WorldWideScience

Sample records for sound source discrimination

  1. Cognitive and linguistic sources of variance in 2-year-olds’ speech-sound discrimination: a preliminary investigation.

    Science.gov (United States)

    Lalonde, Kaylah; Holt, Rachael Frush

    2014-02-01

    This preliminary investigation explored potential cognitive and linguistic sources of variance in 2-year-olds’ speech-sound discrimination by using the toddler change/ no-change procedure and examined whether modifications would result in a procedure that can be used consistently with younger 2-year-olds. Twenty typically developing 2-year-olds completed the newly modified toddler change/no-change procedure. Behavioral tests and parent report questionnaires were used to measure several cognitive and linguistic constructs. Stepwise linear regression was used to relate discrimination sensitivity to the cognitive and linguistic measures. In addition, discrimination results from the current experiment were compared with those from 2-year-old children tested in a previous experiment. Receptive vocabulary and working memory explained 56.6% of variance in discrimination performance. Performance was not different on the modified toddler change/no-change procedure used in the current experiment from in a previous investigation, which used the original version of the procedure. The relationship between speech discrimination and receptive vocabulary and working memory provides further evidence that the procedure is sensitive to the strength of perceptual representations. The role for working memory might also suggest that there are specific subject-related, nonsensory factors limiting the applicability of the procedure to children who have not reached the necessary levels of cognitive and linguistic development.

  2. Food approach conditioning and discrimination learning using sound cues in benthic sharks.

    Science.gov (United States)

    Vila Pouca, Catarina; Brown, Culum

    2018-07-01

    The marine environment is filled with biotic and abiotic sounds. Some of these sounds predict important events that influence fitness while others are unimportant. Individuals can learn specific sound cues and 'soundscapes' and use them for vital activities such as foraging, predator avoidance, communication and orientation. Most research with sounds in elasmobranchs has focused on hearing thresholds and attractiveness to sound sources, but very little is known about their abilities to learn about sounds, especially in benthic species. Here we investigated if juvenile Port Jackson sharks could learn to associate a musical stimulus with a food reward, discriminate between two distinct musical stimuli, and whether individual personality traits were linked to cognitive performance. Five out of eight sharks were successfully conditioned to associate a jazz song with a food reward delivered in a specific corner of the tank. We observed repeatable individual differences in activity and boldness in all eight sharks, but these personality traits were not linked to the learning performance assays we examined. These sharks were later trained in a discrimination task, where they had to distinguish between the same jazz and a novel classical music song, and swim to opposite corners of the tank according to the stimulus played. The sharks' performance to the jazz stimulus declined to chance levels in the discrimination task. Interestingly, some sharks developed a strong side bias to the right, which in some cases was not the correct side for the jazz stimulus.

  3. Discrimination of musical instrument sounds resynthesized with simplified spectrotemporal parameters.

    Science.gov (United States)

    McAdams, S; Beauchamp, J W; Meneguzzi, S

    1999-02-01

    The perceptual salience of several outstanding features of quasiharmonic, time-variant spectra was investigated in musical instrument sounds. Spectral analyses of sounds from seven musical instruments (clarinet, flute, oboe, trumpet, violin, harpsichord, and marimba) produced time-varying harmonic amplitude and frequency data. Six basic data simplifications and five combinations of them were applied to the reference tones: amplitude-variation smoothing, coherent variation of amplitudes over time, spectral-envelope smoothing, forced harmonic-frequency variation, frequency-variation smoothing, and harmonic-frequency flattening. Listeners were asked to discriminate sounds resynthesized with simplified data from reference sounds resynthesized with the full data. Averaged over the seven instruments, the discrimination was very good for spectral envelope smoothing and amplitude envelope coherence, but was moderate to poor in decreasing order for forced harmonic frequency variation, frequency variation smoothing, frequency flattening, and amplitude variation smoothing. Discrimination of combinations of simplifications was equivalent to that of the most potent constituent simplification. Objective measurements were made on the spectral data for harmonic amplitude, harmonic frequency, and spectral centroid changes resulting from simplifications. These measures were found to correlate well with discrimination results, indicating that listeners have access to a relatively fine-grained sensory representation of musical instrument sounds.

  4. Cognitive flexibility modulates maturation and music-training-related changes in neural sound discrimination.

    Science.gov (United States)

    Saarikivi, Katri; Putkinen, Vesa; Tervaniemi, Mari; Huotilainen, Minna

    2016-07-01

    Previous research has demonstrated that musicians show superior neural sound discrimination when compared to non-musicians, and that these changes emerge with accumulation of training. Our aim was to investigate whether individual differences in executive functions predict training-related changes in neural sound discrimination. We measured event-related potentials induced by sound changes coupled with tests for executive functions in musically trained and non-trained children aged 9-11 years and 13-15 years. High performance in a set-shifting task, indexing cognitive flexibility, was linked to enhanced maturation of neural sound discrimination in both musically trained and non-trained children. Specifically, well-performing musically trained children already showed large mismatch negativity (MMN) responses at a young age as well as at an older age, indicating accurate sound discrimination. In contrast, the musically trained low-performing children still showed an increase in MMN amplitude with age, suggesting that they were behind their high-performing peers in the development of sound discrimination. In the non-trained group, in turn, only the high-performing children showed evidence of an age-related increase in MMN amplitude, and the low-performing children showed a small MMN with no age-related change. These latter results suggest an advantage in MMN development also for high-performing non-trained individuals. For the P3a amplitude, there was an age-related increase only in the children who performed well in the set-shifting task, irrespective of music training, indicating enhanced attention-related processes in these children. Thus, the current study provides the first evidence that, in children, cognitive flexibility may influence age-related and training-related plasticity of neural sound discrimination. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Songbirds and humans apply different strategies in a sound sequence discrimination task

    Directory of Open Access Journals (Sweden)

    Yoshimasa eSeki

    2013-07-01

    Full Text Available The abilities of animals and humans to extract rules from sound sequences have previously been compared using observation of spontaneous responses and conditioning techniques. However, the results were inconsistently interpreted across studies possibly due to methodological and/or species differences. Therefore, we examined the strategies for discrimination of sound sequences in Bengalese finches and humans using the same protocol. Birds were trained on a GO/NOGO task to discriminate between two categories of sound stimulus generated based on an AAB or ABB rule. The sound elements used were taken from a variety of male (M and female (F calls, such that the sequences could be represented as MMF and MFF. In test sessions, FFM and FMM sequences, which were never presented in the training sessions but conformed to the rule, were presented as probe stimuli. The results suggested two discriminative strategies were being applied: 1 memorizing sound patterns of either GO or NOGO stimuli and generating the appropriate responses for only those sounds; and 2 using the repeated element as a cue. There was no evidence that the birds successfully extracted the abstract rule (i.e. AAB and ABB; MMF-GO subjects did not produce a GO response for FFM and vice versa. Next we examined whether those strategies were also applicable for human participants on the same task. The results and questionnaires revealed that participants extracted the abstract rule, and most of them employed it to discriminate the sequences. This strategy was never observed in bird subjects, although some participants used strategies similar to the birds when responding to the probe stimuli. Our results showed that the human participants applied the abstract rule in the task even without instruction but Bengalese finches did not, thereby reconfirming that humans have to extract abstract rules from sound sequences that is distinct from non-human animals.

  6. Songbirds and humans apply different strategies in a sound sequence discrimination task.

    Science.gov (United States)

    Seki, Yoshimasa; Suzuki, Kenta; Osawa, Ayumi M; Okanoya, Kazuo

    2013-01-01

    The abilities of animals and humans to extract rules from sound sequences have previously been compared using observation of spontaneous responses and conditioning techniques. However, the results were inconsistently interpreted across studies possibly due to methodological and/or species differences. Therefore, we examined the strategies for discrimination of sound sequences in Bengalese finches and humans using the same protocol. Birds were trained on a GO/NOGO task to discriminate between two categories of sound stimulus generated based on an "AAB" or "ABB" rule. The sound elements used were taken from a variety of male (M) and female (F) calls, such that the sequences could be represented as MMF and MFF. In test sessions, FFM and FMM sequences, which were never presented in the training sessions but conformed to the rule, were presented as probe stimuli. The results suggested two discriminative strategies were being applied: (1) memorizing sound patterns of either GO or NOGO stimuli and generating the appropriate responses for only those sounds; and (2) using the repeated element as a cue. There was no evidence that the birds successfully extracted the abstract rule (i.e., AAB and ABB); MMF-GO subjects did not produce a GO response for FFM and vice versa. Next we examined whether those strategies were also applicable for human participants on the same task. The results and questionnaires revealed that participants extracted the abstract rule, and most of them employed it to discriminate the sequences. This strategy was never observed in bird subjects, although some participants used strategies similar to the birds when responding to the probe stimuli. Our results showed that the human participants applied the abstract rule in the task even without instruction but Bengalese finches did not, thereby reconfirming that humans have to extract abstract rules from sound sequences that is distinct from non-human animals.

  7. OMNIDIRECTIONAL SOUND SOURCE

    DEFF Research Database (Denmark)

    1996-01-01

    A sound source comprising a loudspeaker (6) and a hollow coupler (4) with an open inlet which communicates with and is closed by the loudspeaker (6) and an open outlet, said coupler (4) comprising rigid walls which cannot respond to the sound pressures produced by the loudspeaker (6). According...

  8. Sound localization and word discrimination in reverberant environment in children with developmental dyslexia

    Directory of Open Access Journals (Sweden)

    Wendy Castro-Camacho

    2015-04-01

    Full Text Available Objective Compare if localization of sounds and words discrimination in reverberant environment is different between children with dyslexia and controls. Method We studied 30 children with dyslexia and 30 controls. Sound and word localization and discrimination was studied in five angles from left to right auditory fields (-90o, -45o, 0o, +45o, +90o, under reverberant and no-reverberant conditions; correct answers were compared. Results Spatial location of words in no-reverberant test was deficient in children with dyslexia at 0º and +90o. Spatial location for reverberant test was altered in children with dyslexia at all angles, except –-90o. Word discrimination in no-reverberant test in children with dyslexia had a poor performance at left angles. In reverberant test, children with dyslexia exhibited deficiencies at -45o, -90o, and +45o angles. Conclusion Children with dyslexia could had problems when have to locate sound, and discriminate words in extreme locations of the horizontal plane in classrooms with reverberation.

  9. Mechanisms underlying speech sound discrimination and categorization in humans and zebra finches

    NARCIS (Netherlands)

    Burgering, Merel A.; ten Cate, Carel; Vroomen, Jean

    Speech sound categorization in birds seems in many ways comparable to that by humans, but it is unclear what mechanisms underlie such categorization. To examine this, we trained zebra finches and humans to discriminate two pairs of edited speech sounds that varied either along one dimension (vowel

  10. Microflown based monopole sound sources for reciprocal measurements

    NARCIS (Netherlands)

    Bree, H.E. de; Basten, T.G.H.

    2008-01-01

    Monopole sound sources (i.e. omni directional sound sources with a known volume velocity) are essential for reciprocal measurements used in vehicle interior panel noise contribution analysis. Until recently, these monopole sound sources use a sound pressure transducer sensor as a reference sensor. A

  11. Atypical pattern of discriminating sound features in adults with Asperger syndrome as reflected by the mismatch negativity.

    Science.gov (United States)

    Kujala, T; Aho, E; Lepistö, T; Jansson-Verkasalo, E; Nieminen-von Wendt, T; von Wendt, L; Näätänen, R

    2007-04-01

    Asperger syndrome, which belongs to the autistic spectrum of disorders, is characterized by deficits of social interaction and abnormal perception, like hypo- or hypersensitivity in reacting to sounds and discriminating certain sound features. We determined auditory feature discrimination in adults with Asperger syndrome with the mismatch negativity (MMN), a neural response which is an index of cortical change detection. We recorded MMN for five different sound features (duration, frequency, intensity, location, and gap). Our results suggest hypersensitive auditory change detection in Asperger syndrome, as reflected in the enhanced MMN for deviant sounds with a gap or shorter duration, and speeded MMN elicitation for frequency changes.

  12. Abnormal sound detection device

    International Nuclear Information System (INIS)

    Yamada, Izumi; Matsui, Yuji.

    1995-01-01

    Only components synchronized with rotation of pumps are sampled from detected acoustic sounds, to judge the presence or absence of abnormality based on the magnitude of the synchronized components. A synchronized component sampling means can remove resonance sounds and other acoustic sounds generated at a synchronously with the rotation based on the knowledge that generated acoustic components in a normal state are a sort of resonance sounds and are not precisely synchronized with the number of rotation. On the other hand, abnormal sounds of a rotating body are often caused by compulsory force accompanying the rotation as a generation source, and the abnormal sounds can be detected by extracting only the rotation-synchronized components. Since components of normal acoustic sounds generated at present are discriminated from the detected sounds, reduction of the abnormal sounds due to a signal processing can be avoided and, as a result, abnormal sound detection sensitivity can be improved. Further, since it is adapted to discriminate the occurrence of the abnormal sound from the actually detected sounds, the other frequency components which are forecast but not generated actually are not removed, so that it is further effective for the improvement of detection sensitivity. (N.H.)

  13. Knockdown of Dyslexia-Gene Dcdc2 Interferes with Speech Sound Discrimination in Continuous Streams.

    Science.gov (United States)

    Centanni, Tracy Michelle; Booker, Anne B; Chen, Fuyi; Sloan, Andrew M; Carraway, Ryan S; Rennaker, Robert L; LoTurco, Joseph J; Kilgard, Michael P

    2016-04-27

    Dyslexia is the most common developmental language disorder and is marked by deficits in reading and phonological awareness. One theory of dyslexia suggests that the phonological awareness deficit is due to abnormal auditory processing of speech sounds. Variants in DCDC2 and several other neural migration genes are associated with dyslexia and may contribute to auditory processing deficits. In the current study, we tested the hypothesis that RNAi suppression of Dcdc2 in rats causes abnormal cortical responses to sound and impaired speech sound discrimination. In the current study, rats were subjected in utero to RNA interference targeting of the gene Dcdc2 or a scrambled sequence. Primary auditory cortex (A1) responses were acquired from 11 rats (5 with Dcdc2 RNAi; DC-) before any behavioral training. A separate group of 8 rats (3 DC-) were trained on a variety of speech sound discrimination tasks, and auditory cortex responses were acquired following training. Dcdc2 RNAi nearly eliminated the ability of rats to identify specific speech sounds from a continuous train of speech sounds but did not impair performance during discrimination of isolated speech sounds. The neural responses to speech sounds in A1 were not degraded as a function of presentation rate before training. These results suggest that A1 is not directly involved in the impaired speech discrimination caused by Dcdc2 RNAi. This result contrasts earlier results using Kiaa0319 RNAi and suggests that different dyslexia genes may cause different deficits in the speech processing circuitry, which may explain differential responses to therapy. Although dyslexia is diagnosed through reading difficulty, there is a great deal of variation in the phenotypes of these individuals. The underlying neural and genetic mechanisms causing these differences are still widely debated. In the current study, we demonstrate that suppression of a candidate-dyslexia gene causes deficits on tasks of rapid stimulus processing

  14. Visualization of Broadband Sound Sources

    OpenAIRE

    Sukhanov Dmitry; Erzakova Nadezhda

    2016-01-01

    In this paper the method of imaging of wideband audio sources based on the 2D microphone array measurements of the sound field at the same time in all the microphones is proposed. Designed microphone array consists of 160 microphones allowing to digitize signals with a frequency of 7200 Hz. Measured signals are processed using the special algorithm that makes it possible to obtain a flat image of wideband sound sources. It is shown experimentally that the visualization is not dependent on the...

  15. Visualization of Broadband Sound Sources

    Directory of Open Access Journals (Sweden)

    Sukhanov Dmitry

    2016-01-01

    Full Text Available In this paper the method of imaging of wideband audio sources based on the 2D microphone array measurements of the sound field at the same time in all the microphones is proposed. Designed microphone array consists of 160 microphones allowing to digitize signals with a frequency of 7200 Hz. Measured signals are processed using the special algorithm that makes it possible to obtain a flat image of wideband sound sources. It is shown experimentally that the visualization is not dependent on the waveform, but determined by the bandwidth. Developed system allows to visualize sources with a resolution of up to 10 cm.

  16. Sound and sound sources

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...

  17. A method for recognition of coexisting environmental sound sources based on the Fisher’s linear discriminant classifier

    DEFF Research Database (Denmark)

    Creixell Mediante, Ester; Haddad, Karim; Song, Wookeun

    2015-01-01

    A method for sound recognition of coexisting environmental noise sources by applying pattern recognition techniques is developed. The investigated technique could benefit several areas of application, such as noise impact assessment, acoustic pollution mitigation and soundscape characterization...

  18. Sound source localization and segregation with internally coupled ears

    DEFF Research Database (Denmark)

    Bee, Mark A; Christensen-Dalsgaard, Jakob

    2016-01-01

    to their correct sources (sound source segregation). Here, we review anatomical, biophysical, neurophysiological, and behavioral studies aimed at identifying how the internally coupled ears of frogs contribute to sound source localization and segregation. Our review focuses on treefrogs in the genus Hyla......, as they are the most thoroughly studied frogs in terms of sound source localization and segregation. They also represent promising model systems for future work aimed at understanding better how internally coupled ears contribute to sound source localization and segregation. We conclude our review by enumerating...

  19. Sound power radiated by sources in diffuse fields

    DEFF Research Database (Denmark)

    Polack, Jean-Dominique

    2000-01-01

    Sound power radiated by sources at low frequency notoriously depends on source position. We sampled the sound field of a rectangular room at 18 microphone and 4 source positions. Average power spectra were extrapolated from the reverberant field, taking into account the frequency dependent...

  20. Seismic and Biological Sources of Ambient Ocean Sound

    Science.gov (United States)

    Freeman, Simon Eric

    Sound is the most efficient radiation in the ocean. Sounds of seismic and biological origin contain information regarding the underlying processes that created them. A single hydrophone records summary time-frequency information from the volume within acoustic range. Beamforming using a hydrophone array additionally produces azimuthal estimates of sound sources. A two-dimensional array and acoustic focusing produce an unambiguous two-dimensional `image' of sources. This dissertation describes the application of these techniques in three cases. The first utilizes hydrophone arrays to investigate T-phases (water-borne seismic waves) in the Philippine Sea. Ninety T-phases were recorded over a 12-day period, implying a greater number of seismic events occur than are detected by terrestrial seismic monitoring in the region. Observation of an azimuthally migrating T-phase suggests that reverberation of such sounds from bathymetric features can occur over megameter scales. In the second case, single hydrophone recordings from coral reefs in the Line Islands archipelago reveal that local ambient reef sound is spectrally similar to sounds produced by small, hard-shelled benthic invertebrates in captivity. Time-lapse photography of the reef reveals an increase in benthic invertebrate activity at sundown, consistent with an increase in sound level. The dominant acoustic phenomenon on these reefs may thus originate from the interaction between a large number of small invertebrates and the substrate. Such sounds could be used to take census of hard-shelled benthic invertebrates that are otherwise extremely difficult to survey. A two-dimensional `map' of sound production over a coral reef in the Hawaiian Islands was obtained using two-dimensional hydrophone array in the third case. Heterogeneously distributed bio-acoustic sources were generally co-located with rocky reef areas. Acoustically dominant snapping shrimp were largely restricted to one location within the area surveyed

  1. The Encoding of Sound Source Elevation in the Human Auditory Cortex.

    Science.gov (United States)

    Trapeau, Régis; Schönwiesner, Marc

    2018-03-28

    Spatial hearing is a crucial capacity of the auditory system. While the encoding of horizontal sound direction has been extensively studied, very little is known about the representation of vertical sound direction in the auditory cortex. Using high-resolution fMRI, we measured voxelwise sound elevation tuning curves in human auditory cortex and show that sound elevation is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. We changed the ear shape of participants (male and female) with silicone molds for several days. This manipulation reduced or abolished the ability to discriminate sound elevation and flattened cortical tuning curves. Tuning curves recovered their original shape as participants adapted to the modified ears and regained elevation perception over time. These findings suggest that the elevation tuning observed in low-level auditory cortex did not arise from the physical features of the stimuli but is contingent on experience with spectral cues and covaries with the change in perception. One explanation for this observation may be that the tuning in low-level auditory cortex underlies the subjective perception of sound elevation. SIGNIFICANCE STATEMENT This study addresses two fundamental questions about the brain representation of sensory stimuli: how the vertical spatial axis of auditory space is represented in the auditory cortex and whether low-level sensory cortex represents physical stimulus features or subjective perceptual attributes. Using high-resolution fMRI, we show that vertical sound direction is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. In addition, we demonstrate that the shape of these tuning functions is contingent on experience with spectral cues and covaries with the change in perception, which may indicate that the

  2. Directivity of Spherical Polyhedron Sound Source Used in Near-Field HRTF Measurements

    International Nuclear Information System (INIS)

    Yu Guang-Zheng; Xie Bo-Sun; Rao Dan

    2010-01-01

    The omnidirectional character is one of important requirements for the sound source used in near-field head-related transfer function (HRTF) measurements. Based on the analysis on the radiation sound pressure and directivity character of various spherical polyhedron sound sources, a spherical dodecahedral sound source with radius of 0.035m is proposed and manufactured. Theoretical and measured results indicate that the sound source is approximately omnidirectional below the frequency of 8 kHz. In addition, the sound source has reasonable magnitude response from 350Hz to 20kHz and linear phase characteristics. Therefore, it is suitable for the near-field HRTF measurements. (fundamental areas of phenomenology(including applications))

  3. Material sound source localization through headphones

    Science.gov (United States)

    Dunai, Larisa; Peris-Fajarnes, Guillermo; Lengua, Ismael Lengua; Montaña, Ignacio Tortajada

    2012-09-01

    In the present paper a study of sound localization is carried out, considering two different sounds emitted from different hit materials (wood and bongo) as well as a Delta sound. The motivation of this research is to study how humans localize sounds coming from different materials, with the purpose of a future implementation of the acoustic sounds with better localization features in navigation aid systems or training audio-games suited for blind people. Wood and bongo sounds are recorded after hitting two objects made of these materials. Afterwards, they are analysed and processed. On the other hand, the Delta sound (click) is generated by using the Adobe Audition software, considering a frequency of 44.1 kHz. All sounds are analysed and convolved with previously measured non-individual Head-Related Transfer Functions both for an anechoic environment and for an environment with reverberation. The First Choice method is used in this experiment. Subjects are asked to localize the source position of the sound listened through the headphones, by using a graphic user interface. The analyses of the recorded data reveal that no significant differences are obtained either when considering the nature of the sounds (wood, bongo, Delta) or their environmental context (with or without reverberation). The localization accuracies for the anechoic sounds are: wood 90.19%, bongo 92.96% and Delta sound 89.59%, whereas for the sounds with reverberation the results are: wood 90.59%, bongo 92.63% and Delta sound 90.91%. According to these data, we can conclude that even when considering the reverberation effect, the localization accuracy does not significantly increase.

  4. Gay- and Lesbian-Sounding Auditory Cues Elicit Stereotyping and Discrimination.

    Science.gov (United States)

    Fasoli, Fabio; Maass, Anne; Paladino, Maria Paola; Sulpizio, Simone

    2017-07-01

    The growing body of literature on the recognition of sexual orientation from voice ("auditory gaydar") is silent on the cognitive and social consequences of having a gay-/lesbian- versus heterosexual-sounding voice. We investigated this issue in four studies (overall N = 276), conducted in Italian language, in which heterosexual listeners were exposed to single-sentence voice samples of gay/lesbian and heterosexual speakers. In all four studies, listeners were found to make gender-typical inferences about traits and preferences of heterosexual speakers, but gender-atypical inferences about those of gay or lesbian speakers. Behavioral intention measures showed that listeners considered lesbian and gay speakers as less suitable for a leadership position, and male (but not female) listeners took distance from gay speakers. Together, this research demonstrates that having a gay/lesbian rather than heterosexual-sounding voice has tangible consequences for stereotyping and discrimination.

  5. A particle velocity based method for separating all multi incoherent sound sources

    NARCIS (Netherlands)

    Winkel, J.C.; Yntema, Doekle Reinder; Druyvesteyn, W.F.; de Bree, H.E.

    2006-01-01

    In this paper we present a method to separate the contributions of different uncorrelated sound sources to the total sound field. When the contribution of each sound source to the total sound field is known, techniques with array-applications like direct sound field measurements or inverse acoustics

  6. Binaural Processing of Multiple Sound Sources

    Science.gov (United States)

    2016-08-18

    AFRL-AFOSR-VA-TR-2016-0298 Binaural Processing of Multiple Sound Sources William Yost ARIZONA STATE UNIVERSITY 660 S MILL AVE STE 312 TEMPE, AZ 85281...18-08-2016 2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 15 Jul 2012 to 14 Jul 2016 4. TITLE AND SUBTITLE Binaural Processing of...three topics cited above are entirely within the scope of the AFOSR grant. 15. SUBJECT TERMS Binaural hearing, Sound Localization, Interaural signal

  7. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun

    2018-01-12

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation directivity in far fields. The strong directivity formed in the presence of the enclosure is attributed to interference of sources under degenerate Mie resonances in the enclosure of anisotropic property. Our numerical simulations of sound emission from the sources demonstrate the radiation of a highly directed sound beam of unidirectional or bidirectional patterns, depending on how the sources are configured inside the enclosure. Our scheme, if achieved, can solve the challenging problem of poor directivity of a subwavelength sound system, and can guide beam forming and collimation by miniaturized devices.

  8. Task-Modulated Cortical Representations of Natural Sound Source Categories

    DEFF Research Database (Denmark)

    Hjortkjær, Jens; Kassuba, Tanja; Madsen, Kristoffer Hougaard

    2018-01-01

    In everyday sound environments, we recognize sound sources and events by attending to relevant aspects of an acoustic input. Evidence about the cortical mechanisms involved in extracting relevant category information from natural sounds is, however, limited to speech. Here, we used functional MRI...

  9. Revisiting source identification, weathering models, and phase discrimination for Exxon Valdez oil

    International Nuclear Information System (INIS)

    Driskell, W.B.; Payne, J.R.; Shigenaka, G.

    2005-01-01

    A large chemistry data set for polycyclic aromatic hydrocarbon (PAH) and saturated hydrocarbon (SHC) contamination in sediment, water and tissue samples has emerged in the aftermath of the 1989 Exxon Valdez oil spill in Prince William Sound, Alaska. When the oil was fresh, source identification was a primary objective and fairly reliable. However, source identification became problematic as the oil weathered and its signatures changed. In response to concerns regarding when the impacted area will be clean again, this study focused on developing appropriate tools to confirm hydrocarbon source identifications and assess weathering in various matrices. Previous efforts that focused only on the whole or particulate-phase oil are not adequate to track dissolved-phase signal with low total PAH values. For that reason, a particulate signature index (PSI) and dissolved signature index (DSI) screening tool was developed in this study to discriminate between these 2 phases. The screening tool was used to measure the dissolved or water-soluble fraction of crude oil which occurs at much lower levels than the particulate phase, but which is more widely circulated and equally as important as the particulate oil phase. The discrimination methods can also identify normally-discarded, low total PAH samples which can increase the amount of usable data needed to model other effects of oil spills. 37 refs., 3 tabs., 10 figs

  10. Offshore dredger sounds: Source levels, sound maps, and risk assessment

    NARCIS (Netherlands)

    Jong, C.A.F. de; Ainslie, M.A.; Heinis, F.; Janmaat, J.

    2016-01-01

    The underwater sound produced during construction of the Port of Rotterdam harbor extension (Maasvlakte 2) was measured, with emphasis on the contribution of the trailing suction hopper dredgers during their various activities: dredging, transport, and discharge of sediment. Measured source levels

  11. Orientation Estimation and Signal Reconstruction of a Directional Sound Source

    DEFF Research Database (Denmark)

    Guarato, Francesco

    , one for each call emission, were compared to those calculated through a pre-existing technique based on interpolation of sound-pressure levels at microphone locations. The application of the method to the bat calls could provide knowledge on bat behaviour that may be useful for a bat-inspired sensor......Previous works in the literature about one tone or broadband sound sources mainly deal with algorithms and methods developed in order to localize the source and, occasionally, estimate the source bearing angle (with respect to a global reference frame). The problem setting assumes, in these cases......, omnidirectional receivers collecting the acoustic signal from the source: analysis of arrival times in the recordings together with microphone positions and source directivity cues allows to get information about source position and bearing. Moreover, sound sources have been included into sensor systems together...

  12. Spatial resolution limits for the localization of noise sources using direct sound mapping

    DEFF Research Database (Denmark)

    Comesana, D. Fernandez; Holland, K. R.; Fernandez Grande, Efren

    2016-01-01

    the relationship between spatial resolution, noise level and geometry. The proposed expressions are validated via simulations and experiments. It is shown that particle velocity mapping yields better results for identifying closely spaced sound sources than sound pressure or sound intensity, especially...... extensively been used for many years to locate sound sources. However, it is not yet well defined when two sources should be regarded as resolved by means of direct sound mapping. This paper derives the limits of the direct representation of sound pressure, particle velocity and sound intensity by exploring......One of the main challenges arising from noise and vibration problems is how to identify the areas of a device, machine or structure that produce significant acoustic excitation, i.e. the localization of main noise sources. The direct visualization of sound, in particular sound intensity, has...

  13. Atypical central auditory speech-sound discrimination in children who stutter as indexed by the mismatch negativity

    NARCIS (Netherlands)

    Jansson-Verkasalo, E.; Eggers, K.; Järvenpää, A.; Suominen, K.; Van Den Bergh, B.R.H.; de Nil, L.; Kujala, T.

    2014-01-01

    Purpose Recent theoretical conceptualizations suggest that disfluencies in stuttering may arise from several factors, one of them being atypical auditory processing. The main purpose of the present study was to investigate whether speech sound encoding and central auditory discrimination, are

  14. Offshore dredger sound: source levels, sound maps and risk assessment (abstract)

    NARCIS (Netherlands)

    Jong, C.A.F. de; Ainslie, M.A.; Heinis, F.; Janmaat, J.

    2013-01-01

    The Port of Rotterdam is expanding to meet the growing demand to accommodate large cargo vessels. One of the licensing conditions was the monitoring of the underwater sound produced during its construction, with an emphasis on the establishment of acoustic source levels of the Trailing Suction

  15. A method for estimating the orientation of a directional sound source from source directivity and multi-microphone recordings: principles and application

    DEFF Research Database (Denmark)

    Guarato, Francesco; Jakobsen, Lasse; Vanderelst, Dieter

    2011-01-01

    Taking into account directivity of real sound sources makes it possible to try solving an interesting and biologically relevant problem: estimating the orientation in three-dimensional space of a directional sound source. The source, of known directivity, produces a broadband signal (in the ultra......Taking into account directivity of real sound sources makes it possible to try solving an interesting and biologically relevant problem: estimating the orientation in three-dimensional space of a directional sound source. The source, of known directivity, produces a broadband signal (in...

  16. Spike-timing-based computation in sound localization.

    Directory of Open Access Journals (Sweden)

    Dan F M Goodman

    2010-11-01

    Full Text Available Spike timing is precise in the auditory system and it has been argued that it conveys information about auditory stimuli, in particular about the location of a sound source. However, beyond simple time differences, the way in which neurons might extract this information is unclear and the potential computational advantages are unknown. The computational difficulty of this task for an animal is to locate the source of an unexpected sound from two monaural signals that are highly dependent on the unknown source signal. In neuron models consisting of spectro-temporal filtering and spiking nonlinearity, we found that the binaural structure induced by spatialized sounds is mapped to synchrony patterns that depend on source location rather than on source signal. Location-specific synchrony patterns would then result in the activation of location-specific assemblies of postsynaptic neurons. We designed a spiking neuron model which exploited this principle to locate a variety of sound sources in a virtual acoustic environment using measured human head-related transfer functions. The model was able to accurately estimate the location of previously unknown sounds in both azimuth and elevation (including front/back discrimination in a known acoustic environment. We found that multiple representations of different acoustic environments could coexist as sets of overlapping neural assemblies which could be associated with spatial locations by Hebbian learning. The model demonstrates the computational relevance of relative spike timing to extract spatial information about sources independently of the source signal.

  17. Statistics of natural binaural sounds.

    Directory of Open Access Journals (Sweden)

    Wiktor Młynarski

    Full Text Available Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD and level (ILD disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA. Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction.

  18. Statistics of natural binaural sounds.

    Science.gov (United States)

    Młynarski, Wiktor; Jost, Jürgen

    2014-01-01

    Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction.

  19. Separation of non-stationary multi-source sound field based on the interpolated time-domain equivalent source method

    Science.gov (United States)

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-05-01

    In the sound field with multiple non-stationary sources, the measured pressure is the sum of the pressures generated by all sources, and thus cannot be used directly for studying the vibration and sound radiation characteristics of every source alone. This paper proposes a separation model based on the interpolated time-domain equivalent source method (ITDESM) to separate the pressure field belonging to every source from the non-stationary multi-source sound field. In the proposed method, ITDESM is first extended to establish the relationship between the mixed time-dependent pressure and all the equivalent sources distributed on every source with known location and geometry information, and all the equivalent source strengths at each time step are solved by an iterative solving process; then, the corresponding equivalent source strengths of one interested source are used to calculate the pressure field generated by that source alone. Numerical simulation of two baffled circular pistons demonstrates that the proposed method can be effective in separating the non-stationary pressure generated by every source alone in both time and space domains. An experiment with two speakers in a semi-anechoic chamber further evidences the effectiveness of the proposed method.

  20. Constraints on decay of environmental sound memory in adult rats.

    Science.gov (United States)

    Sakai, Masashi

    2006-11-27

    When adult rats are pretreated with a 48-h-long 'repetitive nonreinforced sound exposure', performance in two-sound discriminative operant conditioning transiently improves. We have already proven that this 'sound exposure-enhanced discrimination' is dependent upon enhancement of the perceptual capacity of the auditory cortex. This study investigated principles governing decay of sound exposure-enhanced discrimination decay. Sound exposure-enhanced discrimination disappeared within approximately 72 h if animals were deprived of environmental sounds after sound exposure, and that shortened to less than approximately 60 h if they were exposed to environmental sounds in the animal room. Sound-deprivation itself exerted no clear effects. These findings suggest that the memory of a passively exposed behaviorally irrelevant sound signal does not merely pass along the intrinsic lifetime but also gets deteriorated by other incoming signals.

  1. Reproduction of nearby sound sources using higher-order ambisonics with practical loudspeaker arrays

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2012-01-01

    the impact of two existing and a new proposed regularization function on the reproduced sound fields and on the main auditory cue for nearby sound sources outside the median plane, i.e, low-frequencies interaural level differences (ILDs). The proposed regularization function led to a better reproduction......In order to reproduce nearby sound sources with distant loudspeakers to a single listener, the near field compensated (NFC) method for higher-order Ambisonics (HOA) has been previously proposed. In practical realization, this method requires the use of regularization functions. This study analyzes...... of point source sound fields compared to existing regularization functions for NFC-HOA. Measurements in realistic playback environments showed that, for very close sources, significant ILDs for frequencies above about 250 Hz can be reproduced with NFC-HOA and the proposed regularization function whereas...

  2. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun; Jadhali, Rasha Al; Zhang, Likun; Wu, Ying

    2018-01-01

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation

  3. Reconstruction of sound source signal by analytical passive TR in the environment with airflow

    Science.gov (United States)

    Wei, Long; Li, Min; Yang, Debin; Niu, Feng; Zeng, Wu

    2017-03-01

    In the acoustic design of air vehicles, the time-domain signals of noise sources on the surface of air vehicles can serve as data support to reveal the noise source generation mechanism, analyze acoustic fatigue, and take measures for noise insulation and reduction. To rapidly reconstruct the time-domain sound source signals in an environment with flow, a method combining the analytical passive time reversal mirror (AP-TR) with a shear flow correction is proposed. In this method, the negative influence of flow on sound wave propagation is suppressed by the shear flow correction, obtaining the corrected acoustic propagation time delay and path. Those corrected time delay and path together with the microphone array signals are then submitted to the AP-TR, reconstructing more accurate sound source signals in the environment with airflow. As an analytical method, AP-TR offers a supplementary way in 3D space to reconstruct the signal of sound source in the environment with airflow instead of the numerical TR. Experiments on the reconstruction of the sound source signals of a pair of loud speakers are conducted in an anechoic wind tunnel with subsonic airflow to validate the effectiveness and priorities of the proposed method. Moreover the comparison by theorem and experiment result between the AP-TR and the time-domain beamforming in reconstructing the sound source signal is also discussed.

  4. Perceived loudness of spatially distributed sound sources

    DEFF Research Database (Denmark)

    Song, Woo-keun; Ellermeier, Wolfgang; Minnaar, Pauli

    2005-01-01

    psychoacoustic attributes into account. Therefore, a method for deriving loudness maps was developed in an earlier study [Song, Internoise2004, paper 271]. The present experiment investigates to which extent perceived loudness depends on the distribution of individual sound sources. Three loudspeakers were...... positioned 1.5 m from the centre of the listener’s head, one straight ahead, and two 10 degrees to the right and left, respectively. Six participants matched the loudness of either one, or two simultaneous sounds (narrow-band noises with 1-kHz, and 3.15-kHz centre frequencies) to a 2-kHz, 60-dB SPL narrow......-band noise placed in the frontal loudspeaker. The two sounds were either originating from the central speaker, or from the two offset loudspeakers. It turned out that the subjects perceived the noises to be softer when they were distributed in space. In addition, loudness was calculated from the recordings...

  5. The Environmental Cost of Marine Sound Sources

    NARCIS (Netherlands)

    Ainslie, M.A.; Dekeling, R.P.A.

    2011-01-01

    Cumulative acoustic exposure is used as an indicator for the risk of negative impact to animals as a consequence of exposure to underwater sound. The free-field energy of a single source, defined as the total acoustic energy that would exist in the source’s free field, is shown to be closely related

  6. Cortical activity patterns predict robust speech discrimination ability in noise

    Science.gov (United States)

    Shetake, Jai A.; Wolf, Jordan T.; Cheung, Ryan J.; Engineer, Crystal T.; Ram, Satyananda K.; Kilgard, Michael P.

    2012-01-01

    The neural mechanisms that support speech discrimination in noisy conditions are poorly understood. In quiet conditions, spike timing information appears to be used in the discrimination of speech sounds. In this study, we evaluated the hypothesis that spike timing is also used to distinguish between speech sounds in noisy conditions that significantly degrade neural responses to speech sounds. We tested speech sound discrimination in rats and recorded primary auditory cortex (A1) responses to speech sounds in background noise of different intensities and spectral compositions. Our behavioral results indicate that rats, like humans, are able to accurately discriminate consonant sounds even in the presence of background noise that is as loud as the speech signal. Our neural recordings confirm that speech sounds evoke degraded but detectable responses in noise. Finally, we developed a novel neural classifier that mimics behavioral discrimination. The classifier discriminates between speech sounds by comparing the A1 spatiotemporal activity patterns evoked on single trials with the average spatiotemporal patterns evoked by known sounds. Unlike classifiers in most previous studies, this classifier is not provided with the stimulus onset time. Neural activity analyzed with the use of relative spike timing was well correlated with behavioral speech discrimination in quiet and in noise. Spike timing information integrated over longer intervals was required to accurately predict rat behavioral speech discrimination in noisy conditions. The similarity of neural and behavioral discrimination of speech in noise suggests that humans and rats may employ similar brain mechanisms to solve this problem. PMID:22098331

  7. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.

    Science.gov (United States)

    Takashima, Ryoichi; Takiguchi, Tetsuya; Ariki, Yasuo

    2013-02-01

    This paper presents a method for discriminating the location of the sound source (talker) using only a single microphone. In a previous work, the single-channel approach for discriminating the location of the sound source was discussed, where the acoustic transfer function from a user's position is estimated by using a hidden Markov model of clean speech in the cepstral domain. In this paper, each cepstral dimension of the acoustic transfer function is newly weighted, in order to obtain the cepstral dimensions having information that is useful for classifying the user's position. Then, this paper proposes a feature-weighting method for the cepstral parameter using multiple kernel learning, defining the base kernels for each cepstral dimension of the acoustic transfer function. The user's position is trained and classified by support vector machine. The effectiveness of this method has been confirmed by sound source (talker) localization experiments performed in different room environments.

  8. Forced sound transmission through a finite-sized single leaf panel subject to a point source excitation.

    Science.gov (United States)

    Wang, Chong

    2018-03-01

    In the case of a point source in front of a panel, the wavefront of the incident wave is spherical. This paper discusses spherical sound waves transmitting through a finite sized panel. The forced sound transmission performance that predominates in the frequency range below the coincidence frequency is the focus. Given the point source located along the centerline of the panel, forced sound transmission coefficient is derived through introducing the sound radiation impedance for spherical incident waves. It is found that in addition to the panel mass, forced sound transmission loss also depends on the distance from the source to the panel as determined by the radiation impedance. Unlike the case of plane incident waves, sound transmission performance of a finite sized panel does not necessarily converge to that of an infinite panel, especially when the source is away from the panel. For practical applications, the normal incidence sound transmission loss expression of plane incident waves can be used if the distance between the source and panel d and the panel surface area S satisfy d/S>0.5. When d/S ≈0.1, the diffuse field sound transmission loss expression may be a good approximation. An empirical expression for d/S=0  is also given.

  9. Auralization of airborne sound insulation including the influence of source room

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    2006-01-01

    The paper describes a simple and acoustically accurate method for the auralization of airborne sound insulation between two rooms by means of a room acoustic simulation software (ODEON). The method makes use of a frequency independent transparency of the transmitting surface combined...... with a frequency dependent power setting of the source in the source room. The acoustic properties in terms of volume and reverberation time as well as the area of the transmitting surface are all included in the simulation. The user only has to select the position of the source in the source room and the receiver...... of the transmitting surface is used for the simulation of sound transmission. Also the reduced clarity of the auralization due to the reverberance of the source room is inherent in the method. Currently the method is restricted to transmission loss data in octave bands....

  10. The effect of sound sources on soundscape appraisal

    NARCIS (Netherlands)

    van den Bosch, Kirsten; Andringa, Tjeerd

    2014-01-01

    In this paper we explore how the perception of sound sources (like traffic, birds, and the presence of distant people) influences the appraisal of soundscapes (as calm, lively, chaotic, or boring). We have used 60 one-minute recordings, selected from 21 days (502 hours) in March and July 2010.

  11. Analysis, Design and Implementation of an Embedded Realtime Sound Source Localization System Based on Beamforming Theory

    Directory of Open Access Journals (Sweden)

    Arko Djajadi

    2009-12-01

    Full Text Available This project is intended to analyze, design and implement a realtime sound source localization system by using a mobile robot as the media. The implementated system uses 2 microphones as the sensors, Arduino Duemilanove microcontroller system with ATMega328p as the microprocessor, two permanent magnet DC motors as the actuators for the mobile robot and a servo motor as the actuator to rotate the webcam directing to the location of the sound source, and a laptop/PC as the simulation and display media. In order to achieve the objective of finding the position of a specific sound source, beamforming theory is applied to the system. Once the location of the sound source is detected and determined, the choice is either the mobile robot will adjust its position according to the direction of the sound source or only webcam will rotate in the direction of the incoming sound simulating the use of this system in a video conference. The integrated system has been tested and the results show the system could localize in realtime a sound source placed randomly on a half circle area (0 - 1800 with a radius of 0.3m - 3m, assuming the system is the center point of the circle. Due to low ADC and processor speed, achievable best angular resolution is still limited to 25o.

  12. Discrimination and streaming of speech sounds based on differences in interaural and spectral cues.

    Science.gov (United States)

    David, Marion; Lavandier, Mathieu; Grimault, Nicolas; Oxenham, Andrew J

    2017-09-01

    Differences in spatial cues, including interaural time differences (ITDs), interaural level differences (ILDs) and spectral cues, can lead to stream segregation of alternating noise bursts. It is unknown how effective such cues are for streaming sounds with realistic spectro-temporal variations. In particular, it is not known whether the high-frequency spectral cues associated with elevation remain sufficiently robust under such conditions. To answer these questions, sequences of consonant-vowel tokens were generated and filtered by non-individualized head-related transfer functions to simulate the cues associated with different positions in the horizontal and median planes. A discrimination task showed that listeners could discriminate changes in interaural cues both when the stimulus remained constant and when it varied between presentations. However, discrimination of changes in spectral cues was much poorer in the presence of stimulus variability. A streaming task, based on the detection of repeated syllables in the presence of interfering syllables, revealed that listeners can use both interaural and spectral cues to segregate alternating syllable sequences, despite the large spectro-temporal differences between stimuli. However, only the full complement of spatial cues (ILDs, ITDs, and spectral cues) resulted in obligatory streaming in a task that encouraged listeners to integrate the tokens into a single stream.

  13. Response properties of neurons in the cat's putamen during auditory discrimination.

    Science.gov (United States)

    Zhao, Zhenling; Sato, Yu; Qin, Ling

    2015-10-01

    The striatum integrates diverse convergent input and plays a critical role in the goal-directed behaviors. To date, the auditory functions of striatum are less studied. Recently, it was demonstrated that auditory cortico-striatal projections influence behavioral performance during a frequency discrimination task. To reveal the functions of striatal neurons in auditory discrimination, we recorded the single-unit spike activities in the putamen (dorsal striatum) of free-moving cats while performing a Go/No-go task to discriminate the sounds with different modulation rates (12.5 Hz vs. 50 Hz) or envelopes (damped vs. ramped). We found that the putamen neurons can be broadly divided into four groups according to their contributions to sound discrimination. First, 40% of neurons showed vigorous responses synchronized to the sound envelope, and could precisely discriminate different sounds. Second, 18% of neurons showed a high preference of ramped to damped sounds, but no preference for modulation rate. They could only discriminate the change of sound envelope. Third, 27% of neurons rapidly adapted to the sound stimuli, had no ability of sound discrimination. Fourth, 15% of neurons discriminated the sounds dependent on the reward-prediction. Comparing to passively listening condition, the activities of putamen neurons were significantly enhanced by the engagement of the auditory tasks, but not modulated by the cat's behavioral choice. The coexistence of multiple types of neurons suggests that the putamen is involved in the transformation from auditory representation to stimulus-reward association. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Differences in directional sound source behavior and perception between assorted computer room models

    DEFF Research Database (Denmark)

    Vigeant, Michelle C.; Wang, Lily M.; Rindel, Jens Holger

    2004-01-01

    considering reverberation time. However, for the three other parameters evaluated (sound pressure level, clarity index and lateral fraction), the changing diffusivity of the room does not diminish the importance of the directivity. The study therefore shows the importance of considering source directivity......Source directivity is an important input variable when using room acoustic computer modeling programs to generate auralizations. Previous research has shown that using a multichannel anechoic recording can produce a more natural sounding auralization, particularly as the number of channels...

  15. Differences in directional sound source behavior and perception between assorted computer room models

    DEFF Research Database (Denmark)

    Vigeant, M. C.; Wang, L. M.; Rindel, Jens Holger

    2004-01-01

    time. However, for the three other parameters evaluated (sound-pressure level, clarity index, and lateral fraction), the changing diffusivity of the room does not diminish the importance of the directivity. The study therefore shows the importance of considering source directivity when using computer......Source directivity is an important input variable when using room acoustic computer modeling programs to generate auralizations. Previous research has shown that using a multichannel anechoic recording can produce a more natural sounding auralization, particularly as the number of channels...

  16. Sound source location in cavitating tip vortices

    International Nuclear Information System (INIS)

    Higuchi, H.; Taghavi, R.; Arndt, R.E.A.

    1985-01-01

    Utilizing an array of three hydrophones, individual cavitation bursts in a tip vortex could be located. Theoretically, four hydrophones are necessary. Hence the data from three hydrophones are supplemented with photographic observation of the cavitating tip vortex. The cavitation sound sources are found to be localized to within one base chord length from the hydrofoil tip. This appears to correspond to the region of initial tip vortex roll-up. A more extensive study with a four sensor array is now in progress

  17. The Reduction of Vertical Interchannel Crosstalk: The Analysis of Localisation Thresholds for Natural Sound Sources

    Directory of Open Access Journals (Sweden)

    Rory Wallis

    2017-03-01

    Full Text Available In subjective listening tests, natural sound sources were presented to subjects as vertically-oriented phantom images from two layers of loudspeakers, ‘height’ and ‘main’. Subjects were required to reduce the amplitude of the height layer until the position of the resultant sound source matched that of the same source presented from the main layer only (the localisation threshold. Delays of 0, 1 and 10 ms were applied to the height layer with respect to the main, with vertical stereophonic and quadraphonic conditions being tested. The results of the study showed that the localisation thresholds obtained were not significantly affected by sound source or presentation method. Instead, the only variable whose effect was significant was interchannel time difference (ICTD. For ICTD of 0 ms, the median threshold was −9.5 dB, which was significantly lower than the −7 dB found for both 1 and 10 ms. The results of the study have implications both for the recording of sound sources for three-dimensional (3D audio reproduction formats and also for the rendering of 3D images.

  18. Vehicle surge detection and pathway discrimination by pedestrians who are blind: Effect of adding an alert sound to hybrid electric vehicles on performance.

    Science.gov (United States)

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-05-01

    This study examined the effect of adding an artificially generated alert sound to a quiet vehicle on its detectability and localizability with 15 visually impaired adults. When starting from a stationary position, the hybrid electric vehicle with an alert sound was significantly more quickly and reliably detected than either the identical vehicle without such added sound or the comparable internal combustion engine vehicle. However, no significant difference was found between the vehicles in respect to how accurately the participants could discriminate the path of a given vehicle (straight vs. right turn). These results suggest that adding an artificial sound to a hybrid electric vehicle may help reduce delay in street crossing initiation by a blind pedestrian, but the benefit of such alert sound may not be obvious in determining whether the vehicle in his near parallel lane proceeds straight through the intersection or turns right in front of him.

  19. Reproduction of nearby sources by imposing true interaural differences on a sound field control approach

    DEFF Research Database (Denmark)

    Badajoz, Javier; Chang, Ji-ho; Agerkvist, Finn T.

    2015-01-01

    In anechoic conditions, the Interaural Level Difference (ILD) is the most significant auditory cue to judge the distance to a sound source located within 1 m of the listener's head. This is due to the unique characteristics of a point source in its near field, which result in exceptionally high...... as Pressure Matching (PM), and a binaural control technique. While PM aims at reproducing the incident sound field, the objective of the binaural control technique is to ensure a correct reproduction of interaural differences. The combination of these two approaches gives rise to the following features: (i......, distance dependent ILDs. When reproducing the sound field of sources located near the head with line or circular arrays of loudspeakers, the reproduced ILDs are generally lower than expected, due to physical limitations. This study presents an approach that combines a sound field reproduction method, known...

  20. Improvements on the directional characteristics of a calibration sound source using the Boundary Element Method

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda; Barrera Figueroa, Salvador; Juhl, Peter Møller

    2008-01-01

    is of particular importance to achieve a sound field that reaches both microphones with the same level and that is sufficiently uniform at the microphone positions, in order to reduce the effect of misalignment. An existing sound source has been modeled using the Boundary Element Method, and the simulations have......The project Euromet-792 aims to investigate and improve methods for secondary free-field calibration of microphones. In this framework, the comparison method is being studied at DFM in relation to the more usual substitution method of microphone calibration. The design of the sound source...... been used to modify the source and make it suitable for this kind of calibration. It has been found that a central plug, already present in the device, can be re-shaped in such a way that makes the sound field on the microphone positions more uniform, even at rather high frequencies. Measurements have...

  1. Sound Photographs to reveal vehicle pass-by sources with a calibrated source-strength level

    NARCIS (Netherlands)

    Mast, A.; Dool, T.C. van den; Toorn, J.D. van der; Watts, G.

    2003-01-01

    In national and European discussions, it appears that the conventional sound measurement techniques are insufficient to answer some relevant questions with respect to source strength of road vehicles. An example of such a question is: What is the importance of tyre-road noise on the one hand and

  2. Differences in phonetic discrimination stem from differences in psychoacoustic abilities in learning the sounds of a second language: Evidence from ERP research.

    Science.gov (United States)

    Lin, Yi; Fan, Ruolin; Mo, Lei

    2017-01-01

    The scientific community has been divided as to the origin of individual differences in perceiving the sounds of a second language (L2). There are two alternative explanations: a general psychoacoustic origin vs. a speech-specific one. A previous study showed that such individual variability is linked to the perceivers' speech-specific capabilities, rather than the perceivers' psychoacoustic abilities. However, we assume that the selection of participants and parameters of sound stimuli might not appropriate. Therefore, we adjusted the sound stimuli and recorded event-related potentials (ERPs) from two groups of early, proficient Cantonese (L1)-Mandarin (L2) bilinguals who differed in their mastery of the Mandarin (L2) phonetic contrast /in-ing/, to explore whether the individual differences in perceiving L2 stem from participants' ability to discriminate various pure tones (frequency, duration and pattern). To precisely measure the participants' acoustic discrimination, mismatch negativity (MMN) elicited by the oddball paradigm was recorded in the experiment. The results showed that significant differences between good perceivers (GPs) and poor perceivers (PPs) were found in the three general acoustic conditions (frequency, duration and pattern), and the MMN amplitude for GP was significantly larger than for PP. Therefore, our results support a general psychoacoustic origin of individual variability in L2 phonetic mastery.

  3. Sources of Discrimination and Their Associations With Health in Sexual Minority Adults.

    Science.gov (United States)

    Figueroa, Wilson S; Zoccola, Peggy M

    2016-06-01

    Health disparities exist between sexual minorities and heterosexuals. These health disparities may be due to stressful social situations and environments that are created by discrimination. The current study recruited 277 sexual minorities to complete an online survey to examine the effects of discrimination on health. Discrimination from family and friends, compared to non-family and friends, was found to be more strongly associated with poorer health. This effect was partially statistically mediated by perceived stress reactivity. Findings from this study highlight the importance of distinguishing between different sources of discrimination when examining the effect of discrimination on health in sexual minority adults.

  4. Separation of radiated sound field components from waves scattered by a source under non-anechoic conditions

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2010-01-01

    to the source. Thus the radiated free-field component is estimated simultaneously with solving the inverse problem of reconstructing the sound field near the source. The method is particularly suited to cases in which the overall contribution of reflected sound in the measurement plane is significant....

  5. Temporal integration: intentional sound discrimination does not modulate stimulus-driven processes in auditory event synthesis.

    Science.gov (United States)

    Sussman, Elyse; Winkler, István; Kreuzer, Judith; Saher, Marieke; Näätänen, Risto; Ritter, Walter

    2002-12-01

    Our previous study showed that the auditory context could influence whether two successive acoustic changes occurring within the temporal integration window (approximately 200ms) were pre-attentively encoded as a single auditory event or as two discrete events (Cogn Brain Res 12 (2001) 431). The aim of the current study was to assess whether top-down processes could influence the stimulus-driven processes in determining what constitutes an auditory event. Electroencepholagram (EEG) was recorded from 11 scalp electrodes to frequently occurring standard and infrequently occurring deviant sounds. Within the stimulus blocks, deviants either occurred only in pairs (successive feature changes) or both singly and in pairs. Event-related potential indices of change and target detection, the mismatch negativity (MMN) and the N2b component, respectively, were compared with the simultaneously measured performance in discriminating the deviants. Even though subjects could voluntarily distinguish the two successive auditory feature changes from each other, which was also indicated by the elicitation of the N2b target-detection response, top-down processes did not modify the event organization reflected by the MMN response. Top-down processes can extract elemental auditory information from a single integrated acoustic event, but the extraction occurs at a later processing stage than the one whose outcome is indexed by MMN. Initial processes of auditory event-formation are fully governed by the context within which the sounds occur. Perception of the deviants as two separate sound events (the top-down effects) did not change the initial neural representation of the same deviants as one event (indexed by the MMN), without a corresponding change in the stimulus-driven sound organization.

  6. Community Response to Multiple Sound Sources: Integrating Acoustic and Contextual Approaches in the Analysis

    Directory of Open Access Journals (Sweden)

    Peter Lercher

    2017-06-01

    Full Text Available Sufficient data refer to the relevant prevalence of sound exposure by mixed traffic sources in many nations. Furthermore, consideration of the potential effects of combined sound exposure is required in legal procedures such as environmental health impact assessments. Nevertheless, current practice still uses single exposure response functions. It is silently assumed that those standard exposure-response curves accommodate also for mixed exposures—although some evidence from experimental and field studies casts doubt on this practice. The ALPNAP-study population (N = 1641 shows sufficient subgroups with combinations of rail-highway, highway-main road and rail-highway-main road sound exposure. In this paper we apply a few suggested approaches of the literature to investigate exposure-response curves and its major determinants in the case of exposure to multiple traffic sources. Highly/moderate annoyance and full scale mean annoyance served as outcome. The results show several limitations of the current approaches. Even facing the inherent methodological limitations (energy equivalent summation of sound, rating of overall annoyance the consideration of main contextual factors jointly occurring with the sources (such as vibration, air pollution or coping activities and judgments of the wider area soundscape increases the variance explanation from up to 8% (bivariate, up to 15% (base adjustments up to 55% (full contextual model. The added predictors vary significantly, depending on the source combination. (e.g., significant vibration effects with main road/railway, not highway. Although no significant interactions were found, the observed additive effects are of public health importance. Especially in the case of a three source exposure situation the overall annoyance is already high at lower levels and the contribution of the acoustic indicators is small compared with the non-acoustic and contextual predictors. Noise mapping needs to go down to

  7. Sound power emitted by a pure-tone source in a reverberation room

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Molares, Alfonso Rodriguez

    2009-01-01

    Energy considerations are of enormous practical importance in acoustics. In "energy acoustics," sources of noise are described in terms of the sound power they emit, the underlying assumption being that this property is independent of the particular environment where the sources are placed. Howev...

  8. Detection of aeroacoustic sound sources on aircraft and wind turbines

    NARCIS (Netherlands)

    Oerlemans, Stefan

    2009-01-01

    This thesis deals with the detection of aeroacoustic sound sources on aircraft and wind turbines using phased microphone arrays. First, the reliability of the array technique is assessed using airframe noise measurements in open and closed wind tunnels. It is demonstrated that quantitative acoustic

  9. Infant speech-sound discrimination testing: effects of stimulus intensity and procedural model on measures of performance.

    Science.gov (United States)

    Nozza, R J

    1987-06-01

    Performance of infants in a speech-sound discrimination task (/ba/ vs /da/) was measured at three stimulus intensity levels (50, 60, and 70 dB SPL) using the operant head-turn procedure. The procedure was modified so that data could be treated as though from a single-interval (yes-no) procedure, as is commonly done, as well as if from a sustained attention (vigilance) task. Discrimination performance changed significantly with increase in intensity, suggesting caution in the interpretation of results from infant discrimination studies in which only single stimulus intensity levels within this range are used. The assumptions made about the underlying methodological model did not change the performance-intensity relationships. However, infants demonstrated response decrement, typical of vigilance tasks, which supports the notion that the head-turn procedure is represented best by the vigilance model. Analysis then was done according to a method designed for tasks with undefined observation intervals [C. S. Watson and T. L. Nichols, J. Acoust. Soc. Am. 59, 655-668 (1976)]. Results reveal that, while group data are reasonably well represented across levels of difficulty by the fixed-interval model, there is a variation in performance as a function of time following trial onset that could lead to underestimation of performance in some cases.

  10. The low-frequency sound power measuring technique for an underwater source in a non-anechoic tank

    Science.gov (United States)

    Zhang, Yi-Ming; Tang, Rui; Li, Qi; Shang, Da-Jing

    2018-03-01

    In order to determine the radiated sound power of an underwater source below the Schroeder cut-off frequency in a non-anechoic tank, a low-frequency extension measuring technique is proposed. This technique is based on a unique relationship between the transmission characteristics of the enclosed field and those of the free field, which can be obtained as a correction term based on previous measurements of a known simple source. The radiated sound power of an unknown underwater source in the free field can thereby be obtained accurately from measurements in a non-anechoic tank. To verify the validity of the proposed technique, a mathematical model of the enclosed field is established using normal-mode theory, and the relationship between the transmission characteristics of the enclosed and free fields is obtained. The radiated sound power of an underwater transducer source is tested in a glass tank using the proposed low-frequency extension measuring technique. Compared with the free field, the radiated sound power level of the narrowband spectrum deviation is found to be less than 3 dB, and the 1/3 octave spectrum deviation is found to be less than 1 dB. The proposed testing technique can be used not only to extend the low-frequency applications of non-anechoic tanks, but also for measurement of radiated sound power from complicated sources in non-anechoic tanks.

  11. A novel method for direct localized sound speed measurement using the virtual source paradigm

    DEFF Research Database (Denmark)

    Byram, Brett; Trahey, Gregg E.; Jensen, Jørgen Arendt

    2007-01-01

    ) mediums. The inhomogeneous mediums were arranged as an oil layer, one 6 mm thick and the other 11 mm thick, on top of a water layer. To complement the phantom studies, sources of error for spatial registration of virtual detectors were simulated. The sources of error presented here are multiple sound...... registered virtual detector. Between a pair of registered virtual detectors a spherical wave is propagated. By beamforming the received data the time of flight between the two virtual sources can be calculated. From this information the local sound speed can be estimated. Validation of the estimator used...... both phantom and simulation results. The phantom consisted of two wire targets located near the transducer's axis at depths of 17 and 28 mm. Using this phantom the sound speed between the wires was measured for a homogeneous (water) medium and for two inhomogeneous (DB-grade castor oil and water...

  12. Pulse discrimination of background and gamma-ray source by digital pulse shape discrimination in a BF3 detector

    International Nuclear Information System (INIS)

    Kim, Jinhyung; Kim, J. H.; Choi, H. D.

    2014-01-01

    As a representative method of non-destructive assay, accurate neutron measurement is difficult due to large background radiation such as γ-ray, secondary radiation, spurious pulse, etc. In a BF 3 detector, the process of signal generation is different between neutron and other radiations. As the development of detection technique, all of signal data can be digitized by digital measurement method. In the previous study, Applied Nuclear Physics Group in Seoul National University has developed digital Pulse Shape Discrimination (PSD) method using digital oscilloscope. In this study, optimization of parameters for pulse discrimination is discussed and γ-ray region is determined by measuring 60 Co source. The background signal of BF 3 detector is discriminated by digital PSD system. Parameters for PSD are optimized through FOM calculation. And the γ-ray region is determined by measuring 60 Co source. In the future, the performance of developed system will be tested in low and high intensity neutron field

  13. The role of envelope shape in the localization of multiple sound sources and echoes in the barn owl.

    Science.gov (United States)

    Baxter, Caitlin S; Nelson, Brian S; Takahashi, Terry T

    2013-02-01

    Echoes and sounds of independent origin often obscure sounds of interest, but echoes can go undetected under natural listening conditions, a perception called the precedence effect. How does the auditory system distinguish between echoes and independent sources? To investigate, we presented two broadband noises to barn owls (Tyto alba) while varying the similarity of the sounds' envelopes. The carriers of the noises were identical except for a 2- or 3-ms delay. Their onsets and offsets were also synchronized. In owls, sound localization is guided by neural activity on a topographic map of auditory space. When there are two sources concomitantly emitting sounds with overlapping amplitude spectra, space map neurons discharge when the stimulus in their receptive field is louder than the one outside it and when the averaged amplitudes of both sounds are rising. A model incorporating these features calculated the strengths of the two sources' representations on the map (B. S. Nelson and T. T. Takahashi; Neuron 67: 643-655, 2010). The target localized by the owls could be predicted from the model's output. The model also explained why the echo is not localized at short delays: when envelopes are similar, peaks in the leading sound mask corresponding peaks in the echo, weakening the echo's space map representation. When the envelopes are dissimilar, there are few or no corresponding peaks, and the owl localizes whichever source is predicted by the model to be less masked. Thus the precedence effect in the owl is a by-product of a mechanism for representing multiple sound sources on its map.

  14. Effects of spectral complexity and sound duration on automatic complex-sound pitch processing in humans - a mismatch negativity study.

    Science.gov (United States)

    Tervaniemi, M; Schröger, E; Saher, M; Näätänen, R

    2000-08-18

    The pitch of a spectrally rich sound is known to be more easily perceived than that of a sinusoidal tone. The present study compared the importance of spectral complexity and sound duration in facilitated pitch discrimination. The mismatch negativity (MMN), which reflects automatic neural discrimination, was recorded to a 2. 5% pitch change in pure tones with only one sinusoidal frequency component (500 Hz) and in spectrally rich tones with three (500-1500 Hz) and five (500-2500 Hz) harmonic partials. During the recordings, subjects concentrated on watching a silent movie. In separate blocks, stimuli were of 100 and 250 ms in duration. The MMN amplitude was enhanced with both spectrally rich sounds when compared with pure tones. The prolonged sound duration did not significantly enhance the MMN. This suggests that increased spectral rather than temporal information facilitates pitch processing of spectrally rich sounds.

  15. Ethnic and gender discrimination in the private rental housing market in Finland: A field experiment.

    Directory of Open Access Journals (Sweden)

    Annamaria Öblom

    Full Text Available Ethnic and gender discrimination in a variety of markets has been documented in several populations. We conducted an online field experiment to examine ethnic and gender discrimination in the private rental housing market in Finland. We sent 1459 inquiries regarding 800 apartments. We compared responses to standardized apartment inquiries including fictive Arabic-sounding, Finnish-sounding or Swedish-sounding female or male names. We found evidence of discrimination against Arabic-sounding names and male names. Inquiries including Arabic-sounding male names had the lowest probability of receiving a response, receiving a response to about 16% of the inquiries made, while Finnish-sounding female names received a response to 42% of the inquires. We did not find any evidence of the landlord's gender being associated with the discrimination pattern. The findings suggest that both ethnic and gender discrimination occur in the private rental housing market in Finland.

  16. Ethnic and gender discrimination in the private rental housing market in Finland: A field experiment.

    Science.gov (United States)

    Öblom, Annamaria; Antfolk, Jan

    2017-01-01

    Ethnic and gender discrimination in a variety of markets has been documented in several populations. We conducted an online field experiment to examine ethnic and gender discrimination in the private rental housing market in Finland. We sent 1459 inquiries regarding 800 apartments. We compared responses to standardized apartment inquiries including fictive Arabic-sounding, Finnish-sounding or Swedish-sounding female or male names. We found evidence of discrimination against Arabic-sounding names and male names. Inquiries including Arabic-sounding male names had the lowest probability of receiving a response, receiving a response to about 16% of the inquiries made, while Finnish-sounding female names received a response to 42% of the inquires. We did not find any evidence of the landlord's gender being associated with the discrimination pattern. The findings suggest that both ethnic and gender discrimination occur in the private rental housing market in Finland.

  17. Perceptual assessment of quality of urban soundscapes with combined noise sources and water sounds.

    Science.gov (United States)

    Jeon, Jin Yong; Lee, Pyoung Jik; You, Jin; Kang, Jian

    2010-03-01

    In this study, urban soundscapes containing combined noise sources were evaluated through field surveys and laboratory experiments. The effect of water sounds on masking urban noises was then examined in order to enhance the soundscape perception. Field surveys in 16 urban spaces were conducted through soundwalking to evaluate the annoyance of combined noise sources. Synthesis curves were derived for the relationships between noise levels and the percentage of highly annoyed (%HA) and the percentage of annoyed (%A) for the combined noise sources. Qualitative analysis was also made using semantic scales for evaluating the quality of the soundscape, and it was shown that the perception of acoustic comfort and loudness was strongly related to the annoyance. A laboratory auditory experiment was then conducted in order to quantify the total annoyance caused by road traffic noise and four types of construction noise. It was shown that the annoyance ratings were related to the types of construction noise in combination with road traffic noise and the level of the road traffic noise. Finally, water sounds were determined to be the best sounds to use for enhancing the urban soundscape. The level of the water sounds should be similar to or not less than 3 dB below the level of the urban noises.

  18. Aerofoil broadband and tonal noise modelling using stochastic sound sources and incorporated large scale fluctuations

    Science.gov (United States)

    Proskurov, S.; Darbyshire, O. R.; Karabasov, S. A.

    2017-12-01

    The present work discusses modifications to the stochastic Fast Random Particle Mesh (FRPM) method featuring both tonal and broadband noise sources. The technique relies on the combination of incorporated vortex-shedding resolved flow available from Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulation with the fine-scale turbulence FRPM solution generated via the stochastic velocity fluctuations in the context of vortex sound theory. In contrast to the existing literature, our method encompasses a unified treatment for broadband and tonal acoustic noise sources at the source level, thus, accounting for linear source interference as well as possible non-linear source interaction effects. When sound sources are determined, for the sound propagation, Acoustic Perturbation Equations (APE-4) are solved in the time-domain. Results of the method's application for two aerofoil benchmark cases, with both sharp and blunt trailing edges are presented. In each case, the importance of individual linear and non-linear noise sources was investigated. Several new key features related to the unsteady implementation of the method were tested and brought into the equation. Encouraging results have been obtained for benchmark test cases using the new technique which is believed to be potentially applicable to other airframe noise problems where both tonal and broadband parts are important.

  19. Maximum likelihood approach to “informed” Sound Source Localization for Hearing Aid applications

    DEFF Research Database (Denmark)

    Farmani, Mojtaba; Pedersen, Michael Syskind; Tan, Zheng-Hua

    2015-01-01

    Most state-of-the-art Sound Source Localization (SSL) algorithms have been proposed for applications which are "uninformed'' about the target sound content; however, utilizing a wireless microphone worn by a target talker, enables recent Hearing Aid Systems (HASs) to access to an almost noise......-free sound signal of the target talker at the HAS via the wireless connection. Therefore, in this paper, we propose a maximum likelihood (ML) approach, which we call MLSSL, to estimate the Direction of Arrival (DoA) of the target signal given access to the target signal content. Compared with other "informed...

  20. Detection of aeroacoustic sound sources on aircraft and wind turbines

    International Nuclear Information System (INIS)

    Oerlemans, S.

    2009-01-01

    This thesis deals with the detection of aeroacoustic sound sources on aircraft and wind turbines using phased microphone arrays. First, the reliability of the array technique is assessed using airframe noise measurements in open and closed wind tunnels. It is demonstrated that quantitative acoustic measurements are possible in both wind tunnels. Then, the array technique is applied to characterize the noise sources on two modern large wind turbines. It is shown that practically all noise emitted to the ground is produced by the outer part of the blades during their downward movement. This asymmetric source pattern, which causes the typical swishing noise during the passage of the blades, can be explained by trailing edge noise directivity and convective amplification. Next, a semi-empirical prediction method is developed for the noise from large wind turbines. The prediction code is successfully validated against the experimental results, not only with regard to sound levels, spectra, and directivity, but also with regard to the noise source distribution in the rotor plane and the temporal variation in sound level (swish). The validated prediction method is then applied to calculate wind turbine noise footprints, which show that large swish amplitudes can occur even at large distance. The influence of airfoil shape on blade noise is investigated through acoustic wind tunnel tests on a series of wind turbine airfoils. Measurements are carried out at various wind speeds and angles of attack, with and without upstream turbulence and boundary layer tripping. The speed dependence, directivity, and tonal behaviour are determined for both trailing edge noise and inflow turbulence noise. Finally, two noise reduction concepts are tested on a large wind turbine: acoustically optimized airfoils and trailing edge serrations. Both blade modifications yield a significant trailing edge noise reduction at low frequencies, but also cause increased tip noise at high frequencies

  1. Analysis, Synthesis, and Perception of Musical Sounds The Sound of Music

    CERN Document Server

    Beauchamp, James W

    2007-01-01

    Analysis, Synthesis, and Perception of Musical Sounds contains a detailed treatment of basic methods for analysis and synthesis of musical sounds, including the phase vocoder method, the McAulay-Quatieri frequency-tracking method, the constant-Q transform, and methods for pitch tracking with several examples shown. Various aspects of musical sound spectra such as spectral envelope, spectral centroid, spectral flux, and spectral irregularity are defined and discussed. One chapter is devoted to the control and synthesis of spectral envelopes. Two advanced methods of analysis/synthesis are given: "Sines Plus Transients Plus Noise" and "Spectrotemporal Reassignment" are covered. Methods for timbre morphing are given. The last two chapters discuss the perception of musical sounds based on discrimination and multidimensional scaling timbre models.

  2. The influence of signal parameters on the sound source localization ability of a harbor porpoise (Phocoena phocoena)

    NARCIS (Netherlands)

    Kastelein, R.A.; Haan, D.de; Verboom, W.C.

    2007-01-01

    It is unclear how well harbor porpoises can locate sound sources, and thus can locate acoustic alarms on gillnets. Therefore the ability of a porpoise to determine the location of a sound source was determined. The animal was trained to indicate the active one of 16 transducers in a 16-m -diam

  3. Towards a Synesthesia Laboratory: Real-time Localization and Visualization of a Sound Source for Virtual Reality Applications

    OpenAIRE

    Kose, Ahmet; Tepljakov, Aleksei; Astapov, Sergei; Draheim, Dirk; Petlenkov, Eduard; Vassiljeva, Kristina

    2018-01-01

    In this paper, we present our findings related to the problem of localization and visualization of a sound source placed in the same room as the listener. The particular effect that we aim to investigate is called synesthesia—the act of experiencing one sense modality as another, e.g., a person may vividly experience flashes of colors when listening to a series of sounds. Towards that end, we apply a series of recently developed methods for detecting sound source in a three-dimensional space ...

  4. Discrimination and Well-being: Testing the differential source and Organizational Justice theories of workplace aggression

    NARCIS (Netherlands)

    Wood, S.; Braeken, J.; Niven, K.

    2013-01-01

    People may be subjected to discrimination from a variety of sources in the workplace. In this study of mental health workers, we contrast four potential perpetrators of discrimination (managers, co-workers, patients, and visitors) to investigate whether the negative impact of discrimination on

  5. A SOUND SOURCE LOCALIZATION TECHNIQUE TO SUPPORT SEARCH AND RESCUE IN LOUD NOISE ENVIRONMENTS

    Science.gov (United States)

    Yoshinaga, Hiroshi; Mizutani, Koichi; Wakatsuki, Naoto

    At some sites of earthquakes and other disasters, rescuers search for people buried under rubble by listening for the sounds which they make. Thus developing a technique to localize sound sources amidst loud noise will support such search and rescue operations. In this paper, we discuss an experiment performed to test an array signal processing technique which searches for unperceivable sound in loud noise environments. Two speakers simultaneously played a noise of a generator and a voice decreased by 20 dB (= 1/100 of power) from the generator noise at an outdoor space where cicadas were making noise. The sound signal was received by a horizontally set linear microphone array 1.05 m in length and consisting of 15 microphones. The direction and the distance of the voice were computed and the sound of the voice was extracted and played back as an audible sound by array signal processing.

  6. Sound Spectrum Influences Auditory Distance Perception of Sound Sources Located in a Room Environment

    Directory of Open Access Journals (Sweden)

    Ignacio Spiousas

    2017-06-01

    Full Text Available Previous studies on the effect of spectral content on auditory distance perception (ADP focused on the physically measurable cues occurring either in the near field (low-pass filtering due to head diffraction or when the sound travels distances >15 m (high-frequency energy losses due to air absorption. Here, we study how the spectrum of a sound arriving from a source located in a reverberant room at intermediate distances (1–6 m influences the perception of the distance to the source. First, we conducted an ADP experiment using pure tones (the simplest possible spectrum of frequencies 0.5, 1, 2, and 4 kHz. Then, we performed a second ADP experiment with stimuli consisting of continuous broadband and bandpass-filtered (with center frequencies of 0.5, 1.5, and 4 kHz and bandwidths of 1/12, 1/3, and 1.5 octave pink-noise clips. Our results showed an effect of the stimulus frequency on the perceived distance both for pure tones and filtered noise bands: ADP was less accurate for stimuli containing energy only in the low-frequency range. Analysis of the frequency response of the room showed that the low accuracy observed for low-frequency stimuli can be explained by the presence of sparse modal resonances in the low-frequency region of the spectrum, which induced a non-monotonic relationship between binaural intensity and source distance. The results obtained in the second experiment suggest that ADP can also be affected by stimulus bandwidth but in a less straightforward way (i.e., depending on the center frequency, increasing stimulus bandwidth could have different effects. Finally, the analysis of the acoustical cues suggests that listeners judged source distance using mainly changes in the overall intensity of the auditory stimulus with distance rather than the direct-to-reverberant energy ratio, even for low-frequency noise bands (which typically induce high amount of reverberation. The results obtained in this study show that, depending on

  7. Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections

    Science.gov (United States)

    Smith, Hugh G.; Blake, William H.

    2014-01-01

    Fine sediment source fingerprinting techniques have been widely applied in agricultural river catchments. Successful source discrimination in agricultural environments depends on the key assumption that land-use source signatures imprinted on catchment soils are decipherable from those due to other landscape factors affecting soil and sediment properties. In this study, we re-examine this critical assumption by investigating (i) the physical and chemical basis for source discrimination and (ii) potential factors that may confound source un-mixing in agricultural catchments, including particle size and organic matter effects on tracer properties. The study is situated in the River Tamar, a predominantly agricultural catchment (920 km2) in south-west England that has also been affected by mining. Source discrimination focused on pasture and cultivated land uses and channel banks. Monthly, time-integrated suspended sediment samples were collected across seven catchments for a 12-month period. Physical and chemical properties measured in source soils and sediment included fallout radionuclides (137Cs, excess 210Pb), major and minor element geochemical constituents, total organic carbon and particle size. Source discrimination was entirely dependent on differences in tracer property concentrations between surface and sub-surface soils. This is based on fallout radionuclide concentrations that are surface-elevated, while many geochemical properties are surface-depleted due to weathering and pedogenetic effects, although surface soil contamination can reverse this trend. However, source discrimination in the study catchments was limited by (i) rotation of cultivated and pasture fields resulting in reduced differences between these two sources, and (ii) the cultivated source signature resembling a mix of the pasture and channel bank sources for many tracer properties. Furthermore, a combination of metal pollution from abandoned historic mines and organic enrichment of

  8. Noise source separation of diesel engine by combining binaural sound localization method and blind source separation method

    Science.gov (United States)

    Yao, Jiachi; Xiang, Yang; Qian, Sichong; Li, Shengyang; Wu, Shaowei

    2017-11-01

    In order to separate and identify the combustion noise and the piston slap noise of a diesel engine, a noise source separation and identification method that combines a binaural sound localization method and blind source separation method is proposed. During a diesel engine noise and vibration test, because a diesel engine has many complex noise sources, a lead covering method was carried out on a diesel engine to isolate other interference noise from the No. 1-5 cylinders. Only the No. 6 cylinder parts were left bare. Two microphones that simulated the human ears were utilized to measure the radiated noise signals 1 m away from the diesel engine. First, a binaural sound localization method was adopted to separate the noise sources that are in different places. Then, for noise sources that are in the same place, a blind source separation method is utilized to further separate and identify the noise sources. Finally, a coherence function method, continuous wavelet time-frequency analysis method, and prior knowledge of the diesel engine are combined to further identify the separation results. The results show that the proposed method can effectively separate and identify the combustion noise and the piston slap noise of a diesel engine. The frequency of the combustion noise and the piston slap noise are respectively concentrated at 4350 Hz and 1988 Hz. Compared with the blind source separation method, the proposed method has superior separation and identification effects, and the separation results have fewer interference components from other noise.

  9. Numerical design and testing of a sound source for secondary calibration of microphones using the Boundary Element Method

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Juhl, Peter Møller; Barrera Figueroa, Salvador

    2009-01-01

    Secondary calibration of microphones in free field is performed by placing the microphone under calibration in an anechoic chamber with a sound source, and exposing it to a controlled sound field. A calibrated microphone is also measured as a reference. While the two measurements are usually made...... apart to avoid acoustic interaction. As a part of the project Euromet-792, aiming to investigate and improve methods for secondary free-field calibration of microphones, a sound source suitable for simultaneous secondary free-field calibration has been designed using the Boundary Element Method...... of the Danish Fundamental Metrology Institute (DFM). The design and verification of the source are presented in this communication....

  10. Auditory capture of visual motion: effects on perception and discrimination.

    Science.gov (United States)

    McCourt, Mark E; Leone, Lynnette M

    2016-09-28

    We asked whether the perceived direction of visual motion and contrast thresholds for motion discrimination are influenced by the concurrent motion of an auditory sound source. Visual motion stimuli were counterphasing Gabor patches, whose net motion energy was manipulated by adjusting the contrast of the leftward-moving and rightward-moving components. The presentation of these visual stimuli was paired with the simultaneous presentation of auditory stimuli, whose apparent motion in 3D auditory space (rightward, leftward, static, no sound) was manipulated using interaural time and intensity differences, and Doppler cues. In experiment 1, observers judged whether the Gabor visual stimulus appeared to move rightward or leftward. In experiment 2, contrast discrimination thresholds for detecting the interval containing unequal (rightward or leftward) visual motion energy were obtained under the same auditory conditions. Experiment 1 showed that the perceived direction of ambiguous visual motion is powerfully influenced by concurrent auditory motion, such that auditory motion 'captured' ambiguous visual motion. Experiment 2 showed that this interaction occurs at a sensory stage of processing as visual contrast discrimination thresholds (a criterion-free measure of sensitivity) were significantly elevated when paired with congruent auditory motion. These results suggest that auditory and visual motion signals are integrated and combined into a supramodal (audiovisual) representation of motion.

  11. Localization of Simultaneous Moving Sound Sources for Mobile Robot Using a Frequency-Domain Steered Beamformer Approach

    OpenAIRE

    Valin, Jean-Marc; Michaud, François; Hadjou, Brahim; Rouat, Jean

    2016-01-01

    Mobile robots in real-life settings would benefit from being able to localize sound sources. Such a capability can nicely complement vision to help localize a person or an interesting event in the environment, and also to provide enhanced processing for other capabilities such as speech recognition. In this paper we present a robust sound source localization method in three-dimensional space using an array of 8 microphones. The method is based on a frequency-domain implementation of a steered...

  12. Extended nonnegative tensor factorisation models for musical sound source separation.

    Science.gov (United States)

    FitzGerald, Derry; Cranitch, Matt; Coyle, Eugene

    2008-01-01

    Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously.

  13. Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation

    Directory of Open Access Journals (Sweden)

    Derry FitzGerald

    2008-01-01

    Full Text Available Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously.

  14. Perception of acoustic scale and size in musical instrument sounds.

    Science.gov (United States)

    van Dinther, Ralph; Patterson, Roy D

    2006-10-01

    There is size information in natural sounds. For example, as humans grow in height, their vocal tracts increase in length, producing a predictable decrease in the formant frequencies of speech sounds. Recent studies have shown that listeners can make fine discriminations about which of two speakers has the longer vocal tract, supporting the view that the auditory system discriminates changes on the acoustic-scale dimension. Listeners can also recognize vowels scaled well beyond the range of vocal tracts normally experienced, indicating that perception is robust to changes in acoustic scale. This paper reports two perceptual experiments designed to extend research on acoustic scale and size perception to the domain of musical sounds: The first study shows that listeners can discriminate the scale of musical instrument sounds reliably, although not quite as well as for voices. The second experiment shows that listeners can recognize the family of an instrument sound which has been modified in pitch and scale beyond the range of normal experience. We conclude that processing of acoustic scale in music perception is very similar to processing of acoustic scale in speech perception.

  15. Active sound reduction system and method

    NARCIS (Netherlands)

    2016-01-01

    The present invention refers to an active sound reduction system and method for attenuation of sound emitted by a primary sound source, especially for attenuation of snoring sounds emitted by a human being. This system comprises a primary sound source, at least one speaker as a secondary sound

  16. Parameterizing Sound: Design Considerations for an Environmental Sound Database

    Science.gov (United States)

    2015-04-01

    associated with, or produced by, a physical event or human activity and 2) sound sources that are common in the environment. Reproductions or sound...Rogers S. Confrontation naming of environmental sounds. Journal of Clinical and Experimental Neuropsychology . 2000;22(6):830–864. 14 VanDerveer NJ

  17. Effects of Freestream Turbulence on Cavity Tone and Sound Source

    Directory of Open Access Journals (Sweden)

    Hiroshi Yokoyama

    2016-01-01

    Full Text Available To clarify the effects of freestream turbulence on cavity tones, flow and acoustic fields were directly predicted for cavity flows with various intensities of freestream turbulence. The freestream Mach number was 0.09 and the Reynolds number based on the cavity length was 4.0 × 104. The depth-to-length ratio of the cavity, D/L, was 0.5 and 2.5, where the acoustic resonance of a depth-mode occurs for D/L = 2.5. The incoming boundary layer was laminar. The results for the intensity of freestream turbulence of Tu = 2.3% revealed that the reduced level of cavity tones in a cavity flow with acoustic resonance (D/L=2.5 was greater than that without acoustic resonance (D/L=0.5. To clarify the reason for this, the sound source based on Lighthill’s acoustic analogy was computed, and the contributions of the intensity and spanwise coherence of the sound source to the reduction of the cavity tone were estimated. As a result, the effects of the reduction of spanwise coherence on the cavity tone were greater in the cavity flow with acoustic resonance than in that without resonance, while the effects of the intensity were comparable for both flows.

  18. Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search

    Science.gov (United States)

    Song, Kai; Liu, Qi; Wang, Qi

    2011-01-01

    Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE) and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN). Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability. PMID:22319401

  19. Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2011-02-01

    Full Text Available Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN. Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability.

  20. Competing sound sources reveal spatial effects in cortical processing.

    Directory of Open Access Journals (Sweden)

    Ross K Maddox

    Full Text Available Why is spatial tuning in auditory cortex weak, even though location is important to object recognition in natural settings? This question continues to vex neuroscientists focused on linking physiological results to auditory perception. Here we show that the spatial locations of simultaneous, competing sound sources dramatically influence how well neural spike trains recorded from the zebra finch field L (an analog of mammalian primary auditory cortex encode source identity. We find that the location of a birdsong played in quiet has little effect on the fidelity of the neural encoding of the song. However, when the song is presented along with a masker, spatial effects are pronounced. For each spatial configuration, a subset of neurons encodes song identity more robustly than others. As a result, competing sources from different locations dominate responses of different neural subpopulations, helping to separate neural responses into independent representations. These results help elucidate how cortical processing exploits spatial information to provide a substrate for selective spatial auditory attention.

  1. Evolution of Sound Source Localization Circuits in the Nonmammalian Vertebrate Brainstem

    DEFF Research Database (Denmark)

    Walton, Peggy L; Christensen-Dalsgaard, Jakob; Carr, Catherine E

    2017-01-01

    The earliest vertebrate ears likely subserved a gravistatic function for orientation in the aquatic environment. However, in addition to detecting acceleration created by the animal's own movements, the otolithic end organs that detect linear acceleration would have responded to particle movement...... to increased sensitivity to a broader frequency range and to modification of the preexisting circuitry for sound source localization....

  2. Movement and Perceptual Strategies to Intercept Virtual Sound Sources.

    Directory of Open Access Journals (Sweden)

    Naeem eKomeilipoor

    2015-05-01

    Full Text Available To intercept a moving object, one needs to be in the right place at the right time. In order to do this, it is necessary to pick up and use perceptual information that specifies the time to arrival of an object at an interception point. In the present study, we examined the ability to intercept a laterally moving virtual sound object by controlling the displacement of a sliding handle and tested whether and how the interaural time difference (ITD could be the main source of perceptual information for successfully intercepting the virtual object. The results revealed that in order to accomplish the task, one might need to vary the duration of the movement, control the hand velocity and time to reach the peak velocity (speed coupling, while the adjustment of movement initiation did not facilitate performance. Furthermore, the overall performance was more successful when subjects employed a time-to-contact (tau coupling strategy. This result shows that prospective information is available in sound for guiding goal-directed actions.

  3. Variations in students' perceived reasons for, sources of, and forms of in-school discrimination: A latent class analysis.

    Science.gov (United States)

    Byrd, Christy M; Carter Andrews, Dorinda J

    2016-08-01

    Although there exists a healthy body of literature related to discrimination in schools, this research has primarily focused on racial or ethnic discrimination as perceived and experienced by students of color. Few studies examine students' perceptions of discrimination from a variety of sources, such as adults and peers, their descriptions of the discrimination, or the frequency of discrimination in the learning environment. Middle and high school students in a Midwestern school district (N=1468) completed surveys identifying whether they experienced discrimination from seven sources (e.g., peers, teachers, administrators), for seven reasons (e.g., gender, race/ethnicity, religion), and in eight forms (e.g., punished more frequently, called names, excluded from social groups). The sample was 52% White, 15% Black/African American, 14% Multiracial, and 17% Other. Latent class analysis was used to cluster individuals based on reported sources of, reasons for, and forms of discrimination. Four clusters were found, and ANOVAs were used to test for differences between clusters on perceptions of school climate, relationships with teachers, perceptions that the school was a "good school," and engagement. The Low Discrimination cluster experienced the best outcomes, whereas an intersectional cluster experienced the most discrimination and the worst outcomes. The results confirm existing research on the negative effects of discrimination. Additionally, the paper adds to the literature by highlighting the importance of an intersectional approach to examining students' perceptions of in-school discrimination. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  4. Speech recognition using articulatory and excitation source features

    CERN Document Server

    Rao, K Sreenivasa

    2017-01-01

    This book discusses the contribution of articulatory and excitation source information in discriminating sound units. The authors focus on excitation source component of speech -- and the dynamics of various articulators during speech production -- for enhancement of speech recognition (SR) performance. Speech recognition is analyzed for read, extempore, and conversation modes of speech. Five groups of articulatory features (AFs) are explored for speech recognition, in addition to conventional spectral features. Each chapter provides the motivation for exploring the specific feature for SR task, discusses the methods to extract those features, and finally suggests appropriate models to capture the sound unit specific knowledge from the proposed features. The authors close by discussing various combinations of spectral, articulatory and source features, and the desired models to enhance the performance of SR systems.

  5. Sound Source Localization through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network.

    Science.gov (United States)

    Beck, Christoph; Garreau, Guillaume; Georgiou, Julius

    2016-01-01

    Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.

  6. The role of diffusive architectural surfaces on auditory spatial discrimination in performance venues.

    Science.gov (United States)

    Robinson, Philip W; Pätynen, Jukka; Lokki, Tapio; Jang, Hyung Suk; Jeon, Jin Yong; Xiang, Ning

    2013-06-01

    In musical or theatrical performance, some venues allow listeners to individually localize and segregate individual performers, while others produce a well blended ensemble sound. The room acoustic conditions that make this possible, and the psycho-acoustic effects at work are not fully understood. This research utilizes auralizations from measured and simulated performance venues to investigate spatial discrimination of multiple acoustic sources in rooms. Signals were generated from measurements taken in a small theater, and listeners in the audience area were asked to distinguish pairs of speech sources on stage with various spatial separations. This experiment was repeated with the proscenium splay walls treated to be flat, diffusive, or absorptive. Similar experiments were conducted in a simulated hall, utilizing 11 early reflections with various characteristics, and measured late reverberation. The experiments reveal that discriminating the lateral arrangement of two sources is possible at narrower separation angles when reflections come from flat or absorptive rather than diffusive surfaces.

  7. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Science.gov (United States)

    Neska, Anne; Tadeusz Reda, Jan; Leszek Neska, Mariusz; Petrovich Sumaruk, Yuri

    2018-03-01

    This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding). The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows) and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  8. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Directory of Open Access Journals (Sweden)

    A. Neska

    2018-03-01

    Full Text Available This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding. The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  9. Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task

    Science.gov (United States)

    Vinnik, Ekaterina; Honey, Christian; Schnupp, Jan; Diamond, Mathew E.

    2012-01-01

    To investigate how hippocampal neurons encode sound stimuli, and the conjunction of sound stimuli with the animal's position in space, we recorded from neurons in the CA1 region of hippocampus in rats while they performed a sound discrimination task. Four different sounds were used, two associated with water reward on the right side of the animal and the other two with water reward on the left side. This allowed us to separate neuronal activity related to sound identity from activity related to response direction. To test the effect of spatial context on sound coding, we trained rats to carry out the task on two identical testing platforms at different locations in the same room. Twenty-one percent of the recorded neurons exhibited sensitivity to sound identity, as quantified by the difference in firing rate for the two sounds associated with the same response direction. Sensitivity to sound identity was often observed on only one of the two testing platforms, indicating an effect of spatial context on sensory responses. Forty-three percent of the neurons were sensitive to response direction, and the probability that any one neuron was sensitive to response direction was statistically independent from its sensitivity to sound identity. There was no significant coding for sound identity when the rats heard the same sounds outside the behavioral task. These results suggest that CA1 neurons encode sound stimuli, but only when those sounds are associated with actions. PMID:22219030

  10. Sound segregation via embedded repetition is robust to inattention.

    Science.gov (United States)

    Masutomi, Keiko; Barascud, Nicolas; Kashino, Makio; McDermott, Josh H; Chait, Maria

    2016-03-01

    The segregation of sound sources from the mixture of sounds that enters the ear is a core capacity of human hearing, but the extent to which this process is dependent on attention remains unclear. This study investigated the effect of attention on the ability to segregate sounds via repetition. We utilized a dual task design in which stimuli to be segregated were presented along with stimuli for a "decoy" task that required continuous monitoring. The task to assess segregation presented a target sound 10 times in a row, each time concurrent with a different distractor sound. McDermott, Wrobleski, and Oxenham (2011) demonstrated that repetition causes the target sound to be segregated from the distractors. Segregation was queried by asking listeners whether a subsequent probe sound was identical to the target. A control task presented similar stimuli but probed discrimination without engaging segregation processes. We present results from 3 different decoy tasks: a visual multiple object tracking task, a rapid serial visual presentation (RSVP) digit encoding task, and a demanding auditory monitoring task. Load was manipulated by using high- and low-demand versions of each decoy task. The data provide converging evidence of a small effect of attention that is nonspecific, in that it affected the segregation and control tasks to a similar extent. In all cases, segregation performance remained high despite the presence of a concurrent, objectively demanding decoy task. The results suggest that repetition-based segregation is robust to inattention. (c) 2016 APA, all rights reserved).

  11. A location procedure for sound sources in reactor-technical enclosures

    International Nuclear Information System (INIS)

    Hamann, D.

    1982-07-01

    A passive method requiring one detector only has been developed for the location of sound emitting faults in nuclear power plant components. It is adapted for use in a frequency range the wavelength of which is of the same order of magnitude as characteristic dimensions of the considered enclosure. The location is performed in the following way: (1) For a fixed detector position the Auto Power Spectral Density (APSD) of the source to be located is measured. (2) For this detector position the APSD is calculated for the potential source locations. For this, the free-field APSD as well as the acoustic normal modes of the enclosure are necessary. (3) The measured APSD is compared with the theoretically obtained APSD's. (4) That APSD is determined which is most similar to the measured APSD, and consequently an information about the unknown source position is got. (author)

  12. The effect of sound speed profile on shallow water shipping sound maps

    NARCIS (Netherlands)

    Sertlek, H.Ö.; Binnerts, B.; Ainslie, M.A.

    2016-01-01

    Sound mapping over large areas can be computationally expensive because of the large number of sources and large source-receiver separations involved. In order to facilitate computation, a simplifying assumption sometimes made is to neglect the sound speed gradient in shallow water. The accuracy of

  13. The potential of carbon and nitrogen isotopes to conservatively discriminate between subsoil sediment sources

    Science.gov (United States)

    Laceby, J. Patrick; Olley, Jon

    2013-04-01

    Moreton Bay, in South East Queensland, Australia, is a Ramsar wetland of international significance. A decline of the bay's ecosystem health has been primarily attributed to sediments and nutrients from catchment sources. Sediment budgets for three catchments indicated gully erosion dominates the supply of sediment in Knapp Creek and the Upper Bremer River whereas erosion from cultivated soils is the primary sediment source in Blackfellow Creek. Sediment tracing with fallout-radionuclides confirmed subsoil erosion processes dominate the supply of sediment in Knapp Creek and the Upper Bremer River whereas in Blackfellow Creek cultivated and subsoil sources contribute >90% of sediments. Other sediment properties are required to determine the relative sediment contributions of channel bank, gully and cultivated sources in these catchments. The potential of total organic carbon (TOC), total nitrogen (TN), and carbon and nitrogen stable isotopes (δ13C, δ15N) to conservatively discriminate between subsoil sediment sources is presented. The conservativeness of these sediment properties was examined through evaluating particle size variations in depth core soil samples and investigating whether they remain constant in source soils over two sampling occasions. Varying conservative behavior and source discrimination was observed. TN in the

  14. Sound Source Localization Through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network

    Directory of Open Access Journals (Sweden)

    Christoph Beck

    2016-10-01

    Full Text Available Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.

  15. Sound source measurement by using a passive sound insulation and a statistical approach

    Science.gov (United States)

    Dragonetti, Raffaele; Di Filippo, Sabato; Mercogliano, Francesco; Romano, Rosario A.

    2015-10-01

    This paper describes a measurement technique developed by the authors that allows carrying out acoustic measurements inside noisy environments reducing background noise effects. The proposed method is based on the integration of a traditional passive noise insulation system with a statistical approach. The latter is applied to signals picked up by usual sensors (microphones and accelerometers) equipping the passive sound insulation system. The statistical approach allows improving of the sound insulation given only by the passive sound insulation system at low frequency. The developed measurement technique has been validated by means of numerical simulations and measurements carried out inside a real noisy environment. For the case-studies here reported, an average improvement of about 10 dB has been obtained in a frequency range up to about 250 Hz. Considerations on the lower sound pressure level that can be measured by applying the proposed method and the measurement error related to its application are reported as well.

  16. Perception by Operators of Approach and Withdrawal of Moving Sound Sources

    Science.gov (United States)

    1999-01-01

    Tucker, 1988; Strybel and Neal, 1994) or between stationary and moving sound sources or auditory images (Perrott and Musikant , 1977; Strybel and Neale...conditions of stimulation (Viskov, 1975; Perrott and Musikant , 1977; Strybel et al., 1989; Sabery and Perrott, 1990; Strybel et al., 1992; Strybel and...noise and its relation to masking and loudness// JASA, 1947. V.19. P. 609-619. 24. Perrott D.R., Musicant A.D. Minimum auditory movement angle: binaural

  17. Characterisation of an ion source on the Helix MC Plus noble gas mass spectrometer - pressure dependent mass discrimination

    Science.gov (United States)

    Zhang, X.

    2017-12-01

    Characterisation of an ion source on the Helix MC Plusnoble gas mass spectrometer - pressure dependent mass discrimination Xiaodong Zhang* dong.zhang@anu.edu.au Masahiko Honda Masahiko.honda@anu.edu.au Research School of Earth Sciences, The Australian National University, Canberra, Australia To obtain reliable measurements of noble gas elemental and isotopic abundances in a geological sample it is essential that the mass discrimination (instrument-induced isotope fractionation) of the mass spectrometer remain constant over the working range of noble gas partial pressures. It is known, however, that there are pressure-dependent variations in sensitivity and mass discrimination in conventional noble gas mass spectrometers [1, 2, 3]. In this study, we discuss a practical approach to ensuring that the pressure effect in the Helix MC Plus high resolution, multi-collector noble gas mass spectrometer is minimised. The isotopic composition of atmospheric Ar was measured under a range of operating conditions to test the effects of different parameters on Ar mass discrimination. It was found that the optimised ion source conditions for pressure independent mass discrimination for Ar were different from those for maximised Ar sensitivity. The optimisation can be achieved by mainly adjusting the repeller voltage. It is likely that different ion source settings will be required to minimise pressure-dependent mass discrimination for different noble gases. A recommended procedure for tuning an ion source to reduce pressure dependent mass discrimination will be presented. References: Honda M., et al., Geochim. Cosmochim. Acta, 57, 859 -874, 1993. Burnard P. G., and Farley K. A., Geochemistry Geophysics Geosystems, Volume 1, 2000GC00038, 2000. Mabry J., et al., Journal of Analytical Atomic Spectrometry, 27, 1012 - 1017, 2012.

  18. Reinforcing and discriminative stimulus properties of music in goldfish.

    Science.gov (United States)

    Shinozuka, Kazutaka; Ono, Haruka; Watanabe, Shigeru

    2013-10-01

    This paper investigated whether music has reinforcing and discriminative stimulus properties in goldfish. Experiment 1 examined the discriminative stimulus properties of music. The subjects were successfully trained to discriminate between two pieces of music--Toccata and Fugue in D minor (BWV 565) by J. S. Bach and The Rite of Spring by I. Stravinsky. Experiment 2 examined the reinforcing properties of sounds, including BWV 565 and The Rite of Spring. We developed an apparatus for measuring spontaneous sound preference in goldfish. Music or noise stimuli were presented depending on the subject's position in the aquarium, and the time spent in each area was measured. The results indicated that the goldfish did not show consistent preferences for music, although they showed significant avoidance of noise stimuli. These results suggest that music has discriminative but not reinforcing stimulus properties in goldfish. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Performance of an open-source heart sound segmentation algorithm on eight independent databases.

    Science.gov (United States)

    Liu, Chengyu; Springer, David; Clifford, Gari D

    2017-08-01

    Heart sound segmentation is a prerequisite step for the automatic analysis of heart sound signals, facilitating the subsequent identification and classification of pathological events. Recently, hidden Markov model-based algorithms have received increased interest due to their robustness in processing noisy recordings. In this study we aim to evaluate the performance of the recently published logistic regression based hidden semi-Markov model (HSMM) heart sound segmentation method, by using a wider variety of independently acquired data of varying quality. Firstly, we constructed a systematic evaluation scheme based on a new collection of heart sound databases, which we assembled for the PhysioNet/CinC Challenge 2016. This collection includes a total of more than 120 000 s of heart sounds recorded from 1297 subjects (including both healthy subjects and cardiovascular patients) and comprises eight independent heart sound databases sourced from multiple independent research groups around the world. Then, the HSMM-based segmentation method was evaluated using the assembled eight databases. The common evaluation metrics of sensitivity, specificity, accuracy, as well as the [Formula: see text] measure were used. In addition, the effect of varying the tolerance window for determining a correct segmentation was evaluated. The results confirm the high accuracy of the HSMM-based algorithm on a separate test dataset comprised of 102 306 heart sounds. An average [Formula: see text] score of 98.5% for segmenting S1 and systole intervals and 97.2% for segmenting S2 and diastole intervals were observed. The [Formula: see text] score was shown to increases with an increases in the tolerance window size, as expected. The high segmentation accuracy of the HSMM-based algorithm on a large database confirmed the algorithm's effectiveness. The described evaluation framework, combined with the largest collection of open access heart sound data, provides essential resources for

  20. A "looming bias" in spatial hearing? Effects of acoustic intensity and spectrum on categorical sound source localization.

    Science.gov (United States)

    McCarthy, Lisa; Olsen, Kirk N

    2017-01-01

    Continuous increases of acoustic intensity (up-ramps) can indicate a looming (approaching) sound source in the environment, whereas continuous decreases of intensity (down-ramps) can indicate a receding sound source. From psychoacoustic experiments, an "adaptive perceptual bias" for up-ramp looming tonal stimuli has been proposed (Neuhoff, 1998). This theory postulates that (1) up-ramps are perceptually salient because of their association with looming and potentially threatening stimuli in the environment; (2) tonal stimuli are perceptually salient because of an association with single and potentially threatening biological sound sources in the environment, relative to white noise, which is more likely to arise from dispersed signals and nonthreatening/nonbiological sources (wind/ocean). In the present study, we extrapolated the "adaptive perceptual bias" theory and investigated its assumptions by measuring sound source localization in response to acoustic stimuli presented in azimuth to imply looming, stationary, and receding motion in depth. Participants (N = 26) heard three directions of intensity change (up-ramps, down-ramps, and steady state, associated with looming, receding, and stationary motion, respectively) and three levels of acoustic spectrum (a 1-kHz pure tone, the tonal vowel /ә/, and white noise) in a within-subjects design. We first hypothesized that if up-ramps are "perceptually salient" and capable of eliciting adaptive responses, then they would be localized faster and more accurately than down-ramps. This hypothesis was supported. However, the results did not support the second hypothesis. Rather, the white-noise and vowel conditions were localized faster and more accurately than the pure-tone conditions. These results are discussed in the context of auditory and visual theories of motion perception, auditory attentional capture, and the spectral causes of spatial ambiguity.

  1. The Perception of Sound Movements as Expressive Gestures

    DEFF Research Database (Denmark)

    Götzen, Amalia De; Sikström, Erik; Korsgaard, Dannie

    2014-01-01

    This paper is a preliminary attempt to investigate the perception of sound movements as expressive gestures. The idea is that if sound movement is used as a musical parameter, a listener (or a subject) should be able to distinguish among dierent movements and she/he should be able to group them a...... by drawing it on a tablet. Preliminary results show that subjects could consistently group the stimuli, and that they primarily used paths and legato{staccato patterns to discriminate among dierent sound movements/expressive intention....

  2. The effect of multimicrophone noise reduction systems on sound source localization by users of binaural hearing aids.

    Science.gov (United States)

    Van den Bogaert, Tim; Doclo, Simon; Wouters, Jan; Moonen, Marc

    2008-07-01

    This paper evaluates the influence of three multimicrophone noise reduction algorithms on the ability to localize sound sources. Two recently developed noise reduction techniques for binaural hearing aids were evaluated, namely, the binaural multichannel Wiener filter (MWF) and the binaural multichannel Wiener filter with partial noise estimate (MWF-N), together with a dual-monaural adaptive directional microphone (ADM), which is a widely used noise reduction approach in commercial hearing aids. The influence of the different algorithms on perceived sound source localization and their noise reduction performance was evaluated. It is shown that noise reduction algorithms can have a large influence on localization and that (a) the ADM only preserves localization in the forward direction over azimuths where limited or no noise reduction is obtained; (b) the MWF preserves localization of the target speech component but may distort localization of the noise component. The latter is dependent on signal-to-noise ratio and masking effects; (c) the MWF-N enables correct localization of both the speech and the noise components; (d) the statistical Wiener filter approach introduces a better combination of sound source localization and noise reduction performance than the ADM approach.

  3. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    Science.gov (United States)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  4. Propagation of sound

    DEFF Research Database (Denmark)

    Wahlberg, Magnus; Larsen, Ole Næsbye

    2017-01-01

    properties can be modified by sound absorption, refraction, and interference from multi paths caused by reflections.The path from the source to the receiver may be bent due to refraction. Besides geometrical attenuation, the ground effect and turbulence are the most important mechanisms to influence...... communication sounds for airborne acoustics and bottom and surface effects for underwater sounds. Refraction becomes very important close to shadow zones. For echolocation signals, geometric attenuation and sound absorption have the largest effects on the signals....

  5. Conditioned sounds enhance visual processing.

    Directory of Open Access Journals (Sweden)

    Fabrizio Leo

    Full Text Available This psychophysics study investigated whether prior auditory conditioning influences how a sound interacts with visual perception. In the conditioning phase, subjects were presented with three pure tones ( =  conditioned stimuli, CS that were paired with positive, negative or neutral unconditioned stimuli. As unconditioned reinforcers we employed pictures (highly pleasant, unpleasant and neutral or monetary outcomes (+50 euro cents, -50 cents, 0 cents. In the subsequent visual selective attention paradigm, subjects were presented with near-threshold Gabors displayed in their left or right hemifield. Critically, the Gabors were presented in synchrony with one of the conditioned sounds. Subjects discriminated whether the Gabors were presented in their left or right hemifields. Participants determined the location more accurately when the Gabors were presented in synchrony with positive relative to neutral sounds irrespective of reinforcer type. Thus, previously rewarded relative to neutral sounds increased the bottom-up salience of the visual Gabors. Our results are the first demonstration that prior auditory conditioning is a potent mechanism to modulate the effect of sounds on visual perception.

  6. Spherical loudspeaker array for local active control of sound.

    Science.gov (United States)

    Rafaely, Boaz

    2009-05-01

    Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.

  7. Re-examining the basis for source discrimination and data corrections used by sediment fingerprinting studies in agricultural catchments

    Science.gov (United States)

    Smith, Hugh; Blake, Will

    2014-05-01

    The sediment fingerprinting technique has been widely used in agricultural catchments to quantify fine sediment contributions from various land use sources. This application of the technique depends on the key assumption that land-use source signatures imprinted on catchment soils are decipherable from those due to other landscape factors affecting soil and sediment properties. We re-examine this key assumption by investigating (i) the physical and chemical basis for source discrimination and (ii) potential factors that may confound source un-mixing in agricultural catchments, including particle size and organic matter effects on tracer properties. The study is situated in the River Tamar, a predominantly agricultural catchment in south-west England that has also been affected by mining. Source discrimination focused on pasture and cultivated land uses and channel banks. Monthly, time-integrated suspended sediment samples were collected across seven catchments for a 12-month period. Physical and chemical properties measured in source soils and sediment included fallout radionuclides, major and minor element geochemical constituents, total organic carbon and particle size. Source discrimination was entirely dependent on differences in tracer property concentrations between surface and sub-surface soils. This is based on fallout radionuclide concentrations that are surface-elevated, while many geochemical properties are surface-depleted due to weathering and pedogenetic effects, although surface soil contamination can reverse this trend. Source discrimination in the study catchments was limited by (i) rotation of cultivated and pasture fields resulting in reduced differences between these two sources and (ii) the cultivated source signature resembling a mix of the pasture and channel bank sources for many tracer properties. Furthermore, metal pollution from abandoned historic mines and organic enrichment of sediment from areas of peaty soil resulted in the non

  8. Sound localization and occupational noise

    Directory of Open Access Journals (Sweden)

    Pedro de Lemos Menezes

    2014-02-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the effects of occupational noise on sound localization in different spatial planes and frequencies among normal hearing firefighters. METHOD: A total of 29 adults with pure-tone hearing thresholds below 25 dB took part in the study. The participants were divided into a group of 19 firefighters exposed to occupational noise and a control group of 10 adults who were not exposed to such noise. All subjects were assigned a sound localization task involving 117 stimuli from 13 sound sources that were spatially distributed in horizontal, vertical, midsagittal and transverse planes. The three stimuli, which were square waves with fundamental frequencies of 500, 2,000 and 4,000 Hz, were presented at a sound level of 70 dB and were randomly repeated three times from each sound source. The angle between the speaker's axis in the same plane was 45°, and the distance to the subject was 1 m. RESULT: The results demonstrate that the sound localization ability of the firefighters was significantly lower (p<0.01 than that of the control group. CONCLUSION: Exposure to occupational noise, even when not resulting in hearing loss, may lead to a diminished ability to locate a sound source.

  9. Background noise exerts diverse effects on the cortical encoding of foreground sounds.

    Science.gov (United States)

    Malone, B J; Heiser, Marc A; Beitel, Ralph E; Schreiner, Christoph E

    2017-08-01

    In natural listening conditions, many sounds must be detected and identified in the context of competing sound sources, which function as background noise. Traditionally, noise is thought to degrade the cortical representation of sounds by suppressing responses and increasing response variability. However, recent studies of neural network models and brain slices have shown that background synaptic noise can improve the detection of signals. Because acoustic noise affects the synaptic background activity of cortical networks, it may improve the cortical responses to signals. We used spike train decoding techniques to determine the functional effects of a continuous white noise background on the responses of clusters of neurons in auditory cortex to foreground signals, specifically frequency-modulated sweeps (FMs) of different velocities, directions, and amplitudes. Whereas the addition of noise progressively suppressed the FM responses of some cortical sites in the core fields with decreasing signal-to-noise ratios (SNRs), the stimulus representation remained robust or was even significantly enhanced at specific SNRs in many others. Even though the background noise level was typically not explicitly encoded in cortical responses, significant information about noise context could be decoded from cortical responses on the basis of how the neural representation of the foreground sweeps was affected. These findings demonstrate significant diversity in signal in noise processing even within the core auditory fields that could support noise-robust hearing across a wide range of listening conditions. NEW & NOTEWORTHY The ability to detect and discriminate sounds in background noise is critical for our ability to communicate. The neural basis of robust perceptual performance in noise is not well understood. We identified neuronal populations in core auditory cortex of squirrel monkeys that differ in how they process foreground signals in background noise and that may

  10. Reconstruction of Sound Source Pressures in an Enclosure Using the Phased Beam Tracing Method

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Ih, Jeong-Guon

    2009-01-01

    . First, surfaces of an extended source are divided into reasonably small segments. From each source segment, one beam is projected into the field and all emitted beams are traced. Radiated beams from the source reach array sensors after traveling various paths including the wall reflections. Collecting...... all the pressure histories at the field points, source-observer relations can be constructed in a matrix-vector form for each frequency. By multiplying the measured field data with the pseudo-inverse of the calculated transfer function, one obtains the distribution of source pressure. An omni......-directional sphere and a cubic source in a rectangular enclosure were taken as examples in the simulation tests. A reconstruction error was investigated by Monte Carlo simulation in terms of field point locations. When the source information was reconstructed by the present method, it was shown that the sound power...

  11. Measurement of acoustic characteristics of Japanese Buddhist temples in relation to sound source location and direction.

    Science.gov (United States)

    Soeta, Yoshiharu; Shimokura, Ryota; Kim, Yong Hee; Ohsawa, Tomohiro; Ito, Ken

    2013-05-01

    Although temples are important buildings in the Buddhist community, the acoustic quality has not been examined in detail. Buddhist monks change the location and direction according to the ceremony, and associated acoustical changes have not yet been examined scientifically. To discuss the desired acoustics of temples, it is necessary to know the acoustic characteristics appropriate for each phase of a ceremony. In this study, acoustic measurements were taken at various source locations and directions in Japanese temples. A directional loudspeaker was used as the source to provide vocal acoustic fields, and impulse responses were measured and analyzed. The speech transmission index was higher and the interaural cross-correlation coefficient was lower for the sound source directed toward the side wall than that directed toward the altar. This suggests that the change in direction improves speech intelligibility, and the asymmetric property of direct sound and complex reflections from the altar and side wall increases the apparent source width. The large and coupled-like structure of the altar of a Buddhist temple may have reinforced the reverberation components and the table in the altar, which is called the "syumidan," may have decreased binaural coherence.

  12. Predicting outdoor sound

    CERN Document Server

    Attenborough, Keith; Horoshenkov, Kirill

    2014-01-01

    1. Introduction  2. The Propagation of Sound Near Ground Surfaces in a Homogeneous Medium  3. Predicting the Acoustical Properties of Outdoor Ground Surfaces  4. Measurements of the Acoustical Properties of Ground Surfaces and Comparisons with Models  5. Predicting Effects of Source Characteristics on Outdoor Sound  6. Predictions, Approximations and Empirical Results for Ground Effect Excluding Meteorological Effects  7. Influence of Source Motion on Ground Effect and Diffraction  8. Predicting Effects of Mixed Impedance Ground  9. Predicting the Performance of Outdoor Noise Barriers  10. Predicting Effects of Vegetation, Trees and Turbulence  11. Analytical Approximations including Ground Effect, Refraction and Turbulence  12. Prediction Schemes  13. Predicting Sound in an Urban Environment.

  13. A holistic approach to hydrocarbon source allocation in the subtidal sediments of Prince William Sound, Alaska, embayments

    International Nuclear Information System (INIS)

    Page, D.S.; Bence, A.E.; Burns, W.A.; Boehm, P.D.; Brown, J.S.; Douglas, G.S.

    2002-01-01

    The complex organic geochemistry record in the subtidal sediments of Prince William Sound, Alaska is a result of much industrial and human activity in the region. Recent oil spills and a regional background of natural petroleum hydrocarbons originating from active hydrocarbon systems in the northern Gulf of Alaska also contribute to the geochemical record. Pyrogenic and petrogenic polycyclic aromatic hydrocarbons (PAH) are introduced regularly to the subtidal sediments at sites of past and present human activities including villages, fish hatcheries, fish camps and recreational campsites as well as abandoned settlements, canneries, sawmills and mines. Hydrocarbon contributions are fingerprinted and quantified using a holistic approach where contributions from multiple sources is determined. The approach involves a good understanding of the history of the area to identify potential sources. It also involves extensive collection of representative samples and an accurate quantitative analysis of the source and sediment samples for PAH analytes and chemical biomarker compounds. Total organic carbon (TOC) does not work in restricted embayments because of a constrained least-square algorithm to determine hydrocarbon sources. It has been shown that sources contributing to the natural petrogenic background are present in Prince William Sound. In particular, pyrogenic hydrocarbons such as combustion products of diesel is significant where there was much human activity. In addition, petroleum produced from the Monterey Formation in California is present in Prince William Sound because in the past, oil and asphalt shipped from California was widely used for fuel. Low level residues of weathered Alaskan North Slope crude oil from the Exxon Valdez spill are also still present. 30 refs., 4 tabs., 2 figs

  14. Modeling phoneme perception. II: A model of stop consonant discrimination.

    Science.gov (United States)

    van Hessen, A J; Schouten, M E

    1992-10-01

    Combining elements from two existing theories of speech sound discrimination, dual process theory (DPT) and trace context theory (TCT), a new theory, called phoneme perception theory, is proposed, consisting of a long-term phoneme memory, a context-coding memory, and a trace memory, each with its own time constants. This theory is tested by means of stop-consonant discrimination data in which interstimulus interval (ISI; values of 100, 300, and 2000 ms) is an important variable. It is shown that discrimination in which labeling plays an important part (2IFC and AX between category) benefits from increased ISI, whereas discrimination in which only sensory traces are compared (AX within category), decreases with increasing ISI. The theory is also tested on speech discrimination data from the literature in which ISI is a variable [Pisoni, J. Acoust. Soc. Am. 36, 277-282 (1964); Cowan and Morse, J. Acoust. Soc. Am. 79, 500-507 (1986)]. It is concluded that the number of parameters in trace context theory is not sufficient to account for most speech-sound discrimination data and that a few additional assumptions are needed, such as a form of sublabeling, in which subjects encode the quality of a stimulus as a member of a category, and which requires processing time.

  15. On the influence of microphone array geometry on HRTF-based Sound Source Localization

    DEFF Research Database (Denmark)

    Farmani, Mojtaba; Pedersen, Michael Syskind; Tan, Zheng-Hua

    2015-01-01

    The direction dependence of Head Related Transfer Functions (HRTFs) forms the basis for HRTF-based Sound Source Localization (SSL) algorithms. In this paper, we show how spectral similarities of the HRTFs of different directions in the horizontal plane influence performance of HRTF-based SSL...... algorithms; the more similar the HRTFs of different angles to the HRTF of the target angle, the worse the performance. However, we also show how the microphone array geometry can assist in differentiating between the HRTFs of the different angles, thereby improving performance of HRTF-based SSL algorithms....... Furthermore, to demonstrate the analysis results, we show the impact of HRTFs similarities and microphone array geometry on an exemplary HRTF-based SSL algorithm, called MLSSL. This algorithm is well-suited for this purpose as it allows to estimate the Direction-of-Arrival (DoA) of the target sound using any...

  16. Improvements on the directional characteristics of a calibration sound source using the Boundary Element Method

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Juhl, Peter Møller

    2008-01-01

    The project Euromet-792 aims to investigate and improve methods for secondary free-field calibration of microphones. In this framework, the comparison method is being studied at DFM in relation to the more usual substitution method of microphone calibration. The design of the sound source is of p...

  17. System for actively reducing sound

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2005-01-01

    A system for actively reducing sound from a primary noise source, such as traffic noise, comprising: a loudspeaker connector for connecting to at least one loudspeaker for generating anti-sound for reducing said noisy sound; a microphone connector for connecting to at least a first microphone placed

  18. Application of CR-39 microfilm for rapid discrimination between alpha-particle sources

    Energy Technology Data Exchange (ETDEWEB)

    Dwaikat, Nidal; Al-karmi, Anan M. [Dept. of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2017-06-15

    This work presents a new technique for discriminating between alpha particles of different energy levels. In a first study, two groups of alpha particles emitted from radium-226 and americium-241 sources were successfully separated using a CR-39 microfilm of appropriate thickness. This thickness was adjusted by chemical etching before and after irradiation so that lower-energy particles were stopped within the detector, while higher-energy particles were revealed on the back side of the detector. The number of tracks on the front side of the microfilm represented all alpha particles incident on that side from the two sources. However, the number of tracks on the back side of the microfilm represented only the long-range alpha particles of higher energy that arrived at that side. Therefore, by subtracting the number of tracks on the back side from the number of tracks on the front side, one could easily determine the number of tracks for the short-range alpha particles of lower energy that remained embedded in the microfilm. Discrimination of the two energy levels is thus achieved in a simple, fast, and reliable process.

  19. Differential discriminator

    International Nuclear Information System (INIS)

    Dukhanov, V.I.; Mazurov, I.B.

    1981-01-01

    A principal flowsheet of a differential discriminator intended for operation in a spectrometric circuit with statistical time distribution of pulses is described. The differential discriminator includes four integrated discriminators and a channel of piled-up signal rejection. The presence of the rejection channel enables the discriminator to operate effectively at loads of 14x10 3 pulse/s. The temperature instability of the discrimination thresholds equals 250 μV/ 0 C. The discrimination level changes within 0.1-5 V, the level shift constitutes 0.5% for the filling ratio of 1:10. The rejection coefficient is not less than 90%. Alpha spectrum of the 228 Th source is presented to evaluate the discriminator operation with the rejector. The rejector provides 50 ns time resolution

  20. Analysis and Optimal Condition of the Rear-Sound-Aided Control Source in Active Noise Control

    Directory of Open Access Journals (Sweden)

    Karel Kreuter

    2011-01-01

    Full Text Available An active noise control scenario of simple ducts is considered. The previously suggested technique of using an single loudspeaker and its rear sound to cancel the upstream sound is further examined and compared to the bidirectional solution in order to give theoretical proof of its advantage. Firstly, a model with a new approach for taking damping effects into account is derived based on the electrical transmission line theory. By comparison with the old model, the new approach is validated, and occurring differences are discussed. Moreover, a numerical application with the consideration of damping is implemented for confirmation. The influence of the rear sound strength on the feedback-path system is investigated, and the optimal condition is determined. Finally, it is proven that the proposed source has an advantage of an extended phase lag and a time delay in the feedback-path system by both frequency-response analysis and numerical calculation of the time response.

  1. High frequency ion sound waves associated with Langmuir waves in type III radio burst source regions

    Directory of Open Access Journals (Sweden)

    G. Thejappa

    2004-01-01

    Full Text Available Short wavelength ion sound waves (2-4kHz are detected in association with the Langmuir waves (~15-30kHz in the source regions of several local type III radio bursts. They are most probably not due to any resonant wave-wave interactions such as the electrostatic decay instability because their wavelengths are much shorter than those of Langmuir waves. The Langmuir waves occur as coherent field structures with peak intensities exceeding the Langmuir collapse thresholds. Their scale sizes are of the order of the wavelength of an ion sound wave. These Langmuir wave field characteristics indicate that the observed short wavelength ion sound waves are most probably generated during the thermalization of the burnt-out cavitons left behind by the Langmuir collapse. Moreover, the peak intensities of the observed short wavelength ion sound waves are comparable to the expected intensities of those ion sound waves radiated by the burnt-out cavitons. However, the speeds of the electron beams derived from the frequency drift of type III radio bursts are too slow to satisfy the needed adiabatic ion approximation. Therefore, some non-linear process such as the induced scattering on thermal ions most probably pumps the beam excited Langmuir waves towards the lower wavenumbers, where the adiabatic ion approximation is justified.

  2. Mercury Stable Isotopes Discriminate Different Populations of European Seabass and Trace Potential Hg Sources around Europe.

    Science.gov (United States)

    Cransveld, Alice; Amouroux, David; Tessier, Emmanuel; Koutrakis, Emmanuil; Ozturk, Ayaka A; Bettoso, Nicola; Mieiro, Cláudia L; Bérail, Sylvain; Barre, Julien P G; Sturaro, Nicolas; Schnitzler, Joseph; Das, Krishna

    2017-11-07

    Our study reports the first data on mercury (Hg) isotope composition in marine European fish, for seven distinct populations of the European seabass, Dicentrarchus labrax. The use of δ 202 Hg and Δ 199 Hg values in SIBER enabled us to estimate Hg isotopic niches, successfully discriminating several populations. Recursive-partitioning analyses demonstrated the relevance of Hg stable isotopes as discriminating tools. Hg isotopic values also provided insight on Hg contamination sources for biota in coastal environment. The overall narrow range of δ 202 Hg around Europe was suggested to be related to a global atmospheric contamination while δ 202 Hg at some sites was linked either to background contamination, or with local contamination sources. Δ 199 Hg was related to Hg levels of fish but we also suggest a relation with ecological conditions. Throughout this study, results from the Black Sea population stood out, displaying a Hg cycling similar to fresh water lakes. Our findings bring out the possibility to use Hg isotopes in order to discriminate distinct populations, to explore the Hg cycle on a large scale (Europe) and to distinguish sites contaminated by global versus local Hg source. The interest of using Hg sable isotopes to investigate the whole European Hg cycle is clearly highlighted.

  3. Sound reduction by metamaterial-based acoustic enclosure

    Directory of Open Access Journals (Sweden)

    Shanshan Yao

    2014-12-01

    Full Text Available In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  4. Sound reduction by metamaterial-based acoustic enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shanshan; Li, Pei; Zhou, Xiaoming; Hu, Gengkai, E-mail: hugeng@bit.edu.cn [Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education and School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2014-12-15

    In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  5. Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain.

    Science.gov (United States)

    Lu, Kai; Vicario, David S

    2014-10-07

    Auditory neurophysiology has demonstrated how basic acoustic features are mapped in the brain, but it is still not clear how multiple sound components are integrated over time and recognized as an object. We investigated the role of statistical learning in encoding the sequential features of complex sounds by recording neuronal responses bilaterally in the auditory forebrain of awake songbirds that were passively exposed to long sound streams. These streams contained sequential regularities, and were similar to streams used in human infants to demonstrate statistical learning for speech sounds. For stimulus patterns with contiguous transitions and with nonadjacent elements, single and multiunit responses reflected neuronal discrimination of the familiar patterns from novel patterns. In addition, discrimination of nonadjacent patterns was stronger in the right hemisphere than in the left, and may reflect an effect of top-down modulation that is lateralized. Responses to recurring patterns showed stimulus-specific adaptation, a sparsening of neural activity that may contribute to encoding invariants in the sound stream and that appears to increase coding efficiency for the familiar stimuli across the population of neurons recorded. As auditory information about the world must be received serially over time, recognition of complex auditory objects may depend on this type of mnemonic process to create and differentiate representations of recently heard sounds.

  6. Pulse shape discrimination of plastic scintillator EJ 299-33 with radioactive sources

    Science.gov (United States)

    Pagano, E. V.; Chatterjee, M. B.; De Filippo, E.; Russotto, P.; Auditore, L.; Cardella, G.; Geraci, E.; Gnoffo, B.; Guazzoni, C.; Lanzalone, G.; De Luca, S.; Maiolino, C.; Martorana, N. S.; Pagano, A.; Papa, M.; Parsani, T.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Trifirò, A.; Trimarchi, M.

    2018-05-01

    The present study has been carried out in order to investigate about the possibility of using EJ 299-33 scintillator in a multi-detector array to detect neutrons along with light charged particles. In a reaction induced by stable and exotic heavy-ions beams, where copious production of neutrons and other light charged particles occurs, discrimination with low identification threshold of these particles are of great importance. In view of this, EJ 299-33 scintillator having dimension of 3 cm × 3 cm × 3 cm backed by a photomultiplier tube was tested and used under vacuum to detect neutrons, gamma-rays and alpha particles emitted by radioactive sources. Anode pulses from the photomultiplier tube were digitized through GET electronics, recorded and stored in a data acquisition system for the purpose of an off-line analysis. The measurements, under vacuum and low background conditions, show good pulse shape discrimination properties characterized by low identification threshold for neutrons, gamma-rays and alpha particles. The Figures of Merit for neutron-gamma and alpha particles-gamma discriminations have been evaluated together with the energy resolution for gamma-ray and alpha particles.

  7. Design of UAV-Embedded Microphone Array System for Sound Source Localization in Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Kotaro Hoshiba

    2017-11-01

    Full Text Available In search and rescue activities, unmanned aerial vehicles (UAV should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators.

  8. Design of UAV-Embedded Microphone Array System for Sound Source Localization in Outdoor Environments.

    Science.gov (United States)

    Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Kumon, Makoto; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G

    2017-11-03

    In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators.

  9. Optimal Prediction of Moving Sound Source Direction in the Owl.

    Directory of Open Access Journals (Sweden)

    Weston Cox

    2015-07-01

    Full Text Available Capturing nature's statistical structure in behavioral responses is at the core of the ability to function adaptively in the environment. Bayesian statistical inference describes how sensory and prior information can be combined optimally to guide behavior. An outstanding open question of how neural coding supports Bayesian inference includes how sensory cues are optimally integrated over time. Here we address what neural response properties allow a neural system to perform Bayesian prediction, i.e., predicting where a source will be in the near future given sensory information and prior assumptions. The work here shows that the population vector decoder will perform Bayesian prediction when the receptive fields of the neurons encode the target dynamics with shifting receptive fields. We test the model using the system that underlies sound localization in barn owls. Neurons in the owl's midbrain show shifting receptive fields for moving sources that are consistent with the predictions of the model. We predict that neural populations can be specialized to represent the statistics of dynamic stimuli to allow for a vector read-out of Bayes-optimal predictions.

  10. Auditory velocity discrimination in the horizontal plane at very high velocities.

    Science.gov (United States)

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A Survey of Sound Source Localization Methods in Wireless Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Maximo Cobos

    2017-01-01

    Full Text Available Wireless acoustic sensor networks (WASNs are formed by a distributed group of acoustic-sensing devices featuring audio playing and recording capabilities. Current mobile computing platforms offer great possibilities for the design of audio-related applications involving acoustic-sensing nodes. In this context, acoustic source localization is one of the application domains that have attracted the most attention of the research community along the last decades. In general terms, the localization of acoustic sources can be achieved by studying energy and temporal and/or directional features from the incoming sound at different microphones and using a suitable model that relates those features with the spatial location of the source (or sources of interest. This paper reviews common approaches for source localization in WASNs that are focused on different types of acoustic features, namely, the energy of the incoming signals, their time of arrival (TOA or time difference of arrival (TDOA, the direction of arrival (DOA, and the steered response power (SRP resulting from combining multiple microphone signals. Additionally, we discuss methods not only aimed at localizing acoustic sources but also designed to locate the nodes themselves in the network. Finally, we discuss current challenges and frontiers in this field.

  12. Sound field separation with cross measurement surfaces.

    Directory of Open Access Journals (Sweden)

    Jin Mao

    Full Text Available With conventional near-field acoustical holography, it is impossible to identify sound pressure when the coherent sound sources are located on the same side of the array. This paper proposes a solution, using cross measurement surfaces to separate the sources based on the equivalent source method. Each equivalent source surface is built in the center of the corresponding original source with a spherical surface. According to the different transfer matrices between equivalent sources and points on holographic surfaces, the weighting of each equivalent source from coherent sources can be obtained. Numerical and experimental studies have been performed to test the method. For the sound pressure including noise after separation in the experiment, the calculation accuracy can be improved by reconstructing the pressure with Tikhonov regularization and the L-curve method. On the whole, a single source can be effectively separated from coherent sources using cross measurement.

  13. Noise detection during heart sound recording using periodicity signatures

    International Nuclear Information System (INIS)

    Kumar, D; Carvalho, P; Paiva, R P; Henriques, J; Antunes, M

    2011-01-01

    Heart sound is a valuable biosignal for diagnosis of a large set of cardiac diseases. Ambient and physiological noise interference is one of the most usual and highly probable incidents during heart sound acquisition. It tends to change the morphological characteristics of heart sound that may carry important information for heart disease diagnosis. In this paper, we propose a new method applicable in real time to detect ambient and internal body noises manifested in heart sound during acquisition. The algorithm is developed on the basis of the periodic nature of heart sounds and physiologically inspired criteria. A small segment of uncontaminated heart sound exhibiting periodicity in time as well as in the time-frequency domain is first detected and applied as a reference signal in discriminating noise from the sound. The proposed technique has been tested with a database of heart sounds collected from 71 subjects with several types of heart disease inducing several noises during recording. The achieved average sensitivity and specificity are 95.88% and 97.56%, respectively

  14. Attention-dependent sound offset-related brain potentials.

    Science.gov (United States)

    Horváth, János

    2016-05-01

    When performing sensory tasks, knowing the potentially occurring goal-relevant and irrelevant stimulus events allows the establishment of selective attention sets, which result in enhanced sensory processing of goal-relevant events. In the auditory modality, such enhancements are reflected in the increased amplitude of the N1 ERP elicited by the onsets of task-relevant sounds. It has been recently suggested that ERPs to task-relevant sound offsets are similarly enhanced in a tone-focused state in comparison to a distracted one. The goal of the present study was to explore the influence of attention on ERPs elicited by sound offsets. ERPs elicited by tones in a duration-discrimination task were compared to ERPs elicited by the same tones in not-tone-focused attentional setting. Tone offsets elicited a consistent, attention-dependent biphasic (positive-negative--P1-N1) ERP waveform for tone durations ranging from 150 to 450 ms. The evidence, however, did not support the notion that the offset-related ERPs reflected an offset-specific attention set: The offset-related ERPs elicited in a duration-discrimination condition (in which offsets were task relevant) did not significantly differ from those elicited in a pitch-discrimination condition (in which the offsets were task irrelevant). Although an N2 reflecting the processing of offsets in task-related terms contributed to the observed waveform, this contribution was separable from the offset-related P1 and N1. The results demonstrate that when tones are attended, offset-related ERPs may substantially overlap endogenous ERP activity in the postoffset interval irrespective of tone duration, and attention differences may cause ERP differences in such postoffset intervals. © 2016 Society for Psychophysiological Research.

  15. Sound propagation in cities

    NARCIS (Netherlands)

    Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.

    2009-01-01

    A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak

  16. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  17. Source Separation of Heartbeat Sounds for Effective E-Auscultation

    Science.gov (United States)

    Geethu, R. S.; Krishnakumar, M.; Pramod, K. V.; George, Sudhish N.

    2016-03-01

    This paper proposes a cost effective solution for improving the effectiveness of e-auscultation. Auscultation is the most difficult skill for a doctor, since it can be acquired only through experience. The heart sound mixtures are captured by placing the four numbers of sensors at appropriate auscultation area in the body. These sound mixtures are separated to its relevant components by a statistical method independent component analysis. The separated heartbeat sounds can be further processed or can be stored for future reference. This idea can be used for making a low cost, easy to use portable instrument which will be beneficial to people living in remote areas and are unable to take the advantage of advanced diagnosis methods.

  18. Assessment of sound quality perception in cochlear implant users during music listening.

    Science.gov (United States)

    Roy, Alexis T; Jiradejvong, Patpong; Carver, Courtney; Limb, Charles J

    2012-04-01

    Although cochlear implant (CI) users frequently report deterioration of sound quality when listening to music, few methods exist to quantify these subjective claims. 1) To design a novel research method for quantifying sound quality perception in CI users during music listening; 2) To validate this method by assessing one attribute of music perception, bass frequency perception, which is hypothesized to be relevant to overall musical sound quality perception. Limitations in bass frequency perception contribute to CI-mediated sound quality deteriorations. The proposed method will quantify this deterioration by measuring CI users' impaired ability to make sound quality discriminations among musical stimuli with variable amounts of bass frequency removal. A method commonly used in the audio industry (multiple stimulus with hidden reference and anchor [MUSHRA]) was adapted for CI users, referred to as CI-MUSHRA. CI users and normal hearing controls were presented with 7 sound quality versions of a musical segment: 5 high pass filter cutoff versions (200-, 400-, 600-, 800-, 1000-Hz) with decreasing amounts of bass information, an unaltered version ("hidden reference"), and a highly altered version (1,000-1,200 Hz band pass filter; "anchor"). Participants provided sound quality ratings between 0 (very poor) and 100 (excellent) for each version; ratings reflected differences in perceived sound quality among stimuli. CI users had greater difficulty making overall sound quality discriminations as a function of bass frequency loss than normal hearing controls, as demonstrated by a significantly weaker correlation between bass frequency content and sound quality ratings. In particular, CI users could not perceive sound quality difference among stimuli missing up to 400 Hz of bass frequency information. Bass frequency impairments contribute to sound quality deteriorations during music listening for CI users. CI-MUSHRA provided a systematic and quantitative assessment of this

  19. Recent paleoseismicity record in Prince William Sound, Alaska, USA

    Science.gov (United States)

    Kuehl, Steven A.; Miller, Eric J.; Marshall, Nicole R.; Dellapenna, Timothy M.

    2017-12-01

    Sedimentological and geochemical investigation of sediment cores collected in the deep (>400 m) central basin of Prince William Sound, along with geochemical fingerprinting of sediment source areas, are used to identify earthquake-generated sediment gravity flows. Prince William Sound receives sediment from two distinct sources: from offshore (primarily Copper River) through Hinchinbrook Inlet, and from sources within the Sound (primarily Columbia Glacier). These sources are found to have diagnostic elemental ratios indicative of provenance; Copper River Basin sediments were significantly higher in Sr/Pb and Cu/Pb, whereas Prince William Sound sediments were significantly higher in K/Ca and Rb/Sr. Within the past century, sediment gravity flows deposited within the deep central channel of Prince William Sound have robust geochemical (provenance) signatures that can be correlated with known moderate to large earthquakes in the region. Given the thick Holocene sequence in the Sound ( 200 m) and correspondingly high sedimentation rates (>1 cm year-1), this relationship suggests that sediments within the central basin of Prince William Sound may contain an extraordinary high-resolution record of paleoseismicity in the region.

  20. Categorization of common sounds by cochlear implanted and normal hearing adults.

    Science.gov (United States)

    Collett, E; Marx, M; Gaillard, P; Roby, B; Fraysse, B; Deguine, O; Barone, P

    2016-05-01

    Auditory categorization involves grouping of acoustic events along one or more shared perceptual dimensions which can relate to both semantic and physical attributes. This process involves both high level cognitive processes (categorization) and low-level perceptual encoding of the acoustic signal, both of which are affected by the use of a cochlear implant (CI) device. The goal of this study was twofold: I) compare the categorization strategies of CI users and normal hearing listeners (NHL) II) investigate if any characteristics of the raw acoustic signal could explain the results. 16 experienced CI users and 20 NHL were tested using a Free-Sorting Task of 16 common sounds divided into 3 predefined categories of environmental, musical and vocal sounds. Multiple Correspondence Analysis (MCA) and Hierarchical Clustering based on Principal Components (HCPC) show that CI users followed a similar categorization strategy to that of NHL and were able to discriminate between the three different types of sounds. However results for CI users were more varied and showed less inter-participant agreement. Acoustic analysis also highlighted the average pitch salience and average autocorrelation peak as being important for the perception and categorization of the sounds. The results therefore show that on a broad level of categorization CI users may not have as many difficulties as previously thought in discriminating certain kinds of sound; however the perception of individual sounds remains challenging. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Sound lateralization test in adolescent blind individuals.

    Science.gov (United States)

    Yabe, Takao; Kaga, Kimitaka

    2005-06-21

    Blind individuals require to compensate for the lack of visual information by other sensory inputs. In particular, auditory inputs are crucial to such individuals. To investigate whether blind individuals localize sound in space better than sighted individuals, we tested the auditory ability of adolescent blind individuals using a sound lateralization method. The interaural time difference discrimination thresholds of blind individuals were statistically significantly shorter than those of blind individuals with residual vision and controls. These findings suggest that blind individuals have better auditory spatial ability than individuals with visual cues; therefore, some perceptual compensation occurred in the former.

  2. Synchronous Sounds Enhance Visual Sensitivity without Reducing Target Uncertainty

    Directory of Open Access Journals (Sweden)

    Yi-Chuan Chen

    2011-10-01

    Full Text Available We examined the crossmodal effect of the presentation of a simultaneous sound on visual detection and discrimination sensitivity using the equivalent noise paradigm (Dosher & Lu, 1998. In each trial, a tilted Gabor patch was presented in either the first or second of two intervals consisting of dynamic 2D white noise with one of seven possible contrast levels. The results revealed that the sensitivity of participants' visual detection and discrimination performance were both enhanced by the presentation of a simultaneous sound, though only close to the noise level at which participants' target contrast thresholds started to increase with the increasing noise contrast. A further analysis of the psychometric function at this noise level revealed that the increase in sensitivity could not be explained by the reduction of participants' uncertainty regarding the onset time of the visual target. We suggest that this crossmodal facilitatory effect may be accounted for by perceptual enhancement elicited by a simultaneously-presented sound, and that the crossmodal facilitation was easier to observe when the visual system encountered a level of noise that happened to be close to the level of internal noise embedded within the system.

  3. Swallowing sound detection using hidden markov modeling of recurrence plot features

    International Nuclear Information System (INIS)

    Aboofazeli, Mohammad; Moussavi, Zahra

    2009-01-01

    Automated detection of swallowing sounds in swallowing and breath sound recordings is of importance for monitoring purposes in which the recording durations are long. This paper presents a novel method for swallowing sound detection using hidden Markov modeling of recurrence plot features. Tracheal sound recordings of 15 healthy and nine dysphagic subjects were studied. The multidimensional state space trajectory of each signal was reconstructed using the Taken method of delays. The sequences of three recurrence plot features of the reconstructed trajectories (which have shown discriminating capability between swallowing and breath sounds) were modeled by three hidden Markov models. The Viterbi algorithm was used for swallowing sound detection. The results were validated manually by inspection of the simultaneously recorded airflow signal and spectrogram of the sounds, and also by auditory means. The experimental results suggested that the performance of the proposed method using hidden Markov modeling of recurrence plot features was superior to the previous swallowing sound detection methods.

  4. Swallowing sound detection using hidden markov modeling of recurrence plot features

    Energy Technology Data Exchange (ETDEWEB)

    Aboofazeli, Mohammad [Faculty of Engineering, Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)], E-mail: umaboofa@cc.umanitoba.ca; Moussavi, Zahra [Faculty of Engineering, Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)], E-mail: mousavi@ee.umanitoba.ca

    2009-01-30

    Automated detection of swallowing sounds in swallowing and breath sound recordings is of importance for monitoring purposes in which the recording durations are long. This paper presents a novel method for swallowing sound detection using hidden Markov modeling of recurrence plot features. Tracheal sound recordings of 15 healthy and nine dysphagic subjects were studied. The multidimensional state space trajectory of each signal was reconstructed using the Taken method of delays. The sequences of three recurrence plot features of the reconstructed trajectories (which have shown discriminating capability between swallowing and breath sounds) were modeled by three hidden Markov models. The Viterbi algorithm was used for swallowing sound detection. The results were validated manually by inspection of the simultaneously recorded airflow signal and spectrogram of the sounds, and also by auditory means. The experimental results suggested that the performance of the proposed method using hidden Markov modeling of recurrence plot features was superior to the previous swallowing sound detection methods.

  5. The Effects of Static and Dynamic Visual Representations as Aids for Primary School Children in Tasks of Auditory Discrimination of Sound Patterns. An Intervention-based Study.

    Directory of Open Access Journals (Sweden)

    Jesus Tejada

    2018-02-01

    Full Text Available It has been proposed that non-conventional presentations of visual information could be very useful as a scaffolding strategy in the learning of Western music notation. As a result, this study has attempted to determine if there is any effect of static and dynamic presentation modes of visual information in the recognition of sound patterns. An intervention-based quasi-experimental design was adopted with two groups of fifth-grade students in a Spanish city. Students did tasks involving discrimination, auditory recognition and symbolic association of the sound patterns with non-musical representations, either static images (S group, or dynamic images (D group. The results showed neither statistically significant differences in the scores of D and S, nor influence of the covariates on the dependent variable, although statistically significant intra-group differences were found for both groups. This suggests that both types of graphic formats could be effective as digital learning mediators in the learning of Western musical notation.

  6. Design of UAV-Embedded Microphone Array System for Sound Source Localization in Outdoor Environments †

    Science.gov (United States)

    Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G.

    2017-01-01

    In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators. PMID:29099790

  7. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used

  8. Numerical simulation of aerodynamic sound radiated from a two-dimensional airfoil

    OpenAIRE

    飯田, 明由; 大田黒, 俊夫; 加藤, 千幸; Akiyoshi, Iida; Toshio, Otaguro; Chisachi, Kato; 日立機研; 日立機研; 東大生研; Mechanical Engineering Research Laboratory, Hitachi Ltd.; Mechanical Engineering Research Laboratory, Hitachi Ltd.; University of Tokyo

    2000-01-01

    An aerodynamic sound radiated from a two-dimensional airfoil has been computed with the Lighthill-Curle's theory. The predicted sound pressure level is agreement with the measured one. Distribution of vortex sound sources is also estimated based on the correlation between the unsteady vorticity fluctuations and the aerodynamic sound. The distribution of vortex sound source reveals that separated shear layers generate aerodynamic sound. This result is help to understand noise reduction method....

  9. Experimentel Evidence of Discrimination in the Labour Market

    DEFF Research Database (Denmark)

    Dahl, Malte Rokkjær; Krog, Niels

    , there is limited evidence on the way gender and ethnicity interact across different occupations. By randomly assigning gender and ethnicity, this study suggests that ethnic discrimination is strongly moderated by gender: minority males are consistently subject to a much larger degree of discrimination than......This paper presents evidence of ethnic discrimination in the recruitment process from a field experiment conducted in the Danish labour market. In a correspondence experiment, fictitious job applications were randomly assigned either a Danish or Middle Eastern-sounding name and sent to real job...... openings. In addition to providing evidence on the extent of ethnic discrimination in the Danish labour market, the study offers two novel contributions to the literature more generally. First, because a majority of European correspondence experiments have relied solely on applications with male aliases...

  10. Dopamine modulates memory consolidation of discrimination learning in the auditory cortex.

    Science.gov (United States)

    Schicknick, Horst; Reichenbach, Nicole; Smalla, Karl-Heinz; Scheich, Henning; Gundelfinger, Eckart D; Tischmeyer, Wolfgang

    2012-03-01

    In Mongolian gerbils, the auditory cortex is critical for discriminating rising vs. falling frequency-modulated tones. Based on our previous studies, we hypothesized that dopaminergic inputs to the auditory cortex during and shortly after acquisition of the discrimination strategy control long-term memory formation. To test this hypothesis, we studied frequency-modulated tone discrimination learning of gerbils in a shuttle box GO/NO-GO procedure following differential treatments. (i) Pre-exposure of gerbils to the frequency-modulated tones at 1 day before the first discrimination training session severely impaired the accuracy of the discrimination acquired in that session during the initial trials of a second training session, performed 1 day later. (ii) Local injection of the D1/D5 dopamine receptor antagonist SCH-23390 into the auditory cortex after task acquisition caused a discrimination deficit of similar extent and time course as with pre-exposure. This effect was dependent on the dose and time point of injection. (iii) Injection of the D1/D5 dopamine receptor agonist SKF-38393 into the auditory cortex after retraining caused a further discrimination improvement at the beginning of subsequent sessions. All three treatments, which supposedly interfered with dopamine signalling during conditioning and/or retraining, had a substantial impact on the dynamics of the discrimination performance particularly at the beginning of subsequent training sessions. These findings suggest that auditory-cortical dopamine activity after acquisition of a discrimination of complex sounds and after retrieval of weak frequency-modulated tone discrimination memory further improves memory consolidation, i.e. the correct association of two sounds with their respective GO/NO-GO meaning, in support of future memory recall. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  11. Keeping Timbre in Mind: Working Memory for Complex Sounds that Can't Be Verbalized

    Science.gov (United States)

    Golubock, Jason L.; Janata, Petr

    2013-01-01

    Properties of auditory working memory for sounds that lack strong semantic associations and are not readily verbalized or sung are poorly understood. We investigated auditory working memory capacity for lists containing 2-6 easily discriminable abstract sounds synthesized within a constrained timbral space, at delays of 1-6 s (Experiment 1), and…

  12. On Distributions of Emission Sources and Speed-of-Sound in Proton-Proton (Proton-Antiproton Collisions

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2015-01-01

    Full Text Available The revised (three-source Landau hydrodynamic model is used in this paper to study the (pseudorapidity distributions of charged particles produced in proton-proton and proton-antiproton collisions at high energies. The central source is assumed to contribute with a Gaussian function which covers the rapidity distribution region as wide as possible. The target and projectile sources are assumed to emit isotropically particles in their respective rest frames. The model calculations obtained with a Monte Carlo method are fitted to the experimental data over an energy range from 0.2 to 13 TeV. The values of the squared speed-of-sound parameter in different collisions are then extracted from the width of the rapidity distributions.

  13. Human Sound Externalization in Reverberant Environments

    DEFF Research Database (Denmark)

    Catic, Jasmina

    In everyday environments, listeners perceive sound sources as externalized. In listening conditions where the spatial cues that are relevant for externalization are not represented correctly, such as when listening through headphones or hearing aids, a degraded perception of externalization may...... occur. In this thesis, the spatial cues that arise from a combined effect of filtering due to the head, torso, and pinna and the acoustic environment were analysed and the impact of such cues for the perception of externalization in different frequency regions was investigated. Distant sound sources...... were simulated via headphones using individualized binaural room impulse responses (BRIRs). An investigation of the influence of spectral content of a sound source on externalization showed that effective externalization cues are present across the entire frequency range. The fluctuation of interaural...

  14. An investigation of the usability of sound recognition for source separation of packaging wastes in reverse vending machines.

    Science.gov (United States)

    Korucu, M Kemal; Kaplan, Özgür; Büyük, Osman; Güllü, M Kemal

    2016-10-01

    In this study, we investigate the usability of sound recognition for source separation of packaging wastes in reverse vending machines (RVMs). For this purpose, an experimental setup equipped with a sound recording mechanism was prepared. Packaging waste sounds generated by three physical impacts such as free falling, pneumatic hitting and hydraulic crushing were separately recorded using two different microphones. To classify the waste types and sizes based on sound features of the wastes, a support vector machine (SVM) and a hidden Markov model (HMM) based sound classification systems were developed. In the basic experimental setup in which only free falling impact type was considered, SVM and HMM systems provided 100% classification accuracy for both microphones. In the expanded experimental setup which includes all three impact types, material type classification accuracies were 96.5% for dynamic microphone and 97.7% for condenser microphone. When both the material type and the size of the wastes were classified, the accuracy was 88.6% for the microphones. The modeling studies indicated that hydraulic crushing impact type recordings were very noisy for an effective sound recognition application. In the detailed analysis of the recognition errors, it was observed that most of the errors occurred in the hitting impact type. According to the experimental results, it can be said that the proposed novel approach for the separation of packaging wastes could provide a high classification performance for RVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Differential presence of anthropogenic compounds dissolved in the marine waters of Puget Sound, WA and Barkley Sound, BC.

    Science.gov (United States)

    Keil, Richard; Salemme, Keri; Forrest, Brittany; Neibauer, Jaqui; Logsdon, Miles

    2011-11-01

    Organic compounds were evaluated in March 2010 at 22 stations in Barkley Sound, Vancouver Island Canada and at 66 locations in Puget Sound. Of 37 compounds, 15 were xenobiotics, 8 were determined to have an anthropogenic imprint over natural sources, and 13 were presumed to be of natural or mixed origin. The three most frequently detected compounds were salicyclic acid, vanillin and thymol. The three most abundant compounds were diethylhexyl phthalate (DEHP), ethyl vanillin and benzaldehyde (∼600 n g L(-1) on average). Concentrations of xenobiotics were 10-100 times higher in Puget Sound relative to Barkley Sound. Three compound couplets are used to illustrate the influence of human activity on marine waters; vanillin and ethyl vanillin, salicylic acid and acetylsalicylic acid, and cinnamaldehyde and cinnamic acid. Ratios indicate that anthropogenic activities are the predominant source of these chemicals in Puget Sound. Published by Elsevier Ltd.

  16. Spanish is better than English for discriminating Portuguese vowels: acoustic similarity versus vowel inventory size

    Science.gov (United States)

    Elvin, Jaydene; Escudero, Paola; Vasiliev, Polina

    2014-01-01

    Second language (L2) learners often struggle to distinguish sound contrasts that are not present in their native language (L1). Models of non-native and L2 sound perception claim that perceptual similarity between L1 and L2 sound contrasts correctly predicts discrimination by naïve listeners and L2 learners. The present study tested the explanatory power of vowel inventory size versus acoustic properties as predictors of discrimination accuracy when naïve Australian English (AusE) and Iberian Spanish (IS) listeners are presented with six Brazilian Portuguese (BP) vowel contrasts. Our results show that IS listeners outperformed AusE listeners, confirming that cross-linguistic acoustic properties, rather than cross-linguistic vowel inventory sizes, successfully predict non-native discrimination difficulty. Furthermore, acoustic distance between BP vowels and closest L1 vowels successfully predicted differential levels of difficulty among the six BP contrasts, with BP /e-i/ and /o-u/ being the most difficult for both listener groups. We discuss the importance of our findings for the adequacy of models of L2 speech perception. PMID:25400599

  17. Discrimination and preference of speech and non-speech sounds in autism patients%孤独症患者言语及非言语声音辨识和偏好特征

    Institute of Scientific and Technical Information of China (English)

    王崇颖; 江鸣山; 徐旸; 马斐然; 石锋

    2011-01-01

    Objective:To explore the discrimination and preference of speech and non-speech sounds in autism patients. Methods: Ten people (5 children vs. 5 adults) diagnosed with autism according to the criteria of Diagnostic and Statistical Manual of Mental Disorders. Fourth Version ( DSM-Ⅳ) were selected from database of Nankai University Center for Behavioural Science. Together with 10 healthy controls with matched age, people with autism were tested by three experiments on speech sounds, pure tone and intonation which were recorded and modified by Praat, a voice analysis software. Their discrimination and preference were collected orally. The exact probability values were calculated. Results: The results showed that there were no significant differences on the discrimination of speech sounds, pure tone and intonation between autism patients and controls ( P > 0. 05) while controls preferred speech and non-speech sounds with higher pitch than autism ( e. g. , - 100Hz/ +50Hz. 2 vs. 7. P < 0. 05:50Hz/250Hz. 4 vs. 10. P < 0. 05) and autism preferred non-speech sounds with lower pitch ( 100Hz/250Hz. 6 vs. 3.P < 0. 05). No significant difference on the preference of intonation between autism and controls ( P > 0. 05) was found. Conclusion:lt shows that people with autism have impaired auditory processing on speech and non-speech sounds.%目的:探究孤独症患者对言语及非言语声音的辨识和偏好特征.方法:从南开大学医学院行为医学中心患者数据库中选取根据美国精神障碍诊断与统计手册第4版(DSM-Ⅳ)诊断标准确诊的孤独症患者10名(儿童和成年人各5例),选取与年龄匹配的正常对照10名.所有被试均接受由专业的语音软件Praat录制和生成的语音音高、纯音音高和韵律的实验测试,口头报告其对言语及非言语声音的辨识和偏好结果.结果:孤独症患者在语音音高、纯音音高和韵律的辨识上和正常对照组差异无统计学意义(均P>0.05).

  18. The effect of brain lesions on sound localization in complex acoustic environments.

    Science.gov (United States)

    Zündorf, Ida C; Karnath, Hans-Otto; Lewald, Jörg

    2014-05-01

    Localizing sound sources of interest in cluttered acoustic environments--as in the 'cocktail-party' situation--is one of the most demanding challenges to the human auditory system in everyday life. In this study, stroke patients' ability to localize acoustic targets in a single-source and in a multi-source setup in the free sound field were directly compared. Subsequent voxel-based lesion-behaviour mapping analyses were computed to uncover the brain areas associated with a deficit in localization in the presence of multiple distracter sound sources rather than localization of individually presented sound sources. Analyses revealed a fundamental role of the right planum temporale in this task. The results from the left hemisphere were less straightforward, but suggested an involvement of inferior frontal and pre- and postcentral areas. These areas appear to be particularly involved in the spectrotemporal analyses crucial for effective segregation of multiple sound streams from various locations, beyond the currently known network for localization of isolated sound sources in otherwise silent surroundings.

  19. Neutron-gamma discrimination in mixed field by pulse shape discriminator

    International Nuclear Information System (INIS)

    Sharghi Ido, A.; Shahriari, M.; Etaati, G. R.

    2009-01-01

    In this study, a pulse shape discriminator, incorporating zero-crossing method has been developed. The separate measurements with 241 Am-Be and 252 Cf sources undertaken by BC501A liquid have shown that the purposed and the common-used pulse shape discriminator's are in good agreement. The improved characteristics of the presented pulse shape discriminator are FOM=1.36 at a threshold of 60 ke Vee and 1.5μsec dead time which allows the count rates up to 50 k Hz

  20. Efficient Coding and Statistically Optimal Weighting of Covariance among Acoustic Attributes in Novel Sounds

    Science.gov (United States)

    Stilp, Christian E.; Kluender, Keith R.

    2012-01-01

    To the extent that sensorineural systems are efficient, redundancy should be extracted to optimize transmission of information, but perceptual evidence for this has been limited. Stilp and colleagues recently reported efficient coding of robust correlation (r = .97) among complex acoustic attributes (attack/decay, spectral shape) in novel sounds. Discrimination of sounds orthogonal to the correlation was initially inferior but later comparable to that of sounds obeying the correlation. These effects were attenuated for less-correlated stimuli (r = .54) for reasons that are unclear. Here, statistical properties of correlation among acoustic attributes essential for perceptual organization are investigated. Overall, simple strength of the principal correlation is inadequate to predict listener performance. Initial superiority of discrimination for statistically consistent sound pairs was relatively insensitive to decreased physical acoustic/psychoacoustic range of evidence supporting the correlation, and to more frequent presentations of the same orthogonal test pairs. However, increased range supporting an orthogonal dimension has substantial effects upon perceptual organization. Connectionist simulations and Eigenvalues from closed-form calculations of principal components analysis (PCA) reveal that perceptual organization is near-optimally weighted to shared versus unshared covariance in experienced sound distributions. Implications of reduced perceptual dimensionality for speech perception and plausible neural substrates are discussed. PMID:22292057

  1. Contralateral routing of signals disrupts monaural level and spectral cues to sound localisation on the horizontal plane.

    Science.gov (United States)

    Pedley, Adam J; Kitterick, Pádraig T

    2017-09-01

    Contra-lateral routing of signals (CROS) devices re-route sound between the deaf and hearing ears of unilaterally-deaf individuals. This rerouting would be expected to disrupt access to monaural level cues that can support monaural localisation in the horizontal plane. However, such a detrimental effect has not been confirmed by clinical studies of CROS use. The present study aimed to exercise strict experimental control over the availability of monaural cues to localisation in the horizontal plane and the fitting of the CROS device to assess whether signal routing can impair the ability to locate sources of sound and, if so, whether CROS selectively disrupts monaural level or spectral cues to horizontal location, or both. Unilateral deafness and CROS device use were simulated in twelve normal hearing participants. Monaural recordings of broadband white noise presented from three spatial locations (-60°, 0°, and +60°) were made in the ear canal of a model listener using a probe microphone with and without a CROS device. The recordings were presented to participants via an insert earphone placed in their right ear. The recordings were processed to disrupt either monaural level or spectral cues to horizontal sound location by roving presentation level or the energy across adjacent frequency bands, respectively. Localisation ability was assessed using a three-alternative forced-choice spatial discrimination task. Participants localised above chance levels in all conditions. Spatial discrimination accuracy was poorer when participants only had access to monaural spectral cues compared to when monaural level cues were available. CROS use impaired localisation significantly regardless of whether level or spectral cues were available. For both cues, signal re-routing had a detrimental effect on the ability to localise sounds originating from the side of the deaf ear (-60°). CROS use also impaired the ability to use level cues to localise sounds originating from

  2. A hybrid generative-discriminative approach to speaker diarization

    NARCIS (Netherlands)

    Noulas, A.K.; van Kasteren, T.; Kröse, B.J.A.

    2008-01-01

    In this paper we present a sound probabilistic approach to speaker diarization. We use a hybrid framework where a distribution over the number of speakers at each point of a multimodal stream is estimated with a discriminative model. The output of this process is used as input in a generative model

  3. Waveform analysis of sound

    CERN Document Server

    Tohyama, Mikio

    2015-01-01

    What is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduat...

  4. Lexical and perceptual grounding of a sound ontology

    NARCIS (Netherlands)

    Lobanova, Anna; Spenader, Jennifer; Valkenier, Bea; Matousek,; Mautner, P

    2007-01-01

    Sound ontologies need to incorporate source unidentifiable sounds in an adequate and consistent manner. Computational lexical resources like WordNet have either inserted these descriptions into conceptual categories, or make no attempt to organize the terms for these sounds. This work attempts to

  5. Physics of thermo-acoustic sound generation

    Science.gov (United States)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  6. Concentrated pitch discrimination modulates auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2010-03-31

    This study examined a notion that auditory discrimination is a requisite for attention-related modulation of the auditory brainstem response (ABR) during contralateral noise exposure. Given that the right ear was exposed continuously with white noise at an intensity of 60-80 dB sound pressure level, tone pips at 80 dB sound pressure level were delivered to the left ear through either single-stimulus or oddball procedures. Participants conducted reading (ignoring task) and counting target tones (attentive task) during stimulation. The oddball but not the single-stimulus procedures elicited task-related modulations in both early (ABR) and late (processing negativity) event-related potentials simultaneously. The elicitation of the attention-related ABR modulation during contralateral noise exposure is thus considered to require auditory discrimination and have the corticofugal nature evidently.

  7. Visual Speech Fills in Both Discrimination and Identification of Non-Intact Auditory Speech in Children

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F.; McAlpine, Rachel P.; Abdi, Herve

    2018-01-01

    To communicate, children must discriminate and identify speech sounds. Because visual speech plays an important role in this process, we explored how visual speech influences phoneme discrimination and identification by children. Critical items had intact visual speech (e.g. baez) coupled to non-intact (excised onsets) auditory speech (signified…

  8. Beauty and the Sources of Discrimination

    Science.gov (United States)

    Belot, Michele; Bhaskar, V.; van de Ven, Jeroen

    2012-01-01

    We analyze discrimination against less attractive people on a TV game show with high stakes. The game has a rich structure that allows us to disentangle the relationship between attractiveness and the determinants of a player's earnings. Unattractive players perform no worse than attractive ones, and are equally cooperative in the prisoner's…

  9. Ethnical discrimination in Europe: Field evidence from the finance industry.

    Science.gov (United States)

    Stefan, Matthias; Holzmeister, Felix; Müllauer, Alexander; Kirchler, Michael

    2018-01-01

    The integration of ethnical minorities has been a hotly discussed topic in the political, societal, and economic debate. Persistent discrimination of ethnical minorities can hinder successful integration. Given that unequal access to investment and financing opportunities can cause social and economic disparities due to inferior economic prospects, we conducted a field experiment on ethnical discrimination in the finance sector with 1,218 banks in seven European countries. We contacted banks via e-mail, either with domestic or Arabic sounding names, asking for contact details only. We find pronounced discrimination in terms of a substantially lower response rate to e-mails from Arabic senders. Remarkably, the observed discrimination effect is robust for loan- and investment-related requests, across rural and urban locations of banks, and across countries.

  10. Cochlear neuropathy and the coding of supra-threshold sound.

    Science.gov (United States)

    Bharadwaj, Hari M; Verhulst, Sarah; Shaheen, Luke; Liberman, M Charles; Shinn-Cunningham, Barbara G

    2014-01-01

    Many listeners with hearing thresholds within the clinically normal range nonetheless complain of difficulty hearing in everyday settings and understanding speech in noise. Converging evidence from human and animal studies points to one potential source of such difficulties: differences in the fidelity with which supra-threshold sound is encoded in the early portions of the auditory pathway. Measures of auditory subcortical steady-state responses (SSSRs) in humans and animals support the idea that the temporal precision of the early auditory representation can be poor even when hearing thresholds are normal. In humans with normal hearing thresholds (NHTs), paradigms that require listeners to make use of the detailed spectro-temporal structure of supra-threshold sound, such as selective attention and discrimination of frequency modulation (FM), reveal individual differences that correlate with subcortical temporal coding precision. Animal studies show that noise exposure and aging can cause a loss of a large percentage of auditory nerve fibers (ANFs) without any significant change in measured audiograms. Here, we argue that cochlear neuropathy may reduce encoding precision of supra-threshold sound, and that this manifests both behaviorally and in SSSRs in humans. Furthermore, recent studies suggest that noise-induced neuropathy may be selective for higher-threshold, lower-spontaneous-rate nerve fibers. Based on our hypothesis, we suggest some approaches that may yield particularly sensitive, objective measures of supra-threshold coding deficits that arise due to neuropathy. Finally, we comment on the potential clinical significance of these ideas and identify areas for future investigation.

  11. Cochlear Neuropathy and the Coding of Supra-threshold Sound

    Directory of Open Access Journals (Sweden)

    Hari M Bharadwaj

    2014-02-01

    Full Text Available Many listeners with hearing thresholds within the clinically normal range nonetheless complain of difficulty hearing in everyday settings and understanding speech in noise. Converging evidence from human and animal studies points to one potential source of such difficulties: differences in the fidelity with which supra-threshold sound is encoded in the early portions of the auditory pathway. Measures of auditory subcortical steady-state responses in humans and animals support the idea that the temporal precision of the early auditory representation can be poor even when hearing thresholds are normal. In humans with normal hearing thresholds, behavioral ability in paradigms that require listeners to make use of the detailed spectro-temporal structure of supra-threshold sound, such as selective attention and discrimination of frequency modulation, correlate with subcortical temporal coding precision. Animal studies show that noise exposure and aging can cause a loss of a large percentage of auditory nerve fibers without any significant change in measured audiograms. Here, we argue that cochlear neuropathy may reduce encoding precision of supra-threshold sound, and that this manifests both behaviorally and in subcortical steady-state responses in humans. Furthermore, recent studies suggest that noise-induced neuropathy may be selective for higher-threshold, lower-spontaneous-rate nerve fibers. Based on our hypothesis, we suggest some approaches that may yield particularly sensitive, objective measures of supra-threshold coding deficits that arise due to neuropathy. Finally, we comment on the potential clinical significance of these ideas and identify areas for future investigation.

  12. Auditive Discrimination of Equine Gaits by Parade Horses

    Directory of Open Access Journals (Sweden)

    Duilio Cruz-Becerra

    2009-06-01

    Full Text Available The purpose of this study was to examine parade horses’ auditory discriminationamong four types of equine gaits: paso-fino (“fine step”, trote-reunido(“two-beat trot”, trocha (“trot”, and galope-reunido (“gallop”. Two experimentallynaïve horses were trained to discriminate the sound of their owngait (paso-fino or fine step, through an experimental module that dispensedfood if the subject pressed a lever after hearing a sound reproduction of aparticular gait. Three experimental phases were developed, defined by theperiod of exposure to the sounds (20, 10, and 5 seconds, respectively. Thechoice between pairs of sounds including the horse’s own gait (fine stepand two-beat trot; fine step and gallop; and fine step and trot was reinforceddifferentially. The results indicate that the fine step horses are able todiscriminate their own gait from others, and that receptivity to their ownsounds could be included in their training regime.

  13. Techniques and instrumentation for the measurement of transient sound energy flux

    Science.gov (United States)

    Watkinson, P. S.; Fahy, F. J.

    1983-12-01

    The evaluation of sound intensity distributions, and sound powers, of essentially continuous sources such as automotive engines, electric motors, production line machinery, furnaces, earth moving machinery and various types of process plants were studied. Although such systems are important sources of community disturbance and, to a lesser extent, of industrial health hazard, the most serious sources of hearing hazard in industry are machines operating on an impact principle, such as drop forges, hammers and punches. Controlled experiments to identify major noise source regions and mechanisms are difficult because it is normally impossible to install them in quiet, anechoic environments. The potential for sound intensity measurement to provide a means of overcoming these difficulties has given promising results, indicating the possibility of separation of directly radiated and reverberant sound fields. However, because of the complexity of transient sound fields, a fundamental investigation is necessary to establish the practicability of intensity field decomposition, which is basic to source characterization techniques.

  14. Comparison of RASS temperature profiles with other tropospheric soundings

    International Nuclear Information System (INIS)

    Bonino, G.; Lombardini, P.P.; Trivero, P.

    1980-01-01

    The vertical temperature profile of the lower troposphere can be measured with a radio-acoustic sounding system (RASS). A comparison of the thermal profiles measured with the RASS and with traditional methods shows a) RASS ability to produce vertical thermal profiles at an altitude range of 170 to 1000 m with temperature accuracy and height discrimination comparable with conventional soundings, b) advantages of remote sensing as offered by new sounder, c) applicability of RASS both in assessing evolution of thermodynamic conditions in PBL and in sensing conditions conducive to high concentrations of air pollutants at the ground level. (author)

  15. Sound response of superheated drop bubble detectors to neutrons

    International Nuclear Information System (INIS)

    Gao Size; Chen Zhe; Liu Chao; Ni Bangfa; Zhang Guiying; Zhao Changfa; Xiao Caijin; Liu Cunxiong; Nie Peng; Guan Yongjing

    2012-01-01

    The sound response of the bubble detectors to neutrons by using 252 Cf neutron source was described. Sound signals were filtered by sound card and PC. The short-time signal energy. FFT spectrum, power spectrum, and decay time constant were got to determine the authenticity of sound signal for bubbles. (authors)

  16. Trophic discrimination of stable isotopes and potential food source partitioning by leaf-eating crabs in mangrove environments

    DEFF Research Database (Denmark)

    Kristensen, Erik; Lee, Shing Yip; Mangion, Perrine

    2017-01-01

    Diet composition of leaf-eating mangrove crabs is a puzzle among mangrove ecologists. Nutrient-poor leaf litter can in most cases not support animal growth. Food partitioning (mangrove leaves, animal tissue, and microphytobenthos [MPB]) of sesarmid and ucidid mangrove crabs from eight locations...... here for crabs foraging on leaf litter to identify discrimination values that provide a balanced diet with sufficient nutrients (i.e., N) when combined with other food sources. The data from all mangrove locations suggest that sesarmid and ucidid crabs ingest and assimilate mixtures of available food...... is probably caused by metabolic disparities between these two crab families. Deviations in 15N discrimination have in most cases only minor influence on the model-based 13C discrimination thresholds. The present findings lead us to suggest a modified Optimal Foraging Theory for leaf-eating mangrove crabs....

  17. Rainforests as concert halls for birds: Are reverberations improving sound transmission of long song elements?

    DEFF Research Database (Denmark)

    Nemeth, Erwin; Dabelsteen, Torben; Pedersen, Simon Boel

    2006-01-01

    that longer sounds are less attenuated. The results indicate that higher sound pressure level is caused by superimposing reflections. It is suggested that this beneficial effect of reverberations explains interspecific birdsong differences in element length. Transmission paths with stronger reverberations......In forests reverberations have probably detrimental and beneficial effects on avian communication. They constrain signal discrimination by masking fast repetitive sounds and they improve signal detection by elongating sounds. This ambivalence of reflections for animal signals in forests is similar...... to the influence of reverberations on speech or music in indoor sound transmission. Since comparisons of sound fields of forests and concert halls have demonstrated that reflections can contribute in both environments a considerable part to the energy of a received sound, it is here assumed that reverberations...

  18. Classification of lung sounds using higher-order statistics: A divide-and-conquer approach.

    Science.gov (United States)

    Naves, Raphael; Barbosa, Bruno H G; Ferreira, Danton D

    2016-06-01

    Lung sound auscultation is one of the most commonly used methods to evaluate respiratory diseases. However, the effectiveness of this method depends on the physician's training. If the physician does not have the proper training, he/she will be unable to distinguish between normal and abnormal sounds generated by the human body. Thus, the aim of this study was to implement a pattern recognition system to classify lung sounds. We used a dataset composed of five types of lung sounds: normal, coarse crackle, fine crackle, monophonic and polyphonic wheezes. We used higher-order statistics (HOS) to extract features (second-, third- and fourth-order cumulants), Genetic Algorithms (GA) and Fisher's Discriminant Ratio (FDR) to reduce dimensionality, and k-Nearest Neighbors and Naive Bayes classifiers to recognize the lung sound events in a tree-based system. We used the cross-validation procedure to analyze the classifiers performance and the Tukey's Honestly Significant Difference criterion to compare the results. Our results showed that the Genetic Algorithms outperformed the Fisher's Discriminant Ratio for feature selection. Moreover, each lung class had a different signature pattern according to their cumulants showing that HOS is a promising feature extraction tool for lung sounds. Besides, the proposed divide-and-conquer approach can accurately classify different types of lung sounds. The classification accuracy obtained by the best tree-based classifier was 98.1% for classification accuracy on training, and 94.6% for validation data. The proposed approach achieved good results even using only one feature extraction tool (higher-order statistics). Additionally, the implementation of the proposed classifier in an embedded system is feasible. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Classification of Real and Imagined Sounds in Early Visual Cortex

    Directory of Open Access Journals (Sweden)

    Petra Vetter

    2011-10-01

    Full Text Available Early visual cortex has been thought to be mainly involved in the detection of low-level visual features. Here we show that complex natural sounds can be decoded from early visual cortex activity, in the absence of visual stimulation and both when sounds are actually displayed and when they are merely imagined. Blindfolded subjects listened to three complex natural sounds (bird singing, people talking, traffic noise; Exp. 1 or received word cues (“forest”, “people”, “traffic”; Exp 2 to imagine the associated scene. fMRI BOLD activation patterns from retinotopically defined early visual areas were fed into a multivariate pattern classification algorithm (a linear support vector machine. Actual sounds were discriminated above chance in V2 and V3 and imagined sounds were decoded in V1. Also cross-classification, ie, training the classifier to real sounds and testing it to imagined sounds and vice versa, was successful. Two further experiments showed that an orthogonal working memory task does not interfere with sound classification in early visual cortex (Exp. 3, however, an orthogonal visuo-spatial imagery task does (Exp. 4. These results demonstrate that early visual cortex activity contains content-specific information from hearing and from imagery, challenging the view of a strict modality-specific function of early visual cortex.

  20. Visualizing Sound Directivity via Smartphone Sensors

    OpenAIRE

    Hawley, Scott H.; McClain Jr, Robert E.

    2017-01-01

    We present a fast, simple method for automated data acquisition and visualization of sound directivity, made convenient and accessible via a smartphone app, "Polar Pattern Plotter." The app synchronizes measurements of sound volume with the phone's angular orientation obtained from either compass, gyroscope or accelerometer sensors and produces a graph and exportable data file. It is generalizable to various sound sources and receivers via the use of an input-jack-adaptor to supplant the smar...

  1. Effects of Active and Passive Hearing Protection Devices on Sound Source Localization, Speech Recognition, and Tone Detection.

    Directory of Open Access Journals (Sweden)

    Andrew D Brown

    Full Text Available Hearing protection devices (HPDs such as earplugs offer to mitigate noise exposure and reduce the incidence of hearing loss among persons frequently exposed to intense sound. However, distortions of spatial acoustic information and reduced audibility of low-intensity sounds caused by many existing HPDs can make their use untenable in high-risk (e.g., military or law enforcement environments where auditory situational awareness is imperative. Here we assessed (1 sound source localization accuracy using a head-turning paradigm, (2 speech-in-noise recognition using a modified version of the QuickSIN test, and (3 tone detection thresholds using a two-alternative forced-choice task. Subjects were 10 young normal-hearing males. Four different HPDs were tested (two active, two passive, including two new and previously untested devices. Relative to unoccluded (control performance, all tested HPDs significantly degraded performance across tasks, although one active HPD slightly improved high-frequency tone detection thresholds and did not degrade speech recognition. Behavioral data were examined with respect to head-related transfer functions measured using a binaural manikin with and without tested HPDs in place. Data reinforce previous reports that HPDs significantly compromise a variety of auditory perceptual facilities, particularly sound localization due to distortions of high-frequency spectral cues that are important for the avoidance of front-back confusions.

  2. Validating a perceptual distraction model in a personal two-zone sound system

    DEFF Research Database (Denmark)

    Rämö, Jussi; Christensen, Lasse; Bech, Søren

    2017-01-01

    This paper focuses on validating a perceptual distraction model, which aims to predict user’s perceived distraction caused by audio-on-audio interference, e.g., two competing audio sources within the same listening space. Originally, the distraction model was trained with music-on-music stimuli...... using a simple loudspeaker setup, consisting of only two loudspeakers, one for the target sound source and the other for the interfering sound source. Recently, the model was successfully validated in a complex personal sound-zone system with speech-on-music stimuli. Second round of validations were...... conducted by physically altering the sound-zone system and running a set of new listening experiments utilizing two sound zones within the sound-zone system. Thus, validating the model using a different sound-zone system with both speech-on-music and music-on-speech stimuli sets. Preliminary results show...

  3. Interactive physically-based sound simulation

    Science.gov (United States)

    Raghuvanshi, Nikunj

    The realization of interactive, immersive virtual worlds requires the ability to present a realistic audio experience that convincingly compliments their visual rendering. Physical simulation is a natural way to achieve such realism, enabling deeply immersive virtual worlds. However, physically-based sound simulation is very computationally expensive owing to the high-frequency, transient oscillations underlying audible sounds. The increasing computational power of desktop computers has served to reduce the gap between required and available computation, and it has become possible to bridge this gap further by using a combination of algorithmic improvements that exploit the physical, as well as perceptual properties of audible sounds. My thesis is a step in this direction. My dissertation concentrates on developing real-time techniques for both sub-problems of sound simulation: synthesis and propagation. Sound synthesis is concerned with generating the sounds produced by objects due to elastic surface vibrations upon interaction with the environment, such as collisions. I present novel techniques that exploit human auditory perception to simulate scenes with hundreds of sounding objects undergoing impact and rolling in real time. Sound propagation is the complementary problem of modeling the high-order scattering and diffraction of sound in an environment as it travels from source to listener. I discuss my work on a novel numerical acoustic simulator (ARD) that is hundred times faster and consumes ten times less memory than a high-accuracy finite-difference technique, allowing acoustic simulations on previously-intractable spaces, such as a cathedral, on a desktop computer. Lastly, I present my work on interactive sound propagation that leverages my ARD simulator to render the acoustics of arbitrary static scenes for multiple moving sources and listener in real time, while accounting for scene-dependent effects such as low-pass filtering and smooth attenuation

  4. Ethnical discrimination in Europe: Field evidence from the finance industry

    Science.gov (United States)

    Stefan, Matthias; Holzmeister, Felix; Müllauer, Alexander

    2018-01-01

    The integration of ethnical minorities has been a hotly discussed topic in the political, societal, and economic debate. Persistent discrimination of ethnical minorities can hinder successful integration. Given that unequal access to investment and financing opportunities can cause social and economic disparities due to inferior economic prospects, we conducted a field experiment on ethnical discrimination in the finance sector with 1,218 banks in seven European countries. We contacted banks via e-mail, either with domestic or Arabic sounding names, asking for contact details only. We find pronounced discrimination in terms of a substantially lower response rate to e-mails from Arabic senders. Remarkably, the observed discrimination effect is robust for loan- and investment-related requests, across rural and urban locations of banks, and across countries. PMID:29377964

  5. Combination of magnetic parameters: an efficient way to discriminate soil-contamination sources (south France)

    International Nuclear Information System (INIS)

    Lecoanet, H.; Leveque, F.; Ambrosi, J.-P.

    2003-01-01

    Biplots combining magnetic parameters allow identification of different pollutant emission sources. - Biplots combining magnetic parameters allow to identification and differentiation different pollutant emission sources. A major problem in soil pollution is the characterization of the relative contributions of different anthropogenic particles sources. This paper demonstrates the efficiency of magnetic techniques to provide identification and differentiation of contaminating emission sources. About 100 soil samples were collected across a mixed agricultural and industrial area (Crau plain/Berre-Fos basin) in southern France. Nine soil profiles were realized. They are aligned along a transect, from the Mediterranean cost to the north. Measurements of initial magnetic susceptibility (χ) and remanent magnetization (ARM, IRM) have been carried out at room temperature. Several ratios of magnetic parameters were calculated and tested. Bivariate analyses allow to characterize different pollution sources and graphic results suggest three dominant contributions originated from road traffic, airport and steel industry. Moreover, magnetic grain-size discrimination between surface-soil samples and bottom-soil samples is obtained. An increase of hard magnetic components from topsoil towards the bottom of the profiles is evidenced

  6. Importance of the left auditory areas in chord discrimination in music experts as demonstrated by MEG.

    Science.gov (United States)

    Tervaniemi, Mari; Sannemann, Christian; Noyranen, Maiju; Salonen, Johanna; Pihko, Elina

    2011-08-01

    The brain basis behind musical competence in its various forms is not yet known. To determine the pattern of hemispheric lateralization during sound-change discrimination, we recorded the magnetic counterpart of the electrical mismatch negativity (MMNm) responses in professional musicians, musical participants (with high scores in the musicality tests but without professional training in music) and non-musicians. While watching a silenced video, they were presented with short sounds with frequency and duration deviants and C major chords with C minor chords as deviants. MMNm to chord deviants was stronger in both musicians and musical participants than in non-musicians, particularly in their left hemisphere. No group differences were obtained in the MMNm strength in the right hemisphere in any of the conditions or in the left hemisphere in the case of frequency or duration deviants. Thus, in addition to professional training in music, musical aptitude (combined with lower-level musical training) is also reflected in brain functioning related to sound discrimination. The present magnetoencephalographic evidence therefore indicates that the sound discrimination abilities may be differentially distributed in the brain in musically competent and naïve participants, especially in a musical context established by chord stimuli: the higher forms of musical competence engage both auditory cortices in an integrative manner. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  7. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding

    Directory of Open Access Journals (Sweden)

    Mari eTervaniemi

    2014-07-01

    Full Text Available Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel to compare memory-related MMN and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians. In Folk musicians, the MMN was enlarged for mistuned sounds when compared with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies differentiated the groups for all sound changes. Thus, the melody paradigm offers a fast and cost-effective means for determining the auditory profile for music-sound encoding and also, importantly, for probing the effects of musical expertise on it.

  8. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding.

    Science.gov (United States)

    Tervaniemi, Mari; Huotilainen, Minna; Brattico, Elvira

    2014-01-01

    Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel) to compare memory-related mismatch negativity (MMN) and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians). In Folk musicians, the MMN was enlarged for mistuned sounds when compared with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies differentiated the groups for all sound changes. Thus, the melody paradigm offers a fast and cost-effective means for determining the auditory profile for music-sound encoding and also, importantly, for probing the effects of musical expertise on it.

  9. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding

    DEFF Research Database (Denmark)

    Tervaniemi, Mari; Huotilainen, Minna; Brattico, Elvira

    2014-01-01

    Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel) to compare memory......-related mismatch negativity (MMN) and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians). In Folk musicians, the MMN was enlarged for mistuned sounds when compared...... with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies...

  10. Primate auditory recognition memory performance varies with sound type.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2009-10-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g., social status, kinship, environment), have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition and/or memory. The present study employs a delayed matching-to-sample task with auditory stimuli to examine auditory memory performance of rhesus macaques (Macaca mulatta), wherein two sounds are determined to be the same or different. Rhesus macaques seem to have relatively poor short-term memory with auditory stimuli, and we examine if particular sound types are more favorable for memory performance. Experiment 1 suggests memory performance with vocalization sound types (particularly monkey), are significantly better than when using non-vocalization sound types, and male monkeys outperform female monkeys overall. Experiment 2, controlling for number of sound exemplars and presentation pairings across types, replicates Experiment 1, demonstrating better performance or decreased response latencies, depending on trial type, to species-specific monkey vocalizations. The findings cannot be explained by acoustic differences between monkey vocalizations and the other sound types, suggesting the biological, and/or ethological meaning of these sounds are more effective for auditory memory. 2009 Elsevier B.V.

  11. A review of research progress in air-to-water sound transmission

    International Nuclear Information System (INIS)

    Peng Zhao-Hui; Zhang Ling-Shan

    2016-01-01

    International and domestic research progress in theory and experiment and applications of the air-to-water sound transmission are presented in this paper. Four classical numerical methods of calculating the underwater sound field generated by an airborne source, i.e., the ray theory, the wave solution, the normal-mode theory and the wavenumber integration approach, are introduced. Effects of two special conditions, i.e., the moving airborne source or medium and the rough air-water interface, on the air-to-water sound transmission are reviewed. In experimental studies, the depth and range distributions of the underwater sound field created by different kinds of airborne sources in near-field and far-field, the longitudinal horizontal correlation of underwater sound field and application methods for inverse problems are reviewed. (special topic)

  12. A simple neutron-gamma discriminating system

    International Nuclear Information System (INIS)

    Liu Zhongming; Xing Shilin; Wang Zhongmin

    1986-01-01

    A simple neutron-gamma discriminating system is described. A detector and a pulse shape discriminator are suitable for the neutron-gamma discriminating system. The influence of the constant fraction discriminator threshold energy on the neutron-gamma resolution properties is shown. The neutron-gamma timing distributions from an 241 Am-Be source, 2.5 MeV neutron beam and 14 MeV neutron beam are presented

  13. Effect of gap detection threshold on consistency of speech in children with speech sound disorder.

    Science.gov (United States)

    Sayyahi, Fateme; Soleymani, Zahra; Akbari, Mohammad; Bijankhan, Mahmood; Dolatshahi, Behrooz

    2017-02-01

    The present study examined the relationship between gap detection threshold and speech error consistency in children with speech sound disorder. The participants were children five to six years of age who were categorized into three groups of typical speech, consistent speech disorder (CSD) and inconsistent speech disorder (ISD).The phonetic gap detection threshold test was used for this study, which is a valid test comprised six syllables with inter-stimulus intervals between 20-300ms. The participants were asked to listen to the recorded stimuli three times and indicate whether they heard one or two sounds. There was no significant difference between the typical and CSD groups (p=0.55), but there were significant differences in performance between the ISD and CSD groups and the ISD and typical groups (p=0.00). The ISD group discriminated between speech sounds at a higher threshold. Children with inconsistent speech errors could not distinguish speech sounds during time-limited phonetic discrimination. It is suggested that inconsistency in speech is a representation of inconsistency in auditory perception, which causes by high gap detection threshold. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sources of underwater sound and their characterisation (abstract)

    NARCIS (Netherlands)

    Ainslie, M.A.; Jong, C.A.F. de

    2013-01-01

    After centuries of speculation, punctuated by occasional theoretical or experimental advances, the first intensive research into underwater sound took place 100 years ago, applied initially to provide advance warning of icebergs after the loss of RMS Titanic in 1912, and later to counter the U-boat

  15. A mathematical model for source separation of MMG signals recorded with a coupled microphone-accelerometer sensor pair.

    Science.gov (United States)

    Silva, Jorge; Chau, Tom

    2005-09-01

    Recent advances in sensor technology for muscle activity monitoring have resulted in the development of a coupled microphone-accelerometer sensor pair for physiological acousti signal recording. This sensor can be used to eliminate interfering sources in practical settings where the contamination of an acoustic signal by ambient noise confounds detection but cannot be easily removed [e.g., mechanomyography (MMG), swallowing sounds, respiration, and heart sounds]. This paper presents a mathematical model for the coupled microphone-accelerometer vibration sensor pair, specifically applied to muscle activity monitoring (i.e., MMG) and noise discrimination in externally powered prostheses for below-elbow amputees. While the model provides a simple and reliable source separation technique for MMG signals, it can also be easily adapted to other aplications where the recording of low-frequency (< 1 kHz) physiological vibration signals is required.

  16. Discrimination of fundamental frequency of synthesized vowel sounds in a noise background

    NARCIS (Netherlands)

    Scheffers, M.T.M.

    1984-01-01

    An experiment was carried out, investigating the relationship between the just noticeable difference of fundamental frequency (jndf0) of three stationary synthesized vowel sounds in noise and the signal-to-noise ratio. To this end the S/N ratios were measured at which listeners could just

  17. Sound field reproduction as an equivalent acoustical scattering problem.

    Science.gov (United States)

    Fazi, Filippo Maria; Nelson, Philip A

    2013-11-01

    Given a continuous distribution of acoustic sources, the determination of the source strength that ensures the synthesis of a desired sound field is shown to be identical to the solution of an equivalent acoustic scattering problem. The paper begins with the presentation of the general theory that underpins sound field reproduction with secondary sources continuously arranged on the boundary of the reproduction region. The process of reproduction by a continuous source distribution is modeled by means of an integral operator (the single layer potential). It is then shown how the solution of the sound reproduction problem corresponds to that of an equivalent scattering problem. Analytical solutions are computed for two specific instances of this problem, involving, respectively, the use of a secondary source distribution in spherical and planar geometries. The results are shown to be the same as those obtained with analyses based on High Order Ambisonics and Wave Field Synthesis, respectively, thus bringing to light a fundamental analogy between these two methods of sound reproduction. Finally, it is shown how the physical optics (Kirchhoff) approximation enables the derivation of a high-frequency simplification for the problem under consideration, this in turn being related to the secondary source selection criterion reported in the literature on Wave Field Synthesis.

  18. Efficient techniques for wave-based sound propagation in interactive applications

    Science.gov (United States)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  19. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2008-04-01

    Full Text Available Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray CT method using white X-ray source and energy discriminated X-ray imager by using two monochrome X-ray source method. The measurement phantom was prepared as four kinds material rods (Carbon(C, Iron(Fe, Copper(Cu, Titanium(Ti rods of 3mm-diameter inside an aluminum(Al rod of 20mm-diameter. We could observed material discriminated X-ray CT reconstructed image, however, the discrimination properties were not good than two monochrome X-ray CT method. This results was could be explained because X-ray scattering, beam-hardening and so on based on white X-ray source, which could not observe in two monochrome X-ray CT method. However, since our developed CdTe imager can be detect five energy-bands at the same time, we can use multi-band analysis to decrease the least square error margin. We will be able to obtain more high separation in atomic number mapping in X-ray CT reconstructed image by using this system.

  20. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--discrimination of ammonium nitrate sources.

    Science.gov (United States)

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    An evaluation was undertaken to determine if isotope ratio mass spectrometry (IRMS) could assist in the investigation of complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. The focus of the research was on ammonium nitrate (AN), a common oxidiser used in improvised explosive mixtures. The potential value of IRMS to attribute Australian AN samples to the manufacturing source was demonstrated through the development of a preliminary AN classification scheme based on nitrogen isotopes. Although the discrimination utilising nitrogen isotopes alone was limited and only relevant to samples from the three Australian manufacturers during the evaluated time period, the classification scheme has potential as an investigative aid. Combining oxygen and hydrogen stable isotope values permitted the differentiation of AN prills from three different Australian manufacturers. Samples from five different overseas sources could be differentiated utilising a combination of the nitrogen, oxygen and hydrogen isotope values. Limited differentiation between Australian and overseas prills was achieved for the samples analysed. The comparison of nitrogen isotope values from intact AN prill samples with those from post-blast AN prill residues highlighted that the nitrogen isotopic composition of the prills was not maintained post-blast; hence, limiting the technique to analysis of un-reacted explosive material.

  1. Reconstruction of sound fields with a spherical microphone array

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Walton, Tim

    2014-01-01

    waves traveling in any direction. In particular, rigid sphere microphone arrays are robust, and have the favorable property that the scattering introduced by the array can be compensated for - making the array virtually transparent. This study examines a recently proposed sound field reconstruction...... method based on a point source expansion, i.e. equivalent source method, using a rigid spherical array. The study examines the capability of the method to distinguish between sound waves arriving from different directions (i.e., as a sound field separation method). This is representative of the potential...

  2. Sources and levels of ambient ocean sound near the Antarctic Peninsula.

    Directory of Open Access Journals (Sweden)

    Robert P Dziak

    Full Text Available Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10-20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus and fin (B. physalus whales also dominate the long-term spectra records in the 15-28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns, likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.

  3. An integrated system for dynamic control of auditory perspective in a multichannel sound field

    Science.gov (United States)

    Corey, Jason Andrew

    An integrated system providing dynamic control of sound source azimuth, distance and proximity to a room boundary within a simulated acoustic space is proposed for use in multichannel music and film sound production. The system has been investigated, implemented, and psychoacoustically tested within the ITU-R BS.775 recommended five-channel (3/2) loudspeaker layout. The work brings together physical and perceptual models of room simulation to allow dynamic placement of virtual sound sources at any location of a simulated space within the horizontal plane. The control system incorporates a number of modules including simulated room modes, "fuzzy" sources, and tracking early reflections, whose parameters are dynamically changed according to sound source location within the simulated space. The control functions of the basic elements, derived from theories of perception of a source in a real room, have been carefully tuned to provide efficient, effective, and intuitive control of a sound source's perceived location. Seven formal listening tests were conducted to evaluate the effectiveness of the algorithm design choices. The tests evaluated: (1) loudness calibration of multichannel sound images; (2) the effectiveness of distance control; (3) the resolution of distance control provided by the system; (4) the effectiveness of the proposed system when compared to a commercially available multichannel room simulation system in terms of control of source distance and proximity to a room boundary; (5) the role of tracking early reflection patterns on the perception of sound source distance; (6) the role of tracking early reflection patterns on the perception of lateral phantom images. The listening tests confirm the effectiveness of the system for control of perceived sound source distance, proximity to room boundaries, and azimuth, through fine, dynamic adjustment of parameters according to source location. All of the parameters are grouped and controlled together to

  4. Photoacoustic Sounds from Meteors.

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Richard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tencer, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweatt, William C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hogan, Roy E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spurny, Pavel [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic)

    2015-03-01

    High-speed photometric observations of meteor fireballs have shown that they often produce high-amplitude light oscillations with frequency components in the kHz range, and in some cases exhibit strong millisecond flares. We built a light source with similar characteristics and illuminated various materials in the laboratory, generating audible sounds. Models suggest that light oscillations and pulses can radiatively heat dielectric materials, which in turn conductively heats the surrounding air on millisecond timescales. The sound waves can be heard if the illuminated material is sufficiently close to the observer’s ears. The mechanism described herein may explain many reports of meteors that appear to be audible while they are concurrently visible in the sky and too far away for sound to have propagated to the observer. This photoacoustic (PA) explanation provides an alternative to electrophonic (EP) sounds hypothesized to arise from electromagnetic coupling of plasma oscillation in the meteor wake to natural antennas in the vicinity of an observer.

  5. Sustained Magnetic Responses in Temporal Cortex Reflect Instantaneous Significance of Approaching and Receding Sounds.

    Directory of Open Access Journals (Sweden)

    Dominik R Bach

    Full Text Available Rising sound intensity often signals an approaching sound source and can serve as a powerful warning cue, eliciting phasic attention, perception biases and emotional responses. How the evaluation of approaching sounds unfolds over time remains elusive. Here, we capitalised on the temporal resolution of magnetoencephalograpy (MEG to investigate in humans a dynamic encoding of perceiving approaching and receding sounds. We compared magnetic responses to intensity envelopes of complex sounds to those of white noise sounds, in which intensity change is not perceived as approaching. Sustained magnetic fields over temporal sensors tracked intensity change in complex sounds in an approximately linear fashion, an effect not seen for intensity change in white noise sounds, or for overall intensity. Hence, these fields are likely to track approach/recession, but not the apparent (instantaneous distance of the sound source, or its intensity as such. As a likely source of this activity, the bilateral inferior temporal gyrus and right temporo-parietal junction emerged. Our results indicate that discrete temporal cortical areas parametrically encode behavioural significance in moving sound sources where the signal unfolded in a manner reminiscent of evidence accumulation. This may help an understanding of how acoustic percepts are evaluated as behaviourally relevant, where our results highlight a crucial role of cortical areas.

  6. Temporal and spectral contributions to musical instrument identification and discrimination among cochlear implant users.

    Science.gov (United States)

    Prentiss, Sandra M; Friedland, David R; Fullmer, Tanner; Crane, Alison; Stoddard, Timothy; Runge, Christina L

    2016-09-01

    To investigate the contributions of envelope and fine-structure to the perception of timbre by cochlear implant (CI) users as compared to normal hearing (NH) listeners. This was a prospective cohort comparison study. Normal hearing and cochlear implant patients were tested. Three experiments were performed in sound field using musical notes altered to affect the characteristic pitch of an instrument and the acoustic envelope. Experiment 1 assessed the ability to identify the instrument playing each note, while experiments 2 and 3 assessed the ability to discriminate the different stimuli. Normal hearing subjects performed better than CI subjects in all instrument identification tasks, reaching statistical significance for 4 of 5 stimulus conditions. Within the CI population, acoustic envelope modifications did not significantly affect instrument identification or discrimination. With envelope and pitch cues removed, fine structure discrimination performance was similar between normal hearing and CI users for the majority of conditions, but some specific instrument comparisons were significantly more challenging for CI users. Cochlear implant users perform significantly worse than normal hearing listeners on tasks of instrument identification. However, cochlear implant listeners can discriminate differences in envelope and some fine structure components of musical instrument sounds as well as normal hearing listeners. The results indicated that certain fine structure cues are important for cochlear implant users to make discrimination judgments, and therefore may affect interpretation toward associating with a specific instrument for identification.

  7. Tinnitus (Phantom Sound: Risk coming for future

    Directory of Open Access Journals (Sweden)

    Suresh Rewar

    2015-01-01

    Full Text Available The word 'tinnitus' comes from the Latin word tinnire, meaning “to ring” or “a ringing.” Tinnitus is the cognition of sound in the absence of any corresponding external sound. Tinnitus can take the form of continuous buzzing, hissing, or ringing, or a combination of these or other characteristics. Tinnitus affects 10% to 25% of the adult population. Tinnitus is classified as objective and subjective categories. Subjective tinnitus is meaningless sounds that are not associated with a physical sound and only the person who has the tinnitus can hear it. Objective tinnitus is the result of a sound that can be heard by the physician. Tinnitus is not a disease in itself but a common symptom, and because it involves the perception of sound or sounds, it is commonly associated with the hearing system. In fact, various parts of the hearing system, including the inner ear, are often responsible for this symptom. Tinnitus patients, which can lead to sleep disturbances, concentration problems, fatigue, depression, anxiety disorders, and sometimes even to suicide. The evaluation of tinnitus always begins with a thorough history and physical examination, with further testing performed when indicated. Diagnostic testing should include audiography, speech discrimination testing, computed tomography angiography, or magnetic resonance angiography should be performed. All patients with tinnitus can benefit from patient education and preventive measures, and oftentimes the physician's reassurance and assistance with the psychologic aftereffects of tinnitus can be the therapy most valuable to the patient. There are no specific medications for the treatment of tinnitus. Sedatives and some other medications may prove helpful in the early stages. The ultimate goal of neuro-imaging is to identify subtypes of tinnitus in order to better inform treatment strategies.

  8. Source Monitoring in Alzheimer's Disease

    Science.gov (United States)

    El Haj, Mohamad; Fasotti, Luciano; Allain, Philippe

    2012-01-01

    Source monitoring is the process of making judgments about the origin of memories. There are three categories of source monitoring: reality monitoring (discrimination between self- versus other-generated sources), external monitoring (discrimination between several external sources), and internal monitoring (discrimination between two types of…

  9. Speech discrimination difficulties in High-Functioning Autism Spectrum Disorder are likely independent of auditory hypersensitivity.

    Directory of Open Access Journals (Sweden)

    William Andrew Dunlop

    2016-08-01

    Full Text Available Autism Spectrum Disorder (ASD, characterised by impaired communication skills and repetitive behaviours, can also result in differences in sensory perception. Individuals with ASD often perform normally in simple auditory tasks but poorly compared to typically developed (TD individuals on complex auditory tasks like discriminating speech from complex background noise. A common trait of individuals with ASD is hypersensitivity to auditory stimulation. No studies to our knowledge consider whether hypersensitivity to sounds is related to differences in speech-in-noise discrimination. We provide novel evidence that individuals with high-functioning ASD show poor performance compared to TD individuals in a speech-in-noise discrimination task with an attentionally demanding background noise, but not in a purely energetic noise. Further, we demonstrate in our small sample that speech-hypersensitivity does not appear to predict performance in the speech-in-noise task. The findings support the argument that an attentional deficit, rather than a perceptual deficit, affects the ability of individuals with ASD to discriminate speech from background noise. Finally, we piloted a novel questionnaire that measures difficulty hearing in noisy environments, and sensitivity to non-verbal and verbal sounds. Psychometric analysis using 128 TD participants provided novel evidence for a difference in sensitivity to non-verbal and verbal sounds, and these findings were reinforced by participants with ASD who also completed the questionnaire. The study was limited by a small and high-functioning sample of participants with ASD. Future work could test larger sample sizes and include lower-functioning ASD participants.

  10. [Music therapy in adults with cochlear implants : Effects on music perception and subjective sound quality].

    Science.gov (United States)

    Hutter, E; Grapp, M; Argstatter, H

    2016-12-01

    People with severe hearing impairments and deafness can achieve good speech comprehension using a cochlear implant (CI), although music perception often remains impaired. A novel concept of music therapy for adults with CI was developed and evaluated in this study. This study included 30 adults with a unilateral CI following postlingual deafness. The subjective sound quality of the CI was rated using the hearing implant sound quality index (HISQUI) and musical tests for pitch discrimination, melody recognition and timbre identification were applied. As a control 55 normally hearing persons also completed the musical tests. In comparison to normally hearing subjects CI users showed deficits in the perception of pitch, melody and timbre. Specific effects of therapy were observed in the subjective sound quality of the CI, in pitch discrimination into a high and low pitch range and in timbre identification, while general learning effects were found in melody recognition. Music perception shows deficits in CI users compared to normally hearing persons. After individual music therapy in the rehabilitation process, improvements in this delicate area could be achieved.

  11. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.

    Science.gov (United States)

    Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh

    2015-04-01

    We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.

  12. Spectral envelope sensitivity of musical instrument sounds.

    Science.gov (United States)

    Gunawan, David; Sen, D

    2008-01-01

    It is well known that the spectral envelope is a perceptually salient attribute in musical instrument timbre perception. While a number of studies have explored discrimination thresholds for changes to the spectral envelope, the question of how sensitivity varies as a function of center frequency and bandwidth for musical instruments has yet to be addressed. In this paper a two-alternative forced-choice experiment was conducted to observe perceptual sensitivity to modifications made on trumpet, clarinet and viola sounds. The experiment involved attenuating 14 frequency bands for each instrument in order to determine discrimination thresholds as a function of center frequency and bandwidth. The results indicate that perceptual sensitivity is governed by the first few harmonics and sensitivity does not improve when extending the bandwidth any higher. However, sensitivity was found to decrease if changes were made only to the higher frequencies and continued to decrease as the distorted bandwidth was widened. The results are analyzed and discussed with respect to two other spectral envelope discrimination studies in the literature as well as what is predicted from a psychoacoustic model.

  13. Loudness estimation of simultaneous sources using beamforming

    DEFF Research Database (Denmark)

    Song, Woo-keun; Ellermeier, Wolfgang; Minnaar, Pauli

    2006-01-01

    An algorithm is proposed for estimating the loudness of several simultaneous sound sources by means of microphone-array beamforming. The algorithm is derived from two listening experiments in which the loudness of two simultaneous sounds (narrow-band noises with 1-kHz and 3.15-kHz center...... frequencies) was matched to a single sound (2-kHz narrow-band noise). The simultaneous sounds were presented from either one sound source or two spatially separated sources, whereas the single sound was presented from the frontal direction. The results indicate that overall loudness can be calculated...... by summing the loudnesses of the individual sources according to a simple psychophysical relationship....

  14. When Distance Matters: Perceptual Bias and Behavioral Response for Approaching Sounds in Peripersonal and Extrapersonal Space

    NARCIS (Netherlands)

    Camponogara, I.; Komeilipoor, N.; Cesari, P.

    2015-01-01

    Studies on sound perception show a tendency to overestimate the distance of an approaching sound source, leading to a faster reaction time compared to a receding sound source. Nevertheless, it is unclear whether motor preparation and execution change according to the perceived sound direction and

  15. Context effects on processing widely deviant sounds in newborn infants

    Directory of Open Access Journals (Sweden)

    Gábor Péter Háden

    2013-09-01

    Full Text Available Detecting and orienting towards sounds carrying new information is a crucial feature of the human brain that supports adaptation to the environment. Rare, acoustically widely deviant sounds presented amongst frequent tones elicit large event related brain potentials (ERPs in neonates. Here we tested whether these discriminative ERP responses reflect only the activation of fresh afferent neuronal populations (i.e., neuronal circuits not affected by the tones or they also index the processing of contextual mismatch between the rare and the frequent sounds.In two separate experiments, we presented sleeping newborns with 150 different environmental sounds and the same number of white noise bursts. Both sounds served either as deviants in an oddball paradigm with the frequent standard stimulus a tone (Novel/Noise deviant, or as the standard stimulus with the tone as deviant (Novel/Noise standard, or they were delivered alone with the same timing as the deviants in the oddball condition (Novel/Noise alone.Whereas the ERP responses to noise–deviants elicited similar responses as the same sound presented alone, the responses elicited by environmental sounds in the corresponding conditions morphologically differed from each other. Thus whereas the ERP response to the noise sounds can be explained by the different refractory state of stimulus specific neuronal populations, the ERP response to environmental sounds indicated context sensitive processing. These results provide evidence for an innate tendency of context dependent auditory processing as well as a basis for the different developmental trajectories of processing acoustical deviance and contextual novelty.

  16. By the sound of it. An ERP investigation of human action sound processing in 7-month-old infants

    Directory of Open Access Journals (Sweden)

    Elena Geangu

    2015-04-01

    Full Text Available Recent evidence suggests that human adults perceive human action sounds as a distinct category from human vocalizations, environmental, and mechanical sounds, activating different neural networks (Engel et al., 2009; Lewis et al., 2011. Yet, little is known about the development of such specialization. Using event-related potentials (ERP, this study investigated neural correlates of 7-month-olds’ processing of human action (HA sounds in comparison to human vocalizations (HV, environmental (ENV, and mechanical (MEC sounds. Relative to the other categories, HA sounds led to increased positive amplitudes between 470 and 570 ms post-stimulus onset at left anterior temporal locations, while HV led to increased negative amplitudes at the more posterior temporal locations in both hemispheres. Collectively, human produced sounds (HA + HV led to significantly different response profiles compared to non-living sound sources (ENV + MEC at parietal and frontal locations in both hemispheres. Overall, by 7 months of age human action sounds are being differentially processed in the brain, consistent with a dichotomy for processing living versus non-living things. This provides novel evidence regarding the typical categorical processing of socially relevant sounds.

  17. Acoustic analysis of trill sounds.

    Science.gov (United States)

    Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri

    2012-04-01

    In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.

  18. Audio-Visual Fusion for Sound Source Localization and Improved Attention

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Gi; Choi, Jong Suk; Yoon, Sang Suk; Choi, Mun Taek; Kim, Mun Sang [Korea Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Dai Jin [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2011-07-15

    Service robots are equipped with various sensors such as vision camera, sonar sensor, laser scanner, and microphones. Although these sensors have their own functions, some of them can be made to work together and perform more complicated functions. AudioFvisual fusion is a typical and powerful combination of audio and video sensors, because audio information is complementary to visual information and vice versa. Human beings also mainly depend on visual and auditory information in their daily life. In this paper, we conduct two studies using audioFvision fusion: one is on enhancing the performance of sound localization, and the other is on improving robot attention through sound localization and face detection.

  19. Audio-Visual Fusion for Sound Source Localization and Improved Attention

    International Nuclear Information System (INIS)

    Lee, Byoung Gi; Choi, Jong Suk; Yoon, Sang Suk; Choi, Mun Taek; Kim, Mun Sang; Kim, Dai Jin

    2011-01-01

    Service robots are equipped with various sensors such as vision camera, sonar sensor, laser scanner, and microphones. Although these sensors have their own functions, some of them can be made to work together and perform more complicated functions. AudioFvisual fusion is a typical and powerful combination of audio and video sensors, because audio information is complementary to visual information and vice versa. Human beings also mainly depend on visual and auditory information in their daily life. In this paper, we conduct two studies using audioFvision fusion: one is on enhancing the performance of sound localization, and the other is on improving robot attention through sound localization and face detection

  20. Radio thermal sounding of natural environments

    Science.gov (United States)

    Gauss, Martin; Lomukhin, Yuriy

    2017-11-01

    At the moment, methods of sounding a status of soil, plant, forest and aquatic environments using radiometry and radar methods are intensively used. The main source of information using radar sounding is the back reflection ratio. The radiometric method is used for detection of the brightness temperature. In this paper, a communication between the back reflection ratio and the brightness temperature is described. This communication is proportional.

  1. Gender and ethnic discrimination in the rental housing market

    DEFF Research Database (Denmark)

    Bengtsson, Ragnar; Iverman, Elis; Hinnerich, Bjørn Tyrefors

    2012-01-01

    *Corresponding author. E-mail: bjorn.hinnerich@ne.su.se We use a field experiment to measure discrimination in the housing market in Stockholm. Four fictitious persons, of different gender, with distinct-sounding Arabic or Swedish names, are randomly assigned to vacant apartments. We extend...... the study by Ahmed and Hammarstedt (2008). There are two new results. First, we provide evidence that there is no or little gender premium for the female with the Arabic name, which suggests that ethnic discrimination dominates the effects of gender. Secondly, discriminatory behaviour is only found...... in the suburbs or satellite cities/towns of Stockholm County not in the densely populated, affluent, city center. Moreover, we can replicate that there is a gender premium for females with Swedish names. However, we are not able to confirm that males with Arabic names face discrimination....

  2. Efficient Geometric Sound Propagation Using Visibility Culling

    Science.gov (United States)

    Chandak, Anish

    2011-07-01

    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying

  3. Blast noise classification with common sound level meter metrics.

    Science.gov (United States)

    Cvengros, Robert M; Valente, Dan; Nykaza, Edward T; Vipperman, Jeffrey S

    2012-08-01

    A common set of signal features measurable by a basic sound level meter are analyzed, and the quality of information carried in subsets of these features are examined for their ability to discriminate military blast and non-blast sounds. The analysis is based on over 120 000 human classified signals compiled from seven different datasets. The study implements linear and Gaussian radial basis function (RBF) support vector machines (SVM) to classify blast sounds. Using the orthogonal centroid dimension reduction technique, intuition is developed about the distribution of blast and non-blast feature vectors in high dimensional space. Recursive feature elimination (SVM-RFE) is then used to eliminate features containing redundant information and rank features according to their ability to separate blasts from non-blasts. Finally, the accuracy of the linear and RBF SVM classifiers is listed for each of the experiments in the dataset, and the weights are given for the linear SVM classifier.

  4. The Opponent Channel Population Code of Sound Location Is an Efficient Representation of Natural Binaural Sounds

    Science.gov (United States)

    Młynarski, Wiktor

    2015-01-01

    In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a “panoramic” code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding. PMID:25996373

  5. Auditory enhancement of increments in spectral amplitude stems from more than one source.

    Science.gov (United States)

    Carcagno, Samuele; Semal, Catherine; Demany, Laurent

    2012-10-01

    A component of a test sound consisting of simultaneous pure tones perceptually "pops out" if the test sound is preceded by a copy of itself with that component attenuated. Although this "enhancement" effect was initially thought to be purely monaural, it is also observable when the test sound and the precursor sound are presented contralaterally (i.e., to opposite ears). In experiment 1, we assessed the magnitude of ipsilateral and contralateral enhancement as a function of the time interval between the precursor and test sounds (10, 100, or 600 ms). The test sound, randomly transposed in frequency from trial to trial, was followed by a probe tone, either matched or mismatched in frequency to the test sound component which was the target of enhancement. Listeners' ability to discriminate matched probes from mismatched probes was taken as an index of enhancement magnitude. The results showed that enhancement decays more rapidly for ipsilateral than for contralateral precursors, suggesting that ipsilateral enhancement and contralateral enhancement stem from at least partly different sources. It could be hypothesized that, in experiment 1, contralateral precursors were effective only because they provided attentional cues about the target tone frequency. In experiment 2, this hypothesis was tested by presenting the probe tone before the precursor sound rather than after the test sound. Although the probe tone was then serving as a frequency cue, contralateral precursors were again found to produce enhancement. This indicates that contralateral enhancement cannot be explained by cuing alone and is a genuine sensory phenomenon.

  6. Foley Sounds vs Real Sounds

    DEFF Research Database (Denmark)

    Trento, Stefano; Götzen, Amalia De

    2011-01-01

    This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects...

  7. Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.

    Science.gov (United States)

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-04-01

    The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.

  8. Sound quality indicators for urban places in Paris cross-validated by Milan data.

    Science.gov (United States)

    Ricciardi, Paola; Delaitre, Pauline; Lavandier, Catherine; Torchia, Francesca; Aumond, Pierre

    2015-10-01

    A specific smartphone application was developed to collect perceptive and acoustic data in Paris. About 3400 questionnaires were analyzed, regarding the global sound environment characterization, the perceived loudness of some emergent sources and the presence time ratio of sources that do not emerge from the background. Sound pressure level was recorded each second from the mobile phone's microphone during a 10-min period. The aim of this study is to propose indicators of urban sound quality based on linear regressions with perceptive variables. A cross validation of the quality models extracted from Paris data was carried out by conducting the same survey in Milan. The proposed sound quality general model is correlated with the real perceived sound quality (72%). Another model without visual amenity and familiarity is 58% correlated with perceived sound quality. In order to improve the sound quality indicator, a site classification was performed by Kohonen's Artificial Neural Network algorithm, and seven specific class models were developed. These specific models attribute more importance on source events and are slightly closer to the individual data than the global model. In general, the Parisian models underestimate the sound quality of Milan environments assessed by Italian people.

  9. Temporal and spectral contributions to musical instrument identification and discrimination among cochlear implant users

    Institute of Scientific and Technical Information of China (English)

    Sandra M. Prentiss; David R. Friedland; Tanner Fullmer; Alison Crane; Timothy Stoddard; Christina L. Runge

    2016-01-01

    Objective:To investigate the contributions of envelope and fine-structure to the perception of timbre by cochlear implant (CI) users as compared to normal hearing (NH) lis-teners. Methods: This was a prospective cohort comparison study. Normal hearing and cochlear implant patients were tested. Three experiments were performed in sound field using musical notes altered to affect the characteristic pitch of an instrument and the acoustic envelope. Experiment 1 assessed the ability to identify the instrument playing each note, while experi-ments 2 and 3 assessed the ability to discriminate the different stimuli. Results:Normal hearing subjects performed better than CI subjects in all instrument identifi-cation tasks, reaching statistical significance for 4 of 5 stimulus conditions. Within the CI pop-ulation, acoustic envelope modifications did not significantly affect instrument identification or discrimination. With envelope and pitch cues removed, fine structure discrimination perfor-mance was similar between normal hearing and CI users for the majority of conditions, but some specific instrument comparisons were significantly more challenging for CI users. Conclusions:Cochlear implant users perform significantly worse than normal hearing listeners on tasks of instrument identification. However, cochlear implant listeners can discriminate differences in envelope and some fine structure components of musical instrument sounds as well as normal hearing listeners. The results indicated that certain fine structure cues are important for cochlear implant users to make discrimination judgments, and therefore may affect interpretation toward associating with a specific instrument for identification.

  10. 78 FR 13869 - Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy...

    Science.gov (United States)

    2013-03-01

    ...-123-LNG; 12-128-NG; 12-148-NG; 12- 158-NG] Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; CE FLNG, LLC; Consolidated...-NG Puget Sound Energy, Inc Order granting long- term authority to import/export natural gas from/to...

  11. Validity and reliability of acoustic analysis of respiratory sounds in infants

    Science.gov (United States)

    Elphick, H; Lancaster, G; Solis, A; Majumdar, A; Gupta, R; Smyth, R

    2004-01-01

    Objective: To investigate the validity and reliability of computerised acoustic analysis in the detection of abnormal respiratory noises in infants. Methods: Blinded, prospective comparison of acoustic analysis with stethoscope examination. Validity and reliability of acoustic analysis were assessed by calculating the degree of observer agreement using the κ statistic with 95% confidence intervals (CI). Results: 102 infants under 18 months were recruited. Convergent validity for agreement between stethoscope examination and acoustic analysis was poor for wheeze (κ = 0.07 (95% CI, –0.13 to 0.26)) and rattles (κ = 0.11 (–0.05 to 0.27)) and fair for crackles (κ = 0.36 (0.18 to 0.54)). Both the stethoscope and acoustic analysis distinguished well between sounds (discriminant validity). Agreement between observers for the presence of wheeze was poor for both stethoscope examination and acoustic analysis. Agreement for rattles was moderate for the stethoscope but poor for acoustic analysis. Agreement for crackles was moderate using both techniques. Within-observer reliability for all sounds using acoustic analysis was moderate to good. Conclusions: The stethoscope is unreliable for assessing respiratory sounds in infants. This has important implications for its use as a diagnostic tool for lung disorders in infants, and confirms that it cannot be used as a gold standard. Because of the unreliability of the stethoscope, the validity of acoustic analysis could not be demonstrated, although it could discriminate between sounds well and showed good within-observer reliability. For acoustic analysis, targeted training and the development of computerised pattern recognition systems may improve reliability so that it can be used in clinical practice. PMID:15499065

  12. Environmental quality of Long Island Sound: Assessment and management issues

    International Nuclear Information System (INIS)

    Wolfe, D.A.; Farrow, D.R.G.; Robertson, A.; Monahan, R.; Stacey, P.E.

    1991-01-01

    Estimated pollutant loadings to Long Island Sound (LIS) are presented and discussed in the context of current information on population trends and land-use characteristics within the drainage basin of the sound. For the conventional pollutants (BOD, N, and P) and for most of the metals examined, the fluxes to LIS from wastewater treatment plants approach or exceed the fluxes from riverine sources. Urban runoff is a significant source for only a few contaminants, such as lead and petroleum hydrocarbons. Atmospheric flux estimates made for other areas are extrapolated to LIS, and this source appears to be significant for lead, zinc, and polynuclear aromatic hydrocarbons, and chlorinated pesticides. Continued population growth is projected through 2010, both in the urban centers of the western sound and in the coastal counties surrounding the central and eastern portions of LIS. This growth will place increased pollution pressure on the sound and increased demands on already scarce coastal and estuarine land-use categories. Close interaction between environmental planners, managers, and scientists is required to identify effective control strategies for reducing existing pollutant stress to the sound and for minimizing the effects of future development

  13. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    International Nuclear Information System (INIS)

    Lee, H.S.; Bhang, H.; Choi, J.H.; Choi, S.; Joo, H.W.; Kim, G.B.; Kim, K.W.; Kim, S.C.; Kim, S.K.; Lee, J.H.; Lee, J.K.; Myung, S.S.; Hahn, I.S.; Jeon, E.J.; Kang, W.G.; Kim, Y.D.; Kim, Y.H.; Li, J.; Kim, H.J.; Leonard, D.S.

    2014-01-01

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV γ-rays from a 137 Cs source. The measured results on pulse shape discrimination (PSD) between nuclear- and electron-recoil events are quantified in terms of quality factors. A comparison with our previous result from a neutron generator demonstrate the feasibility of performing calibrations of PSD measurements using neutrons from a Am-Be source

  14. Infants' Discrimination of Consonants: Interplay between Word Position and Acoustic Saliency

    Science.gov (United States)

    Archer, Stephanie L.; Zamuner, Tania; Engel, Kathleen; Fais, Laurel; Curtin, Suzanne

    2016-01-01

    Research has shown that young infants use contrasting acoustic information to distinguish consonants. This has been used to argue that by 12 months, infants have homed in on their native language sound categories. However, this ability seems to be positionally constrained, with contrasts at the beginning of words (onsets) discriminated earlier.…

  15. What the Toadfish Ear Tells the Toadfish Brain About Sound.

    Science.gov (United States)

    Edds-Walton, Peggy L

    2016-01-01

    Of the three, paired otolithic endorgans in the ear of teleost fishes, the saccule is the one most often demonstrated to have a major role in encoding frequencies of biologically relevant sounds. The toadfish saccule also encodes sound level and sound source direction in the phase-locked activity conveyed via auditory afferents to nuclei of the ipsilateral octaval column in the medulla. Although paired auditory receptors are present in teleost fishes, binaural processes were believed to be unimportant due to the speed of sound in water and the acoustic transparency of the tissues in water. In contrast, there are behavioral and anatomical data that support binaural processing in fishes. Studies in the toadfish combined anatomical tract-tracing and physiological recordings from identified sites along the ascending auditory pathway to document response characteristics at each level. Binaural computations in the medulla and midbrain sharpen the directional information provided by the saccule. Furthermore, physiological studies in the central nervous system indicated that encoding frequency, sound level, temporal pattern, and sound source direction are important components of what the toadfish ear tells the toadfish brain about sound.

  16. Evaluating Environmental Sounds from a Presence Perspective for Virtual Reality Applications

    DEFF Research Database (Denmark)

    Nordahl, Rolf

    2010-01-01

    We propose a methodology to design and evaluate environmental sounds for virtual environments. We propose to combine physically modeled sound events with recorded soundscapes. Physical models are used to provide feedback to users’ actions, while soundscapes reproduce the characteristic soundmarks...... as well as self-induced interactive sounds simulated using physical models. Results show that subjects’ motion in the environment is significantly enhanced when dynamic sound sources and sound of egomotion are rendered in the environment....

  17. Active low frequency sound field control in a listening room using CABS (Controlled Acoustic Bass System) will also reduce the sound transmitted to neighbour rooms

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2012-01-01

    Sound in rooms and transmission of sound between rooms gives the biggest problems at low frequencies. Rooms with rectangular boundaries have strong resonance frequencies and will give big spatial variations in sound pressure level (SPL) in the source room, and an increase in SPL of 20 dB at a wall...... Bass System) is a time based room correction system for reproduced sound using loudspeakers. The system can remove room modes at low frequencies, by active cancelling the reflection from at the rear wall to a normal stereo setup. Measurements in a source room using CABS and in two neighbour rooms have...... shown a reduction in sound transmission of up to 10 dB at resonance frequencies and a reduction at broadband noise of 3 – 5 dB at frequencies up to 100 Hz. The ideas and understanding of the CABS system will also be given....

  18. New perspectives on mechanisms of sound generation in songbirds

    DEFF Research Database (Denmark)

    Goller, Franz; Larsen, Ole Næsbye

    2002-01-01

    -tone mechanism similar to human phonation with the labia forming a pneumatic valve. The classical avian model proposed that vibrations of the thin medial tympaniform membranes are the primary sound generating mechanism. As a direct test of these two hypotheses we ablated the medial tympaniform membranes in two......The physical mechanisms of sound generation in the vocal organ, the syrinx, of songbirds have been investigated mostly with indirect methods. Recent direct endoscopic observation identified vibrations of the labia as the principal sound source. This model suggests sound generation in a pulse...... atmosphere) as well as direct (labial vibration during tonal sound) measurements of syringeal vibrations support a vibration-based soundgenerating mechanism even for tonal sounds....

  19. ANTI-DISCRIMINATION LAW AND COURT PRACTICE IN CROATIA-INDIVIDUAL AND ASSOCIATIONAL ANTI-DISCRIMINATION CLAIM AS (IN)EFFICIENT MECHANISMS FOR LEGAL PROTECTION

    OpenAIRE

    Paula Poretti

    2015-01-01

    In the paper basic legal sources of European and Croatian anti-discrimination law are presented. Special attention is given to Anti-discrimination Act from 2009 which was enacted with the aim to provide anti-discrimination legal framework as a guarantee of a high level of legal protection from different forms of discrimination in Croatian legal system. Individual and associational anti—discrimination claim as legal mechanisms for efficient legal protection are questioned. Also, along with the...

  20. What and Where in auditory sensory processing: A high-density electrical mapping study of distinct neural processes underlying sound object recognition and sound localization

    Directory of Open Access Journals (Sweden)

    Victoria M Leavitt

    2011-06-01

    Full Text Available Functionally distinct dorsal and ventral auditory pathways for sound localization (where and sound object recognition (what have been described in non-human primates. A handful of studies have explored differential processing within these streams in humans, with highly inconsistent findings. Stimuli employed have included simple tones, noise bursts and speech sounds, with simulated left-right spatial manipulations, and in some cases participants were not required to actively discriminate the stimuli. Our contention is that these paradigms were not well suited to dissociating processing within the two streams. Our aim here was to determine how early in processing we could find evidence for dissociable pathways using better titrated what and where task conditions. The use of more compelling tasks should allow us to amplify differential processing within the dorsal and ventral pathways. We employed high-density electrical mapping using a relatively large and environmentally realistic stimulus set (seven animal calls delivered from seven free-field spatial locations; with stimulus configuration identical across the where and what tasks. Topographic analysis revealed distinct dorsal and ventral auditory processing networks during the where and what tasks with the earliest point of divergence seen during the N1 component of the auditory evoked response, beginning at approximately 100 ms. While this difference occurred during the N1 timeframe, it was not a simple modulation of N1 amplitude as it displayed a wholly different topographic distribution to that of the N1. Global dissimilarity measures using topographic modulation analysis confirmed that this difference between tasks was driven by a shift in the underlying generator configuration. Minimum norm source reconstruction revealed distinct activations that corresponded well with activity within putative dorsal and ventral auditory structures.

  1. Effects of task-switching on neural representations of ambiguous sound input.

    Science.gov (United States)

    Sussman, Elyse S; Bregman, Albert S; Lee, Wei-Wei

    2014-11-01

    The ability to perceive discrete sound streams in the presence of competing sound sources relies on multiple mechanisms that organize the mixture of the auditory input entering the ears. Many studies have focused on mechanisms that contribute to integrating sounds that belong together into one perceptual stream (integration) and segregating those that come from different sound sources (segregation). However, little is known about mechanisms that allow us to perceive individual sound sources within a dynamically changing auditory scene, when the input may be ambiguous, and heard as either integrated or segregated. This study tested the question of whether focusing on one of two possible sound organizations suppressed representation of the alternative organization. We presented listeners with ambiguous input and cued them to switch between tasks that used either the integrated or the segregated percept. Electrophysiological measures indicated which organization was currently maintained in memory. If mutual exclusivity at the neural level was the rule, attention to one of two possible organizations would preclude neural representation of the other. However, significant MMNs were elicited to both the target organization and the unattended, alternative organization, along with the target-related P3b component elicited only to the designated target organization. Results thus indicate that both organizations (integrated and segregated) were simultaneously maintained in memory regardless of which task was performed. Focusing attention to one aspect of the sounds did not abolish the alternative, unattended organization when the stimulus input was ambiguous. In noisy environments, such as walking on a city street, rapid and flexible adaptive processes are needed to help facilitate rapid switching to different sound sources in the environment. Having multiple representations available to the attentive system would allow for such flexibility, needed in everyday situations to

  2. Evaluating Environmental Sounds from a Presence Perspective for Virtual Reality Applications

    Directory of Open Access Journals (Sweden)

    Nordahl Rolf

    2010-01-01

    Full Text Available We propose a methodology to design and evaluate environmental sounds for virtual environments. We propose to combine physically modeled sound events with recorded soundscapes. Physical models are used to provide feedback to users' actions, while soundscapes reproduce the characteristic soundmarks of an environment. In this particular case, physical models are used to simulate the act of walking in the botanical garden of the city of Prague, while soundscapes are used to reproduce the particular sound of the garden. The auditory feedback designed was combined with a photorealistic reproduction of the same garden. A between-subject experiment was conducted, where 126 subjects participated, involving six different experimental conditions, including both uni- and bimodal stimuli (auditory and visual. The auditory stimuli consisted of several combinations of auditory feedback, including static sound sources as well as self-induced interactive sounds simulated using physical models. Results show that subjects' motion in the environment is significantly enhanced when dynamic sound sources and sound of egomotion are rendered in the environment.

  3. Discriminative power of visual attributes in dermatology.

    Science.gov (United States)

    Giotis, Ioannis; Visser, Margaretha; Jonkman, Marcel; Petkov, Nicolai

    2013-02-01

    Visual characteristics such as color and shape of skin lesions play an important role in the diagnostic process. In this contribution, we quantify the discriminative power of such attributes using an information theoretical approach. We estimate the probability of occurrence of each attribute as a function of the skin diseases. We use the distribution of this probability across the studied diseases and its entropy to define the discriminative power of the attribute. The discriminative power has a maximum value for attributes that occur (or do not occur) for only one disease and a minimum value for those which are equally likely to be observed among all diseases. Verrucous surface, red and brown colors, and the presence of more than 10 lesions are among the most informative attributes. A ranking of attributes is also carried out and used together with a naive Bayesian classifier, yielding results that confirm the soundness of the proposed method. proposed measure is proven to be a reliable way of assessing the discriminative power of dermatological attributes, and it also helps generate a condensed dermatological lexicon. Therefore, it can be of added value to the manual or computer-aided diagnostic process. © 2012 John Wiley & Sons A/S.

  4. Increased intensity discrimination thresholds in tinnitus subjects with a normal audiogram

    DEFF Research Database (Denmark)

    Epp, Bastian; Hots, J.; Verhey, J. L.

    2012-01-01

    Recent auditory brain stem response measurements in tinnitus subjects with normal audiograms indicate the presence of hidden hearing loss that manifests as reduced neural output from the cochlea at high sound intensities, and results from mice suggest a link to deafferentation of auditory nerve...... fibers. As deafferentation would lead to deficits in hearing performance, the present study investigates whether tinnitus patients with normal hearing thresholds show impairment in intensity discrimination compared to an audiometrically matched control group. Intensity discrimination thresholds were...... significantly increased in the tinnitus frequency range, consistent with the hypothesis that auditory nerve fiber deafferentation is associated with tinnitus....

  5. Sound localization with head movement: implications for 3-d audio displays.

    Directory of Open Access Journals (Sweden)

    Ken Ian McAnally

    2014-08-01

    Full Text Available Previous studies have shown that the accuracy of sound localization is improved if listeners are allowed to move their heads during signal presentation. This study describes the function relating localization accuracy to the extent of head movement in azimuth. Sounds that are difficult to localize were presented in the free field from sources at a wide range of azimuths and elevations. Sounds remained active until the participants’ heads had rotated through windows ranging in width of 2°, 4°, 8°, 16°, 32°, or 64° of azimuth. Error in determining sound-source elevation and the rate of front/back confusion were found to decrease with increases in azimuth window width. Error in determining sound-source lateral angle was not found to vary with azimuth window width. Implications for 3-d audio displays: The utility of a 3-d audio display for imparting spatial information is likely to be improved if operators are able to move their heads during signal presentation. Head movement may compensate in part for a paucity of spectral cues to sound-source location resulting from limitations in either the audio signals presented or the directional filters (i.e., head-related transfer functions used to generate a display. However, head movements of a moderate size (i.e., through around 32° of azimuth may be required to ensure that spatial information is conveyed with high accuracy.

  6. Shape analysis of pulsed second sound in He II

    International Nuclear Information System (INIS)

    Worthington, T.; Yan, J.; Trefny, J.U.

    1976-01-01

    Second sound in He II has been observed using a heat pulse method. At temperatures where well-developed second sound is observed, the entire pulse shape can be understood if heat sources and geometrical effects are properly taken into account. 4 figures

  7. A Nanoparticle-Lectin Immunoassay Improves Discrimination of Serum CA125 from Malignant and Benign Sources.

    Science.gov (United States)

    Gidwani, Kamlesh; Huhtinen, Kaisa; Kekki, Henna; van Vliet, Sandra; Hynninen, Johanna; Koivuviita, Niina; Perheentupa, Antti; Poutanen, Matti; Auranen, Annika; Grenman, Seija; Lamminmäki, Urpo; Carpen, Olli; van Kooyk, Yvette; Pettersson, Kim

    2016-10-01

    Measurement of serum cancer antigen 125 (CA125) is the standard approach for epithelial ovarian cancer (EOC) diagnostics and follow-up. However, the clinical specificity is not optimal because increased values are also detected in healthy controls and in benign diseases. CA125 is known to be differentially glycosylated in EOC, potentially offering a way to construct CA125 assays with improved cancer specificity. Our goal was to identify carbohydrate-reactive lectins for discriminating between CA125 originating from EOC and noncancerous sources. CA125 from the OVCAR-3 cancer cell line, placental homogenate, and ascites fluid from patients with cirrhosis were captured on anti-CA125 antibody immobilized on microtitration wells. A panel of lectins, each coated onto fluorescent europium-chelate-doped 97-nm nanoparticles (Eu(+3)-NPs), was tested for detection of the immobilized CA125. Serum samples from high-grade serous EOC or patients with endometriosis and healthy controls were analyzed. By using macrophage galactose-type lectin (MGL)-coated Eu(+3)-NPs, an analytically sensitive CA125 assay (CA125(MGL)) was achieved that specifically recognized the CA125 isoform produced by EOC, whereas the recognition of CA125 from nonmalignant conditions was reduced. Serum CA125(MGL) measurement better discriminated patients with EOC from endometriosis compared to conventional immunoassay. The discrimination was particularly improved for marginally increased CA125 values and for earlier detection of EOC progression. The new CA125(MGL) assay concept could help reduce the false-positive rates of conventional CA125 immunoassays. The improved analytical specificity of this test approach is dependent on a discriminating lectin immobilized in large numbers on Eu(+3)-NPs, providing both an avidity effect and signal amplification. © 2016 American Association for Clinical Chemistry.

  8. Microsoft C#.NET program and electromagnetic depth sounding for large loop source

    Science.gov (United States)

    Prabhakar Rao, K.; Ashok Babu, G.

    2009-07-01

    A program, in the C# (C Sharp) language with Microsoft.NET Framework, is developed to compute the normalized vertical magnetic field of a horizontal rectangular loop source placed on the surface of an n-layered earth. The field can be calculated either inside or outside the loop. Five C# classes with member functions in each class are, designed to compute the kernel, Hankel transform integral, coefficients for cubic spline interpolation between computed values and the normalized vertical magnetic field. The program computes the vertical magnetic field in the frequency domain using the integral expressions evaluated by a combination of straightforward numerical integration and the digital filter technique. The code utilizes different object-oriented programming (OOP) features. It finally computes the amplitude and phase of the normalized vertical magnetic field. The computed results are presented for geometric and parametric soundings. The code is developed in Microsoft.NET visual studio 2003 and uses various system class libraries.

  9. Discrimination of Communication Vocalizations by Single Neurons and Groups of Neurons in the Auditory Midbrain

    OpenAIRE

    Schneider, David M.; Woolley, Sarah M. N.

    2010-01-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic...

  10. An open access database for the evaluation of heart sound algorithms.

    Science.gov (United States)

    Liu, Chengyu; Springer, David; Li, Qiao; Moody, Benjamin; Juan, Ricardo Abad; Chorro, Francisco J; Castells, Francisco; Roig, José Millet; Silva, Ikaro; Johnson, Alistair E W; Syed, Zeeshan; Schmidt, Samuel E; Papadaniil, Chrysa D; Hadjileontiadis, Leontios; Naseri, Hosein; Moukadem, Ali; Dieterlen, Alain; Brandt, Christian; Tang, Hong; Samieinasab, Maryam; Samieinasab, Mohammad Reza; Sameni, Reza; Mark, Roger G; Clifford, Gari D

    2016-12-01

    In the past few decades, analysis of heart sound signals (i.e. the phonocardiogram or PCG), especially for automated heart sound segmentation and classification, has been widely studied and has been reported to have the potential value to detect pathology accurately in clinical applications. However, comparative analyses of algorithms in the literature have been hindered by the lack of high-quality, rigorously validated, and standardized open databases of heart sound recordings. This paper describes a public heart sound database, assembled for an international competition, the PhysioNet/Computing in Cardiology (CinC) Challenge 2016. The archive comprises nine different heart sound databases sourced from multiple research groups around the world. It includes 2435 heart sound recordings in total collected from 1297 healthy subjects and patients with a variety of conditions, including heart valve disease and coronary artery disease. The recordings were collected from a variety of clinical or nonclinical (such as in-home visits) environments and equipment. The length of recording varied from several seconds to several minutes. This article reports detailed information about the subjects/patients including demographics (number, age, gender), recordings (number, location, state and time length), associated synchronously recorded signals, sampling frequency and sensor type used. We also provide a brief summary of the commonly used heart sound segmentation and classification methods, including open source code provided concurrently for the Challenge. A description of the PhysioNet/CinC Challenge 2016, including the main aims, the training and test sets, the hand corrected annotations for different heart sound states, the scoring mechanism, and associated open source code are provided. In addition, several potential benefits from the public heart sound database are discussed.

  11. Musical ability and non-native speech-sound processing are linked through sensitivity to pitch and spectral information.

    Science.gov (United States)

    Kempe, Vera; Bublitz, Dennis; Brooks, Patricia J

    2015-05-01

    Is the observed link between musical ability and non-native speech-sound processing due to enhanced sensitivity to acoustic features underlying both musical and linguistic processing? To address this question, native English speakers (N = 118) discriminated Norwegian tonal contrasts and Norwegian vowels. Short tones differing in temporal, pitch, and spectral characteristics were used to measure sensitivity to the various acoustic features implicated in musical and speech processing. Musical ability was measured using Gordon's Advanced Measures of Musical Audiation. Results showed that sensitivity to specific acoustic features played a role in non-native speech-sound processing: Controlling for non-verbal intelligence, prior foreign language-learning experience, and sex, sensitivity to pitch and spectral information partially mediated the link between musical ability and discrimination of non-native vowels and lexical tones. The findings suggest that while sensitivity to certain acoustic features partially mediates the relationship between musical ability and non-native speech-sound processing, complex tests of musical ability also tap into other shared mechanisms. © 2014 The British Psychological Society.

  12. Multipurpose discriminator with accurate time coupling

    International Nuclear Information System (INIS)

    Baldin, B.Yu.; Krumshtejn, Z.V.; Ronzhin, A.I.

    1977-01-01

    The principle diagram of a multipurpose discriminator is described, designed on the basis of a wide-band differential amplifier. The discriminator has three independent channels: the timing channel, the lower level discriminator and the control channel. The timing channel and the lower level discriminator are connected to a coincidence circuit. Three methods of timing are used: a single threshold, a double threshold with timing on the pulse front, and a constant fraction timing. The lower level discriminator is a wide-band amplifier with an adjustable threshold. The investigation of compensation characteristics of the discriminator has shown that the time shift of the discriminator output in the constant fraction timing regime does not exceed +-75 ns for the input signal range of 1:85. The time resolution was found to be 20 ns in the 20% energy range near the photo-peak maximum of 60 Co γ source

  13. Cascaded Amplitude Modulations in Sound Texture Perception

    Directory of Open Access Journals (Sweden)

    Richard McWalter

    2017-09-01

    Full Text Available Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  14. Second Sound for Heat Source Localization

    CERN Document Server

    Vennekate, Hannes; Uhrmacher, Michael; Quadt, Arnulf; Grosse-Knetter, Joern

    2011-01-01

    Defects on the surface of superconducting cavities can limit their accelerating gradient by localized heating. This results in a phase transition to the normal conduction state | a quench. A new application, involving Oscillating Superleak Transducers (OST) to locate such quench inducing heat spots on the surface of the cavities, has been developed by D. Hartill et al. at Cornell University in 2008. The OSTs enable the detection of heat transfer via second sound in super uid helium. This thesis presents new results on the analysis of their signal. Its behavior has been studied for dierent circumstances at setups at the University of Gottingen and at CERN. New approaches for an automated signal processing have been developed. Furthermore, a rst test setup for a single-cell Superconducting Proton Linac (SPL) cavity has been prepared. Recommendations of a better signal retrieving for its operation are presented.

  15. Diagnostic validity of methods for assessment of swallowing sounds: a systematic review.

    Science.gov (United States)

    Taveira, Karinna Veríssimo Meira; Santos, Rosane Sampaio; Leão, Bianca Lopes Cavalcante de; Neto, José Stechman; Pernambuco, Leandro; Silva, Letícia Korb da; De Luca Canto, Graziela; Porporatti, André Luís

    2018-02-03

    Oropharyngeal dysphagia is a highly prevalent comorbidity in neurological patients and presents a serious health threat, which may lead to outcomes of aspiration pneumonia, ranging from hospitalization to death. This assessment proposes a non-invasive, acoustic-based method to differentiate between individuals with and without signals of penetration and aspiration. This systematic review evaluated the diagnostic validity of different methods for assessment of swallowing sounds, when compared to Videofluroscopic of Swallowing Study (VFSS) to detect oropharyngeal dysphagia. Articles in which the primary objective was to evaluate the accuracy of swallowing sounds were searched in five electronic databases with no language or time limitations. Accuracy measurements described in the studies were transformed to construct receiver operating characteristic curves and forest plots with the aid of Review Manager v. 5.2 (The Nordic Cochrane Centre, Copenhagen, Denmark). The methodology of the selected studies was evaluated using the Quality Assessment Tool for Diagnostic Accuracy Studies-2. The final electronic search revealed 554 records, however only 3 studies met the inclusion criteria. The accuracy values (area under the curve) were 0.94 for microphone, 0.80 for Doppler, and 0.60 for stethoscope. Based on limited evidence and low methodological quality because few studies were included, with a small sample size, from all index testes found for this systematic review, Doppler showed excellent diagnostic accuracy for the discrimination of swallowing sounds, whereas microphone-reported good accuracy discrimination of swallowing sounds of dysphagic patients and stethoscope showed best screening test. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. Discrimination and identification of long vowels in children with typical language development and specific language impairment

    Science.gov (United States)

    Datta, Hia; Shafer, Valerie; Kurtzberg, Diane

    2004-05-01

    Researchers have claimed that children with specific language impairment (SLI) have particular difficulties in discriminating and identifying phonetically similar and brief speech sounds (Stark and Heinz, 1966; Studdert-Kennedy and Bradley, 1997; Sussman, 1993). In a recent study (Shafer et al., 2004), children with SLI were reported to have difficulty in processing brief (50 ms), phonetically similar vowels (/I-E/). The current study investigated perception of long (250 ms), phonetically similar vowels (/I-E/) in 8- to 10-year-old children with SLI and typical language development (TLD). The purpose was to examine whether phonetic similarity in vowels leads to poorer speech-perception in the SLI group. Behavioral and electrophysiological methods were employed to examine discrimination and identification of a nine-step vowel continuum from /I/ to /E/. Similar performances in discrimination were found for both groups, indicating that lengthening vowel duration indeed improves discrimination of phonetically similar vowels. However, these children with SLI showed poor behavioral identification, demonstrating that phonetic similarity of speech sounds, irrespective of their duration, contribute to the speech perception difficulty observed in SLI population. These findings suggest that the deficit in these children with SLI is at the level of working memory or long term memory representation of speech.

  17. Regularization in global sound equalization based on effort variation

    DEFF Research Database (Denmark)

    Stefanakis, Nick; Sarris, John; Jacobsen, Finn

    2009-01-01

    . Effort variation equalization involves modifying the conventional cost function in sound equalization, which is based on minimizing least-squares reproduction errors, by adding a term that is proportional to the squared deviations between complex source strengths, calculated independently for the sources......Sound equalization in closed spaces can be significantly improved by generating propagating waves that are naturally associated with the geometry, as, for example, plane waves in rectangular enclosures. This paper presents a control approach termed effort variation regularization based on this idea...

  18. Novel discrimination parameters for neutron-gamma discrimination with liquid scintillation detectors using wavelet transform

    International Nuclear Information System (INIS)

    Singh, H.; Singh, S.

    2015-01-01

    It has been observed that the discrimination performance of the wavelet transform method strongly depends on definition of discrimination parameters. These parameters are usually obtained from a combination of scaling functions at different scales, which represents the energy density of the wavelet coefficients. In this paper, the discrete wavelet transform (DWT) at minimum possible values of scale was investigated. Novel pulse shape discrimination parameters have been proposed for neutron and gamma discrimination in a mixed radiation field and tested with modeled pulses. The performance of these parameters was also validated in terms of quality of discrimination using experimental data of mixed events from an AmBe source collected with BC501 liquid scintillation detector. The quality of discrimination was evaluated by calculating a figure of merit (FOM) with all parameters under same experimental and simulation conditions. The FOM obtained with the proposed novel parameters was also compared with the charge comparison method. The proposed parameters exhibit better FOM as compared to the charge comparison method when high levels of noise are present in the data

  19. The Voice of the Heart: Vowel-Like Sound in Pulmonary Artery Hypertension

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2018-04-01

    Full Text Available Increased blood pressure in the pulmonary artery is referred to as pulmonary hypertension and often is linked to loud pulmonic valve closures. For the purpose of this paper, it was hypothesized that pulmonary circulation vibrations will create sounds similar to sounds created by vocal cords during speech and that subjects with pulmonary artery hypertension (PAH could have unique sound signatures across four auscultatory sites. Using a digital stethoscope, heart sounds were recorded at the cardiac apex, 2nd left intercostal space (2LICS, 2nd right intercostal space (2RICS, and 4th left intercostal space (4LICS undergoing simultaneous cardiac catheterization. From the collected heart sounds, relative power of the frequency band, energy of the sinusoid formants, and entropy were extracted. PAH subjects were differentiated by applying the linear discriminant analysis with leave-one-out cross-validation. The entropy of the first sinusoid formant decreased significantly in subjects with a mean pulmonary artery pressure (mPAp ≥ 25 mmHg versus subjects with a mPAp < 25 mmHg with a sensitivity of 84% and specificity of 88.57%, within a 10-s optimized window length for heart sounds recorded at the 2LICS. First sinusoid formant entropy reduction of heart sounds in PAH subjects suggests the existence of a vowel-like pattern. Pattern analysis revealed a unique sound signature, which could be used in non-invasive screening tools.

  20. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    Science.gov (United States)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  1. Human-assisted sound event recognition for home service robots.

    Science.gov (United States)

    Do, Ha Manh; Sheng, Weihua; Liu, Meiqin

    This paper proposes and implements an open framework of active auditory learning for a home service robot to serve the elderly living alone at home. The framework was developed to realize the various auditory perception capabilities while enabling a remote human operator to involve in the sound event recognition process for elderly care. The home service robot is able to estimate the sound source position and collaborate with the human operator in sound event recognition while protecting the privacy of the elderly. Our experimental results validated the proposed framework and evaluated auditory perception capabilities and human-robot collaboration in sound event recognition.

  2. Replacing the Orchestra? - The Discernibility of Sample Library and Live Orchestra Sounds.

    Directory of Open Access Journals (Sweden)

    Reinhard Kopiez

    Full Text Available Recently, musical sounds from pre-recorded orchestra sample libraries (OSL have become indispensable in music production for the stage or popular charts. Surprisingly, it is unknown whether human listeners can identify sounds as stemming from real orchestras or OSLs. Thus, an internet-based experiment was conducted to investigate whether a classic orchestral work, produced with sounds from a state-of-the-art OSL, could be reliably discerned from a live orchestra recording of the piece. It could be shown that the entire sample of listeners (N = 602 on average identified the correct sound source at 72.5%. This rate slightly exceeded Alan Turing's well-known upper threshold of 70% for a convincing, simulated performance. However, while sound experts tended to correctly identify the sound source, participants with lower listening expertise, who resembled the majority of music consumers, only achieved 68.6%. As non-expert listeners in the experiment were virtually unable to tell the real-life and OSL sounds apart, it is assumed that OSLs will become more common in music production for economic reasons.

  3. Sound

    CERN Document Server

    Robertson, William C

    2003-01-01

    Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...

  4. To call a cloud 'cirrus': sound symbolism in names for categories or items.

    Science.gov (United States)

    Ković, Vanja; Sučević, Jelena; Styles, Suzy J

    2017-01-01

    The aim of the present paper is to experimentally test whether sound symbolism has selective effects on labels with different ranges-of-reference within a simple noun-hierarchy. In two experiments, adult participants learned the make up of two categories of unfamiliar objects ('alien life forms'), and were passively exposed to either category-labels or item-labels, in a learning-by-guessing categorization task. Following category training, participants were tested on their visual discrimination of object pairs. For different groups of participants, the labels were either congruent or incongruent with the objects. In Experiment 1, when trained on items with individual labels, participants were worse (made more errors) at detecting visual object mismatches when trained labels were incongruent. In Experiment 2, when participants were trained on items in labelled categories, participants were faster at detecting a match if the trained labels were congruent, and faster at detecting a mismatch if the trained labels were incongruent. This pattern of results suggests that sound symbolism in category labels facilitates later similarity judgments when congruent, and discrimination when incongruent, whereas for item labels incongruence generates error in judgements of visual object differences. These findings reveal that sound symbolic congruence has a different outcome at different levels of labelling within a noun hierarchy. These effects emerged in the absence of the label itself, indicating subtle but pervasive effects on visual object processing.

  5. Intelligent Systems Approaches to Product Sound Quality Analysis

    Science.gov (United States)

    Pietila, Glenn M.

    As a product market becomes more competitive, consumers become more discriminating in the way in which they differentiate between engineered products. The consumer often makes a purchasing decision based on the sound emitted from the product during operation by using the sound to judge quality or annoyance. Therefore, in recent years, many sound quality analysis tools have been developed to evaluate the consumer preference as it relates to a product sound and to quantify this preference based on objective measurements. This understanding can be used to direct a product design process in order to help differentiate the product from competitive products or to establish an impression on consumers regarding a product's quality or robustness. The sound quality process is typically a statistical tool that is used to model subjective preference, or merit score, based on objective measurements, or metrics. In this way, new product developments can be evaluated in an objective manner without the laborious process of gathering a sample population of consumers for subjective studies each time. The most common model used today is the Multiple Linear Regression (MLR), although recently non-linear Artificial Neural Network (ANN) approaches are gaining popularity. This dissertation will review publicly available published literature and present additional intelligent systems approaches that can be used to improve on the current sound quality process. The focus of this work is to address shortcomings in the current paired comparison approach to sound quality analysis. This research will propose a framework for an adaptive jury analysis approach as an alternative to the current Bradley-Terry model. The adaptive jury framework uses statistical hypothesis testing to focus on sound pairings that are most interesting and is expected to address some of the restrictions required by the Bradley-Terry model. It will also provide a more amicable framework for an intelligent systems approach

  6. Effects of Interaural Level and Time Differences on the Externalization of Sound

    DEFF Research Database (Denmark)

    Dau, Torsten; Catic, Jasmina; Santurette, Sébastien

    Distant sound sources in our environment are perceived as externalized and are thus properly localized in both direction and distance. This is due to the acoustic filtering by the head, torso, and external ears, which provides frequency dependent shaping of binaural cues, such as interaural level...... differences (ILDs) and interaural time differences (ITDs). Further, the binaural cues provided by reverberation in an enclosed space may also contribute to externalization. While these spatial cues are available in their natural form when listening to real-world sound sources, hearing-aid signal processing...... is consistent with the physical analysis that showed that a decreased distance to the sound source also reduced the fluctuations in ILDs....

  7. Review of sound card photogates

    International Nuclear Information System (INIS)

    Gingl, Zoltan; Mingesz, Robert; Mellar, Janos; Makra, Peter

    2011-01-01

    Photogates are probably the most commonly used electronic instruments to aid experiments in the field of mechanics. Although they are offered by many manufacturers, they can be too expensive to be widely used in all classrooms, in multiple experiments or even at home experimentation. Today all computers have a sound card - an interface for analogue signals. It is possible to make very simple yet highly accurate photogates for cents, while much more sophisticated solutions are also available at a still very low cost. In our paper we show several experimentally tested ways of implementing sound card photogates in detail, and we also provide full-featured, free, open-source photogate software as a much more efficient experimentation tool than the usually used sound recording programs. Further information is provided on a dedicated web page, www.noise.physx.u-szeged.hu/edudev.

  8. A model for calculating specular and diffuse reflections in outdoor sound propagation

    NARCIS (Netherlands)

    Salomons, E.M.

    2006-01-01

    In many practical outdoor situations, the direct sound path between a noise source and a receiver is screened by an obstacle. In these situations indirect sound paths become important, in particular reflections of sound waves. Reflections may occur at objects such as a vertical wall, but also at the

  9. Characterizing large river sounds: Providing context for understanding the environmental effects of noise produced by hydrokinetic turbines.

    Science.gov (United States)

    Bevelhimer, Mark S; Deng, Z Daniel; Scherelis, Constantin

    2016-01-01

    Underwater noise associated with the installation and operation of hydrokinetic turbines in rivers and tidal zones presents a potential environmental concern for fish and marine mammals. Comparing the spectral quality of sounds emitted by hydrokinetic turbines to natural and other anthropogenic sound sources is an initial step at understanding potential environmental impacts. Underwater recordings were obtained from passing vessels and natural underwater sound sources in static and flowing waters. Static water measurements were taken in a lake with minimal background noise. Flowing water measurements were taken at a previously proposed deployment site for hydrokinetic turbines on the Mississippi River, where sounds created by flowing water are part of all measurements, both natural ambient and anthropogenic sources. Vessel sizes ranged from a small fishing boat with 60 hp outboard motor to an 18-unit barge train being pushed upstream by tugboat. As expected, large vessels with large engines created the highest sound levels, which were, on average, 40 dB greater than the sound created by an operating hydrokinetic turbine. A comparison of sound levels from the same sources at different distances using both spherical and cylindrical sound attenuation functions suggests that spherical model results more closely approximate observed sound attenuation.

  10. Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers

    Science.gov (United States)

    Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari

    2017-01-01

    Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences. PMID:28450829

  11. Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers.

    Science.gov (United States)

    Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari

    2017-01-01

    Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences.

  12. Poverty, Inequality, and Discrimination as Sources of Depression among U.S. Women.

    Science.gov (United States)

    Belle, Deborah; Doucet, Joanne

    2003-01-01

    Poverty, inequality, and discrimination endanger women's well-being. Poverty is a consistent predictor of depression in women. Economic inequalities relate to reduced life expectancy and various negative physical health consequences. Discrimination maintains inequalities, lessens economic security, and exposes women to unmerited contempt.…

  13. Spatial aspects of sound quality - and by multichannel systems subjective assessment of sound reproduced by stereo

    DEFF Research Database (Denmark)

    Choisel, Sylvain

    the fidelity with which sound reproduction systems can re-create the desired stereo image, a laser pointing technique was developed to accurately collect subjects' responses in a localization task. This method is subsequently applied in an investigation of the effects of loudspeaker directivity...... on the perceived direction of panned sources. The second part of the thesis addresses the identification of auditory attributes which play a role in the perception of sound reproduced by multichannel systems. Short musical excerpts were presented in mono, stereo and several multichannel formats to evoke various...

  14. EXTRACTION OF SPATIAL PARAMETERS FROM CLASSIFIED LIDAR DATA AND AERIAL PHOTOGRAPH FOR SOUND MODELING

    Directory of Open Access Journals (Sweden)

    S. Biswas

    2012-07-01

    Full Text Available Prediction of outdoor sound levels in 3D space is important for noise management, soundscaping etc. Sound levels at outdoor can be predicted using sound propagation models which need terrain parameters. The existing practices of incorporating terrain parameters into models are often limited due to inadequate data or inability to determine accurate sound transmission paths through a terrain. This leads to poor accuracy in modelling. LIDAR data and Aerial Photograph (or Satellite Images provide opportunity to incorporate high resolution data into sound models. To realize this, identification of building and other objects and their use for extraction of terrain parameters are fundamental. However, development of a suitable technique, to incorporate terrain parameters from classified LIDAR data and Aerial Photograph, for sound modelling is a challenge. Determination of terrain parameters along various transmission paths of sound from sound source to a receiver becomes very complex in an urban environment due to the presence of varied and complex urban features. This paper presents a technique to identify the principal paths through which sound transmits from source to receiver. Further, the identified principal paths are incorporated inside the sound model for sound prediction. Techniques based on plane cutting and line tracing are developed for determining principal paths and terrain parameters, which use various information, e.g., building corner and edges, triangulated ground, tree points and locations of source and receiver. The techniques developed are validated through a field experiment. Finally efficacy of the proposed technique is demonstrated by developing a noise map for a test site.

  15. Analysis of acoustic sound signal for ONB measurement

    International Nuclear Information System (INIS)

    Park, S. J.; Kim, H. I.; Han, K. Y.; Chai, H. T.; Park, C.

    2003-01-01

    The onset of nucleate boiling (ONB) was measured in a test fuel bundle composed of several fuel element simulators (FES) by analysing the aquatic sound signals. In order measure ONBs, a hydrophone, a pre-amplifier, and a data acquisition system to acquire/process the aquatic signal was prepared. The acoustic signal generated in the coolant is converted to the current signal through the microphone. When the signal is analyzed in the frequency domain, each sound signal can be identified according to its origin of sound source. As the power is increased to a certain degree, a nucleate boiling is started. The frequent formation and collapse of the void bubbles produce sound signal. By measuring this sound signal one can pinpoint the ONB. Since the signal characteristics is identical for different mass flow rates, this method can be applicable for ascertaining ONB

  16. Urban sound energy reduction by means of sound barriers

    Science.gov (United States)

    Iordache, Vlad; Ionita, Mihai Vlad

    2018-02-01

    In urban environment, various heating ventilation and air conditioning appliances designed to maintain indoor comfort become urban acoustic pollution vectors due to the sound energy produced by these equipment. The acoustic barriers are the recommended method for the sound energy reduction in urban environment. The current sizing method of these acoustic barriers is too difficult and it is not practical for any 3D location of the noisy equipment and reception point. In this study we will develop based on the same method a new simplified tool for acoustic barriers sizing, maintaining the same precision characteristic to the classical method. Abacuses for acoustic barriers sizing are built that can be used for different 3D locations of the source and the reception points, for several frequencies and several acoustic barrier heights. The study case presented in the article represents a confirmation for the rapidity and ease of use of these abacuses in the design of the acoustic barriers.

  17. Urban sound energy reduction by means of sound barriers

    Directory of Open Access Journals (Sweden)

    Iordache Vlad

    2018-01-01

    Full Text Available In urban environment, various heating ventilation and air conditioning appliances designed to maintain indoor comfort become urban acoustic pollution vectors due to the sound energy produced by these equipment. The acoustic barriers are the recommended method for the sound energy reduction in urban environment. The current sizing method of these acoustic barriers is too difficult and it is not practical for any 3D location of the noisy equipment and reception point. In this study we will develop based on the same method a new simplified tool for acoustic barriers sizing, maintaining the same precision characteristic to the classical method. Abacuses for acoustic barriers sizing are built that can be used for different 3D locations of the source and the reception points, for several frequencies and several acoustic barrier heights. The study case presented in the article represents a confirmation for the rapidity and ease of use of these abacuses in the design of the acoustic barriers.

  18. Perceived Discrimination and Personality Development in Adulthood

    Science.gov (United States)

    Sutin, Angelina R.; Stephan, Yannick; Terracciano, Antonio

    2016-01-01

    Perceived discrimination is common and a significant source of stress that may have implications for personality development across adulthood. In this study, we examined whether experiences with discrimination were associated with maladaptive changes in the 5 major dimensions of personality using 2 longitudinal samples that differed in age and…

  19. From bird to sparrow: Learning-induced modulations in fine-grained semantic discrimination.

    Science.gov (United States)

    De Meo, Rosanna; Bourquin, Nathalie M-P; Knebel, Jean-François; Murray, Micah M; Clarke, Stephanie

    2015-09-01

    Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra

  20. The dispersion-focalization theory of sound systems

    Science.gov (United States)

    Schwartz, Jean-Luc; Abry, Christian; Boë, Louis-Jean; Vallée, Nathalie; Ménard, Lucie

    2005-04-01

    The Dispersion-Focalization Theory states that sound systems in human languages are shaped by two major perceptual constraints: dispersion driving auditory contrast towards maximal or sufficient values [B. Lindblom, J. Phonetics 18, 135-152 (1990)] and focalization driving auditory spectra towards patterns with close neighboring formants. Dispersion is computed from the sum of the inverse squared inter-spectra distances in the (F1, F2, F3, F4) space, using a non-linear process based on the 3.5 Bark critical distance to estimate F2'. Focalization is based on the idea that close neighboring formants produce vowel spectra with marked peaks, easier to process and memorize in the auditory system. Evidence for increased stability of focal vowels in short-term memory was provided in a discrimination experiment on adult French subjects [J. L. Schwartz and P. Escudier, Speech Comm. 8, 235-259 (1989)]. A reanalysis of infant discrimination data shows that focalization could well be the responsible for recurrent discrimination asymmetries [J. L. Schwartz et al., Speech Comm. (in press)]. Recent data about children vowel production indicate that focalization seems to be part of the perceptual templates driving speech development. The Dispersion-Focalization Theory produces valid predictions for both vowel and consonant systems, in relation with available databases of human languages inventories.

  1. Auditory Discrimination of Anisochrony: Influence of the Tempo and Musical Backgrounds of Listeners

    Science.gov (United States)

    Ehrle, N.; Samson, S.

    2005-01-01

    This study explored the influence of several factors, physical and human, on anisochrony's thresholds measured with an adaptive two alternative forced choice paradigm. The effect of the number and duration of sounds on anisochrony discrimination was tested in the first experiment as well as potential interactions between each of these factors and…

  2. Reassessment of the hydrocarbons in Prince William Sound and the Gulf of Alaska : identifying the source using partial least squares

    International Nuclear Information System (INIS)

    Mudge, S.M.

    2001-01-01

    Since the Exxon Valdez oil spill in Prince William Sound, Alaska there has been much discussion regarding the clean-up and long term fate of the oil. There has also been debate regarding the origin of the background hydrocarbons present within Prince William Sound (PWS) and the Gulf of Alaska (GoA). There is evidence that background (pre-spill) hydrocarbons may come from either nearby coal deposits or from natural oil seeps and eroding source rocks in the region. This paper presented a study in which the multivariate statistical methodology of the Partial Least Squares (PLS) was used to reassess the percentage contribution of coal, seep oil, shales and rivers to the hydrocarbon loading in the GoA. Data was provided by researchers at the National Ocean and Atmospheric Administration (NOAA) and the Bowdoin College, for Exxon. The data was analysed using selected sites as sources in order to develop signatures. The signatures were based on 40 and 136 compounds respectively, including the polyaromatic hydrocarbon (PAH) and terpane biomarkers from the Exxon data. The key components describing the sources were fitted to the data for other sites around the GoA to determine the proportion of the variability described by each source. The large complex datasets can be used to develop complex fingerprints for sources rather than using relatively simplistic ratios between selected compounds. The results indicate that 30 per cent of the signature is common between each source and that the small PAHs are the best diagnostic compounds in the model for the oil signature and the large PAHs are good for coal. Naphthalene, methyl and dimethyl naphthalene are the best markers for the seep oil signature. For the pre-spill background, coals and shales are best defined by the larger PAHs such as perylene and benzo(ghi)perylene. In general, the average partitioning between the two sources across all the sampling sites within the region indicated that 53 per cent is attributable to the

  3. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae.

    Science.gov (United States)

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2012-01-01

    It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21-31% compared to silent control treatments, 38-47% compared to tidal turbine sound treatments, and 46-60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment.

  4. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae.

    Directory of Open Access Journals (Sweden)

    Matthew K Pine

    Full Text Available It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21-31% compared to silent control treatments, 38-47% compared to tidal turbine sound treatments, and 46-60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment.

  5. Improving Robustness against Environmental Sounds for Directing Attention of Social Robots

    DEFF Research Database (Denmark)

    Thomsen, Nicolai Bæk; Tan, Zheng-Hua; Lindberg, Børge

    2015-01-01

    This paper presents a multi-modal system for finding out where to direct the attention of a social robot in a dialog scenario, which is robust against environmental sounds (door slamming, phone ringing etc.) and short speech segments. The method is based on combining voice activity detection (VAD......) and sound source localization (SSL) and furthermore apply post-processing to SSL to filter out short sounds. The system is tested against a baseline system in four different real-world experiments, where different sounds are used as interfering sounds. The results are promising and show a clear improvement....

  6. Discrimination against older women in health care.

    Science.gov (United States)

    Belgrave, L L

    1993-01-01

    Growing awareness of apparent gaps in health care received by women and men raises concern over possible discrimination. This literature review examines this issue for elderly women, whose health care is obtained in a system that also may be permeated with age discrimination. Physicians tend to spend more time with women and older patients, suggesting that discrimination may not be an issue in the physician-patient relationship or may work in favor of older women. However, this may simply reflect elderly women's poorer health. Gender and age disparities in medical treatments received provide a more compelling argument that the health care system is a source of discrimination against older women, who are less likely than others to receive available treatments for cardiac, renal, and other conditions. The history of medical treatment of menopause suggests that stereotypes of older women have been advantageous for segments of the health care system. Finally, in addition to discrimination that has its source within the health care system itself, societal-wide inequities, particularly economic, are extremely detrimental to older women's health care. As we respond to the health care crisis, we must be alert to the potential to rectify those structures and tendencies that can lead to discrimination against women and the aged. Health care reform presents a unique opportunity to ensure health care equity.

  7. An extended research of crossmodal correspondence between color and sound in psychology and cognitive ergonomics.

    Science.gov (United States)

    Sun, Xiuwen; Li, Xiaoling; Ji, Lingyu; Han, Feng; Wang, Huifen; Liu, Yang; Chen, Yao; Lou, Zhiyuan; Li, Zhuoyun

    2018-01-01

    Based on the existing research on sound symbolism and crossmodal correspondence, this study proposed an extended research on cross-modal correspondence between various sound attributes and color properties in a group of non-synesthetes. In Experiment 1, we assessed the associations between each property of sounds and colors. Twenty sounds with five auditory properties (pitch, roughness, sharpness, tempo and discontinuity), each varied in four levels, were used as the sound stimuli. Forty-nine colors with different hues, saturation and brightness were used to match to those sounds. Result revealed that besides pitch and tempo, roughness and sharpness also played roles in sound-color correspondence. Reaction times of sound-hue were a little longer than the reaction times of sound-lightness. In Experiment 2, a speeded target discrimination task was used to assess whether the associations between sound attributes and color properties could invoke natural cross-modal correspondence and improve participants' cognitive efficiency in cognitive tasks. Several typical sound-color pairings were selected according to the results of Experiment 1. Participants were divided into two groups (congruent and incongruent). In each trial participants had to judge whether the presented color could appropriately be associated with the sound stimuli. Result revealed that participants responded more quickly and accurately in the congruent group than in the incongruent group. It was also found that there was no significant difference in reaction times and error rates between sound-hue and sound-lightness. The results of Experiment 1 and 2 indicate the existence of a robust crossmodal correspondence between multiple attributes of sound and color, which also has strong influence on cognitive tasks. The inconsistency of the reaction times between sound-hue and sound-lightness in Experiment 1 and 2 is probably owing to the difference in experimental protocol, which indicates that the complexity

  8. Multisensory interaction in vibrotactile detection and discrimination of amplitude modulation

    DEFF Research Database (Denmark)

    Teodorescu, Kinneret; Bouchigny, Sylvain; Hoffmann, Pablo F.

    2011-01-01

    Perception of vibration during drilling demands integration of haptic and auditory information with force information. In this study we explored the ability to detect and discriminate changes in vibrotactile stimuli amplitude based either on purely haptic feedback or together with congruent...... skill of maxilla-facial surgery strongly relies on enhanced touch perception, as measured in reaction times and discrimination ability in bi-modal vibro-auditory conditions. These observations suggest that acquisition of mandibular surgery skill has brought to an enhanced representation of vibro......-tactile modulations in relevant stimuli ranges. Altogether, our results provide basis to assume that during acquisition of mandibular drilling skill, trainees may benefit from training of relevant basic aspects of touch perception - sensitivity to vibration and accompanying modulations of sound....

  9. Total organic carbon, an important tool in a holistic approach to hydrocarbon source fingerprinting

    International Nuclear Information System (INIS)

    Boehm, P.D.; Burns, W.A.; Page, D.S.; Bence, A.E.; Mankiewicz, P.J.; Brown, J.S.; Douglas, G.S.

    2002-01-01

    Total organic carbon (TOC) was used to verify the consistency of source allocation results for the natural petrogenic hydrocarbon background of the northern Gulf of Alaska and Prince William Sound where the Exxon Valdez oil spill occurred in 1998. The samples used in the study were either pre-spill sediments or from the seafloor outside the spill path. It is assumed that the natural petrogenic hydrocarbon background in the area comes from either seep oil residues and shale erosion including erosion from petroleum source rock shales, or from coals including those of the Bering River coalfields. The objective of this study was to use the TOC calculations to discriminate between the two very different sources. TOC can constrain the contributions of specific sources and rule out incorrect source allocations, particularly when inputs are dominated by fossil organic carbon. The benthic sediments used in this study showed excellent agreement between measured TOC and calculated TOC from hydrocarbon fingerprint matches of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. TOC and fingerprint matches confirmed that TOC sources were properly identified. The matches quantify the hydrocarbon contributions of different sources to the benthic sediments and the degree of hydrocarbon winnowing by waves and currents. It was concluded that the natural petrogenic hydrocarbon background in the sediments in the area comes from eroding Tertiary shales and oil seeps along the northern Gulf of Alaska coast. Thermally mature area coals are excluded from being important contributors to the background at Prince William Sound because of their high TOC content. 26 refs., 4 figs

  10. Total organic carbon, an important tool in a holistic approach to hydrocarbon source fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, P.D. [Battelle, Waltham, MA (United States); Burns, W.A. [W.A. Burns Consulting Services, Houston, TX (United States); Page, D.S. [Bowdoin College, Brunswick, ME (United States); Bence, A.E.; Mankiewicz, P.J. [ExxonMobil Upstream Research Co., Houston, TX (United States); Brown, J.S.; Douglas, G.S. [Battelle, Duxbury, MA (United States)

    2002-07-01

    Total organic carbon (TOC) was used to verify the consistency of source allocation results for the natural petrogenic hydrocarbon background of the northern Gulf of Alaska and Prince William Sound where the Exxon Valdez oil spill occurred in 1998. The samples used in the study were either pre-spill sediments or from the seafloor outside the spill path. It is assumed that the natural petrogenic hydrocarbon background in the area comes from either seep oil residues and shale erosion including erosion from petroleum source rock shales, or from coals including those of the Bering River coalfields. The objective of this study was to use the TOC calculations to discriminate between the two very different sources. TOC can constrain the contributions of specific sources and rule out incorrect source allocations, particularly when inputs are dominated by fossil organic carbon. The benthic sediments used in this study showed excellent agreement between measured TOC and calculated TOC from hydrocarbon fingerprint matches of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. TOC and fingerprint matches confirmed that TOC sources were properly identified. The matches quantify the hydrocarbon contributions of different sources to the benthic sediments and the degree of hydrocarbon winnowing by waves and currents. It was concluded that the natural petrogenic hydrocarbon background in the sediments in the area comes from eroding Tertiary shales and oil seeps along the northern Gulf of Alaska coast. Thermally mature area coals are excluded from being important contributors to the background at Prince William Sound because of their high TOC content. 26 refs., 4 figs.

  11. Laser discrimination by stimulated emission of a phosphor

    Science.gov (United States)

    Mathur, V. K.; Chakrabarti, K.

    1991-01-01

    A method for discriminating sources of UV, near infrared, and far infrared laser radiation was discovered. This technology is based on the use of a single magnesium sulfide phosphor doubly doped with rare earth ions, which is thermally/optically stimulated to generate colors correlatable to the incident laser radiation. The phosphor, after initial charging by visible light, exhibits green stimulated luminescence when exposed to a near infrared source (Nd: YAG laser). On exposure to far infrared sources (CO2 laser) the phosphor emission changes to orange color. A UV laser produces both an orange red as well as green color. A device using this phosphor is useful for detecting the laser and for discriminating between the near infrared, far infrared, and UV lasers. The technology is also capable of infrared laser diode beam profiling since the radiation source leaves an imprint on the phosphor that can be photographed. Continued development of the technology offers potential for discrimination between even smaller bandwidths within the infrared spectrum, a possible aid to communication or wavemixing devices that need to rapidly identify and process optical signals.

  12. Instrument Identification in Polyphonic Music: Feature Weighting to Minimize Influence of Sound Overlaps

    Directory of Open Access Journals (Sweden)

    Goto Masataka

    2007-01-01

    Full Text Available We provide a new solution to the problem of feature variations caused by the overlapping of sounds in instrument identification in polyphonic music. When multiple instruments simultaneously play, partials (harmonic components of their sounds overlap and interfere, which makes the acoustic features different from those of monophonic sounds. To cope with this, we weight features based on how much they are affected by overlapping. First, we quantitatively evaluate the influence of overlapping on each feature as the ratio of the within-class variance to the between-class variance in the distribution of training data obtained from polyphonic sounds. Then, we generate feature axes using a weighted mixture that minimizes the influence via linear discriminant analysis. In addition, we improve instrument identification using musical context. Experimental results showed that the recognition rates using both feature weighting and musical context were 84.1 for duo, 77.6 for trio, and 72.3 for quartet; those without using either were 53.4, 49.6, and 46.5 , respectively.

  13. Monitoring Anthropogenic Ocean Sound from Shipping Using an Acoustic Sensor Network and a Compressive Sensing Approach †

    Science.gov (United States)

    Harris, Peter; Philip, Rachel; Robinson, Stephen; Wang, Lian

    2016-01-01

    Monitoring ocean acoustic noise has been the subject of considerable recent study, motivated by the desire to assess the impact of anthropogenic noise on marine life. A combination of measuring ocean sound using an acoustic sensor network and modelling sources of sound and sound propagation has been proposed as an approach to estimating the acoustic noise map within a region of interest. However, strategies for developing a monitoring network are not well established. In this paper, considerations for designing a network are investigated using a simulated scenario based on the measurement of sound from ships in a shipping lane. Using models for the sources of the sound and for sound propagation, a noise map is calculated and measurements of the noise map by a sensor network within the region of interest are simulated. A compressive sensing algorithm, which exploits the sparsity of the representation of the noise map in terms of the sources, is used to estimate the locations and levels of the sources and thence the entire noise map within the region of interest. It is shown that although the spatial resolution to which the sound sources can be identified is generally limited, estimates of aggregated measures of the noise map can be obtained that are more reliable compared with those provided by other approaches. PMID:27011187

  14. Turbine Sound May Influence the Metamorphosis Behaviour of Estuarine Crab Megalopae

    Science.gov (United States)

    Pine, Matthew K.; Jeffs, Andrew G.; Radford, Craig A.

    2012-01-01

    It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21–31% compared to silent control treatments, 38–47% compared to tidal turbine sound treatments, and 46–60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment. PMID:23240063

  15. Assessing and optimizing infra-sound networks to monitor volcanic eruptions

    International Nuclear Information System (INIS)

    Tailpied, Dorianne

    2016-01-01

    Understanding infra-sound signals is essential to monitor compliance with the Comprehensive Nuclear-Test ban Treaty, and also to demonstrate the potential of the global monitoring infra-sound network for civil and scientific applications. The main objective of this thesis is to develop a robust tool to estimate and optimize the performance of any infra-sound network to monitor explosive sources such as volcanic eruptions. Unlike previous studies, the developed method has the advantage to consider realistic atmospheric specifications along the propagation path, source frequency and noise levels at the stations. It allows to predict the attenuation and the minimum detectable source amplitude. By simulating the performances of any infra-sound networks, it is then possible to define the optimal configuration of the network to monitor a specific region, during a given period. When carefully adding a station to the existing network, performance can be improved by a factor of 2. However, it is not always possible to complete the network. A good knowledge of detection capabilities at large distances is thus essential. To provide a more realistic picture of the performance, we integrate the atmospheric longitudinal variability along the infra-sound propagation path in our simulations. This thesis also contributes in providing a confidence index taking into account the uncertainties related to propagation and atmospheric models. At high frequencies, the error can reach 40 dB. Volcanic eruptions are natural, powerful and valuable calibrating sources of infra-sound, worldwide detected. In this study, the well instrumented volcanoes Yasur, in Vanuatu, and Etna, in Italy, offer a unique opportunity to validate our attenuation model. In particular, accurate comparisons between near-field recordings and far-field detections of these volcanoes have helped to highlight the potential of our simulation tool to remotely monitor volcanoes. Such work could significantly help to prevent

  16. On Sound: Reconstructing a Zhuangzian Perspective of Music

    Directory of Open Access Journals (Sweden)

    So Jeong Park

    2015-12-01

    Full Text Available A devotion to music in Chinese classical texts is worth noticing. Early Chinese thinkers saw music as a significant part of human experience and a core practice for philosophy. While Confucian endorsement of ritual and music has been discussed in the field, Daoist understanding of music was hardly explored. This paper will make a careful reading of the Xiánchí 咸池 music story in the Zhuangzi, one of the most interesting, but least noticed texts, and reconstruct a Zhuangzian perspective from it. While sounds had been regarded as mere building blocks of music and thus depreciated in the hierarchical understanding of music in the mainstream discourse of early China, sound is the alpha and omega of music in the Zhuangzian perspective. All kinds of sounds, both human and natural, are invited into musical discourse. Sound is regarded as the real source of our being moved by music, and therefore, musical consummation is depicted as embodiment through sound.

  17. The propagation of sound in narrow street canyons

    Science.gov (United States)

    Iu, K. K.; Li, K. M.

    2002-08-01

    This paper addresses an important problem of predicting sound propagation in narrow street canyons with width less than 10 m, which are commonly found in a built-up urban district. Major noise sources are, for example, air conditioners installed on building facades and powered mechanical equipment for repair and construction work. Interference effects due to multiple reflections from building facades and ground surfaces are important contributions in these complex environments. Although the studies of sound transmission in urban areas can be traced back to as early as the 1960s, the resulting mathematical and numerical models are still unable to predict sound fields accurately in city streets. This is understandable because sound propagation in city streets involves many intriguing phenomena such as reflections and scattering at the building facades, diffusion effects due to recessions and protrusions of building surfaces, geometric spreading, and atmospheric absorption. This paper describes the development of a numerical model for the prediction of sound fields in city streets. To simplify the problem, a typical city street is represented by two parallel reflecting walls and a flat impedance ground. The numerical model is based on a simple ray theory that takes account of multiple reflections from the building facades. The sound fields due to the point source and its images are summed coherently such that mutual interference effects between contributing rays can be included in the analysis. Indoor experiments are conducted in an anechoic chamber. Experimental data are compared with theoretical predictions to establish the validity and usefulness of this simple model. Outdoor experimental measurements have also been conducted to further validate the model. copyright 2002 Acoustical Society of America.

  18. ANTI-DISCRIMINATION LAW AND COURT PRACTICE IN CROATIA-INDIVIDUAL AND ASSOCIATIONAL ANTI-DISCRIMINATION CLAIM AS (INEFFICIENT MECHANISMS FOR LEGAL PROTECTION

    Directory of Open Access Journals (Sweden)

    Paula Poretti

    2015-01-01

    Full Text Available In the paper basic legal sources of European and Croatian anti-discrimination law are presented. Special attention is given to Anti-discrimination Act from 2009 which was enacted with the aim to provide anti-discrimination legal framework as a guarantee of a high level of legal protection from different forms of discrimination in Croatian legal system. Individual and associational anti—discrimination claim as legal mechanisms for efficient legal protection are questioned. Also, along with the numeric indicators which are provided in order to illustrate practice of the courts, an overview of available inidividual and associational anti-discrimination claims through which proceedings in front of courts and other competent authorities were initiated in last few years is presented. Deficiencies in anti-discrimination law and problems of court practice in Croatia are detected. Defects which need to be eliminated in order to create preconditions for efficient legal protection from discrimination in Croatian legal system are highlighted.

  19. The meaning of city noises: Investigating sound quality in Paris (France)

    Science.gov (United States)

    Dubois, Daniele; Guastavino, Catherine; Maffiolo, Valerie; Guastavino, Catherine; Maffiolo, Valerie

    2004-05-01

    The sound quality of Paris (France) was investigated by using field inquiries in actual environments (open questionnaires) and using recordings under laboratory conditions (free-sorting tasks). Cognitive categories of soundscapes were inferred by means of psycholinguistic analyses of verbal data and of mathematical analyses of similarity judgments. Results show that auditory judgments mainly rely on source identification. The appraisal of urban noise therefore depends on the qualitative evaluation of noise sources. The salience of human sounds in public spaces has been demonstrated, in relation to pleasantness judgments: soundscapes with human presence tend to be perceived as more pleasant than soundscapes consisting solely of mechanical sounds. Furthermore, human sounds are qualitatively processed as indicators of human outdoor activities, such as open markets, pedestrian areas, and sidewalk cafe districts that reflect city life. In contrast, mechanical noises (mainly traffic noise) are commonly described in terms of physical properties (temporal structure, intensity) of a permanent background noise that also characterizes urban areas. This connotes considering both quantitative and qualitative descriptions to account for the diversity of cognitive interpretations of urban soundscapes, since subjective evaluations depend both on the meaning attributed to noise sources and on inherent properties of the acoustic signal.

  20. Neuromorphic Audio-Visual Sensor Fusion on a Sound-Localising Robot

    Directory of Open Access Journals (Sweden)

    Vincent Yue-Sek Chan

    2012-02-01

    Full Text Available This paper presents the first robotic system featuring audio-visual sensor fusion with neuromorphic sensors. We combine a pair of silicon cochleae and a silicon retina on a robotic platform to allow the robot to learn sound localisation through self-motion and visual feedback, using an adaptive ITD-based sound localisation algorithm. After training, the robot can localise sound sources (white or pink noise in a reverberant environment with an RMS error of 4 to 5 degrees in azimuth. In the second part of the paper, we investigate the source binding problem. An experiment is conducted to test the effectiveness of matching an audio event with a corresponding visual event based on their onset time. The results show that this technique can be quite effective, despite its simplicity.

  1. A unified approach for the spatial enhancement of sound

    Science.gov (United States)

    Choi, Joung-Woo; Jang, Ji-Ho; Kim, Yang-Hann

    2005-09-01

    This paper aims to control the sound field spatially, so that the desired or target acoustic variable is enhanced within a zone where a listener is located. This is somewhat analogous to having manipulators that can draw sounds in any place. This also means that one can somehow see the controlled shape of sound in frequency or in real time. The former assures its practical applicability, for example, listening zone control for music. The latter provides a mean of analyzing sound field. With all these regards, a unified approach is proposed that can enhance selected acoustic variables using multiple sources. Three kinds of acoustic variables that have to do with magnitude and direction of sound field are formulated and enhanced. The first one, which has to do with the spatial control of acoustic potential energy, enables one to make a zone of loud sound over an area. Otherwise, one can control directional characteristic of sound field by controlling directional energy density, or one can enhance the magnitude and direction of sound at the same time by controlling acoustic intensity. Throughout various examples, it is shown that these acoustic variables can be controlled successfully by the proposed approach.

  2. Source discrimination between Mining blasts and Earthquakes in Tianshan orogenic belt, NW China

    Science.gov (United States)

    Tang, L.; Zhang, M.; Wen, L.

    2017-12-01

    In recent years, a large number of quarry blasts have been detonated in Tianshan Mountains of China. It is necessary to discriminate those non-earthquake records from the earthquake catalogs in order to determine the real seismicity of the region. In this study, we have investigated spectral ratios and amplitude ratios as discriminants for regional seismic-event identification using explosions and earthquakes recorded at Xinjiang Seismic Network (XJSN) of China. We used a data set that includes 1071 earthquakes and 2881 non-earthquakes as training data recorded by the XJSN between years of 2009 and 2016, with both types of events in a comparable local magnitude range (1.5 to 2.9). The non-earthquake and earthquake groups were well separated by amplitude ratios of Pg/Sg, with the separation increasing with frequency when averaged over three stations. The 8- to 15-Hz Pg/Sg ratio was proved to be the most precise and accurate discriminant, which works for more than 90% of the events. In contrast, the P spectral ratio performed considerably worse with a significant overlap (about 60% overlap) between the earthquake and explosion populations. The comparison results show amplitude ratios between compressional and shear waves discriminate better than low-frequency to high-frequency spectral ratios for individual phases. In discriminating between explosions and earthquakes, none of two discriminants were able to completely separate the two populations of events. However, a joint discrimination scheme employing simple majority voting reduces misclassifications to 10%. In the region of the study, 44% of the examined seismic events were determined to be non-earthquakes and 55% to be earthquakes. The earthquakes occurring on land are related to small faults, while the blasts are concentrated in large quarries.

  3. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  4. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  5. Aerodynamic sound of flow past an airfoil

    Science.gov (United States)

    Wang, Meng

    1995-01-01

    The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord

  6. Sound Beams with Shockwave Pulses

    Science.gov (United States)

    Enflo, B. O.

    2000-11-01

    The beam equation for a sound beam in a diffusive medium, called the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, has a class of solutions, which are power series in the transverse variable with the terms given by a solution of a generalized Burgers’ equation. A free parameter in this generalized Burgers’ equation can be chosen so that the equation describes an N-wave which does not decay. If the beam source has the form of a spherical cap, then a beam with a preserved shock can be prepared. This is done by satisfying an inequality containing the spherical radius, the N-wave pulse duration, the N-wave pulse amplitude, and the sound velocity in the fluid.

  7. Analysis of financial soundness of manufacturing companies in Indonesia Stock Exchange

    Directory of Open Access Journals (Sweden)

    Widi Hidayat

    2016-07-01

    Full Text Available This study aims to provide information to the issuer and Bapepam and Indonesian Institute of Accountants with additional important information content of ratings and financial soundness of the indicators that do not harm investors. This is an explanatory and descriptive nature of causality using quantitative methods, using all companies listed on the Indonesia Stock Exchange (ISE taken as the sample. The data were analyzed using discriminant statistical analysis tools are processed with SPSS. The results showed that the level of financial soundness of the manufacturing industries listed on the ISE such as 23 (62% Companies Current Asset Growth (CAG is low as well as Fixed Asset growth (FAG 28 (76% companies is still low, Equity Growth (EqG by 27 (73% the company, Revenue growth (RG 27 (65% companies and Net Income Growth (NIG 35 (95% firms. Two manufacturing companies have a very high NIG, thus, NIG average is very high. The seven models of financial soundness were tested based on the growth of corporate finance such as CAG, FAG, LG, EqG, RG, ExG and NIG. Only one model is not significant, the model RG, while the other model is a significant, with a significant difference be-tween the growths rates of the sound and unsound corporate finances industry groups.

  8. Difficulty in Learning Similar-Sounding Words: A Developmental Stage or a General Property of Learning?

    Science.gov (United States)

    Pajak, Bozena; Creel, Sarah C.; Levy, Roger

    2016-01-01

    How are languages learned, and to what extent are learning mechanisms similar in infant native-language (L1) and adult second-language (L2) acquisition? In terms of vocabulary acquisition, we know from the infant literature that the ability to discriminate similar-sounding words at a particular age does not guarantee successful word-meaning…

  9. Heart sounds analysis using probability assessment.

    Science.gov (United States)

    Plesinger, F; Viscor, I; Halamek, J; Jurco, J; Jurak, P

    2017-07-31

    This paper describes a method for automated discrimination of heart sounds recordings according to the Physionet Challenge 2016. The goal was to decide if the recording refers to normal or abnormal heart sounds or if it is not possible to decide (i.e. 'unsure' recordings). Heart sounds S1 and S2 are detected using amplitude envelopes in the band 15-90 Hz. The averaged shape of the S1/S2 pair is computed from amplitude envelopes in five different bands (15-90 Hz; 55-150 Hz; 100-250 Hz; 200-450 Hz; 400-800 Hz). A total of 53 features are extracted from the data. The largest group of features is extracted from the statistical properties of the averaged shapes; other features are extracted from the symmetry of averaged shapes, and the last group of features is independent of S1 and S2 detection. Generated features are processed using logical rules and probability assessment, a prototype of a new machine-learning method. The method was trained using 3155 records and tested on 1277 hidden records. It resulted in a training score of 0.903 (sensitivity 0.869, specificity 0.937) and a testing score of 0.841 (sensitivity 0.770, specificity 0.913). The revised method led to a test score of 0.853 in the follow-up phase of the challenge. The presented solution achieved 7th place out of 48 competing entries in the Physionet Challenge 2016 (official phase). In addition, the PROBAfind software for probability assessment was introduced.

  10. Speed of sound measurements of liquid C1–C4 alkanols

    International Nuclear Information System (INIS)

    Dávila, María J.; Gedanitz, Holger; Span, Roland

    2016-01-01

    Highlights: • Speeds of sound in alkanols were measured in a wide temperature and pressure range. • A pulse-echo method with a double path type sensor was employed. • A double polynomial equation was used to fit the experimental speed of sound data. • The accurate results were compared with available literature sources. - Abstract: Speed of sound measurements were made in methanol, ethanol, propan-1-ol, and butan-1-ol in the temperature range from (253.15 to 353.15) K at pressures up to 30 MPa by use of a pulse-echo method with a double path type sensor. The expanded overall uncertainty (k = 2) in speed of sound measurements are estimated to be 0.026% for methanol, 0.03% for ethanol, 0.013% for propan-1-ol and 0.01% for butan-1-ol. A double polynomial equation for the speed of sound with inputs of temperature and pressure has been fitted from the experimental results. These were compared with available literature sources and fundamental equations of state, showing good agreement among them to comparable alcohol purities and experimental uncertainties.

  11. Phoneme categorization and discrimination in younger and older adults: a comparative analysis of perceptual, lexical, and attentional factors.

    Science.gov (United States)

    Mattys, Sven L; Scharenborg, Odette

    2014-03-01

    This study investigates the extent to which age-related language processing difficulties are due to a decline in sensory processes or to a deterioration of cognitive factors, specifically, attentional control. Two facets of attentional control were examined: inhibition of irrelevant information and divided attention. Younger and older adults were asked to categorize the initial phoneme of spoken syllables ("Was it m or n?"), trying to ignore the lexical status of the syllables. The phonemes were manipulated to range in eight steps from m to n. Participants also did a discrimination task on syllable pairs ("Were the initial sounds the same or different?"). Categorization and discrimination were performed under either divided attention (concurrent visual-search task) or focused attention (no visual task). The results showed that even when the younger and older adults were matched on their discrimination scores: (1) the older adults had more difficulty inhibiting lexical knowledge than did younger adults, (2) divided attention weakened lexical inhibition in both younger and older adults, and (3) divided attention impaired sound discrimination more in older than younger listeners. The results confirm the independent and combined contribution of sensory decline and deficit in attentional control to language processing difficulties associated with aging. The relative weight of these variables and their mechanisms of action are discussed in the context of theories of aging and language. (c) 2014 APA, all rights reserved.

  12. An extended research of crossmodal correspondence between color and sound in psychology and cognitive ergonomics

    Science.gov (United States)

    Sun, Xiuwen; Ji, Lingyu; Han, Feng; Wang, Huifen; Liu, Yang; Chen, Yao; Lou, Zhiyuan; Li, Zhuoyun

    2018-01-01

    Based on the existing research on sound symbolism and crossmodal correspondence, this study proposed an extended research on cross-modal correspondence between various sound attributes and color properties in a group of non-synesthetes. In Experiment 1, we assessed the associations between each property of sounds and colors. Twenty sounds with five auditory properties (pitch, roughness, sharpness, tempo and discontinuity), each varied in four levels, were used as the sound stimuli. Forty-nine colors with different hues, saturation and brightness were used to match to those sounds. Result revealed that besides pitch and tempo, roughness and sharpness also played roles in sound-color correspondence. Reaction times of sound-hue were a little longer than the reaction times of sound-lightness. In Experiment 2, a speeded target discrimination task was used to assess whether the associations between sound attributes and color properties could invoke natural cross-modal correspondence and improve participants’ cognitive efficiency in cognitive tasks. Several typical sound-color pairings were selected according to the results of Experiment 1. Participants were divided into two groups (congruent and incongruent). In each trial participants had to judge whether the presented color could appropriately be associated with the sound stimuli. Result revealed that participants responded more quickly and accurately in the congruent group than in the incongruent group. It was also found that there was no significant difference in reaction times and error rates between sound-hue and sound-lightness. The results of Experiment 1 and 2 indicate the existence of a robust crossmodal correspondence between multiple attributes of sound and color, which also has strong influence on cognitive tasks. The inconsistency of the reaction times between sound-hue and sound-lightness in Experiment 1 and 2 is probably owing to the difference in experimental protocol, which indicates that the

  13. An extended research of crossmodal correspondence between color and sound in psychology and cognitive ergonomics

    Directory of Open Access Journals (Sweden)

    Xiuwen Sun

    2018-03-01

    Full Text Available Based on the existing research on sound symbolism and crossmodal correspondence, this study proposed an extended research on cross-modal correspondence between various sound attributes and color properties in a group of non-synesthetes. In Experiment 1, we assessed the associations between each property of sounds and colors. Twenty sounds with five auditory properties (pitch, roughness, sharpness, tempo and discontinuity, each varied in four levels, were used as the sound stimuli. Forty-nine colors with different hues, saturation and brightness were used to match to those sounds. Result revealed that besides pitch and tempo, roughness and sharpness also played roles in sound-color correspondence. Reaction times of sound-hue were a little longer than the reaction times of sound-lightness. In Experiment 2, a speeded target discrimination task was used to assess whether the associations between sound attributes and color properties could invoke natural cross-modal correspondence and improve participants’ cognitive efficiency in cognitive tasks. Several typical sound-color pairings were selected according to the results of Experiment 1. Participants were divided into two groups (congruent and incongruent. In each trial participants had to judge whether the presented color could appropriately be associated with the sound stimuli. Result revealed that participants responded more quickly and accurately in the congruent group than in the incongruent group. It was also found that there was no significant difference in reaction times and error rates between sound-hue and sound-lightness. The results of Experiment 1 and 2 indicate the existence of a robust crossmodal correspondence between multiple attributes of sound and color, which also has strong influence on cognitive tasks. The inconsistency of the reaction times between sound-hue and sound-lightness in Experiment 1 and 2 is probably owing to the difference in experimental protocol, which indicates

  14. Effects of interaural level differences on the externalization of sound

    DEFF Research Database (Denmark)

    Catic, Jasmina; Santurette, Sébastien; Dau, Torsten

    2012-01-01

    Distant sound sources in our environment are perceived as externalized and are thus properly localized in both direction and distance. This is due to the acoustic filtering by the head, torso, and external ears, which provides frequency-dependent shaping of binaural cues such as interaural level...... differences (ILDs) and interaural time differences (ITDs). In rooms, the sound reaching the two ears is further modified by reverberant energy, which leads to increased fluctuations in short-term ILDs and ITDs. In the present study, the effect of ILD fluctuations on the externalization of sound......, for sounds that contain frequencies above about 1 kHz the ILD fluctuations were found to be an essential cue for externalization....

  15. Externalization versus Internalization of Sound in Normal-hearing and Hearing-impaired Listeners

    DEFF Research Database (Denmark)

    Ohl, Björn; Laugesen, Søren; Buchholz, Jörg

    2010-01-01

    The externalization of sound, i. e. the perception of auditory events as being located outside of the head, is a natural phenomenon for normalhearing listeners, when perceiving sound coming from a distant physical sound source. It is potentially useful for hearing in background noise......, but the relevant cues might be distorted by a hearing impairment and also by the processing of the incoming sound through hearing aids. In this project, two intuitive tests in natural real-life surroundings were developed, which capture the limits of the perception of externalization. For this purpose...

  16. The Antecedents and Consequences of Racial/Ethnic Discrimination during Adolescence: Does the Source of Discrimination Matter?

    Science.gov (United States)

    Benner, Aprile D.; Graham, Sandra

    2013-01-01

    In the current study, we examined the precursors and consequences of discrimination for 876 Latino, African American, and Asian American adolescents (M[subscript age] = 16.9 years, SD = 0.43). The race/ethnic characteristics of schools and neighborhoods influenced adolescents' perceptions of the race/ethnic climates of these contexts. In turn,…

  17. Mercury in Long Island Sound sediments

    Science.gov (United States)

    Varekamp, J.C.; Buchholtz ten Brink, Marilyn R.; Mecray, E.I.; Kreulen, B.

    2000-01-01

    Mercury (Hg) concentrations were measured in 394 surface and core samples from Long Island Sound (LIS). The surface sediment Hg concentration data show a wide spread, ranging from 600 ppb Hg in westernmost LIS. Part of the observed range is related to variations in the bottom sedimentary environments, with higher Hg concentrations in the muddy depositional areas of central and western LIS. A strong residual trend of higher Hg values to the west remains when the data are normalized to grain size. Relationships between a tracer for sewage effluents (C. perfringens) and Hg concentrations indicate that between 0-50 % of the Hg is derived from sewage sources for most samples from the western and central basins. A higher percentage of sewage-derived Hg is found in samples from the westernmost section of LIS and in some local spots near urban centers. The remainder of the Hg is carried into the Sound with contaminated sediments from the watersheds and a small fraction enters the Sound as in situ atmospheric deposition. The Hg-depth profiles of several cores have well-defined contamination profiles that extend to pre-industrial background values. These data indicate that the Hg levels in the Sound have increased by a factor of 5-6 over the last few centuries, but Hg levels in LIS sediments have declined in modern times by up to 30 %. The concentrations of C. perfringens increased exponentially in the top core sections which had declining Hg concentrations, suggesting a recent decline in Hg fluxes that are unrelated to sewage effluents. The observed spatial and historical trends show Hg fluxes to LIS from sewage effluents, contaminated sediment input from the Connecticut River, point source inputs of strongly contaminated sediment from the Housatonic River, variations in the abundance of Hg carrier phases such as TOC and Fe, and focusing of sediment-bound Hg in association with westward sediment transport within the Sound.

  18. The sound field of a rotating dipole in a plug flow.

    Science.gov (United States)

    Wang, Zhao-Huan; Belyaev, Ivan V; Zhang, Xiao-Zheng; Bi, Chuan-Xing; Faranosov, Georgy A; Dowell, Earl H

    2018-04-01

    An analytical far field solution for a rotating point dipole source in a plug flow is derived. The shear layer of the jet is modelled as an infinitely thin cylindrical vortex sheet and the far field integral is calculated by the stationary phase method. Four numerical tests are performed to validate the derived solution as well as to assess the effects of sound refraction from the shear layer. First, the calculated results using the derived formulations are compared with the known solution for a rotating dipole in a uniform flow to validate the present model in this fundamental test case. After that, the effects of sound refraction for different rotating dipole sources in the plug flow are assessed. Then the refraction effects on different frequency components of the signal at the observer position, as well as the effects of the motion of the source and of the type of source are considered. Finally, the effect of different sound speeds and densities outside and inside the plug flow is investigated. The solution obtained may be of particular interest for propeller and rotor noise measurements in open jet anechoic wind tunnels.

  19. On the sound insulation of acoustic metasurface using a sub-structuring approach

    Science.gov (United States)

    Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen

    2017-08-01

    The feasibility of using an acoustic metasurface (AMS) with acoustic stop-band property to realize sound insulation with ventilation function is investigated. An efficient numerical approach is proposed to evaluate its sound insulation performance. The AMS is excited by a reverberant sound source and the standardized sound reduction index (SRI) is numerically investigated. To facilitate the modeling, the coupling between the AMS and the adjacent acoustic fields is formulated using a sub-structuring approach. A modal based formulation is applied to both the source and receiving room, enabling an efficient calculation in the frequency range from 125 Hz to 2000 Hz. The sound pressures and the velocities at the interface are matched by using a transfer function relation based on ;patches;. For illustration purposes, numerical examples are investigated using the proposed approach. The unit cell constituting the AMS is constructed in the shape of a thin acoustic chamber with tailored inner structures, whose stop-band property is numerically analyzed and experimentally demonstrated. The AMS is shown to provide effective sound insulation of over 30 dB in the stop-band frequencies from 600 to 1600 Hz. It is also shown that the proposed approach has the potential to be applied to a broad range of AMS studies and optimization problems.

  20. Sound produced by an oscillating arc in a high-pressure gas

    Science.gov (United States)

    Popov, Fedor K.; Shneider, Mikhail N.

    2017-08-01

    We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.

  1. Problems in nonlinear acoustics: Scattering of sound by sound, parametric receiving arrays, nonlinear effects in asymmetric sound beams and pulsed finite amplitude sound beams

    Science.gov (United States)

    Hamilton, Mark F.

    1989-08-01

    Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.

  2. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    Science.gov (United States)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  3. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing.

    Science.gov (United States)

    Worthmann, Brian M; Song, H C; Dowling, David R

    2015-12-01

    Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.

  4. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  5. Study of signal discrimination for timing measurements

    CERN Document Server

    Krepelkova, Marta

    2017-01-01

    The timing detectors of the CMS-TOTEM Precision Proton Spectrometer (CT-PPS) are currently read out using discrete components, separated into three boards; the first board hosts the sensors and the amplifiers, the second one hosts the discriminators and the third is dedicated to the Time to Digital Converter (TDC) and to the interface with the data acquisition system (DAQ). This work proposes a new front-end electronics for the timing detector, with sensors, amplifiers and discriminators integrated on the same board. We simulated an updated version of the amplifier together with a discriminator designed using commercial components. We decided to use an LVDS buffer as a discriminator, because of its cost, availability, speed and lo w power consumption. As a proof of concept, we used the LVDS input of an FPGA to discriminate signals produced by a detector prototype, using a radioactive source.

  6. Submarine groundwater discharge driven nitrogen fluxes to Long Island Sound, NY: Terrestrial vs. marine sources

    Science.gov (United States)

    Tamborski, J. J.; Cochran, J. K.; Bokuniewicz, H. J.

    2017-12-01

    Bottom-waters in Smithtown Bay (Long Island Sound, NY) are subject to hypoxic conditions every summer despite limited nutrient inputs from waste-water and riverine sources, while modeling estimates of groundwater inputs are thought to be insignificant. Terrestrial and marine fluxes of submarine groundwater discharge (SGD) were quantified to Smithtown Bay using mass balances of 222Rn, 224Ra, 226Ra and 228Ra during the spring and summer of 2014/2015, in order to track this seasonal transition period. Intertidal pore waters from a coastal bluff (terrestrial SGD) and from a barrier beach (marine SGD) displayed substantial differences in N concentrations and sources, traced using a multi-isotope approach (222Rn, Ra, δ15N-NO3-, δ18O-NO3-). NO3- in terrestrial SGD did not display any seasonality and was derived from residential septic systems and fertilizer. Marine SGD N concentrations varied month-to-month because of mixing between oxic seawater and hypoxic saline pore waters; N concentrations were greatest during the summer, when NO3- was derived from the remineralization of organic matter. Short-lived 222Rn and 224Ra SGD fluxes were used to determine remineralized N loads along tidal recirculation flow paths, while long-lived 228Ra was used to trace inputs of anthropogenic N in terrestrial SGD. 228Ra-derived terrestrial N load estimates were between 20 and 55% lower than 224Ra-derived estimates (excluding spring 2014); 228Ra may be a more appropriate tracer of terrestrial SGD N loads. Terrestrial SGD NO3- (derived from 228Ra) to Smithtown Bay varied from (1.40-12.8) ∗ 106 mol N y-1, with comparable marine SGD NO3- fluxes of (1.70-6.79) ∗ 106 mol N y-1 derived from 222Rn and 224Ra. Remineralized N loads were greater during the summer compared with spring, and these may be an important driver toward the onset of seasonal hypoxic conditions in Smithtown Bay and western Long Island Sound. Seawater recirculation through the coastal aquifer can rival the N load from

  7. Source splitting via the point source method

    International Nuclear Information System (INIS)

    Potthast, Roland; Fazi, Filippo M; Nelson, Philip A

    2010-01-01

    We introduce a new algorithm for source identification and field splitting based on the point source method (Potthast 1998 A point-source method for inverse acoustic and electromagnetic obstacle scattering problems IMA J. Appl. Math. 61 119–40, Potthast R 1996 A fast new method to solve inverse scattering problems Inverse Problems 12 731–42). The task is to separate the sound fields u j , j = 1, ..., n of n element of N sound sources supported in different bounded domains G 1 , ..., G n in R 3 from measurements of the field on some microphone array—mathematically speaking from the knowledge of the sum of the fields u = u 1 + ... + u n on some open subset Λ of a plane. The main idea of the scheme is to calculate filter functions g 1 ,…, g n , n element of N, to construct u l for l = 1, ..., n from u| Λ in the form u l (x) = ∫ Λ g l,x (y)u(y)ds(y), l=1,... n. (1) We will provide the complete mathematical theory for the field splitting via the point source method. In particular, we describe uniqueness, solvability of the problem and convergence and stability of the algorithm. In the second part we describe the practical realization of the splitting for real data measurements carried out at the Institute for Sound and Vibration Research at Southampton, UK. A practical demonstration of the original recording and the splitting results for real data is available online

  8. Sound Transduction in the Auditory System of Bushcrickets

    Science.gov (United States)

    Nowotny, Manuela; Udayashankar, Arun Palghat; Weber, Melanie; Hummel, Jennifer; Kössl, Manfred

    2011-11-01

    Place based frequency representation, called tonotopy,is a typical property of hearing organs for the discrimination of different frequencies. Due to its coiled structure and secure housing, it is difficult access the mammalian cochlea. Hence, our knowledge about in vivo inner-ear mechanics is restricted to small regions. In this study, we present in vivo measurements that focus on the easily accessible, uncoiled auditory organs in bushcrickets, which are located in their foreleg tibiae. Sound enters the body via an opening at the lateral side of the thorax and passes through a horn-shaped acoustic trachea before reaching the high frequency hearing organ called crista acustica. In addition to the acoustic trachea as structure that transmits incoming sound towards the hearing organ, bushcrickets also possess two tympana, specialized plate-like structures, on the anterior and posterior side of each tibia. They provide a secondary path of excitation for the sensory receptors at low frequencies. We investigated the mechanics of the crista acustica in the tropical bushcricket Mecopoda elongata. The frequency-dependent motion of the crista acustica was captured using a laser-Doppler-vibrometer system. Using pure tone stimulation of the crista acustica, we could elicit traveling waves along the length of the hearing organ that move from the distal high frequency to the proximal low frequency region. In addition, distinct maxima in the velocity response of the crista acustica could be measured at ˜7 and ˜17 kHz. The travelling-wave-based tonotopy provides the basis for mechanical frequency discrimination along the crista acustica and opens up new possibility to investigate traveling wave mechanics in vivo.

  9. Metrics for Polyphonic Sound Event Detection

    Directory of Open Access Journals (Sweden)

    Annamaria Mesaros

    2016-05-01

    Full Text Available This paper presents and discusses various metrics proposed for evaluation of polyphonic sound event detection systems used in realistic situations where there are typically multiple sound sources active simultaneously. The system output in this case contains overlapping events, marked as multiple sounds detected as being active at the same time. The polyphonic system output requires a suitable procedure for evaluation against a reference. Metrics from neighboring fields such as speech recognition and speaker diarization can be used, but they need to be partially redefined to deal with the overlapping events. We present a review of the most common metrics in the field and the way they are adapted and interpreted in the polyphonic case. We discuss segment-based and event-based definitions of each metric and explain the consequences of instance-based and class-based averaging using a case study. In parallel, we provide a toolbox containing implementations of presented metrics.

  10. How discriminating are discriminative instruments?

    Science.gov (United States)

    Hankins, Matthew

    2008-05-27

    The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL). The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness), but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta) is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  11. How discriminating are discriminative instruments?

    Directory of Open Access Journals (Sweden)

    Hankins Matthew

    2008-05-01

    Full Text Available Abstract The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL. The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness, but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  12. Development of Sound Localization Strategies in Children with Bilateral Cochlear Implants.

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    Full Text Available Localizing sounds in our environment is one of the fundamental perceptual abilities that enable humans to communicate, and to remain safe. Because the acoustic cues necessary for computing source locations consist of differences between the two ears in signal intensity and arrival time, sound localization is fairly poor when a single ear is available. In adults who become deaf and are fitted with cochlear implants (CIs sound localization is known to improve when bilateral CIs (BiCIs are used compared to when a single CI is used. The aim of the present study was to investigate the emergence of spatial hearing sensitivity in children who use BiCIs, with a particular focus on the development of behavioral localization patterns when stimuli are presented in free-field horizontal acoustic space. A new analysis was implemented to quantify patterns observed in children for mapping acoustic space to a spatially relevant perceptual representation. Children with normal hearing were found to distribute their responses in a manner that demonstrated high spatial sensitivity. In contrast, children with BiCIs tended to classify sound source locations to the left and right; with increased bilateral hearing experience, they developed a perceptual map of space that was better aligned with the acoustic space. The results indicate experience-dependent refinement of spatial hearing skills in children with CIs. Localization strategies appear to undergo transitions from sound source categorization strategies to more fine-grained location identification strategies. This may provide evidence for neural plasticity, with implications for training of spatial hearing ability in CI users.

  13. Advanced signal processing analysis of laser-induced breakdown spectroscopy data for the discrimination of obsidian sources.

    Science.gov (United States)

    Remus, Jeremiah J; Harmon, Russell S; Hark, Richard R; Haverstock, Gregory; Baron, Dirk; Potter, Ian K; Bristol, Samantha K; East, Lucille J

    2012-03-01

    Obsidian is a natural glass of volcanic origin and a primary resource used by indigenous peoples across North America for making tools. Geochemical studies of obsidian enhance understanding of artifact production and procurement and remain a priority activity within the archaeological community. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique being examined as a means for identifying obsidian from different sources on the basis of its 'geochemical fingerprint'. This study tested whether two major California obsidian centers could be distinguished from other obsidian localities and the extent to which subsources could be recognized within each of these centers. LIBS data sets were collected in two different spectral bands (350±130 nm and 690±115 nm) using a Nd:YAG 1064 nm laser operated at ~23 mJ, a Czerny-Turner spectrograph with 0.2-0.3 nm spectral resolution and a high performance imaging charge couple device (ICCD) detector. Classification of the samples was performed using partial least-squares discriminant analysis (PLSDA), a common chemometric technique for performing statistical regression on high-dimensional data. Discrimination of samples from the Coso Volcanic Field, Bodie Hills, and other major obsidian areas in north-central California was possible with an accuracy of greater than 90% using either spectral band. © 2012 Optical Society of America

  14. Tinnitus is associated with reduced sound level tolerance in adolescents with normal audiograms and otoacoustic emissions

    Science.gov (United States)

    Sanchez, Tanit Ganz; Moraes, Fernanda; Casseb, Juliana; Cota, Jaci; Freire, Katya; Roberts, Larry E.

    2016-01-01

    Recent neuroscience research suggests that tinnitus may reflect synaptic loss in the cochlea that does not express in the audiogram but leads to neural changes in auditory pathways that reduce sound level tolerance (SLT). Adolescents (N = 170) completed a questionnaire addressing their prior experience with tinnitus, potentially risky listening habits, and sensitivity to ordinary sounds, followed by psychoacoustic measurements in a sound booth. Among all adolescents 54.7% reported by questionnaire that they had previously experienced tinnitus, while 28.8% heard tinnitus in the booth. Psychoacoustic properties of tinnitus measured in the sound booth corresponded with those of chronic adult tinnitus sufferers. Neither hearing thresholds (≤15 dB HL to 16 kHz) nor otoacoustic emissions discriminated between adolescents reporting or not reporting tinnitus in the sound booth, but loudness discomfort levels (a psychoacoustic measure of SLT) did so, averaging 11.3 dB lower in adolescents experiencing tinnitus in the acoustic chamber. Although risky listening habits were near universal, the teenagers experiencing tinnitus and reduced SLT tended to be more protective of their hearing. Tinnitus and reduced SLT could be early indications of a vulnerability to hidden synaptic injury that is prevalent among adolescents and expressed following exposure to high level environmental sounds. PMID:27265722

  15. Surface Deformation by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael E.

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The scientific aims are to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat transfer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. Correlations for the effective contact angle and the heat transfer coefficient shall be delivered as a function of the relevant dimensionsless parameters. The data will be used for benchmarking of commercial CFD codes and the tank design

  16. A comparison of two different sound intensity measurement principles

    DEFF Research Database (Denmark)

    Jacobsen, Finn; de Bree, Hans-Elias

    2005-01-01

    , and compares the two measurement principles with particular regard to the sources of error in sound power determination. It is shown that the phase calibration of intensity probes that combine different transducers is very critical below 500 Hz if the measurement surface is very close to the source under test...

  17. Laser and caries diagnosis: the state of the art and evaluation in vitro of the differences of the fluorescence between sound, carious and demineralized enamel

    International Nuclear Information System (INIS)

    Mendonca, Maria Angelica Lopes Chaves

    2001-01-01

    The aim of this study was to evaluate the methods for establishing dental caries diagnosis that make use of Laser light as source of illumination, establishing the 'state of the art'. Experimental observation of the differences among fluorescence of sound, demineralized and carious enamel by visible luminescent spectroscopy was also done. Six human teeth, extracted for clinical reasons were studied, and the results showed that the spectrum of carious enamel is different from the sound and demineralized ones. The differences are more evident relative to sond enamel and carious enamel, the same occurring between demineralized and carious enamel. The review of the literature aimed to make comparative considerations between QLF, LF and DELF; their effectiveness relative to traditional methods such as visual, visual with probe, radiography. It was verified that DELF was more sensitive, but could not discriminate between different degrees of mineral loss. QLF, compared to DIAGNOdent has the same sensitivity, but it is better for scientific purposes. The experimental part of the present study used on argon ion Laser to illuminated the teeth and signs of emission of fluorescence were captured by a PMT and then analyzed by a computer system with EG and G software. The results showed that the spectrum of carious enamel is different from the sound and demineralized. The differences are more evident in relation to sound and carious enamel, the same occurs between demineralized and carious enamel. (author)

  18. Control of Toxic Chemicals in Puget Sound, Phase 3: Study of Atmospheric Deposition of Air Toxics to the Surface of Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Brandenberger, Jill M.; Louchouarn, Patrick; Kuo, Li-Jung; Crecelius, Eric A.; Cullinan, Valerie I.; Gill, Gary A.; Garland, Charity R.; Williamson, J. B.; Dhammapala, R.

    2010-07-05

    The results of the Phase 1 Toxics Loading study suggested that runoff from the land surface and atmospheric deposition directly to marine waters have resulted in considerable loads of contaminants to Puget Sound (Hart Crowser et al. 2007). The limited data available for atmospheric deposition fluxes throughout Puget Sound was recognized as a significant data gap. Therefore, this study provided more recent or first reported atmospheric deposition fluxes of PAHs, PBDEs, and select trace elements for Puget Sound. Samples representing bulk atmospheric deposition were collected during 2008 and 2009 at seven stations around Puget Sound spanning from Padilla Bay south to Nisqually River including Hood Canal and the Straits of Juan de Fuca. Revised annual loading estimates for atmospheric deposition to the waters of Puget Sound were calculated for each of the toxics and demonstrated an overall decrease in the atmospheric loading estimates except for polybrominated diphenyl ethers (PBDEs) and total mercury (THg). The median atmospheric deposition flux of total PBDE (7.0 ng/m2/d) was higher than that of the Hart Crowser (2007) Phase 1 estimate (2.0 ng/m2/d). The THg was not significantly different from the original estimates. The median atmospheric deposition flux for pyrogenic PAHs (34.2 ng/m2/d; without TCB) shows a relatively narrow range across all stations (interquartile range: 21.2- 61.1 ng/m2/d) and shows no influence of season. The highest median fluxes for all parameters were measured at the industrial location in Tacoma and the lowest were recorded at the rural sites in Hood Canal and Sequim Bay. Finally, a semi-quantitative apportionment study permitted a first-order characterization of source inputs to the atmosphere of the Puget Sound. Both biomarker ratios and a principal component analysis confirmed regional data from the Puget Sound and Straits of Georgia region and pointed to the predominance of biomass and fossil fuel (mostly liquid petroleum products such

  19. Design and Calibration Tests of an Active Sound Intensity Probe

    Directory of Open Access Journals (Sweden)

    Thomas Kletschkowski

    2008-01-01

    Full Text Available The paper presents an active sound intensity probe that can be used for sound source localization in standing wave fields. The probe consists of a sound hard tube that is terminated by a loudspeaker and an integrated pair of microphones. The microphones are used to decompose the standing wave field inside the tube into its incident and reflected part. The latter is cancelled by an adaptive controller that calculates proper driving signals for the loudspeaker. If the open end of the actively controlled tube is placed close to a vibrating surface, the radiated sound intensity can be determined by measuring the cross spectral density between the two microphones. A one-dimensional free field can be realized effectively, as first experiments performed on a simplified test bed have shown. Further tests proved that a prototype of the novel sound intensity probe can be calibrated.

  20. Neutron-gamma discrimination based on pulse shape discrimination in a Ce:LiCaAlF{sub 6} scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Atsushi, E-mail: a-yamazaki@nucl.nagoya-u.ac.jp [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University (Japan); Watanabe, Kenichi; Uritani, Akira [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University (Japan); Iguchi, Tetsuo [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University (Japan); Kawaguchi, Noriaki [Tokuyama Corporation (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University (Japan); Fukuda, Kentaro; Suyama, Toshihisa [Tokuyama Corporation (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University (Japan)

    2011-10-01

    We demonstrate neutron-gamma discrimination based on a pulse shape discrimination method in a Ce:LiCAF scintillator. We have tried neutron-gamma discrimination using a difference in the pulse shape or the decay time of the scintillation light pulse. The decay time is converted into the rise time through an integrating circuit. A {sup 252}Cf enclosed in a polyethylene container is used as the source of thermal neutrons and prompt gamma-rays. Obvious separation of neutron and gamma-ray events is achieved using the information of the rise time of the scintillation light pulse. In the separated neutron spectrum, the gamma-ray events are effectively suppressed with little loss of neutron events. The pulse shape discrimination is confirmed to be useful to detect neutrons with the Ce:LiCAF scintillator under an intense high-energy gamma-ray condition.

  1. Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.

    Science.gov (United States)

    van Doren, Thomas Walter

    1993-01-01

    This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.

  2. Prediction model for sound transmission from machinery in buildings: feasible approaches and problems to be solved

    NARCIS (Netherlands)

    Gerretsen, E.

    2000-01-01

    Prediction models for the airborne and impact sound transmission in buildings have recently been established (EN 12354- 1&2:1999). However, these models do not cover technical installations and machinery as a source of sound in buildings. Yet these can cause unacceptable sound levels and it is

  3. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  4. Interactive Sound Propagation using Precomputation and Statistical Approximations

    Science.gov (United States)

    Antani, Lakulish

    Acoustic phenomena such as early reflections, diffraction, and reverberation have been shown to improve the user experience in interactive virtual environments and video games. These effects arise due to repeated interactions between sound waves and objects in the environment. In interactive applications, these effects must be simulated within a prescribed time budget. We present two complementary approaches for computing such acoustic effects in real time, with plausible variation in the sound field throughout the scene. The first approach, Precomputed Acoustic Radiance Transfer, precomputes a matrix that accounts for multiple acoustic interactions between all scene objects. The matrix is used at run time to provide sound propagation effects that vary smoothly as sources and listeners move. The second approach couples two techniques---Ambient Reverberance, and Aural Proxies---to provide approximate sound propagation effects in real time, based on only the portion of the environment immediately visible to the listener. These approaches lie at different ends of a space of interactive sound propagation techniques for modeling sound propagation effects in interactive applications. The first approach emphasizes accuracy by modeling acoustic interactions between all parts of the scene; the second approach emphasizes efficiency by only taking the local environment of the listener into account. These methods have been used to efficiently generate acoustic walkthroughs of architectural models. They have also been integrated into a modern game engine, and can enable realistic, interactive sound propagation on commodity desktop PCs.

  5. Imagining Sound

    DEFF Research Database (Denmark)

    Grimshaw, Mark; Garner, Tom Alexander

    2014-01-01

    We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....

  6. Hand proximity facilitates spatial discrimination of auditory tones

    Directory of Open Access Journals (Sweden)

    Philip eTseng

    2014-06-01

    Full Text Available The effect of hand proximity on vision and visual attention has been well documented. In this study we tested whether such effect(s would also be present in the auditory modality. With hands placed either near or away from the audio sources, participants performed an auditory-spatial discrimination (Exp 1: left or right side, pitch discrimination (Exp 2: high, med, or low tone, and spatial-plus-pitch (Exp 3: left or right; high, med, or low discrimination task. In Exp 1, when hands were away from the audio source, participants consistently responded faster with their right hand regardless of stimulus location. This right hand advantage, however, disappeared in the hands-near condition because of a significant improvement in left hand’s reaction time. No effect of hand proximity was found in Exp 2 or 3, where a choice reaction time task requiring pitch discrimination was used. Together, these results suggest that the effect of hand proximity is not exclusive to vision alone, but is also present in audition, though in a much weaker form. Most important, these findings provide evidence from auditory attention that supports the multimodal account originally raised by Reed et al. in 2006.

  7. Airframe related aeroacoustics of transport aircraft� -research into prediction and reduction of sound radiation-�

    OpenAIRE

    Delfs, Jan Werner

    2013-01-01

    As the sound generation in turbofan engines has decreased the significance of airframe related sound has increased. For example in landing approach the sound associated with the airframe may even dominate the overall sound radiation of an aircraft. The influence of the airframe on aerosound is threefold: i) Airframe components subjected to either their own turbulent boundary layer flow or to installation related turbulent flow act as sources of sound, ii) The aerodynamic influence of the airf...

  8. Visible Contrast Energy Metrics for Detection and Discrimination

    Science.gov (United States)

    Ahumada, Albert; Watson, Andrew

    2013-01-01

    Contrast energy was proposed by Watson, Robson, & Barlow as a useful metric for representing luminance contrast target stimuli because it represents the detectability of the stimulus in photon noise for an ideal observer. Like the eye, the ear is a complex transducer system, but relatively simple sound level meters are used to characterize sounds. These meters provide a range of frequency sensitivity functions and integration times depending on the intended use. We propose here the use of a range of contrast energy measures with different spatial frequency contrast sensitivity weightings, eccentricity sensitivity weightings, and temporal integration times. When detection threshold are plotting using such measures, the results show what the eye sees best when these variables are taken into account in a standard way. The suggested weighting functions revise the Standard Spatial Observer for luminance contrast detection and extend it into the near periphery. Under the assumption that the detection is limited only by internal noise, discrimination performance can be predicted by metrics based on the visible energy of the difference images

  9. Effects of incongruent auditory and visual room-related cues on sound externalization

    DEFF Research Database (Denmark)

    Carvajal, Juan Camilo Gil; Santurette, Sébastien; Cubick, Jens

    Sounds presented via headphones are typically perceived inside the head. However, the illusion of a sound source located out in space away from the listener’s head can be generated with binaural headphone-based auralization systems by convolving anechoic sound signals with a binaural room impulse...... response (BRIR) measured with miniature microphones placed in the listener’s ear canals. Sound externalization of such virtual sounds can be very convincing and robust but there have been reports that the illusion might break down when the listening environment differs from the room in which the BRIRs were...... recorded [1,2,3]. This may be due to incongruent auditory cues between the recording and playback room during sound reproduction [2]. Alternatively, an expectation effect caused by the visual impression of the room may affect the position of the perceived auditory image [3]. Here, we systematically...

  10. Effects of lung elasticity on the sound propagation in the lung

    International Nuclear Information System (INIS)

    Yoneda, Takahiro; Wada, Shigeo; Nakamura, Masanori; Horii, Noriaki; Mizushima, Koichiro

    2011-01-01

    Sound propagation in the lung was simulated for gaining insight into its acoustic properties. A thorax model consisting of lung parenchyma, thoracic bones, trachea and other tissues was made from human CT images. Acoustic nature of the lung parenchyma and bones was expressed with the Biot model of poroelastic material, whereas trachea and tissues were modeled with gas and an elastic material. A point sound source of white noises was placed in the first bifurcation of trachea. The sound propagation in the thorax model was simulated in a frequency domain. The results demonstrated the significant attenuation of sound especially in frequencies larger than 1,000 Hz. Simulations with a stiffened lung demonstrated suppression of the sound attenuation for higher frequencies observed in the normal lung. These results indicate that the normal lung has the nature of a low-pass filter, and stiffening helps the sound at higher frequencies to propagate without attenuations. (author)

  11. Root phonotropism: Early signalling events following sound perception in Arabidopsis roots.

    Science.gov (United States)

    Rodrigo-Moreno, Ana; Bazihizina, Nadia; Azzarello, Elisa; Masi, Elisa; Tran, Daniel; Bouteau, François; Baluska, Frantisek; Mancuso, Stefano

    2017-11-01

    Sound is a fundamental form of energy and it has been suggested that plants can make use of acoustic cues to obtain information regarding their environments and alter and fine-tune their growth and development. Despite an increasing body of evidence indicating that it can influence plant growth and physiology, many questions concerning the effect of sound waves on plant growth and the underlying signalling mechanisms remains unknown. Here we show that in Arabidopsis thaliana, exposure to sound waves (200Hz) for 2 weeks induced positive phonotropism in roots, which grew towards to sound source. We found that sound waves triggered very quickly (within  minutes) an increase in cytosolic Ca 2+ , possibly mediated by an influx through plasma membrane and a release from internal stock. Sound waves likewise elicited rapid reactive oxygen species (ROS) production and K + efflux. Taken together these results suggest that changes in ion fluxes (Ca 2+ and K + ) and an increase in superoxide production are involved in sound perception in plants, as previously established in animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Numerical Analysis of Indoor Sound Quality Evaluation Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-Tuan Chou

    2013-01-01

    Full Text Available Indoors sound field distribution is important to Room Acoustics, but the field suffers numerous problems, for example, multipath propagation and scattering owing to sound absorption by furniture and other aspects of décor. Generally, an ideal interior space must have a sound field with clear quality. This provides both the speaker and the listener with a pleasant conversational environment. This investigation uses the Finite Element Method to assess the acoustic distribution based on the indoor space and chamber volume. In this situation, a fixed sound source at different frequencies is used to simulate the acoustic characteristics of the indoor space. This method considers the furniture and decoration sound absorbing material and thus different sound absorption coefficients and configurations. The preliminary numerical simulation provides a method that can forecast the distribution of sound in an indoor room in complex situations. Consequently, it is possible to arrange interior furnishings and appliances to optimize acoustic distribution and environmental friendliness. Additionally, the analytical results can also be used to calculate the Reverberation Time and speech intelligibility for specified indoor space.

  13. Long-term exposure to noise impairs cortical sound processing and attention control.

    Science.gov (United States)

    Kujala, Teija; Shtyrov, Yury; Winkler, Istvan; Saher, Marieke; Tervaniemi, Mari; Sallinen, Mikael; Teder-Sälejärvi, Wolfgang; Alho, Kimmo; Reinikainen, Kalevi; Näätänen, Risto

    2004-11-01

    Long-term exposure to noise impairs human health, causing pathological changes in the inner ear as well as other anatomical and physiological deficits. Numerous individuals are daily exposed to excessive noise. However, there is a lack of systematic research on the effects of noise on cortical function. Here we report data showing that long-term exposure to noise has a persistent effect on central auditory processing and leads to concurrent behavioral deficits. We found that speech-sound discrimination was impaired in noise-exposed individuals, as indicated by behavioral responses and the mismatch negativity brain response. Furthermore, irrelevant sounds increased the distractibility of the noise-exposed subjects, which was shown by increased interference in task performance and aberrant brain responses. These results demonstrate that long-term exposure to noise has long-lasting detrimental effects on central auditory processing and attention control.

  14. Sex differences in audiovisual discrimination learning by Bengalese finches (Lonchura striata var. domestica).

    Science.gov (United States)

    Seki, Yoshimasa; Okanoya, Kazuo

    2008-02-01

    Both visual and auditory information are important for songbirds, especially in developmental and sexual contexts. To investigate bimodal cognition in songbirds, the authors conducted audiovisual discrimination training in Bengalese finches. The authors used two types of stimulus: an "artificial stimulus," which is a combination of simple figures and sound, and a "biological stimulus," consisting of video images of singing males along with their songs. The authors found that while both sexes predominantly used visual cues in the discrimination tasks, males tended to be more dependent on auditory information for the biological stimulus. Female responses were always dependent on the visual stimulus for both stimulus types. Only males changed their discrimination strategy according to stimulus type. Although males used both visual and auditory cues for the biological stimulus, they responded to the artificial stimulus depending only on visual information, as the females did. These findings suggest a sex difference in innate auditory sensitivity. (c) 2008 APA.

  15. Using otolith shape for intraspecific discrimination: the case of gurnards (Scorpaeniformes, Triglidae

    Directory of Open Access Journals (Sweden)

    Stefano Montanini

    2015-11-01

    Full Text Available The sagittal otoliths are sound transducers and play an important role in fish hearing. Triglidae (Teleostei, Scorpaeniformes are known for sound producing ability in agonistic contexts related to territorial defence, reproduction and competitive feeding (Amorim et al., 2004. Chelidonichthys cuculus and C. lucerna show a significant body size-depth relationship and specie-specific feeding strategies with growth. Both juveniles and adults of C. cuculus prey necto-benthic invertebrates while C. lucerna specimens change diet from crustaceans to teleost during growth (Stagioni et al., 2012; Vallisneri et al., 2014; Montanini et al., 2015. The goal of this study was to analyze intraspecific shape variations in sagitta of model species of gurnards. 217 specimens were collected during bottom trawl surveys in Adriatic sea (northeastern Mediterranean. Each left sagitta was removed, cleaned in ultrasounds bath and kept dry. The otolith digital images were processed to calculate five shape indices (aspect ratio, roundness, rectangularity, ellipticity and circularity. Indices were normalised to avoid allometric effects according to Lleonart et al. (2000, than processed by linear discriminant analysis (LDA. The SHAPE program was used to extract the outline and to assess the variability of shapes (EFA method and estimated it through the study of principal component analysis (PCA. Considering the first two discriminant functions, LDA plot showed a clearly separation between juvenile and adults for both species. About EFA, the first 4 principal component discriminated over 80% of variance and significant differences were found at critical size between juveniles and adults for all the components analysed. The allometric trends corresponded to a relative elongation of the sulcus acusticus and an increase of excisura ostii. The combined use of the two external outlines methods should be highly informative for intraspecific discrimination and might be related to

  16. Using ILD or ITD Cues for Sound Source Localization and Speech Understanding in a Complex Listening Environment by Listeners with Bilateral and with Hearing-Preservation Cochlear Implants

    Science.gov (United States)

    Loiselle, Louise H.; Dorman, Michael F.; Yost, William A.; Cook, Sarah J.; Gifford, Rene H.

    2016-01-01

    Purpose: To assess the role of interaural time differences and interaural level differences in (a) sound-source localization, and (b) speech understanding in a cocktail party listening environment for listeners with bilateral cochlear implants (CIs) and for listeners with hearing-preservation CIs. Methods: Eleven bilateral listeners with MED-EL…

  17. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30

    Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic

  18. Sound radiation contrast in MR phase images. Method for the representation of elasticity, sound damping, and sound impedance changes

    International Nuclear Information System (INIS)

    Radicke, Marcus

    2009-01-01

    The method presented in this thesis combines ultrasound techniques with the magnetic-resonance tomography (MRT). An ultrasonic wave generates in absorbing media a static force in sound-propagation direction. The force leads at sound intensities of some W/cm 2 and a sound frequency in the lower MHz range to a tissue shift in the micrometer range. This tissue shift depends on the sound power, the sound frequency, the sound absorption, and the elastic properties of the tissue. A MRT sequence of the Siemens Healthcare AG was modified so that it measures (indirectly) the tissue shift, codes as grey values, and presents as 2D picture. By means of the grey values the sound-beam slope in the tissue can be visualized, and so additionally sound obstacles (changes of the sound impedance) can be detected. By the MRT images token up spatial changes of the tissue parameters sound absorption and elasticity can be detected. In this thesis measurements are presented, which show the feasibility and future chances of this method especially for the mammary-cancer diagnostics. [de

  19. Selective attention to sound location or pitch studied with event-related brain potentials and magnetic fields.

    Science.gov (United States)

    Degerman, Alexander; Rinne, Teemu; Särkkä, Anna-Kaisa; Salmi, Juha; Alho, Kimmo

    2008-06-01

    Event-related brain potentials (ERPs) and magnetic fields (ERFs) were used to compare brain activity associated with selective attention to sound location or pitch in humans. Sixteen healthy adults participated in the ERP experiment, and 11 adults in the ERF experiment. In different conditions, the participants focused their attention on a designated sound location or pitch, or pictures presented on a screen, in order to detect target sounds or pictures among the attended stimuli. In the Attend Location condition, the location of sounds varied randomly (left or right), while their pitch (high or low) was kept constant. In the Attend Pitch condition, sounds of varying pitch (high or low) were presented at a constant location (left or right). Consistent with previous ERP results, selective attention to either sound feature produced a negative difference (Nd) between ERPs to attended and unattended sounds. In addition, ERPs showed a more posterior scalp distribution for the location-related Nd than for the pitch-related Nd, suggesting partially different generators for these Nds. The ERF source analyses found no source distribution differences between the pitch-related Ndm (the magnetic counterpart of the Nd) and location-related Ndm in the superior temporal cortex (STC), where the main sources of the Ndm effects are thought to be located. Thus, the ERP scalp distribution differences between the location-related and pitch-related Nd effects may have been caused by activity of areas outside the STC, perhaps in the inferior parietal regions.

  20. Brand Discrimination: An Implicit Measure of the Strength of Mental Brand Representations

    OpenAIRE

    Friedman, Mike; Leclercq, Thomas

    2015-01-01

    While mental associations between a brand and its marketing elements are an important part of brand equity, previous research has yet to provide a sound methodology to measure the strength of these links. The following studies present the development and validation of an implicit measure to assess the strength of mental representations of brand elements in the mind of the consumer. The measure described in this paper, which we call the Brand Discrimination task, requires participants to ident...

  1. Spatial discrimination and visual discrimination

    DEFF Research Database (Denmark)

    Haagensen, Annika M. J.; Grand, Nanna; Klastrup, Signe

    2013-01-01

    Two methods investigating learning and memory in juvenile Gottingen minipigs were evaluated for potential use in preclinical toxicity testing. Twelve minipigs were tested using a spatial hole-board discrimination test including a learning phase and two memory phases. Five minipigs were tested...... in a visual discrimination test. The juvenile minipigs were able to learn the spatial hole-board discrimination test and showed improved working and reference memory during the learning phase. Performance in the memory phases was affected by the retention intervals, but the minipigs were able to remember...... the concept of the test in both memory phases. Working memory and reference memory were significantly improved in the last trials of the memory phases. In the visual discrimination test, the minipigs learned to discriminate between the three figures presented to them within 9-14 sessions. For the memory test...

  2. Mass balance constraints on the sources of the petrogenic hydrocarbon background in offshore sediments of Prince William Sound and the Gulf of Alaska

    International Nuclear Information System (INIS)

    Page, D.S.; Boehm, P.D.; Douglas, G.S.; Brown, J.S.; Bence, A.E.; Burns, W.A.

    2000-01-01

    A comprehensive sampling program was conducted in 1999 in the offshore sediments of Prince William Sound and the Gulf of Alaska to verify a recent claim that eroding coal beds are the source of petrogenic hydrocarbons background in the area. Samples taken in 1993 and 1994 were reanalyzed to determine concentrations of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. Three Bering River coal samples plus 10 archived source-rock and 3 archived Gulf of Alaska seep and field oil samples from exploration activities in the 1960s and 1970s were also analyzed. The linear combination of the analyte distributions of 18 representative sources that most likely matched the compositions of each sample was derived using the least-squares method. Some of the potential contributing sources which were examined for this study included seep oil, eroding source rocks, eroding coal beds, glacial flour, recent terrestrial sources and human activity. It was determined that the recent claim was incorrect. Eroding Tertiary petroleum source rocks and residues of seep oils are the main sources of hydrocarbon background in the area, rather than area coals or residues from the Exxon Valdez oil spill. 10 refs., 2 tabs., 3 figs

  3. Subcortical plasticity following perceptual learning in a pitch discrimination task.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J

    2011-02-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.

  4. Horizontal sound localization in cochlear implant users with a contralateral hearing aid.

    Science.gov (United States)

    Veugen, Lidwien C E; Hendrikse, Maartje M E; van Wanrooij, Marc M; Agterberg, Martijn J H; Chalupper, Josef; Mens, Lucas H M; Snik, Ad F M; John van Opstal, A

    2016-06-01

    Interaural differences in sound arrival time (ITD) and in level (ILD) enable us to localize sounds in the horizontal plane, and can support source segregation and speech understanding in noisy environments. It is uncertain whether these cues are also available to hearing-impaired listeners who are bimodally fitted, i.e. with a cochlear implant (CI) and a contralateral hearing aid (HA). Here, we assessed sound localization behavior of fourteen bimodal listeners, all using the same Phonak HA and an Advanced Bionics CI processor, matched with respect to loudness growth. We aimed to determine the availability and contribution of binaural (ILDs, temporal fine structure and envelope ITDs) and monaural (loudness, spectral) cues to horizontal sound localization in bimodal listeners, by systematically varying the frequency band, level and envelope of the stimuli. The sound bandwidth had a strong effect on the localization bias of bimodal listeners, although localization performance was typically poor for all conditions. Responses could be systematically changed by adjusting the frequency range of the stimulus, or by simply switching the HA and CI on and off. Localization responses were largely biased to one side, typically the CI side for broadband and high-pass filtered sounds, and occasionally to the HA side for low-pass filtered sounds. HA-aided thresholds better than 45 dB HL in the frequency range of the stimulus appeared to be a prerequisite, but not a guarantee, for the ability to indicate sound source direction. We argue that bimodal sound localization is likely based on ILD cues, even at frequencies below 1500 Hz for which the natural ILDs are small. These cues are typically perturbed in bimodal listeners, leading to a biased localization percept of sounds. The high accuracy of some listeners could result from a combination of sufficient spectral overlap and loudness balance in bimodal hearing. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Mapping Strategies and Sound Engine Design for an Augmented Hybrid Piano

    DEFF Research Database (Denmark)

    Dahlstedt, Palle

    2015-01-01

    Based on a combination of novel mapping techniques and carefully designed sound engines, I present an augmented hybrid piano specifically designed for improvisation. The mapping technique, originally developed for other control interfaces but here adapted to the piano keyboard, is based...... on a dynamic vectorization of control parameters, allowing both wild sonic exploration and minute intimate expression. The original piano sound is used as the sole sound source, subjected to processing techniques such as virtual resonance strings, dynamic buffer shuffling, and acoustic and virtual feedback....... Thanks to speaker and microphone placement, the acoustic and processed sounds interact in both directions and blend into one new instrument. This also allows for unorthodox playing (knocking, plucking, shouting). Processing parameters are controlled from the keyboard playing alone, allowing intuitive...

  6. Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties

    OpenAIRE

    Yoshio Kurosawa; Takao Yamaguchi

    2015-01-01

    High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy ...

  7. Robust Sounds of Activities of Daily Living Classification in Two-Channel Audio-Based Telemonitoring

    Directory of Open Access Journals (Sweden)

    David Maunder

    2013-01-01

    Full Text Available Despite recent advances in the area of home telemonitoring, the challenge of automatically detecting the sound signatures of activities of daily living of an elderly patient using nonintrusive and reliable methods remains. This paper investigates the classification of eight typical sounds of daily life from arbitrarily positioned two-microphone sensors under realistic noisy conditions. In particular, the role of several source separation and sound activity detection methods is considered. Evaluations on a new four-microphone database collected under four realistic noise conditions reveal that effective sound activity detection can produce significant gains in classification accuracy and that further gains can be made using source separation methods based on independent component analysis. Encouragingly, the results show that recognition accuracies in the range 70%–100% can be consistently obtained using different microphone-pair positions, under all but the most severe noise conditions.

  8. Emission of sound from the mammalian inner ear

    Science.gov (United States)

    Reichenbach, Tobias; Stefanovic, Aleksandra; Nin, Fumiaki; Hudspeth, A. J.

    2013-03-01

    The mammalian inner ear, or cochlea, not only acts as a detector of sound but can also produce tones itself. These otoacoustic emissions are a striking manifestation of the mechanical active process that sensitizes the cochlea and sharpens its frequency discrimination. It remains uncertain how these signals propagate back to the middle ear, from which they are emitted as sound. Although reverse propagation might occur through waves on the cochlear basilar membrane, experiments suggest the existence of a second component in otoacoustic emissions. We have combined theoretical and experimental studies to show that mechanical signals can also be transmitted by waves on Reissner's membrane, a second elastic structure within the cochea. We have developed a theoretical description of wave propagation on the parallel Reissner's and basilar membranes and its role in the emission of distortion products. By scanning laser interferometry we have measured traveling waves on Reissner's membrane in the gerbil, guinea pig, and chinchilla. The results accord with the theory and thus support a role for Reissner's membrane in otoacoustic emission. T. R. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund; A. J. H. is an Investigator of Howard Hughes Medical Institute.

  9. Deformation of a sound field caused by a manikin

    DEFF Research Database (Denmark)

    Weinrich, Søren G.

    1981-01-01

    around the head at distances of 1 cm to 2 m, measured from the tip of the nose. The signals were pure tones at 1, 2, 4, 6, 8, and 10 kHz. It was found that the presence of the manikin caused changes in the SPL of the sound field of at most ±2.5 dB at a distance of 1 m from the surface of the manikin....... Only over an interval of approximately 20 ° behind the manikin (i.e., opposite the sound source) did the manikin cause much larger changes, up to 9 dB. These changes are caused by destructive interference between sounds coming from opposite sides of the manikin. In front of the manikin, the changes...

  10. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    Science.gov (United States)

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the

  11. Making fictions sound real - On film sound, perceptual realism and genre

    Directory of Open Access Journals (Sweden)

    Birger Langkjær

    2010-05-01

    Full Text Available This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences.

  12. Making fictions sound real - On film sound, perceptual realism and genre

    Directory of Open Access Journals (Sweden)

    Birger Langkjær

    2009-09-01

    Full Text Available This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences.

  13. Sound Localization in Patients With Congenital Unilateral Conductive Hearing Loss With a Transcutaneous Bone Conduction Implant.

    Science.gov (United States)

    Vyskocil, Erich; Liepins, Rudolfs; Kaider, Alexandra; Blineder, Michaela; Hamzavi, Sasan

    2017-03-01

    There is no consensus regarding the benefit of implantable hearing aids in congenital unilateral conductive hearing loss (UCHL). This study aimed to measure sound source localization performance in patients with congenital UCHL and contralateral normal hearing who received a new bone conduction implant. Evaluation of within-subject performance differences for sound source localization in a horizontal plane. Tertiary referral center. Five patients with atresia of the external auditory canal and contralateral normal hearing implanted with transcutaneous bone conduction implant at the Medical University of Vienna were tested. Activated/deactivated implant. Sound source localization test; localization performance quantified using the root mean square (RMS) error. Sound source localization ability was highly variable among individual subjects, with RMS errors ranging from 21 to 40 degrees. Horizontal plane localization performance in aided conditions showed statistically significant improvement compared with the unaided conditions, with RMS errors ranging from 17 to 27 degrees. The mean RMS error decreased by a factor of 0.71 (p conduction implant. Some patients with congenital UCHL might be capable of developing improved horizontal plane localization abilities with the binaural cues provided by this device.

  14. Discrimination and Anti-discrimination in Denmark

    DEFF Research Database (Denmark)

    Olsen, Tore Vincents

    The purpose of this report is to describe and analyse Danish anti-discrimination legislation and the debate about discrimination in Denmark in order to identify present and future legal challenges. The main focus is the implementation of the EU anti-discrimination directives in Danish law...

  15. Applying the EBU R128 loudness standard in live-streaming sound sculptures

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær; Riis, Morten S.; Rothmann, Daniel

    2017-01-01

    to preserve a natural sounding dynamic image from the varying sound sources that can be played back under varying conditions, an adaptation of the EBU R128 loudness measurement recommendation, originally developed for levelling non-real-time broadcast material, has been applied. The paper describes the Pure......This paper describes the development of a loudness-based compressor for live audio streams. The need for this device arose while developing the public sound art project The Overheard, which involves mixing together several live audio streams through a web based mixing interface. In order...

  16. Regional Moment Tensor Source-Type Discrimination Analysis

    Science.gov (United States)

    2015-11-16

    unique normalized eigenvalues (black ‘+’ signs) or unique source-types on (a) the fundamental Lune (Tape and Tape, 2012a,b), and (b) on the Hudson...Solutions color-coded by variance reduction (VR) pre- sented on the Tape and Tape (2012a) and Tape and Tape (2012b) Lune . The white circle...eigenvalues (black ‘+’ signs) or unique source-types on (a) the fundamental Lune (Tape and Tape, 2012a,b), and (b) on the Hudson source-type plot (Hudson

  17. Workplace discrimination and health among Filipinos in the United States.

    Science.gov (United States)

    de Castro, Arnold B; Gee, Gilbert C; Takeuchi, David T

    2008-03-01

    We examined the association between work discrimination and morbidity among Filipinos in the United States, independent of more-global measures of discrimination. Data were collected from the Filipino American Community Epidemiological Survey. Our analysis focused on 1652 participants who were employed at the time of data collection, and we used negative binomial regression to determine the association between work discrimination and health conditions. The report of workplace discrimination specific to being Filipino was associated with an increased number of health conditions. This association persisted even after we controlled for everyday discrimination, a general assessment of discrimination; job concerns, a general assessment of unpleasant work circumstances; having immigrated for employment reasons; job category; income; education; gender; and other sociodemographic factors. Racial discrimination in the workplace was positively associated with poor health among Filipino Americans after we controlled for reports of everyday discrimination and general concerns about one's job. This finding shows the importance of considering the work setting as a source of discrimination and its effect on morbidity among racial minorities.

  18. Performance and strategy comparisons of human listeners and logistic regression in discriminating underwater targets.

    Science.gov (United States)

    Yang, Lixue; Chen, Kean

    2015-11-01

    To improve the design of underwater target recognition systems based on auditory perception, this study compared human listeners with automatic classifiers. Performances measures and strategies in three discrimination experiments, including discriminations between man-made and natural targets, between ships and submarines, and among three types of ships, were used. In the experiments, the subjects were asked to assign a score to each sound based on how confident they were about the category to which it belonged, and logistic regression, which represents linear discriminative models, also completed three similar tasks by utilizing many auditory features. The results indicated that the performances of logistic regression improved as the ratio between inter- and intra-class differences became larger, whereas the performances of the human subjects were limited by their unfamiliarity with the targets. Logistic regression performed better than the human subjects in all tasks but the discrimination between man-made and natural targets, and the strategies employed by excellent human subjects were similar to that of logistic regression. Logistic regression and several human subjects demonstrated similar performances when discriminating man-made and natural targets, but in this case, their strategies were not similar. An appropriate fusion of their strategies led to further improvement in recognition accuracy.

  19. Brand discrimination: an implicit measure of the strength of mental brand representations.

    Science.gov (United States)

    Friedman, Mike; Leclercq, Thomas

    2015-01-01

    While mental associations between a brand and its marketing elements are an important part of brand equity, previous research has yet to provide a sound methodology to measure the strength of these links. The following studies present the development and validation of an implicit measure to assess the strength of mental representations of brand elements in the mind of the consumer. The measure described in this paper, which we call the Brand Discrimination task, requires participants to identify whether images of brand elements (e.g. color, logo, packaging) belong to a target brand or not. Signal detection theory (SDT) is used to calculate a Brand Discrimination index which gives a measure of overall recognition accuracy for a brand's elements in the context of its competitors. A series of five studies shows that the Brand Discrimination task can discriminate between strong and weak brands, increases when mental representations of brands are experimentally strengthened, is relatively stable across time, and can predict brand choice, independently and while controlling for other explicit and implicit brand evaluation measures. Together, these studies provide unique evidence for the importance of mental brand representations in marketing and consumer behavior, along with a research methodology to measure this important consumer-based brand attribute.

  20. Brand discrimination: an implicit measure of the strength of mental brand representations.

    Directory of Open Access Journals (Sweden)

    Mike Friedman

    Full Text Available While mental associations between a brand and its marketing elements are an important part of brand equity, previous research has yet to provide a sound methodology to measure the strength of these links. The following studies present the development and validation of an implicit measure to assess the strength of mental representations of brand elements in the mind of the consumer. The measure described in this paper, which we call the Brand Discrimination task, requires participants to identify whether images of brand elements (e.g. color, logo, packaging belong to a target brand or not. Signal detection theory (SDT is used to calculate a Brand Discrimination index which gives a measure of overall recognition accuracy for a brand's elements in the context of its competitors. A series of five studies shows that the Brand Discrimination task can discriminate between strong and weak brands, increases when mental representations of brands are experimentally strengthened, is relatively stable across time, and can predict brand choice, independently and while controlling for other explicit and implicit brand evaluation measures. Together, these studies provide unique evidence for the importance of mental brand representations in marketing and consumer behavior, along with a research methodology to measure this important consumer-based brand attribute.

  1. Brand Discrimination: An Implicit Measure of the Strength of Mental Brand Representations

    Science.gov (United States)

    Friedman, Mike; Leclercq, Thomas

    2015-01-01

    While mental associations between a brand and its marketing elements are an important part of brand equity, previous research has yet to provide a sound methodology to measure the strength of these links. The following studies present the development and validation of an implicit measure to assess the strength of mental representations of brand elements in the mind of the consumer. The measure described in this paper, which we call the Brand Discrimination task, requires participants to identify whether images of brand elements (e.g. color, logo, packaging) belong to a target brand or not. Signal detection theory (SDT) is used to calculate a Brand Discrimination index which gives a measure of overall recognition accuracy for a brand’s elements in the context of its competitors. A series of five studies shows that the Brand Discrimination task can discriminate between strong and weak brands, increases when mental representations of brands are experimentally strengthened, is relatively stable across time, and can predict brand choice, independently and while controlling for other explicit and implicit brand evaluation measures. Together, these studies provide unique evidence for the importance of mental brand representations in marketing and consumer behavior, along with a research methodology to measure this important consumer-based brand attribute. PMID:25803845

  2. Lung and Heart Sounds Analysis: State-of-the-Art and Future Trends.

    Science.gov (United States)

    Padilla-Ortiz, Ana L; Ibarra, David

    2018-01-01

    Lung sounds, which include all sounds that are produced during the mechanism of respiration, may be classified into normal breath sounds and adventitious sounds. Normal breath sounds occur when no respiratory problems exist, whereas adventitious lung sounds (wheeze, rhonchi, crackle, etc.) are usually associated with certain pulmonary pathologies. Heart and lung sounds that are heard using a stethoscope are the result of mechanical interactions that indicate operation of cardiac and respiratory systems, respectively. In this article, we review the research conducted during the last six years on lung and heart sounds, instrumentation and data sources (sensors and databases), technological advances, and perspectives in processing and data analysis. Our review suggests that chronic obstructive pulmonary disease (COPD) and asthma are the most common respiratory diseases reported on in the literature; related diseases that are less analyzed include chronic bronchitis, idiopathic pulmonary fibrosis, congestive heart failure, and parenchymal pathology. Some new findings regarding the methodologies associated with advances in the electronic stethoscope have been presented for the auscultatory heart sound signaling process, including analysis and clarification of resulting sounds to create a diagnosis based on a quantifiable medical assessment. The availability of automatic interpretation of high precision of heart and lung sounds opens interesting possibilities for cardiovascular diagnosis as well as potential for intelligent diagnosis of heart and lung diseases.

  3. Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material.

    Science.gov (United States)

    Robel, Martin; Kristo, Michael J

    2008-11-01

    The problem of identifying the provenance of unknown nuclear material in the environment by multivariate statistical analysis of its uranium and/or plutonium isotopic composition is considered. Such material can be introduced into the environment as a result of nuclear accidents, inadvertent processing losses, illegal dumping of waste, or deliberate trafficking in nuclear materials. Various combinations of reactor type and fuel composition were analyzed using Principal Components Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLSDA) of the concentrations of nine U and Pu isotopes in fuel as a function of burnup. Real-world variation in the concentrations of (234)U and (236)U in the fresh (unirradiated) fuel was incorporated. The U and Pu were also analyzed separately, with results that suggest that, even after reprocessing or environmental fractionation, Pu isotopes can be used to determine both the source reactor type and the initial fuel composition with good discrimination.

  4. Development of the Database for Environmental Sound Research and Application (DESRA: Design, Functionality, and Retrieval Considerations

    Directory of Open Access Journals (Sweden)

    Brian Gygi

    2010-01-01

    Full Text Available Theoretical and applied environmental sounds research is gaining prominence but progress has been hampered by the lack of a comprehensive, high quality, accessible database of environmental sounds. An ongoing project to develop such a resource is described, which is based upon experimental evidence as to the way we listen to sounds in the world. The database will include a large number of sounds produced by different sound sources, with a thorough background for each sound file, including experimentally obtained perceptual data. In this way DESRA can contain a wide variety of acoustic, contextual, semantic, and behavioral information related to an individual sound. It will be accessible on the Internet and will be useful to researchers, engineers, sound designers, and musicians.

  5. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  6. Perception of environmental sounds by experienced cochlear implant patients

    Science.gov (United States)

    Shafiro, Valeriy; Gygi, Brian; Cheng, Min-Yu; Vachhani, Jay; Mulvey, Megan

    2011-01-01

    Objectives Environmental sound perception serves an important ecological function by providing listeners with information about objects and events in their immediate environment. Environmental sounds such as car horns, baby cries or chirping birds can alert listeners to imminent dangers as well as contribute to one's sense of awareness and well being. Perception of environmental sounds as acoustically and semantically complex stimuli, may also involve some factors common to the processing of speech. However, very limited research has investigated the abilities of cochlear implant (CI) patients to identify common environmental sounds, despite patients' general enthusiasm about them. This project (1) investigated the ability of patients with modern-day CIs to perceive environmental sounds, (2) explored associations among speech, environmental sounds and basic auditory abilities, and (3) examined acoustic factors that might be involved in environmental sound perception. Design Seventeen experienced postlingually-deafened CI patients participated in the study. Environmental sound perception was assessed with a large-item test composed of 40 sound sources, each represented by four different tokens. The relationship between speech and environmental sound perception, and the role of working memory and some basic auditory abilities were examined based on patient performance on a battery of speech tests (HINT, CNC, and individual consonant and vowel tests), tests of basic auditory abilities (audiometric thresholds, gap detection, temporal pattern and temporal order for tones tests) and a backward digit recall test. Results The results indicated substantially reduced ability to identify common environmental sounds in CI patients (45.3%). Except for vowels, all speech test scores significantly correlated with the environmental sound test scores: r = 0.73 for HINT in quiet, r = 0.69 for HINT in noise, r = 0.70 for CNC, r = 0.64 for consonants and r = 0.48 for vowels. HINT and

  7. An objective measure for the sensitivity of room impulse response and its link to a diffuse sound field

    DEFF Research Database (Denmark)

    Prislan, Rok; Brunskog, Jonas; Jacobsen, Finn

    2014-01-01

    This study is relevant to acoustic measurements in reverberation rooms such as measurements of sound transmission, sound absorption, and sound power levels of noise sources. The study presents a quantitative measure for the diffuseness in a room, which is first introduced theoretically and sub...

  8. Single-trial multisensory memories affect later auditory and visual object discrimination.

    Science.gov (United States)

    Thelen, Antonia; Talsma, Durk; Murray, Micah M

    2015-05-01

    Multisensory memory traces established via single-trial exposures can impact subsequent visual object recognition. This impact appears to depend on the meaningfulness of the initial multisensory pairing, implying that multisensory exposures establish distinct object representations that are accessible during later unisensory processing. Multisensory contexts may be particularly effective in influencing auditory discrimination, given the purportedly inferior recognition memory in this sensory modality. The possibility of this generalization and the equivalence of effects when memory discrimination was being performed in the visual vs. auditory modality were at the focus of this study. First, we demonstrate that visual object discrimination is affected by the context of prior multisensory encounters, replicating and extending previous findings by controlling for the probability of multisensory contexts during initial as well as repeated object presentations. Second, we provide the first evidence that single-trial multisensory memories impact subsequent auditory object discrimination. Auditory object discrimination was enhanced when initial presentations entailed semantically congruent multisensory pairs and was impaired after semantically incongruent multisensory encounters, compared to sounds that had been encountered only in a unisensory manner. Third, the impact of single-trial multisensory memories upon unisensory object discrimination was greater when the task was performed in the auditory vs. visual modality. Fourth, there was no evidence for correlation between effects of past multisensory experiences on visual and auditory processing, suggestive of largely independent object processing mechanisms between modalities. We discuss these findings in terms of the conceptual short term memory (CSTM) model and predictive coding. Our results suggest differential recruitment and modulation of conceptual memory networks according to the sensory task at hand. Copyright

  9. Investigation of hydraulic transmission noise sources

    Science.gov (United States)

    Klop, Richard J.

    Advanced hydrostatic transmissions and hydraulic hybrids show potential in new market segments such as commercial vehicles and passenger cars. Such new applications regard low noise generation as a high priority, thus, demanding new quiet hydrostatic transmission designs. In this thesis, the aim is to investigate noise sources of hydrostatic transmissions to discover strategies for designing compact and quiet solutions. A model has been developed to capture the interaction of a pump and motor working in a hydrostatic transmission and to predict overall noise sources. This model allows a designer to compare noise sources for various configurations and to design compact and inherently quiet solutions. The model describes dynamics of the system by coupling lumped parameter pump and motor models with a one-dimensional unsteady compressible transmission line model. The model has been verified with dynamic pressure measurements in the line over a wide operating range for several system structures. Simulation studies were performed illustrating sensitivities of several design variables and the potential of the model to design transmissions with minimal noise sources. A semi-anechoic chamber has been designed and constructed suitable for sound intensity measurements that can be used to derive sound power. Measurements proved the potential to reduce audible noise by predicting and reducing both noise sources. Sound power measurements were conducted on a series hybrid transmission test bench to validate the model and compare predicted noise sources with sound power.

  10. A framework for automatic heart sound analysis without segmentation

    Directory of Open Access Journals (Sweden)

    Tungpimolrut Kanokvate

    2011-02-01

    Full Text Available Abstract Background A new framework for heart sound analysis is proposed. One of the most difficult processes in heart sound analysis is segmentation, due to interference form murmurs. Method Equal number of cardiac cycles were extracted from heart sounds with different heart rates using information from envelopes of autocorrelation functions without the need to label individual fundamental heart sounds (FHS. The complete method consists of envelope detection, calculation of cardiac cycle lengths using auto-correlation of envelope signals, features extraction using discrete wavelet transform, principal component analysis, and classification using neural network bagging predictors. Result The proposed method was tested on a set of heart sounds obtained from several on-line databases and recorded with an electronic stethoscope. Geometric mean was used as performance index. Average classification performance using ten-fold cross-validation was 0.92 for noise free case, 0.90 under white noise with 10 dB signal-to-noise ratio (SNR, and 0.90 under impulse noise up to 0.3 s duration. Conclusion The proposed method showed promising results and high noise robustness to a wide range of heart sounds. However, more tests are needed to address any bias that may have been introduced by different sources of heart sounds in the current training set, and to concretely validate the method. Further work include building a new training set recorded from actual patients, then further evaluate the method based on this new training set.

  11. Making Sound Connections

    Science.gov (United States)

    Deal, Walter F., III

    2007-01-01

    Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…

  12. Behavioral response of manatees to variations in environmental sound levels

    Science.gov (United States)

    Miksis-Olds, Jennifer L.; Wagner, Tyler

    2011-01-01

    Florida manatees (Trichechus manatus latirostris) inhabit coastal regions because they feed on the aquatic vegetation that grows in shallow waters, which are the same areas where human activities are greatest. Noise produced from anthropogenic and natural sources has the potential to affect these animals by eliciting responses ranging from mild behavioral changes to extreme aversion. Sound levels were calculated from recordings made throughout behavioral observation periods. An information theoretic approach was used to investigate the relationship between behavior patterns and sound level. Results indicated that elevated sound levels affect manatee activity and are a function of behavioral state. The proportion of time manatees spent feeding and milling changed in response to sound level. When ambient sound levels were highest, more time was spent in the directed, goal-oriented behavior of feeding, whereas less time was spent engaged in undirected behavior such as milling. This work illustrates how shifts in activity of individual manatees may be useful parameters for identifying impacts of noise on manatees and might inform population level effects.

  13. Residual Neural Processing of Musical Sound Features in Adult Cochlear Implant Users

    Science.gov (United States)

    Timm, Lydia; Vuust, Peter; Brattico, Elvira; Agrawal, Deepashri; Debener, Stefan; Büchner, Andreas; Dengler, Reinhard; Wittfoth, Matthias

    2014-01-01

    Auditory processing in general and music perception in particular are hampered in adult cochlear implant (CI) users. To examine the residual music perception skills and their underlying neural correlates in CI users implanted in adolescence or adulthood, we conducted an electrophysiological and behavioral study comparing adult CI users with normal-hearing age-matched controls (NH controls). We used a newly developed musical multi-feature paradigm, which makes it possible to test automatic auditory discrimination of six different types of sound feature changes inserted within a musical enriched setting lasting only 20 min. The presentation of stimuli did not require the participants’ attention, allowing the study of the early automatic stage of feature processing in the auditory cortex. For the CI users, we obtained mismatch negativity (MMN) brain responses to five feature changes but not to changes of rhythm, whereas we obtained MMNs for all the feature changes in the NH controls. Furthermore, the MMNs to deviants of pitch of CI users were reduced in amplitude and later than those of NH controls for changes of pitch and guitar timber. No other group differences in MMN parameters were found to changes in intensity and saxophone timber. Furthermore, the MMNs in CI users reflected the behavioral scores from a respective discrimination task and were correlated with patients’ age and speech intelligibility. Our results suggest that even though CI users are not performing at the same level as NH controls in neural discrimination of pitch-based features, they do possess potential neural abilities for music processing. However, CI users showed a disrupted ability to automatically discriminate rhythmic changes compared with controls. The current behavioral and MMN findings highlight the residual neural skills for music processing even in CI users who have been implanted in adolescence or adulthood. Highlights: -Automatic brain responses to musical feature changes

  14. Perceptions of gender-based discrimination during surgical training and practice.

    Science.gov (United States)

    Bruce, Adrienne N; Battista, Alexis; Plankey, Michael W; Johnson, Lynt B; Marshall, M Blair

    2015-01-01

    Women represent 15% of practicing general surgeons. Gender-based discrimination has been implicated as discouraging women from surgery. We sought to determine women's perceptions of gender-based discrimination in the surgical training and working environment. Following IRB approval, we fielded a pilot survey measuring perceptions and impact of gender-based discrimination in medical school, residency training, and surgical practice. It was sent electronically to 1,065 individual members of the Association of Women Surgeons. We received 334 responses from medical students, residents, and practicing physicians with a response rate of 31%. Eighty-seven percent experienced gender-based discrimination in medical school, 88% in residency, and 91% in practice. Perceived sources of gender-based discrimination included superiors, physician peers, clinical support staff, and patients, with 40% emanating from women and 60% from men. The majority of responses indicated perceived gender-based discrimination during medical school, residency, and practice. Gender-based discrimination comes from both sexes and has a significant impact on women surgeons.

  15. Theoretical analysis of sound transmission loss through graphene sheets

    International Nuclear Information System (INIS)

    Natsuki, Toshiaki; Ni, Qing-Qing

    2014-01-01

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials

  16. Theoretical analysis of sound transmission loss through graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan); Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Ni, Qing-Qing [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan)

    2014-11-17

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials.

  17. Jump in the amplitude of a sound wave associated with contraction of a nitrogen discharge

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Mkrtchyan, A.R.; Tavakalyan, L.B.

    1993-01-01

    The use of a sound wave created by an external source and directed along the positive column of a nitrogen discharge in order to make the discharge pass to the contracted state is studied experimentally. A phenomenon involving a jump in the sound wave amplitude, caused by the discharge contraction, is observed and studied. It is established that the amplitude of the sound wave as a function of the discharge current near the jump exhibits hysteresis. It is shown that in the field of a high-intensity sound wave causing the discharge to expand eliminates the jump in the sound amplitude. The dependence of the growth time of the sound amplitude caused by the jump in this quantity on the sound wave intensity is determined. 24 refs., 4 figs., 1 tab

  18. Physiological correlates of sound localization in a parasitoid fly, Ormia ochracea

    Science.gov (United States)

    Oshinsky, Michael Lee

    A major focus of research in the nervous system is the investigation of neural circuits. The question of how neurons connect to form functional units has driven modern neuroscience research from its inception. From the beginning, the neural circuits of the auditory system and specifically sound localization were used as a model system for investigating neural connectivity and computation. Sound localization lends itself to this task because there is no mapping of spatial information on a receptor sheet as in vision. With only one eye, an animal would still have positional information for objects. Since the receptor sheet in the ear is frequency oriented and not spatially oriented, positional information for a sound source does not exist with only one ear. The nervous system computes the location of a sound source based on differences in the physiology of the two ears. In this study, I investigated the neural circuits for sound localization in a fly, Ormia ochracea (Diptera, Tachinidae, Ormiini), which is a parasitoid of crickets. This fly possess a unique mechanically coupled hearing organ. The two ears are contained in one air sac and a cuticular bridge, that has a flexible spring-like structure at its center, connects them. This mechanical coupling preprocesses the sound before it is detected by the nervous system and provides the fly with directional information. The subject of this study is the neural coding of the location of sound stimuli by a mechanically coupled auditory system. In chapter 1, I present the natural history of an acoustic parasitoid and I review the peripheral processing of sound by the Ormian ear. In chapter 2, I describe the anatomy and physiology of the auditory afferents. I present this physiology in the context of sound localization. In chapter 3, I describe the directional dependent physiology for the thoracic local and ascending acoustic interneurons. In chapter 4, I quantify the threshold and I detail the kinematics of the phonotactic

  19. Perception of Animacy from the Motion of a Single Sound Object.

    Science.gov (United States)

    Nielsen, Rasmus Høll; Vuust, Peter; Wallentin, Mikkel

    2015-02-01

    Research in the visual modality has shown that the presence of certain dynamics in the motion of an object has a strong effect on whether or not the entity is perceived as animate. Cues for animacy are, among others, self-propelled motion and direction changes that are seemingly not caused by entities external to, or in direct contact with, the moving object. The present study aimed to extend this research into the auditory domain by determining if similar dynamics could influence the perceived animacy of a sound source. In two experiments, participants were presented with single, synthetically generated 'mosquito' sounds moving along trajectories in space, and asked to rate how certain they were that each sound-emitting entity was alive. At a random point on a linear motion trajectory, the sound source would deviate from its initial path and speed. Results confirm findings from the visual domain that a change in the velocity of motion is positively correlated with perceived animacy, and changes in direction were found to influence animacy judgment as well. This suggests that an ability to facilitate and sustain self-movement is perceived as a living quality not only in the visual domain, but in the auditory domain as well. © 2015 SAGE Publications.

  20. Impact of the "Like Minds, Like Mine" anti-stigma and discrimination campaign in New Zealand on anticipated and experienced discrimination.

    Science.gov (United States)

    Thornicroft, Calum; Wyllie, Allan; Thornicroft, Graham; Mehta, Nisha

    2014-04-01

    The "Like Minds, Like Mine" anti-stigma and discrimination programme has been running in New Zealand since 1997. We aimed to investigate the nature and degree of anticipated and experienced discrimination reported by people with mental illness, and their views on whether the campaign was contributing to reductions in stigma and discrimination. Questionnaires were sent to randomly selected people who were representative of those who had recently used mental health services in New Zealand. The measure used was the modified Discrimination and Stigma Scale (DISC-12), adding questions on the effect of "Like Minds, Like Mine", and also assessing overall changes in discrimination in the previous 5 years. A total of 1135 participants completed the questionnaire. This included 225 Ma-ori, 196 Pacific, and 152 Asian persons. Over half of all participants reported improvement in discrimination over the previous 5 years, and 48% thought that the "Like Minds Like Mine" programme had assisted in reducing discrimination "moderately" or "a lot". Nevertheless, a clear majority (89%) reported experiencing at least "a little" unfair treatment in the previous 12 months due to their mental health problems. The primary source of both positive and negative discrimination was the family. Many (57%) participants had concealed or hidden their mental health problems from others, and 33% had stopped themselves from applying for work because they anticipated discrimination. Family, friendship, and social life were the most common areas of discrimination reported by the participants; however, many believed the overall level of discrimination had reduced over the previous 5 years. Overall, these results characterize the nature of stigma and discrimination anticipated and experienced by people with mental health problems and indicate modest but clear and positive recent progress in their reduction.

  1. Optical Reading and Playing of Sound Signals from Vinyl Records

    OpenAIRE

    Hensman, Arnold; Casey, Kevin

    2007-01-01

    While advanced digital music systems such as compact disk players and MP3 have become the standard in sound reproduction technology, critics claim that conversion to digital often results in a loss of sound quality and richness. For this reason, vinyl records remain the medium of choice for many audiophiles involved in specialist areas. The waveform cut into a vinyl record is an exact replica of the analogue version from the original source. However, while some perceive this media as reproduc...

  2. Characteristics and prediction of sound level in extra-large spaces

    OpenAIRE

    Wang, C.; Ma, H.; Wu, Y.; Kang, J.

    2018-01-01

    This paper aims to examine sound fields in extra-large spaces, which are defined in this paper as spaces used by people, with a volume approximately larger than 125,000m 3 and absorption coefficient less than 0.7. In such spaces inhomogeneous reverberant energy caused by uneven early reflections with increasing volume has a significant effect on sound fields. Measurements were conducted in four spaces to examine the attenuation of the total and reverberant energy with increasing source-receiv...

  3. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    Science.gov (United States)

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-02-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas.

  4. Sound Search Engine Concept

    DEFF Research Database (Denmark)

    2006-01-01

    Sound search is provided by the major search engines, however, indexing is text based, not sound based. We will establish a dedicated sound search services with based on sound feature indexing. The current demo shows the concept of the sound search engine. The first engine will be realased June...

  5. Method for measuring violin sound radiation based on bowed glissandi and its application to sound synthesis.

    Science.gov (United States)

    Perez Carrillo, Alfonso; Bonada, Jordi; Patynen, Jukka; Valimaki, Vesa

    2011-08-01

    This work presents a method for measuring and computing violin-body directional frequency responses, which are used for violin sound synthesis. The approach is based on a frame-weighted deconvolution of excitation and response signals. The excitation, consisting of bowed glissandi, is measured with piezoelectric transducers built into the bridge. Radiation responses are recorded in an anechoic chamber with multiple microphones placed at different angles around the violin. The proposed deconvolution algorithm computes impulse responses that, when convolved with any source signal (captured with the same transducer), produce a highly realistic violin sound very similar to that of a microphone recording. The use of motion sensors allows for tracking violin movements. Combining this information with the directional responses and using a dynamic convolution algorithm, helps to improve the listening experience by incorporating the violinist motion effect in stereo.

  6. Direct Measurement of the Speed of Sound Using a Microphone and a Speaker

    Science.gov (United States)

    Gómez-Tejedor, José A.; Castro-Palacio, Juan C.; Monsoriu, Juan A.

    2014-01-01

    We present a simple and accurate experiment to obtain the speed of sound in air using a conventional speaker and a microphone connected to a computer. A free open source digital audio editor and recording computer software application allows determination of the time-of-flight of the wave for different distances, from which the speed of sound is…

  7. Coupled simulation of meteorological parameters and sound intensity in a narrow valley

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, D. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Gross, G. [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    1997-07-01

    A meteorological mesoscale model is used to simulate the inhomogeneous distribution of temperature and the appertaining development of thermal wind systems in a narrow two-dimensional valley during the course of a cloud-free day. A simple sound particle model takes up the simulated meteorological fields and calculates the propagation of noise which originates from a line source at one of the slopes of this valley. The coupled modeling system ensures consistency of topography, meteorological parameters and the sound field. The temporal behaviour of the sound intensity level across the valley is examined. It is only governed by the time-dependent meteorology. The results show remarkable variations of the sound intensity during the course of a day depending on the location in the valley. (orig.) 23 refs.

  8. The sound manifesto

    Science.gov (United States)

    O'Donnell, Michael J.; Bisnovatyi, Ilia

    2000-11-01

    Computing practice today depends on visual output to drive almost all user interaction. Other senses, such as audition, may be totally neglected, or used tangentially, or used in highly restricted specialized ways. We have excellent audio rendering through D-A conversion, but we lack rich general facilities for modeling and manipulating sound comparable in quality and flexibility to graphics. We need coordinated research in several disciplines to improve the use of sound as an interactive information channel. Incremental and separate improvements in synthesis, analysis, speech processing, audiology, acoustics, music, etc. will not alone produce the radical progress that we seek in sonic practice. We also need to create a new central topic of study in digital audio research. The new topic will assimilate the contributions of different disciplines on a common foundation. The key central concept that we lack is sound as a general-purpose information channel. We must investigate the structure of this information channel, which is driven by the cooperative development of auditory perception and physical sound production. Particular audible encodings, such as speech and music, illuminate sonic information by example, but they are no more sufficient for a characterization than typography is sufficient for characterization of visual information. To develop this new conceptual topic of sonic information structure, we need to integrate insights from a number of different disciplines that deal with sound. In particular, we need to coordinate central and foundational studies of the representational models of sound with specific applications that illuminate the good and bad qualities of these models. Each natural or artificial process that generates informative sound, and each perceptual mechanism that derives information from sound, will teach us something about the right structure to attribute to the sound itself. The new Sound topic will combine the work of computer

  9. Experimental analysis of considering the sound pressure distribution pattern at the ear canal entrance as an unrevealed head-related localization clue

    Institute of Scientific and Technical Information of China (English)

    TONG Xin; QI Na; MENG Zihou

    2018-01-01

    By analyzing the differences between binaural recording and real listening,it was deduced that there were some unrevealed auditory localization clues,and the sound pressure distribution pattern at the entrance of ear canal was probably a clue.It was proved through the listening test that the unrevealed auditory localization clues really exist with the reduction to absurdity.And the effective frequency bands of the unrevealed localization clues were induced and summed.The result of finite element based simulations showed that the pressure distribution at the entrance of ear canal was non-uniform,and the pattern was related to the direction of sound source.And it was proved that the sound pressure distribution pattern at the entrance of the ear canal carried the sound source direction information and could be used as an unrevealed localization cluc.The frequency bands in which the sound pressure distribution patterns had significant differences between front and back sound source directions were roughly matched with the effective frequency bands of unrevealed localization clues obtained from the listening tests.To some extent,it supports the hypothesis that the sound pressure distribution pattern could be a kind of unrevealed auditory localization clues.

  10. Unsound Sound

    DEFF Research Database (Denmark)

    Knakkergaard, Martin

    2016-01-01

    This article discusses the change in premise that digitally produced sound brings about and how digital technologies more generally have changed our relationship to the musical artifact, not simply in degree but in kind. It demonstrates how our acoustical conceptions are thoroughly challenged...... by the digital production of sound and, by questioning the ontological basis for digital sound, turns our understanding of the core term substance upside down....

  11. Wind turbine sound pressure level calculations at dwellings.

    Science.gov (United States)

    Keith, Stephen E; Feder, Katya; Voicescu, Sonia A; Soukhovtsev, Victor; Denning, Allison; Tsang, Jason; Broner, Norm; Leroux, Tony; Richarz, Werner; van den Berg, Frits

    2016-03-01

    This paper provides calculations of outdoor sound pressure levels (SPLs) at dwellings for 10 wind turbine models, to support Health Canada's Community Noise and Health Study. Manufacturer supplied and measured wind turbine sound power levels were used to calculate outdoor SPL at 1238 dwellings using ISO [(1996). ISO 9613-2-Acoustics] and a Swedish noise propagation method. Both methods yielded statistically equivalent results. The A- and C-weighted results were highly correlated over the 1238 dwellings (Pearson's linear correlation coefficient r > 0.8). Calculated wind turbine SPLs were compared to ambient SPLs from other sources, estimated using guidance documents from the United States and Alberta, Canada.

  12. Early Sound Symbolism for Vowel Sounds

    Directory of Open Access Journals (Sweden)

    Ferrinne Spector

    2013-06-01

    Full Text Available Children and adults consistently match some words (e.g., kiki to jagged shapes and other words (e.g., bouba to rounded shapes, providing evidence for non-arbitrary sound–shape mapping. In this study, we investigated the influence of vowels on sound–shape matching in toddlers, using four contrasting pairs of nonsense words differing in vowel sound (/i/ as in feet vs. /o/ as in boat and four rounded–jagged shape pairs. Crucially, we used reduplicated syllables (e.g., kiki vs. koko rather than confounding vowel sound with consonant context and syllable variability (e.g., kiki vs. bouba. Toddlers consistently matched words with /o/ to rounded shapes and words with /i/ to jagged shapes (p < 0.01. The results suggest that there may be naturally biased correspondences between vowel sound and shape.

  13. Sound Art and Spatial Practices: Situating Sound Installation Art Since 1958

    OpenAIRE

    Ouzounian, Gascia

    2008-01-01

    This dissertation examines the emergence and development ofsound installation art, an under-recognized tradition that hasdeveloped between music, architecture, and media art practicessince the late 1950s. Unlike many musical works, which are concernedwith organizing sounds in time, sound installations organize sounds inspace; they thus necessitate new theoretical and analytical modelsthat take into consideration the spatial situated-ness of sound. Existingdiscourses on “spatial sound” privile...

  14. Sound Scattering and Its Reduction by a Janus Sphere Type

    Directory of Open Access Journals (Sweden)

    Deliya Kim

    2014-01-01

    Full Text Available Sound scattering by a Janus sphere type is considered. The sphere has two surface zones: a soft surface of zero acoustic impedance and a hard surface of infinite acoustic impedance. The zones are arranged such that axisymmetry of the sound field is preserved. The equivalent source method is used to compute the sound field. It is shown that, by varying the sizes of the soft and hard zones on the sphere, a significant reduction can be achieved in the scattered acoustic power and upstream directivity when the sphere is near a free surface and its soft zone faces the incoming wave and vice versa for a hard ground. In both cases the size of the sphere’s hard zone is much larger than that of its soft zone. The boundary location between the two zones coincides with the location of a zero pressure line of the incoming standing sound wave, thus masking the sphere within the sound field reflected by the free surface or the hard ground. The reduction in the scattered acoustic power diminishes when the sphere is placed in free space. Variations of the scattered acoustic power and directivity with the sound frequency are also given and discussed.

  15. Second harmonic sound field after insertion of a biological tissue sample

    Science.gov (United States)

    Zhang, Dong; Gong, Xiu-Fen; Zhang, Bo

    2002-01-01

    Second harmonic sound field after inserting a biological tissue sample is investigated by theory and experiment. The sample is inserted perpendicular to the sound axis, whose acoustical properties are different from those of surrounding medium (distilled water). By using the superposition of Gaussian beams and the KZK equation in quasilinear and parabolic approximations, the second harmonic field after insertion of the sample can be derived analytically and expressed as a linear combination of self- and cross-interaction of the Gaussian beams. Egg white, egg yolk, porcine liver, and porcine fat are used as the samples and inserted in the sound field radiated from a 2 MHz uniformly excited focusing source. Axial normalized sound pressure curves of the second harmonic wave before and after inserting the sample are measured and compared with the theoretical results calculated with 10 items of Gaussian beam functions.

  16. Understanding the Doppler effect by analysing spectrograms of the sound of a passing vehicle

    Science.gov (United States)

    Lubyako, Dmitry; Martinez-Piedra, Gordon; Ushenin, Arthur; Denvir, Patrick; Dunlop, John; Hall, Alex; Le Roux, Gus; van Someren, Laurence; Weinberger, Harvey

    2017-11-01

    The purpose of this paper is to demonstrate how the Doppler effect can be analysed to deduce information about a moving source of sound waves. Specifically, we find the speed of a car and the distance of its closest approach to an observer using sound recordings from smartphones. A key focus of this paper is how this can be achieved in a classroom, both theoretically and experimentally, to deepen students’ understanding of the Doppler effect. Included are our own experimental data (48 sound recordings) to allow others to reproduce the analysis, if they cannot repeat the whole experiment themselves. In addition to its educational purpose, this paper examines the percentage errors in our results. This enabled us to determine sources of error, allowing those conducting similar future investigations to optimize their accuracy.

  17. Harassment and discrimination in medical training: a systematic review and meta-analysis.

    Science.gov (United States)

    Fnais, Naif; Soobiah, Charlene; Chen, Maggie Hong; Lillie, Erin; Perrier, Laure; Tashkhandi, Mariam; Straus, Sharon E; Mamdani, Muhammad; Al-Omran, Mohammed; Tricco, Andrea C

    2014-05-01

    Harassment and discrimination include a wide range of behaviors that medical trainees perceive as being humiliating, hostile, or abusive. To understand the significance of such mistreatment and to explore potential preventive strategies, the authors conducted a systematic review and meta-analysis to examine the prevalence, risk factors, and sources of harassment and discrimination among medical trainees. In 2011, the authors identified relevant studies by searching MEDLINE and EMBASE, scanning reference lists of relevant studies, and contacting experts. They included studies that reported the prevalence, risk factors, and sources of harassment and discrimination among medical trainees. Two reviewers independently screened all articles and abstracted study and participant characteristics and study results. The authors assessed the methodological quality in individual studies using the Newcastle-Ottawa Scale. They also conducted a meta-analysis. The authors included 57 cross-sectional and 2 cohort studies in their review. The meta-analysis of 51 studies demonstrated that 59.4% of medical trainees had experienced at least one form of harassment or discrimination during their training (95% confidence interval [CI]: 52.0%-66.7%). Verbal harassment was the most commonly cited form of harassment (prevalence: 63.0%; 95% CI: 54.8%-71.2%). Consultants were the most commonly cited source of harassment and discrimination, followed by patients or patients' families (34.4% and 21.9%, respectively). This review demonstrates the surprisingly high prevalence of harassment and discrimination among medical trainees that has not declined over time. The authors recommend both drafting policies and promoting cultural change within academic institutions to prevent future abuse.

  18. Songbirds use pulse tone register in two voices to generate low-frequency sound

    DEFF Research Database (Denmark)

    Jensen, Kenneth Kragh; Cooper, Brenton G.; Larsen, Ole Næsbye

    2007-01-01

    , the syrinx, is unknown. We present the first high-speed video records of the intact syrinx during induced phonation. The syrinx of anaesthetized crows shows a vibration pattern of the labia similar to that of the human vocal fry register. Acoustic pulses result from short opening of the labia, and pulse...... generation alternates between the left and right sound sources. Spontaneously calling crows can also generate similar pulse characteristics with only one sound generator. Airflow recordings in zebra finches and starlings show that pulse tone sounds can be generated unilaterally, synchronously...

  19. Evaluation of substitution monopole models for tire noise sound synthesis

    Science.gov (United States)

    Berckmans, D.; Kindt, P.; Sas, P.; Desmet, W.

    2010-01-01

    Due to the considerable efforts in engine noise reduction, tire noise has become one of the major sources of passenger car noise nowadays and the demand for accurate prediction models is high. A rolling tire is therefore experimentally characterized by means of the substitution monopole technique, suiting a general sound synthesis approach with a focus on perceived sound quality. The running tire is substituted by a monopole distribution covering the static tire. All monopoles have mutual phase relationships and a well-defined volume velocity distribution which is derived by means of the airborne source quantification technique; i.e. by combining static transfer function measurements with operating indicator pressure measurements close to the rolling tire. Models with varying numbers/locations of monopoles are discussed and the application of different regularization techniques is evaluated.

  20. Active equalisation of the sound field in an extended region of a room

    DEFF Research Database (Denmark)

    Orozco-Santillán, Arturo

    1997-01-01

    studied by means of an idealised frequency domain model. The analysis is based on the calculation of the complex source strengths that minimise the difference between the actual sound pressure and the desired sound pressure in the listening area. Results in relation to the position of the sources......, the frequency range, and the size and location of the listening area are presented. However, the frequency-domain approach results in non-causal impulse responses that can be realised only at the expense of a delay. Therefore, this analysis is supplemented with a study of the equalisation carried out...

  1. Linear models for sound from supersonic reacting mixing layers

    Science.gov (United States)

    Chary, P. Shivakanth; Samanta, Arnab

    2016-12-01

    We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.

  2. Sound a very short introduction

    CERN Document Server

    Goldsmith, Mike

    2015-01-01

    Sound is integral to how we experience the world, in the form of noise as well as music. But what is sound? What is the physical basis of pitch and harmony? And how are sound waves exploited in musical instruments? Sound: A Very Short Introduction looks at the science of sound and the behaviour of sound waves with their different frequencies. It also explores sound in different contexts, covering the audible and inaudible, sound underground and underwater, acoustic and electronic sound, and hearing in humans and animals. It concludes with the problem of sound out of place—noise and its reduction.

  3. Unifying generative and discriminative learning principles

    Directory of Open Access Journals (Sweden)

    Strickert Marc

    2010-02-01

    Full Text Available Abstract Background The recognition of functional binding sites in genomic DNA remains one of the fundamental challenges of genome research. During the last decades, a plethora of different and well-adapted models has been developed, but only little attention has been payed to the development of different and similarly well-adapted learning principles. Only recently it was noticed that discriminative learning principles can be superior over generative ones in diverse bioinformatics applications, too. Results Here, we propose a generalization of generative and discriminative learning principles containing the maximum likelihood, maximum a posteriori, maximum conditional likelihood, maximum supervised posterior, generative-discriminative trade-off, and penalized generative-discriminative trade-off learning principles as special cases, and we illustrate its efficacy for the recognition of vertebrate transcription factor binding sites. Conclusions We find that the proposed learning principle helps to improve the recognition of transcription factor binding sites, enabling better computational approaches for extracting as much information as possible from valuable wet-lab data. We make all implementations available in the open-source library Jstacs so that this learning principle can be easily applied to other classification problems in the field of genome and epigenome analysis.

  4. Sound stream segregation: a neuromorphic approach to solve the "cocktail party problem" in real-time.

    Science.gov (United States)

    Thakur, Chetan Singh; Wang, Runchun M; Afshar, Saeed; Hamilton, Tara J; Tapson, Jonathan C; Shamma, Shihab A; van Schaik, André

    2015-01-01

    The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the "cocktail party effect." It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA). This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR) of the segregated stream (90, 77, and 55 dB for simple tone, complex tone, and speech, respectively) as compared to the SNR of the mixture waveform (0 dB). This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for sound segregation and

  5. Sustained Firing of Model Central Auditory Neurons Yields a Discriminative Spectro-temporal Representation for Natural Sounds

    OpenAIRE

    Carlin, Michael A.; Elhilali, Mounya

    2013-01-01

    The processing characteristics of neurons in the central auditory system are directly shaped by and reflect the statistics of natural acoustic environments, but the principles that govern the relationship between natural sound ensembles and observed responses in neurophysiological studies remain unclear. In particular, accumulating evidence suggests the presence of a code based on sustained neural firing rates, where central auditory neurons exhibit strong, persistent responses to their prefe...

  6. Improvements of sound localization abilities by the facial ruff of the barn owl (Tyto alba as demonstrated by virtual ruff removal.

    Directory of Open Access Journals (Sweden)

    Laura Hausmann

    Full Text Available BACKGROUND: When sound arrives at the eardrum it has already been filtered by the body, head, and outer ear. This process is mathematically described by the head-related transfer functions (HRTFs, which are characteristic for the spatial position of a sound source and for the individual ear. HRTFs in the barn owl (Tyto alba are also shaped by the facial ruff, a specialization that alters interaural time differences (ITD, interaural intensity differences (ILD, and the frequency spectrum of the incoming sound to improve sound localization. Here we created novel stimuli to simulate the removal of the barn owl's ruff in a virtual acoustic environment, thus creating a situation similar to passive listening in other animals, and used these stimuli in behavioral tests. METHODOLOGY/PRINCIPAL FINDINGS: HRTFs were recorded from an owl before and after removal of the ruff feathers. Normal and ruff-removed conditions were created by filtering broadband noise with the HRTFs. Under normal virtual conditions, no differences in azimuthal head-turning behavior between individualized and non-individualized HRTFs were observed. The owls were able to respond differently to stimuli from the back than to stimuli from the front having the same ITD. By contrast, such a discrimination was not possible after the virtual removal of the ruff. Elevational head-turn angles were (slightly smaller with non-individualized than with individualized HRTFs. The removal of the ruff resulted in a large decrease in elevational head-turning amplitudes. CONCLUSIONS/SIGNIFICANCE: The facial ruff a improves azimuthal sound localization by increasing the ITD range and b improves elevational sound localization in the frontal field by introducing a shift of iso-ILD lines out of the midsagittal plane, which causes ILDs to increase with increasing stimulus elevation. The changes at the behavioral level could be related to the changes in the binaural physical parameters that occurred after the

  7. Perceptions of gender-based discrimination during surgical training and practice

    Directory of Open Access Journals (Sweden)

    Adrienne N. Bruce

    2015-02-01

    Full Text Available Background: Women represent 15% of practicing general surgeons. Gender-based discrimination has been implicated as discouraging women from surgery. We sought to determine women's perceptions of gender-based discrimination in the surgical training and working environment. Methods: Following IRB approval, we fielded a pilot survey measuring perceptions and impact of gender-based discrimination in medical school, residency training, and surgical practice. It was sent electronically to 1,065 individual members of the Association of Women Surgeons. Results: We received 334 responses from medical students, residents, and practicing physicians with a response rate of 31%. Eighty-seven percent experienced gender-based discrimination in medical school, 88% in residency, and 91% in practice. Perceived sources of gender-based discrimination included superiors, physician peers, clinical support staff, and patients, with 40% emanating from women and 60% from men. Conclusions: The majority of responses indicated perceived gender-based discrimination during medical school, residency, and practice. Gender-based discrimination comes from both sexes and has a significant impact on women surgeons.

  8. A Green Soundscape Index (GSI): The potential of assessing the perceived balance between natural sound and traffic noise.

    Science.gov (United States)

    Kogan, Pablo; Arenas, Jorge P; Bermejo, Fernando; Hinalaf, María; Turra, Bruno

    2018-06-13

    Urban soundscapes are dynamic and complex multivariable environmental systems. Soundscapes can be organized into three main entities containing the multiple variables: Experienced Environment (EE), Acoustic Environment (AE), and Extra-Acoustic Environment (XE). This work applies a multidimensional and synchronic data-collecting methodology at eight urban environments in the city of Córdoba, Argentina. The EE was assessed by means of surveys, the AE by acoustic measurements and audio recordings, and the XE by photos, video, and complementary sources. In total, 39 measurement locations were considered, where data corresponding to 61 AE and 203 EE were collected. Multivariate analysis and GIS techniques were used for data processing. The types of sound sources perceived, and their extents make up part of the collected variables that belong to the EE, i.e. traffic, people, natural sounds, and others. Sources explaining most of the variance were traffic noise and natural sounds. Thus, a Green Soundscape Index (GSI) is defined here as the ratio of the perceived extents of natural sounds to traffic noise. Collected data were divided into three ranges according to GSI value: 1) perceptual predominance of traffic noise, 2) balanced perception, and 3) perceptual predominance of natural sounds. For each group, three additional variables from the EE and three from the AE were applied, which reported significant differences, especially between ranges 1 and 2 with 3. These results confirm the key role of perceiving natural sounds in a town environment and also support the proposal of a GSI as a valuable indicator to classify urban soundscapes. In addition, the collected GSI-related data significantly helps to assess the overall soundscape. It is noted that this proposed simple perceptual index not only allows one to assess and classify urban soundscapes but also contributes greatly toward a technique for separating environmental sound sources. Copyright © 2018 Elsevier B

  9. Structural Discrimination

    DEFF Research Database (Denmark)

    Thorsen, Mira Skadegård

    discrimination as two ways of articulating particular, opaque forms of racial discrimination that occur in everyday Danish (and other) contexts, and have therefore become normalized. I present and discuss discrimination as it surfaces in data from my empirical studies of discrimination in Danish contexts...

  10. Development of a Finite-Difference Time Domain (FDTD) Model for Propagation of Transient Sounds in Very Shallow Water.

    Science.gov (United States)

    Sprague, Mark W; Luczkovich, Joseph J

    2016-01-01

    This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources.

  11. What is Sound?

    OpenAIRE

    Nelson, Peter

    2014-01-01

    What is sound? This question is posed in contradiction to the every-day understanding that sound is a phenomenon apart from us, to be heard, made, shaped and organised. Thinking through the history of computer music, and considering the current configuration of digital communi-cations, sound is reconfigured as a type of network. This network is envisaged as non-hierarchical, in keeping with currents of thought that refuse to prioritise the human in the world. The relationship of sound to musi...

  12. Broadcast sound technology

    CERN Document Server

    Talbot-Smith, Michael

    1990-01-01

    Broadcast Sound Technology provides an explanation of the underlying principles of modern audio technology. Organized into 21 chapters, the book first describes the basic sound; behavior of sound waves; aspects of hearing, harming, and charming the ear; room acoustics; reverberation; microphones; phantom power; loudspeakers; basic stereo; and monitoring of audio signal. Subsequent chapters explore the processing of audio signal, sockets, sound desks, and digital audio. Analogue and digital tape recording and reproduction, as well as noise reduction, are also explained.

  13. A Loudness Function for Maintaining Spectral Balance at Changing Sound Pressure Levels

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal

    Our perception of loudness is a function of frequency as well as sound pressure level as described in ISO226:2003: Normal Equal Loudness Level Contours, which describes the needed sound pressure level for pure tones to be perceived equally loud. At a music performance, this is taking care...... of by the sound engineer by listening to the individual sound sources and adjust and equalize them to the wanted spectral balance including the whole chain of audio equipment and surroundings. At a live venue the sound pressure level will normally change during a concert, and typically increase over time......B is doubling of the effect to the loudspeakers). A level depending digital loudness function has been made based on ISO226:2003, and will be demonstrated. It can maintain the spectral balance at alternating levels and is based on fractional order digital filters. Tutorial. Abstract T3.3 (30th August 16:00 - 17...

  14. Making fictions sound real

    DEFF Research Database (Denmark)

    Langkjær, Birger

    2010-01-01

    This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related...... to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy...... of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences....

  15. Employment Discrimination Based on Sexual Orientation and Gender Identity in Wyoming

    OpenAIRE

    Mallory, Christy; Sears, Brad

    2015-01-01

    About 8,900 LGBT workers in Wyoming are not explicitly protected from discrimination under state or federal laws. Discrimination against LGBT employees in Wyoming has recently been documented in surveys, court cases, and other sources. Many corporate employers and public opinion in the state support protections for LGBT people in the workplace. If sexual orientation and gender identity were added to existing statewide non-discrimination laws, four more complaints would be filed in Wyoming eac...

  16. Consistent modelling of wind turbine noise propagation from source to receiver.

    Science.gov (United States)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; Dag, Kaya O; Moriarty, Patrick

    2017-11-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. The local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.

  17. Directional loudness in an anechoic sound field, head-related transfer functions, and binaural summation

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2006-01-01

    planes. Matches were obtained via a two-interval, adaptive forced-choice (2AFC) procedure for three center frequencies (0.4, 1 and 5 kHz) and two overall levels (45 and 65 dB SPL). The results showed that loudness is not constant over sound incidence angles, with directional sensitivity varying over......The effect of sound incidence angle on loudness was investigated using real sound sources positioned in an anechoic chamber. Eight normal-hearing listeners produced loudness matches between a frontal reference location and seven sources placed at other directions, both in the horizontal and median...... a range of up to 10 dB, exhibiting considerable frequency dependence, but only minor effects of overall level. The pattern of results varied substantially between subjects, but was largely accounted for by variations in individual head-related transfer functions. Modeling of binaural loudness based...

  18. The impact of the microphone position on the frequency analysis of snoring sounds.

    Science.gov (United States)

    Herzog, Michael; Kühnel, Thomas; Bremert, Thomas; Herzog, Beatrice; Hosemann, Werner; Kaftan, Holger

    2009-08-01

    Frequency analysis of snoring sounds has been reported as a diagnostic tool to differentiate between different sources of snoring. Several studies have been published presenting diverging results of the frequency analyses of snoring sounds. Depending on the position of the used microphones, the results of the frequency analysis of snoring sounds vary. The present study investigated the influence of different microphone positions on the outcome of the frequency analysis of snoring sounds. Nocturnal snoring was recorded simultaneously at six positions (air-coupled: 30 cm middle, 100 cm middle, 30 cm lateral to both sides of the patients' head; body contact: neck and parasternal) in five patients. The used microphones had a flat frequency response and a similar frequency range (10/40 Hz-18 kHz). Frequency analysis was performed by fast Fourier transformation and frequency bands as well as peak intensities (Peaks 1-5) were detected. Air-coupled microphones presented a wider frequency range (60 Hz-10 kHz) compared to contact microphones. The contact microphone at cervical position presented a cut off at frequencies above 300 Hz, whereas the contact microphone at parasternal position revealed a cut off above 100 Hz. On an exemplary base, the study demonstrates that frequencies above 1,000 Hz do appear in complex snoring patterns, and it is emphasised that high frequencies are imported for the interpretation of snoring sounds with respect to the identification of the source of snoring. Contact microphones might be used in screening devices, but for a natural analysis of snoring sounds the use of air-coupled microphones is indispensable.

  19. Discrimination in waiting times by insurance type and financial soundness of German acute care hospitals.

    Science.gov (United States)

    Schwierz, Christoph; Wübker, Achim; Wübker, Ansgar; Kuchinke, Björn A

    2011-10-01

    This paper shows that patients with private health insurance (PHI) are being offered significantly shorter waiting times than patients with statutory health insurance (SHI) in German acute hospital care. This behavior may be driven by the higher expected profitability of PHI relative to SHI holders. Further, we find that hospitals offering private insurees shorter waiting times when compared with SHI holders have a significantly better financial performance than those abstaining from or with less discrimination.

  20. Study of n-γ discrimination using QDC for a liquid scintillator

    International Nuclear Information System (INIS)

    Jhingan, Akhil; Singh, R.P.; Golda, K.S.; Sugathan, P.; Bhowmik, R.K.; Singh, Hardev

    2006-01-01

    An array of neutron detectors has been recently installed in beam hall II at Inter University Accelerator Centre, New Delhi. The array currently has 26 neutron detectors with some detectors pooled from SINP, Kolkata. For some in beam test experiments and off line source tests, zero crossing technique has been successfully used for n-γ discrimination, using commercially available pulse shape discriminator module 2160A from Canberra, as well as with in house designed and fabricated pulse shape discriminator module using zero crossing technique

  1. Memory for product sounds: the effect of sound and label type.

    Science.gov (United States)

    Ozcan, Elif; van Egmond, René

    2007-11-01

    The (mnemonic) interactions between auditory, visual, and the semantic systems have been investigated using structurally complex auditory stimuli (i.e., product sounds). Six types of product sounds (air, alarm, cyclic, impact, liquid, mechanical) that vary in spectral-temporal structure were presented in four label type conditions: self-generated text, text, image, and pictogram. A memory paradigm that incorporated free recall, recognition, and matching tasks was employed. The results for the sound type suggest that the amount of spectral-temporal structure in a sound can be indicative for memory performance. Findings related to label type suggest that 'self' creates a strong bias for the retrieval and the recognition of sounds that were self-labeled; the density and the complexity of the visual information (i.e., pictograms) hinders the memory performance ('visual' overshadowing effect); and image labeling has an additive effect on the recall and matching tasks (dual coding). Thus, the findings suggest that the memory performances for product sounds are task-dependent.

  2. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false In Prince William Sound: Prince William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST....1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  3. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source.

    Science.gov (United States)

    Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B

    2014-10-10

    Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-10(5) Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.

  4. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source

    International Nuclear Information System (INIS)

    Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B

    2014-01-01

    Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1–10 5 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz–10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed. (paper)

  5. Long Range Sound Propagation over Sea: Application to Wind Turbine Noise

    Energy Technology Data Exchange (ETDEWEB)

    Boue, Matieu

    2007-12-13

    The classical theory of spherical wave propagation is not valid at large distances from a sound source due to the influence of wind and temperature gradients that refract, i.e., bend the sound waves. This will in the downwind direction lead to a cylindrical type of wave spreading for large distances (> 1 km). Cylindrical spreading will give a smaller damping with distance as compared to spherical spreading (3 dB/distance doubling instead of 6 dB). But over areas with soft ground, i.e., grass land, the effect of ground reflections will increase the damping so that, if the effect of atmospheric damping is removed, a behavior close to a free field spherical spreading often is observed. This is the standard assumption used in most national recommendations for predicting outdoor sound propagation, e.g., noise from wind turbines. Over areas with hard surfaces, e.g., desserts or the sea, the effect of ground damping is small and therefore cylindrical propagation could be expected in the downwind direction. This observation backed by a limited number of measurements is the background for the Swedish recommendation, which suggests that cylindrical wave spreading should be assumed for distances larger than 200 m for sea based wind turbines. The purpose of this work was to develop measurement procedures for long range sound transmission and to apply this to investigate the occurrence of cylindrical wave spreading in the Baltic Sea. This work has been successfully finished and is described in this report. Another ambition was to develop models for long range sound transmission based on the parabolic equation. Here the work is not finished but must be continued in another project. Long term measurements were performed in the Kalmar strait, Sweden, located between the mainland and Oeland, during 2005 and 2006. Two different directive sound sources placed on a lighthouse in the middle of the strait produced low frequency tones at 80, 200 and 400 Hz. At the reception point on

  6. Sounds Exaggerate Visual Shape

    Science.gov (United States)

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  7. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  8. Automatic adventitious respiratory sound analysis: A systematic review.

    Directory of Open Access Journals (Sweden)

    Renard Xaviero Adhi Pramono

    Full Text Available Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD, and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established.To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works.A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016 and IEEExplore (1984-2016 databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification.Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated.Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved.A total of 77 reports from the literature were included in this review. 55 (71.43% of the studies focused on wheeze, 40 (51.95% on crackle, 9 (11.69% on stridor, 9

  9. Automatic adventitious respiratory sound analysis: A systematic review.

    Science.gov (United States)

    Pramono, Renard Xaviero Adhi; Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11

  10. Winter sound-level characterization of the Deaf Smith County location in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1984-03-01

    A description of sound levels and sound sources in the Deaf Smith County location in the Palo Duro Basin during a period representative of the winter season is presented. Data were collected during the period February 26 through March 1, 1983. 4 references, 1 figure, 3 tables

  11. Anomaly metrics to differentiate threat sources from benign sources in primary vehicle screening.

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Israel Dov; Mengesha, Wondwosen

    2011-09-01

    Discrimination of benign sources from threat sources at Port of Entries (POE) is of a great importance in efficient screening of cargo and vehicles using Radiation Portal Monitors (RPM). Currently RPM's ability to distinguish these radiological sources is seriously hampered by the energy resolution of the deployed RPMs. As naturally occurring radioactive materials (NORM) are ubiquitous in commerce, false alarms are problematic as they require additional resources in secondary inspection in addition to impacts on commerce. To increase the sensitivity of such detection systems without increasing false alarm rates, alarm metrics need to incorporate the ability to distinguish benign and threat sources. Principal component analysis (PCA) and clustering technique were implemented in the present study. Such techniques were investigated for their potential to lower false alarm rates and/or increase sensitivity to weaker threat sources without loss of specificity. Results of the investigation demonstrated improved sensitivity and specificity in discriminating benign sources from threat sources.

  12. Examining Workplace Discrimination in a Discrimination-Free Environment

    OpenAIRE

    Braxton, Shawn Lamont

    2010-01-01

    Examining Workplace Discrimination in a Discrimination-Free Environment Shawn L. Braxton Abstract The purpose of this study is to explore how racial and gender discrimination is reproduced in concrete workplace settings even when anti-discrimination policies are present, and to understand the various reactions utilized by those who commonly experience it. I have selected a particular medical center, henceforth referred to by a pseudonym, â The Bliley Medical Centerâ as my case ...

  13. Can road traffic mask sound from wind turbines? Response to wind turbine sound at different levels of road traffic sound

    International Nuclear Information System (INIS)

    Pedersen, Eja; Berg, Frits van den; Bakker, Roel; Bouma, Jelte

    2010-01-01

    Wind turbines are favoured in the switch-over to renewable energy. Suitable sites for further developments could be difficult to find as the sound emitted from the rotor blades calls for a sufficient distance to residents to avoid negative effects. The aim of this study was to explore if road traffic sound could mask wind turbine sound or, in contrast, increases annoyance due to wind turbine noise. Annoyance of road traffic and wind turbine noise was measured in the WINDFARMperception survey in the Netherlands in 2007 (n=725) and related to calculated levels of sound. The presence of road traffic sound did not in general decrease annoyance with wind turbine noise, except when levels of wind turbine sound were moderate (35-40 dB(A) Lden) and road traffic sound level exceeded that level with at least 20 dB(A). Annoyance with both noises was intercorrelated but this correlation was probably due to the influence of individual factors. Furthermore, visibility and attitude towards wind turbines were significantly related to noise annoyance of modern wind turbines. The results can be used for the selection of suitable sites, possibly favouring already noise exposed areas if wind turbine sound levels are sufficiently low.

  14. Discrimination against women and the human rights of women

    OpenAIRE

    Žunić Natalija

    2014-01-01

    This paper investigates the concept of the human rights of women and its connection with the phenomenon and the instances of discrimination against women. Discrimination against women, its social visibility and the fight against it, within the idea of the rights and the equality of women, are a source of many theoretical debates. Academic discussions and a powerful influence of the women's movement have brought about the establishment and the exercise of the human rights of women at different...

  15. Single Neurons in the Avian Auditory Cortex Encode Individual Identity and Propagation Distance in Naturally Degraded Communication Calls.

    Science.gov (United States)

    Mouterde, Solveig C; Elie, Julie E; Mathevon, Nicolas; Theunissen, Frédéric E

    2017-03-29

    One of the most complex tasks performed by sensory systems is "scene analysis": the interpretation of complex signals as behaviorally relevant objects. The study of this problem, universal to species and sensory modalities, is particularly challenging in audition, where sounds from various sources and localizations, degraded by propagation through the environment, sum to form a single acoustical signal. Here we investigated in a songbird model, the zebra finch, the neural substrate for ranging and identifying a single source. We relied on ecologically and behaviorally relevant stimuli, contact calls, to investigate the neural discrimination of individual vocal signature as well as sound source distance when calls have been degraded through propagation in a natural environment. Performing electrophysiological recordings in anesthetized birds, we found neurons in the auditory forebrain that discriminate individual vocal signatures despite long-range degradation, as well as neurons discriminating propagation distance, with varying degrees of multiplexing between both information types. Moreover, the neural discrimination performance of individual identity was not affected by propagation-induced degradation beyond what was induced by the decreased intensity. For the first time, neurons with distance-invariant identity discrimination properties as well as distance-discriminant neurons are revealed in the avian auditory cortex. Because these neurons were recorded in animals that had prior experience neither with the vocalizers of the stimuli nor with long-range propagation of calls, we suggest that this neural population is part of a general-purpose system for vocalizer discrimination and ranging. SIGNIFICANCE STATEMENT Understanding how the brain makes sense of the multitude of stimuli that it continually receives in natural conditions is a challenge for scientists. Here we provide a new understanding of how the auditory system extracts behaviorally relevant information

  16. BR-Explorer: A sound and complete FCA-based retrieval algorithm (Poster)

    OpenAIRE

    Messai , Nizar; Devignes , Marie-Dominique; Napoli , Amedeo; Smaïl-Tabbone , Malika

    2006-01-01

    In this paper we present BR-Explorer, a sound and complete biological data sources retrieval algorithm based on Formal Concept Analysis and domain ontologies. BR-Explorer addresses the problem of retrieving the relevant data sources for a given query. Initially, a formal context representing the relation between biological data sources and their metadata is provided and its corresponding concept lattice is built. Then BR-Explorer starts by generating the formal concept for the considered quer...

  17. Structure-borne sound structural vibrations and sound radiation at audio frequencies

    CERN Document Server

    Cremer, L; Petersson, Björn AT

    2005-01-01

    Structure-Borne Sound"" is a thorough introduction to structural vibrations with emphasis on audio frequencies and the associated radiation of sound. The book presents in-depth discussions of fundamental principles and basic problems, in order to enable the reader to understand and solve his own problems. It includes chapters dealing with measurement and generation of vibrations and sound, various types of structural wave motion, structural damping and its effects, impedances and vibration responses of the important types of structures, as well as with attenuation of vibrations, and sound radi

  18. Sound stream segregation: a neuromorphic approach to solve the “cocktail party problem” in real-time

    Science.gov (United States)

    Thakur, Chetan Singh; Wang, Runchun M.; Afshar, Saeed; Hamilton, Tara J.; Tapson, Jonathan C.; Shamma, Shihab A.; van Schaik, André

    2015-01-01

    The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the “cocktail party effect.” It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA). This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR) of the segregated stream (90, 77, and 55 dB for simple tone, complex tone, and speech, respectively) as compared to the SNR of the mixture waveform (0 dB). This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for sound segregation

  19. Sound stream segregation: a neuromorphic approach to solve the ‘cocktail party problem’ in real-time

    Directory of Open Access Journals (Sweden)

    Chetan Singh Thakur

    2015-09-01

    Full Text Available The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the ‘cocktail party effect’. It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA. This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR of the segregated stream (90, 77 and 55 dB for simple tone, complex tone and speech, respectively as compared to the SNR of the mixture waveform (0 dB. This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for

  20. Attention to memory: orienting attention to sound object representations.

    Science.gov (United States)

    Backer, Kristina C; Alain, Claude

    2014-01-01

    Despite a growing acceptance that attention and memory interact, and that attention can be focused on an active internal mental representation (i.e., reflective attention), there has been a paucity of work focusing on reflective attention to 'sound objects' (i.e., mental representations of actual sound sources in the environment). Further research on the dynamic interactions between auditory attention and memory, as well as its degree of neuroplasticity, is important for understanding how sound objects are represented, maintained, and accessed in the brain. This knowledge can then guide the development of training programs to help individuals with attention and memory problems. This review article focuses on attention to memory with an emphasis on behavioral and neuroimaging studies that have begun to explore the mechanisms that mediate reflective attentional orienting in vision and more recently, in audition. Reflective attention refers to situations in which attention is oriented toward internal representations rather than focused on external stimuli. We propose four general principles underlying attention to short-term memory. Furthermore, we suggest that mechanisms involved in orienting attention to visual object representations may also apply for orienting attention to sound object representations.

  1. Sound field simulation and acoustic animation in urban squares

    Science.gov (United States)

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  2. Sound velocity variation as function of polarization state in Lead Zirconate Titanate (PZT) Ceramics

    International Nuclear Information System (INIS)

    Essolaani, W; Farhat, N

    2012-01-01

    There are several ultrasonic techniques to measure the sound velocity, for example, the pulse-echo method. In such method, the size of transducer used to measure the sound velocity must be in the same order of the sample size. If not, the incompatibility of sizes becomes an error source of the sound velocity measurement. In this work, the Laser Induced Pressure Pulse (LIPP) method is used as ultrasonic method. This method has been very useful for studying the spatial distribution of charges and polarization in dielectrics. We take advantage of the fact that the method allows the sound velocity measurement, to study its variation as function of polarization state in (PZT) ceramics. In a sample with a known thickness e, the sound velocity ν is deduced from the measurement of the transit time T. The sound velocity depends on the elastic constants which in turn they depend on poling conditions. Thus, the variation of the sound velocity is related to the direction and the amplitude of the polarization.

  3. Understanding the Doppler Effect by Analysing Spectrograms of the Sound of a Passing Vehicle

    Science.gov (United States)

    Lubyako, Dmitry; Martinez-Piedra, Gordon; Ushenin, Arthur; Ushenin, Arthur; Denvir, Patrick; Dunlop, John; Hall, Alex; Le Roux, Gus; van Someren, Laurence; Weinberger, Harvey

    2017-01-01

    The purpose of this paper is to demonstrate how the Doppler effect can be analysed to deduce information about a moving source of sound waves. Specifically, we find the speed of a car and the distance of its closest approach to an observer using sound recordings from smartphones. A key focus of this paper is how this can be achieved in a…

  4. InfoSound

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.; Gopinath, B.; Haberman, Gary O.

    1990-01-01

    The authors explore ways to enhance users' comprehension of complex applications using music and sound effects to present application-program events that are difficult to detect visually. A prototype system, Infosound, allows developers to create and store musical sequences and sound effects with...

  5. The Sound of Science

    Science.gov (United States)

    Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan

    2014-01-01

    While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…

  6. An apparatus for the determination of speeds of sound in fluids

    International Nuclear Information System (INIS)

    Gedanitz, Holger; Davila, Maria J.; Baumhoegger, Elmar; Span, Roland

    2010-01-01

    An apparatus for accurate measurements of the sound velocity in fluids is described, which is based on the pulse-echo technique, and operates up to 30 MPa in the temperature range between (250 and 350) K. The expanded uncertainties (k = 2) in the speed of sound measurements are 0.006%, 6 mK in the temperature, 2.1 hPa in the pressure up to 3 MPa, and 23.9 hPa above this value. Measurements of the speed of sound for nitrogen from (250 to 350) K and for water at temperatures between (303.15 and 323.15) K are presented at pressures up to 30 MPa to validate the new apparatus. The expanded overall uncertainty of the measurements on nitrogen and water were estimated to be 0.011% and 0.006%, respectively. The speed of sound of both fluids was compared with literature sources showing an excellent agreement among them, with relative deviations lower than 0.01% in nitrogen and 0.006% in water.

  7. Detection of red tide events in the Ariake Sound, Japan

    Science.gov (United States)

    Ishizaka, Joji

    2003-05-01

    High resolution SeaWiFS data was used to detect a red tide event occurred in the Ariake Sound, Japan, in winter of 2000 to 2001. The area is small embayment surrounding by tidal flat, and it is known as one of the most productive areas in coast of Japan. The red tide event damaged to seaweed (Nori) culture, and the relation to the reclamation at the Isahaya Bay in the Sound has been discussed. SeaWiFS chlorophyll data showed the red tide started early December 2000, from the Isahaya Bay, although direct relationship to the reclamation was not clear. The red tide persisted to the end of February. Monthly average of SeaWiFS data from May 1998 to December 2001 indicated that the chlorophyll increased twice a year, early summer and fall after the rain. The red tide event was part of the fall bloom which started later and continued longer than other years. Ocean color is useful to detect the red tide; however, it is required to improve the algorithms to accurately estimate chlorophyll in high turbid water and to discriminate toxic flagellates.

  8. Source-Type Identification Analysis Using Regional Seismic Moment Tensors

    Science.gov (United States)

    Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.

    2012-12-01

    Waveform inversion to determine the seismic moment tensor is a standard approach in determining the source mechanism of natural and manmade seismicity, and may be used to identify, or discriminate different types of seismic sources. The successful applications of the regional moment tensor method at the Nevada Test Site (NTS) and the 2006 and 2009 North Korean nuclear tests (Ford et al., 2009a, 2009b, 2010) show that the method is robust and capable for source-type discrimination at regional distances. The well-separated populations of explosions, earthquakes and collapses on a Hudson et al., (1989) source-type diagram enables source-type discrimination; however the question remains whether or not the separation of events is universal in other regions, where we have limited station coverage and knowledge of Earth structure. Ford et al., (2012) have shown that combining regional waveform data and P-wave first motions removes the CLVD-isotropic tradeoff and uniquely discriminating the 2009 North Korean test as an explosion. Therefore, including additional constraints from regional and teleseismic P-wave first motions enables source-type discrimination at regions with limited station coverage. We present moment tensor analysis of earthquakes and explosions (M6) from Lop Nor and Semipalatinsk test sites for station paths crossing Kazakhstan and Western China. We also present analyses of smaller events from industrial sites. In these sparse coverage situations we combine regional long-period waveforms, and high-frequency P-wave polarity from the same stations, as well as from teleseismic arrays to constrain the source type. Discrimination capability with respect to velocity model and station coverage is examined, and additionally we investigate the velocity model dependence of vanishing free-surface traction effects on seismic moment tensor inversion of shallow sources and recovery of explosive scalar moment. Our synthetic data tests indicate that biases in scalar

  9. Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes.

    Science.gov (United States)

    Salomons, Etto L; Havinga, Paul J M; van Leeuwen, Henk

    2016-09-27

    A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1) the window length for our classifiers is increased, and (2) if we apply a two-step approach that uses a refined classification after a global classification has been performed.

  10. Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Etto L. Salomons

    2016-09-01

    Full Text Available A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1 the window length for our classifiers is increased, and (2 if we apply a two-step approach that uses a refined classification after a global classification has been performed.

  11. Discrimination and well-being in organizations : Testing the differential power and organizational justice theories of workplace aggression

    NARCIS (Netherlands)

    Wood, S.; Braeken, J.; Niven, K.

    2013-01-01

    People may be subjected to discrimination from a variety of sources in the workplace. In this study of mental health workers, we contrast four potential perpetrators of discrimination (managers, co-workers, patients, and visitors) to investigate whether the negative impact of discrimination on

  12. Discrimination of Naturally Occurring Radioactive Material in Plastic Scintillator Material

    International Nuclear Information System (INIS)

    Ely, James H.; Kouzes, Richard T.; Geelhood, Bruce D.; Schweppe, John E.; Warner, Ray A.

    2003-01-01

    Plastic scintillator material is used in many applications for the detection of gamma-rays from radioactive material, primarily due to the sensitivity per unit cost compared to other detection materials. However, the resolution and lack of full-energy peaks in the plastic scintillator material prohibits detailed spectroscopy. Therefore, other materials such as doped sodium iodide are used for spectroscopic applications. The limited spectroscopic information can however be exploited in plastic scintillator materials to provide some discrimination. The discrimination between man-made and naturally occurring sources would be useful in reducing alarm screening for radiation detection applications which target man-made sources. The results of applying the limited energy information from plastic scintillator material for radiation portal monitors are discussed.

  13. Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA

    OpenAIRE

    Khodakov, Dmitriy A.; Khodakova, Anastasia S.; Huang, David M.; Linacre, Adrian; Ellis, Amanda V.

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within doubl...

  14. The Persian version of auditory word discrimination test (P-AWDT) for children: Development, validity, and reliability.

    Science.gov (United States)

    Hashemi, Nassim; Ghorbani, Ali; Soleymani, Zahra; Kamali, Mohmmad; Ahmadi, Zohreh Ziatabar; Mahmoudian, Saeid

    2018-07-01

    Auditory discrimination of speech sounds is an important perceptual ability and a precursor to the acquisition of language. Auditory information is at least partially necessary for the acquisition and organization of phonological rules. There are few standardized behavioral tests to evaluate phonemic distinctive features in children with or without speech and language disorders. The main objective of the present study was the development, validity, and reliability of the Persian version of auditory word discrimination test (P-AWDT) for 4-8-year-old children. A total of 120 typical children and 40 children with speech sound disorder (SSD) participated in the present study. The test comprised of 160 monosyllabic paired-words distributed in the Forms A-1 and the Form A-2 for the initial consonants (80 words) and the Forms B-1 and the Form B-2 for the final consonants (80 words). Moreover, the discrimination of vowels was randomly included in all forms. Content validity was calculated and 50 children repeated the test twice with two weeks of interval (test-retest reliability). Further analysis was also implemented including validity, intraclass correlation coefficient (ICC), Cronbach's alpha (internal consistency), age groups, and gender. The content validity index (CVI) and the test-retest reliability of the P-AWDT were achieved 63%-86% and 81%-96%, respectively. Moreover, the total Cronbach's alpha for the internal consistency was estimated relatively high (0.93). Comparison of the mean scores of the P-AWDT in the typical children and the children with SSD revealed a significant difference. The results revealed that the group with SSD had greater severity of deficit than the typical group in auditory word discrimination. In addition, the difference between the age groups was statistically significant, especially in 4-4.11-year-old children. The performance of the two gender groups was relatively same. The comparison of the P-AWDT scores between the typical children

  15. Light and Sound

    CERN Document Server

    Karam, P Andrew

    2010-01-01

    Our world is largely defined by what we see and hear-but our uses for light and sound go far beyond simply seeing a photo or hearing a song. A concentrated beam of light, lasers are powerful tools used in industry, research, and medicine, as well as in everyday electronics like DVD and CD players. Ultrasound, sound emitted at a high frequency, helps create images of a developing baby, cleans teeth, and much more. Light and Sound teaches how light and sound work, how they are used in our day-to-day lives, and how they can be used to learn about the universe at large.

  16. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    Sound is a part of architecture, and sound is complex. Upon this, sound is invisible. How is it then possible to design visual objects that interact with the sound? This paper addresses the problem of how to get access to the complexity of sound and how to make textile material revealing the form...... goemetry by analysing the sound pattern at a specific spot. This analysis is done theoretically with algorithmic systems and practical with waves in water. The paper describes the experiments and the findings, and explains how an analysis of sound can be catched in a textile form....

  17. Sound Propagation Considerations for a Deep-Ocean Acoustic Network

    Science.gov (United States)

    2009-12-01

    classic “ tea cup” surveillance volume for a bottom sensor. 27 Figure 18. TL of a 100-Hz, 3995-m source using a 4000-m Munk sound speed profile B...18. LTJG Pongaskorn Sommai, Royal Thai Navy Naval Postgraduate School Monterey, California 19. ENS William Jenkins, USN Naval Postgraduate School

  18. A generalized sound extrapolation method for turbulent flows

    Science.gov (United States)

    Zhong, Siyang; Zhang, Xin

    2018-02-01

    Sound extrapolation methods are often used to compute acoustic far-field directivities using near-field flow data in aeroacoustics applications. The results may be erroneous if the volume integrals are neglected (to save computational cost), while non-acoustic fluctuations are collected on the integration surfaces. In this work, we develop a new sound extrapolation method based on an acoustic analogy using Taylor's hypothesis (Taylor 1938 Proc. R. Soc. Lon. A 164, 476-490. (doi:10.1098/rspa.1938.0032)). Typically, a convection operator is used to filter out the acoustically inefficient components in the turbulent flows, and an acoustics dominant indirect variable Dcp‧ is solved. The sound pressure p' at the far field is computed from Dcp‧ based on the asymptotic properties of the Green's function. Validations results for benchmark problems with well-defined sources match well with the exact solutions. For aeroacoustics applications: the sound predictions by the aerofoil-gust interaction are close to those by an earlier method specially developed to remove the effect of vortical fluctuations (Zhong & Zhang 2017 J. Fluid Mech. 820, 424-450. (doi:10.1017/jfm.2017.219)); for the case of vortex shedding noise from a cylinder, the off-body predictions by the proposed method match well with the on-body Ffowcs-Williams and Hawkings result; different integration surfaces yield close predictions (of both spectra and far-field directivities) for a co-flowing jet case using an established direct numerical simulation database. The results suggest that the method may be a potential candidate for sound projection in aeroacoustics applications.

  19. Reduction of heart sound interference from lung sound signals using empirical mode decomposition technique.

    Science.gov (United States)

    Mondal, Ashok; Bhattacharya, P S; Saha, Goutam

    2011-01-01

    During the recording time of lung sound (LS) signals from the chest wall of a subject, there is always heart sound (HS) signal interfering with it. This obscures the features of lung sound signals and creates confusion on pathological states, if any, of the lungs. A novel method based on empirical mode decomposition (EMD) technique is proposed in this paper for reducing the undesired heart sound interference from the desired lung sound signals. In this, the mixed signal is split into several components. Some of these components contain larger proportions of interfering signals like heart sound, environmental noise etc. and are filtered out. Experiments have been conducted on simulated and real-time recorded mixed signals of heart sound and lung sound. The proposed method is found to be superior in terms of time domain, frequency domain, and time-frequency domain representations and also in listening test performed by pulmonologist.

  20. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    Science.gov (United States)

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.