Dan, Li; Guo, Li-Xin; Li, Jiang-Ting

    2018-01-01

    This study investigates the propagation characteristics of electromagnetic (EM) waves in fully ionized dusty plasmas. The propagation characteristics of fully ionized plasma with and without dust under the Fokker-Planck-Landau (FPL) and Bhatnagar-Gross-Krook (BGK) models are compared to those of weakly ionized plasmas by using the propagation matrix method. It is shown that the FPL model is suitable for the analysis of the propagation characteristics of weakly collisional and fully ionized dusty plasmas, as is the BGK model. The influence of varying the dust parameters on the propagation properties of EM waves in the fully ionized dusty plasma was analyzed using the FPL model. The simulation results indicated that the densities and average radii of dust grains influence the reflection and transmission coefficients of fully ionized dusty plasma slabs. These results may be utilized to analyze the effects of interaction between EM waves and dusty plasmas, such as those associated with hypersonic vehicles.

  19. An Improved Split-Step Wavelet Transform Method for Anomalous Radio Wave Propagation Modelling

    Directory of Open Access Journals (Sweden)

    A. Iqbal

    2014-12-01

    Full Text Available Anomalous tropospheric propagation caused by ducting phenomenon is a major problem in wireless communication. Thus, it is important to study the behavior of radio wave propagation in tropospheric ducts. The Parabolic Wave Equation (PWE method is considered most reliable to model anomalous radio wave propagation. In this work, an improved Split Step Wavelet transform Method (SSWM is presented to solve PWE for the modeling of tropospheric propagation over finite and infinite conductive surfaces. A large number of numerical experiments are carried out to validate the performance of the proposed algorithm. Developed algorithm is compared with previously published techniques; Wavelet Galerkin Method (WGM and Split-Step Fourier transform Method (SSFM. A very good agreement is found between SSWM and published techniques. It is also observed that the proposed algorithm is about 18 times faster than WGM and provide more details of propagation effects as compared to SSFM.

  20. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  1. The numerical simulation of Lamb wave propagation in laser welding of stainless steel

    Science.gov (United States)

    Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang

    2017-12-01

    In order to explore the Lamb wave propagation in laser welding of stainless steel, the numerical simulation is used to show the feature of Lamb wave. In this paper, according to Lamb dispersion equation, excites the Lamb wave on the edge of thin stainless steel plate, and presents the reflection coefficient for quantizing the Lamb wave energy, the results show that the reflection coefficient is increased with the welding width increasing,

  2. Soliton emission stimulated by sound wave or external field

    International Nuclear Information System (INIS)

    Malomed, B.A.

    1987-01-01

    Langmuir soliton interaction with ion-acoustic wave results in soliton radiative decay at the expence of emission by the soliton of linear langmuir waves. Intensity of this radiation in the ''subsonic'' regime as well as the rate of energy transfer from acoustic waves to langmuir ones and soliton decay rate are calculated. Three cases are considered: monochromatic acoustic wave, nonmonochromatic wave packet with a wide spectrum, random acoustic field, for which results appear to be qualitatively different. A related problem, concerning the radiation generation by soliton under external electromagnetic wave effect is also considered. Dissipation effect on radiation is investigated

  3. Raman backscattering of circularly polarized electromagnetic waves propagating along a magnetic field

    International Nuclear Information System (INIS)

    Maraghechi, B.; Willett, J.e.

    1979-01-01

    The stimulated Raman backscattering of an intense electromagnetic wave propagating in the extraordinary mode along a uniform, static magnetic field is considered. The dispersion relation for a homogeneous magnetized plasma in the presence of the circularly polarized pump waves is developed in the cold-plasma approximation with the pump frequency above the plasma frequency. Formulas are derived for the threshold νsub(OT) of the parametric instability and for the growth rate γ of the backscattered extraordinary wave and Langmuir wave. The effects of the magnetic field parallel to the direction of propagation on νsub(0T) and γ are studied numerically. (author)

  4. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shiling; Shen, Zhonghua, E-mail: shenzh@njust.edu.cn [Faculty of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); Lomonosov, Alexey M. [Faculty of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); General Physics Institute, Russian Academy of Sciences, 119991 Moscow (Russian Federation)

    2016-06-07

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  5. Longitudinal propagation of nonlinear surface Alfven waves at a magnetic interface in a compressible atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M S

    1988-08-01

    Nonlinear Alfven surface wave propagation at a magnetic interface in a compressible fluid is considered. It is supposed that the magnetic field directions at both sides of the interface and the direction of wave propagation coincide. The equation governing time-evolution of nonlinear small-amplitude waves is derived by the method of multiscale expansions. This equation is similar to the equation for nonlinear Alfven surface waves in an incompressible fluid derived previously. The numerical solution of the equation shows that a sinusoidal disturbance overturns, i.e. infinite gradients arise.

  6. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    Science.gov (United States)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  7. Invertible propagator for plane wave illumination of forward-scattering structures.

    Science.gov (United States)

    Samelsohn, Gregory

    2017-05-10

    Propagation of directed waves in forward-scattering media is considered. It is assumed that the evolution of the wave field is governed by the standard parabolic wave equation. An efficient one-step momentum-space propagator, suitable for a tilted plane wave illumination of extended objects, is derived. It is expressed in terms of a propagation operator that transforms (the complex exponential of) a linogram of the illuminated object into a set of its diffraction patterns. The invertibility of the propagator is demonstrated, which permits a multiple-shot scatter correction to be performed, and makes the solution especially attractive for either projective or tomographic imaging. As an example, high-resolution tomograms are obtained in numerical simulations implemented for a synthetic phantom, with both refractive and absorptive inclusions.

  8. Lamb wave propagation modelling and simulation using parallel processing architecture and graphical cards

    International Nuclear Information System (INIS)

    Paćko, P; Bielak, T; Staszewski, W J; Uhl, T; Spencer, A B; Worden, K

    2012-01-01

    This paper demonstrates new parallel computation technology and an implementation for Lamb wave propagation modelling in complex structures. A graphical processing unit (GPU) and computer unified device architecture (CUDA), available in low-cost graphical cards in standard PCs, are used for Lamb wave propagation numerical simulations. The local interaction simulation approach (LISA) wave propagation algorithm has been implemented as an example. Other algorithms suitable for parallel discretization can also be used in practice. The method is illustrated using examples related to damage detection. The results demonstrate good accuracy and effective computational performance of very large models. The wave propagation modelling presented in the paper can be used in many practical applications of science and engineering. (paper)

  9. Effect of environment on the propagation of electromagnetic waves in GRC 408E digital radiorelay devices

    Directory of Open Access Journals (Sweden)

    Vojkan M. Radonjić

    2011-01-01

    Full Text Available Quality transmission of digital signals from a transmitting radio-relay device to a receiving one depends on the impact of environmental effects on the propagation of electromagnetic waves. In this paper some of the most important effects are explained and modeled, especially those characteristic for the frequency range within which the GRC 408E operates. The modeling resulted in the conclusions about the quality of transmission of digital signals in the GRC 408E radio-relay equipment. Propagation of electromagnetic waves A radio-relay link is achieved by direct electromagnetic waves, provided there is a line of sight between the transmitting and receiving antenna of a radio-relay device. Electromagnetic waves on the road are exposed to various environmental influences causing phenomena such as bending, reflection, refraction, absorption and multiple propagation. Due to these environmental effects, the quality of information transmission is not satisfactory and a radio-relay link is not reliable. The approach to the analysis of the quality of links in digital radiorelay devices is different from the one in analog radio-relay devices. Therefore, the quality is seen through errors in the received bit ( BER , the propagation conditions are taken into account, a reservation for the fading is determined by other means, etc.. Phenomena which accompany the propagation of electromagnetic waves in digital radio-relay links The propagation of direct EM waves is followed by the following phenomena: - attenuation due to propagation, - diffraction (changing table, - refraction (refraction, - reflection (refusing, - absorption (absorption and - multiple wave propagation. Each of these has a negative effect on the quality of the received signal at the receiving antenna of the radio-relay device. Attenuation due to propagation of electromagnetic waves The main parameter for evaluating the quality of radio-relay links is the level of the field at the reception

  10. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2017-02-12

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.

  11. Orthogonal wave propagation of epileptiform activity in the planar mouse hippocampus in vitro.

    Science.gov (United States)

    Kibler, Andrew B; Durand, Dominique M

    2011-09-01

    In vitro brain preparations have been used extensively to study the generation and propagation of epileptiform activity. Transverse and longitudinal slices of the rodent hippocampus have revealed various patterns of propagation. Yet intact connections between the transverse and longitudinal pathways should generate orthogonal (both transverse and longitudinal) propagation of seizures involving the entire hippocampus. This study utilizes the planar unfolded mouse hippocampus preparation to reveal simultaneous orthogonal epileptiform propagation and to test a method of arresting propagation. This study utilized an unfolded mouse hippocampus preparation. It was chosen due to its preservation of longitudinal neuronal processes, which are thought to play an important role in epileptiform hyperexcitability. 4-Aminopyridine (4-AP), microelectrodes, and voltage-sensitive dye imaging were employed to investigate tissue excitability. In 50-μm 4-AP, stimulation of the stratum radiatum induced transverse activation of CA3 cells but also induced a longitudinal wave of activity propagating along the CA3 region at a speed of 0.09 m/s. Without stimulation, a wave originated at the temporal CA3 and propagated in a temporal-septal direction could be suppressed with glutamatergic receptor antagonists. Orthogonal propagation traveled longitudinally along the CA3 pathway, secondarily invading the CA1 region at a velocity of 0.22 ± 0.024 m/s. Moreover, a local lesion restricted to the CA3 region could arrest wave propagation. These results reveal a complex two-dimensional epileptiform wave propagation pattern in the hippocampus that is generated by a combination of synaptic transmission and axonal propagation in the CA3 recurrent network. Epileptiform propagation block via a transverse selective CA3 lesion suggests a potential surgical technique for the treatment of temporal lobe epilepsy. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  12. Comparison of classical and modern theories of longitudinal wave propagation in elastic rods

    CSIR Research Space (South Africa)

    Shatalov, M

    2011-01-01

    Full Text Available Conference on Computational and Applied Mechanics SACAM10 Pretoria, 10?13 January 2010 ? SACAM COMPARISON OF CLASSICAL AND MODERN THEORIES OF LONGITUDINAL WAVE PROPAGATION IN ELASTIC RODS M. Shatalov*,?,?? , I. Fedotov? 1 , HM. Tenkam? 2, J. Marais..., Pretoria, 0001 FIN-40014, South Africa 1fedotovi@tut.ac.za, 2djouosseutenkamhm@tut.ac.za ?? Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa Keywords: Elastic rod, wave propagation, classical...

  13. Observation of drift wave propagation as a source of tokamak edge turbulence

    International Nuclear Information System (INIS)

    Wang Guiding; Liu Wandong; Yu Changxuan

    1998-01-01

    Core and edge turbulences were measured by Langmuir probe arrays in the KT-5C tokamak plasma. The radial wavenumber spectra show a quasimode like structure which results in a net radial outward propagation of the turbulent fluctuations. The measured fluctuation levels and wave action fluxes are in good agreement with model predictions by Mattor et al., suggesting that drift wave propagation could be a source of edge turbulence

  14. The optics of gyrotropic crystals in the field of two counter-propagating ultrasound waves

    International Nuclear Information System (INIS)

    Gevorgyan, A H; Harutyunyan, E M; Hovhannisyan, M A; Matinyan, G K

    2014-01-01

    We consider oblique light propagation through a layer of a gyrotropic crystal in the field of two counter-propagating ultrasound waves. The problem is solved by Ambartsumyan's layer addition modified method. The results of the reflection spectra for different values of the problem parameters are presented. The possibilities of such system applications are discussed.

  15. Oblique Propagation and Dissipation of Alfvén Waves in Coronal ...

    Indian Academy of Sciences (India)

    velocity and energy flux density as the propagation angle of Alfvén waves increases inside the coronal holes. For any propagation angle, the energy flux density and damping length scale also show a decrement in the source region of the solar wind (<1.05 R⊙) where these may be one of the pri- mary energy sources ...

  16. Producing accurate wave propagation time histories using the global matrix method

    International Nuclear Information System (INIS)

    Obenchain, Matthew B; Cesnik, Carlos E S

    2013-01-01

    This paper presents a reliable method for producing accurate displacement time histories for wave propagation in laminated plates using the global matrix method. The existence of inward and outward propagating waves in the general solution is highlighted while examining the axisymmetric case of a circular actuator on an aluminum plate. Problems with previous attempts to isolate the outward wave for anisotropic laminates are shown. The updated method develops a correction signal that can be added to the original time history solution to cancel the inward wave and leave only the outward propagating wave. The paper demonstrates the effectiveness of the new method for circular and square actuators bonded to the surface of isotropic laminates, and these results are compared with exact solutions. Results for circular actuators on cross-ply laminates are also presented and compared with experimental results, showing the ability of the new method to successfully capture the displacement time histories for composite laminates. (paper)

  17. Spin-wave propagation and spin-polarized electron transport in single-crystal iron films

    Science.gov (United States)

    Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.

    2017-11-01

    The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.

  18. Spin wave propagation in perpendicular magnetized 20 nm Yttrium Iron Garnet with different antenna design

    Science.gov (United States)

    Chen, Jilei; Stueckler, Tobias; Zhang, Youguang; Zhao, Weisheng; Yu, Haiming; Chang, Houchen; Liu, Tao; Wu, Mingzhong; Liu, Chuanpu; Liao, Zhimin; Yu, Dapeng; Fert Beijing research institute Team; Colorado State University Team; Peking University Collaboration

    Magnonics offers a new way to transport information using spin waves free of charge current and could lead to a new paradigm in the area of computing. Forward volume (FV) mode spin wave with perpendicular magnetized configuration is suitable for spin wave logic device because it is free of non-reciprocity effect. Here, we study FV mode spin wave propagation in YIG thin film with an ultra-low damping. We integrated differently designed antenna i.e., coplanar waveguide and micro stripline with different dimensions. The k vectors of the spin waves defined by the design of the antenna are calculated using Fourier transform. We show FV mode spin wave propagation results by measuring S12 parameter from vector network analyzer and we extract the group velocity of the FV mode spin wave as well as its dispersion relations.

  19. Six-day westward propagating wave in the maximum electron density of the ionosphere

    Directory of Open Access Journals (Sweden)

    D. Altadill

    2003-07-01

    Full Text Available Analyses of time-spatial variations of critical plasma frequency foF2 during the summer of 1998 reveal the existence of an oscillation activity with attributes of a 6-day westward propagating wave. This event manifests itself as a global scale wave in the foF2 of the Northern Hemisphere, having a zonal wave number 2. This event coincides with a 6-day oscillation activity in the meridional neutral winds of the mesosphere/lower thermosphere (MLT. The oscillation in neutral winds seems to be linked to the 6–7-day global scale unstable mode westward propagating wave number 1 in the MLT. The forcing mechanisms of the 6-day wave event in the ionosphere from the wave activity in the MLT are discussed.Key words. Ionosphere (Ionosphere-Atmosphere interactions; Mid-latitude Ionosphere – Meterology and atmospheric dynamics (waves and tides

  20. Six-day westward propagating wave in the maximum electron density of the ionosphere

    Directory of Open Access Journals (Sweden)

    D. Altadill

    Full Text Available Analyses of time-spatial variations of critical plasma frequency foF2 during the summer of 1998 reveal the existence of an oscillation activity with attributes of a 6-day westward propagating wave. This event manifests itself as a global scale wave in the foF2 of the Northern Hemisphere, having a zonal wave number 2. This event coincides with a 6-day oscillation activity in the meridional neutral winds of the mesosphere/lower thermosphere (MLT. The oscillation in neutral winds seems to be linked to the 6–7-day global scale unstable mode westward propagating wave number 1 in the MLT. The forcing mechanisms of the 6-day wave event in the ionosphere from the wave activity in the MLT are discussed.

    Key words. Ionosphere (Ionosphere-Atmosphere interactions; Mid-latitude Ionosphere – Meterology and atmospheric dynamics (waves and tides

  1. Simulation of non-hydrostatic gravity wave propagation in the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Y. Deng

    2014-04-01

    Full Text Available The high-frequency and small horizontal scale gravity waves may be reflected and ducted in non-hydrostatic simulations, but usually propagate vertically in hydrostatic models. To examine gravity wave propagation, a preliminary study has been conducted with a global ionosphere–thermosphere model (GITM, which is a non-hydrostatic general circulation model for the upper atmosphere. GITM has been run regionally with a horizontal resolution of 0.2° long × 0.2° lat to resolve the gravity wave with wavelength of 250 km. A cosine wave oscillation with amplitude of 30 m s−1 has been applied to the zonal wind at the low boundary, and both high-frequency and low-frequency waves have been tested. In the high-frequency case, the gravity wave stays below 200 km, which indicates that the wave is reflected or ducted in propagation. The results are consistent with the theoretical analysis from the dispersion relationship when the wavelength is larger than the cutoff wavelength for the non-hydrostatic situation. However, the low-frequency wave propagates to the high altitudes during the whole simulation period, and the amplitude increases with height. This study shows that the non-hydrostatic model successfully reproduces the high-frequency gravity wave dissipation.

  2. Propagation of electromagnetic waves in the plasma near electron cyclotron resonance: Undulator-induced transparency

    International Nuclear Information System (INIS)

    Shvets, G.; Tushentsov, M.; Tokman, M.D.; Kryachko, A.

    2005-01-01

    Propagation of electromagnetic waves in magnetized plasma near the electron cyclotron frequency can be strongly modified by adding a weak magnetic undulator. For example, both right- and left-hand circularly polarized waves can propagate along the magnetic field without experiencing resonant absorption. This effect of entirely eliminating electron cyclotron heating is referred to as the undulator-induced transparency (UIT) of the plasma, and is the classical equivalent of the well-known quantum mechanical effect of electromagnetically induced transparency. The basics of UIT are reviewed, and various ways in which UIT can be utilized to achieve exotic propagation properties of electromagnetic waves in plasmas are discussed. For example, UIT can dramatically slow down the waves' group velocity, resulting in the extreme compression of the wave energy in the plasma. Compressed waves are polarized along the propagation direction, and can be used for synchronous electron or ion acceleration. Strong coupling between the two wave helicities are explored to impart the waves with high group velocities ∂ω/∂k for vanishing wave numbers k. Cross-helicity coupling for realistic density and magnetic field profiles are examined using a linearized fluid code, particle-in-cell simulations, and ray-tracing WKB calculations

  3. Investigating Alfvénic wave propagation in coronal open-field regions

    Science.gov (United States)

    Morton, R. J.; Tomczyk, S.; Pinto, R.

    2015-01-01

    The physical mechanisms behind accelerating solar and stellar winds are a long-standing astrophysical mystery, although recent breakthroughs have come from models invoking the turbulent dissipation of Alfvén waves. The existence of Alfvén waves far from the Sun has been known since the 1970s, and recently the presence of ubiquitous Alfvénic waves throughout the solar atmosphere has been confirmed. However, the presence of atmospheric Alfvénic waves does not, alone, provide sufficient support for wave-based models; the existence of counter-propagating Alfvénic waves is crucial for the development of turbulence. Here, we demonstrate that counter-propagating Alfvénic waves exist in open coronal magnetic fields and reveal key observational insights into the details of their generation, reflection in the upper atmosphere and outward propagation into the solar wind. The results enhance our knowledge of Alfvénic wave propagation in the solar atmosphere, providing support and constraints for some of the recent Alfvén wave turbulence models. PMID:26213234

  4. Parametric instabilities of parallel propagating incoherent Alfven waves in a finite ion beta plasma

    International Nuclear Information System (INIS)

    Nariyuki, Y.; Hada, T.; Tsubouchi, K.

    2007-01-01

    Large amplitude, low-frequency Alfven waves constitute one of the most essential elements of magnetohydrodynamic (MHD) turbulence in the fast solar wind. Due to small collisionless dissipation rates, the waves can propagate long distances and efficiently convey such macroscopic quantities as momentum, energy, and helicity. Since loading of such quantities is completed when the waves damp away, it is important to examine how the waves can dissipate in the solar wind. Among various possible dissipation processes of the Alfven waves, parametric instabilities have been believed to be important. In this paper, we numerically discuss the parametric instabilities of coherent/incoherent Alfven waves in a finite ion beta plasma using a one-dimensional hybrid (superparticle ions plus an electron massless fluid) simulation, in order to explain local production of sunward propagating Alfven waves, as suggested by Helios/Ulysses observation results. Parameter studies clarify the dependence of parametric instabilities of coherent/incoherent Alfven waves on the ion and electron beta ratio. Parametric instabilities of coherent Alfven waves in a finite ion beta plasma are vastly different from those in the cold ions (i.e., MHD and/or Hall-MHD systems), even if the collisionless damping of the Alfven waves are neglected. Further, ''nonlinearly driven'' modulational instability is important for the dissipation of incoherent Alfven waves in a finite ion beta plasma regardless of their polarization, since the ion kinetic effects let both the right-hand and left-hand polarized waves become unstable to the modulational instability. The present results suggest that, although the antisunward propagating dispersive Alfven waves are efficiently dissipated through the parametric instabilities in a finite ion beta plasma, these instabilities hardly produce the sunward propagating waves

  5. Nuclear sound

    International Nuclear Information System (INIS)

    Wambach, J.

    1991-01-01

    Nuclei, like more familiar mechanical systems, undergo simple vibrational motion. Among these vibrations, sound modes are of particular interest since they reveal important information on the effective interactions among the constituents and, through extrapolation, on the bulk behaviour of nuclear and neutron matter. Sound wave propagation in nuclei shows strong quantum effects familiar from other quantum systems. Microscopic theory suggests that the restoring forces are caused by the complex structure of the many-Fermion wavefunction and, in some cases, have no classical analogue. The damping of the vibrational amplitude is strongly influenced by phase coherence among the particles participating in the motion. (author)

  6. Consistency of students’ conceptions of wave propagation: Findings from a conceptual survey in mechanical waves

    Directory of Open Access Journals (Sweden)

    Apisit Tongchai

    2011-07-01

    Full Text Available We recently developed a multiple-choice conceptual survey in mechanical waves. The development, evaluation, and demonstration of the use of the survey were reported elsewhere [A. Tongchai et al., Developing, evaluating and demonstrating the use of a conceptual survey in mechanical waves, Int. J. Sci. Educ. 31, 2437 (2009ISEDEB0950-069310.1080/09500690802389605]. We administered the survey to 902 students from seven different groups ranging from high school to second year university. As an outcome of that analysis we were able to identify several conceptual models which the students seemed to be using when answering the questions in the survey. In this paper we attempt to investigate the strength with which the students were committed to these conceptual models, as evidenced by the consistency with which they answered the questions. For this purpose we focus on the patterns of student responses to questions in one particular subtopic, wave propagation. This study has three main purposes: (1 to investigate the consistency of student conceptions, (2 to explore the relative usefulness of different analysis techniques, and (3 to determine what extra information a study of consistency can give about student understanding of basic concepts. We used two techniques: first, categorizing and counting, which is widely used in the science education community, and second, model analysis, recently introduced into physics education research. The manner in which categorizing and counting is used is very diverse while model analysis has been employed only in prescriptive ways. Research studies have reported that students often use their conceptual models inconsistently when solving a series of questions that test the same idea. Our results support their conclusions. Moreover, our findings suggest that students who have had more experiences in physics learning seem to use the scientifically accepted models more consistently. Further, the two analysis techniques

  7. Vertical elliptic operator for efficient wave propagation in TTI media

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2015-01-01

    Elliptic wave extrapolation operators require significantly less computational cost than the ones for transversely isotropic (TI) media. However, it does not provide accurate wavefield representation or imaging for the prevalent TI media. We propose a new vertical elliptically anisotropic (VEA) wave equation by decomposing the acoustic TI pseudo-differential wave equation. The decomposition results in a vertical elliptic differential equation and a scalar operator. The new VEA-like wave equation shares the same dispersion relation as that of the original acoustic TI wave equation. Therefore, the kinematic contents are correctly matched to the original equation. Moreover, the proposed decomposition yields better amplitude properties than the isotropic decomposition without increasing the computational load. Therefore, it exhibits better cost versus accuracy tradeoff compared to the isotropic or the tilted elliptic decompositions. We demonstrate with numerical examples that the proposed methodology is numerically stable for complex models and is free from shear-wave artifacts.

  8. Gas explosion characterization, wave propagation (small scale experiments)

    International Nuclear Information System (INIS)

    Larsen, G.C.

    1985-08-01

    A number of experiments have been performed with blast waves arising from the ignition of homogeneous and well defined mixtures of methane, oxygen and nitrogen, contained within spherical balloons with controlled initial dimensions. The pressure characteristics has been studied for blast waves with and without influence from reflected waves. The influence of obstacles in the flow field has also been treated. Both configuration with one box and two closely spaced boxes have been considered, and a wave-wave interaction phenomenon was observed in the case of closely spaced obstacles. Moreover reflection coefficients have been established and some pressure variations over the surfaces have been observed. An acoustic appriximation has been used to model the blast wave originating from an expanding sphere. It has been demonstrated, that the generated pressure pulse is very sensitive to the expansion rate. Calculated and measured data have been compared, and a reasonable agreement has been found. (author)

  9. Vertical elliptic operator for efficient wave propagation in TTI media

    KAUST Repository

    Waheed, Umair bin

    2015-08-19

    Elliptic wave extrapolation operators require significantly less computational cost than the ones for transversely isotropic (TI) media. However, it does not provide accurate wavefield representation or imaging for the prevalent TI media. We propose a new vertical elliptically anisotropic (VEA) wave equation by decomposing the acoustic TI pseudo-differential wave equation. The decomposition results in a vertical elliptic differential equation and a scalar operator. The new VEA-like wave equation shares the same dispersion relation as that of the original acoustic TI wave equation. Therefore, the kinematic contents are correctly matched to the original equation. Moreover, the proposed decomposition yields better amplitude properties than the isotropic decomposition without increasing the computational load. Therefore, it exhibits better cost versus accuracy tradeoff compared to the isotropic or the tilted elliptic decompositions. We demonstrate with numerical examples that the proposed methodology is numerically stable for complex models and is free from shear-wave artifacts.

  10. Analytical Time-Domain Solution of Plane Wave Propagation Across a Viscoelastic Rock Joint

    Science.gov (United States)

    Zou, Yang; Li, Jianchun; Laloui, Lyesse; Zhao, Jian

    2017-10-01

    The effects of viscoelastic filled rock joints on wave propagation are of great significance in rock engineering. The solutions in time domain for plane longitudinal ( P-) and transverse ( S-) waves propagation across a viscoelastic rock joint are derived based on Maxwell and Kelvin models which are, respectively, applied to describe the viscoelastic deformational behaviour of the rock joint and incorporated into the displacement discontinuity model (DDM). The proposed solutions are verified by comparing with the previous studies on harmonic waves, which are simulated by sinusoidal incident P- and S-waves. Comparison between the predicted transmitted waves and the experimental data for P-wave propagation across a joint filled with clay is conducted. The Maxwell is found to be more appropriate to describe the filled joint. The parametric studies show that wave propagation is affected by many factors, such as the stiffness and the viscosity of joints, the incident angle and the duration of incident waves. Furthermore, the dependences of the transmission and reflection coefficients on the specific joint stiffness and viscosity are different for the joints with Maxwell and Kelvin behaviours. The alternation of the reflected and transmitted waveforms is discussed, and the application scope of this study is demonstrated by an illustration of the effects of the joint thickness. The solutions are also extended for multiple parallel joints with the virtual wave source method and the time-domain recursive method. For an incident wave with arbitrary waveform, it is convenient to adopt the present approach to directly calculate wave propagation across a viscoelastic rock joint without additional mathematical methods such as the Fourier and inverse Fourier transforms.

  11. Wave propagation through disordered media without backscattering and intensity variations

    Institute of Scientific and Technical Information of China (English)

    Konstantinos G Makris; Andre Brandst(o)tter; Philipp Ambichl; Ziad H Musslimani; Stefan Rotter

    2017-01-01

    A fundamental manifestation of wave scattering in a disordered medium is the highly complex intensity pattern the waves acquire due to multi-path interference.Here we show that these intensity variations can be entirely suppressed by adding disorder-specific gain and loss components to the medium.The resulting constant-intensity waves in such non-Hermitian scattering landscapes are free of any backscattering and feature perfect transmission through the disorder.An experimental demonstration of these unique wave states is envisioned based on spatially modulated pump beams that can flexibly control the gain and loss components in an active medium.

  12. Nonlinear sausage-wave propagation in a magnetic slab in an incompressible fluid

    International Nuclear Information System (INIS)

    Ruderman, M.S.

    1993-01-01

    Long nonlinear sausage-wave propagation in a magnetic slab in an incompressible plasma is considered. The governing equation is derived with the aid of the reductive perturbation method. The solutions of this equation in the form of periodic waves of permanent shape are found numerically. (Author)

  13. Propagation of Love waves in an elastic layer with void pores

    Indian Academy of Sciences (India)

    The paper presents a study of propagation of Love waves in a poroelastic layer resting over a poro-elastic half-space. Pores contain nothing of mechanical or energetic significance. The study reveals that such a medium transmits two types of love waves. The first front depends upon the modulus of rigidity of the elastic ...

  14. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    Science.gov (United States)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-08-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  15. Heating of charged particles by electrostatic wave propagating perpendicularly to uniform magnetic field

    International Nuclear Information System (INIS)

    Niu, Keishiro; Shimojo, Takashi.

    1978-02-01

    Increase in kinetic energy of a charged particle, affected by an electrostatic wave propagating perpendicularly to a uniform magnetic field, is obtained for both the initial and later stages. Detrapping time of the particle from the potential dent of the electrostatic wave and energy increase during trapping of the particle is analytically derived. Numerical simulations are carried out to support theoretical results. (auth.)

  16. Transverse wave propagation in [ab0] direction of silicon single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sang Jin; Kim, Hye Jeong; Kwon, Se Ho; Kim, Young H. [Applied Acoustics Lab, Korea Science Academy of KAIST, Busan(Korea, Republic of)

    2015-12-15

    The speed and oscillation directions of elastic waves propagating in the [ab0] direction of a silicon single crystal were obtained by solving Christoffel's equation. It was found that the quasi waves propagate in the off-principal axis, and hence, the directions of the phase and group velocities are not the same. The maximum deviation of the two directions was 7.2 degree angle. Two modes of the pure transverse waves propagate in the [110] direction with different speeds, and hence, two peaks were observed in the pulse echo signal. The amplitude ratio of the two peaks was dependent on the initial oscillating direction of the incident wave. The pure and quasi-transverse waves propagate in the [210] direction, and the oscillation directions of these waves are perpendicular to each other. The skewing angle of the quasi wave was calculated as 7.14 degree angle, and it was measured as 9.76 degree angle. The amplitude decomposition in the [210] direction was similar to that in the [110] direction, since the oscillation directions of these waves are perpendicular to each other. These results offer useful information in measuring the crystal orientation of the silicon single crystal.

  17. Effect of a sound wave on the stability of an argon discharge

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Karapetyan, D.M.; Tavakalyan, L.B.

    1992-01-01

    The effect of a sound wave on the stability of the positive column of an argon discharge has been studied experimentally in the range of pressures from 40 to 180 torr and discharge currents from 40 to 110 mA in a tube with an interior diameter of 9.8 cm. It is shown that, depending on the intensity of the sound wave and the discharge parameters, sound can cause the positive column either to contract or to leave the contracted state. The electric field strength has been measured as a function of the sound intensity. An analogy between the effect of sound and that of longitudinal pumping of the gas on the argon discharge parameters has been established. The radial temperature of the gas has been studied in an argon discharge as a function of the sound intensity for different gas pressures. A direct relationship has been established between the sign of the detector effect produced by a sound wave in a discharge and the processes of contraction and filamentation of a discharge. 11 refs., 4 figs., 1 tab

  18. Discrete Element Simulation of Elastoplastic Shock Wave Propagation in Spherical Particles

    Directory of Open Access Journals (Sweden)

    M. Shoaib

    2011-01-01

    Full Text Available Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical applications including the high-velocity compaction of particulate material.

  19. Influence of Sea Surface Roughness on the Electromagnetic Wave Propagation in the Duct Environment

    Directory of Open Access Journals (Sweden)

    X. Zhao

    2010-12-01

    Full Text Available This paper deals with a study of the influence of sea surface roughness on the electromagnetic wave propagation in the duct environment. The problem of electromagnetic wave propagation is modeled by using the parabolic equation method. The roughness of the sea surface is computed by modifying the smooth surface Fresnel reflection coefficient to account for the reduction in the specular reflection due to the roughness resulting from sea wind speed. The propagation model is solved by the mixed Fourier split-step algorithm. Numerical experiments indicate that wind-driven roughened sea surface has an impact on the electromagnetic wave propagation in the duct environment, and the strength is intensified along with the increment of sea wind speeds and/or the operating frequencies. In a fixed duct environment, however, proper disposition of the transmitter could reduce these impacts.

  20. Propagation of Elastic Waves in a One-Dimensional High Aspect Ratio Nanoridge Phononic Crystal

    Directory of Open Access Journals (Sweden)

    Abdellatif Gueddida

    2018-05-01

    Full Text Available We investigate the propagation of elastic waves in a one-dimensional (1D phononic crystal constituted by high aspect ratio epoxy nanoridges that have been deposited at the surface of a glass substrate. With the help of the finite element method (FEM, we calculate the dispersion curves of the modes localized at the surface for propagation both parallel and perpendicular to the nanoridges. When the direction of the wave is parallel to the nanoridges, we find that the vibrational states coincide with the Lamb modes of an infinite plate that correspond to one nanoridge. When the direction of wave propagation is perpendicular to the 1D nanoridges, the localized modes inside the nanoridges give rise to flat branches in the band structure that interact with the surface Rayleigh mode, and possibly open narrow band gaps. Filling the nanoridge structure with a viscous liquid produces new modes that propagate along the 1D finite height multilayer array.

  1. Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.

    Science.gov (United States)

    Bozeman, Steven Paul

    The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in

  2. Surface wave propagation in an ideal Hall-magnetohydrodynamic plasma jet in flowing environment

    International Nuclear Information System (INIS)

    Sikka, Himanshu; Kumar, Nagendra; Zhelyazkov, Ivan

    2004-01-01

    The behavior of the Hall-magnetohydrodynamic (Hall-MHD) sausage and kink waves is studied in the presence of steady flow. The influence of the flow both inside and outside the plasma slab is taken into account. The plasma in the environment is considered to be cold and moves with the different flow velocity outside the slab. In the limit of parallel propagation, dispersion relation is derived to discuss the propagation of both the modes. Numerical results for the propagation characteristics are obtained for different Alfvenic Mach number ratios inside and outside the slab. It is found that the dispersion curves for both surface modes, namely, the sausage and kink ones in cold plasma show complexities in their behavior in terms of multivalued portions of the curves. These multivalued portions correspond to the different normalized phase velocities for the same value of Alfvenic Mach number. In contrast to the conventional MHD surface waves which are assumed to be pure surface waves or pseudosurface waves, surface waves are obtained which are bulk waves for very small dimensionless wave numbers, then turn to leaky waves and finally transform to pure surface waves for values of dimensionless wave number greater than one

  3. The effect of convection and shear on the damping and propagation of pressure waves

    Science.gov (United States)

    Kiel, Barry Vincent

    Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection

  4. Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, S.P.

    1990-01-01

    Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed

  5. A Full-wave Model for Wave Propagation and Dissipation in the Inner Magnetosphere Using the Finite Element Method

    International Nuclear Information System (INIS)

    Valeo, Ernest; Johnson, Jay R.; Kim, Eun-Hwa; Phillips, Cynthia

    2012-01-01

    A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.

  6. Spin-wave propagation spectrum in magnetization-modulated cylindrical nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-xiong; Wang, Meng-ning; Nie, Yao-zhuang; Wang, Dao-wei; Xia, Qing-lin [School of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China)

    2016-09-15

    Spin-wave propagation in periodic magnetization-modulated cylindrical nanowires is studied by micromagnetic simulation. Spin wave scattering at the interface of two magnetization segments causes a spin-wave band structure, which can be effectively tuned by changing either the magnetization modulation level or the period of the cylindrical nanowire magnonic crystal. The bandgap width is oscillating with either the period or magnetization modulation due to the oscillating variation of the spin wave transmission coefficient through the interface of the two magnetization segments. Analytical calculation based on band theory is used to account for the micromagnetic simulation results. - Highlights: • A magnetization-modulated cylindrical nanowire magnonic crystal is proposed. • Propagating characteristics of spin waves in such magnonic crystal are studied. • Spin-wave spectra can be manipulated by changing modulation level and period.

  7. 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Wijerathne, M. L. L.; Hori, Muneo; Sakaguchi, Hide; Oguni, Kenji

    2010-06-01

    Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.

  8. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Directory of Open Access Journals (Sweden)

    Z. Hashemiyan

    2016-01-01

    Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.

  9. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Science.gov (United States)

    Packo, P.; Staszewski, W. J.; Uhl, T.

    2016-01-01

    Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808

  10. High-Order Wave Propagation Algorithms for Hyperbolic Systems

    KAUST Repository

    Ketcheson, David I.; Parsani, Matteo; LeVeque, Randall J.

    2013-01-01

    of accuracy and allows a well-balanced implementation for capturing solutions of balance laws near steady state. This well-balancing is achieved through the $f$-wave Riemann solver and a novel wave-slope WENO reconstruction procedure. The wide applicability

  11. Full-wave Simulations of LH Wave Propagation in Toroidal Plasma with non-Maxwellian Electron Distributions

    International Nuclear Information System (INIS)

    Valeo, E.J.; Phillips, C.K.; Bonoli, P.T.; Wright, J.C.; Brambilla, M.

    2007-01-01

    The generation of energetic tails in the electron distribution function is intrinsic to lower-hybrid (LH) heating and current drive in weakly collisional magnetically confined plasma. The effects of these deformations on the RF deposition profile have previously been examined within the ray approximation. Recently, the calculation of full-wave propagation of LH waves in a thermal plasma has been accomplished using an adaptation of the TORIC code. Here, initial results are presented from TORIC simulations of LH propagation in a toroidal plasma with non-thermal electrons. The required efficient computation of the hot plasma dielectric tensor is accomplished using a technique previously demonstrated in full-wave simulations of ICRF propagation in plasma with non-thermal ions

  12. Acoustic wave propagation and stochastic effects in metamaterial absorbers

    DEFF Research Database (Denmark)

    Christensen, Johan; Willatzen, Morten

    2014-01-01

    We show how stochastic variations of the effective parameters of anisotropic structured metamaterials can lead to increased absorption of sound. For this, we derive an analytical model based on the Bourret approximation and illustrate the immediate connection between material disorder and attenua...

  13. THz Wave Propagation on Strip Lines: Devices, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Y. Kadoya

    2008-06-01

    Full Text Available We report the propagation characteristics of THz pulses on micro-strip-lines and coplanar strip-lines, in which low permittivity polymer materials are used as the dielectric layer or the substrate. As a result of the low attenuation and small dispersion in the devices, the spectral width up to 3 THz can be achieved even after the 1 mm propagation. Spectroscopic characterizations of liquid or powder specimens are demonstrated using the devices. We also show a possibility of realizing a very low attenuation using a quadrupole mode in three strip coplanar lines on the polymer substrate.

  14. Path Loss Analysis of WSN Wave Propagation in Vegetation

    International Nuclear Information System (INIS)

    Sabri, Naseer; Aljunid, S A; Ahmad, R B; Malek, M F; Salim, M S; Kamaruddin, R

    2013-01-01

    Deployment of a successful wireless sensor network requires precise prediction models that provide a reliable communication links of wireless nodes. Prediction models fused with foliage models provide sensible parameters of wireless nodes separation distance, antenna height, and power transmission which affect the reliability and communication coverage of a network. This paper review the line of sight and the two ray propagation models combined with the most known foliage models that cover the propagation of wireless communications in vegetative environments, using IEEE 802.15.4 standard. Simulation of models is presented and the impacts of the communication parameters, environment and vegetation have been reported.

  15. Consistency of students’ conceptions of wave propagation: Findings from a conceptual survey in mechanical waves

    Directory of Open Access Journals (Sweden)

    Chernchok Soankwan

    2011-07-01

    Full Text Available We recently developed a multiple-choice conceptual survey in mechanical waves. The development, evaluation, and demonstration of the use of the survey were reported elsewhere [ A. Tongchai et al. Int. J. Sci. Educ. 31 2437 (2009]. We administered the survey to 902 students from seven different groups ranging from high school to second year university. As an outcome of that analysis we were able to identify several conceptual models which the students seemed to be using when answering the questions in the survey. In this paper we attempt to investigate the strength with which the students were committed to these conceptual models, as evidenced by the consistency with which they answered the questions. For this purpose we focus on the patterns of student responses to questions in one particular subtopic, wave propagation. This study has three main purposes: (1 to investigate the consistency of student conceptions, (2 to explore the relative usefulness of different analysis techniques, and (3 to determine what extra information a study of consistency can give about student understanding of basic concepts. We used two techniques: first, categorizing and counting, which is widely used in the science education community, and second, model analysis, recently introduced into physics education research. The manner in which categorizing and counting is used is very diverse while model analysis has been employed only in prescriptive ways. Research studies have reported that students often use their conceptual models inconsistently when solving a series of questions that test the same idea. Our results support their conclusions. Moreover, our findings suggest that students who have had more experiences in physics learning seem to use the scientifically accepted models more consistently. Further, the two analysis techniques have different advantages and disadvantages. Our findings show that model analysis can be used in more diverse ways, provides

  16. Propagation of sech2-type solitary waves in higher-order KdV-type systems

    International Nuclear Information System (INIS)

    Ilison, O.; Salupere, A.

    2005-01-01

    Wave propagation in microstructured media is essentially influenced by nonlinear and dispersive effects. The simplest model governing these effects results in the Korteweg-de Vries (KdV) equation. In the present paper a KdV-type evolution equation, including the third- and fifth-order dispersive and the fourth-order nonlinear terms, is used for modelling the wave propagation in microstructured solids like martensitic-austenitic alloys. The model equation is solved numerically under localised initial conditions. Possible solution types are defined and discussed. The existence of a threshold is established. Below the threshold, the relatively small solitary waves decay in time. However, if the amplitude exceeds a certain threshold, i.e., the critical value, then such a solitary wave can propagate with nearly a constant speed and amplitude and consequently conserve the energy

  17. An Overview of Recent Advances in the Iterative Analysis of Coupled Models for Wave Propagation

    Directory of Open Access Journals (Sweden)

    D. Soares

    2014-01-01

    Full Text Available Wave propagation problems can be solved using a variety of methods. However, in many cases, the joint use of different numerical procedures to model different parts of the problem may be advisable and strategies to perform the coupling between them must be developed. Many works have been published on this subject, addressing the case of electromagnetic, acoustic, or elastic waves and making use of different strategies to perform this coupling. Both direct and iterative approaches can be used, and they may exhibit specific advantages and disadvantages. This work focuses on the use of iterative coupling schemes for the analysis of wave propagation problems, presenting an overview of the application of iterative procedures to perform the coupling between different methods. Both frequency- and time-domain analyses are addressed, and problems involving acoustic, mechanical, and electromagnetic wave propagation problems are illustrated.

  18. Propagation Characteristics of Electromagnetic Waves Recorded by the Four CLUSTER Satellites

    International Nuclear Information System (INIS)

    Parrot, M.; Santolik, O.; Cornilleau-Wehrlin, N.; Maksimovic, M.; Harvey, Ch.

    2001-01-01

    This paper will describe the methods we use to determine the propagation characteristics of electromagnetic waves observed by the four CLUSTER satellites. The data is recorded aboard CLUSTER by the STAFF (Spatio-Temporal Analysis of Field Fluctuations) spectrum analyser. This instrument has several modes of operation, and can provide the spectral matrix of three magnetic and two electric components. This spectral matrix is processed by a dedicated software (PRASSADCO: Propagation Analysis of STAFF-SA Data with Coherency Tests) in order to determine the wave normal directions with respect to the DC magnetic field. PRASSADCO also provides a number of alternative methods to estimate wave polarisation and propagation parameters, such as the Poynting vector, and the refractive index. It is therefore possible to detect the source extension of various electromagnetic waves using the 4 satellites. Results of this data processing will be shown here for one event observed by one satellite. (author)

  19. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    Science.gov (United States)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  20. Wave propagation in metamaterials mimicking the topology of a cosmic string

    Science.gov (United States)

    Fernández-Núñez, Isabel; Bulashenko, Oleg

    2018-04-01

    We study the interference and diffraction of light when it propagates through a metamaterial medium mimicking the spacetime of a cosmic string—a topological defect with curvature singularity. The phenomenon may look like a gravitational analogue of the Aharonov-Bohm effect, since the light propagates in a region where the Riemann tensor vanishes, being nonetheless affected by the non-zero curvature confined to the string core. We carry out the full-wave numerical simulation of the metamaterial medium and give the analytical interpretation of the results by use of the asymptotic theory of diffraction, which turns out to be in excellent agreement. In particular, we show that the main features of wave propagation in a medium with conical singularity can be explained by four-wave interference involving two geometrical optics and two diffracted waves.

  1. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla

    1968-01-01

    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  2. Propagation behavior of two transverse surface waves in a three-layer piezoelectric/piezomagnetic structure

    Science.gov (United States)

    Nie, Guoquan; Liu, Jinxi; Liu, Xianglin

    2017-10-01

    Propagation of transverse surface waves in a three-layer system consisting of a piezoelectric/piezomagnetic (PE/PM) bi-layer bonded on an elastic half-space is theoretically investigated in this paper. Dispersion relations and mode shapes for transverse surface waves are obtained in closed form under electrically open and shorted boundary conditions at the upper surface. Two transverse surface waves related both to Love-type wave and Bleustein-Gulyaev (B-G) type wave propagating in corresponding three-layer structure are discussed through numerically solving the derived dispersion equation. The results show that Love-type wave possesses the property of multiple modes, it can exist all of the values of wavenumber for every selected thickness ratios regardless of the electrical boundary conditions. The presence of PM interlayer makes the phase velocity of Love-type wave decrease. There exist two modes allowing the propagation of B-G type wave under electrically shorted circuit, while only one mode appears in the case of electrically open circuit. The modes of B-G type wave are combinations of partly normal dispersion and partly anomalous dispersion whether the electrically open or shorted. The existence range of mode for electrically open case is greatly related to the thickness ratios, with the thickness of PM interlayer increasing the wavenumber range for existence of B-G type wave quickly shortened. When the thickness ratio is large enough, the wavenumber range of the second mode for electrically shorted circuit is extremely narrow which can be used to remove as an undesired mode. The propagation behaviors and mode shapes of transverse surface waves can be regulated by the modification of the thickness of PM interlayer. The obtained results provide a theoretical prediction and basis for applications of PE-PM composites and acoustic wave devices.

  3. MAVEN Observation of an Obliquely Propagating Low-Frequency Wave Upstream of Mars

    Science.gov (United States)

    Ruhunusiri, Suranga; Halekas, J. S.; Connerney, J. E. P.; Espley, J. R.; McFadden, J. P.; Mazelle, C.; Brain, D.; Collinson, G.; Harada, Y.; Larson, D. E.; hide

    2016-01-01

    We report Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations of a large amplitude low-frequency plasma wave that propagated oblique to the ambient magnetic field upstream of Mars along with a non-solar-wind plasma component that had a flow velocity perpendicular to the magnetic field. We consider nine possibilities for this wave that include various combinations of its propagation direction, polarization in the solar wind frame, and ion source responsible for its generation. Using the observed wave parameters and the measured plasma parameters as constraints, we uniquely identify the wave by systematically discarding these possibilities. We determine that the wave is a right-hand polarized wave that propagated upstream in the solar wind frame. We find two possibilities for the ion source that can be responsible for this wave generation. They are either newly born pickup protons or reflected solar wind protons from the bow shock.We determine that the observed non-solar-wind component is not responsible for the wave generation, and it is likely that the non-solar-wind component was merely perturbed by the passage of the wave.

  4. Time domain phenomena of wave propagation in rapidly created plasma of periodic distribution

    International Nuclear Information System (INIS)

    Kuo, S P

    2007-01-01

    Theories, experiments and numerical simulations on the interaction of electromagnetic waves with rapidly created unmagnetized plasmas are presented. In the case that plasma is created uniformly, the frequency of a propagating electromagnetic wave is upshifted. An opposite propagation wave of the same frequency is also generated. In addition, a static current supporting a wiggler magnetic field is also produced in the plasma. When a spatially periodic structure is introduced to the rapidly created plasma, the theory and numerical simulation results show that both frequency-upshifted and downshifted waves are generated. If the plasma has a large but finite dimension in the incident wave propagation direction and is created rapidly rather than instantaneously, the frequency downshifted waves are found to be trapped by the plasma when the plasma frequency is larger than the wave frequency. The wave trapping results in accumulating the frequency-downshifted waves during the finite transient period of plasma creation. Indeed, in the experimental observations the frequency downshifted signals were detected repetitively with considerably enhanced spectral intensities, confirming the results of the numerical simulations. The missing of frequency upshifted signals in the experimental observations is explained by the modal field distributions in the periodic structure, indicating that the frequency upshifted modes experience heavier collisional damping of the plasma than the frequency downshifted modes

  5. Wave Propagation in an Ion Beam-Plasma System

    DEFF Research Database (Denmark)

    Jensen, T. D.; Michelsen, Poul; Juul Rasmussen, Jens

    1979-01-01

    The spatial evolution of a velocity- or density-modulated ion beam is calculated for stable and unstable ion beam plasma systems, using the linearized Vlasov-Poisson equations. The propagation properties are found to be strongly dependent on the form of modulation. In the case of velocity...

  6. Spectral element method for wave propagation on irregular domains

    Indian Academy of Sciences (India)

    Yan Hui Geng

    2018-03-14

    Mar 14, 2018 ... Abstract. A spectral element approximation of acoustic propagation problems combined with a new mapping method on irregular domains is proposed. Following this method, the Gauss–Lobatto–Chebyshev nodes in the standard space are applied to the spectral element method (SEM). The nodes in the ...

  7. Spectral element method for wave propagation on irregular domains

    Indian Academy of Sciences (India)

    A spectral element approximation of acoustic propagation problems combined with a new mapping method on irregular domains is proposed. Following this method, the Gauss–Lobatto–Chebyshev nodes in the standard space are applied to the spectral element method (SEM). The nodes in the physical space are ...

  8. Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Sha; Yue, Feng [Shanghai Institute of Spaceflight Control Technology, Shanghai 200233 (China); Wu, Jian [China Research Institute of Radio wave Propagation, Beijing 102206 (China); Li, Hui [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); China Research Institute of Radio wave Propagation, Beijing 102206 (China)

    2016-04-15

    The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.

  9. A theoretical analysis of the weak shock waves propagating through a bubbly flow

    International Nuclear Information System (INIS)

    Jun, Gu Sik; Kim, Heuy Dong; Baek, Seung Cheol

    2004-01-01

    Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data

  10. Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    International Nuclear Information System (INIS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang; Liu, Sha; Yue, Feng; Wu, Jian; Li, Hui

    2016-01-01

    The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.

  11. Do electromagnetic waves always propagate along null geodesics?

    International Nuclear Information System (INIS)

    Asenjo, Felipe A; Hojman, Sergio A

    2017-01-01

    We find exact solutions to Maxwell equations written in terms of four-vector potentials in non–rotating, as well as in Gödel and Kerr spacetimes. We show that Maxwell equations can be reduced to two uncoupled second-order differential equations for combinations of the components of the four-vector potential. Exact electromagnetic waves solutions are written on given gravitational field backgrounds where they evolve. We find that in non–rotating spherical symmetric spacetimes, electromagnetic waves travel along null geodesics. However, electromagnetic waves on Gödel and Kerr spacetimes do not exhibit that behavior. (paper)

  12. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel; Rietmann, Max; Galvez, Percy; Ampuero, Jean Paul

    2017-01-01

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step

  13. Vertical propagation of baroclinic Kelvin waves along the west coast ...

    Indian Academy of Sciences (India)

    Second, baroclinic Kelvin waves generated in the Bay of Bengal at periods shorter than about 120 ... significant energy remains trapped to the Indian west coast. .... ary condition, enables us to isolate the response of the West India Coastal ...

  14. Electron thermal conductivity from heat wave propagation in Wendelstein 7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Erckmann, V; Gasparino, U; Hartfuss, H J; Kuehner, G; Maassberg, H; Stroth, U; Tutter, M [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); W7-AS Team; ECRH Group IPF Stuttgart; Gyrotron Group KFK Karlsruhe

    1992-11-01

    Heat wave propagation experiments have been carried out on the Wendelstein 7-AS stellarator. The deposition of electron cyclotron resonance heating power is highly localized in the plasma centre, so that power modulation produces heat waves which propagate away from the deposition volume. Radiometry of the electron cyclotron emission is used to measure the generated temperature perturbation. The propagation time delay of the temperature perturbation as a function of distance to the power deposition region is used to determine the electron thermal conductivity [chi][sub e]. This value is then compared with the value determined by global power balance. In contrast to sawtooth propagation experiments in tokamaks, it is found that the value of [chi][sub e] from heat wave propagation is comparable to that calculated by power balance. In addition, inward propagating waves were produced by choosing a power deposition region away from the plasma centre. Experiments were carried out at 70 GHz in the ordinary mode and at 140 GHz in the extraordinary mode. Variations of the modulation power amplitude have demonstrated that the inferred value of [chi][sub e] is independent of the amplitude of the induced temperature perturbations. (author). 29 refs, 11 figs, 5 tabs.

  15. Sensory illusions: Common mistakes in physics regarding sound, light and radio waves

    Science.gov (United States)

    Briles, T. M.; Tabor-Morris, A. E.

    2013-03-01

    Optical illusions are well known as effects that we see that are not representative of reality. Sensory illusions are similar but can involve other senses than sight, such as hearing or touch. One mistake commonly noted among instructors is that students often mis-identify radio signals as sound waves and not as part of the electromagnetic spectrum. A survey of physics students from multiple high schools highlights the frequency of this common misconception, as well as other nuances on this misunderstanding. Many students appear to conclude that, since they experience radio broadcasts as sound, then sound waves are the actual transmission of radio signals and not, as is actually true, a representation of those waves as produced by the translator box, the radio. Steps to help students identify and correct sensory illusion misconceptions are discussed. School of Education

  16. Propagation of acoustic waves in a stratified atmosphere, 1

    Science.gov (United States)

    Kalkofen, W.; Rossi, P.; Bodo, G.; Massaglia, S.

    1994-01-01

    This work is motivated by the chromospheric 3 minute oscillations observed in the K(sub 2v) bright points. We study acoustic gravity waves in a one-dimensional, gravitationally stratified, isothermal atmosphere. The oscillations are excited either by a velocity pulse imparted to a layer in an atmosphere of infinite vertical extent, or by a piston forming the lower boundary of a semi-infinite medium. We consider both linear and non-linear waves.

  17. Study on Water Distribution Imaging in the Sand Using Propagation Velocity of Sound with Scanning Laser Doppler Vibrometer

    Science.gov (United States)

    Sugimoto, Tsuneyoshi; Nakagawa, Yutaka; Shirakawa, Takashi; Sano, Motoaki; Ohaba, Motoyoshi; Shibusawa, Sakae

    2013-07-01

    We propose a method for the monitoring and imaging of the water distribution in the rooting zone of plants using sound vibration. In this study, the water distribution measurement in the horizontal and vertical directions in the soil layer was examined to confirm whether a temporal change in the volume water content of the soil could be estimated from a temporal changes in propagation velocity. A scanning laser Doppler vibrometer (SLDV) is used for measurement of the vibration velocity of the soil surface, because the highly precise vibration velocity measurement of several many points can be carried out automatically. Sand with a uniform particle size distribution is used for the soil, as it has high plasticity; that is, the sand can return to a dry state easily even if it is soaked with water. A giant magnetostriction vibrator or a flat speaker is used as a sound source. Also, a soil moisture sensor, which measures the water content of the soil using the electric permittivity, is installed in the sand. From the experimental results of the vibration measurement and soil moisture sensors, we can confirm that the temporal changes of the water distribution in sand using the negative pressure irrigation system in both the horizontal and vertical directions can be estimated using the propagation velocity of sound. Therefore, in the future, we plan to develop an insertion-type sound source and receiver using the acceleration sensors, and we intend to examine whether our method can be applied even in commercial soil with growing plants.

  18. Experimental and modeling analysis of fast ionization wave discharge propagation in a rectangular geometry

    International Nuclear Information System (INIS)

    Takashima, Keisuke; Adamovich, Igor V.; Xiong Zhongmin; Kushner, Mark J.; Starikovskaia, Svetlana; Czarnetzki, Uwe; Luggenhoelscher, Dirk

    2011-01-01

    Fast ionization wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel/waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 ns, and voltage rise time ∼1 kV/ns), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization approximation. The wave speed and the electric field distribution in the wave front predicted by the model are in good agreement with the experimental results. A self-similar analytic solution of the fast ionization wave propagation equations has also been obtained. The analytic model of the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the front, potential difference across the wave, and electron density as functions of the waveform on the high voltage electrode, in good agreement with the numerical calculations and the experimental results.

  19. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    Science.gov (United States)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  20. Propagation of Tsunami-like Surface Long Waves in the Bays of a Variable Depth

    Directory of Open Access Journals (Sweden)

    A.Yu. Bazykina

    2016-08-01

    Full Text Available Within the framework of the nonlinear long wave theory the regularities of solitary long wave propagation in the semi-closed bays of model and real geometry are numerically studied. In the present article the zones of wave amplification in the bay are found. The first one is located near the wave running-up on the beach (in front of the bay entrance and the other one – in the middle part of the sea basin. Wave propagation in these zones is accompanied both by significant rise and considerable fall of the sea level. Narrowing of the bay entrance and increase of the entering wave length result in decrease of the sea level maximum rises and falls. The Feodosiya Gulf in the Black Sea is considered as a real basin. In general the dynamics of the waves in the gulf is similar to wave dynamics in the model bay. Four zones of the strongest wave amplification in the Feodosiya Gulf are revealed in the article. The sea level maximum rises and extreme falls which tend to grow with decrease of the entering wave length are observed in these zones. The distance traveled by the wave before the collapse (due to non-linear effects, was found to reduce with decreasing wavelength of the entrance to the bay (gulf.

  1. Analysis of pulse thermography using similarities between wave and diffusion propagation

    Science.gov (United States)

    Gershenson, M.

    2017-05-01

    Pulse thermography or thermal wave imaging are commonly used as nondestructive evaluation (NDE) method. While the technical aspect has evolve with time, theoretical interpretation is lagging. Interpretation is still using curved fitting on a log log scale. A new approach based directly on the governing differential equation is introduced. By using relationships between wave propagation and the diffusive propagation of thermal excitation, it is shown that one can transform from solutions in one type of propagation to the other. The method is based on the similarities between the Laplace transforms of the diffusion equation and the wave equation. For diffusive propagation we have the Laplace variable s to the first power, while for the wave propagation similar equations occur with s2. For discrete time the transformation between the domains is performed by multiplying the temperature data vector by a matrix. The transform is local. The performance of the techniques is tested on synthetic data. The application of common back projection techniques used in the processing of wave data is also demonstrated. The combined use of the transform and back projection makes it possible to improve both depth and lateral resolution of transient thermography.

  2. EM wave propagation analysis in plasma covered radar absorbing material

    CERN Document Server

    Singh, Hema; Rawat, Harish Singh

    2017-01-01

    This book focuses on EM propagation characteristics within multilayered plasma-dielectric-metallic media. The method used for analysis is impedance transformation method. Plasma covered radar absorbing material is approximated as a multi-layered dielectric medium. The plasma is considered to be bounded homogeneous/inhomogeneous medium. The reflection coefficient and hence return loss is analytically derived. The role of plasma parameters, such as electron density, collision frequency, plasma thickness, and plasma density profile in the absorption behavior of multi-layered plasma-RAM structure is described. This book provides a clearer picture of EM propagation within plasma. The reader will get an insight of plasma parameters that play significant role in deciding the absorption characteristics of plasma covered surfaces.

  3. Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique

    Science.gov (United States)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.

    2014-01-01

    Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.

  4. Langmuir wave-packet generation from an electron beam propagating in the inhomogeneous solar wind

    International Nuclear Information System (INIS)

    Zaslavsky, A.; Maksimovic, M.; Volokitin, A. S.; Krasnoselskikh, V. V.; Bale, S. D.

    2010-01-01

    Recent in-situ observations by the TDS instrument equipping the STEREO spacecraft revealed that large amplitude spatially localized Langmuir waves are frequent in the solar wind, and correlated with the presence of suprathermal electron beams during type III events or close to the electron foreshock. We briefly present the new theoretical model used to perform the study of these localized electrostatic waves, and show first results of simulations of the destabilization of Langmuir waves by a beam propagating in the inhomogeneous solar wind. The main results are that the destabilized waves are mainly focalized near the minima of the density profiles, and that the nonlinear interaction of the waves with the resonant particles enhances this focalization compared to a situation in which the only propagation effects are taken into account.

  5. Wave propagation numerical models in damage detection based on the time domain spectral element method

    International Nuclear Information System (INIS)

    Ostachowicz, W; Kudela, P

    2010-01-01

    A Spectral Element Method is used for wave propagation modelling. A 3D solid spectral element is derived with shape functions based on Lagrange interpolation and Gauss-Lobatto-Legendre points. This approach is applied for displacement approximation suited for fundamental modes of Lamb waves as well as potential distribution in piezoelectric transducers. The novelty is the model geometry extension from flat to curved elements for application in shell-like structures. Exemplary visualisations of waves excited by the piezoelectric transducers in curved shell structure made of aluminium alloy are presented. Simple signal analysis of wave interaction with crack is performed. The crack is modelled by separation of appropriate nodes between elements. An investigation of influence of the crack length on wave propagation signals is performed. Additionally, some aspects of the spectral element method implementation are discussed.

  6. Perfectly matched layers for radio wave propagation in inhomogeneous magnetized plasmas

    International Nuclear Information System (INIS)

    Gondarenko, Natalia A.; Guzdar, Parvez N.; Ossakow, Sidney L.; Bernhardt, Paul A.

    2004-01-01

    We present 1D and 2D numerical models of the propagation of high-frequency (HF) radio waves in inhomogeneous magnetized plasmas. The simulations allow one to describe the process of linear conversion of HF electromagnetic waves into electrostatic waves. The waves, launched from the lower boundary normally or at a specified angle on a layer of a magnetoactive plasma, can undergo linear conversion of the incident O-mode into a Z-mode at appropriate locations in an inhomogeneous prescribed plasma density. The numerical scheme for solving 2D HF wave propagation equations is described. The model employed the Maxwellian perfectly matched layers (PML) technique for approximating nonreflecting boundary conditions. Our numerical studies demonstrate the effectiveness of the PML technique for transparent boundary conditions for an open-domain problem

  7. Generic short-time propagation of sharp-boundaries wave packets

    Science.gov (United States)

    Granot, E.; Marchewka, A.

    2005-11-01

    A general solution to the "shutter" problem is presented. The propagation of an arbitrary initially bounded wave function is investigated, and the general solution for any such function is formulated. It is shown that the exact solution can be written as an expression that depends only on the values of the function (and its derivatives) at the boundaries. In particular, it is shown that at short times (t << 2mx2/hbar, where x is the distance to the boundaries) the wave function propagation depends only on the wave function's values (or its derivatives) at the boundaries of the region. Finally, we generalize these findings to a non-singular wave function (i.e., for wave packets with finite-width boundaries) and suggest an experimental verification.

  8. Third harmonic generation of shear horizontal guided waves propagation in plate-like structures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei Bin [School of Aerospace Engineering, Xiamen University, Xiamen (China); Xu, Chun Guang [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China); Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-04-15

    The use of nonlinear ultrasonics wave has been accepted as a promising tool for monitoring material states related to microstructural changes, as it has improved sensitivity compared to conventional non-destructive testing approaches. In this paper, third harmonic generation of shear horizontal guided waves propagating in an isotropic plate is investigated using the perturbation method and modal analysis approach. An experimental procedure is proposed to detect the third harmonics of shear horizontal guided waves by electromagnetic transducers. The strongly nonlinear response of shear horizontal guided waves is measured. The accumulative growth of relative acoustic nonlinear response with an increase of propagation distance is detected in this investigation. The experimental results agree with the theoretical prediction, and thus providing another indication of the feasibility of using higher harmonic generation of electromagnetic shear horizontal guided waves for material characterization.

  9. Analysis of stress wave propagation in an elasto-viscoplastic plate

    International Nuclear Information System (INIS)

    Nakagawa, Noritoshi; Kawai, Ryoji; Urushi, Norio.

    1986-01-01

    Stress waves which propagate in the body are reflected at the boundary, and due to the interaction of the reflected stress waves, the focussing of stress waves will take place and a high stress level can be caused. The focussing of stress waves due to the reflection from the boundary may bring about fracture of the body, so that this is an important problem from a viewpoint of dynamic strength of structures. In this paper the process of stress wave focussing and the strain-rate dependence of constitutive equation in elastic and plastic regions are investigated. In the case where an in-plane step load uniformly acts on the straight edge of the plate with a semi-circular boundary, the propagation of stress waves in the plate was numerically analyzed by the finite element method, applying viscoelastic, elasto-plastic and elasto-viscoplastic constitutive equations. As the result, the process of focussing of stress waves due to reflection from the semi-circular boundary was observed and the difference in propagation behaviour of stress waves was discussed in materials represented by some kinds of constitutive equations. (author)

  10. Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars

    Science.gov (United States)

    Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai

    2018-05-01

    Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.

  11. Effects of minority ions on the propagation of the Fast Alfven wave

    International Nuclear Information System (INIS)

    Wong, K.L.; Kristiansen, M.; Hagler, M.

    1985-01-01

    Minority ions play an important role in ICRF wave heating and fast wave current drive. The former provides supplemental heating to the plasma ions, and the latter enables a Tokamak reactor to operate in steady state. The injection of minority ions greatly perturbs the propagation and absorption properties of the fast waves provided that the excitation frequency and confining magnetic field strength make the hybrid layers exist inside the plasma. A cold-plasma slab model with gradient confining magnetic field, parabolic plasma density, vacuum layer, launching antenna and conducting walls was used in studying wave propagation with and without minority ions. The wave propagation was studied individually for each discrete toroidal eigenmode (N=Rk/sub z/). There exists an asymmetric density cutoff region which is mainly due to the density variation in a single-ion plasma. The larger the torodial mode number, the larger the density cutoff region. Therefore, there exists a maximum mode number N/sub m/, which can be excited for each operating frequency. With injection of minority ions, the cutoff region for each mode number is almost unchanged. But, if one carefully chooses the excitation frequency; the hybrid layers can exist inside the plamsa for all or part of the allowed eigenmodes. Those eigenmodes with hybrid layers inside the plasma will undergo drastic change in the propagation and absorption of the waves

  12. Spin waves propagation and confinement in magnetic microstructures

    International Nuclear Information System (INIS)

    Bailleul, Matthieu

    2002-01-01

    In this thesis, ferromagnetic thin film elements have been studied on a small scale (μm) and at high frequencies (GHz). For those studies, a microwave spectrometer based on the use of micro-antennae has been developed. It had been applied to two different systems. In a first time, we have launched and detected spin waves in continuous films. This allowed us to describe both the transduction process and the relaxation law for long wavelength spin waves. In a second time, we have studied micrometer-wide stripe for which the magnetic ground state is inhomogeneous. The obtained microwave response has been interpreted in terms of micro-magnetic phase transitions and in terms of spin waves confinement. (author)

  13. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    International Nuclear Information System (INIS)

    Bertelli, N; Balakin, A A; Westerhof, E; Garcia, O E; Nielsen, A H; Naulin, V

    2010-01-01

    A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi-optical calculations are shown by using edge density fluctuations as calculated by two-dimensional interchange turbulence simulations and validated with the experimental data [O. E. Garcia et al, Nucl. Fusion 47 (2007) 667].

  14. Allowable propagation of short pulse laser beam in a plasma channel and electromagnetic solitary waves

    International Nuclear Information System (INIS)

    Zhang, Shan; Hong, Xue-Ren; Wang, Hong-Yu; Xie, Bai-Song

    2011-01-01

    Nonparaxial and nonlinear propagation of a short intense laser beam in a parabolic plasma channel is analyzed by means of the variational method and nonlinear dynamics. The beam propagation properties are classified by five kinds of behaviors. In particularly, the electromagnetic solitary wave for finite pulse laser is found beside the other four propagation cases including beam periodically oscillating with defocussing and focusing amplitude, constant spot size, beam catastrophic focusing. It is also found that the laser pulse can be allowed to propagate in the plasma channel only when a certain relation for laser parameters and plasma channel parameters is satisfied. For the solitary wave, it may provide an effective way to obtain ultra-short laser pulse.

  15. On the rogue wave propagation in ion pair superthermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg; Zahran, M. A. [Physics Department, College of Sciences and Humanities Studies Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj (Saudi Arabia); Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); El-Shewy, E. K., E-mail: emadshewy@yahoo.com; Elwakil, S. A. [Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt)

    2016-02-15

    Effects of superthermal electron on the features of nonlinear acoustic waves in unmagnetized collisionless ion pair plasma with superthermal electrons have been examined. The system equations are reduced in the form of the nonlinear Schrodinger equation. The rogue wave characteristics dependences on the ionic density ratio (ν = n{sub –0}/n{sub +0}), ionic mass ratio (Q = m{sub +}/m{sub −}), and superthermality index (κ) are investigated. It is worth mentioning that the results present in this work could be applicable in the Earth's ionosphere plasmas.

  16. Propagation of Quasi-plane Nonlinear Waves in Tubes

    Directory of Open Access Journals (Sweden)

    P. Koníček

    2002-01-01

    Full Text Available This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicability of the KZK equation and the GBE equation for describing nonlinear waves in tubes are discussed.

  17. Stochastic Partial Differential Equation Solver for Hydroacoustic Modeling: Improvements to Paracousti Sound Propagation Solver

    Science.gov (United States)

    Preston, L. A.

    2017-12-01

    Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source for the future. Responsible utilization of MHK devices, however, requires that the effects of acoustic noise produced by these devices on marine life and marine-related human activities be well understood. Paracousti is a 3-D full waveform acoustic modeling suite that can accurately propagate MHK noise signals in the complex bathymetry found in the near-shore to open ocean environment and considers real properties of the seabed, water column, and air-surface interface. However, this is a deterministic simulation that assumes the environment and source are exactly known. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected noise levels within the marine environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. One method is to use Monte Carlo (MC) techniques where simulation results from a large number of deterministic solutions are aggregated to provide statistical properties of the output signal. However, MC methods can be computationally prohibitive since they can require tens of thousands or more simulations to build up an accurate representation of those statistical properties. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a small fraction of the computational cost of MC. We are developing a SPDE solver for the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators and operators assess the statistical properties of environmental noise produced by MHK devices. In this presentation, we present the SPDE method and compare statistical distributions of simulated acoustic signals in simple models to MC simulations to show the accuracy and efficiency of the SPDE method. Sandia National Laboratories

  18. Calculation models of pressure wave propagation within the WWER-440 primary circulating loop

    International Nuclear Information System (INIS)

    Adamik, V.; Tkach, A.

    1982-01-01

    Computer codes SHOCK, LOVE, BAREL are described that can be used for the study of pressure wave propagation within the reactor and pipeline system during a LOCA as well as for mechanical loads identification in various parts of the system. SHOCK code is applicable to one-dimensional pressure wave propagation analysis in any hydraulic network containing a compressible nonviscous liquid with a constant (within the considered transient process period) density. LOVE code allows to calculate non-symmetrical mechanical loads on the WWER shaft in case of the main circulation pipeline cold branch rupture. BAREL code is an advanced modification of SHOCK code. It is fitted for two-dimensional pressure wave propagation analysing in the downstream section of a pressurised water reactor in case of the main circulation pipeline cold branch rupture. The calculation results for B-213 type WWER-440 reactor are presented that have been obtained under the assumption of perfect structure rigidity [ru

  19. Slow-wave propagation and sheath interaction in the ion-cyclotron frequency range

    International Nuclear Information System (INIS)

    Myra, J R; D'Ippolito, D A

    2010-01-01

    In previous work (Myra J R and D'Ippolito D A 2008 Phys. Rev. Lett. 101 195004) we studied the propagation of slow-wave (SW) resonance cones launched parasitically by a fast-wave antenna into a tenuous magnetized plasma. Here we extend the treatment of SW propagation and sheath interaction to 'dense' scrape-off-layer plasmas where the usual cold-plasma SW is evanescent. Using the sheath boundary condition, it is shown that for sufficiently close limiters, the SW couples to a sheath-plasma wave and is no longer evanescent, but radially propagating. A self-consistent calculation of the rf-sheath width yields the resulting sheath voltage in terms of the amplitude of the launched SW, plasma parameters and connection length. The conditions for avoiding potentially deleterious rf-wall interactions in tokamak rf heating experiments are summarized.

  20. Wave propagation in structured materials as a platform for effective parameters retrieving

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, S.; Sukhorukov, A. A.

    MM slab can be considered as a semi-infinite medium. Modelling the one-directional (forward) propagation of the wave inside a metamaterial slab thick enough to avoid transition layers effects and reflection from the rear interface we are able to restore complex refractive index3. Getting the input...... established yet. In this contribution, we present an overview of our activity in EPs retrieving based on observation of wave propagation phenomena in thick (multilayer) MMs. We put a goal to develop a method which is unambiguous, but at the same time simple and straightforward. The idea is that thick enough...... utilization of the Bloch-mode analysis5. The idea is to perform the Bloch mode expansion6 of the field inside the metamaterial slab when it is illuminated with a plane wave incident from vacuum. Then we determine the effective refractive index from the propagation constant of the dominating (fundamental...