WorldWideScience

Sample records for sound range prediction

  1. A Hybrid Finite Element/Helmholtz-Kirchhoff-Integral Model for Shooting Range Sound Prediction

    NARCIS (Netherlands)

    Nijhof, M.J.J.; Eerden, F.J.M. van der

    2013-01-01

    National legislation enforces a limit on the Sound Levels of outdoor military shooting ranges observed in nearby residential areas. These restrictions directly influence the number of shots that may be fired at a specific shooting range, which may conflict with the required/ scheduled training

  2. Predicting outdoor sound

    CERN Document Server

    Attenborough, Keith; Horoshenkov, Kirill

    2014-01-01

    1. Introduction  2. The Propagation of Sound Near Ground Surfaces in a Homogeneous Medium  3. Predicting the Acoustical Properties of Outdoor Ground Surfaces  4. Measurements of the Acoustical Properties of Ground Surfaces and Comparisons with Models  5. Predicting Effects of Source Characteristics on Outdoor Sound  6. Predictions, Approximations and Empirical Results for Ground Effect Excluding Meteorological Effects  7. Influence of Source Motion on Ground Effect and Diffraction  8. Predicting Effects of Mixed Impedance Ground  9. Predicting the Performance of Outdoor Noise Barriers  10. Predicting Effects of Vegetation, Trees and Turbulence  11. Analytical Approximations including Ground Effect, Refraction and Turbulence  12. Prediction Schemes  13. Predicting Sound in an Urban Environment.

  3. The frequency range of TMJ sounds.

    Science.gov (United States)

    Widmalm, S E; Williams, W J; Djurdjanovic, D; McKay, D C

    2003-04-01

    There are conflicting opinions about the frequency range of temporomandibular joint (TMJ) sounds. Some authors claim that the upper limit is about 650 Hz. The aim was to test the hypothesis that TMJ sounds may contain frequencies well above 650 Hz but that significant amounts of their energy are lost if the vibrations are recorded using contact sensors and/or travel far through the head tissues. Time-frequency distributions of 172 TMJ clickings (three subjects) were compared between recordings with one microphone in the ear canal and a skin contact transducer above the clicking joint and between recordings from two microphones, one in each ear canal. The energy peaks of the clickings recorded with a microphone in the ear canal on the clicking side were often well above 650 Hz and always in a significantly higher area (range 117-1922 Hz, P 375 Hz) or in microphone recordings from the opposite ear canal (range 141-703 Hz). Future studies are required to establish normative frequency range values of TMJ sounds but need methods also capable of recording the high frequency vibrations.

  4. Prediction ranges. Annual review

    Energy Technology Data Exchange (ETDEWEB)

    Parker, J.C.; Tharp, W.H.; Spiro, P.S.; Keng, K.; Angastiniotis, M.; Hachey, L.T.

    1988-01-01

    Prediction ranges equip the planner with one more tool for improved assessment of the outcome of a course of action. One of their major uses is in financial evaluations, where corporate policy requires the performance of uncertainty analysis for large projects. This report gives an overview of the uses of prediction ranges, with examples; and risks and uncertainties in growth, inflation, and interest and exchange rates. Prediction ranges and standard deviations of 80% and 50% probability are given for various economic indicators in Ontario, Canada, and the USA, as well as for foreign exchange rates and Ontario Hydro interest rates. An explanatory note on probability is also included. 23 tabs.

  5. Long Range Aircraft Trajectory Prediction

    OpenAIRE

    Magister, Tone

    2009-01-01

    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  6. Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties

    OpenAIRE

    Yoshio Kurosawa; Takao Yamaguchi

    2015-01-01

    High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy ...

  7. 76 FR 20715 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    Science.gov (United States)

    2011-04-13

    ...; Sounding Rockets Program; Poker Flat Research Range AGENCY: National Aeronautics and Space Administration... continuing sounding rocket operations at Poker Flat Research Range (PFRR), Alaska. SUMMARY: Pursuant to the... information about NASA's Sounding Rocket Program (SRP) and the University of Alaska-Fairbanks' PFRR may be...

  8. Halifax Sound Range Trials (DE0301, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiated sound measurements of vessels are important for monitoring the noise characteristics of fishing and research vessels. A vessel's radiated noise can have...

  9. 78 FR 40196 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    Science.gov (United States)

    2013-07-03

    ...; Sounding Rockets Program; Poker Flat Research Range AGENCY: National Aeronautics and Space Administration... Sounding Rockets Program (SRP) at Poker Flat Research Range (PFRR), Alaska. SUMMARY: Pursuant to the... government agencies, and educational institutions have conducted suborbital rocket launches from the PFRR...

  10. A Neural Network Model for Prediction of Sound Quality

    DEFF Research Database (Denmark)

    Nielsen,, Lars Bramsløw

    An artificial neural network structure has been specified, implemented and optimized for the purpose of predicting the perceived sound quality for normal-hearing and hearing-impaired subjects. The network was implemented by means of commercially available software and optimized to predict results...... obtained in subjective sound quality rating experiments based on input data from an auditory model. Various types of input data and data representations from the auditory model were used as input data for the chosen network structure, which was a three-layer perceptron. This network was trained by means...... the physical signal parameters and the subjectively perceived sound quality. No simple objective-subjective relationship was evident from this analysis....

  11. Sound propagation from a semi-open shooting range

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Berg, F. van den

    2011-01-01

    Semi-open shooting ranges, in contrast to a fully open shooting range, are often used in the densely populated area of the Netherlands. The Ministry of Defense operates a number of these ranges. In these shooting ranges above the line of fire a number of screens are situated for safety precautions

  12. Long Range Sound Propagation over Sea: Application to Wind Turbine Noise

    Energy Technology Data Exchange (ETDEWEB)

    Boue, Matieu

    2007-12-13

    The classical theory of spherical wave propagation is not valid at large distances from a sound source due to the influence of wind and temperature gradients that refract, i.e., bend the sound waves. This will in the downwind direction lead to a cylindrical type of wave spreading for large distances (> 1 km). Cylindrical spreading will give a smaller damping with distance as compared to spherical spreading (3 dB/distance doubling instead of 6 dB). But over areas with soft ground, i.e., grass land, the effect of ground reflections will increase the damping so that, if the effect of atmospheric damping is removed, a behavior close to a free field spherical spreading often is observed. This is the standard assumption used in most national recommendations for predicting outdoor sound propagation, e.g., noise from wind turbines. Over areas with hard surfaces, e.g., desserts or the sea, the effect of ground damping is small and therefore cylindrical propagation could be expected in the downwind direction. This observation backed by a limited number of measurements is the background for the Swedish recommendation, which suggests that cylindrical wave spreading should be assumed for distances larger than 200 m for sea based wind turbines. The purpose of this work was to develop measurement procedures for long range sound transmission and to apply this to investigate the occurrence of cylindrical wave spreading in the Baltic Sea. This work has been successfully finished and is described in this report. Another ambition was to develop models for long range sound transmission based on the parabolic equation. Here the work is not finished but must be continued in another project. Long term measurements were performed in the Kalmar strait, Sweden, located between the mainland and Oeland, during 2005 and 2006. Two different directive sound sources placed on a lighthouse in the middle of the strait produced low frequency tones at 80, 200 and 400 Hz. At the reception point on

  13. A model to predict the sound reflection from forests

    NARCIS (Netherlands)

    Wunderli, J.M.; Salomons, E.M.

    2009-01-01

    A model is presented to predict the reflection of sound at forest edges. A single tree is modelled as a vertical cylinder. For the reflection at a cylinder an analytical solution is given based on the theory of scattering of spherical waves. The entire forest is represented by a line of cylinders

  14. Sound quality prediction for engine-radiated noise

    Science.gov (United States)

    Liu, Hai; Zhang, Junhong; Guo, Peng; Bi, Fengrong; Yu, Hanzhengnan; Ni, Guangjian

    2015-05-01

    Diesel engine-radiated noise quality prediction is an important topic because engine noise has a significant impact on the overall vehicle noise. Sound quality prediction is based on subjective and objective evaluation of engine noise. The integrated satisfaction index (ISI) is proposed as a criterion for differentiate noise quality in the subjective evaluation, and five psychoacoustic parameters are selected for characterizing and analyzing the noise quality of the diesel engine objectively. The combination of support vector machines (SVM) and genetic algorithm (GA) is proposed in order to establish a model for predicting the diesel engine-radiated noise quality for all operation conditions. The performance of the GA-SVM model is compared with the BP neural network model, and the results show that the mean relative error of the GA-SVM model is smaller than the BP neural network model. The importance rank of the sound quality metrics to the ISI is indicated by the non-parametric correlation analysis. This study suggests that the GA-SVM model is very useful for accurately predicting the diesel engine-radiated noise quality.

  15. Underwater Sound Propagation Modeling Methods for Predicting Marine Animal Exposure.

    Science.gov (United States)

    Hamm, Craig A; McCammon, Diana F; Taillefer, Martin L

    2016-01-01

    The offshore exploration and production (E&P) industry requires comprehensive and accurate ocean acoustic models for determining the exposure of marine life to the high levels of sound used in seismic surveys and other E&P activities. This paper reviews the types of acoustic models most useful for predicting the propagation of undersea noise sources and describes current exposure models. The severe problems caused by model sensitivity to the uncertainty in the environment are highlighted to support the conclusion that it is vital that risk assessments include transmission loss estimates with statistical measures of confidence.

  16. Opo lidar sounding of trace atmospheric gases in the 3 - 4 μm spectral range

    Science.gov (United States)

    Romanovskii, Oleg A.; Sadovnikov, Sergey A.; Kharchenko, Olga V.; Yakovlev, Semen V.

    2018-04-01

    The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  17. Sound velocity of tantalum under shock compression in the 18–142 GPa range

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng, E-mail: xifeng@caep.cn; Jin, Ke; Cai, Lingcang, E-mail: cai-lingcang@aliyun.com; Geng, Huayun; Tan, Ye; Li, Jun [National Key Laboratory of Shock Waves and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102 Mianyang, Sichuan 621999 (China)

    2015-05-14

    Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18–142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in this type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.

  18. Optimal Prediction of Moving Sound Source Direction in the Owl.

    Directory of Open Access Journals (Sweden)

    Weston Cox

    2015-07-01

    Full Text Available Capturing nature's statistical structure in behavioral responses is at the core of the ability to function adaptively in the environment. Bayesian statistical inference describes how sensory and prior information can be combined optimally to guide behavior. An outstanding open question of how neural coding supports Bayesian inference includes how sensory cues are optimally integrated over time. Here we address what neural response properties allow a neural system to perform Bayesian prediction, i.e., predicting where a source will be in the near future given sensory information and prior assumptions. The work here shows that the population vector decoder will perform Bayesian prediction when the receptive fields of the neurons encode the target dynamics with shifting receptive fields. We test the model using the system that underlies sound localization in barn owls. Neurons in the owl's midbrain show shifting receptive fields for moving sources that are consistent with the predictions of the model. We predict that neural populations can be specialized to represent the statistics of dynamic stimuli to allow for a vector read-out of Bayes-optimal predictions.

  19. Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species.

    Directory of Open Access Journals (Sweden)

    Ingo Titze

    2016-06-01

    Full Text Available Vocal folds are used as sound sources in various species, but it is unknown how vocal fold morphologies are optimized for different acoustic objectives. Here we identify two main variables affecting range of vocal fold vibration frequency, namely vocal fold elongation and tissue fiber stress. A simple vibrating string model is used to predict fundamental frequency ranges across species of different vocal fold sizes. While average fundamental frequency is predominantly determined by vocal fold length (larynx size, range of fundamental frequency is facilitated by (1 laryngeal muscles that control elongation and by (2 nonlinearity in tissue fiber tension. One adaptation that would increase fundamental frequency range is greater freedom in joint rotation or gliding of two cartilages (thyroid and cricoid, so that vocal fold length change is maximized. Alternatively, tissue layers can develop to bear a disproportionate fiber tension (i.e., a ligament with high density collagen fibers, increasing the fundamental frequency range and thereby vocal versatility. The range of fundamental frequency across species is thus not simply one-dimensional, but can be conceptualized as the dependent variable in a multi-dimensional morphospace. In humans, this could allow for variations that could be clinically important for voice therapy and vocal fold repair. Alternative solutions could also have importance in vocal training for singing and other highly-skilled vocalizations.

  20. Principles of underwater sound

    National Research Council Canada - National Science Library

    Urick, Robert J

    1983-01-01

    ... the immediately useful help they need for sonar problem solving. Its coverage is broad-ranging from the basic concepts of sound in the sea to making performance predictions in such applications as depth sounding, fish finding, and submarine detection...

  1. Sound

    CERN Document Server

    Robertson, William C

    2003-01-01

    Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...

  2. Prediction model for sound transmission from machinery in buildings: feasible approaches and problems to be solved

    NARCIS (Netherlands)

    Gerretsen, E.

    2000-01-01

    Prediction models for the airborne and impact sound transmission in buildings have recently been established (EN 12354- 1&2:1999). However, these models do not cover technical installations and machinery as a source of sound in buildings. Yet these can cause unacceptable sound levels and it is

  3. Prediction on the Enhancement of the Impact Sound Insulation to a Floating Floor with Resilient Interlayer

    Science.gov (United States)

    Huang, Xianfeng; Meng, Yao; Huang, Riming

    2017-10-01

    This paper describes a theoretical method for predicting the improvement of the impact sound insulation to a floating floor with the resilient interlayer. Statistical energy analysis (SEA) model, which is skilful in calculating the floor impact sound, is set up for calculating the reduction in impact sound pressure level in downstairs room. The sound transmission paths which include direct path and flanking paths are analyzed to find the dominant one; the factors that affect impact sound reduction for a floating floor are explored. Then, the impact sound level in downstairs room is determined and comparisons between predicted and measured data are conducted. It is indicated that for the impact sound transmission across a floating floor, the flanking path impact sound level contribute tiny influence on overall sound level in downstairs room, and a floating floor with low stiffness interlayer exhibits favorable sound insulation on direct path. The SEA approach applies to the floating floors with resilient interlayers, which are experimentally verified, provides a guidance in sound insulation design.

  4. Some aspects to improve sound insulation prediction models for lightweight elements

    NARCIS (Netherlands)

    Gerretsen, E.

    2007-01-01

    The best approach to include lightweight building elements in prediction models for airborne and impact sound insulation between rooms, as in EN 12354, is not yet completely clear. Two aspects are at least of importance, i.e. to derive the sound reduction index R for lightweight elements for

  5. Direct CFD Predictions of Low Frequency Sounds Generated by Helicopter Main Rotors

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark; Conner, Dave; Watts, Michael E.

    2010-01-01

    This proposed paper will highlight the application of a CSD/CFD methodology currently inuse by the US Army Aerfolightdynamics Directorate (AFDD) to assess the feasibility and fidelity of directly predicting low frequency sounds of helicopter rotors.

  6. On the theory of SODAR measurement techniques[SOund Detection And Ranging

    Energy Technology Data Exchange (ETDEWEB)

    Antoniou, I.; Joergensen, H.E. [Risoe National Lab. (Denmark); Ormel, F. [Energy Research Center of the Netherlands (Netherlands); Bradley, S.; Huenerbein, S. von [University of Salford (United Kingdom); Emeis, S. [Forschungszentrum Karlsruhe GmbH (Germany); Warmbier, G. [GWU-Umwelttechnik Gmbh (Germany)

    2003-04-01

    The need for alternative means to measure the wind speed for wind energy purposes has increased with the increase of the size of wind turbines. The cost and the technical difficulties for performing wind speed measurements has also increased with the size of the wind turbines, since it is demanded that the wind speed has to be measured at the rotor centre of the turbine and the size of both the rotor and the hub height have grown following the increase in the size of the wind turbines. The SODAR (SOund Detection And Ranging) is an alternative to the use of cup anemometers and offers the possibility of measuring both the wind speed distribution with height and the wind direction. At the same time the SODAR presents a number of serious drawbacks such as the low number of measurements per time period, the dependence of the ability to measure on the atmospheric conditions and the difficulty of measuring at higher wind speeds due to either background noise or the neutral condition of the atmosphere. Within the WISE project (EU project number NNE5-2001-297), a number of work packages have been defined in order to deal with the SODAR. The present report is the result of the work package 1. Within this package the objective has been to present and achieve the following: 1) An accurate theoretic model that describes all the relevant aspects of the interaction of the sound beam with the atmosphere in the level of detail needed for wind energy applications. 2) Understanding of dependence of SODAR performance on hard- and software configuration. 3) Quantification of principal difference between SODAR wind measurement and wind speed measurements with cup anemometers with regard to power performance measurements.

  7. Sound Propagation Around Off-Shore Wind Turbines. Long-Range Parabolic Equation Calculations for Baltic Sea Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lisa

    2003-07-01

    Low-frequency, long-range sound propagation over a sea surface has been calculated using a wide-angel Cranck-Nicholson Parabolic Equation method. The model is developed to investigate noise from off-shore wind turbines. The calculations are made using normal meteorological conditions of the Baltic Sea. Special consideration has been made to a wind phenomenon called low level jet with strong winds on rather low altitude. The effects of water waves on sound propagation have been incorporated in the ground boundary condition using a boss model. This way of including roughness in sound propagation models is valid for water wave heights that are small compared to the wave length of the sound. Nevertheless, since only low frequency sound is considered, waves up to the mean wave height of the Baltic Sea can be included in this manner. The calculation model has been tested against benchmark cases and agrees well with measurements. The calculations show that channelling of sound occurs at downwind conditions and that the sound propagation tends towards cylindrical spreading. The effects of the water waves are found to be fairly small.

  8. The Influence of Fundamental Frequency and Sound Pressure Level Range on Breathing Patterns in Female Classical Singing

    Science.gov (United States)

    Collyer, Sally; Thorpe, C. William; Callaghan, Jean; Davis, Pamela J.

    2008-01-01

    Purpose: This study investigated the influence of fundamental frequency (F0) and sound pressure level (SPL) range on respiratory behavior in classical singing. Method: Five trained female singers performed an 8-s messa di voce (a crescendo and decrescendo on one F0) across their musical F0 range. Lung volume (LV) change was estimated, and…

  9. Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance

    Science.gov (United States)

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2013-01-01

    Purpose: To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette,…

  10. Opo lidar sounding of trace atmospheric gases in the 3 – 4 μm spectral range

    Directory of Open Access Journals (Sweden)

    Romanovskii Oleg A.

    2018-01-01

    Full Text Available The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO generation to lidar sounding of the atmosphere in the spectral range 3–4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG is based on differential absorption lidar (DIAL method and differential optical absorption spectroscopy (DOAS. The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  11. Rapidly updated hyperspectral sounding and imaging data for severe storm prediction

    Science.gov (United States)

    Bingham, Gail; Jensen, Scott; Elwell, John; Cardon, Joel; Crain, David; Huang, Hung-Lung (Allen); Smith, William L.; Revercomb, Hank E.; Huppi, Ronald J.

    2013-09-01

    Several studies have shown that a geostationary hyperspectral imager/sounder can provide the most significant value increase in short term, regional numerical prediction weather models over a range of other options. In 1998, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) proposal was selected by NASA as the New Millennium Earth Observation 3 program over several other geostationary instrument development proposals. After the EO3 GIFTS flight demonstration program was changed to an Engineering Development Unit (EDU) due to funding limitations by one of the partners, the EDU was subjected to flight-like thermal vacuum calibration and testing and successfully validated the breakthrough technologies needed to make a successful observatory. After several government stops and starts, only EUMETSAT's Meteosat Third Generation (MTG-S) sounder is in operational development. Recently, a commercial partnership has been formed to fill the significant data gap. AsiaSat has partnered with GeoMetWatch (GMW)1 to fund the development and launch of the Sounding and Tracking Observatory for Regional Meteorology (STORMTM) sensor, a derivative of the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) EDU that was designed, built, and tested by Utah State University (USU). STORMTM combines advanced technologies to observe surface thermal properties, atmospheric weather, and chemistry variables in four dimensions to provide high vertical resolution temperature and moisture sounding information, with the fourth dimension (time) provided by the geosynchronous satellite platform ability to measure a location as often as desired. STORMTM will enhance the polar orbiting imaging and sounding measurements by providing: (1) a direct measure of moisture flux and altitude-resolved water vapor and cloud tracer winds throughout the troposphere, (2) an observation of the time varying atmospheric thermodynamics associated with storm system development, and (3) the

  12. Fast negative feedback enables mammalian auditory nerve fibers to encode a wide dynamic range of sound intensities.

    Directory of Open Access Journals (Sweden)

    Mark Ospeck

    Full Text Available Mammalian auditory nerve fibers (ANF are remarkable for being able to encode a 40 dB, or hundred fold, range of sound pressure levels into their firing rate. Most of the fibers are very sensitive and raise their quiescent spike rate by a small amount for a faint sound at auditory threshold. Then as the sound intensity is increased, they slowly increase their spike rate, with some fibers going up as high as ∼300 Hz. In this way mammals are able to combine sensitivity and wide dynamic range. They are also able to discern sounds embedded within background noise. ANF receive efferent feedback, which suggests that the fibers are readjusted according to the background noise in order to maximize the information content of their auditory spike trains. Inner hair cells activate currents in the unmyelinated distal dendrites of ANF where sound intensity is rate-coded into action potentials. We model this spike generator compartment as an attenuator that employs fast negative feedback. Input current induces rapid and proportional leak currents. This way ANF are able to have a linear frequency to input current (f-I curve that has a wide dynamic range. The ANF spike generator remains very sensitive to threshold currents, but efferent feedback is able to lower its gain in response to noise.

  13. Model-based uncertainty in species range prediction

    DEFF Research Database (Denmark)

    Pearson, R. G.; Thuiller, Wilfried; Bastos Araujo, Miguel

    2006-01-01

    Aim Many attempts to predict the potential range of species rely on environmental niche (or 'bioclimate envelope') modelling, yet the effects of using different niche-based methodologies require further investigation. Here we investigate the impact that the choice of model can have on predictions...

  14. Range prediction for electric vehicles; Reichweitenprognose fuer Elektromobile

    Energy Technology Data Exchange (ETDEWEB)

    Conradi, Peter [All4IP Technologies GmbH and Co.KG, Darmstadt (Germany)

    2012-06-15

    The range of electric vehicles varies strongly in dependency of a number of external factors. To be able to make an exact dynamic prediction of the remaining range during the journey, All4IP Technologies developed a special software that can access the CAN bus. The App, programmed for iOS and Android operating systems considers even the topology of the area. (orig.)

  15. Predicting the perceived sound quality of frequency-compressed speech.

    Directory of Open Access Journals (Sweden)

    Rainer Huber

    Full Text Available The performance of objective speech and audio quality measures for the prediction of the perceived quality of frequency-compressed speech in hearing aids is investigated in this paper. A number of existing quality measures have been applied to speech signals processed by a hearing aid, which compresses speech spectra along frequency in order to make information contained in higher frequencies audible for listeners with severe high-frequency hearing loss. Quality measures were compared with subjective ratings obtained from normal hearing and hearing impaired children and adults in an earlier study. High correlations were achieved with quality measures computed by quality models that are based on the auditory model of Dau et al., namely, the measure PSM, computed by the quality model PEMO-Q; the measure qc, computed by the quality model proposed by Hansen and Kollmeier; and the linear subcomponent of the HASQI. For the prediction of quality ratings by hearing impaired listeners, extensions of some models incorporating hearing loss were implemented and shown to achieve improved prediction accuracy. Results indicate that these objective quality measures can potentially serve as tools for assisting in initial setting of frequency compression parameters.

  16. Spontaneous brain activity predicts learning ability of foreign sounds.

    Science.gov (United States)

    Ventura-Campos, Noelia; Sanjuán, Ana; González, Julio; Palomar-García, María-Ángeles; Rodríguez-Pujadas, Aina; Sebastián-Gallés, Núria; Deco, Gustavo; Ávila, César

    2013-05-29

    Can learning capacity of the human brain be predicted from initial spontaneous functional connectivity (FC) between brain areas involved in a task? We combined task-related functional magnetic resonance imaging (fMRI) and resting-state fMRI (rs-fMRI) before and after training with a Hindi dental-retroflex nonnative contrast. Previous fMRI results were replicated, demonstrating that this learning recruited the left insula/frontal operculum and the left superior parietal lobe, among other areas of the brain. Crucially, resting-state FC (rs-FC) between these two areas at pretraining predicted individual differences in learning outcomes after distributed (Experiment 1) and intensive training (Experiment 2). Furthermore, this rs-FC was reduced at posttraining, a change that may also account for learning. Finally, resting-state network analyses showed that the mechanism underlying this reduction of rs-FC was mainly a transfer in intrinsic activity of the left frontal operculum/anterior insula from the left frontoparietal network to the salience network. Thus, rs-FC may contribute to predict learning ability and to understand how learning modifies the functioning of the brain. The discovery of this correspondence between initial spontaneous brain activity in task-related areas and posttraining performance opens new avenues to find predictors of learning capacities in the brain using task-related fMRI and rs-fMRI combined.

  17. Underwater sound from vessel traffic reduces the effective communication range in Atlantic cod and haddock.

    Science.gov (United States)

    Stanley, Jenni A; Van Parijs, Sofie M; Hatch, Leila T

    2017-11-07

    Stellwagen Bank National Marine Sanctuary is located in Massachusetts Bay off the densely populated northeast coast of the United States; subsequently, the marine inhabitants of the area are exposed to elevated levels of anthropogenic underwater sound, particularly due to commercial shipping. The current study investigated the alteration of estimated effective communication spaces at three spawning locations for populations of the commercially and ecologically important fishes, Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). Both the ambient sound pressure levels and the estimated effective vocalization radii, estimated through spherical spreading models, fluctuated dramatically during the three-month recording periods. Increases in sound pressure level appeared to be largely driven by large vessel activity, and accordingly exhibited a significant positive correlation with the number of Automatic Identification System tracked vessels at the two of the three sites. The near constant high levels of low frequency sound and consequential reduction in the communication space observed at these recording sites during times of high vocalization activity raises significant concerns that communication between conspecifics may be compromised during critical biological periods. This study takes the first steps in evaluating these animals' communication spaces and alteration of these spaces due to anthropogenic underwater sound.

  18. Sound induced activity in voice sensitive cortex predicts voice memory ability

    Directory of Open Access Journals (Sweden)

    Rebecca eWatson

    2012-04-01

    Full Text Available The ‘temporal voice areas’ (TVAs (Belin et al., 2000 of the human brain show greater neuronal activity in response to human voices than to other categories of nonvocal sounds. However, a direct link between TVA activity and voice perceptionbehaviour has not yet been established. Here we show that a functional magnetic resonance imaging (fMRI measure of activity in the TVAs predicts individual performance at a separately administered voice memory test. This relation holds whengeneral sound memory ability is taken into account. These findings provide the first evidence that the TVAs are specifically involved in voice cognition.

  19. A comparison of radiosity with current methods of sound level prediction in commercial spaces

    Science.gov (United States)

    Beamer, C. Walter, IV; Muehleisen, Ralph T.

    2002-11-01

    The ray tracing and image methods (and variations thereof) are widely used for the computation of sound fields in architectural spaces. The ray tracing and image methods are best suited for spaces with mostly specular reflecting surfaces. The radiosity method, a method based on solving a system of energy balance equations, is best applied to spaces with mainly diffusely reflective surfaces. Because very few spaces are either purely specular or purely diffuse, all methods must deal with both types of reflecting surfaces. A comparison of the radiosity method to other methods for the prediction of sound levels in commercial environments is presented. [Work supported by NSF.

  20. Predicting genotypes environmental range from genome-environment associations.

    Science.gov (United States)

    Manel, Stéphanie; Andrello, Marco; Henry, Karine; Verdelet, Daphné; Darracq, Aude; Guerin, Pierre-Edouard; Desprez, Bruno; Devaux, Pierre

    2018-05-17

    Genome-environment association methods aim to detect genetic markers associated with environmental variables. The detected associations are usually analysed separately to identify the genomic regions involved in local adaptation. However, a recent study suggests that single-locus associations can be combined and used in a predictive way to estimate environmental variables for new individuals on the basis of their genotypes. Here, we introduce an original approach to predict the environmental range (values and upper and lower limits) of species genotypes from the genetic markers significantly associated with those environmental variables in an independent set of individuals. We illustrate this approach to predict aridity in a database constituted of 950 individuals of wild beets and 299 individuals of cultivated beets genotyped at 14,409 random Single Nucleotide Polymorphisms (SNPs). We detected 66 alleles associated with aridity and used them to calculate the fraction (I) of aridity-associated alleles in each individual. The fraction I correctly predicted the values of aridity in an independent validation set of wild individuals and was then used to predict aridity in the 299 cultivated individuals. Wild individuals had higher median values and a wider range of values of aridity than the cultivated individuals, suggesting that wild individuals have higher ability to resist to stress-aridity conditions and could be used to improve the resistance of cultivated varieties to aridity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Stabilizing intermediate-term medium-range earthquake predictions

    International Nuclear Information System (INIS)

    Kossobokov, V.G.; Romashkova, L.L.; Panza, G.F.; Peresan, A.

    2001-12-01

    A new scheme for the application of the intermediate-term medium-range earthquake prediction algorithm M8 is proposed. The scheme accounts for the natural distribution of seismic activity, eliminates the subjectivity in the positioning of the areas of investigation and provides additional stability of the predictions with respect to the original variant. According to the retroactive testing in Italy and adjacent regions, this improvement is achieved without any significant change of the alarm volume in comparison with the results published so far. (author)

  2. A short-range ensemble prediction system for southern Africa

    CSIR Research Space (South Africa)

    Park, R

    2012-10-01

    Full Text Available system for southern Africa R PARK, WA LANDMAN AND F ENGELBRECHT CSIR, PO Box 395, Pretoria, South Africa, 0001 Email: xxxxxxxxxxxxxx@csir.co.za ? www.csir.co.za INTRODUCTION This research has been conducted in order to develop a short-range ensemble... stream_source_info Park_2012.pdf.txt stream_content_type text/plain stream_size 7211 Content-Encoding ISO-8859-1 stream_name Park_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 A short-range ensemble prediction...

  3. Research of resonant losses of ultrasonic sound in the deformed single crystals in temperature range 77...300 K

    International Nuclear Information System (INIS)

    Petchenko, A.M.; Petchenko, G.A.

    2007-01-01

    The damped dislocation resonance in preliminary deformed up to 1 % single crystals KBr was investigated. The measurements of a frequency dependence of a dislocation damping decrement of ultrasonic sound were conducted in range of frequencies 7,5...217,5 MHz and temperature range 77...300 K. From the analysis of frequency spectrums the temperature course of a coefficient of phonon viscosity B was determined, which is agreed both with the theory and experimental literary data. The influencing temperature changes of length of a dislocation segment on parameters of a resonant maximum and dynamic drag of dislocations by phonons was revealed and analyzed

  4. Range-Space Predictive Control for Optimal Robot Motion

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav; Böhm, Josef

    2008-01-01

    Roč. 1, č. 1 (2008), s. 1-7 ISSN 1998-0140 R&D Projects: GA ČR GP102/06/P275 Institutional research plan: CEZ:AV0Z10750506 Keywords : Accurate manipulation * Industrial robotics * Predictive control * Range-space control Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/historie/belda-0305644.pdf

  5. Prediction of sound transmission loss through multilayered panels by using Gaussian distribution of directional incident energy

    Science.gov (United States)

    Kang; Ih; Kim; Kim

    2000-03-01

    In this study, a new prediction method is suggested for sound transmission loss (STL) of multilayered panels of infinite extent. Conventional methods such as random or field incidence approach often given significant discrepancies in predicting STL of multilayered panels when compared with the experiments. In this paper, appropriate directional distributions of incident energy to predict the STL of multilayered panels are proposed. In order to find a weighting function to represent the directional distribution of incident energy on the wall in a reverberation chamber, numerical simulations by using a ray-tracing technique are carried out. Simulation results reveal that the directional distribution can be approximately expressed by the Gaussian distribution function in terms of the angle of incidence. The Gaussian function is applied to predict the STL of various multilayered panel configurations as well as single panels. The compared results between the measurement and the prediction show good agreements, which validate the proposed Gaussian function approach.

  6. Prediction of break-out sound from a rectangular cavity via an elastically mounted panel.

    Science.gov (United States)

    Wang, Gang; Li, Wen L; Du, Jingtao; Li, Wanyou

    2016-02-01

    The break-out sound from a cavity via an elastically mounted panel is predicted in this paper. The vibroacoustic system model is derived based on the so-called spectro-geometric method in which the solution over each sub-domain is invariably expressed as a modified Fourier series expansion. Unlike the traditional modal superposition methods, the continuity of the normal velocities is faithfully enforced on the interfaces between the flexible panel and the (interior and exterior) acoustic media. A fully coupled vibro-acoustic system is obtained by taking into account the strong coupling between the vibration of the elastic panel and the sound fields on the both sides. The typical time-consuming calculations of quadruple integrals encountered in determining the sound power radiation from a panel has been effectively avoided by reducing them, via discrete cosine transform, into a number of single integrals which are subsequently calculated analytically in a closed form. Several numerical examples are presented to validate the system model, understand the effects on the sound transmissions of panel mounting conditions, and demonstrate the dependence on the size of source room of the "measured" transmission loss.

  7. Airborne sound insulation evaluation and flanking path prediction of coupled room

    Science.gov (United States)

    Tassia, R. D.; Asmoro, W. A.; Arifianto, D.

    2016-11-01

    One of the parameters to review the acoustic comfort is based on the value of the insulation partition in the classroom. The insulation value can be expressed by the sound transmission loss which converted into a single value as weighted sound reduction index (Rw, DnTw) and also have an additional sound correction factor in low frequency (C, Ctr) .In this study, the measurements were performed in two positions at each point using BSWA microphone and dodecahedron speaker as the sound source. The results of field measurements indicate the acoustic insulation values (DnT w + C) is 19.6 dB. It is noted that the partition wall not according to the standard which the DnTw + C> 51 dB. Hence the partition wall need to be redesign to improve acoustic insulation in the classroom. The design used gypsum board, plasterboard, cement board, and PVC as the replacement material. Based on the results, all the material is simulated in accordance with established standards. Best insulation is cement board with the insulation value is 69dB, the thickness of 12.5 mm on each side and the absorber material is 50 mm. Many factors lead to increase the value of acoustic insulation, such as the thickness of the panel, the addition of absorber material, density, and Poisson's ratio of a material. The prediction of flanking path can be estimated from noise reduction values at each measurement point in the class room. Based on data obtained, there is no significant change in noise reduction from each point so that the pathway of flanking is not affect the sound transmission in the classroom.

  8. A feasibility study of predictable and unpredictable surf-like sounds for tinnitus therapy using personal music players.

    Science.gov (United States)

    Durai, Mithila; Kobayashi, Kei; Searchfield, Grant D

    2018-05-28

    To evaluate the feasibility of predictable or unpredictable amplitude-modulated sounds for tinnitus therapy. The study consisted of two parts. (1) An adaptation experiment. Loudness level matches and rating scales (10-point) for loudness and distress were obtained at a silent baseline and at the end of three counterbalanced 30-min exposures (silence, predictable and unpredictable). (2) A qualitative 2-week sound therapy feasibility trial. Participants took home a personal music player (PMP). Part 1: 23 individuals with chronic tinnitus and part 2: seven individuals randomly selected from Part 1. Self-reported tinnitus loudness and annoyance were significantly lower than baseline ratings after acute unpredictable sound exposure. Tinnitus annoyance ratings were also significantly lower than the baseline but the effect was small. The feasibility trial identified that participant preferences for sounds varied. Three participants did not obtain any benefit from either sound. Three participants preferred unpredictable compared to predictable sounds. Some participants had difficulty using the PMP, the average self-report hours of use were low (less <1 h/day). Unpredictable surf-like sounds played using a PMP is a feasible tinnitus treatment. Further work is required to improve the acceptance of the sound and ease of PMP use.

  9. Predicting transmission of structure-borne sound power from machines by including terminal cross-coupling

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    2011-01-01

    of translational terminals in a global plane. This paired or bi-coupled power transmission represents the simplest case of cross-coupling. The procedure and quality of the predicted transmission using this improved technique is demonstrated experimentally for an electrical motor unit with an integrated radial fan......Structure-borne sound generated by audible vibration of machines in vehicles, equipment and house-hold appliances is often a major cause of noise. Such vibration of complex machines is mostly determined and quantified by measurements. It has been found that characterization of the vibratory source...

  10. A Model for the prediction of Sound Levels within a Symphonic Orchestra based on measured Sound Strength

    NARCIS (Netherlands)

    Wenmaekers, R.H.C.; Hak, C.C.J.M.; Luxemburg, van L.C.J.

    2011-01-01

    Members and directors of symphonic orchestras are concerned about the noise levels musicians are exposed to and their ease of playing ensemble. The results of many research has shown that the noise levels within an orchestra can be high. Also, research has shown that the sound level will vary

  11. A range-based predictive localization algorithm for WSID networks

    Science.gov (United States)

    Liu, Yuan; Chen, Junjie; Li, Gang

    2017-11-01

    Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.

  12. Predictive Brain Mechanisms in Sound-to-Meaning Mapping during Speech Processing.

    Science.gov (United States)

    Lyu, Bingjiang; Ge, Jianqiao; Niu, Zhendong; Tan, Li Hai; Gao, Jia-Hong

    2016-10-19

    Spoken language comprehension relies not only on the identification of individual words, but also on the expectations arising from contextual information. A distributed frontotemporal network is known to facilitate the mapping of speech sounds onto their corresponding meanings. However, how prior expectations influence this efficient mapping at the neuroanatomical level, especially in terms of individual words, remains unclear. Using fMRI, we addressed this question in the framework of the dual-stream model by scanning native speakers of Mandarin Chinese, a language highly dependent on context. We found that, within the ventral pathway, the violated expectations elicited stronger activations in the left anterior superior temporal gyrus and the ventral inferior frontal gyrus (IFG) for the phonological-semantic prediction of spoken words. Functional connectivity analysis showed that expectations were mediated by both top-down modulation from the left ventral IFG to the anterior temporal regions and enhanced cross-stream integration through strengthened connections between different subregions of the left IFG. By further investigating the dynamic causality within the dual-stream model, we elucidated how the human brain accomplishes sound-to-meaning mapping for words in a predictive manner. In daily communication via spoken language, one of the core processes is understanding the words being used. Effortless and efficient information exchange via speech relies not only on the identification of individual spoken words, but also on the contextual information giving rise to expected meanings. Despite the accumulating evidence for the bottom-up perception of auditory input, it is still not fully understood how the top-down modulation is achieved in the extensive frontotemporal cortical network. Here, we provide a comprehensive description of the neural substrates underlying sound-to-meaning mapping and demonstrate how the dual-stream model functions in the modulation of

  13. Extended Range Prediction of Indian Summer Monsoon: Current status

    Science.gov (United States)

    Sahai, A. K.; Abhilash, S.; Borah, N.; Joseph, S.; Chattopadhyay, R.; S, S.; Rajeevan, M.; Mandal, R.; Dey, A.

    2014-12-01

    The main focus of this study is to develop forecast consensus in the extended range prediction (ERP) of monsoon Intraseasonal oscillations using a suit of different variants of Climate Forecast system (CFS) model. In this CFS based Grand MME prediction system (CGMME), the ensemble members are generated by perturbing the initial condition and using different configurations of CFSv2. This is to address the role of different physical mechanisms known to have control on the error growth in the ERP in the 15-20 day time scale. The final formulation of CGMME is based on 21 ensembles of the standalone Global Forecast System (GFS) forced with bias corrected forecasted SST from CFS, 11 low resolution CFST126 and 11 high resolution CFST382. Thus, we develop the multi-model consensus forecast for the ERP of Indian summer monsoon (ISM) using a suite of different variants of CFS model. This coordinated international effort lead towards the development of specific tailor made regional forecast products over Indian region. Skill of deterministic and probabilistic categorical rainfall forecast as well the verification of large-scale low frequency monsoon intraseasonal oscillations has been carried out using hindcast from 2001-2012 during the monsoon season in which all models are initialized at every five days starting from 16May to 28 September. The skill of deterministic forecast from CGMME is better than the best participating single model ensemble configuration (SME). The CGMME approach is believed to quantify the uncertainty in both initial conditions and model formulation. Main improvement is attained in probabilistic forecast which is because of an increase in the ensemble spread, thereby reducing the error due to over-confident ensembles in a single model configuration. For probabilistic forecast, three tercile ranges are determined by ranking method based on the percentage of ensemble members from all the participating models falls in those three categories. CGMME further

  14. Investigation of the validity of radiosity for sound-field prediction in cubic rooms

    Science.gov (United States)

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-12-01

    This paper explores acoustical (or time-dependent) radiosity using predictions made in four cubic enclosures. The methods and algorithms used are those presented in a previous paper by the same authors [Nosal, Hodgson, and Ashdown, J. Acoust. Soc. Am. 116(2), 970-980 (2004)]. First, the algorithm, methods, and conditions for convergence are investigated by comparison of numerous predictions for the four cubic enclosures. Here, variables and parameters used in the predictions are varied to explore the effect of absorption distribution, the necessary conditions for convergence of the numerical solution to the analytical solution, form-factor prediction methods, and the computational requirements. The predictions are also used to investigate the effect of absorption distribution on sound fields in cubic enclosures with diffusely reflecting boundaries. Acoustical radiosity is then compared to predictions made in the four enclosures by a ray-tracing model that can account for diffuse reflection. Comparisons are made of echograms, room-acoustical parameters, and discretized echograms. .

  15. Monitoring and assessment of ingestive chewing sounds for prediction of herbage intake rate in grazing cattle.

    Science.gov (United States)

    Galli, J R; Cangiano, C A; Pece, M A; Larripa, M J; Milone, D H; Utsumi, S A; Laca, E A

    2018-05-01

    Accurate measurement of herbage intake rate is critical to advance knowledge of the ecology of grazing ruminants. This experiment tested the integration of behavioral and acoustic measurements of chewing and biting to estimate herbage dry matter intake (DMI) in dairy cows offered micro-swards of contrasting plant structure. Micro-swards constructed with plastic pots were offered to three lactating Holstein cows (608±24.9 kg of BW) in individual grazing sessions (n=48). Treatments were a factorial combination of two forage species (alfalfa and fescue) and two plant heights (tall=25±3.8 cm and short=12±1.9 cm) and were offered on a gradient of increasing herbage mass (10 to 30 pots) and number of bites (~10 to 40 bites). During each grazing session, sounds of biting and chewing were recorded with a wireless microphone placed on the cows' foreheads and a digital video camera to allow synchronized audio and video recordings. Dry matter intake rate was higher in tall alfalfa than in the other three treatments (32±1.6 v. 19±1.2 g/min). A high proportion of jaw movements in every grazing session (23 to 36%) were compound jaw movements (chew-bites) that appeared to be a key component of chewing and biting efficiency and of the ability of cows to regulate intake rate. Dry matter intake was accurately predicted based on easily observable behavioral and acoustic variables. Chewing sound energy measured as energy flux density (EFD) was linearly related to DMI, with 74% of EFD variation explained by DMI. Total chewing EFD, number of chew-bites and plant height (tall v. short) were the most important predictors of DMI. The best model explained 91% of the variation in DMI with a coefficient of variation of 17%. Ingestive sounds integrate valuable information to remotely monitor feeding behavior and predict DMI in grazing cows.

  16. Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope

    Science.gov (United States)

    André, M.; Caballé, A.; van der Schaar, M.; Solsona, A.; Houégnigan, L.; Zaugg, S.; Sánchez, A. M.; Castell, J. V.; Solé, M.; Vila, F.; Djokic, D.; Adrián-Martínez, S.; Albert, A.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zuñiga, J.

    2017-01-01

    Despite dedicated research has been carried out to adequately map the distribution of the sperm whale in the Mediterranean Sea, unlike other regions of the world, the species population status is still presently uncertain. The analysis of two years of continuous acoustic data provided by the ANTARES neutrino telescope revealed the year-round presence of sperm whales in the Ligurian Sea, probably associated with the availability of cephalopods in the region. The presence of the Ligurian Sea sperm whales was demonstrated through the real-time analysis of audio data streamed from a cabled-to-shore deep-sea observatory that allowed the hourly tracking of their long-range echolocation behaviour on the Internet. Interestingly, the same acoustic analysis indicated that the occurrence of surface shipping noise would apparently not condition the foraging behaviour of the sperm whale in the area, since shipping noise was almost always present when sperm whales were acoustically detected. The continuous presence of the sperm whale in the region confirms the ecological value of the Ligurian sea and the importance of ANTARES to help monitoring its ecosystems. PMID:28401960

  17. Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope

    Science.gov (United States)

    André, M.; Caballé, A.; van der Schaar, M.; Solsona, A.; Houégnigan, L.; Zaugg, S.; Sánchez, A. M.; Castell, J. V.; Solé, M.; Vila, F.; Djokic, D.; Adrián-Martínez, S.; Albert, A.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zuñiga, J.

    2017-04-01

    Despite dedicated research has been carried out to adequately map the distribution of the sperm whale in the Mediterranean Sea, unlike other regions of the world, the species population status is still presently uncertain. The analysis of two years of continuous acoustic data provided by the ANTARES neutrino telescope revealed the year-round presence of sperm whales in the Ligurian Sea, probably associated with the availability of cephalopods in the region. The presence of the Ligurian Sea sperm whales was demonstrated through the real-time analysis of audio data streamed from a cabled-to-shore deep-sea observatory that allowed the hourly tracking of their long-range echolocation behaviour on the Internet. Interestingly, the same acoustic analysis indicated that the occurrence of surface shipping noise would apparently not condition the foraging behaviour of the sperm whale in the area, since shipping noise was almost always present when sperm whales were acoustically detected. The continuous presence of the sperm whale in the region confirms the ecological value of the Ligurian sea and the importance of ANTARES to help monitoring its ecosystems.

  18. Usefulness of the second heart sound for predicting pulmonary hypertension in patients with interstitial lung disease

    Directory of Open Access Journals (Sweden)

    Sandra de Barros Cobra

    Full Text Available CONTEXT AND OBJECTIVE: P2 hyperphonesis is considered to be a valuable finding in semiological diagnoses of pulmonary hypertension (PH. The aim here was to evaluate the accuracy of the pulmonary component of second heart sounds for predicting PH in patients with interstitial lung disease. DESIGN AND SETTING: Cross-sectional study at the University of Brasilia and Hospital de Base do Distrito Federal. METHODS: Heart sounds were acquired using an electronic stethoscope and were analyzed using phonocardiography. Clinical signs suggestive of PH, such as second heart sound (S2 in pulmonary area louder than in aortic area; P2 > A2 in pulmonary area and P2 present in mitral area, were compared with Doppler echocardiographic parameters suggestive of PH. Sensitivity (S, specificity (Sp and positive (LR+ and negative (LR- likelihood ratios were evaluated. RESULTS: There was no significant correlation between S2 or P2 amplitude and PASP (pulmonary artery systolic pressure (P = 0.185 and 0.115; P= 0.13 and 0.34, respectively. Higher S2 in pulmonary area than in aortic area, compared with all the criteria suggestive of PH, showed S = 60%, Sp= 22%; LR+ = 0.7; LR- = 1.7; while P2> A2 showed S= 57%, Sp = 39%; LR+ = 0.9; LR- = 1.1; and P2 in mitral area showed: S= 68%, Sp = 41%; LR+ = 1.1; LR- = 0.7. All these signals together showed: S= 50%, Sp = 56%. CONCLUSIONS: The semiological signs indicative of PH presented low sensitivity and specificity levels for clinically diagnosing this comorbidity.

  19. Computerised Analysis of Telemonitored Respiratory Sounds for Predicting Acute Exacerbations of COPD.

    Science.gov (United States)

    Fernandez-Granero, Miguel Angel; Sanchez-Morillo, Daniel; Leon-Jimenez, Antonio

    2015-10-23

    Chronic obstructive pulmonary disease (COPD) is one of the commonest causes of death in the world and poses a substantial burden on healthcare systems and patients' quality of life. The largest component of the related healthcare costs is attributable to admissions due to acute exacerbation (AECOPD). The evidence that might support the effectiveness of the telemonitoring interventions in COPD is limited partially due to the lack of useful predictors for the early detection of AECOPD. Electronic stethoscopes and computerised analyses of respiratory sounds (CARS) techniques provide an opportunity for substantial improvement in the management of respiratory diseases. This exploratory study aimed to evaluate the feasibility of using: (a) a respiratory sensor embedded in a self-tailored housing for ageing users; (b) a telehealth framework; (c) CARS and (d) machine learning techniques for the remote early detection of the AECOPD. In a 6-month pilot study, 16 patients with COPD were equipped with a home base-station and a sensor to daily record their respiratory sounds. Principal component analysis (PCA) and a support vector machine (SVM) classifier was designed to predict AECOPD. 75.8% exacerbations were early detected with an average of 5 ± 1.9 days in advance at medical attention. The proposed method could provide support to patients, physicians and healthcare systems.

  20. Computerised Analysis of Telemonitored Respiratory Sounds for Predicting Acute Exacerbations of COPD

    Directory of Open Access Journals (Sweden)

    Miguel Angel Fernandez-Granero

    2015-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is one of the commonest causes of death in the world and poses a substantial burden on healthcare systems and patients’ quality of life. The largest component of the related healthcare costs is attributable to admissions due to acute exacerbation (AECOPD. The evidence that might support the effectiveness of the telemonitoring interventions in COPD is limited partially due to the lack of useful predictors for the early detection of AECOPD. Electronic stethoscopes and computerised analyses of respiratory sounds (CARS techniques provide an opportunity for substantial improvement in the management of respiratory diseases. This exploratory study aimed to evaluate the feasibility of using: (a a respiratory sensor embedded in a self-tailored housing for ageing users; (b a telehealth framework; (c CARS and (d machine learning techniques for the remote early detection of the AECOPD. In a 6-month pilot study, 16 patients with COPD were equipped with a home base-station and a sensor to daily record their respiratory sounds. Principal component analysis (PCA and a support vector machine (SVM classifier was designed to predict AECOPD. 75.8% exacerbations were early detected with an average of 5 ± 1.9 days in advance at medical attention. The proposed method could provide support to patients, physicians and healthcare systems.

  1. Prediction of the niche effect for single flat panels with or without attached sound absorbing materials.

    Science.gov (United States)

    Sgard, Franck; Atalla, Noureddine; Nélisse, Hugues

    2015-01-01

    The sound transmission loss (STL) of a test sample measured in sound transmission facilities is affected by the opening in which it is located. This is called the niche effect. This paper uses a modal approach to study the STL of a rectangular plate with or without an attached porous material located inside a box-shaped niche. The porous material is modeled as a limp equivalent fluid. The proposed model is validated by comparison with finite element/boundary element computations. Using a condensation of the pressure fields in the niche, the niche effect is interpreted in terms of a modification of the modal blocked pressure fields acting on the panel induced by the front cavity and by a modification of the radiation efficiency of the panel modes due to the presence of the back cavity. The modal approach is then used to investigate the impact of (1) the presence of a porous material attached to the panel on the niche effect and (2) the niche effect on the assessment of the porous material insertion loss. A simplified model for the porous material based on a transfer matrix approach is also proposed to predict the STL of the system and its validity is discussed.

  2. Direct Observation of Long-Range Transport Using Continuously Sounding Balloons and Near-Real-Time Trajectory Modeling

    Science.gov (United States)

    Voss, P. B.; Zaveri, R. A.; Berkowitz, C. M.

    2009-12-01

    Controlled Meteorological (CMET) balloons have been used in several recent studies to measure long-range transport over periods as long as 30 hours and distances up to 1000 kilometers. By repeatedly performing shallow soundings as they drift, CMET balloons can quantify evolving atmospheric structure, mixing events, shear advection, and dispersion during transport. In addition, the quasi-Lagrangian wind profiles can be used to drive a multi-layer trajectory model in which the advected air parcels follow the underlying terrain, or are constrained by altitude, potential temperature, or tracer concentration. Data from a coordinated balloon-aircraft study of long range transport over Texas (SETTS 2005) show that the reconstructed trajectories accurately track residual-layer urban outflow (and at times even its fine-scale structure) over distances of many hundreds of kilometers. The reconstructed trajectories and evolving profile visualizations are increasingly being made available in near-real time during balloon flights, supporting data-driven flight planning and sophisticated process studies relevant to atmospheric chemistry and climate. Multilayer trajectories (black grids) derived from CMET balloon flight paths (grey lines) for a transport event across Texas in 2005.

  3. Narrative Ability of Children With Speech Sound Disorders and the Prediction of Later Literacy Skills

    Science.gov (United States)

    Wellman, Rachel L.; Lewis, Barbara A.; Freebairn, Lisa A.; Avrich, Allison A.; Hansen, Amy J.; Stein, Catherine M.

    2012-01-01

    Purpose The main purpose of this study was to examine how children with isolated speech sound disorders (SSDs; n = 20), children with combined SSDs and language impairment (LI; n = 20), and typically developing children (n = 20), ages 3;3 (years;months) to 6;6, differ in narrative ability. The second purpose was to determine if early narrative ability predicts school-age (8–12 years) literacy skills. Method This study employed a longitudinal cohort design. The children completed a narrative retelling task before their formal literacy instruction began. The narratives were analyzed and compared for group differences. Performance on these early narratives was then used to predict the children’s reading decoding, reading comprehension, and written language ability at school age. Results Significant group differences were found in children’s (a) ability to answer questions about the story, (b) use of story grammars, and (c) number of correct and irrelevant utterances. Regression analysis demonstrated that measures of story structure and accuracy were the best predictors of the decoding of real words, reading comprehension, and written language. Measures of syntax and lexical diversity were the best predictors of the decoding of nonsense words. Conclusion Combined SSDs and LI, and not isolated SSDs, impact a child’s narrative abilities. Narrative retelling is a useful task for predicting which children may be at risk for later literacy problems. PMID:21969531

  4. A data-assimilative ocean forecasting system for the Prince William sound and an evaluation of its performance during sound Predictions 2009

    Science.gov (United States)

    Farrara, John D.; Chao, Yi; Li, Zhijin; Wang, Xiaochun; Jin, Xin; Zhang, Hongchun; Li, Peggy; Vu, Quoc; Olsson, Peter Q.; Schoch, G. Carl; Halverson, Mark; Moline, Mark A.; Ohlmann, Carter; Johnson, Mark; McWilliams, James C.; Colas, Francois A.

    2013-07-01

    The development and implementation of a three-dimensional ocean modeling system for the Prince William Sound (PWS) is described. The system consists of a regional ocean model component (ROMS) forced by output from a regional atmospheric model component (the Weather Research and Forecasting Model, WRF). The ROMS ocean model component has a horizontal resolution of 1km within PWS and utilizes a recently-developed multi-scale 3DVAR data assimilation methodology along with freshwater runoff from land obtained via real-time execution of a digital elevation model. During the Sound Predictions Field Experiment (July 19-August 3, 2009) the system was run in real-time to support operations and incorporated all available real-time streams of data. Nowcasts were produced every 6h and a 48-h forecast was performed once a day. In addition, a sixteen-member ensemble of forecasts was executed on most days. All results were published at a web portal (http://ourocean.jpl.nasa.gov/PWS) in real time to support decision making.The performance of the system during Sound Predictions 2009 is evaluated. The ROMS results are first compared with the assimilated data as a consistency check. RMS differences of about 0.7°C were found between the ROMS temperatures and the observed vertical profiles of temperature that are assimilated. The ROMS salinities show greater discrepancies, tending to be too salty near the surface. The overall circulation patterns observed throughout the Sound are qualitatively reproduced, including the following evolution in time. During the first week of the experiment, the weather was quite stormy with strong southeasterly winds. This resulted in strong north to northwestward surface flow in much of the central PWS. Both the observed drifter trajectories and the ROMS nowcasts showed strong surface inflow into the Sound through the Hinchinbrook Entrance and strong generally northward to northwestward flow in the central Sound that was exiting through the Knight

  5. Prediction of Land Use Change in Long Island Sound Watersheds Using Nighttime Light Data

    Directory of Open Access Journals (Sweden)

    Ruiting Zhai

    2016-12-01

    Full Text Available The Long Island Sound Watersheds (LISW are experiencing significant land use/cover change (LUCC, which affects the environment and ecosystems in the watersheds through water pollution, carbon emissions, and loss of wildlife. LUCC modeling is an important approach to understanding what has happened in the landscape and what may change in the future. Moreover, prospective modeling can provide sustainable and efficient decision support for land planning and environmental management. This paper modeled the LUCCs between 1996, 2001 and 2006 in the LISW in the New England region, which experienced an increase in developed area and a decrease of forest. The low-density development pattern played an important role in the loss of forest and the expansion of urban areas. The key driving forces were distance to developed areas, distance to roads, and social-economic drivers, such as nighttime light intensity and population density. In addition, this paper compared and evaluated two integrated LUCC models—the logistic regression–Markov chain model and the multi-layer perception–Markov chain (MLP–MC model. Both models achieved high accuracy in prediction, but the MLP–MC model performed slightly better. Finally, a land use map for 2026 was predicted by using the MLP–MC model, and it indicates the continued loss of forest and increase of developed area.

  6. Preschool Speech Error Patterns Predict Articulation and Phonological Awareness Outcomes in Children with Histories of Speech Sound Disorders

    Science.gov (United States)

    Preston, Jonathan L.; Hull, Margaret; Edwards, Mary Louise

    2013-01-01

    Purpose: To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost 4 years later. Method: Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 (years;months) and were followed up…

  7. A statistical method for predicting sound absorbing property of porous metal materials by using quartet structure generation set

    International Nuclear Information System (INIS)

    Guan, Dong; Wu, Jiu Hui; Jing, Li

    2015-01-01

    Highlights: • A random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. • Effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. • This method could be utilized to guide the design and fabrication of the sound-absorption porous metal materials. - Abstract: In this paper, a statistical method for predicting sound absorption properties of porous metal materials is presented. To reflect the stochastic distribution characteristics of the porous metal materials, a random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. Then by using the transfer-function approach along with the QSGS tool, we investigate the sound absorbing performance of porous metal materials with complex stochastic geometries. The statistical method has been validated by the good agreement among the numerical results for metal rubber from this method and a previous empirical model and the corresponding experimental data. Furthermore, the effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. Therefore, the present method is a reliable and robust method for predicting the sound absorption performance of porous metal materials, and could be utilized to guide the design and fabrication of the sound-absorption porous metal materials

  8. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Koukoulas, Triantafillos, E-mail: triantafillos.koukoulas@npl.co.uk; Piper, Ben [Acoustics Group, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  9. Predicting Long-Range Traversability from Short-Range Stereo-Derived Geometry

    Science.gov (United States)

    Turmon, Michael; Tang, Benyang; Howard, Andrew; Brjaracharya, Max

    2010-01-01

    Based only on its appearance in imagery, this program uses close-range 3D terrain analysis to produce training data sufficient to estimate the traversability of terrain beyond 3D sensing range. This approach is called learning from stereo (LFS). In effect, the software transfers knowledge from middle distances, where 3D geometry provides training cues, into the far field where only appearance is available. This is a viable approach because the same obstacle classes, and sometimes the same obstacles, are typically present in the mid-field and the farfield. Learning thus extends the effective look-ahead distance of the sensors.

  10. Prediction of radiation ratio and sound transmission of complex extruded panel using wavenumber domain Unite element and boundary element methods

    International Nuclear Information System (INIS)

    Kim, H; Ryue, J; Thompson, D J; Müller, A D

    2016-01-01

    Recently, complex shaped aluminium panels have been adopted in many structures to make them lighter and stronger. The vibro-acoustic behaviour of these complex panels has been of interest for many years but conventional finite element and boundary element methods are not efficient to predict their performance at higher frequencies. Where the cross-sectional properties of the panels are constant in one direction, wavenumber domain numerical analysis can be applied and this becomes more suitable for panels with complex cross-sectional geometries. In this paper, a coupled wavenumber domain finite element and boundary element method is applied to predict the sound radiation from and sound transmission through a double-layered aluminium extruded panel, having a typical shape used in railway carriages. The predicted results are compared with measured ones carried out on a finite length panel and good agreement is found. (paper)

  11. A Sound Therapy-Based Intervention to Expand the Auditory Dynamic Range for Loudness among Persons with Sensorineural Hearing Losses: A Randomized Placebo-Controlled Clinical Trial

    Science.gov (United States)

    Formby, Craig; Hawley, Monica L.; Sherlock, LaGuinn P.; Gold, Susan; Payne, JoAnne; Brooks, Rebecca; Parton, Jason M.; Juneau, Roger; Desporte, Edward J.; Siegle, Gregory R.

    2015-01-01

    The primary aim of this research was to evaluate the validity, efficacy, and generalization of principles underlying a sound therapy–based treatment for promoting expansion of the auditory dynamic range (DR) for loudness. The basic sound therapy principles, originally devised for treatment of hyperacusis among patients with tinnitus, were evaluated in this study in a target sample of unsuccessfully fit and/or problematic prospective hearing aid users with diminished DRs (owing to their elevated audiometric thresholds and reduced sound tolerance). Secondary aims included: (1) delineation of the treatment contributions from the counseling and sound therapy components to the full-treatment protocol and, in turn, the isolated treatment effects from each of these individual components to intervention success; and (2) characterization of the respective dynamics for full, partial, and control treatments. Thirty-six participants with bilateral sensorineural hearing losses and reduced DRs, which affected their actual or perceived ability to use hearing aids, were enrolled in and completed a placebo-controlled (for sound therapy) randomized clinical trial. The 2 × 2 factorial trial design was implemented with or without various assignments of counseling and sound therapy. Specifically, participants were assigned randomly to one of four treatment groups (nine participants per group), including: (1) group 1—full treatment achieved with scripted counseling plus sound therapy implemented with binaural sound generators; (2) group 2—partial treatment achieved with counseling and placebo sound generators (PSGs); (3) group 3—partial treatment achieved with binaural sound generators alone; and (4) group 4—a neutral control treatment implemented with the PSGs alone. Repeated measurements of categorical loudness judgments served as the primary outcome measure. The full-treatment categorical-loudness judgments for group 1, measured at treatment termination, were

  12. Long-range hydrometeorological ensemble predictions of drought parameters

    Science.gov (United States)

    Fundel, F.; Jörg-Hess, S.; Zappa, M.

    2012-06-01

    Low streamflow as consequence of a drought event affects numerous aspects of life. Economic sectors that may be impacted by drought are, e.g. power production, agriculture, tourism and water quality management. Numerical models have increasingly been used to forecast low-flow and have become the focus of recent research. Here, we consider daily ensemble runoff forecasts for the river Thur, which has its source in the Swiss Alps. We focus on the low-flow indices duration, severity and magnitude, with a forecast lead-time of one month, to assess their potential usefulness for predictions. The ECMWF VarEPS 5 member reforecast, which covers 18 yr, is used as forcing for the hydrological model PREVAH. A thorough verification shows that, compared to peak flow, probabilistic low-flow forecasts are skillful for longer lead-times, low-flow index forecasts could also be beneficially included in a decision-making process. The results suggest monthly runoff forecasts are useful for accessing the risk of hydrological droughts.

  13. Determination of Seed Soundness in Conifers Cryptomeria japonica and Chamaecyparis obtusa Using Narrow-Multiband Spectral Imaging in the Short-Wavelength Infrared Range

    Science.gov (United States)

    Matsuda, Osamu; Hara, Masashi; Tobita, Hiroyuki; Yazaki, Kenichi; Nakagawa, Toshinori; Shimizu, Kuniyoshi; Uemura, Akira; Utsugi, Hajime

    2015-01-01

    Regeneration of planted forests of Cryptomeria japonica (sugi) and Chamaecyparis obtuse (hinoki) is the pressing importance to the forest administration in Japan. Low seed germination rate of these species, however, has hampered low-cost production of their seedlings for reforestation. The primary cause of the low germinability has been attributed to highly frequent formation of anatomically unsound seeds, which are indistinguishable from sound germinable seeds by visible observation and other common criteria such as size and weight. To establish a method for sound seed selection in these species, hyperspectral imaging technique was used to identify a wavelength range where reflectance spectra differ clearly between sound and unsound seeds. In sound seeds of both species, reflectance in a narrow waveband centered at 1,730 nm, corresponding to a lipid absorption band in the short-wavelength infrared (SWIR) range, was greatly depressed relative to that in adjacent wavebands on either side. Such depression was absent or less prominent in unsound seeds. Based on these observations, a reflectance index SQI, abbreviated for seed quality index, was formulated using reflectance at three narrow SWIR wavebands so that it represents the extent of the depression. SQI calculated from seed area-averaged reflectance spectra and spatial distribution patterns of pixelwise SQI within each seed area were both proven as reliable criteria for sound seed selection. Enrichment of sound seeds was accompanied by an increase in germination rate of the seed lot. Thus, the methods described are readily applicable toward low-cost seedling production in combination with single seed sowing technology. PMID:26083366

  14. Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls

    Science.gov (United States)

    Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.

    2014-11-01

    Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.

  15. A study of methods of prediction and measurement of the transmission sound through the walls of light aircraft

    Science.gov (United States)

    Forssen, B.; Wang, Y. S.; Crocker, M. J.

    1981-12-01

    Several aspects were studied. The SEA theory was used to develop a theoretical model to predict the transmission loss through an aircraft window. This work mainly consisted of the writing of two computer programs. One program predicts the sound transmission through a plexiglass window (the case of a single partition). The other program applies to the case of a plexiglass window window with a window shade added (the case of a double partition with an air gap). The sound transmission through a structure was measured in experimental studies using several different methods in order that the accuracy and complexity of all the methods could be compared. Also, the measurements were conducted on the simple model of a fuselage (a cylindrical shell), on a real aircraft fuselage, and on stiffened panels.

  16. P--V--T and sound velocity data for fluid n-D2 in the range 75-300 K and 2-20 kbar

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1977-11-01

    Simultaneous static measurements of pressure, volume, temperature, and sound velocity are reported in deuterium fluid in the range 75 less than or equal to T less than or equal to 300K and 2 less than or equal to P less than or equal to 20 kbar [0.2 to 2.0 GPa]. The 1340 sets of data points along the 33 different isotherms are presented so that they may be available for use in equation-of-state development

  17. Characteristics and prediction of sound level in extra-large spaces

    OpenAIRE

    Wang, C.; Ma, H.; Wu, Y.; Kang, J.

    2018-01-01

    This paper aims to examine sound fields in extra-large spaces, which are defined in this paper as spaces used by people, with a volume approximately larger than 125,000m 3 and absorption coefficient less than 0.7. In such spaces inhomogeneous reverberant energy caused by uneven early reflections with increasing volume has a significant effect on sound fields. Measurements were conducted in four spaces to examine the attenuation of the total and reverberant energy with increasing source-receiv...

  18. Prediction of failures in linear systems with the use of tolerance ranges

    International Nuclear Information System (INIS)

    Gadzhiev, Ch.M.

    1993-01-01

    The problem of predicting the technical state of an object can be stated in a general case as that of predicting potential failures on the basis of a quantitative evaluation of the predicted parameters in relation to the set of tolerances on these parameters. The main stages in the prediction are collecting and preparing source data on the prehistory of the predicted phenomenon, forming a mathematical model of this phenomenon, working out the algorithm for the prediction, and adopting a solution from the prediction results. The final two stages of prediction are considered in this article. The prediction algorithm is proposed based on construction of the tolerance range for the signal of error between output coordinates of the system and its mathematical model. A solution regarding possible occurrence of failure in the system is formulated as a result of comparison of the tolerance range and the found confidence interval. 5 refs

  19. Sound and sound sources

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...

  20. Predicting climate-induced range shifts: model differences and model reliability.

    Science.gov (United States)

    Joshua J. Lawler; Denis White; Ronald P. Neilson; Andrew R. Blaustein

    2006-01-01

    Predicted changes in the global climate are likely to cause large shifts in the geographic ranges of many plant and animal species. To date, predictions of future range shifts have relied on a variety of modeling approaches with different levels of model accuracy. Using a common data set, we investigated the potential implications of alternative modeling approaches for...

  1. Transitional Probabilities Are Prioritized over Stimulus/Pattern Probabilities in Auditory Deviance Detection: Memory Basis for Predictive Sound Processing.

    Science.gov (United States)

    Mittag, Maria; Takegata, Rika; Winkler, István

    2016-09-14

    Representations encoding the probabilities of auditory events do not directly support predictive processing. In contrast, information about the probability with which a given sound follows another (transitional probability) allows predictions of upcoming sounds. We tested whether behavioral and cortical auditory deviance detection (the latter indexed by the mismatch negativity event-related potential) relies on probabilities of sound patterns or on transitional probabilities. We presented healthy adult volunteers with three types of rare tone-triplets among frequent standard triplets of high-low-high (H-L-H) or L-H-L pitch structure: proximity deviant (H-H-H/L-L-L), reversal deviant (L-H-L/H-L-H), and first-tone deviant (L-L-H/H-H-L). If deviance detection was based on pattern probability, reversal and first-tone deviants should be detected with similar latency because both differ from the standard at the first pattern position. If deviance detection was based on transitional probabilities, then reversal deviants should be the most difficult to detect because, unlike the other two deviants, they contain no low-probability pitch transitions. The data clearly showed that both behavioral and cortical auditory deviance detection uses transitional probabilities. Thus, the memory traces underlying cortical deviance detection may provide a link between stimulus probability-based change/novelty detectors operating at lower levels of the auditory system and higher auditory cognitive functions that involve predictive processing. Our research presents the first definite evidence for the auditory system prioritizing transitional probabilities over probabilities of individual sensory events. Forming representations for transitional probabilities paves the way for predictions of upcoming sounds. Several recent theories suggest that predictive processing provides the general basis of human perception, including important auditory functions, such as auditory scene analysis. Our

  2. An Improved Prediction Model for the Impact Sound Level of Lightweight Floors: Introducing Decoupled Floor-Ceiling and Beam-Plate Moment

    DEFF Research Database (Denmark)

    Mosharrof, Mohammad Sazzad; Brunskog, Jonas; Ljunggren, Fredrik

    2011-01-01

    the impact sound pressure level in a receiving room for a coupled floor structure where floor and ceiling are rigidly connected by beams. A theoretical model for predicting the impact sound level for a decoupled floor structure, which has no rigid mechanical connections between the floor and the ceiling......, is developed. An analytical method has been implemented, where a spatial Fourier transform method as well as the Poisson’s sum formula is applied to model transformed plate displacements. Radiated sound power was calculated from these displacements and normalized sound pressure levels were calculated in one...... and is found to be dependent on frequency, showing significant improvement in predicting impact sound level at high frequency region....

  3. Implicit learning of predictable sound sequences modulates human brain responses at different levels of the auditory hierarchy

    Directory of Open Access Journals (Sweden)

    Françoise eLecaignard

    2015-09-01

    Full Text Available Deviant stimuli, violating regularities in a sensory environment, elicit the Mismatch Negativity (MMN, largely described in the Event-Related Potential literature. While it is widely accepted that the MMN reflects more than basic change detection, a comprehensive description of mental processes modulating this response is still lacking. Within the framework of predictive coding, deviance processing is part of an inference process where prediction errors (the mismatch between incoming sensations and predictions established through experience are minimized. In this view, the MMN is a measure of prediction error, which yields specific expectations regarding its modulations by various experimental factors. In particular, it predicts that the MMN should decrease as the occurrence of a deviance becomes more predictable. We conducted a passive oddball EEG study and manipulated the predictability of sound sequences by means of different temporal structures. Importantly, our design allows comparing mismatch responses elicited by predictable and unpredictable violations of a simple repetition rule and therefore departs from previous studies that investigate violations of different time-scale regularities. We observed a decrease of the MMN with predictability and interestingly, a similar effect at earlier latencies, within 70 ms after deviance onset. Following these pre-attentive responses, a reduced P3a was measured in the case of predictable deviants. We conclude that early and late deviance responses reflect prediction errors, triggering belief updating within the auditory hierarchy. Beside, in this passive study, such perceptual inference appears to be modulated by higher-level implicit learning of sequence statistical structures. Our findings argue for a hierarchical model of auditory processing where predictive coding enables implicit extraction of environmental regularities.

  4. Kindergarteners' performance in a sound-symbol paradigm predicts early reading.

    Science.gov (United States)

    Horbach, Josefine; Scharke, Wolfgang; Cröll, Jennifer; Heim, Stefan; Günther, Thomas

    2015-11-01

    The current study examined the role of serial processing of newly learned sound-symbol associations in early reading acquisition. A computer-based sound-symbol paradigm (SSP) was administered to 243 children during their last year of kindergarten (T1), and their reading performance was assessed 1 year later in first grade (T2). Results showed that performance on the SSP measured before formal reading instruction was associated with later reading development. At T1, early readers performed significantly better than nonreaders in learning correspondences between sounds and symbols as well as in applying those correspondences in a serial manner. At T2, SSP performance measured at T1 was positively associated with reading performance. Importantly, serial application of newly learned correspondences at T1 explained unique variance in first-grade reading performance in nonreaders over and above other verbal predictors, including phonological awareness, verbal short-term memory, and rapid automatized naming. Consequently, the SSP provides a promising way to study aspects of reading in preliterate children. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Using demography and movement behavior to predict range expansion of the southern sea otter.

    Science.gov (United States)

    Tinker, M.T.; Doak, D.F.; Estes, J.A.

    2008-01-01

    In addition to forecasting population growth, basic demographic data combined with movement data provide a means for predicting rates of range expansion. Quantitative models of range expansion have rarely been applied to large vertebrates, although such tools could be useful for restoration and management of many threatened but recovering populations. Using the southern sea otter (Enhydra lutris nereis) as a case study, we utilized integro-difference equations in combination with a stage-structured projection matrix that incorporated spatial variation in dispersal and demography to make forecasts of population recovery and range recolonization. In addition to these basic predictions, we emphasize how to make these modeling predictions useful in a management context through the inclusion of parameter uncertainty and sensitivity analysis. Our models resulted in hind-cast (1989–2003) predictions of net population growth and range expansion that closely matched observed patterns. We next made projections of future range expansion and population growth, incorporating uncertainty in all model parameters, and explored the sensitivity of model predictions to variation in spatially explicit survival and dispersal rates. The predicted rate of southward range expansion (median = 5.2 km/yr) was sensitive to both dispersal and survival rates; elasticity analysis indicated that changes in adult survival would have the greatest potential effect on the rate of range expansion, while perturbation analysis showed that variation in subadult dispersal contributed most to variance in model predictions. Variation in survival and dispersal of females at the south end of the range contributed most of the variance in predicted southward range expansion. Our approach provides guidance for the acquisition of further data and a means of forecasting the consequence of specific management actions. Similar methods could aid in the management of other recovering populations.

  6. Hybrid Active/Passive Control of Sound Radiation from Panels with Constrained Layer Damping and Model Predictive Feedback Control

    Science.gov (United States)

    Cabell, Randolph H.; Gibbs, Gary P.

    2000-01-01

    There has been considerable interest over the past several years in applying feedback control methods to problems of structural acoustics. One problem of particular interest is the control of sound radiation from aircraft panels excited on one side by a turbulent boundary layer (TBL). TBL excitation appears as many uncorrelated sources acting on the panel, which makes it difficult to find a single reference signal that is coherent with the excitation. Feedback methods have no need for a reference signal, and are thus suited to this problem. Some important considerations for the structural acoustics problem include the fact that the required controller bandwidth can easily extend to several hundred Hertz, so a digital controller would have to operate at a few kilohertz. In addition, aircraft panel structures have a reasonably high modal density over this frequency range. A model based controller must therefore handle the modally dense system, or have some way to reduce the bandwidth of the problem. Further complicating the problem is the fact that the stiffness and dynamic properties of an aircraft panel can vary considerably during flight due to altitude changes resulting in significant resonant frequency shifts. These considerations make the tradeoff between robustness to changes in the system being controlled and controller performance especially important. Recent papers concerning the design and implementation of robust controllers for structural acoustic problems highlight the need to consider both performance and robustness when designing the controller. While robust control methods such as H1 can be used to balance performance and robustness, their implementation is not easy and requires assumptions about the types of uncertainties in the plant being controlled. Achieving a useful controller design may require many tradeoff studies of different types of parametric uncertainties in the system. Another approach to achieving robustness to plant changes is to

  7. Predicted range expansion of Chinese tallow tree (Triadica sebifera) in forestlands of the southern United States

    Science.gov (United States)

    Hsiao-Hsuan Wang; William Grant; Todd Swannack; Jianbang Gan; William Rogers; Tomasz Koralewski; James Miller; John W. Taylor Jr.

    2011-01-01

    We present an integrated approach for predicting future range expansion of an invasive species (Chinese tallow tree) that incorporates statistical forecasting and analytical techniques within a spatially explicit, agent-based, simulation framework.

  8. New England observed and predicted July stream/river temperature daily range points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature daily ranges in New England based on a spatial statistical network...

  9. New England observed and predicted August stream/river temperature daily range points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature daily ranges in New England based on a spatial statistical...

  10. Towards Predicting Room Acoustical Effects on Sound-Field ASSR from Stimulus Modulation Power

    DEFF Research Database (Denmark)

    Zapata Rodriguez, Valentina; Laugesen, Søren; Jeong, Cheol-Ho

    ) is considered. Instead of using insert earphones to deliver the stimuli, as is customary, the auditory signals are reproduced from a loudspeaker placed in front of the subject, so as to include the hearing aid in the transmission path. Loudspeaker presentation of the stimulus can lower its effective modulation...... properties of the measurement room has not been considered. The present work explores the relation between the stimulus modulation power and the ASSR amplitude in a simulated sound-field ASSR data set with varying reverberation time. Three rooms were simulated using the Green's function approach...

  11. Fluid Sounds

    DEFF Research Database (Denmark)

    Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects and in arch......Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects...... and in architectural design. Aesthetics, psychoacoustics, perception, and cognition are all present in this expanding field embracing such categories as soundscape composition, sound art, sonic art, sound design, sound studies and auditory culture. Of greatest significance to the overall field is the investigation...

  12. A comparison on radar range profiles between in-flight measurements and RCS-predictions

    NARCIS (Netherlands)

    Heiden, R. van der; Ewijk, L.J. van; Groen, F.C.A.

    1998-01-01

    The validation of Radar Cross Section (RCS) prediction techniques against real measurements is crucial to acquire confidence in predictions when measurements are nut available. In this paper we present the results of a comparison on one-dimensional signatures, i.e. radar range profiles. The profiles

  13. A short-range weather prediction system for South Africa based on a ...

    African Journals Online (AJOL)

    The accurate prediction of rainfall events, in terms of their timing, location and rainfall depth, is important to a wide range of social and economic applications. At many operational weather prediction centres, as is also the case at the South African Weather Service, forecasters use deterministic model outputs as guidance to ...

  14. Middle Range Sea Ice Prediction System of Voyage Environmental Information System in Arctic Sea Route

    Science.gov (United States)

    Lim, H. S.

    2017-12-01

    Due to global warming, the sea ice in the Arctic Ocean is melting dramatically in summer, which is providing a new opportunity to exploit the Northern Sea Route (NSR) connecting Asia and Europe ship route. Recent increases in logistics transportation through NSR and resource development reveal the possible threats of marine pollution and marine transportation accidents without real-time navigation system. To develop a safe Voyage Environmental Information System (VEIS) for vessels operating, the Korea Institute of Ocean Science and Technology (KIOST) which is supported by the Ministry of Oceans and Fisheries, Korea has initiated the development of short-term and middle range prediction system for the sea ice concentration (SIC) and sea ice thickness (SIT) in NSR since 2014. The sea ice prediction system of VEIS consists of AMSR2 satellite composite images (a day), short-term (a week) prediction system, and middle range (a month) prediction system using a statistical method with re-analysis data (TOPAZ) and short-term predicted model data. In this study, the middle range prediction system for the SIC and SIT in NSR is calibrated with another middle range predicted atmospheric and oceanic data (NOAA CFSv2). The system predicts one month SIC and SIT on a daily basis, as validated with dynamic composite SIC data extracted from AMSR2 L2 satellite images.

  15. Predictability of the 2012 Great Arctic Cyclone on medium-range timescales

    Science.gov (United States)

    Yamagami, Akio; Matsueda, Mio; Tanaka, Hiroshi L.

    2018-03-01

    Arctic Cyclones (ACs) can have a significant impact on the Arctic region. Therefore, the accurate prediction of ACs is important in anticipating their associated environmental and societal costs. This study investigates the predictability of the 2012 Great Arctic Cyclone (AC12) that exhibited a minimum central pressure of 964 hPa on 6 August 2012, using five medium-range ensemble forecasts. We show that the development and position of AC12 were better predicted in forecasts initialized on and after 4 August 2012. In addition, the position of AC12 was more predictable than its development. A comparison of ensemble members, classified by the error in predictability of the development and position of AC12, revealed that an accurate prediction of upper-level fields, particularly temperature, was important for the prediction of this event. The predicted position of AC12 was influenced mainly by the prediction of the polar vortex, whereas the predicted development of AC12 was dependent primarily on the prediction of the merging of upper-level warm cores. Consequently, an accurate prediction of the polar vortex position and the development of the warm core through merging resulted in better prediction of AC12.

  16. Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms

    Science.gov (United States)

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-08-01

    This paper explores acoustical (or time-dependent) radiosity-a geometrical-acoustics sound-field prediction method that assumes diffuse surface reflection. The literature of acoustical radiosity is briefly reviewed and the advantages and disadvantages of the method are discussed. A discrete form of the integral equation that results from meshing the enclosure boundaries into patches is presented and used in a discrete-time algorithm. Furthermore, an averaging technique is used to reduce computational requirements. To generalize to nonrectangular rooms, a spherical-triangle method is proposed as a means of evaluating the integrals over solid angles that appear in the discrete form of the integral equation. The evaluation of form factors, which also appear in the numerical solution, is discussed for rectangular and nonrectangular rooms. This algorithm and associated methods are validated by comparison of the steady-state predictions for a spherical enclosure to analytical solutions.

  17. Airframe related aeroacoustics of transport aircraft� -research into prediction and reduction of sound radiation-�

    OpenAIRE

    Delfs, Jan Werner

    2013-01-01

    As the sound generation in turbofan engines has decreased the significance of airframe related sound has increased. For example in landing approach the sound associated with the airframe may even dominate the overall sound radiation of an aircraft. The influence of the airframe on aerosound is threefold: i) Airframe components subjected to either their own turbulent boundary layer flow or to installation related turbulent flow act as sources of sound, ii) The aerodynamic influence of the airf...

  18. Compensation for the distortion in satellite laser range predictions due to varying pulse travel times

    Science.gov (United States)

    Paunonen, Matti

    1993-01-01

    A method for compensating for the effect of the varying travel time of a transmitted laser pulse to a satellite is described. The 'observed minus predicted' range differences then appear to be linear, which makes data screening or use in range gating more effective.

  19. Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark A.; Conner, Dave A.; Conner, Dave A.; Watts, Michael E.

    2010-01-01

    The use of CFD to directly predict helicopter main rotor noise is shown to be quite promising as an alternative mean for low frequency source noise evaluation. Results using existing state-of-the-art grid structures and finite-difference schemes demonstrated that small perturbation pressures, associated with acoustics radiation, can be extracted with some degree of fidelity. Accuracy of the predictions are demonstrated via comparing to predictions from conventional acoustic analogy-based models, and with measurements obtained from wind tunnel and flight tests for the MD-902 helicopter at several operating conditions. Findings show that the direct CFD approach is quite successfully in yielding low frequency results due to thickness and steady loading noise mechanisms. Mid-to-high frequency contents, due to blade-vortex interactions, are not predicted due to CFD modeling and grid constraints.

  20. A study of methods of prediction and measurement of the transmission of sound through the walls of light aircraft

    Science.gov (United States)

    Forssen, B.; Wang, Y. S.; Raju, P. K.; Crocker, M. J.

    1981-08-01

    The acoustic intensity technique was applied to the sound transmission loss of panel structures (single, composite, and stiffened). A theoretical model of sound transmission through a cylindrical shell is presented.

  1. Validation of the Predicted Circumferential and Radial Mode Sound Power Levels in the Inlet and Exhaust Ducts of a Fan Ingesting Distorted Inflow

    Science.gov (United States)

    Koch, L. Danielle

    2012-01-01

    Fan inflow distortion tone noise has been studied computationally and experimentally. Data from two experiments in the NASA Glenn Advanced Noise Control Fan rig have been used to validate acoustic predictions. The inflow to the fan was distorted by cylindrical rods inserted radially into the inlet duct one rotor chord length upstream of the fan. The rods were arranged in both symmetric and asymmetric circumferential patterns. In-duct and farfield sound pressure level measurements were recorded. It was discovered that for positive circumferential modes, measured circumferential mode sound power levels in the exhaust duct were greater than those in the inlet duct and for negative circumferential modes, measured total circumferential mode sound power levels in the exhaust were less than those in the inlet. Predicted trends in overall sound power level were proven to be useful in identifying circumferentially asymmetric distortion patterns that reduce overall inlet distortion tone noise, as compared to symmetric arrangements of rods. Detailed comparisons between the measured and predicted radial mode sound power in the inlet and exhaust duct indicate limitations of the theory.

  2. Reduced mandibular range of motion in Duchenne muscular dystrophy : Predictive factors

    NARCIS (Netherlands)

    van Bruggen, H. W.; Van Den Engel-Hoek, L.; Steenks, M. H.; Bronkhorst, E. M.; Creugers, N. H J; de Groot, I. J M; Kalaykova, S. I.

    2015-01-01

    Patients with Duchenne muscular dystrophy (DMD) experience negative effects upon feeding and oral health. We aimed to determine whether the mandibular range of motion in DMD is impaired and to explore predictive factors for the active maximum mouth opening (aMMO). 23 patients with DMD (mean age 16·7

  3. Miedema model based methodology to predict amorphous-forming-composition range in binary and ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Das, N., E-mail: nirupamd@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Mittra, J. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Murty, B.S. [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Pabi, S.K. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, Kharagpur 721 302 (India); Kulkarni, U.D.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer A methodology was proposed to predict amorphous forming compositions (AFCs). Black-Right-Pointing-Pointer Chemical contribution to enthalpy of mixing {proportional_to} enthalpy of amorphous for AFCs. Black-Right-Pointing-Pointer Accuracy in the prediction of AFC-range was noticed in Al-Ni-Ti system. Black-Right-Pointing-Pointer Mechanical alloying (MA) results of Al-Ni-Ti followed the predicted AFC-range. Black-Right-Pointing-Pointer Earlier MA results of Al-Ni-Ti also conformed to the predicted AFC-range. - Abstract: From the earlier works on the prediction of amorphous forming composition range (AFCR) using Miedema based model and also, on mechanical alloying experiments it has been observed that all amorphous forming compositions of a given alloy system falls within a linear band when the chemical contribution to enthalpy of the solid solution ({Delta}H{sup ss}) is plotted against the enthalpy of mixing in the amorphous phase ({Delta}H{sup amor}). On the basis of this observation, a methodology has been proposed in this article to identify the AFCR of a ternary system that is likely to be more precise than what can be obtained using {Delta}H{sup amor} - {Delta}H{sup ss} < 0 criterion. MA experiments on various compositions of Al-Ni-Ti system, producing amorphous, crystalline, and mixture of amorphous plus crystalline phases have been carried out and the phases have been characterized using X-ray diffraction and transmission electron microscopy techniques. Data from the present MA experiments and, also, from the literature have been used to validate the proposed approach. Also, the proximity of compositions, producing a mixture of amorphous and crystalline phases to the boundary of AFCR in the Al-Ni-Ti ternary has been found useful to validate the effectiveness of the prediction.

  4. Acoustic excitation of mechatronic systems by diffuse acoustic sound fields; Numerical predictions and measurements.

    NARCIS (Netherlands)

    Roozen, N.B.

    2006-01-01

    With the accuracy of metrology frame applications entering the nanometer-range, the necessity arises totackle all types of disturbances. In the process of estimating the relative importance of the different types of disturbances on the machine accuracy, also called dynamic error budgeting, acoustic

  5. Pipeline defect prediction using long range ultrasonic testing and intelligent processing

    International Nuclear Information System (INIS)

    Dino Isa; Rajprasad Rajkumar

    2009-01-01

    This paper deals with efforts to improve nondestructive testing (NDT) techniques by using artificial intelligence in detecting and predicting pipeline defects such as cracks and wall thinning. The main emphasis here will be on the prediction of corrosion type defects rather than just detection after the fact. Long range ultrasonic testing will be employed, where a ring of piezoelectric transducers are used to generate torsional guided waves. Various defects such as cracks as well as corrosion under insulation (CUI) will be simulated on a test pipe. The machine learning algorithm known as the Support Vector Machine (SVM) will be used to predict and classify transducer signals using regression and large margin classification. Regression results show that the SVM is able to accurately predict future defects based on trends of previous defect. The classification performance was also exceptional showing a facility to detect defects at different depths as well as for distinguishing closely spaced defects. (author)

  6. Using quantitative breath sound measurements to predict lung function following resection

    Directory of Open Access Journals (Sweden)

    Keus Leendert

    2010-10-01

    Full Text Available Abstract Background Predicting postoperative lung function is important for estimating the risk of complications and long-term disability after pulmonary resection. We investigated the capability of vibration response imaging (VRI as an alternative to lung scintigraphy for prediction of postoperative lung function in patients with intrathoracic malignancies. Methods Eighty-five patients with intrathoracic malignancies, considered candidates for lung resection, were prospectively studied. The projected postoperative (ppo lung function was calculated using: perfusion scintigraphy, ventilation scintigraphy, and VRI. Two sets of assessments made: one for lobectomy and one for pneumonectomy. Clinical concordance was defined as both methods agreeing that either a patient was or was not a surgical candidate based on a ppoFEV1% and ppoDLCO% > 40%. Results Limits of agreement between scintigraphy and VRI for ppo following lobectomy were -16.47% to 15.08% (mean difference = -0.70%;95%CI = -2.51% to 1.12% and for pneumonectomy were -23.79% to 19.04% (mean difference = -2.38%;95%CI = -4.69% to -0.07%. Clinical concordance between VRI and scintigraphy was 73% for pneumonectomy and 98% for lobectomy. For patients who had surgery and postoperative lung function testing (n = 31, ppoFEV1% using scintigraphic methods correlated with measured postoperative values better than projections using VRI, (adjusted R2 = 0.32 scintigraphy; 0.20 VRI, however the difference between methods failed to reach statistical significance. Limits of agreement between measured FEV1% postoperatively and ppoFEV1% based on perfusion scintigraphy were -16.86% to 23.73% (mean difference = 3.44%;95%CI = -0.29% to 7.16%; based on VRI were -19.56% to 28.99% (mean difference = 4.72%;95%CI = 0.27% to 9.17%. Conclusions Further investigation of VRI as an alternative to lung scintigraphy for prediction of postoperative lung function is warranted.

  7. NOAA's Strategy to Improve Operational Weather Prediction Outlooks at Subseasonal Time Range

    Science.gov (United States)

    Schneider, T.; Toepfer, F.; Stajner, I.; DeWitt, D.

    2017-12-01

    NOAA is planning to extend operational global numerical weather prediction to sub-seasonal time range under the auspices of its Next Generation Global Prediction System (NGGPS) and Extended Range Outlook Programs. A unification of numerical prediction capabilities for weather and subseasonal to seasonal (S2S) timescales is underway at NOAA using the Finite Volume Cubed Sphere (FV3) dynamical core as the basis for the emerging unified system. This presentation will overview NOAA's strategic planning and current activities to improve prediction at S2S time-scales that are ongoing in response to the Weather Research and Forecasting Innovation Act of 2017, Section 201. Over the short-term, NOAA seeks to improve the operational capability through improvements to its ensemble forecast system to extend its range to 30 days using the new FV3 Global Forecast System model, and by using this system to provide reforecast and re-analyses. In parallel, work is ongoing to improve NOAA's operational product suite for 30 day outlooks for temperature, precipitation and extreme weather phenomena.

  8. Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations

    International Nuclear Information System (INIS)

    Zhang Lue; Wang Xiang-Da; Liu Xiao-Zhou; Gong Xiu-Fen

    2015-01-01

    With converged shock wave, extracorporeal shock wave lithotripsy (ESWL) has become a preferable way to crush human calculi because of its advantages of efficiency and non-intrusion. Nonlinear spheroidal beam equations (SBE) are employed to illustrate the acoustic wave propagation for transducers with a wide aperture angle. To predict the acoustic field distribution precisely, boundary conditions are obtained for the SBE model of the monochromatic wave when the source is located on the focus of an ESWL transducer. Numerical results of the monochromatic wave propagation in water are analyzed and the influences of half-angle, fundamental frequency, and initial pressure are investigated. According to our results, with optimization of these factors, the pressure focal gain of ESWL can be enhanced and the effectiveness of treatment can be improved. (paper)

  9. Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations

    Science.gov (United States)

    Zhang, Lue; Wang, Xiang-Da; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2015-01-01

    With converged shock wave, extracorporeal shock wave lithotripsy (ESWL) has become a preferable way to crush human calculi because of its advantages of efficiency and non-intrusion. Nonlinear spheroidal beam equations (SBE) are employed to illustrate the acoustic wave propagation for transducers with a wide aperture angle. To predict the acoustic field distribution precisely, boundary conditions are obtained for the SBE model of the monochromatic wave when the source is located on the focus of an ESWL transducer. Numerical results of the monochromatic wave propagation in water are analyzed and the influences of half-angle, fundamental frequency, and initial pressure are investigated. According to our results, with optimization of these factors, the pressure focal gain of ESWL can be enhanced and the effectiveness of treatment can be improved. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), and the China Postdoctoral Science Foundation (Grant No. 2013M531313).

  10. Current meter data from moored current meter casts in the Puget Sound as part of the Long-Range Effects Program Puget Sound project from 1983-11-29 to 1984-08-01 (NODC Accession 8800119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Puget Sound from November 29, 1983 to August 1, 1984. Data were submitted by Pacific Marine...

  11. Sound quality prediction of vehicle interior noise and mathematical modeling using a back propagation neural network (BPNN) based on particle swarm optimization (PSO)

    International Nuclear Information System (INIS)

    Zhang, Enlai; Hou, Liang; Shen, Chao; Shi, Yingliang; Zhang, Yaxiang

    2016-01-01

    To better solve the complex non-linear problem between the subjective sound quality evaluation results and objective psychoacoustics parameters, a method for the prediction of the sound quality is put forward by using a back propagation neural network (BPNN) based on particle swarm optimization (PSO), which is optimizing the initial weights and thresholds of BP network neurons through the PSO. In order to verify the effectiveness and accuracy of this approach, the noise signals of the B-Class vehicles from the idle speed to 120 km h −1 measured by the artificial head, are taken as a target. In addition, this paper describes a subjective evaluation experiment on the sound quality annoyance inside the vehicles through a grade evaluation method, by which the annoyance of each sample is obtained. With the use of Artemis software, the main objective psychoacoustic parameters of each noise sample are calculated. These parameters include loudness, sharpness, roughness, fluctuation, tonality, articulation index (AI) and A-weighted sound pressure level. Furthermore, three evaluation models with the same artificial neural network (ANN) structure are built: the standard BPNN model, the genetic algorithm-back-propagation neural network (GA-BPNN) model and the PSO-back-propagation neural network (PSO-BPNN) model. After the network training and the evaluation prediction on the three models’ network based on experimental data, it proves that the PSO-BPNN method can achieve convergence more quickly and improve the prediction accuracy of sound quality, which can further lay a foundation for the control of the sound quality inside vehicles. (paper)

  12. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  13. Using individual differences to predict job performance: correcting for direct and indirect restriction of range.

    Science.gov (United States)

    Sjöberg, Sofia; Sjöberg, Anders; Näswall, Katharina; Sverke, Magnus

    2012-08-01

    The present study investigates the relationship between individual differences, indicated by personality (FFM) and general mental ability (GMA), and job performance applying two different methods of correction for range restriction. The results, derived by analyzing meta-analytic correlations, show that the more accurate method of correcting for indirect range restriction increased the operational validity of individual differences in predicting job performance and that this increase primarily was due to general mental ability being a stronger predictor than any of the personality traits. The estimates for single traits can be applied in practice to maximize prediction of job performance. Further, differences in the relative importance of general mental ability in relation to overall personality assessment methods was substantive and the estimates provided enables practitioners to perform a correct utility analysis of their overall selection procedure. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.

  14. Clinical Prediction Model for Time in Therapeutic Range While on Warfarin in Newly Diagnosed Atrial Fibrillation.

    Science.gov (United States)

    Williams, Brent A; Evans, Michael A; Honushefsky, Ashley M; Berger, Peter B

    2017-10-12

    Though warfarin has historically been the primary oral anticoagulant for stroke prevention in newly diagnosed atrial fibrillation (AF), several new direct oral anticoagulants may be preferred when anticoagulation control with warfarin is expected to be poor. This study developed a prediction model for time in therapeutic range (TTR) among newly diagnosed AF patients on newly initiated warfarin as a tool to assist decision making between warfarin and direct oral anticoagulants. This electronic medical record-based, retrospective study included newly diagnosed, nonvalvular AF patients with no recent warfarin exposure receiving primary care services through a large healthcare system in rural Pennsylvania. TTR was estimated as the percentage of time international normalized ratio measurements were between 2.0 and 3.0 during the first year following warfarin initiation. Candidate predictors of TTR were chosen from data elements collected during usual clinical care. A TTR prediction model was developed and temporally validated and its predictive performance was compared with the SAMe-TT 2 R 2 score (sex, age, medical history, treatment, tobacco, race) using R 2 and c-statistics. A total of 7877 newly diagnosed AF patients met study inclusion criteria. Median (interquartile range) TTR within the first year of starting warfarin was 51% (32, 67). Of 85 candidate predictors evaluated, 15 were included in the final validated model with an R 2 of 15.4%. The proposed model showed better predictive performance than the SAMe-TT 2 R 2 score ( R 2 =3.0%). The proposed prediction model may assist decision making on the proper mode of oral anticoagulant among newly diagnosed AF patients. However, predicting TTR on warfarin remains challenging. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  15. Intermediate-term middle-range predictions in Italy: a review

    International Nuclear Information System (INIS)

    Peresan, A.; Kossobokov, V.; Romashkova, L.; Panza, G.F.

    2003-11-01

    The Italian territory has been object of several studies devoted to the analysis of seismicity and to earthquake precursors' research. Although a number of observations have been claimed to precede large earthquakes, only few systematic studies have been carried out and almost no test of their performances is available up to now. In this paper we review the application to the Italian territory of two formally defined intermediate-term middle-range earthquake prediction algorithms, namely CN and M8S. The general methodology common to the two different algorithms makes use of general concepts of pattern recognition that permit to deal with multiple sets of seismic precursors, and allows for a systematic monitoring of seismicity, as well as for a widespread testing of the prediction performances. Italy represents the only region of moderate seismic activity where the M8S and CN algorithms are applied simultaneously for the routine monitoring. Significant efforts have been made to minimize the intrinsic space uncertainty of predictions and the subjectivity of the definition of the areas where precursors should be identified. Several experiments have been dedicated to assess the robustness of the methodology against the unavoidable uncertainties in the data. With these results acquired, predictions are routinely issued by CN algorithm, since January 1998, and by M8S algorithm, since January 2002. Starting in July 2003 an experiment has been launched for the real-time test of M8S and CN predictions. (author)

  16. How predictability of feeding patches affects home range and foraging habitat selection in avian social scavengers?

    Directory of Open Access Journals (Sweden)

    Sophie Monsarrat

    Full Text Available Feeding stations are commonly used to sustain conservation programs of scavengers but their impact on behaviour is still debated. They increase the temporal and spatial predictability of food resources while scavengers have supposedly evolved to search for unpredictable resources. In the Grands Causses (France, a reintroduced population of Griffon vultures Gyps fulvus can find carcasses at three types of sites: 1. "light feeding stations", where farmers can drop carcasses at their farm (spatially predictable, 2. "heavy feeding stations", where carcasses from nearby farms are concentrated (spatially and temporally predictable and 3. open grasslands, where resources are randomly distributed (unpredictable. The impact of feeding stations on vulture's foraging behaviour was investigated using 28 GPS-tracked vultures. The average home range size was maximal in spring (1272 ± 752 km(2 and minimal in winter (473 ± 237 km(2 and was highly variable among individuals. Analyses of home range characteristics and feeding habitat selection via compositional analysis showed that feeding stations were always preferred compared to the rest of the habitat where vultures can find unpredictable resources. Feeding stations were particularly used when resources were scarce (summer or when flight conditions were poor (winter, limiting long-ranging movements. However, when flight conditions were optimal, home ranges also encompassed large areas of grassland where vultures could find unpredictable resources, suggesting that vultures did not lose their natural ability to forage on unpredictable resources, even when feeding stations were available. However during seasons when food abundance and flight conditions were not limited, vultures seemed to favour light over heavy feeding stations, probably because of the reduced intraspecific competition and a pattern closer to the natural dispersion of resources in the landscape. Light feeding stations are interesting tools

  17. How predictability of feeding patches affects home range and foraging habitat selection in avian social scavengers?

    Science.gov (United States)

    Monsarrat, Sophie; Benhamou, Simon; Sarrazin, François; Bessa-Gomes, Carmen; Bouten, Willem; Duriez, Olivier

    2013-01-01

    Feeding stations are commonly used to sustain conservation programs of scavengers but their impact on behaviour is still debated. They increase the temporal and spatial predictability of food resources while scavengers have supposedly evolved to search for unpredictable resources. In the Grands Causses (France), a reintroduced population of Griffon vultures Gyps fulvus can find carcasses at three types of sites: 1. "light feeding stations", where farmers can drop carcasses at their farm (spatially predictable), 2. "heavy feeding stations", where carcasses from nearby farms are concentrated (spatially and temporally predictable) and 3. open grasslands, where resources are randomly distributed (unpredictable). The impact of feeding stations on vulture's foraging behaviour was investigated using 28 GPS-tracked vultures. The average home range size was maximal in spring (1272 ± 752 km(2)) and minimal in winter (473 ± 237 km(2)) and was highly variable among individuals. Analyses of home range characteristics and feeding habitat selection via compositional analysis showed that feeding stations were always preferred compared to the rest of the habitat where vultures can find unpredictable resources. Feeding stations were particularly used when resources were scarce (summer) or when flight conditions were poor (winter), limiting long-ranging movements. However, when flight conditions were optimal, home ranges also encompassed large areas of grassland where vultures could find unpredictable resources, suggesting that vultures did not lose their natural ability to forage on unpredictable resources, even when feeding stations were available. However during seasons when food abundance and flight conditions were not limited, vultures seemed to favour light over heavy feeding stations, probably because of the reduced intraspecific competition and a pattern closer to the natural dispersion of resources in the landscape. Light feeding stations are interesting tools for managing

  18. Predicting long-range transport: a systematic evaluation of two multimedia transport models.

    Science.gov (United States)

    Bennett, D H; Scheringer, M; McKone, T E; Hungerbühler, K

    2001-03-15

    The United Nations Environment Program has recently developed criteria to identify and restrict chemicals with a potential for persistence and long-range transport (persistent organic pollutants or POPs). There are many stakeholders involved, and the issues are not only scientific but also include social, economic, and political factors. This work focuses on one aspect of the POPs debate, the criteria for determining the potential for long-range transport (LRT). Our goal is to determine if current models are reliable enough to support decisions that classify a chemical based on the LRT potential. We examine the robustness of two multimedia fate models for determining the relative ranking and absolute spatial range of various chemicals in the environment. We also consider the effect of parameter uncertainties and the model uncertainty associated with the selection of an algorithm for gas-particle partitioning on the model results. Given the same chemical properties, both models give virtually the same ranking. However, when chemical parameter uncertainties and model uncertainties such as particle partitioning are considered, the spatial range distributions obtained for the individual chemicals overlap, preventing a distinct rank order. The absolute values obtained for the predicted spatial range or travel distance differ significantly between the two models for the uncertainties evaluated. We find that to evaluate a chemical when large and unresolved uncertainties exist, it is more informative to use two or more models and include multiple types of uncertainty. Model differences and uncertainties must be explicitly confronted to determine how the limitations of scientific knowledge impact predictions in the decision-making process.

  19. Directional sound radiation from substation transformers

    International Nuclear Information System (INIS)

    Maybee, N.

    2009-01-01

    This paper presented the results of a study in which acoustical measurements at two substations were analyzed to investigate the directional behaviour of typical arrays having 2 or 3 transformers. Substation transformers produce a characteristic humming sound that is caused primarily by vibration of the core at twice the frequency of the power supply. The humming noise radiates predominantly from the tank enclosing the core. The main components of the sound are harmonics of 120 Hz. Sound pressure level data were obtained for various directions and distances from the arrays, ranging from 0.5 m to over 100 m. The measured sound pressure levels of the transformer tones displayed substantial positive and negative excursions from the calculated average values for many distances and directions. The results support the concept that the directional effects are associated with constructive and destructive interference of tonal sound waves emanating from different parts of the array. Significant variations in the directional sound pattern can occur in the near field of a single transformer or an array, and the extent of the near field is significantly larger than the scale of the array. Based on typical dimensions for substation sites, the distance to the far field may be much beyond the substation boundary and beyond typical setbacks to the closest dwellings. As such, the directional sound radiation produced by transformer arrays introduces additional uncertainty in the prediction of substation sound levels at dwellings within a few hundred meters of a substation site. 4 refs., 4 figs.

  20. Predicting commuter flows in spatial networks using a radiation model based on temporal ranges

    Science.gov (United States)

    Ren, Yihui; Ercsey-Ravasz, Mária; Wang, Pu; González, Marta C.; Toroczkai, Zoltán

    2014-11-01

    Understanding network flows such as commuter traffic in large transportation networks is an ongoing challenge due to the complex nature of the transportation infrastructure and human mobility. Here we show a first-principles based method for traffic prediction using a cost-based generalization of the radiation model for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events.

  1. Prediction of kharif rice yield at Kharagpur using disaggregated extended range rainfall forecasts

    Science.gov (United States)

    Dhekale, B. S.; Nageswararao, M. M.; Nair, Archana; Mohanty, U. C.; Swain, D. K.; Singh, K. K.; Arunbabu, T.

    2017-08-01

    The Extended Range Forecasts System (ERFS) has been generating monthly and seasonal forecasts on real-time basis throughout the year over India since 2009. India is one of the major rice producer and consumer in South Asia; more than 50% of the Indian population depends on rice as staple food. Rice is mainly grown in kharif season, which contributed 84% of the total annual rice production of the country. Rice cultivation in India is rainfed, which depends largely on rains, so reliability of the rainfall forecast plays a crucial role for planning the kharif rice crop. In the present study, an attempt has been made to test the reliability of seasonal and sub-seasonal ERFS summer monsoon rainfall forecasts for kharif rice yield predictions at Kharagpur, West Bengal by using CERES-Rice (DSSATv4.5) model. These ERFS forecasts are produced as monthly and seasonal mean values and are converted into daily sequences with stochastic weather generators for use with crop growth models. The daily sequences are generated from ERFS seasonal (June-September) and sub-seasonal (July-September, August-September, and September) summer monsoon (June to September) rainfall forecasts which are considered as input in CERES-rice crop simulation model for the crop yield prediction for hindcast (1985-2008) and real-time mode (2009-2015). The yield simulated using India Meteorological Department (IMD) observed daily rainfall data is considered as baseline yield for evaluating the performance of predicted yields using the ERFS forecasts. The findings revealed that the stochastic disaggregation can be used to disaggregate the monthly/seasonal ERFS forecasts into daily sequences. The year to year variability in rice yield at Kharagpur is efficiently predicted by using the ERFS forecast products in hindcast as well as real time, and significant enhancement in the prediction skill is noticed with advancement in the season due to incorporation of observed weather data which reduces uncertainty of

  2. HEPS4Power - Extended-range Hydrometeorological Ensemble Predictions for Improved Hydropower Operations and Revenues

    Science.gov (United States)

    Bogner, Konrad; Monhart, Samuel; Liniger, Mark; Spririg, Christoph; Jordan, Fred; Zappa, Massimiliano

    2015-04-01

    In recent years large progresses have been achieved in the operational prediction of floods and hydrological drought with up to ten days lead time. Both the public and the private sectors are currently using probabilistic runoff forecast in order to monitoring water resources and take actions when critical conditions are to be expected. The use of extended-range predictions with lead times exceeding 10 days is not yet established. The hydropower sector in particular might have large benefits from using hydro meteorological forecasts for the next 15 to 60 days in order to optimize the operations and the revenues from their watersheds, dams, captions, turbines and pumps. The new Swiss Competence Centers in Energy Research (SCCER) targets at boosting research related to energy issues in Switzerland. The objective of HEPS4POWER is to demonstrate that operational extended-range hydro meteorological forecasts have the potential to become very valuable tools for fine tuning the production of energy from hydropower systems. The project team covers a specific system-oriented value chain starting from the collection and forecast of meteorological data (MeteoSwiss), leading to the operational application of state-of-the-art hydrological models (WSL) and terminating with the experience in data presentation and power production forecasts for end-users (e-dric.ch). The first task of the HEPS4POWER will be the downscaling and post-processing of ensemble extended-range meteorological forecasts (EPS). The goal is to provide well-tailored forecasts of probabilistic nature that should be reliable in statistical and localized at catchment or even station level. The hydrology related task will consist in feeding the post-processed meteorological forecasts into a HEPS using a multi-model approach by implementing models with different complexity. Also in the case of the hydrological ensemble predictions, post-processing techniques need to be tested in order to improve the quality of the

  3. Habitat Modeling and Preferences of Marine Mammals as Function of Oceanographic Characteristics: Development of Predictive Tools for Assessing the Risks and the Impacts Due to Sound Emissions

    Science.gov (United States)

    2011-09-30

    evaluate WEC projects in the perspective of the environmental cost-benefit analysis. Proceedings of the ISOPE 2011, Maui, Hawaii, USA 19-24 June, 2011...Function of Oceanographic Characteristics: Development of Predictive Tools for Assessing the Risks and the Impacts Due to Sound Emissions Dr...detections) and the available environmental predictors; - Creating the knowledge-based background about potential mitigation measures appropriate for

  4. Regarding "A new method for predicting nonlinear structural vibrations induced by ground impact loading" [Journal of Sound and Vibration, 331/9 (2012) 2129-2140

    Science.gov (United States)

    Cartmell, Matthew P.

    2016-09-01

    The Editor wishes to make the reader aware that the paper "A new method for predicting nonlinear structural vibrations induced by ground impact loading" by Jun Liu, Yu Zhang, Bin Yun, Journal of Sound and Vibration, 331 (2012) 2129-2140, did not contain a direct citation of the fundamental and original work in this field by Dr. Mark Svinkin. The Editor regrets that this omission was not noted at the time that the above paper was accepted and published.

  5. Vertical distribution of Saharan dust over Rome (Italy): Comparison between 3-year model predictions and lidar soundings

    Science.gov (United States)

    Kishcha, P.; Barnaba, F.; Gobbi, G. P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.

    2005-03-01

    Mineral dust particles loaded into the atmosphere from the Sahara desert represent one major factor affecting the Earth's radiative budget. Regular model-based forecasts of 3-D dust fields can be used in order to determine the dust radiative effect in climate models, in spite of the large gaps in observations of dust vertical profiles. In this study, dust forecasts by the Tel Aviv University (TAU) dust prediction system were compared to lidar observations to better evaluate the model's capabilities. The TAU dust model was initially developed at the University of Athens and later modified at Tel Aviv University. Dust forecasts are initialized with the aid of the Total Ozone Mapping Spectrometer aerosol index (TOMS AI) measurements. The lidar soundings employed were collected at the outskirts of Rome, Italy (41.84°N, 12.64°E) during the high-dust activity season from March to June of the years 2001, 2002, and 2003. The lidar vertical profiles collected in the presence of dust were used for obtaining statistically significant reference parameters of dust layers over Rome and for model versus lidar comparison. The Barnaba and Gobbi (2001) approach was used in the current study to derive height-resolved dust volumes from lidar measurements of backscatter. Close inspection of the juxtaposed vertical profiles, obtained from lidar and model data near Rome, indicates that the majority (67%) of the cases under investigation can be classified as good or acceptable forecasts of the dust vertical distribution. A more quantitative comparison shows that the model predictions are mainly accurate in the middle part of dust layers. This is supported by high correlation (0.85) between lidar and model data for forecast dust volumes greater than the threshold of 1 × 10-12 cm3/cm3. In general, however, the model tends to underestimate the lidar-derived dust volume profiles. The effect of clouds in the TOMS detection of AI is supposed to be the main factor responsible for this effect

  6. Foley Sounds vs Real Sounds

    DEFF Research Database (Denmark)

    Trento, Stefano; Götzen, Amalia De

    2011-01-01

    This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects...

  7. Simultaneous calibration of ensemble river flow predictions over an entire range of lead times

    Science.gov (United States)

    Hemri, S.; Fundel, F.; Zappa, M.

    2013-10-01

    Probabilistic estimates of future water levels and river discharge are usually simulated with hydrologic models using ensemble weather forecasts as main inputs. As hydrologic models are imperfect and the meteorological ensembles tend to be biased and underdispersed, the ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, in order to achieve both reliable and sharp predictions statistical postprocessing is required. In this work Bayesian model averaging (BMA) is applied to statistically postprocess ensemble runoff raw forecasts for a catchment in Switzerland, at lead times ranging from 1 to 240 h. The raw forecasts have been obtained using deterministic and ensemble forcing meteorological models with different forecast lead time ranges. First, BMA is applied based on mixtures of univariate normal distributions, subject to the assumption of independence between distinct lead times. Then, the independence assumption is relaxed in order to estimate multivariate runoff forecasts over the entire range of lead times simultaneously, based on a BMA version that uses multivariate normal distributions. Since river runoff is a highly skewed variable, Box-Cox transformations are applied in order to achieve approximate normality. Both univariate and multivariate BMA approaches are able to generate well calibrated probabilistic forecasts that are considerably sharper than climatological forecasts. Additionally, multivariate BMA provides a promising approach for incorporating temporal dependencies into the postprocessed forecasts. Its major advantage against univariate BMA is an increase in reliability when the forecast system is changing due to model availability.

  8. Equivalent threshold sound pressure levels (ETSPL) for Sennheiser HDA 280 supra-aural audiometric earphones in the frequency range 125 Hz to 8000 Hz

    DEFF Research Database (Denmark)

    Poulsen, Torben; Oakley, Sebastian

    2009-01-01

    Hearing threshold sound pressure levels were measured for the Sennheiser HDA 280 audiometric earphone. Hearing thresholds were measured for 25 normal hearing test subjects at the 11 audiometric test frequencies from 125 Hz to 8000 Hz. Sennheiser HDA 280 is a supra-aural earphone that may be seen...... as a substitute for the classical Telephonics TDH 39. The results are given as the Equivalent Threshold Sound Pressure Level, ETSPL, measured in an acoustic coupler specified in IEC 60318-3. The results are in good agreement with an independent investigation from PTB, Braunschweig, Germany. From acoustic...

  9. Short-Range Prediction of Monsoon Precipitation by NCMRWF Regional Unified Model with Explicit Convection

    Science.gov (United States)

    Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.

    2018-03-01

    There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and

  10. Prediction of the metabolizable energy requirements of free-range laying hens.

    Science.gov (United States)

    Brainer, M M A; Rabello, C B V; Santos, M J B; Lopes, C C; Ludke, J V; Silva, J H V; Lima, R A

    2016-01-01

    This experiment was conducted with the aim of estimating the ME requirements of free-range laying hens for maintenance, weight gain, and egg production. These experiments were performed to develop an energy requirement prediction equation by using the comparative slaughter technique and the total excreta collection method. Regression equations were used to relate the energy intake, the energy retained in the body and eggs, and the heat production of the hens. These relationships were used to determine the daily ME requirement for maintenance, the efficiency energy utilization above the requirements for maintenance, and the NE requirement for maintenance. The requirement for weight gain was estimated from the energy content of the carcass, and the diet's efficiency energy utilization was determined from the weight gain, which was measured during weekly slaughter. The requirement for egg production was estimated by considering the energy content of the eggs and the efficiency of energy deposition in the eggs. The requirement and efficiency energy utilization for maintenance were 121.8 kcal ME/(kg∙d)and 0.68, respectively. Similarly, the NE requirement for maintenance was 82.4 kcal ME/(kg∙d), and the efficiency energy utilization above maintenance was 0.61. Because the carcass body weight and energy did not increase during the trial, the weight gain could not be estimated. The requirements for egg production requirement and efficiency energy utilization for egg production were 2.48 kcal/g and 0.61, respectively. The following energy prediction equation for free-range laying hens (without weight gain) was developed: ME /(hen ∙ d) = 121.8 × W + 2.48 × EM, in which W = body weight (kg) and EM = egg mass (g/[hen ∙ d]).

  11. Limited-area short-range ensemble predictions targeted for heavy rain in Europe

    Directory of Open Access Journals (Sweden)

    K. Sattler

    2005-01-01

    Full Text Available Inherent uncertainties in short-range quantitative precipitation forecasts (QPF from the high-resolution, limited-area numerical weather prediction model DMI-HIRLAM (LAM are addressed using two different approaches to creating a small ensemble of LAM simulations, with focus on prediction of extreme rainfall events over European river basins. The first ensemble type is designed to represent uncertainty in the atmospheric state of the initial condition and at the lateral LAM boundaries. The global ensemble prediction system (EPS from ECMWF serves as host model to the LAM and provides the state perturbations, from which a small set of significant members is selected. The significance is estimated on the basis of accumulated precipitation over a target area of interest, which contains the river basin(s under consideration. The selected members provide the initial and boundary data for the ensemble integration in the LAM. A second ensemble approach tries to address a portion of the model-inherent uncertainty responsible for errors in the forecasted precipitation field by utilising different parameterisation schemes for condensation and convection in the LAM. Three periods around historical heavy rain events that caused or contributed to disastrous river flooding in Europe are used to study the performance of the LAM ensemble designs. The three cases exhibit different dynamic and synoptic characteristics and provide an indication of the ensemble qualities in different weather situations. Precipitation analyses from the Deutsche Wetterdienst (DWD are used as the verifying reference and a comparison of daily rainfall amounts is referred to the respective river basins of the historical cases.

  12. Application of long-range order to predict unfolding rates of two-state proteins.

    Science.gov (United States)

    Harihar, B; Selvaraj, S

    2011-03-01

    Predicting the experimental unfolding rates of two-state proteins and models describing the unfolding rates of these proteins is quite limited because of the complexity present in the unfolding mechanism and the lack of experimental unfolding data compared with folding data. In this work, 25 two-state proteins characterized by Maxwell et al. (Protein Sci 2005;14:602–616) using a consensus set of experimental conditions were taken, and the parameter long-range order (LRO) derived from their three-dimensional structures were related with their experimental unfolding rates ln(k(u)). From the total data set of 30 proteins used by Maxwell et al. (Protein Sci 2005;14:602–616), five slow-unfolding proteins with very low unfolding rates were considered to be outliers and were not included in our data set. Except all beta structural class, LRO of both the all-alpha and mixed-class proteins showed a strong inverse correlation of r = -0.99 and -0.88, respectively, with experimental ln(k(u)). LRO shows a correlation of -0.62 with experimental ln(k(u)) for all-beta proteins. For predicting the unfolding rates, a simple statistical method has been used and linear regression equations were developed for individual structural classes of proteins using LRO, and the results obtained showed a better agreement with experimental results. Copyright © 2010 Wiley-Liss, Inc.

  13. Intraspecific morphological and genetic variation of common species predicts ranges of threatened ones

    Science.gov (United States)

    Fuller, Trevon L.; Thomassen, Henri A.; Peralvo, Manuel; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M.; Jarrín-V, Pablo; Devitt, Susan E. Cameron; Mason, Eliza; Schweizer, Rena M.; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Schneider, Christopher J.; Pollinger, John P.; Saatchi, Sassan; Graham, Catherine H.; Wayne, Robert K.; Smith, Thomas B.

    2013-01-01

    Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible. PMID:23595273

  14. A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals.

    Directory of Open Access Journals (Sweden)

    Frédéric Gougoux

    2005-02-01

    Full Text Available Blind individuals often demonstrate enhanced nonvisual perceptual abilities. However, the neural substrate that underlies this improved performance remains to be fully understood. An earlier behavioral study demonstrated that some early-blind people localize sounds more accurately than sighted controls using monaural cues. In order to investigate the neural basis of these behavioral differences in humans, we carried out functional imaging studies using positron emission tomography and a speaker array that permitted pseudo-free-field presentations within the scanner. During binaural sound localization, a sighted control group showed decreased cerebral blood flow in the occipital lobe, which was not seen in early-blind individuals. During monaural sound localization (one ear plugged, the subgroup of early-blind subjects who were behaviorally superior at sound localization displayed two activation foci in the occipital cortex. This effect was not seen in blind persons who did not have superior monaural sound localization abilities, nor in sighted individuals. The degree of activation of one of these foci was strongly correlated with sound localization accuracy across the entire group of blind subjects. The results show that those blind persons who perform better than sighted persons recruit occipital areas to carry out auditory localization under monaural conditions. We therefore conclude that computations carried out in the occipital cortex specifically underlie the enhanced capacity to use monaural cues. Our findings shed light not only on intermodal compensatory mechanisms, but also on individual differences in these mechanisms and on inhibitory patterns that differ between sighted individuals and those deprived of vision early in life.

  15. Equivalent threshold sound pressure levels for Sennheiser HDA 200 earphone and Etymotic Research ER-2 insert earphone in the frequency range 125 Hz to 16 kHz

    DEFF Research Database (Denmark)

    Han, Loc A; Poulsen, Torben

    1998-01-01

    Equivalent Threshold Sound Pressure Levels (ETSPLs) have been determined for the Sennheiser HDA 200 earphone and the Etymotic Research ER-2insert earphone. Thirty-one young normal-hearing test subjects participated and the thresholds were determined for all recommended frequencies in thefrequency...

  16. Sound transmission at ground level in a short-grass prairie habitat and its implications for long-range communication in the swift fox Vulpes velox

    DEFF Research Database (Denmark)

    Darden, Safi K; Pedersen, Simon B; Larsen, Ole N

    2008-01-01

    The acoustic environment of swift foxes Vulpes velox vocalizing close to the ground and the effect of propagation on individual identity information in vocalizations were quantified in a transmission experiment in prairie habitat. Sounds were propagated (0.45 m above the ground) at distances up t...

  17. Progress in sensor performance testing, modeling and range prediction using the TOD method: an overview

    Science.gov (United States)

    Bijl, Piet; Hogervorst, Maarten A.; Toet, Alexander

    2017-05-01

    The Triangle Orientation Discrimination (TOD) methodology includes i) a widely applicable, accurate end-to-end EO/IR sensor test, ii) an image-based sensor system model and iii) a Target Acquisition (TA) range model. The method has been extensively validated against TA field performance for a wide variety of well- and under-sampled imagers, systems with advanced image processing techniques such as dynamic super resolution and local adaptive contrast enhancement, and sensors showing smear or noise drift, for both static and dynamic test stimuli and as a function of target contrast. Recently, significant progress has been made in various directions. Dedicated visual and NIR test charts for lab and field testing are available and thermal test benches are on the market. Automated sensor testing using an objective synthetic human observer is within reach. Both an analytical and an image-based TOD model have recently been developed and are being implemented in the European Target Acquisition model ECOMOS and in the EOSTAR TDA. Further, the methodology is being applied for design optimization of high-end security camera systems. Finally, results from a recent perception study suggest that DRI ranges for real targets can be predicted by replacing the relevant distinctive target features by TOD test patterns of the same characteristic size and contrast, enabling a new TA modeling approach. This paper provides an overview.

  18. Use of medium-range numerical weather prediction model output to produce forecasts of streamflow

    Science.gov (United States)

    Clark, M.P.; Hay, L.E.

    2004-01-01

    This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases

  19. Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park

    Science.gov (United States)

    Bromberg, J.E.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.

    2011-01-01

    Downy brome (Bromus tectorum L.), an invasive winter annual grass, may be increasing in extent and abundance at high elevations in the western United States. This would pose a great threat to high-elevation plant communities and resources. However, data to track this species in high-elevation environments are limited. To address changes in the distribution and abundance of downy brome and the factors most associated with its occurrence, we used field sampling and statistical methods, and niche modeling. In 2007, we resampled plots from two vegetation surveys in Rocky Mountain National Park for presence and cover of downy brome. One survey was established in 1993 and had been resampled in 1999. The other survey was established in 1996 and had not been resampled until our study. Although not all comparisons between years demonstrated significant changes in downy brome abundance, its mean cover increased nearly fivefold from 1993 (0.7%) to 2007 (3.6%) in one of the two vegetation surveys (P = 0.06). Although the average cover of downy brome within the second survey appeared to be increasing from 1996 to 2007, this slight change from 0.5% to 1.2% was not statistically significant (P = 0.24). Downy brome was present in 50% more plots in 1999 than in 1993 (P = 0.02) in the first survey. In the second survey, downy brome was present in 30% more plots in 2007 than in 1996 (P = 0.08). Maxent, a species-environmental matching model, was generally able to predict occurrences of downy brome, as new locations were in the ranges predicted by earlier generated models. The model found that distance to roads, elevation, and vegetation community influenced the predictions most. The strong response of downy brome to interannual environmental variability makes detecting change challenging, especially with small sample sizes. However, our results suggest that the area in which downy brome occurs is likely increasing in Rocky Mountain National Park through increased frequency and cover

  20. Imagining Sound

    DEFF Research Database (Denmark)

    Grimshaw, Mark; Garner, Tom Alexander

    2014-01-01

    We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....

  1. Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events

    Science.gov (United States)

    Stephanie K. Moore; Nathan J. Mantua; Barbara M. Hickey; Vera L. Trainer

    2009-01-01

    Temporal and spatial trends in paralytic shellfish toxins (PSTs) in Puget Sound shellfish and their relationships with climate are investigated using long-term monitoring data since 1957. Data are selected for trend analyses based on the sensitivity of shellfish species to PSTs and their depuration rates, and the frequency of sample collection at individual sites....

  2. ABOUT SOUNDS IN VIDEO GAMES

    Directory of Open Access Journals (Sweden)

    Denikin Anton A.

    2012-12-01

    Full Text Available The article considers the aesthetical and practical possibilities for sounds (sound design in video games and interactive applications. Outlines the key features of the game sound, such as simulation, representativeness, interactivity, immersion, randomization, and audio-visuality. The author defines the basic terminology in study of game audio, as well as identifies significant aesthetic differences between film sounds and sounds in video game projects. It is an attempt to determine the techniques of art analysis for the approaches in study of video games including aesthetics of their sounds. The article offers a range of research methods, considering the video game scoring as a contemporary creative practice.

  3. Predicting sorption of organic acids to a wide range of carbonized sorbents

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  4. Predicting aquatic macrophyte occurrence in soft-water oligotrophic lakes (Pyrenees mountain range

    Directory of Open Access Journals (Sweden)

    Cristina Pulido

    2014-08-01

    Full Text Available Distribution of aquatic macrophytes in lakes is related to geographical, morphological, catchment and water chemistry variables as well as human impacts, which modify the original environment. Here, we aim at building statistical models to establish the ecological niches of 11 aquatic macrophytes (10 different phanerogams and the genus Nitella from oligotrophic soft-water lakes and infer their ecological requirements and environmental constraints at the southernmost limit of their distribution. Macrophyte occurrence and environmental variables were obtained from 86 non-exploited oligotrophic soft-water lakes from the Pyrenees (Southern Europe; 42º50´N, 1º00´E; macrophytes inhabited 55 of these lakes. Optimum ranges and macrophyte occurrence were predicted in relation to 18 geographical, morphological, catchment and water chemistry variables using univariate and multivariate logistic models. Lakes at low altitude, in vegetated catchments and with low water concentration of NO3- and SO4-2, were the most suitable to host macrophytes. In general, individual species of aquatic macrophytes showed clear patterns of segregation along conductivity and pH gradients, although the specific combination of variables selected in the best models explaining their occurrence differed among species.  Based on the species response to pH and conductivity, we found Isoetes lacustris have its optimum in waters with low conductivity and pH (i.e. negative monotonic response. In contrast, Callitriche palustris, Ranunculus aquatilis, Subularia aquatica, Nitella spp., and Myriophyllum alterniflorum showed an optimum at intermediate values (i.e. unimodal response, whereas Potamogeton berchtoldii, Potamogeton alpinus, and Ranunculus trichophyllus as species had their optimum at relatively high water pH and conductivity (i.e. positive monotonic response. This pattern has been observed in other regions for the same species, although with different optima and tolerance

  5. Reduced mandibular range of motion in Duchenne Muscular Dystrophy: predictive factors.

    Science.gov (United States)

    van Bruggen, H W; Van Den Engel-Hoek, L; Steenks, M H; Bronkhorst, E M; Creugers, N H J; de Groot, I J M; Kalaykova, S I

    2015-06-01

    Patients with Duchenne muscular dystrophy (DMD) experience negative effects upon feeding and oral health. We aimed to determine whether the mandibular range of motion in DMD is impaired and to explore predictive factors for the active maximum mouth opening (aMMO). 23 patients with DMD (mean age 16.7 ± 7.7 years) and 23 controls were assessed using a questionnaire about mandibular function and impairments. All participants underwent a clinical examination of the masticatory system, including measurement of mandibular range of motion and variables related to mandibular movements. In all patients, quantitative ultrasound of the digastric muscle and the geniohyoid muscle and the motor function measure (MFM) scale were performed. The patients were divided into early and late ambulatory stage (AS), early non-ambulatory stage (ENAS) and late non-ambulatory stage (LNAS). All mandibular movements were reduced in the patient group (P < 0.001) compared to the controls. Reduction in the aMMO (<40 mm) was found in 26% of the total patient group. LNAS patients had significantly smaller mandibular movements compared to AS and ENAS (P < 0.05). Multiple linear regression analysis for aMMO revealed a positive correlation with the body height and disease progression, with MFM total score as the strongest independent risk factor (R(2) = 0.71). Mandibular movements in DMD are significantly reduced and become more hampered with loss of motor function, including the sitting position, arm function, and neck and head control. We suggest that measurement of the aMMO becomes a part of routine care of patients with DMD. © 2015 John Wiley & Sons Ltd.

  6. Equivalent threshold sound pressure levels (ETSPL) for Sennheiser HDA 280 supra-aural audiometric earphones in the frequency range 125 Hz to 8000 Hz.

    Science.gov (United States)

    Poulsen, Torben; Oakley, Sebastian

    2009-05-01

    Hearing threshold sound pressure levels were measured for the Sennheiser HDA 280 audiometric earphone. Hearing thresholds were measured for 25 normal-hearing test subjects at the 11 audiometric test frequencies from 125 Hz to 8000 Hz. Sennheiser HDA 280 is a supra-aural earphone that may be seen as a substitute for the classical Telephonics TDH 39. The results are given as the equivalent threshold sound pressure level (ETSPL) measured in an acoustic coupler specified in IEC 60318-3. The results are in good agreement with an independent investigation from PTB, Braunschweig, Germany. From acoustic laboratory measurements ETSPL values are calculated for the ear simulator specified in IEC 60318-1. Fitting of earphone and coupler is discussed. The data may be used for a future update of the RETSPL standard for supra-aural audiometric earphones, ISO 389-1.

  7. Factors affecting seasonal habitat use, and predicted range of two tropical deer in Indonesian rainforest

    Science.gov (United States)

    Rahman, Dede Aulia; Gonzalez, Georges; Haryono, Mohammad; Muhtarom, Aom; Firdaus, Asep Yayus; Aulagnier, Stéphane

    2017-07-01

    There is an urgent recognized need for conservation of tropical forest deer. In order to identify some environmental factors affecting conservation, we analyzed the seasonal habitat use of two Indonesian deer species, Axis kuhlii in Bawean Island and Muntiacus muntjak in south-western Java Island, in response to several physical, climatic, biological, and anthropogenic variables. Camera trapping was performed in different habitat types during both wet and dry season to record these elusive species. The highest number of photographs was recorded in secondary forest and during the dry season for both Bawean deer and red muntjac. In models, anthropogenic and climatic variables were the main predictors of habitat use. Distances to cultivated area and to settlement were the most important for A. kuhlii in the dry season. Distances to cultivated area and annual rainfall were significant for M. muntjak in both seasons. Then we modelled their predictive range using Maximum entropy modelling (Maxent). We concluded that forest landscape is the fundamental scale for deer management, and that secondary forests are potentially important landscape elements for deer conservation. Important areas for conservation were identified accounting of habitat transformation in both study areas.

  8. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions

    NARCIS (Netherlands)

    Li, T.; Hasegawa, T.; Yin, X.; Zhu, Y.; Boote, K.; Adam, M.; Bregaglio, S.; Buis, S.; Confalonieri, R.; Fumoto, T.; Gaydon, D.; Marcaida III, M.; Nakagawa, H.; Oriol, P.; Ruane, A.C.; Ruget, F.; Singh, B.; Singh, U.; Tang, L.; Yoshida, H.; Zhang, Z.; Bouman, B.

    2015-01-01

    Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We

  9. Sound propagation in water containing large tethered spherical encapsulated gas bubbles with resonance frequencies in the 50 Hz to 100 Hz range.

    Science.gov (United States)

    Lee, Kevin M; Hinojosa, Kevin T; Wochner, Mark S; Argo, Theodore F; Wilson, Preston S; Mercier, Richard S

    2011-11-01

    The efficacy of large tethered encapsulated gas bubbles for the mitigation of low frequency underwater noise was investigated with an acoustic resonator technique. Tethered latex balloons were used as the bubbles, which had radii of approximately 5 cm. Phase speeds were inferred from the resonances of a water and balloon-filled waveguide approximately 1.8 m in length. The Commander and Prosperetti effective-medium model [J. Acoust. Soc. Am. 85, 732-746 (1989)] quantitatively described the observed dispersion from well below to just below the individual bubble resonance frequency, and it qualitatively predicted the frequency range of high attenuation for void fractions between 2% and 5% for collections of stationary balloons within the waveguide. A finite-element model was used to investigate the sensitivity of the waveguide resonance frequencies, and hence the inferred phase speeds, to changes in individual bubble size and position. The results indicate that large tethered encapsulated bubbles could be used mitigate low frequency underwater noise and that the Commander and Prosperetti model would be useful in the design of such a system.

  10. On Extrapolating Past the Range of Observed Data When Making Statistical Predictions in Ecology.

    Directory of Open Access Journals (Sweden)

    Paul B Conn

    Full Text Available Ecologists are increasingly using statistical models to predict animal abundance and occurrence in unsampled locations. The reliability of such predictions depends on a number of factors, including sample size, how far prediction locations are from the observed data, and similarity of predictive covariates in locations where data are gathered to locations where predictions are desired. In this paper, we propose extending Cook's notion of an independent variable hull (IVH, developed originally for application with linear regression models, to generalized regression models as a way to help assess the potential reliability of predictions in unsampled areas. Predictions occurring inside the generalized independent variable hull (gIVH can be regarded as interpolations, while predictions occurring outside the gIVH can be regarded as extrapolations worthy of additional investigation or skepticism. We conduct a simulation study to demonstrate the usefulness of this metric for limiting the scope of spatial inference when conducting model-based abundance estimation from survey counts. In this case, limiting inference to the gIVH substantially reduces bias, especially when survey designs are spatially imbalanced. We also demonstrate the utility of the gIVH in diagnosing problematic extrapolations when estimating the relative abundance of ribbon seals in the Bering Sea as a function of predictive covariates. We suggest that ecologists routinely use diagnostics such as the gIVH to help gauge the reliability of predictions from statistical models (such as generalized linear, generalized additive, and spatio-temporal regression models.

  11. Long-range weather prediction and prevention of climate catastrophes: a status report

    International Nuclear Information System (INIS)

    Caldeira, K; Caravan, G; Govindasamy, B; Grossman, A; Hyde, R; Ishikawa, M; Ledebuhr, A; Leith, C; Molenkamp, C; Teller, E; Wood, L

    1999-01-01

    As the human population of Earth continues to expand and to demand an ever-higher quality-of-life, requirements for ever-greater knowledge-and then control-of the future of the state of the terrestrial biosphere grow apace. Convenience of living-and, indeed, reliability of life itself-become ever more highly ''tuned'' to the future physical condition of the biosphere being knowable and not markedly different than the present one, Two years ago, we reported at a quantitative albeit conceptual level on technical ways-and-means of forestalling large-scale changes in the present climate, employing practical means of modulating insolation and/or the Earth's mean albedo. Last year, we reported on early work aimed at developing means for creating detailed, high-fidelity, all-Earth weather forecasts of two weeks duration, exploiting recent and anticipated advances in extremely high-performance digital computing and in atmosphere-observing Earth satellites bearing high-technology instrumentation. This year, we report on recent progress in both of these areas of endeavor. Preventing the commencement of large-scale changes in the current climate presently appears to be a considerably more interesting prospect than initially realized, as modest insolation reductions are model-predicted to offset the anticipated impacts of ''global warming'' surprisingly precisely, in both space and time. Also, continued study has not revealed any fundamental difficulties in any of the means proposed for insolation modulation and, indeed, applicability of some of these techniques to other planets in the inner Solar system seems promising. Implementation of the high-fidelity, long-range weather-forecasting capability presently appears substantially easier with respect to required populations of Earth satellites and atmospheric transponders and data-processing systems, and more complicated with respect to transponder lifetimes in the actual atmosphere; overall, the enterprise seems more

  12. Long-range Weather Prediction and Prevention of Climate Catastrophes: A Status Report

    Science.gov (United States)

    Caldeira, K.; Caravan, G.; Govindasamy, B.; Grossman, A.; Hyde, R.; Ishikawa, M.; Ledebuhr, A.; Leith, C.; Molenkamp, C.; Teller, E.; Wood, L.

    1999-08-18

    As the human population of Earth continues to expand and to demand an ever-higher quality-of-life, requirements for ever-greater knowledge--and then control--of the future of the state of the terrestrial biosphere grow apace. Convenience of living--and, indeed, reliability of life itself--become ever more highly ''tuned'' to the future physical condition of the biosphere being knowable and not markedly different than the present one. Two years ago, we reported at a quantitative albeit conceptual level on technical ways-and-means of forestalling large-scale changes in the present climate, employing practical means of modulating insolation and/or the Earth's mean albedo. Last year, we reported on early work aimed at developing means for creating detailed, high-fidelity, all-Earth weather forecasts of two weeks duration, exploiting recent and anticipated advances in extremely high-performance digital computing and in atmosphere-observing Earth satellites bearing high-technology instrumentation. This year, we report on recent progress in both of these areas of endeavor. Preventing the commencement of large-scale changes in the current climate presently appears to be a considerably more interesting prospect than initially realized, as modest insolation reductions are model-predicted to offset the anticipated impacts of ''global warming'' surprisingly precisely, in both space and time. Also, continued study has not revealed any fundamental difficulties in any of the means proposed for insolation modulation and, indeed, applicability of some of these techniques to other planets in the inner Solar system seems promising. Implementation of the high-fidelity, long-range weather-forecasting capability presently appears substantially easier with respect to required populations of Earth satellites and atmospheric transponders and data-processing systems, and more complicated with respect to transponder lifetimes in the actual atmosphere; overall, the enterprise seems more

  13. Scaling range sizes to threats for robust predictions of risks to biodiversity.

    Science.gov (United States)

    Keith, David A; Akçakaya, H Resit; Murray, Nicholas J

    2018-04-01

    Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range-size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red-list assessments for decades, appropriate spatial scales of AOO for predicting risks of species' extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale-sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1-1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer-scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid-measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape-scale threats to species and ecosystems. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  14. Unsound Sound

    DEFF Research Database (Denmark)

    Knakkergaard, Martin

    2016-01-01

    This article discusses the change in premise that digitally produced sound brings about and how digital technologies more generally have changed our relationship to the musical artifact, not simply in degree but in kind. It demonstrates how our acoustical conceptions are thoroughly challenged...... by the digital production of sound and, by questioning the ontological basis for digital sound, turns our understanding of the core term substance upside down....

  15. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  16. Radio-Wave Tomography of Inhomogeneities in Biological Media with Multi-Frequency Sounding in the Range 2-8 GHZ

    Directory of Open Access Journals (Sweden)

    Shipilov Sergey

    2018-01-01

    Full Text Available In this paper, a method for detecting and mapping inhomogeneities in biological tissues using the radio-wave tomosynthesis method is presented. The proposed method of radio-wave tomosynthesis allows us to calculate the three-dimensional distribution of the permittivity of the space under study and, thereby, to detect tissue inhomogeneities and to determine their location and size. Due to their harmlessness for humans, these methods are suitable for dynamic observation of changes in the size of formation, in contrast to x-ray methods, for which regular doses of ionizing radiation are contraindicated. Therefore, the development of non-invasive methods for the search for inhomogeneities in biological media based on radio-wave sounding, which makes it possible to identify pathological formations, is now very relevant.

  17. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2008-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  18. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2010-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  19. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2007-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  20. Sound absorption effects in a rectangular enclosure with the foamed aluminum sheet absorber

    International Nuclear Information System (INIS)

    Oh, Jae Eung; Chung, Jin Tai; Kim, Sang Hun; Chung, Kyung Ryul

    1998-01-01

    For the purpose of finding out the optimal thickness of sound absorber and the sound absorption effects due to the selected thickness at an interested frequency range, the analytical study identifies the interior and exterior sound field characteristics of a rectangular enclosure with foamed aluminum lining and the experimental verification is performed with random noise input. By using a two-microphone impedance tube, we measure experimentally the absorption coefficient and the impedance of simple sound absorbing materials. Measured acoustical parameters of the test samples are applied to the theoretical analysis to predict sound pressure field in the cavity. The sound absorption effects from measurements are compared to predicted ones in both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure

  1. Prediction of the vapor–liquid equilibria and speed of sound in binary systems of 1-alkanols and n-alkanes with the simplified PC-SAFT equation of state

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Thomsen, Kaj; Yan, Wei

    2013-01-01

    (or other derivative properties) with satisfactory accuracy over wide temperature, pressure and composition conditions. This work presents the prediction of the vapor–liquid equilibria and speed of sound in binary mixtures of 1-alkanols and n-alkanes using the simplified PC-SAFT equation of state...... of sound with a satisfactory accuracy for 1-alkanols and n-alkanes binary systems within the PC-SAFT framework....

  2. A Vertically Flow-Following, Icosahedral Grid Model for Medium-Range and Seasonal Prediction. Part 1: Model Description

    Science.gov (United States)

    Bleck, Rainer; Bao, Jian-Wen; Benjamin, Stanley G.; Brown, John M.; Fiorino, Michael; Henderson, Thomas B.; Lee, Jin-Luen; MacDonald, Alexander E.; Madden, Paul; Middlecoff, Jacques; hide

    2015-01-01

    A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.

  3. How Predictability of Feeding Patches Affects Home Range and Foraging Habitat Selection in Avian Social Scavengers?

    NARCIS (Netherlands)

    Monsarrat, S.; Benhamou, S.; Sarrazin, F.; Bessa-Gomes, C.; Bouten, W.; Duriez, O.

    2013-01-01

    Feeding stations are commonly used to sustain conservation programs of scavengers but their impact on behaviour is still debated. They increase the temporal and spatial predictability of food resources while scavengers have supposedly evolved to search for unpredictable resources. In the Grands

  4. A short-range multi-model ensemble weather prediction system for South Africa

    CSIR Research Space (South Africa)

    Landman, S

    2010-09-01

    Full Text Available prediction system (EPS) at the South African Weather Service (SAWS) are examined. The ensemble consists of different forecasts from the 12-km LAM of the UK Met Office Unified Model (UM) and the Conformal-Cubic Atmospheric Model (CCAM) covering the South...

  5. Higher Levels of Albuminuria within the Normal Range Predict Incident Hypertension

    OpenAIRE

    Forman, John P.; Fisher, Naomi D.L.; Schopick, Emily L.; Curhan, Gary C.

    2008-01-01

    Higher levels of albumin excretion within the normal range are associated with cardiovascular disease in high-risk individuals. Whether incremental increases in urinary albumin excretion, even within the normal range, are associated with the development of hypertension in low-risk individuals is unknown. This study included 1065 postmenopausal women from the first Nurses’ Health Study and 1114 premenopausal women from the second Nurses’ Health Study who had an albumin/creatinine ratio

  6. Do voluntary strength, proprioception, range of motion, or postural sway predict occurrence of lateral ankle sprain?

    OpenAIRE

    de Noronha, M; Refshauge, K M; Herbert, R D; Kilbreath, S L

    2006-01-01

    Prevention of ankle sprain, the most common sporting injury, is only possible once risk factors have been identified. Voluntary strength, proprioception, postural sway, and range of motion are possible risk factors. A systematic review was carried out to investigate these possiblities. Eligible studies were those with longitudinal design investigating ankle sprain in subjects aged ⩾15 years. The studies had to have measured range of motion, voluntary strength, proprioception, or postural sway...

  7. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  8. Assessing and Predicting Erosion from Off Highway Vehicle Trails in Front-Range Rocky Mountain Watersheds.

    Science.gov (United States)

    Howard, M. J.; Silins, U.; Anderson, A.

    2016-12-01

    Off highway vehicle (OHV) trails have the potential to deliver sediment to sensitive headwater streams and increased OHV use is a growing watershed management concern in many Rocky Mountain regions. Predictive tools for estimating erosion and sediment inputs are needed to support assessment and management of erosion from OHV trail networks. The objective of this study was to a) assess erodibility (K factor) and total erosion from OHV trail networks in Rocky Mountain watersheds in south-west Alberta, Canada, and to b) evaluate the applicability of the Universal Soil Loss Equation (USLE) for predicting OHV trail erosion to support erosion management strategies. Measured erosion rates and erodibility (K) from rainfall simulation plots on OHV trails during the summers of 2014 and 2015 were compared to USLE predicted erosion from these same trails. Measured erodibility (K) from 23 rainfall simulation plots was highly variable (0.001-0.273 Mg*ha*hr/ha*MJ*mm) as was total seasonal erosion from 52 large trail sections (0.0595-43.3 Mg/ha) across trail segments of variable slope, stoniness, and trail use intensity. In particular, intensity of trail use had a large effect on both erodibility and total erosion that is not presently captured by erodibility indices (K) derived from soil characteristics. Results of this study suggest that while application of USLE for predicting erosion from OHV trail networks may be useful for initial coarse erosion assessment, a better understanding of the effect of factors such as road/trail use intensity on erodibility is needed to support use of USLE or associated erosion prediction tools for road/trail erosion management.

  9. Improvement of Surface Temperature Prediction Using SVR with MOGREPS Data for Short and Medium range over South Korea

    Science.gov (United States)

    Lim, S. J.; Choi, R. K.; Ahn, K. D.; Ha, J. C.; Cho, C. H.

    2014-12-01

    As the Korea Meteorology Administration (KMA) has operated Met Office Global and Regional Ensemble Prediction System (MOGREPS) with introduction of Unified Model (UM), many attempts have been made to improve predictability in temperature forecast in last years. In this study, post-processing method of MOGREPS for surface temperature prediction is developed with machine learning over 52 locations in South Korea. Past 60-day lag time was used as a training phase of Support Vector Regression (SVR) method for surface temperature forecast model. The selected inputs for SVR are followings: date and surface temperatures from Numerical Weather prediction (NWP), such as GDAPS, individual 24 ensemble members, mean and median of ensemble members for every 3hours for 12 days.To verify the reliability of SVR-based ensemble prediction (SVR-EP), 93 days are used (from March 1 to May 31, 2014). The result yielded improvement of SVR-EP by RMSE value of 16 % throughout entire prediction period against conventional ensemble prediction (EP). In particular, short range predictability of SVR-EP resulted in 18.7% better RMSE for 1~3 day forecast. The mean temperature bias between SVR-EP and EP at all test locations showed around 0.36°C and 1.36°C, respectively. SVR-EP is currently extending for more vigorous sensitivity test, such as increasing training phase and optimizing machine learning model.

  10. Climatic associations of British species distributions show good transferability in time but low predictive accuracy for range change.

    Directory of Open Access Journals (Sweden)

    Giovanni Rapacciuolo

    Full Text Available Conservation planners often wish to predict how species distributions will change in response to environmental changes. Species distribution models (SDMs are the primary tool for making such predictions. Many methods are widely used; however, they all make simplifying assumptions, and predictions can therefore be subject to high uncertainty. With global change well underway, field records of observed range shifts are increasingly being used for testing SDM transferability. We used an unprecedented distribution dataset documenting recent range changes of British vascular plants, birds, and butterflies to test whether correlative SDMs based on climate change provide useful approximations of potential distribution shifts. We modelled past species distributions from climate using nine single techniques and a consensus approach, and projected the geographical extent of these models to a more recent time period based on climate change; we then compared model predictions with recent observed distributions in order to estimate the temporal transferability and prediction accuracy of our models. We also evaluated the relative effect of methodological and taxonomic variation on the performance of SDMs. Models showed good transferability in time when assessed using widespread metrics of accuracy. However, models had low accuracy to predict where occupancy status changed between time periods, especially for declining species. Model performance varied greatly among species within major taxa, but there was also considerable variation among modelling frameworks. Past climatic associations of British species distributions retain a high explanatory power when transferred to recent time--due to their accuracy to predict large areas retained by species--but fail to capture relevant predictors of change. We strongly emphasize the need for caution when using SDMs to predict shifts in species distributions: high explanatory power on temporally-independent records

  11. Using a data-constrained model of home range establishment to predict abundance in spatially heterogeneous habitats.

    Directory of Open Access Journals (Sweden)

    Mark C Vanderwel

    Full Text Available Mechanistic modelling approaches that explicitly translate from individual-scale resource selection to the distribution and abundance of a larger population may be better suited to predicting responses to spatially heterogeneous habitat alteration than commonly-used regression models. We developed an individual-based model of home range establishment that, given a mapped distribution of local habitat values, estimates species abundance by simulating the number and position of viable home ranges that can be maintained across a spatially heterogeneous area. We estimated parameters for this model from data on red-backed vole (Myodes gapperi abundances in 31 boreal forest sites in Ontario, Canada. The home range model had considerably more support from these data than both non-spatial regression models based on the same original habitat variables and a mean-abundance null model. It had nearly equivalent support to a non-spatial regression model that, like the home range model, scaled an aggregate measure of habitat value from local associations with habitat resources. The home range and habitat-value regression models gave similar predictions for vole abundance under simulations of light- and moderate-intensity partial forest harvesting, but the home range model predicted lower abundances than the regression model under high-intensity disturbance. Empirical regression-based approaches for predicting species abundance may overlook processes that affect habitat use by individuals, and often extrapolate poorly to novel habitat conditions. Mechanistic home range models that can be parameterized against abundance data from different habitats permit appropriate scaling from individual- to population-level habitat relationships, and can potentially provide better insights into responses to disturbance.

  12. Sound as Popular Culture

    DEFF Research Database (Denmark)

    The wide-ranging texts in this book take as their premise the idea that sound is a subject through which popular culture can be analyzed in an innovative way. From an infant’s gurgles over a baby monitor to the roar of the crowd in a stadium to the sub-bass frequencies produced by sound systems...... in the disco era, sound—not necessarily aestheticized as music—is inextricably part of the many domains of popular culture. Expanding the view taken by many scholars of cultural studies, the contributors consider cultural practices concerning sound not merely as semiotic or signifying processes but as material......, physical, perceptual, and sensory processes that integrate a multitude of cultural traditions and forms of knowledge. The chapters discuss conceptual issues as well as terminologies and research methods; analyze historical and contemporary case studies of listening in various sound cultures; and consider...

  13. Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions

    Energy Technology Data Exchange (ETDEWEB)

    Duchesne, Marc A. [Chemical and Biological Engineering Department, University of Ottawa, 161 Louis Pasteur, Ottawa, Ont. (Canada); CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario (Canada); Macchi, Arturo [Chemical and Biological Engineering Department, University of Ottawa, 161 Louis Pasteur, Ottawa, Ont. (Canada); Lu, Dennis Y.; Hughes, Robin W.; McCalden, David; Anthony, Edward J. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario (Canada)

    2010-08-15

    Threshold slag viscosity heuristics are often used for the initial assessment of coal gasification projects. Slag viscosity predictions are also required for advanced combustion and gasification models. Due to unsatisfactory performance of theoretical equations, an artificial neural network model was developed to predict slag viscosity over a broad range of temperatures and slag compositions. This model outperforms other slag viscosity models, resulting in an average error factor of 5.05 which is lower than the best obtained with other available models. Genesee coal ash viscosity predictions were made to investigate the effect of adding Canadian limestone and dolomite. The results indicate that magnesium in the fluxing agent provides a greater viscosity reduction than calcium for the threshold slag tapping temperature range. (author)

  14. Bayesian prediction of bacterial growth temperature range based on genome sequences

    DEFF Research Database (Denmark)

    Jensen, Dan Børge; Vesth, Tammi Camilla; Hallin, Peter Fischer

    2012-01-01

    Background: The preferred habitat of a given bacterium can provide a hint of which types of enzymes of potential industrial interest it might produce. These might include enzymes that are stable and active at very high or very low temperatures. Being able to accurately predict this based...... on a genomic sequence, would thus allow for an efficient and targeted search for production organisms, reducing the need for culturing experiments. Results: This study found a total of 40 protein families useful for distinction between three thermophilicity classes (thermophiles, mesophiles and psychrophiles...... that protein families associated with specific thermophilicity classes can provide effective input data for thermophilicity prediction, and that the naive Bayesian approach is effective for such a task. The program created for this study is able to efficiently distinguish between thermophilic, mesophilic...

  15. Short-range dynamics and prediction of mesoscale flow patterns in the MISTRAL field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O.; Kaufmann, P.; Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    In a limited area of about 50 km by 50 km with complex topography, wind measurements on a dense network were performed during the MISTRAL field experiment in 1991-1992. From these data the characteristic wind fields were identified by an automated classification method. The dynamics of the resulting twelve typical regional flow patterns is studied. It is discussed how transitions between the flow patterns take place and how well the transition probabilities can be described in the framework of a Markov model. Guided by this discussion, a variety of prediction models were tested which allow a short-term forecast of the flow pattern type. It is found that a prediction model which uses forecast information from the synoptic scale has the best forecast skill. (author) 2 figs., 7 refs.

  16. Personality predicts spatial responses to food manipulations in free-ranging great tits (Parus major)

    OpenAIRE

    van Overveld, Thijs; Matthysen, Erik

    2009-01-01

    Personality differences measured under standardized lab-conditions are assumed to reflect differences in the way individuals cope with spatio-temporal changes in their natural environment, but few studies have examined how these are expressed in the field. We tested whether exploratory behaviour in a novel environment predicts how free-living individual great tits (Parus major) react to a change in food supply. We temporarily removed food at feeding stations during two summers and recorded th...

  17. Short-Range Prediction of the Zone of Moving Vehicles in Arterial Networks

    Directory of Open Access Journals (Sweden)

    Rouzbeh Forouzandeh Jonaghani

    2018-01-01

    Full Text Available In many moving object databases, future locations of vehicles in arterial networks are predicted. While most of studies apply the frequent behavior of historical trajectories or vehicles’ recent kinematics as the basis of predictions, consideration of the dynamics of the intersections is mostly neglected. Signalized intersections make vehicles experience different delays, which vary from zero to some minutes based on the traffic state at intersections. In the absence of traffic signal information (red and green times of traffic signal phases, the queue lengths, approaching traffic volume, turning volumes to each intersection leg, etc., the experienced delays in traffic signals are random variables. In this paper, we model the probability distribution function (PDF and cumulative distribution function (CDF of the delay for any point in the arterial networks based on a spatiotemporal model of the queue at the intersection. The probability of the presence of a vehicle in a zone is determined based on the modeled probability function of the delay. A comparison between the results of the proposed method and a well-known kinematic-based method indicates a significant improvement in the precisions of the predictions.

  18. Generating linear regression model to predict motor functions by use of laser range finder during TUG.

    Science.gov (United States)

    Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki

    2017-05-01

    The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  19. GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion.

    Science.gov (United States)

    Balz, Johanna; Keil, Julian; Roa Romero, Yadira; Mekle, Ralf; Schubert, Florian; Aydin, Semiha; Ittermann, Bernd; Gallinat, Jürgen; Senkowski, Daniel

    2016-01-15

    In everyday life we are confronted with inputs of multisensory stimuli that need to be integrated across our senses. Individuals vary considerably in how they integrate multisensory information, yet the neurochemical foundations underlying this variability are not well understood. Neural oscillations, especially in the gamma band (>30Hz) play an important role in multisensory processing. Furthermore, gamma-aminobutyric acid (GABA) neurotransmission contributes to the generation of gamma band oscillations (GBO), which can be sustained by activation of metabotropic glutamate receptors. Hence, differences in the GABA and glutamate systems might contribute to individual differences in multisensory processing. In this combined magnetic resonance spectroscopy and electroencephalography study, we examined the relationships between GABA and glutamate concentrations in the superior temporal sulcus (STS), source localized GBO, and illusion rate in the sound-induced flash illusion (SIFI). In 39 human volunteers we found robust relationships between GABA concentration, GBO power, and the SIFI perception rate (r-values=0.44 to 0.53). The correlation between GBO power and SIFI perception rate was about twofold higher when the modulating influence of the GABA level was included in the analysis as compared to when it was excluded. No significant effects were obtained for glutamate concentration. Our study suggests that the GABA level shapes individual differences in audiovisual perception through its modulating influence on GBO. GABA neurotransmission could be a promising target for treatment interventions of multisensory processing deficits in clinical populations, such as schizophrenia or autism. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Predictable variation of range-sizes across an extreme environmental gradient in a lizard adaptive radiation: evolutionary and ecological inferences.

    Directory of Open Access Journals (Sweden)

    Daniel Pincheira-Donoso

    Full Text Available Large-scale patterns of current species geographic range-size variation reflect historical dynamics of dispersal and provide insights into future consequences under changing environments. Evidence suggests that climate warming exerts major damage on high latitude and elevation organisms, where changes are more severe and available space to disperse tracking historical niches is more limited. Species with longer generations (slower adaptive responses, such as vertebrates, and with restricted distributions (lower genetic diversity, higher inbreeding in these environments are expected to be particularly threatened by warming crises. However, a well-known macroecological generalization (Rapoport's rule predicts that species range-sizes increase with increasing latitude-elevation, thus counterbalancing the impact of climate change. Here, I investigate geographic range-size variation across an extreme environmental gradient and as a function of body size, in the prominent Liolaemus lizard adaptive radiation. Conventional and phylogenetic analyses revealed that latitudinal (but not elevational ranges significantly decrease with increasing latitude-elevation, while body size was unrelated to range-size. Evolutionarily, these results are insightful as they suggest a link between spatial environmental gradients and range-size evolution. However, ecologically, these results suggest that Liolaemus might be increasingly threatened if, as predicted by theory, ranges retract and contract continuously under persisting climate warming, potentially increasing extinction risks at high latitudes and elevations.

  1. Sound intensity

    DEFF Research Database (Denmark)

    Crocker, Malcolm J.; Jacobsen, Finn

    1998-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  2. Sound Intensity

    DEFF Research Database (Denmark)

    Crocker, M.J.; Jacobsen, Finn

    1997-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  3. EEG transients in the sigma range during non-REM sleep predict learning in dogs

    NARCIS (Netherlands)

    Iotchev, I.B.; Kis, A.; Bodizs, R.; Luijtelaar, E.L.J.M. van; Kubinyi, E.

    2017-01-01

    Sleep spindles are phasic bursts of thalamo-cortical activity, visible in the cortex as transient oscillations in the sigma range (usually defined in humans as 12-14 or 9-16 Hz). They have been associated with sleep-dependent memory consolidation and sleep stability in humans and rodents.

  4. Predicting animal home-range structure and transitions using a multistate Ornstein-Uhlenbeck biased random walk

    Science.gov (United States)

    Breed, Greg A.; Golson, Emily A.; Tinker, M. Tim

    2017-01-01

    The home‐range concept is central in animal ecology and behavior, and numerous mechanistic models have been developed to understand home range formation and maintenance. These mechanistic models usually assume a single, contiguous home range. Here we describe and implement a simple home‐range model that can accommodate multiple home‐range centers, form complex shapes, allow discontinuities in use patterns, and infer how external and internal variables affect movement and use patterns. The model assumes individuals associate with two or more home‐range centers and move among them with some estimable probability. Movement in and around home‐range centers is governed by a two‐dimensional Ornstein‐Uhlenbeck process, while transitions between centers are modeled as a stochastic state‐switching process. We augmented this base model by introducing environmental and demographic covariates that modify transition probabilities between home‐range centers and can be estimated to provide insight into the movement process. We demonstrate the model using telemetry data from sea otters (Enhydra lutris) in California. The model was fit using a Bayesian Markov Chain Monte Carlo method, which estimated transition probabilities, as well as unique Ornstein‐Uhlenbeck diffusion and centralizing tendency parameters. Estimated parameters could then be used to simulate movement and space use that was virtually indistinguishable from real data. We used Deviance Information Criterion (DIC) scores to assess model fit and determined that both wind and reproductive status were predictive of transitions between home‐range centers. Females were less likely to move between home‐range centers on windy days, less likely to move between centers when tending pups, and much more likely to move between centers just after weaning a pup. These tendencies are predicted by theoretical movement rules but were not previously known and show that our model can extract meaningful

  5. Predicting animal home-range structure and transitions using a multistate Ornstein-Uhlenbeck biased random walk.

    Science.gov (United States)

    Breed, Greg A; Golson, Emily A; Tinker, M Tim

    2017-01-01

    The home-range concept is central in animal ecology and behavior, and numerous mechanistic models have been developed to understand home range formation and maintenance. These mechanistic models usually assume a single, contiguous home range. Here we describe and implement a simple home-range model that can accommodate multiple home-range centers, form complex shapes, allow discontinuities in use patterns, and infer how external and internal variables affect movement and use patterns. The model assumes individuals associate with two or more home-range centers and move among them with some estimable probability. Movement in and around home-range centers is governed by a two-dimensional Ornstein-Uhlenbeck process, while transitions between centers are modeled as a stochastic state-switching process. We augmented this base model by introducing environmental and demographic covariates that modify transition probabilities between home-range centers and can be estimated to provide insight into the movement process. We demonstrate the model using telemetry data from sea otters (Enhydra lutris) in California. The model was fit using a Bayesian Markov Chain Monte Carlo method, which estimated transition probabilities, as well as unique Ornstein-Uhlenbeck diffusion and centralizing tendency parameters. Estimated parameters could then be used to simulate movement and space use that was virtually indistinguishable from real data. We used Deviance Information Criterion (DIC) scores to assess model fit and determined that both wind and reproductive status were predictive of transitions between home-range centers. Females were less likely to move between home-range centers on windy days, less likely to move between centers when tending pups, and much more likely to move between centers just after weaning a pup. These tendencies are predicted by theoretical movement rules but were not previously known and show that our model can extract meaningful behavioral insight from complex

  6. Short-Range prediction of a Mediterranean Severe weather event using EnKF: Configuration tests

    Science.gov (United States)

    Carrio Carrio, Diego Saul; Homar Santaner, Víctor

    2014-05-01

    The afternoon of 4th October 2007, severe damaging winds and torrential rainfall affected the Island of Mallorca. This storm produced F2-F3 tornadoes in the vicinity of Palma, with one person killed and estimated damages to property exceeding 10 M€. Several studies have analysed the meteorological context in which this episode unfolded, describing the formation of a train of multiple thunderstorms along a warm front and the evolution of a squall line organized from convective activity initiated offshore Murcia during that morning. Couhet et al. (2011) attributed the correct simulation of the convective system and particularly its organization as a squall line to the correct representation of a convergence line at low-levels over the Alboran Sea during the first hours of the day. The numerical prediction of mesoscale phenomena which initiates, organizes and evolves over the sea is an extremely demanding challenge of great importance for coastal regions. In this study, we investigate the skill of a mesoscale ensemble data assimilation system to predict the severe phenomena occurred on 4th October 2007. We use an Ensemble Kalman Filter which assimilates conventional (surface, radiosonde and AMDAR) data using the DART implementation from (NCAR). On the one hand, we analyse the potential of the assimilation cycle to advect critical observational data towards decisive data-void areas over the sea. Furthermore, we assess the sensitivity of the ensemble products to the ensemble size, grid resolution, assimilation period and physics diversity in the mesoscale model. In particular, we focus on the effect of these numerical configurations on the representation of the convective activity and the precipitation field, as valuable predictands of high impact weather. Results show that the 6-h EnKF assimilation period produces initial fields that successfully represent the environment in which initiation occurred and thus the derived numerical predictions render improved

  7. Algorithmic modeling of the irrelevant sound effect (ISE) by the hearing sensation fluctuation strength.

    Science.gov (United States)

    Schlittmeier, Sabine J; Weissgerber, Tobias; Kerber, Stefan; Fastl, Hugo; Hellbrück, Jürgen

    2012-01-01

    Background sounds, such as narration, music with prominent staccato passages, and office noise impair verbal short-term memory even when these sounds are irrelevant. This irrelevant sound effect (ISE) is evoked by so-called changing-state sounds that are characterized by a distinct temporal structure with varying successive auditory-perceptive tokens. However, because of the absence of an appropriate psychoacoustically based instrumental measure, the disturbing impact of a given speech or nonspeech sound could not be predicted until now, but necessitated behavioral testing. Our database for parametric modeling of the ISE included approximately 40 background sounds (e.g., speech, music, tone sequences, office noise, traffic noise) and corresponding performance data that was collected from 70 behavioral measurements of verbal short-term memory. The hearing sensation fluctuation strength was chosen to model the ISE and describes the percept of fluctuations when listening to slowly modulated sounds (f(mod) background sounds, the algorithm estimated behavioral performance data in 63 of 70 cases within the interquartile ranges. In particular, all real-world sounds were modeled adequately, whereas the algorithm overestimated the (non-)disturbance impact of synthetic steady-state sounds that were constituted by a repeated vowel or tone. Implications of the algorithm's strengths and prediction errors are discussed.

  8. Using subseasonal-to-seasonal (S2S) extreme rainfall forecasts for extended-range flood prediction in Australia

    Science.gov (United States)

    White, C. J.; Franks, S. W.; McEvoy, D.

    2015-06-01

    Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal). Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S) forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR) activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.

  9. Using subseasonal-to-seasonal (S2S extreme rainfall forecasts for extended-range flood prediction in Australia

    Directory of Open Access Journals (Sweden)

    C. J. White

    2015-06-01

    Full Text Available Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal. Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.

  10. Error sensitivity analysis in 10-30-day extended range forecasting by using a nonlinear cross-prediction error model

    Science.gov (United States)

    Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan

    2017-06-01

    Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.

  11. Evaluating signal-to-noise ratios, loudness, and related measures as indicators of airborne sound insulation.

    Science.gov (United States)

    Park, H K; Bradley, J S

    2009-09-01

    Subjective ratings of the audibility, annoyance, and loudness of music and speech sounds transmitted through 20 different simulated walls were used to identify better single number ratings of airborne sound insulation. The first part of this research considered standard measures such as the sound transmission class the weighted sound reduction index (R(w)) and variations of these measures [H. K. Park and J. S. Bradley, J. Acoust. Soc. Am. 126, 208-219 (2009)]. This paper considers a number of other measures including signal-to-noise ratios related to the intelligibility of speech and measures related to the loudness of sounds. An exploration of the importance of the included frequencies showed that the optimum ranges of included frequencies were different for speech and music sounds. Measures related to speech intelligibility were useful indicators of responses to speech sounds but were not as successful for music sounds. A-weighted level differences, signal-to-noise ratios and an A-weighted sound transmission loss measure were good predictors of responses when the included frequencies were optimized for each type of sound. The addition of new spectrum adaptation terms to R(w) values were found to be the most practical approach for achieving more accurate predictions of subjective ratings of transmitted speech and music sounds.

  12. Higher levels of albuminuria within the normal range predict incident hypertension.

    Science.gov (United States)

    Forman, John P; Fisher, Naomi D L; Schopick, Emily L; Curhan, Gary C

    2008-10-01

    Higher levels of albumin excretion within the normal range are associated with cardiovascular disease in high-risk individuals. Whether incremental increases in urinary albumin excretion, even within the normal range, are associated with the development of hypertension in low-risk individuals is unknown. This study included 1065 postmenopausal women from the first Nurses' Health Study and 1114 premenopausal women from the second Nurses' Health Study who had an albumin/creatinine ratio who did not have diabetes or hypertension. Among the older women, 271 incident cases of hypertension occurred during 4 yr of follow-up, and among the younger women, 296 incident cases of hypertension occurred during 8 yr of follow-up. Cox proportional hazards regression was used to examine prospectively the association between the albumin/creatinine ratio and incident hypertension after adjustment for age, body mass index, estimated GFR, baseline BP, physical activity, smoking, and family history of hypertension. Participants who had an albumin/creatinine ratio in the highest quartile (4.34 to 24.17 mg/g for older women and 3.68 to 23.84 mg/g for younger women) were more likely to develop hypertension than those who had an albumin/creatinine ratio in the lowest quartile (hazard ratio 1.76 [95% confidence interval 1.21 to 2.56] and hazard ratio 1.35 [95% confidence interval 0.97 to 1.91] for older and younger women, respectively). Higher albumin/creatinine ratios, even within the normal range, are independently associated with increased risk for development of hypertension among women without diabetes. The definition of normal albumin excretion should be reevaluated.

  13. Predicting the oral uptake efficiency of chemicals in mammals: Combining the hydrophilic and lipophilic range

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Isabel A., E-mail: i.oconnor@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Huijbregts, Mark A.J., E-mail: m.huijbregts@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Ragas, Ad M.J., E-mail: a.ragas@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Open University, School of Science, P.O. Box 2960,6401 DL Heerlen (Netherlands); Hendriks, A. Jan, E-mail: a.j.hendriks@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands)

    2013-01-01

    Environmental risk assessment requires models for estimating the bioaccumulation of untested compounds. So far, bioaccumulation models have focused on lipophilic compounds, and only a few have included hydrophilic compounds. Our aim was to extend an existing bioaccumulation model to estimate the oral uptake efficiency of pollutants in mammals for compounds over a wide K{sub ow} range with an emphasis on hydrophilic compounds, i.e. compounds in the lower K{sub ow} range. Usually, most models use octanol as a single surrogate for the membrane and thus neglect the bilayer structure of the membrane. However, compounds with polar groups can have different affinities for the different membrane regions. Therefore, an existing bioaccumulation model was extended by dividing the diffusion resistance through the membrane into an outer and inner membrane resistance, where the solvents octanol and heptane were used as surrogates for these membrane regions, respectively. The model was calibrated with uptake efficiencies of environmental pollutants measured in different mammals during feeding studies combined with human oral uptake efficiencies of pharmaceuticals. The new model estimated the uptake efficiency of neutral (RMSE = 14.6) and dissociating (RMSE = 19.5) compounds with logK{sub ow} ranging from − 10 to + 8. The inclusion of the K{sub hw} improved uptake estimation for 33% of the hydrophilic compounds (logK{sub ow} < 0) (r{sup 2} = 0.51, RMSE = 22.8) compared with the model based on K{sub ow} only (r{sup 2} = 0.05, RMSE = 34.9), while hydrophobic compounds (logK{sub ow} > 0) were estimated equally by both model versions with RMSE = 15.2 (K{sub ow} and K{sub hw}) and RMSE = 15.7 (K{sub ow} only). The model can be used to estimate the oral uptake efficiency for both hydrophilic and hydrophobic compounds. -- Highlights: ► A mechanistic model was developed to estimate oral uptake efficiency. ► Model covers wide logK{sub ow} range (- 10 to + 8) and several mammalian

  14. Prediction of operating parameters range for ammonia removal unit in coke making by-products

    Science.gov (United States)

    Tiwari, Hari Prakash; Kumar, Rajesh; Bhattacharjee, Arunabh; Lingam, Ravi Kumar; Roy, Abhijit; Tiwary, Shambhu

    2018-02-01

    Coke oven gas treatment plants are well equipped with distributed control systems (DCS) and therefore recording the vast amount of operational data efficiently. Analyzing the stored information manually from historians is practically impossible. In this study, data mining technique was examined for lowering the ammonia concentration in clean coke oven gas. Results confirm that concentration of ammonia in clean coke oven gas depends on the average PCDC temperature; gas scrubber temperatures stripped liquor flow, stripped liquor concentration and stripped liquor temperature. The optimum operating ranges of the above dependent parameters using data mining technique for lowering the concentration of ammonia is described in this paper.

  15. Sound Velocity in Soap Foams

    International Nuclear Information System (INIS)

    Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan

    2012-01-01

    The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration

  16. Application of Back Trajectory Model to Predict Long Range Transport of Pollutant

    International Nuclear Information System (INIS)

    Shamsiah Abdul Rahman; Mohd Suhaimi Hamzah; Mohd Suhaimi Elias

    2011-01-01

    Trans-boundary haze pollution in Malaysia has become an issue that created a public attention over the past several years. The presence of haze not only caused by internal and external sources but it sometime coincided with the El Nino phenomenon which prolonged the dry season during the southwest monsoon in May to September. In this study fine particulate data (PM 2.5) of Klang Valley region covering the period from 1997 to 2008 were used to investigate the source location that responsible for the long range transport of pollutant. Back trajectory model the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) was used to calculate the air mass backward trajectories up to 120 hours (5 days) for the days when fine particle were sampled. (author)

  17. On the predictability of extreme events in records with linear and nonlinear long-range memory: Efficiency and noise robustness

    Science.gov (United States)

    Bogachev, Mikhail I.; Bunde, Armin

    2011-06-01

    We study the predictability of extreme events in records with linear and nonlinear long-range memory in the presence of additive white noise using two different approaches: (i) the precursory pattern recognition technique (PRT) that exploits solely the information about short-term precursors, and (ii) the return interval approach (RIA) that exploits long-range memory incorporated in the elapsed time after the last extreme event. We find that the PRT always performs better when only linear memory is present. In the presence of nonlinear memory, both methods demonstrate comparable efficiency in the absence of white noise. When additional white noise is present in the record (which is the case in most observational records), the efficiency of the PRT decreases monotonously with increasing noise level. In contrast, the RIA shows an abrupt transition between a phase of low level noise where the prediction is as good as in the absence of noise, and a phase of high level noise where the prediction becomes poor. In the phase of low and intermediate noise the RIA predicts considerably better than the PRT, which explains our recent findings in physiological and financial records.

  18. Sound Settlements

    DEFF Research Database (Denmark)

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice......Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  19. Nuclear sound

    International Nuclear Information System (INIS)

    Wambach, J.

    1991-01-01

    Nuclei, like more familiar mechanical systems, undergo simple vibrational motion. Among these vibrations, sound modes are of particular interest since they reveal important information on the effective interactions among the constituents and, through extrapolation, on the bulk behaviour of nuclear and neutron matter. Sound wave propagation in nuclei shows strong quantum effects familiar from other quantum systems. Microscopic theory suggests that the restoring forces are caused by the complex structure of the many-Fermion wavefunction and, in some cases, have no classical analogue. The damping of the vibrational amplitude is strongly influenced by phase coherence among the particles participating in the motion. (author)

  20. A system for heart sounds classification.

    Directory of Open Access Journals (Sweden)

    Grzegorz Redlarski

    Full Text Available The future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases - one of the major causes of death around the globe - a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However, appropriate algorithms for auto-diagnosis systems of heart diseases that could be capable of distinguishing most of known pathological states have not been yet developed. The main issue is non-stationary character of phonocardiography signals as well as a wide range of distinguishable pathological heart sounds. In this paper a new heart sound classification technique, which might find use in medical diagnostic systems, is presented. It is shown that by combining Linear Predictive Coding coefficients, used for future extraction, with a classifier built upon combining Support Vector Machine and Modified Cuckoo Search algorithm, an improvement in performance of the diagnostic system, in terms of accuracy, complexity and range of distinguishable heart sounds, can be made. The developed system achieved accuracy above 93% for all considered cases including simultaneous identification of twelve different heart sound classes. The respective system is compared with four different major classification methods, proving its reliability.

  1. Soft computing based feature selection for environmental sound classification

    NARCIS (Netherlands)

    Shakoor, A.; May, T.M.; Van Schijndel, N.H.

    2010-01-01

    Environmental sound classification has a wide range of applications,like hearing aids, mobile communication devices, portable media players, and auditory protection devices. Sound classification systemstypically extract features from the input sound. Using too many features increases complexity

  2. Sound Settlements

    DEFF Research Database (Denmark)

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  3. Second Sound

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Second Sound - The Role of Elastic Waves. R Srinivasan. General Article Volume 4 Issue 6 June 1999 pp 15-19. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/06/0015-0019 ...

  4. Long-Range Reduced Predictive Information Transfers of Autistic Youths in EEG Sensor-Space During Face Processing.

    Science.gov (United States)

    Khadem, Ali; Hossein-Zadeh, Gholam-Ali; Khorrami, Anahita

    2016-03-01

    The majority of previous functional/effective connectivity studies conducted on the autistic patients converged to the underconnectivity theory of ASD: "long-range underconnectivity and sometimes short-rang overconnectivity". However, to the best of our knowledge the total (linear and nonlinear) predictive information transfers (PITs) of autistic patients have not been investigated yet. Also, EEG data have rarely been used for exploring the information processing deficits in autistic subjects. This study is aimed at comparing the total (linear and nonlinear) PITs of autistic and typically developing healthy youths during human face processing by using EEG data. The ERPs of 12 autistic youths and 19 age-matched healthy control (HC) subjects were recorded while they were watching upright and inverted human face images. The PITs among EEG channels were quantified using two measures separately: transfer entropy with self-prediction optimality (TESPO), and modified transfer entropy with self-prediction optimality (MTESPO). Afterwards, the directed differential connectivity graphs (dDCGs) were constructed to characterize the significant changes in the estimated PITs of autistic subjects compared with HC ones. By using both TESPO and MTESPO, long-range reduction of PITs of ASD group during face processing was revealed (particularly from frontal channels to right temporal channels). Also, it seemed the orientation of face images (upright or upside down) did not modulate the binary pattern of PIT-based dDCGs, significantly. Moreover, compared with TESPO, the results of MTESPO were more compatible with the underconnectivity theory of ASD in the sense that MTESPO showed no long-range increase in PIT. It is also noteworthy that to the best of our knowledge it is the first time that a version of MTE is applied for patients (here ASD) and it is also its first use for EEG data analysis.

  5. Determining the bounds of skilful forecast range for probabilistic prediction of system-wide wind power generation

    Directory of Open Access Journals (Sweden)

    Dirk Cannon

    2017-06-01

    Full Text Available State-of-the-art wind power forecasts beyond a few hours ahead rely on global numerical weather prediction models to forecast the future large-scale atmospheric state. Often they provide initial and boundary conditions for nested high resolution simulations. In this paper, both upper and lower bounds on forecast range are identified within which global ensemble forecasts provide skilful information for system-wide wind power applications. An upper bound on forecast range is associated with the limit of predictability, beyond which forecasts have no more skill than predictions based on climatological statistics. A lower bound is defined at the lead time beyond which the resolved uncertainty associated with estimating the future large-scale atmospheric state is larger than the unresolved uncertainty associated with estimating the system-wide wind power response to a given large-scale state.The bounds of skilful ensemble forecast range are quantified for three leading global forecast systems. The power system of Great Britain (GB is used as an example because independent verifying data is available from National Grid. The upper bound defined by forecasts of GB-total wind power generation at a specific point in time is found to be 6–8 days. The lower bound is found to be 1.4–2.4 days. Both bounds depend on the global forecast system and vary seasonally. In addition, forecasts of the probability of an extreme power ramp event were found to possess a shorter limit of predictability (4.5–5.5 days. The upper bound on this forecast range can only be extended by improving the global forecast system (outside the control of most users or by changing the metric used in the probability forecast. Improved downscaling and microscale modelling of the wind farm response may act to decrease the lower bound. The potential gain from such improvements have diminishing returns beyond the short-range (out to around 2 days.

  6. Pathogen-Host Associations and Predicted Range Shifts of Human Monkeypox in Response to Climate Change in Central Africa

    Science.gov (United States)

    Thomassen, Henri A.; Fuller, Trevon; Asefi-Najafabady, Salvi; Shiplacoff, Julia A. G.; Mulembakani, Prime M.; Blumberg, Seth; Johnston, Sara C.; Kisalu, Neville K.; Kinkela, Timothée L.; Fair, Joseph N.; Wolfe, Nathan D.; Shongo, Robert L.; LeBreton, Matthew; Meyer, Hermann; Wright, Linda L.; Muyembe, Jean-Jacques; Buermann, Wolfgang; Okitolonda, Emile; Hensley, Lisa E.; Lloyd-Smith, James O.; Smith, Thomas B.; Rimoin, Anne W.

    2013-01-01

    Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts. PMID:23935820

  7. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  8. Predictions on the modes of decay of even Z superheavy isotopes within the range 104 ≤ Z ≤ 136

    Science.gov (United States)

    Santhosh, K. P.; Nithya, C.

    2018-01-01

    The decay modes and half lives of all the even Z isotopes of superheavy elements within the range 104 ≤ Z ≤ 136 have been predicted by comparing the alpha decay half-lives with the spontaneous fission half-lives. The Coulomb and proximity potential model for deformed nuclei (CPPMDN) and the shell-effect-dependent formula of Santhosh et al. are used to calculate the alpha half-lives and spontaneous fission half-lives respectively. For theoretical comparison the alpha decay half-lives are also calculated using Coulomb and proximity potential model (CPPM), the Viola-Seaborg-Sobiczewski semi-empirical (VSS) relation, the universal (UNIV) curve of Poenaru et al., the analytical formula of Royer and the universal decay law (UDL) of Qi et al. Another tool used for the evaluation of spontaneous fission half-lives is the semi-empirical formula of Xu et al. The nuclei with alpha decay half-lives less than spontaneous fission half-lives will survive fission and hence decay through alpha emission. The predicted half lives and decay modes are compared with the available experimental results. The one-proton and two-proton separation energies of all the isotopes are calculated to find nuclei which lie beyond the proton drip line. Among 1119 even Z nuclei within the range 104 ≤ Z ≤ 136, 164 nuclei show sequential alpha emission followed by subsequent spontaneous fission. Since the isotopes decay through alpha decay chain and the half-lives are in measurable range, these isotopes are predicted to be synthesized and detected in laboratory via alpha decay. 2 nuclei will decay by alpha decay followed by proton emission, 54 nuclei show full alpha chains, 642 nuclei will decay through spontaneous fission, 166 nuclei exhibit proton decay and 91 isotopes are found to be stable against alpha decay. All the isotopes are tabulated according to their decay modes. The study is intended to enhance further experimental investigations in superheavy region.

  9. Prediction of rain effects on earth-space communication links operating in the 10 to 35 GHz frequency range

    Science.gov (United States)

    Stutzman, Warren L.

    1989-01-01

    This paper reviews the effects of precipitation on earth-space communication links operating the 10 to 35 GHz frequency range. Emphasis is on the quantitative prediction of rain attenuation and depolarization. Discussions center on the models developed at Virginia Tech. Comments on other models are included as well as literature references to key works. Also included is the system level modeling for dual polarized communication systems with techniques for calculating antenna and propagation medium effects. Simple models for the calculation of average annual attenuation and cross-polarization discrimination (XPD) are presented. Calculation of worst month statistics are also presented.

  10. Sound Visualisation

    OpenAIRE

    Dolenc, Peter

    2013-01-01

    This thesis contains a description of a construction of subwoofer case that has an extra functionality of being able to produce special visual effects and display visualizations that match the currently playing sound. For this reason, multiple lighting elements made out of LED (Light Emitting Diode) diodes were installed onto the subwoofer case. The lighting elements are controlled by dedicated software that was also developed. The software runs on STM32F4-Discovery evaluation board inside a ...

  11. Structural changes and out-of-sample prediction of realized range-based variance in the stock market

    Science.gov (United States)

    Gong, Xu; Lin, Boqiang

    2018-03-01

    This paper aims to examine the effects of structural changes on forecasting the realized range-based variance in the stock market. Considering structural changes in variance in the stock market, we develop the HAR-RRV-SC model on the basis of the HAR-RRV model. Subsequently, the HAR-RRV and HAR-RRV-SC models are used to forecast the realized range-based variance of S&P 500 Index. We find that there are many structural changes in variance in the U.S. stock market, and the period after the financial crisis contains more structural change points than the period before the financial crisis. The out-of-sample results show that the HAR-RRV-SC model significantly outperforms the HAR-BV model when they are employed to forecast the 1-day, 1-week, and 1-month realized range-based variances, which means that structural changes can improve out-of-sample prediction of realized range-based variance. The out-of-sample results remain robust across the alternative rolling fixed-window, the alternative threshold value in ICSS algorithm, and the alternative benchmark models. More importantly, we believe that considering structural changes can help improve the out-of-sample performances of most of other existing HAR-RRV-type models in addition to the models used in this paper.

  12. Precise predictions of H2O line shapes over a wide pressure range using simulations corrected by a single measurement

    Science.gov (United States)

    Ngo, N. H.; Nguyen, H. T.; Tran, H.

    2018-03-01

    In this work, we show that precise predictions of the shapes of H2O rovibrational lines broadened by N2, over a wide pressure range, can be made using simulations corrected by a single measurement. For that, we use the partially-correlated speed-dependent Keilson-Storer (pcsdKS) model whose parameters are deduced from molecular dynamics simulations and semi-classical calculations. This model takes into account the collision-induced velocity-changes effects, the speed dependences of the collisional line width and shift as well as the correlation between velocity and internal-state changes. For each considered transition, the model is corrected by using a parameter deduced from its broadening coefficient measured for a single pressure. The corrected-pcsdKS model is then used to simulate spectra for a wide pressure range. Direct comparisons of the corrected-pcsdKS calculated and measured spectra of 5 rovibrational lines of H2O for various pressures, from 0.1 to 1.2 atm, show very good agreements. Their maximum differences are in most cases well below 1%, much smaller than residuals obtained when fitting the measurements with the Voigt line shape. This shows that the present procedure can be used to predict H2O line shapes for various pressure conditions and thus the simulated spectra can be used to deduce the refined line-shape parameters to complete spectroscopic databases, in the absence of relevant experimental values.

  13. Photoacoustic Sounds from Meteors.

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Richard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tencer, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweatt, William C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hogan, Roy E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spurny, Pavel [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic)

    2015-03-01

    High-speed photometric observations of meteor fireballs have shown that they often produce high-amplitude light oscillations with frequency components in the kHz range, and in some cases exhibit strong millisecond flares. We built a light source with similar characteristics and illuminated various materials in the laboratory, generating audible sounds. Models suggest that light oscillations and pulses can radiatively heat dielectric materials, which in turn conductively heats the surrounding air on millisecond timescales. The sound waves can be heard if the illuminated material is sufficiently close to the observer’s ears. The mechanism described herein may explain many reports of meteors that appear to be audible while they are concurrently visible in the sky and too far away for sound to have propagated to the observer. This photoacoustic (PA) explanation provides an alternative to electrophonic (EP) sounds hypothesized to arise from electromagnetic coupling of plasma oscillation in the meteor wake to natural antennas in the vicinity of an observer.

  14. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    Science.gov (United States)

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  15. Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?

    Science.gov (United States)

    Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.

    2017-12-01

    As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.

  16. Evaluating standard airborne sound insulation measures in terms of annoyance, loudness, and audibility ratings.

    Science.gov (United States)

    Park, H K; Bradley, J S

    2009-07-01

    This paper reports the results of an evaluation of the merits of standard airborne sound insulation measures with respect to subjective ratings of the annoyance and loudness of transmitted sounds. Subjects listened to speech and music sounds modified to represent transmission through 20 different walls with sound transmission class (STC) ratings from 34 to 58. A number of variations in the standard measures were also considered. These included variations in the 8-dB rule for the maximum allowed deficiency in the STC measure as well as variations in the standard 32-dB total allowed deficiency. Several spectrum adaptation terms were considered in combination with weighted sound reduction index (R(w)) values as well as modifications to the range of included frequencies in the standard rating contour. A STC measure without an 8-dB rule and an R(w) rating with a new spectrum adaptation term were better predictors of annoyance and loudness ratings of speech sounds. R(w) ratings with one of two modified C(tr) spectrum adaptation terms were better predictors of annoyance and loudness ratings of transmitted music sounds. Although some measures were much better predictors of responses to one type of sound than were the standard STC and R(w) values, no measure was remarkably improved for predicting annoyance and loudness ratings of both music and speech sounds.

  17. Prediction of overall persistence and long-range transport potential with multimedia fate models: robustness and sensitivity of results

    International Nuclear Information System (INIS)

    Fenner, Kathrin; Scheringer, Martin; Hungerbuehler, Konrad

    2004-01-01

    The hazard indicators persistence (P) and long-range transport potential (LRTP) are used in chemicals assessment to characterize chemicals with regard to the temporal and spatial extent of their environmental exposure. They are often calculated based on the results of multimedia fate models. The environmental and substance-specific input parameters of such models are subject to a range of methodological uncertainties and also influenced by natural variability. We employed probabilistic uncertainty analysis to quantify variance in P and LRTP predictions for chemicals with different partitioning and transport behavior. Variance found in the results is so large that it prevents a clear distinction between chemicals. Additionally, only small improvements are observed when evaluating the results relative to a benchmark chemical. This can be explained by the dominance of substance-specific parameters and the only small direct influence of environmental parameters on P and LRTP as model outcomes. The findings underline the importance of learning how environmental conditions cause variability in substance behavior for improved substance ranking and classification. - Environmental conditions cause variability in substance behavior which need to be considered in chemical ranking schemes

  18. Sound knowledge

    DEFF Research Database (Denmark)

    Kauffmann, Lene Teglhus

    as knowledge based on reflexive practices. I chose ‘health promotion’ as the field for my research as it utilises knowledge produced in several research disciplines, among these both quantitative and qualitative. I mapped out the institutions, actors, events, and documents that constituted the field of health...... of the research is to investigate what is considered to ‘work as evidence’ in health promotion and how the ‘evidence discourse’ influences social practices in policymaking and in research. From investigating knowledge practices in the field of health promotion, I develop the concept of sound knowledge...... result of a rigorous and standardized research method. However, this anthropological analysis shows that evidence and evidence-based is a hegemonic ‘way of knowing’ that sometimes transposes everyday reasoning into an epistemological form. However, the empirical material shows a variety of understandings...

  19. Sound Search Engine Concept

    DEFF Research Database (Denmark)

    2006-01-01

    Sound search is provided by the major search engines, however, indexing is text based, not sound based. We will establish a dedicated sound search services with based on sound feature indexing. The current demo shows the concept of the sound search engine. The first engine will be realased June...

  20. Perception of acoustic scale and size in musical instrument sounds.

    Science.gov (United States)

    van Dinther, Ralph; Patterson, Roy D

    2006-10-01

    There is size information in natural sounds. For example, as humans grow in height, their vocal tracts increase in length, producing a predictable decrease in the formant frequencies of speech sounds. Recent studies have shown that listeners can make fine discriminations about which of two speakers has the longer vocal tract, supporting the view that the auditory system discriminates changes on the acoustic-scale dimension. Listeners can also recognize vowels scaled well beyond the range of vocal tracts normally experienced, indicating that perception is robust to changes in acoustic scale. This paper reports two perceptual experiments designed to extend research on acoustic scale and size perception to the domain of musical sounds: The first study shows that listeners can discriminate the scale of musical instrument sounds reliably, although not quite as well as for voices. The second experiment shows that listeners can recognize the family of an instrument sound which has been modified in pitch and scale beyond the range of normal experience. We conclude that processing of acoustic scale in music perception is very similar to processing of acoustic scale in speech perception.

  1. Medium-range reference evapotranspiration forecasts for the contiguous United States based on multi-model numerical weather predictions

    Science.gov (United States)

    Medina, Hanoi; Tian, Di; Srivastava, Puneet; Pelosi, Anna; Chirico, Giovanni B.

    2018-07-01

    Reference evapotranspiration (ET0) plays a fundamental role in agronomic, forestry, and water resources management. Estimating and forecasting ET0 have long been recognized as a major challenge for researchers and practitioners in these communities. This work explored the potential of multiple leading numerical weather predictions (NWPs) for estimating and forecasting summer ET0 at 101 U.S. Regional Climate Reference Network stations over nine climate regions across the contiguous United States (CONUS). Three leading global NWP model forecasts from THORPEX Interactive Grand Global Ensemble (TIGGE) dataset were used in this study, including the single model ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (EC), the National Centers for Environmental Prediction Global Forecast System (NCEP), and the United Kingdom Meteorological Office forecasts (MO), as well as multi-model ensemble forecasts from the combinations of these NWP models. A regression calibration was employed to bias correct the ET0 forecasts. Impact of individual forecast variables on ET0 forecasts were also evaluated. The results showed that the EC forecasts provided the least error and highest skill and reliability, followed by the MO and NCEP forecasts. The multi-model ensembles constructed from the combination of EC and MO forecasts provided slightly better performance than the single model EC forecasts. The regression process greatly improved ET0 forecast performances, particularly for the regions involving stations near the coast, or with a complex orography. The performance of EC forecasts was only slightly influenced by the size of the ensemble members, particularly at short lead times. Even with less ensemble members, EC still performed better than the other two NWPs. Errors in the radiation forecasts, followed by those in the wind, had the most detrimental effects on the ET0 forecast performances.

  2. Performance of the FV3-powered Next Generation Global Prediction System for Harvey and Irma, and a vision for a "beyond weather timescale" prediction system for long-range hurricane track and intensity predictions

    Science.gov (United States)

    Lin, S. J.; Bender, M.; Harris, L.; Hazelton, A.

    2017-12-01

    The performance of a GFDL developed FV3-based Next Generation Global Prediction System (NGGPS) for Harvey and Irma will be reported. We will report on aspects of track and intensity errors (vs operational models), heavy precipitation (Harvey), rapid intensification, and simulated structure (in comparison with ground based radar), and point to a need of a future long-range (from day-5 up to 30 days) physically based ensemble hurricane prediction system for providing useful information to the forecasters, beyond the usual weather timescale.

  3. NASA Space Sounds API

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...

  4. An Improved Continuous-Time Model Predictive Control of Permanent Magnetic Synchronous Motors for a Wide-Speed Range

    Directory of Open Access Journals (Sweden)

    Dandan Su

    2017-12-01

    Full Text Available This paper proposes an improved continuous-time model predictive control (CTMPC of permanent magnetic synchronous motors (PMSMs for a wide-speed range, including the constant torque region and the flux-weakening (FW region. In the constant torque region, the mathematic models of PMSMs in dq-axes are decoupled without the limitation of DC-link voltage. However, in the FW region, the mathematic models of PMSMs in dq-axes are cross-coupled together with the limitation of DC-link voltage. A nonlinear PMSMs mathematic model in the FW region is presented based on the voltage angle. The solving of the nonlinear mathematic model of PMSMs in FW region will lead to heavy computation load for digital signal processing (DSP. To overcome such a problem, a linearization method of the voltage angle is also proposed to reduce the computation load. The selection of transiting points between the constant torque region and FW regions is researched to improve the performance of the driven system. Compared with the proportional integral (PI controller, the proposed CTMPC has obvious advantages in dealing with systems’ nonlinear constraints and improving system performance by restraining overshoot current under step torque changing. Both simulation and experimental results confirm the effectiveness of the proposed method in achieving good steady-state performance and smooth switching between the constant torque and FW regions.

  5. In-flight measurements and RCS-predictions: A comparison on broad-side radar range profiles of a Boeing 737

    NARCIS (Netherlands)

    Heiden, R. van der; Ewijk, L.J. van; Groen, F.C.A.

    1997-01-01

    The validation of Radar Cross Section (RCS) prediction techniques against real measurements is crucial to acquire confidence in predictions when measurements are not available. In this paper we present the first results of a comparison on one dimensional images, i.e., radar range profiles. The

  6. Application of Powell's analogy for the prediction of vortex-pairing sound in a low-Mach number jet based on time-resolved planar and tomographic PIV

    NARCIS (Netherlands)

    Violato, D.; Bryon, K.; Moore, P.; Scarano, F.

    2010-01-01

    This paper describes an experimental investigation by time-resolved planar and tomographic PIV on the sound production mechanism of vortex pairing of a transitional water-jet flow at Re=5000. The shear layer is characterized by axisymmetric vortex rings which undergo pairing with a varicose mode.

  7. Lung sound intensity in patients with emphysema and in normal subjects at standardised airflows.

    Science.gov (United States)

    Schreur, H J; Sterk, P J; Vanderschoot, J; van Klink, H C; van Vollenhoven, E; Dijkman, J H

    1992-01-01

    BACKGROUND: A common auscultatory finding in pulmonary emphysema is a reduction of lung sounds. This might be due to a reduction in the generation of sounds due to the accompanying airflow limitation or to poor transmission of sounds due to destruction of parenchyma. Lung sound intensity was investigated in normal and emphysematous subjects in relation to airflow. METHODS: Eight normal men (45-63 years, FEV1 79-126% predicted) and nine men with severe emphysema (50-70 years, FEV1 14-63% predicted) participated in the study. Emphysema was diagnosed according to pulmonary history, results of lung function tests, and radiographic criteria. All subjects underwent phonopneumography during standardised breathing manoeuvres between 0.5 and 2 1 below total lung capacity with inspiratory and expiratory target airflows of 2 and 1 l/s respectively during 50 seconds. The synchronous measurements included airflow at the mouth and lung volume changes, and lung sounds at four locations on the right chest wall. For each microphone airflow dependent power spectra were computed by using fast Fourier transformation. Lung sound intensity was expressed as log power (in dB) at 200 Hz at inspiratory flow rates of 1 and 2 l/s and at an expiratory flow rate of 1 l/s. RESULTS: Lung sound intensity was well repeatable on two separate days, the intraclass correlation coefficient ranging from 0.77 to 0.94 between the four microphones. The intensity was strongly influenced by microphone location and airflow. There was, however, no significant difference in lung sound intensity at any flow rate between the normal and the emphysema group. CONCLUSION: Airflow standardised lung sound intensity does not differ between normal and emphysematous subjects. This suggests that the auscultatory finding of diminished breath sounds during the regular physical examination in patients with emphysema is due predominantly to airflow limitation. Images PMID:1440459

  8. Predictions on the modes of decay of odd Z superheavy isotopes within the range 105 ≤ Z ≤ 135

    Science.gov (United States)

    Santhosh, K. P.; Nithya, C.

    2018-05-01

    The decay modes of 1051 odd Z superheavy nuclei within the range 105 ≤ Z ≤ 135, and their daughter nuclei are studied by comparing the alpha decay half-lives with the spontaneous fission half-lives. The alpha decay half-lives are calculated using the Coulomb and proximity potential model for deformed nuclei (CPPMDN) proposed by Santhosh et al. (2011) and the spontaneous fission half-lives are obtained with the shell-effect dependent formula of Santhosh et al. (Santhosh and Nithya, 2016). For a theoretical comparison, the alpha decay half-lives are also computed with the Coulomb and proximity potential model (CPPM), Viola-Seaborg-Sobiczewski semi-empirical relation (VSS), Universal curve of Poenaru et al. (UNIV), the analytical formula of Royer, and the Universal decay law of Qi et al. (UDL). The predicted decay modes and half-lives were compared with the available experimental results. The proton and neutron separation energies are calculated to identify those nuclei, which decay through proton and neutron emission. From the entire study of odd Z superheavy elements, it is seen that among 1051 nuclei, 233 nuclei exhibit proton emission and 18 nuclei exhibit neutron emission. 56 nuclei are stable against alpha decay with negative Q value for the decay. 92 nuclei show alpha decay followed by spontaneous fission and 9 nuclei show alpha decay followed by proton emission. 39 nuclei decay through full alpha chain and 595 nuclei decay through spontaneous fission. We hope that the study will be very useful for the future experimental investigations in this field.

  9. Statistics of natural binaural sounds.

    Directory of Open Access Journals (Sweden)

    Wiktor Młynarski

    Full Text Available Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD and level (ILD disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA. Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction.

  10. Statistics of natural binaural sounds.

    Science.gov (United States)

    Młynarski, Wiktor; Jost, Jürgen

    2014-01-01

    Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction.

  11. Sound radiation contrast in MR phase images. Method for the representation of elasticity, sound damping, and sound impedance changes

    International Nuclear Information System (INIS)

    Radicke, Marcus

    2009-01-01

    The method presented in this thesis combines ultrasound techniques with the magnetic-resonance tomography (MRT). An ultrasonic wave generates in absorbing media a static force in sound-propagation direction. The force leads at sound intensities of some W/cm 2 and a sound frequency in the lower MHz range to a tissue shift in the micrometer range. This tissue shift depends on the sound power, the sound frequency, the sound absorption, and the elastic properties of the tissue. A MRT sequence of the Siemens Healthcare AG was modified so that it measures (indirectly) the tissue shift, codes as grey values, and presents as 2D picture. By means of the grey values the sound-beam slope in the tissue can be visualized, and so additionally sound obstacles (changes of the sound impedance) can be detected. By the MRT images token up spatial changes of the tissue parameters sound absorption and elasticity can be detected. In this thesis measurements are presented, which show the feasibility and future chances of this method especially for the mammary-cancer diagnostics. [de

  12. Magnetospheric radio sounding

    International Nuclear Information System (INIS)

    Ondoh, Tadanori; Nakamura, Yoshikatsu; Koseki, Teruo; Watanabe, Sigeaki; Murakami, Toshimitsu

    1977-01-01

    Radio sounding of the plasmapause from a geostationary satellite has been investigated to observe time variations of the plasmapause structure and effects of the plasma convection. In the equatorial plane, the plasmapause is located, on the average, at 4 R sub(E) (R sub(E); Earth radius), and the plasma density drops outwards from 10 2 -10 3 /cm 3 to 1-10/cm 3 in the plasmapause width of about 600 km. Plasmagrams showing a relation between the virtual range and sounding frequencies are computed by ray tracing of LF-VLF waves transmitted from a geostationary satellite, using model distributions of the electron density in the vicinity of the plasmapause. The general features of the plasmagrams are similar to the topside ionograms. The plasmagram has no penetration frequency such as f 0 F 2 , but the virtual range of the plasmagram increases rapidly with frequency above 100 kHz, since the distance between a satellite and wave reflection point increases rapidly with increasing the electron density inside the plasmapause. The plasmapause sounder on a geostationary satellite has been designed by taking account of an average propagation distance of 2 x 2.6 R sub(E) between a satellite (6.6 R sub(E)) and the plasmapause (4.0 R sub(E)), background noise, range resolution, power consumption, and receiver S/N of 10 dB. The 13-bit Barker coded pulses of baud length of 0.5 msec should be transmitted in direction parallel to the orbital plane at frequencies for 10 kHz-2MHz in a pulse interval of 0.5 sec. The transmitter peak power of 70 watts and 700 watts are required respectively in geomagnetically quiet and disturbed (strong nonthermal continuum emissions) conditions for a 400 meter cylindrical dipole of 1.2 cm diameter on the geostationary satellite. This technique will open new area of radio sounding in the magnetosphere. (auth.)

  13. The Sound of Science

    Science.gov (United States)

    Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan

    2014-01-01

    While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…

  14. Sounds Exaggerate Visual Shape

    Science.gov (United States)

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  15. Making Sound Connections

    Science.gov (United States)

    Deal, Walter F., III

    2007-01-01

    Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…

  16. Moth hearing and sound communication

    DEFF Research Database (Denmark)

    Nakano, Ryo; Takanashi, Takuma; Surlykke, Annemarie

    2015-01-01

    Active echolocation enables bats to orient and hunt the night sky for insects. As a counter-measure against the severe predation pressure many nocturnal insects have evolved ears sensitive to ultrasonic bat calls. In moths bat-detection was the principal purpose of hearing, as evidenced by compar......Active echolocation enables bats to orient and hunt the night sky for insects. As a counter-measure against the severe predation pressure many nocturnal insects have evolved ears sensitive to ultrasonic bat calls. In moths bat-detection was the principal purpose of hearing, as evidenced...... by comparable hearing physiology with best sensitivity in the bat echolocation range, 20–60 kHz, across moths in spite of diverse ear morphology. Some eared moths subsequently developed sound-producing organs to warn/startle/jam attacking bats and/or to communicate intraspecifically with sound. Not only...... the sounds for interaction with bats, but also mating signals are within the frequency range where bats echolocate, indicating that sound communication developed after hearing by “sensory exploitation”. Recent findings on moth sound communication reveal that close-range (~ a few cm) communication with low...

  17. Little Sounds

    Directory of Open Access Journals (Sweden)

    Baker M. Bani-Khair

    2017-10-01

    Full Text Available The Spider and the Fly   You little spider, To death you aspire... Or seeking a web wider, To death all walking, No escape you all fighters… Weak and fragile in shape and might, Whatever you see in the horizon, That is destiny whatever sight. And tomorrow the spring comes, And the flowers bloom, And the grasshopper leaps high, And the frogs happily cry, And the flies smile nearby, To that end, The spider has a plot, To catch the flies by his net, A mosquito has fallen down in his net, Begging him to set her free, Out of that prison, To her freedom she aspires, Begging...Imploring...crying,  That is all what she requires, But the spider vows never let her free, His power he admires, Turning blind to light, And with his teeth he shall bite, Leaving her in desperate might, Unable to move from site to site, Tied up with strings in white, Wrapped up like a dead man, Waiting for his grave at night,   The mosquito says, Oh little spider, A stronger you are than me in power, But listen to my words before death hour, Today is mine and tomorrow is yours, No escape from death... Whatever the color of your flower…     Little sounds The Ant The ant is a little creature with a ferocious soul, Looking and looking for more and more, You can simply crush it like dead mold, Or you can simply leave it alone, I wonder how strong and strong they are! Working day and night in a small hole, Their motto is work or whatever you call… A big boon they have and joy in fall, Because they found what they store, A lesson to learn and memorize all in all, Work is something that you should not ignore!   The butterfly: I’m the butterfly Beautiful like a blue clear sky, Or sometimes look like snow, Different in colors, shapes and might, But something to know that we always die, So fragile, weak and thin, Lighter than a glimpse and delicate as light, Something to know for sure… Whatever you have in life and all these fields, You are not happier than a butterfly

  18. Improving Sound Systems by Electrical Means

    OpenAIRE

    Schneider, Henrik; Andersen, Michael A. E.; Knott, Arnold

    2015-01-01

    The availability and flexibility of audio services on various digital platforms have created a high demand for a large range of sound systems. The fundamental components of sound systems such as docking stations, sound bars and wireless mobile speakers consists of a power supply, amplifiers and transducers. Due to historical reasons the design of each of these components are commonly handled separately which are indeed limiting the full performance potential of such systems. To state some exa...

  19. Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region

    Science.gov (United States)

    Wang, Xujia; Zheng, Zhihai; Feng, Guolin

    2018-04-01

    The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16-18 days in all months, while the atmospheric model reaches 10-11 days in January, April, and July and only 7-8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.

  20. Recognition and characterization of unstructured environmental sounds

    Science.gov (United States)

    Chu, Selina

    2011-12-01

    be used for realistic environmental sound. Natural unstructured environment sounds contain a large variety of sounds, which are in fact noise-like and are not effectively modeled by Mel-frequency cepstral coefficients (MFCCs) or other commonly-used audio features, e.g. energy, zero-crossing, etc. Due to the lack of appropriate features that is suitable for environmental audio and to achieve a more effective representation, I proposed a specialized feature extraction algorithm for environmental sounds that utilizes the matching pursuit (MP) algorithm to learn the inherent structure of each type of sounds, which we called MP-features. MP-features have shown to capture and represent sounds from different sources and different ranges, where frequency domain features (e.g., MFCCs) fail and can be advantageous when combining with MFCCs to improve the overall performance. The third component leads to our investigation on modeling and detecting the background audio. One of the goals of this research is to characterize an environment. Since many events would blend into the background, I wanted to look for a way to achieve a general model for any particular environment. Once we have an idea of the background, it will enable us to identify foreground events even if we havent seen these events before. Therefore, the next step is to investigate into learning the audio background model for each environment type, despite the occurrences of different foreground events. In this work, I presented a framework for robust audio background modeling, which includes learning the models for prediction, data knowledge and persistent characteristics of the environment. This approach has the ability to model the background and detect foreground events as well as the ability to verify whether the predicted background is indeed the background or a foreground event that protracts for a longer period of time. In this work, I also investigated the use of a semi-supervised learning technique to

  1. Erratum: Correction to Table 3, in: Equivalent threshold sound pressure levels (ETSPL) for Sennheiser HDA 280 supra-aural audiometric earphones in the frequency range 125 Hz to 8000 Hz (International Journal of Audiology (2009) 48 (271-276))

    DEFF Research Database (Denmark)

    Poulsen, Torben

    2014-01-01

    The main results in Poulsen & Oakley (2009) are given as the equivalent threshold sound pressure level, ETSPL, measured in an acoustic coupler specifi ed in IEC 60318-3. These results are all correct. The ETSPL values for the ear simulator specifi ed in IEC 60318-1 were calculated from acoustic...

  2. Intermediate-term medium-range earthquake prediction algorithm M8: A new spatially stabilized application in Italy

    International Nuclear Information System (INIS)

    Romashkova, L.L.; Kossobokov, V.G.; Peresan, A.; Panza, G.F.

    2001-12-01

    A series of experiments, based on the intermediate-term earthquake prediction algorithm M8, has been performed for the retrospective simulation of forward predictions in the Italian territory, with the aim to design an experimental routine for real-time predictions. These experiments evidenced two main difficulties for the application of M8 in Italy. The first one is due to the fact that regional catalogues are usually limited in space. The second one concerns certain arbitrariness and instability, with respect to the positioning of the circles of investigation. Here we design a new scheme for the application of the algorithm M8, which is less subjective and less sensitive to the position of the circles of investigation. To perform this test, we consider a recent revision of the Italian catalogue, named UCI2001, composed by CCI1996, NEIC and ALPOR data for the period 1900-1985, and updated with the NEIC reduces the spatial heterogeneity of the data at the boundaries of Italy. The new variant of the M8 algorithm application reduces the number of spurious alarms and increases the reliability of predictions. As a result, three out of four earthquakes with magnitude M max larger than 6.0 are predicted in the retrospective simulation of the forward prediction, during the period 1972-2001, with a space-time volume of alarms comparable to that obtained with the non-stabilized variant of the M8 algorithm in Italy. (author)

  3. Velocity of sound measurements in gaseous per-fluorocarbons and their custom mixtures

    CERN Document Server

    Vacek, V; Lindsay, S

    2000-01-01

    An inexpensive sonar instrument was prepared for measurements of sound velocity in two fluorocarbon vapors; per-fluoro-n-propane (C3F8), per-fluoro-n-butane (C4F10), and their custom mixtures. The apparatus, measurement principle and instrument software are described. All sound velocity measurements in per-fluorocarbons were made in the low pressure range between 0.01 and 0.4 MPa, and at temperatures between 253 and 303 K. The purity of the C3F8 and C4F10 samples was checked using gas chromatography. Uncertainties in the speed of sound measurements were better than ± 0.1 %. Comparisons were made with theoretical predictions of sound velocity for the two individual components. The instrument was then used for concentration monitoring of custom C3F8/C4F10 mixtures.

  4. Prediction of transmission loss through an aircraft sidewall using statistical energy analysis

    Science.gov (United States)

    Ming, Ruisen; Sun, Jincai

    1989-06-01

    The transmission loss of randomly incident sound through an aircraft sidewall is investigated using statistical energy analysis. Formulas are also obtained for the simple calculation of sound transmission loss through single- and double-leaf panels. Both resonant and nonresonant sound transmissions can be easily calculated using the formulas. The formulas are used to predict sound transmission losses through a Y-7 propeller airplane panel. The panel measures 2.56 m x 1.38 m and has two windows. The agreement between predicted and measured values through most of the frequency ranges tested is quite good.

  5. Sound engineering for diesel engines; Sound Engineering an Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Enderich, A.; Fischer, R. [MAHLE Filtersysteme GmbH, Stuttgart (Germany)

    2006-07-01

    The strong acceptance for vehicles powered by turbo-charged diesel engines encourages several manufacturers to think about sportive diesel concepts. The approach of suppressing unpleasant noise by the application of distinctive insulation steps is not adequate to satisfy sportive needs. The acoustics cannot follow the engine's performance. This report documents, that it is possible to give diesel-powered vehicles a sportive sound characteristic by using an advanced MAHLE motor-sound-system with a pressure-resistant membrane and an integrated load controlled flap. With this the specific acoustic disadvantages of the diesel engine, like the ''diesel knock'' or a rough engine running can be masked. However, by the application of a motor-sound-system you must not negate the original character of the diesel engine concept, but accentuate its strong torque characteristic in the middle engine speed range. (orig.)

  6. Sounds of silence: How to animate virtual worlds with sound

    Science.gov (United States)

    Astheimer, Peter

    1993-01-01

    Sounds are an integral and sometimes annoying part of our daily life. Virtual worlds which imitate natural environments gain a lot of authenticity from fast, high quality visualization combined with sound effects. Sounds help to increase the degree of immersion for human dwellers in imaginary worlds significantly. The virtual reality toolkit of IGD (Institute for Computer Graphics) features a broad range of standard visual and advanced real-time audio components which interpret an object-oriented definition of the scene. The virtual reality system 'Virtual Design' realized with the toolkit enables the designer of virtual worlds to create a true audiovisual environment. Several examples on video demonstrate the usage of the audio features in Virtual Design.

  7. Improved Models and Tools for Prediction of Radiation Effects on Space Electronics in Wide Temperature Range, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — All NASA exploration systems operate in the extreme environments of space and require reliable electronics capable of handling a wide temperature range (-180ºC to...

  8. Detecting change in stochastic sound sequences.

    Directory of Open Access Journals (Sweden)

    Benjamin Skerritt-Davis

    2018-05-01

    Full Text Available Our ability to parse our acoustic environment relies on the brain's capacity to extract statistical regularities from surrounding sounds. Previous work in regularity extraction has predominantly focused on the brain's sensitivity to predictable patterns in sound sequences. However, natural sound environments are rarely completely predictable, often containing some level of randomness, yet the brain is able to effectively interpret its surroundings by extracting useful information from stochastic sounds. It has been previously shown that the brain is sensitive to the marginal lower-order statistics of sound sequences (i.e., mean and variance. In this work, we investigate the brain's sensitivity to higher-order statistics describing temporal dependencies between sound events through a series of change detection experiments, where listeners are asked to detect changes in randomness in the pitch of tone sequences. Behavioral data indicate listeners collect statistical estimates to process incoming sounds, and a perceptual model based on Bayesian inference shows a capacity in the brain to track higher-order statistics. Further analysis of individual subjects' behavior indicates an important role of perceptual constraints in listeners' ability to track these sensory statistics with high fidelity. In addition, the inference model facilitates analysis of neural electroencephalography (EEG responses, anchoring the analysis relative to the statistics of each stochastic stimulus. This reveals both a deviance response and a change-related disruption in phase of the stimulus-locked response that follow the higher-order statistics. These results shed light on the brain's ability to process stochastic sound sequences.

  9. Sound wave transmission (image)

    Science.gov (United States)

    When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...

  10. Making fictions sound real

    DEFF Research Database (Denmark)

    Langkjær, Birger

    2010-01-01

    This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related...... to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy...... of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences....

  11. An Investigation into the Prediction of in Vivo Clearance for a Range of Flavin-containing Monooxygenase Substrates.

    Science.gov (United States)

    Jones, Barry C; Srivastava, Abhishek; Colclough, Nicola; Wilson, Joanne; Reddy, Venkatesh Pilla; Amberntsson, Sara; Li, Danxi

    2017-10-01

    Flavin-containing monooxygenases (FMO) are metabolic enzymes mediating the oxygenation of nucleophilic atoms such as nitrogen, sulfur, phosphorus, and selenium. These enzymes share similar properties to the cytochrome P450 system but can be differentiated through heat inactivation and selective substrate inhibition by methimazole. This study investigated 10 compounds with varying degrees of FMO involvement to determine the nature of the correlation between human in vitro and in vivo unbound intrinsic clearance. To confirm and quantify the extent of FMO involvement six of the compounds were investigated in human liver microsomal (HLM) in vitro assays using heat inactivation and methimazole substrate inhibition. Under these conditions FMO contribution varied from 21% (imipramine) to 96% (itopride). Human hepatocyte and HLM intrinsic clearance (CL int ) data were scaled using standard methods to determine the predicted unbound intrinsic clearance (predicted CL int u ) for each compound. This was compared with observed unbound intrinsic clearance (observed CL int u ) values back calculated from human pharmacokinetic studies. A good correlation was observed between the predicted and observed CL int u using hepatocytes ( R 2 = 0.69), with 8 of the 10 compounds investigated within or close to a factor of 2. For HLM the in vitro-in vivo correlation was maintained ( R 2 = 0.84) but the accuracy was reduced with only 3 out of 10 compounds falling within, or close to, twofold. This study demonstrates that human hepatocytes and HLM can be used with standard scaling approaches to predict the human in vivo clearance for FMO substrates. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Species distribution modeling for the invasive raccoon dog (Nyctereutes procyonoides) in Austria and first range predictions for alpine environments

    OpenAIRE

    Duscher Tanja; Nopp-Mayr Ursula

    2017-01-01

    Species distribution models are important tools for wildlife management planning, particularly in the case of invasive species. We employed a recent framework for niche-based invasive species distribution modeling to predict the probability of presence for the invasive raccoon dog (Nyctereutes procyonoides) in Austria. The raccoon dog is an adaptive, mobile and highly reproductive Asiatic canid that has successfully invaded many parts of Europe. It is known...

  13. Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach

    Science.gov (United States)

    2013-09-30

    statistically extratropical storms and extremes, and link these to LFV modes. Mingfang Ting, Yochanan Kushnir, Andrew W. Robertson, Lei Wang...forecast models, as well as in the understanding they have generated. Adam Sobel, Daehyun Kim and Shuguang Wang. Extratropical variability and...predictability. Determine the extent to which extratropical monthly and seasonal low-frequency variability (LFV, i.e. PNA, NAO, as well as other regional

  14. An Antropologist of Sound

    DEFF Research Database (Denmark)

    Groth, Sanne Krogh

    2015-01-01

    PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology.......PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology....

  15. Broadcast sound technology

    CERN Document Server

    Talbot-Smith, Michael

    1990-01-01

    Broadcast Sound Technology provides an explanation of the underlying principles of modern audio technology. Organized into 21 chapters, the book first describes the basic sound; behavior of sound waves; aspects of hearing, harming, and charming the ear; room acoustics; reverberation; microphones; phantom power; loudspeakers; basic stereo; and monitoring of audio signal. Subsequent chapters explore the processing of audio signal, sockets, sound desks, and digital audio. Analogue and digital tape recording and reproduction, as well as noise reduction, are also explained.

  16. Propagation of sound

    DEFF Research Database (Denmark)

    Wahlberg, Magnus; Larsen, Ole Næsbye

    2017-01-01

    properties can be modified by sound absorption, refraction, and interference from multi paths caused by reflections.The path from the source to the receiver may be bent due to refraction. Besides geometrical attenuation, the ground effect and turbulence are the most important mechanisms to influence...... communication sounds for airborne acoustics and bottom and surface effects for underwater sounds. Refraction becomes very important close to shadow zones. For echolocation signals, geometric attenuation and sound absorption have the largest effects on the signals....

  17. Abnormal sound detection device

    International Nuclear Information System (INIS)

    Yamada, Izumi; Matsui, Yuji.

    1995-01-01

    Only components synchronized with rotation of pumps are sampled from detected acoustic sounds, to judge the presence or absence of abnormality based on the magnitude of the synchronized components. A synchronized component sampling means can remove resonance sounds and other acoustic sounds generated at a synchronously with the rotation based on the knowledge that generated acoustic components in a normal state are a sort of resonance sounds and are not precisely synchronized with the number of rotation. On the other hand, abnormal sounds of a rotating body are often caused by compulsory force accompanying the rotation as a generation source, and the abnormal sounds can be detected by extracting only the rotation-synchronized components. Since components of normal acoustic sounds generated at present are discriminated from the detected sounds, reduction of the abnormal sounds due to a signal processing can be avoided and, as a result, abnormal sound detection sensitivity can be improved. Further, since it is adapted to discriminate the occurrence of the abnormal sound from the actually detected sounds, the other frequency components which are forecast but not generated actually are not removed, so that it is further effective for the improvement of detection sensitivity. (N.H.)

  18. Modelling Hyperboloid Sound Scattering

    DEFF Research Database (Denmark)

    Burry, Jane; Davis, Daniel; Peters, Brady

    2011-01-01

    The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....

  19. Numerical simulation of aerodynamic sound radiated from a two-dimensional airfoil

    OpenAIRE

    飯田, 明由; 大田黒, 俊夫; 加藤, 千幸; Akiyoshi, Iida; Toshio, Otaguro; Chisachi, Kato; 日立機研; 日立機研; 東大生研; Mechanical Engineering Research Laboratory, Hitachi Ltd.; Mechanical Engineering Research Laboratory, Hitachi Ltd.; University of Tokyo

    2000-01-01

    An aerodynamic sound radiated from a two-dimensional airfoil has been computed with the Lighthill-Curle's theory. The predicted sound pressure level is agreement with the measured one. Distribution of vortex sound sources is also estimated based on the correlation between the unsteady vorticity fluctuations and the aerodynamic sound. The distribution of vortex sound source reveals that separated shear layers generate aerodynamic sound. This result is help to understand noise reduction method....

  20. Long Range River Discharge Forecasting Using the Gravity Recovery and Climate Experiment (GRACE) Satellite to Predict Conditions for Endemic Cholera

    Science.gov (United States)

    Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2014-12-01

    Prediction of conditions of an impending disease outbreak remains a challenge but is achievable if the associated and appropriate large scale hydroclimatic process can be estimated in advance. Outbreaks of diarrheal diseases such as cholera, are related to episodic seasonal variability in river discharge in the regions where water and sanitation infrastructure are inadequate and insufficient. However, forecasting river discharge, few months in advance, remains elusive where cholera outbreaks are frequent, probably due to non-availability of geophysical data as well as transboundary water stresses. Here, we show that satellite derived water storage from Gravity Recovery and Climate Experiment Forecasting (GRACE) sensors can provide reliable estimates on river discharge atleast two months in advance over regional scales. Bayesian regression models predicted flooding and drought conditions, a prerequisite for cholera outbreaks, in Bengal Delta with an overall accuracy of 70% for upto 60 days in advance without using any other ancillary ground based data. Forecasting of river discharge will have significant impacts on planning and designing intervention strategies for potential cholera outbreaks in the coastal regions where the disease remain endemic and often fatal.

  1. Predicting off-design range and performance of refrigeration cycle with two-stage centrifugal compressor and flash intercooler

    Energy Technology Data Exchange (ETDEWEB)

    Turunen-Saaresti, Teemu; Roeyttae, Pekka; Honkatukia, Juha; Backman, Jari [Lappeenranta University of Technology, Institute of Energy Technology, Laboratory of Fluid Dynamics, P.O. Box 20, 53851 Lappeenranta (Finland)

    2010-09-15

    A modern refrigeration process requires constant control to provide required cooling for the user. To properly and economically accommodate this need, a wide operation range of the compressor is necessary. Therefore, it is of interest to investigate the off-design operation of a cooling cycle and compressor. The refrigeration cycle equipped with a two-stage centrifugal compressor and a flash intercooler is studied. The compressor operation maps are generated with two different design codes and the operation values of the compressors are interpolated from the compressor maps in the simulation of the entire cooling cycle. Based on the previous studies of the utilised refrigeration cycle, R245fa is selected as coolant. The aim of this study is to demonstrate the control capacity of the centrifugal compressor and the performance of the cooling loop in off-design conditions. This configuration provides better and wider control over the cooling range than the traditional on-off control of displacement compressors. (author)

  2. The influence of coarse-scale environmental features on current and predicted future distributions of narrow-range endemic crayfish populations

    Science.gov (United States)

    Dyer, Joseph J.; Brewer, Shannon K.; Worthington, Thomas A.; Bergey, Elizabeth A.

    2013-01-01

    1.A major limitation to effective management of narrow-range crayfish populations is the paucity of information on the spatial distribution of crayfish species and a general understanding of the interacting environmental variables that drive current and future potential distributional patterns. 2.Maximum Entropy Species Distribution Modeling Software (MaxEnt) was used to predict the current and future potential distributions of four endemic crayfish species in the Ouachita Mountains. Current distributions were modelled using climate, geology, soils, land use, landform and flow variables thought to be important to lotic crayfish. Potential changes in the distribution were forecast by using models trained on current conditions and projecting onto the landscape predicted under climate-change scenarios. 3.The modelled distribution of the four species closely resembled the perceived distribution of each species but also predicted populations in streams and catchments where they had not previously been collected. Soils, elevation and winter precipitation and temperature most strongly related to current distributions and represented 6587% of the predictive power of the models. Model accuracy was high for all models, and model predictions of new populations were verified through additional field sampling. 4.Current models created using two spatial resolutions (1 and 4.5km2) showed that fine-resolution data more accurately represented current distributions. For three of the four species, the 1-km2 resolution models resulted in more conservative predictions. However, the modelled distributional extent of Orconectes leptogonopodus was similar regardless of data resolution. Field validations indicated 1-km2 resolution models were more accurate than 4.5-km2 resolution models. 5.Future projected (4.5-km2 resolution models) model distributions indicated three of the four endemic species would have truncated ranges with low occurrence probabilities under the low-emission scenario

  3. Efficacy of GPS cluster analysis for predicting carnivory sites of a wide-ranging omnivore: the American black bear

    Science.gov (United States)

    Kindschuh, Sarah R.; Cain, James W.; Daniel, David; Peyton, Mark A.

    2016-01-01

    The capacity to describe and quantify predation by large carnivores expanded considerably with the advent of GPS technology. Analyzing clusters of GPS locations formed by carnivores facilitates the detection of predation events by identifying characteristics which distinguish predation sites. We present a performance assessment of GPS cluster analysis as applied to the predation and scavenging of an omnivore, the American black bear (Ursus americanus), on ungulate prey and carrion. Through field investigations of 6854 GPS locations from 24 individual bears, we identified 54 sites where black bears formed a cluster of locations while predating or scavenging elk (Cervus elaphus), mule deer (Odocoileus hemionus), or cattle (Bos spp.). We developed models for three data sets to predict whether a GPS cluster was formed at a carnivory site vs. a non-carnivory site (e.g., bed sites or non-ungulate foraging sites). Two full-season data sets contained GPS locations logged at either 3-h or 30-min intervals from April to November, and a third data set contained 30-min interval data from April through July corresponding to the calving period for elk. Longer fix intervals resulted in the detection of fewer carnivory sites. Clusters were more likely to be carnivory sites if they occurred in open or edge habitats, if they occurred in the early season, if the mean distance between all pairs of GPS locations within the cluster was less, and if the cluster endured for a longer period of time. Clusters were less likely to be carnivory sites if they were initiated in the morning or night compared to the day. The top models for each data set performed well and successfully predicted 71–96% of field-verified carnivory events, 55–75% of non–carnivory events, and 58–76% of clusters overall. Refinement of this method will benefit from further application across species and ecological systems.

  4. Predicting the influence of long-range molecular interactions on macroscopic-scale diffusion by homogenization of the Smoluchowski equation

    Energy Technology Data Exchange (ETDEWEB)

    Kekenes-Huskey, P. M., E-mail: pkekeneshuskey@ucsd.edu [Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States); Gillette, A. K. [Department of Mathematics, University of Arizona, Tucson, Arizona 85721-0089 (United States); McCammon, J. A. [Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States); Department of Chemistry, Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0636 (United States)

    2014-05-07

    The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute “obstacles” and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as “buffers” that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events

  5. A short-range weather prediction system for South Africa based on a multi-model approach

    CSIR Research Space (South Africa)

    Landman, S

    2012-10-01

    Full Text Available stream_source_info Landman5_2012.pdf.txt stream_content_type text/plain stream_size 44898 Content-Encoding ISO-8859-1 stream_name Landman5_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 1 A short... to be skillful. Moreover, the system outscores the forecast skill of the individual models. Keywords: short-range, ensemble, forecasting, precipitation, multi-model, verification Tel: +27 12 367 6054...

  6. Improved atomic data for electron-transport predictions by the codes TIGER and TIGERP: II. Electron stopping and range data

    International Nuclear Information System (INIS)

    Peek, J.M.; Halbleib, J.A.

    1983-04-01

    The electron stopping and range data now used in the TIGER and TIGERP electron-transport codes are extracted and compared with other data for these processes. At the smallest collision energies treated by these codes, E approx. 1 keV, the stopping-power is estimated to be accurate for small-Z targets, to be about 25 percent too small for Z near 36 and to be a factor of three too small for Z > 79. These errors decrease with increasing E and the largest error for any target is roughly 20 percent for E = 10 keV. The closely related continuous-slowing-down range is estimated, at 1 keV, to be about 25 percent too small for small-Z targets and a factor of 2 too large for large-Z targets. The electron-transport problem of reflection from planer surfaces is re-investigated with improved stopping-power data. The effects of this change for the examples considered were about the size of the statistical uncertainties in the calculation, 1 to 2 percent

  7. 78 FR 13869 - Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy...

    Science.gov (United States)

    2013-03-01

    ...-123-LNG; 12-128-NG; 12-148-NG; 12- 158-NG] Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; CE FLNG, LLC; Consolidated...-NG Puget Sound Energy, Inc Order granting long- term authority to import/export natural gas from/to...

  8. Species distribution modeling for the invasive raccoon dog (Nyctereutes procyonoides in Austria and first range predictions for alpine environments

    Directory of Open Access Journals (Sweden)

    Duscher Tanja

    2017-01-01

    Full Text Available Species distribution models are important tools for wildlife management planning, particularly in the case of invasive species. We employed a recent framework for niche-based invasive species distribution modeling to predict the probability of presence for the invasive raccoon dog (Nyctereutes procyonoides in Austria. The raccoon dog is an adaptive, mobile and highly reproductive Asiatic canid that has successfully invaded many parts of Europe. It is known to occur in Austria since 1963 and is now widespread in the northern and eastern parts of the country, but its population density remains low. With the help of a species distribution model we identified focal areas for future monitoring and management actions, and we address some management implications for the raccoon dog in Austria. We also determined the environmental predictors of raccoon dog distribution in this alpine country. Its distribution seems to be mainly limited by climatic factors (snow depth, duration of snow cover, winter precipitation and mean annual temperature and is thus linked to elevation. Consequently, we assumed the Alps to be a barrier for the spread of the invasive raccoon dog in Europe; however, its ecological permeability is expected to increase with ongoing climate change.

  9. Improving long-range dispersion predictions with ETEX real-time and a-posteriori model evaluations

    International Nuclear Information System (INIS)

    Desiato, F.

    1997-01-01

    The Italian environmental Protection Agency (ANPA), which is responsible for the evaluation of the consequences of accidental releases into the atmosphere, has participated to both the real-time (phase-1) and a-posteriori (phase-2) ETEX model evaluations. The double benchmark actually constituted an invaluable experience for better understanding the skill and limits of the present long-range dispersion modelling capabilities. In particular, the strong difference between phase-1 and phase-2 model performance emphasised the opportunity to modify, improve or tune a number of specific aspects of the overall simulation. ETEX model runs were carried out with the Lagrangian particle model APOLLO. The meteorological input was constituted by ECMWF fields. Three-hourly average concentrations paired in space and time and time-integrated concentrations were used in the evaluation of the results, based on a set of statistical indexes and concentration contour lines and scatter diagrams

  10. Updating long-range transport model predictions using real-time monitoring data in case of nuclear accidents with release to the atmosphere

    International Nuclear Information System (INIS)

    Raes, Frank; Tassone, Caterina; Grippa, Gianni; Zarimpas, Nicolas; Graziani, Giovanni

    1991-01-01

    A procedure is developed to reduce the uncertainties of long-range transport model predictions, in case of a large scale nuclear accident. It is based on the availability in 'real time' of the concentrations of airborne radioactive aerosols from automatic on-line monitors, which are presently being installed throughout Europe. Essentially, the procedure consists of: (1) constructing new (area) source terms from the measured field data as they become available; and (2) restart the prediction with these sources, rather than with the original (point) source. The procedure is applied to the Chernobyl accident. It is shown that the procedure is feasible and might result in an improvement of the prediction of the location of the cloud by several hundreds of kilometers and the actual levels with an order of magnitude. The weak point is the treatment of the vertical structure and transport of the cloud, which can only be solved when 'real-time' upper air observations are also available. (author)

  11. Low frequency sound field enhancement system for rectangular rooms using multiple low frequency loudspeakers

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2006-01-01

    an enhancement system with extra loudspeakers the sound pressure level distribution along the listening area presents a significant improvement in the subwoofer frequency range. The system is simulated and implemented on the three different rooms and finally verified by measurements on the real rooms.......Rectangular rooms have strong influence on the low frequency performance of loudspeakers. Simulations of three different room sizes have been carried out using finite-difference time-domain method (FDTD) in order to predict the behaviour of the sound field at low frequencies. By using...

  12. An investigation of sound fields based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2011-01-01

    Various types of transducers are nowadays capable of translating different properties of sound waves into mechanical/electrical quantities, which can afterwards be reinterpreted into acoustical ones. However, in certain applications, for example when using microphone arrays, the presence of bulk...... range, and in two different measurement scenarios where the sound field is well-known: in a rectangular duct and in an anechoic room. Models for predicting the acousto-optic effect in such scenarios are derived and measurements are carried out with a laser Doppler vibrometer. The results show a fairly...

  13. Creep-fatigue life prediction for different heats of Type 304 stainless steel by linear-damage rule, strain-range partitioning method, and damage-rate approach

    International Nuclear Information System (INIS)

    Maiya, P.S.

    1978-07-01

    The creep-fatigue life results for five different heats of Type 304 stainless steel at 593 0 C (1100 0 F), generated under push-pull conditions in the axial strain-control mode, are presented. The life predictions for the various heats based on the linear-damage rule, strain-range partitioning method, and damage-rate approach are discussed. The appropriate material properties required for computation of fatigue life are also included

  14. Simulated rat intestinal fluid improves oral exposure prediction for poorly soluble compounds over a wide dose range

    Directory of Open Access Journals (Sweden)

    Joerg Berghausen

    2016-03-01

    Full Text Available Solubility can be the absorption limiting factor for drug candidates and is therefore a very important input parameter for oral exposure prediction of compounds with limited solubility. Biorelevant media of the fasted and fed state have been published for humans, as well as for dogs in the fasted state. In a drug discovery environment, rodents are the most common animal model to assess the oral exposure of drug candidates. In this study a rat simulated intestinal fluid (rSIF is proposed as a more physiologically relevant media to describe drug solubility in rats. Equilibrium solubility in this medium was tested as input parameter for physiologically-based pharmacokinetics (PBPK simulations of oral pharmacokinetics in the rat. Simulations were compared to those obtained using other solubility values as input parameters, like buffer at pH 6.8, human simulated intestinal fluid and a comprehensive dissolution assay based on rSIF. Our study on nine different compounds demonstrates that the incorporation of rSIF equilibrium solubility values into PBPK models of oral drug exposure can significantly improve the reliability of simulations in rats for doses up to 300 mg/kg compared to other media. The comprehensive dissolution assay may help to improve further simulation outcome, but the greater experimental effort as compared to equilibrium solubility may limit its use in a drug discovery environment. Overall, PBPK simulations based on solubility in the proposed rSIF medium can improve prioritizing compounds in drug discovery as well as planning dose escalation studies, e.g. during toxicological investigations.

  15. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2005-06-01

    This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.

  16. Re-examining Prostate-specific Antigen (PSA) Density: Defining the Optimal PSA Range and Patients for Using PSA Density to Predict Prostate Cancer Using Extended Template Biopsy.

    Science.gov (United States)

    Jue, Joshua S; Barboza, Marcelo Panizzutti; Prakash, Nachiketh S; Venkatramani, Vivek; Sinha, Varsha R; Pavan, Nicola; Nahar, Bruno; Kanabur, Pratik; Ahdoot, Michael; Dong, Yan; Satyanarayana, Ramgopal; Parekh, Dipen J; Punnen, Sanoj

    2017-07-01

    To compare the predictive accuracy of prostate-specific antigen (PSA) density vs PSA across different PSA ranges and by prior biopsy status in a prospective cohort undergoing prostate biopsy. Men from a prospective trial underwent an extended template biopsy to evaluate for prostate cancer at 26 sites throughout the United States. The area under the receiver operating curve assessed the predictive accuracy of PSA density vs PSA across 3 PSA ranges (10 ng/mL). We also investigated the effect of varying the PSA density cutoffs on the detection of cancer and assessed the performance of PSA density vs PSA in men with or without a prior negative biopsy. Among 1290 patients, 585 (45%) and 284 (22%) men had prostate cancer and significant prostate cancer, respectively. PSA density performed better than PSA in detecting any prostate cancer within a PSA of 4-10 ng/mL (area under the receiver operating characteristic curve [AUC]: 0.70 vs 0.53, P PSA >10 mg/mL (AUC: 0.84 vs 0.65, P PSA density was significantly more predictive than PSA in detecting any prostate cancer in men without (AUC: 0.73 vs 0.67, P PSA increases, PSA density becomes a better marker for predicting prostate cancer compared with PSA alone. Additionally, PSA density performed better than PSA in men with a prior negative biopsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Non-Wovens as Sound Reducers

    Science.gov (United States)

    Belakova, D.; Seile, A.; Kukle, S.; Plamus, T.

    2018-04-01

    Within the present study, the effect of hemp (40 wt%) and polyactide (60 wt%), non-woven surface density, thickness and number of fibre web layers on the sound absorption coefficient and the sound transmission loss in the frequency range from 50 to 5000 Hz is analysed. The sound insulation properties of the experimental samples have been determined, compared to the ones in practical use, and the possible use of material has been defined. Non-woven materials are ideally suited for use in acoustic insulation products because the arrangement of fibres produces a porous material structure, which leads to a greater interaction between sound waves and fibre structure. Of all the tested samples (A, B and D), the non-woven variant B exceeded the surface density of sample A by 1.22 times and 1.15 times that of sample D. By placing non-wovens one above the other in 2 layers, it is possible to increase the absorption coefficient of the material, which depending on the frequency corresponds to C, D, and E sound absorption classes. Sample A demonstrates the best sound absorption of all the three samples in the frequency range from 250 to 2000 Hz. In the test frequency range from 50 to 5000 Hz, the sound transmission loss varies from 0.76 (Sample D at 63 Hz) to 3.90 (Sample B at 5000 Hz).

  18. The mechanical behavior and reliability prediction of the HTR graphite component at various temperature and neutron dose ranges

    International Nuclear Information System (INIS)

    Fang, Xiang; Yu, Suyuan; Wang, Haitao; Li, Chenfeng

    2014-01-01

    Highlights: • The mechanical behavior of graphite component in HTRs under high temperature and neutron irradiation conditions is simulated. • The computational process of mechanical analysis is introduced. • Deformation, stresses and failure probability of the graphite component are obtained and discussed. • Various temperature and neutron dose ranges are selected in order to investigate the effect of in-core conditions on the results. - Abstract: In a pebble-bed high temperature gas-cooled reactor (HTR), nuclear graphite serves as the main structural material of the side reflectors. The reactor core is made up of a large number of graphite bricks. In the normal operation case of the reactor, the maximum temperature of the helium coolant commonly reaches about 750 °C. After around 30 years’ full power operation, the peak value of in-core fast neutron cumulative dose reaches to 1 × 10 22 n cm −2 (EDN). Such high temperature and neutron irradiation strongly impact the behavior of graphite component, causing obvious deformation. The temperature and neutron dose are unevenly distributed inside a graphite brick, resulting in stress concentrations. The deformation and stress concentration can both greatly affect safety and reliability of the graphite component. In addition, most of the graphite properties (such as Young's modulus and coefficient of thermal expansion) change remarkably under high temperature and neutron irradiations. The irradiation-induced creep also plays a very important role during the whole process, and provides a significant impact on the stress accumulation. In order to simulate the behavior of graphite component under various in-core conditions, all of the above factors must be considered carefully. In this paper, the deformation, stress distribution and failure probability of a side graphite component are studied at various temperature points and neutron dose levels. 400 °C, 500 °C, 600 °C and 750 °C are selected as the

  19. Escaping to the summits: phylogeography and predicted range dynamics of Cerastium dinaricum, an endangered high mountain plant endemic to the western Balkan Peninsula.

    Science.gov (United States)

    Kutnjak, Denis; Kuttner, Michael; Niketić, Marjan; Dullinger, Stefan; Schönswetter, Peter; Frajman, Božo

    2014-09-01

    The Balkans are a major European biodiversity hotspot, however, almost nothing is known about processes of intraspecific diversification of the region's high-altitude biota and their reaction to the predicted global warming. To fill this gap, genome size measurements, AFLP fingerprints, plastid and nuclear sequences were employed to explore the phylogeography of Cerastium dinaricum. Range size changes under future climatic conditions were predicted by niche-based modeling. Likely the most cold-adapted plant endemic to the Dinaric Mountains in the western Balkan Peninsula, the species has conservation priority in the European Union as its highly fragmented distribution range includes only few small populations. A deep phylogeographic split paralleled by divergent genome size separates the populations into two vicariant groups. Substructure is pronounced within the southeastern group, corresponding to the area's higher geographic complexity. Cerastium dinaricum likely responded to past climatic oscillations with altitudinal range shifts, which, coupled with high topographic complexity of the region and warmer climate in the Holocene, sculptured its present fragmented distribution. Field observations revealed that the species is rarer than previously assumed and, as shown by modeling, severely endangered by global warming as viable habitat was predicted to be reduced by more than 70% by the year 2080. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Estimation of occupancy, breeding success, and predicted abundance of golden eagles (Aquila chrysaetos) in the Diablo Range, California, 2014

    Science.gov (United States)

    Wiens, J. David; Kolar, Patrick S.; Fuller, Mark R.; Hunt, W. Grainger; Hunt, Teresa

    2015-01-01

    We used a multistate occupancy sampling design to estimate occupancy, breeding success, and abundance of territorial pairs of golden eagles (Aquila chrysaetos) in the Diablo Range, California, in 2014. This method uses the spatial pattern of detections and non-detections over repeated visits to survey sites to estimate probabilities of occupancy and successful reproduction while accounting for imperfect detection of golden eagles and their young during surveys. The estimated probability of detecting territorial pairs of golden eagles and their young was less than 1 and varied with time of the breeding season, as did the probability of correctly classifying a pair’s breeding status. Imperfect detection and breeding classification led to a sizeable difference between the uncorrected, naïve estimate of the proportion of occupied sites where successful reproduction was observed (0.20) and the model-based estimate (0.30). The analysis further indicated a relatively high overall probability of landscape occupancy by pairs of golden eagles (0.67, standard error = 0.06), but that areas with the greatest occupancy and reproductive potential were patchily distributed. We documented a total of 138 territorial pairs of golden eagles during surveys completed in the 2014 breeding season, which represented about one-half of the 280 pairs we estimated to occur in the broader 5,169-square kilometer region sampled. The study results emphasize the importance of accounting for imperfect detection and spatial heterogeneity in studies of site occupancy, breeding success, and abundance of golden eagles.

  1. Vibrometry Assessment of the External Thermal Composite Insulation Systems Influence on the Façade Airborne Sound Insulation

    Directory of Open Access Journals (Sweden)

    Daniel Urbán

    2018-05-01

    Full Text Available This paper verifies the impact of the use of an external thermal composite system (ETICS on air-borne sound insulation. For optimum accuracy over a wide frequency range, classical microphone based transmission measurements are combined with accelerometer based vibrometry measurements. Consistency is found between structural resonance frequencies and bending wave velocity dispersion curves determined by vibrometry on the one hand and spectral features of the sound reduction index, the ETICS mass-spring-mass resonance induced dip in the acoustic insulation spectrum, and the coincidence induced dip on the other hand. Scanning vibrometry proves to be an effective tool for structural assessment in the design phase of ETICS systems. The measured spectra are obtained with high resolution in wide frequency range, and yield sound insulation values are not affected by the room acoustic features of the laboratory transmission rooms. The complementarity between the microphone and accelerometer based results allows assessing the effect of ETICS on the sound insulation spectrum in an extended frequency range from 20 Hz to 10 kHz. The modified engineering ΔR prediction model for frequency range up to coincidence frequency of external plaster layer is recommended. Values for the sound reduction index obtained by a modified prediction method are consistent with the measured data.

  2. Tibial Eminence Involvement With Tibial Plateau Fracture Predicts Slower Recovery and Worse Postoperative Range of Knee Motion.

    Science.gov (United States)

    Konda, Sanjit R; Driesman, Adam; Manoli, Arthur; Davidovitch, Roy I; Egol, Kenneth A

    2017-07-01

    To examine 1-year functional and clinical outcomes in patients with tibial plateau fractures with tibial eminence involvement. Retrospective analysis of prospectively collected data. Academic Medical Center. All patients who presented with a tibial plateau fracture (Orthopaedic Trauma Association (OTA) 41-B and 41-C). Patients were divided into fractures with a tibial eminence component (+TE) and those without (-TE) cohorts. All patients underwent similar surgical approaches and fixation techniques for fractures. No tibial eminence fractures received fixation specifically. Short musculoskeletal functional assessment (SMFA), pain (Visual Analogue Scale), and knee range-of-motion (ROM) were evaluated at 3, 6, and 12 months postoperatively and compared between cohorts. Two hundred ninety-three patients were included for review. Patients with OTA 41-C fractures were more likely to have an associated TE compared with 41-B fractures (63% vs. 28%, P knee ROM (75.16 ± 51 vs. 86.82 ± 53 degree, P = 0.06). At 6 months, total SMFA and knee ROM was significantly worse in the +TE cohort (29 ± 17 vs. 21 ± 18, P ≤ 0.01; 115.6 ± 20 vs. 124.1 ± 15, P = 0.01). By 12 months postoperatively, only knee ROM remained significantly worse in the +TE cohort (118.7 ± 15 vs. 126.9 ± 13, P time points. Knee ROM remains worse throughout the postoperative period in the +TE cohort. Functional outcome improves less rapidly in the +TE cohort but achieves similar results by 1 year. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  3. Sound a very short introduction

    CERN Document Server

    Goldsmith, Mike

    2015-01-01

    Sound is integral to how we experience the world, in the form of noise as well as music. But what is sound? What is the physical basis of pitch and harmony? And how are sound waves exploited in musical instruments? Sound: A Very Short Introduction looks at the science of sound and the behaviour of sound waves with their different frequencies. It also explores sound in different contexts, covering the audible and inaudible, sound underground and underwater, acoustic and electronic sound, and hearing in humans and animals. It concludes with the problem of sound out of place—noise and its reduction.

  4. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  5. Sound-proof Sandwich Panel Design via Metamaterial Concept

    Science.gov (United States)

    Sui, Ni

    the core material maintains the mechanical property and yields a sound transmission loss that is consistently greater than 50 dB at low frequencies. Furthermore, the absorption property of the proposed honeycomb sandwich panel was experimentally studied. The honeycomb sandwich panel shows an excellent sound absorbing performance at high frequencies by using reinforced glass fiber without adding too much mass. The effect of the panel size and the stiffness of the grid-like frame effect of the honeycomb sandwich structures on sound transmission are discussed lastly. For the second sound-proof sandwich panel design, each unit cell of the sandwich panel is replaced by a Helmholtz resonator by perforating a small hole on the top face sheet. A perfect sound absorber sandwich panel with coupled Helmholtz resonators is proposed by two types: single identical Helmholtz resonator in each unit cell and dual Helmholtz resonators with different orifices, arranged in each cell arranged periodically. The soundproof sandwich panel is modelled as a panel embedded in rigid panel and assumed as a semiinfinite space with hard boundary condition. The net/mutual impedance model is first proposed and derived by solving Kirchhoff-Helmholtz integral by using the Green's function. The thermal-viscous energy dissipation at the thermal boundary layer dominates the total energy consumed. Two types of perfect sound absorber sandwich panel are designed in the last part. Two theoretical methods: the average energy and the equivalent surface impedance method are used to predict sound absorption performance. The geometry for perfect sound absorber sandwich panel at a target frequency can be obtained when the all the Helmholtz resonators are at resonance and the surface impedance of the sandwich panel matches the air impedance. The bandwidth for the identical sandwich panel mainly depends on the neck radius. The absorptive property of the dual Helmholtz resonators type of sandwich panel is studied by

  6. The velocity of sound

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)

  7. Michael Jackson's Sound Stages

    OpenAIRE

    Morten Michelsen

    2012-01-01

    In order to discuss analytically spatial aspects of recorded sound William Moylan’s concept of ‘sound stage’ is developed within a musicological framework as part of a sound paradigm which includes timbre, texture and sound stage. Two Michael Jackson songs (‘The Lady in My Life’ from 1982 and ‘Scream’ from 1995) are used to: a) demonstrate the value of such a conceptualisation, and b) demonstrate that the model has its limits, as record producers in the 1990s began ignoring the conventions of...

  8. What is Sound?

    OpenAIRE

    Nelson, Peter

    2014-01-01

    What is sound? This question is posed in contradiction to the every-day understanding that sound is a phenomenon apart from us, to be heard, made, shaped and organised. Thinking through the history of computer music, and considering the current configuration of digital communi-cations, sound is reconfigured as a type of network. This network is envisaged as non-hierarchical, in keeping with currents of thought that refuse to prioritise the human in the world. The relationship of sound to musi...

  9. Light and Sound

    CERN Document Server

    Karam, P Andrew

    2010-01-01

    Our world is largely defined by what we see and hear-but our uses for light and sound go far beyond simply seeing a photo or hearing a song. A concentrated beam of light, lasers are powerful tools used in industry, research, and medicine, as well as in everyday electronics like DVD and CD players. Ultrasound, sound emitted at a high frequency, helps create images of a developing baby, cleans teeth, and much more. Light and Sound teaches how light and sound work, how they are used in our day-to-day lives, and how they can be used to learn about the universe at large.

  10. Habitat Modeling of Marine Mammals as Function of Oceanographic Characteristics; Development of Predictive Tools for Assessing and Managing the Risks and the Impacts due to Sound Emissions

    Science.gov (United States)

    2010-09-30

    Mediterranean sea, using visual observations data obtained from the NURC/ Sirena databases (Figure 3). Cuvier’s beaked whale was chosen as target species. The...calibration site) was tested. LIGURIAN SEA ALBORAN SEA NURC Trials Sirena 01 Sirena 02 Sirena 03 Sirena 08 Time Period 17-Sep 5 - 23 July 25-Aug...These predictions were overlaid with the Cuvier’s beaked whale observations collected during the Sirena 08 cruise. The accuracy of the a priori

  11. Early Sound Symbolism for Vowel Sounds

    Directory of Open Access Journals (Sweden)

    Ferrinne Spector

    2013-06-01

    Full Text Available Children and adults consistently match some words (e.g., kiki to jagged shapes and other words (e.g., bouba to rounded shapes, providing evidence for non-arbitrary sound–shape mapping. In this study, we investigated the influence of vowels on sound–shape matching in toddlers, using four contrasting pairs of nonsense words differing in vowel sound (/i/ as in feet vs. /o/ as in boat and four rounded–jagged shape pairs. Crucially, we used reduplicated syllables (e.g., kiki vs. koko rather than confounding vowel sound with consonant context and syllable variability (e.g., kiki vs. bouba. Toddlers consistently matched words with /o/ to rounded shapes and words with /i/ to jagged shapes (p < 0.01. The results suggest that there may be naturally biased correspondences between vowel sound and shape.

  12. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    Science.gov (United States)

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  13. Assessment and improvement of sound quality in cochlear implant users.

    Science.gov (United States)

    Caldwell, Meredith T; Jiam, Nicole T; Limb, Charles J

    2017-06-01

    Cochlear implants (CIs) have successfully provided speech perception to individuals with sensorineural hearing loss. Recent research has focused on more challenging acoustic stimuli such as music and voice emotion. The purpose of this review is to evaluate and describe sound quality in CI users with the purposes of summarizing novel findings and crucial information about how CI users experience complex sounds. Here we review the existing literature on PubMed and Scopus to present what is known about perceptual sound quality in CI users, discuss existing measures of sound quality, explore how sound quality may be effectively studied, and examine potential strategies of improving sound quality in the CI population. Sound quality, defined here as the perceived richness of an auditory stimulus, is an attribute of implant-mediated listening that remains poorly studied. Sound quality is distinct from appraisal, which is generally defined as the subjective likability or pleasantness of a sound. Existing studies suggest that sound quality perception in the CI population is limited by a range of factors, most notably pitch distortion and dynamic range compression. Although there are currently very few objective measures of sound quality, the CI-MUSHRA has been used as a means of evaluating sound quality. There exist a number of promising strategies to improve sound quality perception in the CI population including apical cochlear stimulation, pitch tuning, and noise reduction processing strategies. In the published literature, sound quality perception is severely limited among CI users. Future research should focus on developing systematic, objective, and quantitative sound quality metrics and designing therapies to mitigate poor sound quality perception in CI users. NA.

  14. Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America.

    Science.gov (United States)

    McIntyre, Shannon; Rangel, Elizabeth F; Ready, Paul D; Carvalho, Bruno M

    2017-03-24

    Before 1996 the phlebotomine sand fly Lutzomyia neivai was usually treated as a synonym of the morphologically similar Lutzomyia intermedia, which has long been considered a vector of Leishmania braziliensis, the causative agent of much cutaneous leishmaniasis in South America. This report investigates the likely range changes of both sand fly species in response to a stabilisation climate change scenario (RCP4.5) and a high greenhouse gas emissions one (RCP8.5). Ecological niche modelling was used to identify areas of South America with climates currently suitable for each species, and then the future distributions of these climates were predicted based on climate change scenarios. Compared with the previous ecological niche model of L. intermedia (sensu lato) produced using the GARP algorithm in 2003, the current investigation modelled the two species separately, making use of verified presence records and additional records after 2001. Also, the new ensemble approach employed ecological niche modelling algorithms (including Maximum Entropy, Random Forests and Support Vector Machines) that have been widely adopted since 2003 and perform better than GARP, as well as using a more recent climate change model (HadGEM2) considered to have better performance at higher resolution than the earlier one (HadCM2). Lutzomyia intermedia was shown to be the more tropical of the two species, with its climatic niche defined by higher annual mean temperatures and lower temperature seasonality, in contrast to the more subtropical L. neivai. These different latitudinal ranges explain the two species' predicted responses to climate change by 2050, with L. intermedia mostly contracting its range (except perhaps in northeast Brazil) and L. neivai mostly shifting its range southwards in Brazil and Argentina. This contradicts the findings of the 2003 report, which predicted more range expansion. The different findings can be explained by the improved data sets and modelling methods. Our

  15. Infra-sound cancellation and mitigation in wind turbines

    Science.gov (United States)

    Boretti, Albert; Ordys, Andrew; Al Zubaidy, Sarim

    2018-03-01

    The infra-sound spectra recorded inside homes located even several kilometres far from wind turbine installations is characterized by large pressure fluctuation in the low frequency range. There is a significant body of literature suggesting inaudible sounds at low frequency are sensed by humans and affect the wellbeing through different mechanisms. These mechanisms include amplitude modulation of heard sounds, stimulating subconscious pathways, causing endolymphatic hydrops, and possibly potentiating noise-induced hearing loss. We suggest the study of infra-sound active cancellation and mitigation to address the low frequency noise issues. Loudspeakers generate pressure wave components of same amplitude and frequency but opposite phase of the recorded infra sound. They also produce pressure wave components within the audible range reducing the perception of the infra-sound to minimize the sensing of the residual infra sound.

  16. InfoSound

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.; Gopinath, B.; Haberman, Gary O.

    1990-01-01

    The authors explore ways to enhance users' comprehension of complex applications using music and sound effects to present application-program events that are difficult to detect visually. A prototype system, Infosound, allows developers to create and store musical sequences and sound effects with...

  17. Breaking the Sound Barrier

    Science.gov (United States)

    Brown, Tom; Boehringer, Kim

    2007-01-01

    Students in a fourth-grade class participated in a series of dynamic sound learning centers followed by a dramatic capstone event--an exploration of the amazing Trashcan Whoosh Waves. It's a notoriously difficult subject to teach, but this hands-on, exploratory approach ignited student interest in sound, promoted language acquisition, and built…

  18. Sound propagation in cities

    NARCIS (Netherlands)

    Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.

    2009-01-01

    A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak

  19. OMNIDIRECTIONAL SOUND SOURCE

    DEFF Research Database (Denmark)

    1996-01-01

    A sound source comprising a loudspeaker (6) and a hollow coupler (4) with an open inlet which communicates with and is closed by the loudspeaker (6) and an open outlet, said coupler (4) comprising rigid walls which cannot respond to the sound pressures produced by the loudspeaker (6). According...

  20. Hamiltonian Algorithm Sound Synthesis

    OpenAIRE

    大矢, 健一

    2013-01-01

    Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.

  1. Poetry Pages. Sound Effects.

    Science.gov (United States)

    Fina, Allan de

    1992-01-01

    Explains how elementary teachers can help students understand onomatopoeia, suggesting that they define onomatopoeia, share examples of it, read poems and have students discuss onomatopoeic words, act out common household sounds, write about sound effects, and create choral readings of onomatopoeic poems. Two appropriate poems are included. (SM)

  2. Exploring Noise: Sound Pollution.

    Science.gov (United States)

    Rillo, Thomas J.

    1979-01-01

    Part one of a three-part series about noise pollution and its effects on humans. This section presents the background information for teachers who are preparing a unit on sound. The next issues will offer learning activities for measuring the effects of sound and some references. (SA)

  3. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: North Puget Sound Lowlands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected Light Detection and Ranging (LiDAR) data contributing to the Puget Sound Lowlands project of 2005. Arlington, City of Snohomish, Snohomish...

  4. Efficient Coding and Statistically Optimal Weighting of Covariance among Acoustic Attributes in Novel Sounds

    Science.gov (United States)

    Stilp, Christian E.; Kluender, Keith R.

    2012-01-01

    To the extent that sensorineural systems are efficient, redundancy should be extracted to optimize transmission of information, but perceptual evidence for this has been limited. Stilp and colleagues recently reported efficient coding of robust correlation (r = .97) among complex acoustic attributes (attack/decay, spectral shape) in novel sounds. Discrimination of sounds orthogonal to the correlation was initially inferior but later comparable to that of sounds obeying the correlation. These effects were attenuated for less-correlated stimuli (r = .54) for reasons that are unclear. Here, statistical properties of correlation among acoustic attributes essential for perceptual organization are investigated. Overall, simple strength of the principal correlation is inadequate to predict listener performance. Initial superiority of discrimination for statistically consistent sound pairs was relatively insensitive to decreased physical acoustic/psychoacoustic range of evidence supporting the correlation, and to more frequent presentations of the same orthogonal test pairs. However, increased range supporting an orthogonal dimension has substantial effects upon perceptual organization. Connectionist simulations and Eigenvalues from closed-form calculations of principal components analysis (PCA) reveal that perceptual organization is near-optimally weighted to shared versus unshared covariance in experienced sound distributions. Implications of reduced perceptual dimensionality for speech perception and plausible neural substrates are discussed. PMID:22292057

  5. Waveform analysis of sound

    CERN Document Server

    Tohyama, Mikio

    2015-01-01

    What is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduat...

  6. Sound classification of dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2012-01-01

    National schemes for sound classification of dwellings exist in more than ten countries in Europe, typically published as national standards. The schemes define quality classes reflecting different levels of acoustical comfort. Main criteria concern airborne and impact sound insulation between...... dwellings, facade sound insulation and installation noise. The schemes have been developed, implemented and revised gradually since the early 1990s. However, due to lack of coordination between countries, there are significant discrepancies, and new standards and revisions continue to increase the diversity...... is needed, and a European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs 2009-2013, one of the main objectives being to prepare a proposal for a European sound classification scheme with a number of quality...

  7. Time course of dynamic range adaptation in the auditory nerve

    Science.gov (United States)

    Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand

    2012-01-01

    Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common sound levels (Wen B, Wang GI, Dean I, Delgutte B. J Neurosci 29: 13797–13808, 2009). We investigated the time course of dynamic range adaptation by recording from AN fibers with a stimulus in which the sound levels periodically switch from one nonuniform level distribution to another (Dean I, Robinson BL, Harper NS, McAlpine D. J Neurosci 28: 6430–6438, 2008). Dynamic range adaptation occurred rapidly, but its exact time course was difficult to determine directly from the data because of the concomitant firing rate adaptation. To characterize the time course of dynamic range adaptation without the confound of firing rate adaptation, we developed a phenomenological “dual adaptation” model that accounts for both forms of AN adaptation. When fitted to the data, the model predicts that dynamic range adaptation occurs as rapidly as firing rate adaptation, over 100–400 ms, and the time constants of the two forms of adaptation are correlated. These findings suggest that adaptive processing in the auditory periphery in response to changes in mean sound level occurs rapidly enough to have significant impact on the coding of natural sounds. PMID:22457465

  8. SU-C-204-01: A Fast Analytical Approach for Prompt Gamma and PET Predictions in a TPS for Proton Range Verification

    International Nuclear Information System (INIS)

    Kroniger, K; Herzog, M; Landry, G; Dedes, G; Parodi, K; Traneus, E

    2015-01-01

    Purpose: We describe and demonstrate a fast analytical tool for prompt-gamma emission prediction based on filter functions applied on the depth dose profile. We present the implementation in a treatment planning system (TPS) of the same algorithm for positron emitter distributions. Methods: The prediction of the desired observable is based on the convolution of filter functions with the depth dose profile. For both prompt-gammas and positron emitters, the results of Monte Carlo simulations (MC) are compared with those of the analytical tool. For prompt-gamma emission from inelastic proton-induced reactions, homogeneous and inhomogeneous phantoms alongside with patient data are used as irradiation targets of mono-energetic proton pencil beams. The accuracy of the tool is assessed in terms of the shape of the analytically calculated depth profiles and their absolute yields, compared to MC. For the positron emitters, the method is implemented in a research RayStation TPS and compared to MC predictions. Digital phantoms and patient data are used and positron emitter spatial density distributions are analyzed. Results: Calculated prompt-gamma profiles agree with MC within 3 % in terms of absolute yield and reproduce the correct shape. Based on an arbitrary reference material and by means of 6 filter functions (one per chemical element), profiles in any other material composed of those elements can be predicted. The TPS implemented algorithm is accurate enough to enable, via the analytically calculated positron emitters profiles, detection of range differences between the TPS and MC with errors of the order of 1–2 mm. Conclusion: The proposed analytical method predicts prompt-gamma and positron emitter profiles which generally agree with the distributions obtained by a full MC. The implementation of the tool in a TPS shows that reliable profiles can be obtained directly from the dose calculated by the TPS, without the need of full MC simulation

  9. Climate and pH predict the potential range of the invasive apple snail (Pomacea insularum in the southeastern United States.

    Directory of Open Access Journals (Sweden)

    James E Byers

    Full Text Available Predicting the potential range of invasive species is essential for risk assessment, monitoring, and management, and it can also inform us about a species' overall potential invasiveness. However, modeling the distribution of invasive species that have not reached their equilibrium distribution can be problematic for many predictive approaches. We apply the modeling approach of maximum entropy (MaxEnt that is effective with incomplete, presence-only datasets to predict the distribution of the invasive island apple snail, Pomacea insularum. This freshwater snail is native to South America and has been spreading in the USA over the last decade from its initial introductions in Texas and Florida. It has now been documented throughout eight southeastern states. The snail's extensive consumption of aquatic vegetation and ability to accumulate and transmit algal toxins through the food web heighten concerns about its spread. Our model shows that under current climate conditions the snail should remain mostly confined to the coastal plain of the southeastern USA where it is limited by minimum temperature in the coldest month and precipitation in the warmest quarter. Furthermore, low pH waters (pH <5.5 are detrimental to the snail's survival and persistence. Of particular note are low-pH blackwater swamps, especially Okefenokee Swamp in southern Georgia (with a pH below 4 in many areas, which are predicted to preclude the snail's establishment even though many of these areas are well matched climatically. Our results elucidate the factors that affect the regional distribution of P. insularum, while simultaneously presenting a spatial basis for the prediction of its future spread. Furthermore, the model for this species exemplifies that combining climatic and habitat variables is a powerful way to model distributions of invasive species.

  10. Effect of a magnetic field on fourth sound in 3He

    International Nuclear Information System (INIS)

    Daly, K.

    1988-01-01

    The influence of a magnetic field on the propagation of fourth sound in superfluid 3 He is studied. The field and temperature dependences of the average superfluid density /anti rho//sub s///rho/ and fourth sound Q are measured. The field dependence of /anti rho//sub s///rho/ is very different in a porous medium than predicted by Ginzburg-Landau theory applied to bulk liquid. In particular, a magnetic suppression of /anti rho//sub s///rho/ is observed in the temperature and pressure ranges corresponding to the A phase in bulk liquid. There is strong evidence of a magnetic suppression of T/sub c/ itself. The measured /anti rho//sub s///rho/ has a slight history dependence in a magnetic field, but none in zero field. The fourth-sound Q values are compared to the theoretical work of Smith, Jensen, and Wolfle. Quantitative confirmation of their work is problematic

  11. The sound manifesto

    Science.gov (United States)

    O'Donnell, Michael J.; Bisnovatyi, Ilia

    2000-11-01

    Computing practice today depends on visual output to drive almost all user interaction. Other senses, such as audition, may be totally neglected, or used tangentially, or used in highly restricted specialized ways. We have excellent audio rendering through D-A conversion, but we lack rich general facilities for modeling and manipulating sound comparable in quality and flexibility to graphics. We need coordinated research in several disciplines to improve the use of sound as an interactive information channel. Incremental and separate improvements in synthesis, analysis, speech processing, audiology, acoustics, music, etc. will not alone produce the radical progress that we seek in sonic practice. We also need to create a new central topic of study in digital audio research. The new topic will assimilate the contributions of different disciplines on a common foundation. The key central concept that we lack is sound as a general-purpose information channel. We must investigate the structure of this information channel, which is driven by the cooperative development of auditory perception and physical sound production. Particular audible encodings, such as speech and music, illuminate sonic information by example, but they are no more sufficient for a characterization than typography is sufficient for characterization of visual information. To develop this new conceptual topic of sonic information structure, we need to integrate insights from a number of different disciplines that deal with sound. In particular, we need to coordinate central and foundational studies of the representational models of sound with specific applications that illuminate the good and bad qualities of these models. Each natural or artificial process that generates informative sound, and each perceptual mechanism that derives information from sound, will teach us something about the right structure to attribute to the sound itself. The new Sound topic will combine the work of computer

  12. Predicting Human Mobility Patterns in Marine Ecosystems: Entropy and Home Range Calculations Based on High-Resolution Fishing Vessel Tracking Data

    Science.gov (United States)

    Murawski, S. A.

    2016-02-01

    A number of recent studies have developed metrics of human mobility patterns based on georeferenced cell phone records. The studies generally indicate a high degree of predictability in human location and relatively narrow home ranges for most people. In marine ecosystems there are a number of important uses for such calculations including marine spatial planning and predicting the impacts of marine management options such as establishing marine protected areas (MPAs). In this study we use individual fishing vessel satellite tracking (VMS) records ( 30 million records) obtained from commercial reef fish fishing vessels in the Gulf of Mexico during 2006-2014. This period witnessed the establishment of a variety of new regulations including individual fishing quotas (IFQs) for snapper, grouper, and tilefish, establishment of spatial-area closures, and the temporary closure of as much as 85,000 nautical miles of productive fishing grounds associated with the Deepwater Horizon oil spill accident. Vessel positions were obtained, with a location frequency of one hour. From these VMS data we calculated three measures of entropy (degree of repeatability in spatial use), as well as calculated the axis of gyration (home range) for each vessel in the data set. These calculations were related to a variety of descriptor variables including vessel size, distance from home port to predominant fishing grounds, revenue generated on fishing trips, and fishing regulations. The applicability of these calculations to marine resource management applications is discussed.

  13. Light aircraft sound transmission studies - Noise reduction model

    Science.gov (United States)

    Atwal, Mahabir S.; Heitman, Karen E.; Crocker, Malcolm J.

    1987-01-01

    Experimental tests conducted on the fuselage of a single-engine Piper Cherokee light aircraft suggest that the cabin interior noise can be reduced by increasing the transmission loss of the dominant sound transmission paths and/or by increasing the cabin interior sound absorption. The validity of using a simple room equation model to predict the cabin interior sound-pressure level for different fuselage and exterior sound field conditions is also presented. The room equation model is based on the sound power flow balance for the cabin space and utilizes the measured transmitted sound intensity data. The room equation model predictions were considered good enough to be used for preliminary acoustical design studies.

  14. Extended-range prediction trials using the global cloud/cloud-system resolving model NICAM and its new ocean-coupled version NICOCO

    Science.gov (United States)

    Miyakawa, Tomoki

    2017-04-01

    The global cloud/cloud-system resolving model NICAM and its new fully-coupled version NICOCO is run on one of the worlds top-tier supercomputers, the K computer. NICOCO couples the full-3D ocean component COCO of the general circulation model MIROC using a general-purpose coupler Jcup. We carried out multiple MJO simulations using NICAM and the new ocean-coupled version NICOCO to examine their extended-range MJO prediction skills and the impact of ocean coupling. NICAM performs excellently in terms of MJO prediction, maintaining a valid skill up to 27 days after the model is initialized (Miyakawa et al 2014). As is the case in most global models, ocean coupling frees the model from being anchored by the observed SST and allows the model climate to drift away further from reality compared to the atmospheric version of the model. Thus, it is important to evaluate the model bias, and in an initial value problem such as the seasonal extended-range prediction, it is essential to be able to distinguish the actual signal from the early transition of the model from the observed state to its own climatology. Since NICAM is a highly resource-demanding model, evaluation and tuning of the model climatology (order of years) is challenging. Here we focus on the initial 100 days to estimate the early drift of the model, and subsequently evaluate MJO prediction skills of NICOCO. Results show that in the initial 100 days, NICOCO forms a La-Nina like SST bias compared to observation, with a warmer Maritime Continent warm pool and a cooler equatorial central Pacific. The enhanced convection over the Maritime Continent associated with this bias project on to the real-time multi-variate MJO indices (RMM, Wheeler and Hendon 2004), and contaminates the MJO skill score. However, the bias does not appear to demolish the MJO signal severely. The model maintains a valid MJO prediction skill up to nearly 4 weeks when evaluated after linearly removing the early drift component estimated from

  15. Digitizing a sound archive

    DEFF Research Database (Denmark)

    Cone, Louise

    2017-01-01

    Danish and international artists. His methodology left us with a large collection of unique and inspirational time-based media sound artworks that have, until very recently, been inaccessible. Existing on an array of different media formats, such as open reel tapes, 8-track and 4 track cassettes, VHS......In 1990 an artist by the name of William Louis Sørensen was hired by the National Gallery of Denmark to collect important works of art – made from sound. His job was to acquire sound art, but also recordings that captured rare artistic occurrences, music, performances and happenings from both...

  16. Decay of reverberant sound in a spherical enclosure

    International Nuclear Information System (INIS)

    Carroll, M.M.; Chien, C.F.

    1977-01-01

    The assumption of diffuse reflection (Lambert's Law) leads to integral equations for the wall intensity in a reverberant sound field in the steady state and during decay. The latter equation, in the special case of a spherical enclosure with uniformly absorbent walls and uniform wall intensity, allows exponential decay with a decay time which agrees closely with the Norris--Eyring prediction. The sound-intensity and sound-energy density in the medium, during decay, are also calculated

  17. Framing sound: Using expectations to reduce environmental noise annoyance.

    Science.gov (United States)

    Crichton, Fiona; Dodd, George; Schmid, Gian; Petrie, Keith J

    2015-10-01

    Annoyance reactions to environmental noise, such as wind turbine sound, have public health implications given associations between annoyance and symptoms related to psychological distress. In the case of wind farms, factors contributing to noise annoyance have been theorised to include wind turbine sound characteristics, the noise sensitivity of residents, and contextual aspects, such as receiving information creating negative expectations about sound exposure. The experimental aim was to assess whether receiving positive or negative expectations about wind farm sound would differentially influence annoyance reactions during exposure to wind farm sound, and also influence associations between perceived noise sensitivity and noise annoyance. Sixty volunteers were randomly assigned to receive either negative or positive expectations about wind farm sound. Participants in the negative expectation group viewed a presentation which incorporated internet material indicating that exposure to wind turbine sound, particularly infrasound, might present a health risk. Positive expectation participants viewed a DVD which framed wind farm sound positively and included internet information about the health benefits of infrasound exposure. Participants were then simultaneously exposed to sub-audible infrasound and audible wind farm sound during two 7 min exposure sessions, during which they assessed their experience of annoyance. Positive expectation participants were significantly less annoyed than negative expectation participants, while noise sensitivity only predicted annoyance in the negative group. Findings suggest accessing negative information about sound is likely to trigger annoyance, particularly in noise sensitive people and, importantly, portraying sound positively may reduce annoyance reactions, even in noise sensitive individuals. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Sounds of Web Advertising

    DEFF Research Database (Denmark)

    Jessen, Iben Bredahl; Graakjær, Nicolai Jørgensgaard

    2010-01-01

    Sound seems to be a neglected issue in the study of web ads. Web advertising is predominantly regarded as visual phenomena–commercial messages, as for instance banner ads that we watch, read, and eventually click on–but only rarely as something that we listen to. The present chapter presents...... an overview of the auditory dimensions in web advertising: Which kinds of sounds do we hear in web ads? What are the conditions and functions of sound in web ads? Moreover, the chapter proposes a theoretical framework in order to analyse the communicative functions of sound in web advertising. The main...... argument is that an understanding of the auditory dimensions in web advertising must include a reflection on the hypertextual settings of the web ad as well as a perspective on how users engage with web content....

  19. Sound Art Situations

    DEFF Research Database (Denmark)

    Krogh Groth, Sanne; Samson, Kristine

    2017-01-01

    and combine theories from several fields. Aspects of sound art studies, performance studies and contemporary art studies are presented in order to theoretically explore the very diverse dimensions of the two sound art pieces: Visual, auditory, performative, social, spatial and durational dimensions become......This article is an analysis of two sound art performances that took place June 2015 in outdoor public spaces in the social housing area Urbanplanen in Copenhagen, Denmark. The two performances were On the production of a poor acoustics by Brandon LaBelle and Green Interactive Biofeedback...... Environments (GIBE) by Jeremy Woodruff. In order to investigate the complex situation that arises when sound art is staged in such contexts, the authors of this article suggest exploring the events through approaching them as ‘situations’ (Doherty 2009). With this approach it becomes possible to engage...

  20. It sounds good!

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Both the atmosphere and we ourselves are hit by hundreds of particles every second and yet nobody has ever heard a sound coming from these processes. Like cosmic rays, particles interacting inside the detectors at the LHC do not make any noise…unless you've decided to use the ‘sonification’ technique, in which case you might even hear the Higgs boson sound like music. Screenshot of the first page of the "LHC sound" site. A group of particle physicists, composers, software developers and artists recently got involved in the ‘LHC sound’ project to make the particles at the LHC produce music. Yes…music! The ‘sonification’ technique converts data into sound. “In this way, if you implement the right software you can get really nice music out of the particle tracks”, says Lily Asquith, a member of the ATLAS collaboration and one of the initiators of the project. The ‘LHC...

  1. Sound Visualization and Holography

    Science.gov (United States)

    Kock, Winston E.

    1975-01-01

    Describes liquid surface holograms including their application to medicine. Discusses interference and diffraction phenomena using sound wave scanning techniques. Compares focussing by zone plate to holographic image development. (GH)

  2. A Survey of Kurdish Students’ Sound Segment & Syllabic Pattern Errors in the Course of Learning EFL

    Directory of Open Access Journals (Sweden)

    Jahangir Mohammadi

    2014-06-01

    Full Text Available This paper is devoted to finding adequate answers to the following queries: (A what are the segmental and syllabic pattern errors made by Kurdish students in their pronunciation? (B Can the problematic areas in pronunciation be predicted by a systematic comparison of the sound systems of both native and target languages? (C Can there be any consistency between the predictions and the results of the error analysis experiments in the same field? To reach the goals of the study the following steps were taken; 1.The sound systems and syllabic patterns of both languages Kurdish and English were clearly described on the basis of place and manner of articulation and the combinatory power of clusters. 2. To carry out a contrastive analysis, the sound segments (vowels, consonants and diphthongs and the syllabic patterns of both languages were compared in order to surface the similarities and differences.  3. The syllabic patterns and sound segments in English that had no counterparts in Kurdish were detected and considered as problematic areas in pronunciation. 4. To countercheck the acquired predictions, an experiment was carried out with 50 male and female pre-university students. Subjects were given some passages to read. The readability index of these passages ranged from 8.775 to 10.432 which are quite suitable in comparison to the readability index of pre-university texts ranging from 8.675 to 10.475. All samples of bound production were transcribed in IPA and the syllabic patterns were shown by symbols ‘V’ and ‘C’ indicating vowels and consonants respectively. An error analysis of the acquired data proved that English sound segments and syllabic patterns with no counterparts in Kurdish resulted in pronunciation errors.

  3. On the applicability of models for outdoor sound

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1999-01-01

    not only sound pressure levels but also phase information. Such methods are, however, not always able to predict the sound field for more complicated scenarios involving terrain features, atmospheric wind and temperature gradients and turbulence. Another class of methods is based upon approximate theory......The suitable prediction model for outdoor sound fields depends on the situation and the application. Computationally intensive methods such as Parabolic Equation methods, FFP methods and Boundary Element Methods all have advantages in certain situations. These approaches are accurate and predict...

  4. On the applicability of models for outdoor sound (A)

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1999-01-01

    not only sound pressure levels but also phase information. Such methods are, however, not always able to predict the sound field for more complicated scenarios involving terrain features, atmospheric wind and temperature gradients, and turbulence. Another class of methods is based upon approximate theory......The suitable prediction model for outdoor sound fields depends on the situation and the application. Computationally intensive methods such as parabolic equation methods, FFP methods, and boundary element methods all have advantages in certain situations. These approaches are accurate and predict...

  5. Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range.

    Science.gov (United States)

    Deng, Cecilia H; Plummer, Kim M; Jones, Darcy A B; Mesarich, Carl H; Shiller, Jason; Taranto, Adam P; Robinson, Andrew J; Kastner, Patrick; Hall, Nathan E; Templeton, Matthew D; Bowen, Joanna K

    2017-05-02

    Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are V. inaequalis, which infects apple, and V. pirina, which is a pathogen of European pear. Given that Venturia fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of Venturia with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity. Genomes of Venturia pirina (one European pear scab isolate) and Venturia inaequalis (three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific V. inaequalis isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to Venturia, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to Leptosphaeria maculans AvrLm6 and the Verticillium spp. Ave1 were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes. Comparative secretomics has revealed candidate effectors from Venturia fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host

  6. Computerised respiratory sounds can differentiate smokers and non-smokers.

    Science.gov (United States)

    Oliveira, Ana; Sen, Ipek; Kahya, Yasemin P; Afreixo, Vera; Marques, Alda

    2017-06-01

    Cigarette smoking is often associated with the development of several respiratory diseases however, if diagnosed early, the changes in the lung tissue caused by smoking may be reversible. Computerised respiratory sounds have shown to be sensitive to detect changes within the lung tissue before any other measure, however it is unknown if it is able to detect changes in the lungs of healthy smokers. This study investigated the differences between computerised respiratory sounds of healthy smokers and non-smokers. Healthy smokers and non-smokers were recruited from a university campus. Respiratory sounds were recorded simultaneously at 6 chest locations (right and left anterior, lateral and posterior) using air-coupled electret microphones. Airflow (1.0-1.5 l/s) was recorded with a pneumotachograph. Breathing phases were detected using airflow signals and respiratory sounds with validated algorithms. Forty-four participants were enrolled: 18 smokers (mean age 26.2, SD = 7 years; mean FEV 1 % predicted 104.7, SD = 9) and 26 non-smokers (mean age 25.9, SD = 3.7 years; mean FEV 1 % predicted 96.8, SD = 20.2). Smokers presented significantly higher frequency at maximum sound intensity during inspiration [(M = 117, SD = 16.2 Hz vs. M = 106.4, SD = 21.6 Hz; t(43) = -2.62, p = 0.0081, d z  = 0.55)], lower expiratory sound intensities (maximum intensity: [(M = 48.2, SD = 3.8 dB vs. M = 50.9, SD = 3.2 dB; t(43) = 2.68, p = 0.001, d z  = -0.78)]; mean intensity: [(M = 31.2, SD = 3.6 dB vs. M = 33.7,SD = 3 dB; t(43) = 2.42, p = 0.001, d z  = 0.75)] and higher number of inspiratory crackles (median [interquartile range] 2.2 [1.7-3.7] vs. 1.5 [1.2-2.2], p = 0.081, U = 110, r = -0.41) than non-smokers. Significant differences between computerised respiratory sounds of smokers and non-smokers have been found. Changes in respiratory sounds are often the earliest sign of disease. Thus, computerised respiratory sounds

  7. Applications of the KKR-DCA: A Finite-Temperature Density Functional Theory to Predict Chemical Short-Range Order Effects in Disordered Metallic Alloys

    Science.gov (United States)

    Biava, D. A.; Johnson, D. D.

    2009-03-01

    Short-range order (SRO) is ubiquitous in metallic alloys, affecting changes in their electronic, thermodynamic, mechanical, magnetic, and structural properties. For example, SRO is responsible for the yield-strength anomalies observed in Cu-Al at high temperatures, i.e., the materials is more resistant to dislocation motion at high temperature than it is at room temperature. Within the Korringa-Kohn-Rostorker (KKR) electronic-structure method, we present results using the dynamical cluster approximations (DCA) to obtain the temperature-dependent SRO in disordered alloys. We obtain the KKR-DCA SRO energetics versus local neighbor SRO parameters and minimize it at fixed temperature to predict the SRO. We show that the calculated SRO at fixed temperature compares well with available experimental results, and then correlate the results to the electronic structure. We discuss how an accurate analytic estimate can be made for the SRO in most metals due to the dependence of the grand potential on SRO.

  8. Kinetic-sound propagation in dilute gas mixtures

    International Nuclear Information System (INIS)

    Campa, A.; Cohen, E.G.D.

    1989-01-01

    Kinetic sound is predicted in dilute disparate-mass binary gas mixtures, propagating exclusively in the light compound and much faster than ordinary sound. It should be detectable by light-scattering experiments, as an extended shoulder in the scattering cross section for large frequencies. As an example, H 2 -Ar mixtures are discussed

  9. Mitigation of Atmospheric Delay in SAR Absolute Ranging Using Global Numerical Weather Prediction Data: Corner Reflector Experiments at 3 Different Test Sites

    Science.gov (United States)

    Cong, Xiaoying; Balss, Ulrich; Eineder, Michael

    2015-04-01

    The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the

  10. Enroute NASA/FAA low-frequency propfan test in Alabama (October 1987): A versatile atmospheric aircraft long-range noise prediction system

    Science.gov (United States)

    Tsouka, Despina G.

    In order to obtain a flight-to-static noise prediction of an advanced Turboprop (propfan) Aircraft, FAA went on an elaboration of the data that were measured during a full scale measuring program that was conducted by NASA and FAA/DOT/TSC on October 1987 in Alabama. The elaboration process was based on aircraft simulation to a point source, on an atmospheric two dimensional noise model, on the American National Standard algorithm for the calculation of atmospheric absortion, and on the DOT/TSC convention for ground reflection effects. Using the data of the Alabama measurements, the present paper examines the development of a generalized, flexible and more accurate process for the evaluation of the static and flight low-frequency long-range noise data. This paper also examines the applicability of the assumptions made by the Integrated Noise Model about linear propagation, of the three dimensional Hamiltonian Rays Tracing model and of the Weyl-Van der Pol model. The model proposes some assumptions in order to increase the calculations flexibility without significant loss of accuracy. In addition, it proposes the usage of the three dimensional Hamiltonian Rays Tracing model and the Weyl-Van der Pol model in order to increase the accuracy and to ensure the generalization of noise propagation prediction over grounds with variable impedance.

  11. Psycho-acoustical valuation of pleasant and less perceptible sound characters in wind turbine noise; Psyko-akustisk vaerdering av behagliga och mindre maerkbara ljudkaraktaerer i vindkraftverksljud - interaktiv utvaerdering och akustisk beskrivning av den skvalpande karaktaeren

    Energy Technology Data Exchange (ETDEWEB)

    Persson Waye, Kerstin; Agge, Agneta

    2001-03-01

    The report describes phase 3 in the ongoing project 'Perception and annoyance of wind turbine sounds'. The overall aim of the project is to increase the knowledge of annoyance and perception of wind turbine sounds in order for the industry to optimise wind turbine constructions. The specific aim for phase 3 was to evaluate the most noticeable and annoying psycho-acoustical character described as 'lapping'. The lapping characteristic was evaluated in experimental studies comprising in total 24 test subjects. With the object to obtain a pleasant sound test subjects were asked to vary four parameters related to the psycho-acoustical perception of 'lapping' in the original sound. The variations of parameters were carried out using an interactive sound processing system and done in such a way so the resulting sound always had a constant dBA level. The resulting values of three of the four parameters were significantly different compared to the original sound. A pleasant sound thus had low contents of the different lapping characteristics. While no difference was found between the original sound and the resulting sound with regard to the equivalent frequency spectra, some differences could be detected using Zwickers loudness calculations. Some differences may be attributed to a lower degree of roughness in the 'pleasant sound'. It is however more likely that the difference between the noises as regard the content of specific loudness in the frequency range of 1270 to 3150 may be of greater importance. Analysis of conventional acoustical measures were not sufficient to predict subjects perception of noticeable and unpleasant characteristics in wind turbine sounds. Further analysis should be pursued of how to best describe an unpleasant or pleasant wind turbine sound.

  12. Aerodynamic sound of flow past an airfoil

    Science.gov (United States)

    Wang, Meng

    1995-01-01

    The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord

  13. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    Sound is a part of architecture, and sound is complex. Upon this, sound is invisible. How is it then possible to design visual objects that interact with the sound? This paper addresses the problem of how to get access to the complexity of sound and how to make textile material revealing the form...... goemetry by analysing the sound pattern at a specific spot. This analysis is done theoretically with algorithmic systems and practical with waves in water. The paper describes the experiments and the findings, and explains how an analysis of sound can be catched in a textile form....

  14. Proton therapy treatment monitoring with the DoPET system: activity range, positron emitters evaluation and comparison with Monte Carlo predictions

    Science.gov (United States)

    Muraro, S.; Battistoni, G.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cristoforetti, L.; Del Guerra, A.; Ferrari, A.; Fracchiolla, F.; Morrocchi, M.; Righetto, R.; Sala, P.; Schwarz, M.; Sportelli, G.; Topi, A.; Rosso, V.

    2017-12-01

    Ion beam irradiations can deliver conformal dose distributions minimizing damage to healthy tissues thanks to their characteristic dose profiles. Nevertheless, the location of the Bragg peak can be affected by different sources of range uncertainties: a critical issue is the treatment verification. During the treatment delivery, nuclear interactions between the ions and the irradiated tissues generate β+ emitters: the detection of this activity signal can be used to perform the treatment monitoring if an expected activity distribution is available for comparison. Monte Carlo (MC) codes are widely used in the particle therapy community to evaluate the radiation transport and interaction with matter. In this work, FLUKA MC code was used to simulate the experimental conditions of irradiations performed at the Proton Therapy Center in Trento (IT). Several mono-energetic pencil beams were delivered on phantoms mimicking human tissues. The activity signals were acquired with a PET system (DoPET) based on two planar heads, and designed to be installed along the beam line to acquire data also during the irradiation. Different acquisitions are analyzed and compared with the MC predictions, with a special focus on validating the PET detectors response for activity range verification.

  15. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; part 2, the correlation of sound velocity to hydration degree

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Fischer, H.B; Matthes, C.; Beuthan, C.

    2011-01-01

    In this article the sound velocity through a mix is correlated to the hydration degree of the mix. Models are presented predicting the sound velocity through fresh slurries and hardened products. These two states correspond to the starting and finishing point of the hydration process. The present

  16. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; Part 2, The correlation of sound velocity to hydration degree

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.; Fischer, H.B.; Mattes, Chr.; Beutha, C.

    2011-01-01

    In this article the sound velocity through a mix is correlated to the hydration degree of the mix. Models are presented predicting the sound velocity through fresh slurries and hardened products. These two states correspond to the starting and finishing point of the hydration process. The present

  17. A comparison of the performance of the 3-D super-ensemble and an ensemble Kalman filter for short-range regional ocean prediction

    Directory of Open Access Journals (Sweden)

    Baptiste Mourre

    2014-01-01

    Full Text Available This study compares the ability of two approaches integrating models and data to forecast the Ligurian Sea regional oceanographic conditions in the short-term range (0–72 hours when constrained by a common observation dataset. The post-processing 3-D super-ensemble (3DSE algorithm, which uses observations to optimally combine multi-model forecasts into a single prediction of the oceanic variable, is first considered. The 3DSE predictive skills are compared to those of the Regional Ocean Modeling System model in which observations are assimilated through a more conventional ensemble Kalman filter (EnKF approach. Assimilated measurements include sea surface temperature maps, and temperature and salinity subsurface observations from a fleet of five underwater gliders. Retrospective analyses are carried out to produce daily predictions during the 11-d period of the REP10 sea trial experiment. The forecast skill evaluation based on a distributed multi-sensor validation dataset indicates an overall superior performance of the EnKF, both at the surface and at depth. While the 3DSE and EnKF perform comparably well in the area spanned by the incorporated measurements, the 3DSE accuracy is found to rapidly decrease outside this area. In particular, the univariate formulation of the method combined with the absence of regular surface salinity measurements produces large errors in the 3DSE salinity forecast. On the contrary, the EnKF leads to more homogeneous forecast errors over the modelling domain for both temperature and salinity. The EnKF is found to consistently improve the predictions with respect to the control solution without assimilation and to be positively skilled when compared to the climatological estimate. For typical regional oceanographic applications with scarce subsurface observations, the lack of physical spatial and multivariate error covariances applicable to the individual model weights in the 3DSE formulation constitutes a major

  18. 33 CFR 67.20-10 - Sound signal.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sound signal. 67.20-10 Section 67... AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Class âAâ Requirements § 67.20-10 Sound signal. (a) The owner of a Class “A” structure shall: (1) Install a sound signal that has a rated range...

  19. Perception of environmental sounds by experienced cochlear implant patients

    Science.gov (United States)

    Shafiro, Valeriy; Gygi, Brian; Cheng, Min-Yu; Vachhani, Jay; Mulvey, Megan

    2011-01-01

    CNC scores in quiet moderately correlated with the temporal order for tones. However, the correlation between speech and environmental sounds changed little after partialing out the variance due to other variables. Conclusions Present findings indicate that environmental sound identification is difficult for CI patients. They further suggest that speech and environmental sounds may overlap considerably in their perceptual processing. Certain spectro-temproral processing abilities are separately associated with speech and environmental sound performance. However, they do not appear to mediate the relationship between speech and environmental sounds in CI patients. Environmental sound rehabilitation may be beneficial to some patients. Environmental sound testing may have potential diagnostic applications, especially with difficult-to-test populations, and could be predictive of speech performance for prelingually deafened patients with cochlear implants. PMID:21248643

  20. A NOTE ON METHODS FOR THE ESTIMATION OF THE AIRBORNE SOUND INSULATION OF TIMBER FRAME STRUCTURES

    Directory of Open Access Journals (Sweden)

    Jan Šlechta

    2016-04-01

    Full Text Available Acoustic behavior of structures with wooden elements is nowadays of great interest. At the same time, the estimation of the airborne sound insulation of timber frame structures is a complex procedure which includes the prediction of several resonances and the analysis of a significant decrease of the transmission loss in the low frequency range. Three case studies are presented in the paper. The emphasis is put on the transmission loss in 1/3 octave frequency bands of double leaf structures with gypsum panels, wood studs and a well-damped cavity. Methods of Sharp and Davy are used for the transmission loss prediction. Particular issues are discussed for an asymmetrically sheathed timber frame structure, wood studs with resilient channels and staggered studs. The paper also presents that the weighted sound reduction index is not sufficient quantity for characterizing the airborne sound insulation of timber frame structures. Various methods are employed for the calculation of the transmission loss of a traditional structure on a silicate base. Characteristic differences between a silicate based structure and a timber frame structure are highlighted. The usage of the spectrum adaptation terms is encouraged. The paper intends to be helpful in the field of the transmission loss estimation of double leaf structures with wood studs. Since the acoustic behavior of double leaf structures with wood studs is certainly a complex phenomenon, there is a further need for an improvement of methods for the transmission loss estimation and single number quantities for the evaluation of the sound insulation.

  1. Sound & The Society

    DEFF Research Database (Denmark)

    Schulze, Holger

    2014-01-01

    How are those sounds you hear right now socially constructed and evaluated, how are they architecturally conceptualized and how dependant on urban planning, industrial developments and political decisions are they really? How is your ability to hear intertwined with social interactions and their ...... and their professional design? And how is listening and sounding a deeply social activity – constructing our way of living together in cities as well as in apartment houses? A radio feature with Nina Backmann, Jochen Bonz, Stefan Krebs, Esther Schelander & Holger Schulze......How are those sounds you hear right now socially constructed and evaluated, how are they architecturally conceptualized and how dependant on urban planning, industrial developments and political decisions are they really? How is your ability to hear intertwined with social interactions...

  2. Urban Sound Interfaces

    DEFF Research Database (Denmark)

    Breinbjerg, Morten

    2012-01-01

    This paper draws on the theories of Michel de Certeau and Gaston Bachelard to discuss how media architecture, in the form of urban sound interfaces, can help us perceive the complexity of the spaces we inhabit, by exploring the history and the narratives of the places in which we live. In this pa......This paper draws on the theories of Michel de Certeau and Gaston Bachelard to discuss how media architecture, in the form of urban sound interfaces, can help us perceive the complexity of the spaces we inhabit, by exploring the history and the narratives of the places in which we live....... In this paper, three sound works are discussed in relation to the iPod, which is considered as a more private way to explore urban environments, and as a way to control the individual perception of urban spaces....

  3. Theoretical predictions for α -decay chains of 118 290 -298Og isotopes using a finite-range nucleon-nucleon interaction

    Science.gov (United States)

    Ismail, M.; Adel, A.

    2018-04-01

    The α -decay half-lives of the recently synthesized superheavy nuclei (SHN) are investigated by employing the density dependent cluster model. A realistic nucleon-nucleon (NN ) interaction with a finite-range exchange part is used to calculate the microscopic α -nucleus potential in the well-established double-folding model. The calculated potential is then implemented to find both the assault frequency and the penetration probability of the α particle by means of the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the Bohr-Sommerfeld quantization condition. The calculated values of α -decay half-lives of the recently synthesized Og isotopes and its decay products are in good agreement with the experimental data. Moreover, the calculated values of α -decay half-lives have been compared with those values evaluated using other theoretical models, and it was found that our theoretical values match well with their counterparts. The competition between α decay and spontaneous fission is investigated and predictions for possible decay modes for the unknown nuclei 118 290 -298Og are presented. We studied the behavior of the α -decay half-lives of Og isotopes and their decay products as a function of the mass number of the parent nuclei. We found that the behavior of the curves is governed by proton and neutron magic numbers found from previous studies. The proton numbers Z =114 , 116, 108, 106 and the neutron numbers N =172 , 164, 162, 158 show some magic character. We hope that the theoretical prediction of α -decay chains provides a new perspective to experimentalists.

  4. A hybrid finite element - statistical energy analysis approach to robust sound transmission modeling

    Science.gov (United States)

    Reynders, Edwin; Langley, Robin S.; Dijckmans, Arne; Vermeir, Gerrit

    2014-09-01

    When considering the sound transmission through a wall in between two rooms, in an important part of the audio frequency range, the local response of the rooms is highly sensitive to uncertainty in spatial variations in geometry, material properties and boundary conditions, which have a wave scattering effect, while the local response of the wall is rather insensitive to such uncertainty. For this mid-frequency range, a computationally efficient modeling strategy is adopted that accounts for this uncertainty. The partitioning wall is modeled deterministically, e.g. with finite elements. The rooms are modeled in a very efficient, nonparametric stochastic way, as in statistical energy analysis. All components are coupled by means of a rigorous power balance. This hybrid strategy is extended so that the mean and variance of the sound transmission loss can be computed as well as the transition frequency that loosely marks the boundary between low- and high-frequency behavior of a vibro-acoustic component. The method is first validated in a simulation study, and then applied for predicting the airborne sound insulation of a series of partition walls of increasing complexity: a thin plastic plate, a wall consisting of gypsum blocks, a thicker masonry wall and a double glazing. It is found that the uncertainty caused by random scattering is important except at very high frequencies, where the modal overlap of the rooms is very high. The results are compared with laboratory measurements, and both are found to agree within the prediction uncertainty in the considered frequency range.

  5. Sound & The Senses

    DEFF Research Database (Denmark)

    Schulze, Holger

    2012-01-01

    How are those sounds you hear right now technically generated and post-produced, how are they aesthetically conceptualized and how culturally dependant are they really? How is your ability to hear intertwined with all the other senses and their cultural, biographical and technological constructio...... over time? And how is listening and sounding a deeply social activity – constructing our way of living together in cities as well as in apartment houses? A radio feature with Jonathan Sterne, AGF a.k.a Antye Greie, Jens Gerrit Papenburg & Holger Schulze....

  6. Handbook for sound engineers

    CERN Document Server

    Ballou, Glen

    2013-01-01

    Handbook for Sound Engineers is the most comprehensive reference available for audio engineers. All audio topics are explored: if you work on anything related to audio you should not be without this book! The 4th edition of this trusted reference has been updated to reflect changes in the industry since the publication of the 3rd edition in 2002 -- including new technologies like software-based recording systems such as Pro Tools and Sound Forge; digital recording using MP3, wave files and others; mobile audio devices such as iPods and MP3 players. Over 40 topic

  7. Sound for digital video

    CERN Document Server

    Holman, Tomlinson

    2013-01-01

    Achieve professional quality sound on a limited budget! Harness all new, Hollywood style audio techniques to bring your independent film and video productions to the next level.In Sound for Digital Video, Second Edition industry experts Tomlinson Holman and Arthur Baum give you the tools and knowledge to apply recent advances in audio capture, video recording, editing workflow, and mixing to your own film or video with stunning results. This fresh edition is chockfull of techniques, tricks, and workflow secrets that you can apply to your own projects from preproduction

  8. Beacons of Sound

    DEFF Research Database (Denmark)

    Knakkergaard, Martin

    2018-01-01

    The chapter discusses expectations and imaginations vis-à-vis the concert hall of the twenty-first century. It outlines some of the central historical implications of western culture’s haven for sounding music. Based on the author’s study of the Icelandic concert-house Harpa, the chapter considers...... how these implications, together with the prime mover’s visions, have been transformed as private investors and politicians took over. The chapter furthermore investigates the objectives regarding musical sound and the far-reaching demands concerning acoustics that modern concert halls are required...

  9. Neuroplasticity beyond sounds

    DEFF Research Database (Denmark)

    Reybrouck, Mark; Brattico, Elvira

    2015-01-01

    Capitalizing from neuroscience knowledge on how individuals are affected by the sound environment, we propose to adopt a cybernetic and ecological point of view on the musical aesthetic experience, which includes subprocesses, such as feature extraction and integration, early affective reactions...... and motor actions, style mastering and conceptualization, emotion and proprioception, evaluation and preference. In this perspective, the role of the listener/composer/performer is seen as that of an active "agent" coping in highly individual ways with the sounds. The findings concerning the neural...

  10. Eliciting Sound Memories.

    Science.gov (United States)

    Harris, Anna

    2015-11-01

    Sensory experiences are often considered triggers of memory, most famously a little French cake dipped in lime blossom tea. Sense memory can also be evoked in public history research through techniques of elicitation. In this article I reflect on different social science methods for eliciting sound memories such as the use of sonic prompts, emplaced interviewing, and sound walks. I include examples from my research on medical listening. The article considers the relevance of this work for the conduct of oral histories, arguing that such methods "break the frame," allowing room for collaborative research connections and insights into the otherwise unarticulatable.

  11. SoleSound

    DEFF Research Database (Denmark)

    Zanotto, Damiano; Turchet, Luca; Boggs, Emily Marie

    2014-01-01

    This paper introduces the design of SoleSound, a wearable system designed to deliver ecological, audio-tactile, underfoot feedback. The device, which primarily targets clinical applications, uses an audio-tactile footstep synthesis engine informed by the readings of pressure and inertial sensors...... embedded in the footwear to integrate enhanced feedback modalities into the authors' previously developed instrumented footwear. The synthesis models currently implemented in the SoleSound simulate different ground surface interactions. Unlike similar devices, the system presented here is fully portable...

  12. Sound transmission loss of composite sandwich panels

    Science.gov (United States)

    Zhou, Ran

    Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the

  13. Sound propagation in elongated superfluid fermionic clouds

    International Nuclear Information System (INIS)

    Capuzzi, P.; Vignolo, P.; Federici, F.; Tosi, M. P.

    2006-01-01

    We use hydrodynamic equations to study sound propagation in a superfluid Fermi gas at zero temperature inside a strongly elongated cigar-shaped trap, with main attention to the transition from the BCS to the unitary regime. First, we treat the role of the radial density profile in the limit of a cylindrical geometry and then evaluate numerically the effect of the axial confinement in a configuration in which a hole is present in the gas density at the center of the trap. We find that in a strongly elongated trap the speed of sound in both the BCS and the unitary regime differs by a factor √(3/5) from that in a homogeneous three-dimensional superfluid. The predictions of the theory could be tested by measurements of sound-wave propagation in a setup such as that exploited by Andrews et al. [Phys. Rev. Lett. 79, 553 (1997)] for an atomic Bose-Einstein condensate

  14. Sound analysis of a cup drum

    International Nuclear Information System (INIS)

    Kim, Kun ho

    2012-01-01

    The International Young Physicists’ Tournament (IYPT) is a worldwide tournament that evaluates a high-school student's ability to solve various physics conundrums that have not been fully resolved in the past. The research presented here is my solution to the cup drum problem. The physics behind a cup drum has never been explored or modelled. A cup drum is a musical instrument that can generate different frequencies and amplitudes depending on the location of a cup held upside-down over, on or under a water surface. The tapping sound of a cup drum can be divided into two components: standing waves and plate vibration. By individually researching the nature of these two sounds, I arrived at conclusions that could accurately predict the frequencies in most cases. When the drum is very close to the surface, qualitative explanations are given. In addition, I examined the trend of the tapping sound amplitude at various distances and qualitatively explained the experimental results. (paper)

  15. Reliable Prediction with Tuned Range-Separated Functionals of the Singlet-Triplet Gap in Organic Emitters for Thermally Activated Delayed Fluorescence (TADF)

    KAUST Repository

    Sun, Haitao

    2015-07-09

    The thermally activated delayed fluorescence (TADF) mechanism has recently attracted much interest in the field of organic light-emitting diodes (OLEDs). TADF relies on the presence of a very small energy gap between the lowest singlet and triplet excited states. Here, we demonstrate that time-dependent density functional theory (TD-DFT) in the Tamm-Dancoff Approximation can be very successful in the calculations of the lowest singlet and triplet excitation energies and the corresponding singlet-triplet gap when using nonempirically tuned range-separated functionals. Such functionals provide very good estimates in a series of 17 molecules used in TADF-based OLED devices, with mean absolute deviations of 0.15 eV for the vertical singlet excitation energies and 0.09 eV [0.07 eV] for the adiabatic [vertical] singlet-triplet energy gaps as well as low relative errors and high correlation coefficients compared to the corresponding experimental values. They significantly outperform conventional functionals, a feature which is rationalized on the basis of the amount of exact-exchange included and the delocalization error. The present work provides a reliable theoretical tool for the prediction and development of novel TADF-based materials with low singlet-triplet energetic splittings.

  16. Sound Symbolism in Basic Vocabulary

    Directory of Open Access Journals (Sweden)

    Søren Wichmann

    2010-04-01

    Full Text Available The relationship between meanings of words and their sound shapes is to a large extent arbitrary, but it is well known that languages exhibit sound symbolism effects violating arbitrariness. Evidence for sound symbolism is typically anecdotal, however. Here we present a systematic approach. Using a selection of basic vocabulary in nearly one half of the world’s languages we find commonalities among sound shapes for words referring to same concepts. These are interpreted as due to sound symbolism. Studying the effects of sound symbolism cross-linguistically is of key importance for the understanding of language evolution.

  17. Sound Symbolism in the Languages of Australia

    Science.gov (United States)

    Haynie, Hannah; Bowern, Claire; LaPalombara, Hannah

    2014-01-01

    The notion that linguistic forms and meanings are related only by convention and not by any direct relationship between sounds and semantic concepts is a foundational principle of modern linguistics. Though the principle generally holds across the lexicon, systematic exceptions have been identified. These “sound symbolic” forms have been identified in lexical items and linguistic processes in many individual languages. This paper examines sound symbolism in the languages of Australia. We conduct a statistical investigation of the evidence for several common patterns of sound symbolism, using data from a sample of 120 languages. The patterns examined here include the association of meanings denoting “smallness” or “nearness” with front vowels or palatal consonants, and the association of meanings denoting “largeness” or “distance” with back vowels or velar consonants. Our results provide evidence for the expected associations of vowels and consonants with meanings of “smallness” and “proximity” in Australian languages. However, the patterns uncovered in this region are more complicated than predicted. Several sound-meaning relationships are only significant for segments in prominent positions in the word, and the prevailing mapping between vowel quality and magnitude meaning cannot be characterized by a simple link between gradients of magnitude and vowel F2, contrary to the claims of previous studies. PMID:24752356

  18. Physics of thermo-acoustic sound generation

    Science.gov (United States)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  19. Exploring Sound with Insects

    Science.gov (United States)

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  20. Second sound tracking system

    Science.gov (United States)

    Yang, Jihee; Ihas, Gary G.; Ekdahl, Dan

    2017-10-01

    It is common that a physical system resonates at a particular frequency, whose frequency depends on physical parameters which may change in time. Often, one would like to automatically track this signal as the frequency changes, measuring, for example, its amplitude. In scientific research, one would also like to utilize the standard methods, such as lock-in amplifiers, to improve the signal to noise ratio. We present a complete He ii second sound system that uses positive feedback to generate a sinusoidal signal of constant amplitude via automatic gain control. This signal is used to produce temperature/entropy waves (second sound) in superfluid helium-4 (He ii). A lock-in amplifier limits the oscillation to a desirable frequency and demodulates the received sound signal. Using this tracking system, a second sound signal probed turbulent decay in He ii. We present results showing that the tracking system is more reliable than those of a conventional fixed frequency method; there is less correlation with temperature (frequency) fluctuation when the tracking system is used.

  1. See This Sound

    DEFF Research Database (Denmark)

    Kristensen, Thomas Bjørnsten

    2009-01-01

    Anmeldelse af udstillingen See This Sound på Lentos Kunstmuseum Linz, Østrig, som markerer den foreløbige kulmination på et samarbejde mellem Lentos Kunstmuseum og Ludwig Boltzmann Institute Media.Art.Research. Udover den konkrete udstilling er samarbejdet tænkt som en ambitiøs, tværfaglig...

  2. Sound of Stockholm

    DEFF Research Database (Denmark)

    Groth, Sanne Krogh

    2013-01-01

    Med sine kun 4 år bag sig er Sound of Stockholm relativt ny i det internationale festival-landskab. Festivalen er efter sigende udsprunget af en større eller mindre frustration over, at den svenske eksperimentelle musikscenes forskellige foreninger og organisationer gik hinanden bedene, og...

  3. Making Sense of Sound

    Science.gov (United States)

    Menon, Deepika; Lankford, Deanna

    2016-01-01

    From the earliest days of their lives, children are exposed to all kinds of sound, from soft, comforting voices to the frightening rumble of thunder. Consequently, children develop their own naïve explanations largely based upon their experiences with phenomena encountered every day. When new information does not support existing conceptions,…

  4. The Sounds of Metal

    DEFF Research Database (Denmark)

    Grund, Cynthia M.

    2015-01-01

    Two, I propose that this framework allows for at least a theoretical distinction between the way in which extreme metal – e.g. black metal, doom metal, funeral doom metal, death metal – relates to its sound as music and the way in which much other music may be conceived of as being constituted...

  5. The Universe of Sound

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Sound Scultor, Bill Fontana, the second winner of the Prix Ars Electronica Collide@CERN residency award, and his science inspiration partner, CERN cosmologist Subodh Patil, present their work in art and science at the CERN Globe of Science and Innovation on 4 July 2013 at 19:00.

  6. Urban Sound Ecologies

    DEFF Research Database (Denmark)

    Groth, Sanne Krogh; Samson, Kristine

    2013-01-01

    . The article concludes that the ways in which recent sound installations work with urban ecologies vary. While two of the examples blend into the urban environment, the other transfers the concert format and its mode of listening to urban space. Last, and in accordance with recent soundscape research, we point...

  7. Three-dimensional modelling of sound absorption in porous asphalt pavement for oblique incident waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Glorieux, C.

    2015-01-01

    Sound absorption of porous asphalt pavements is an important property when reducing tyre-road noise. A hybrid model has been developed to predict the sound absorption of porous roads. This model is a combination of an analytical analysis of the sound eld and a numerical approach, including both the

  8. Sound source measurement by using a passive sound insulation and a statistical approach

    Science.gov (United States)

    Dragonetti, Raffaele; Di Filippo, Sabato; Mercogliano, Francesco; Romano, Rosario A.

    2015-10-01

    This paper describes a measurement technique developed by the authors that allows carrying out acoustic measurements inside noisy environments reducing background noise effects. The proposed method is based on the integration of a traditional passive noise insulation system with a statistical approach. The latter is applied to signals picked up by usual sensors (microphones and accelerometers) equipping the passive sound insulation system. The statistical approach allows improving of the sound insulation given only by the passive sound insulation system at low frequency. The developed measurement technique has been validated by means of numerical simulations and measurements carried out inside a real noisy environment. For the case-studies here reported, an average improvement of about 10 dB has been obtained in a frequency range up to about 250 Hz. Considerations on the lower sound pressure level that can be measured by applying the proposed method and the measurement error related to its application are reported as well.

  9. Viscothermal Coupling Effects on Sound Attenuation in Concentrated Colloidal Dispersions.

    Science.gov (United States)

    Han, Wei

    1995-11-01

    This thesis describes a Unified Coupled Phase Continuum (UCPC) model to analyze sound propagation through aerosols, emulsions and suspensions in terms of frequency dependent attenuation coefficient and sound speed. Expressions for the viscous and thermal coupling coefficients explicitly account for the effects of particle size, shape factor, orientation as well as concentration and the sound frequency. The UCPC model also takes into account the intrinsic acoustic absorption within the fluid medium due to its viscosity and heat conductivity. The effective complex wave number as a function of frequency is derived. A frequency- and concentration-dependent complex Nusselt number for the interfacial thermal coupling coefficient is derived using an approximate similarity between the 'viscous skin drag' and 'heat conduction flux' associated with the discontinuous suspended phase, on the basis of a cell model. The theoretical predictions of attenuation spectra provide satisfactory agreement with reported experimental data on two concentrated suspensions (polystyrene latex and kaolin pigment), two concentrated emulsions (toluene -in-water, n-hexadecane-in-water), and two aerosols (oleic acid droplets-in-nitrogen, alumina-in-air), covering a wide range of relative magnitudes (from 10^ {-3} to 10^{3}) of thermal versus viscous contributions, for dispersed phase volume fractions as high as 50%. The relative differences between the additive result of separate viscous and thermal loss estimates and combined viscothermal absorption results are also presented. Effects of particle shape on viscous attenuation of sound in concentrated suspensions of non-spherical clay particles are studied. Attenuation spectra for 18 frequencies from 3 to 100 MHz are measured and analyzed for eleven kaolin clay slurries with solid concentrations ranging from 0.6% to 35% (w/w). A modified viscous drag coefficient that considers frequency, concentration, particle size, shape and orientation of

  10. Sounds of Space

    Science.gov (United States)

    Gurnett, D. A.

    2005-12-01

    Starting in the early 1960s, spacecraft-borne plasma wave instruments revealed that space is filled with an astonishing variety of radio and plasma wave sounds, which have come to be called "sounds of space." For over forty years these sounds have been collected and played to a wide variety of audiences, often as the result of press conferences or press releases involving various NASA projects for which the University of Iowa has provided plasma wave instruments. This activity has led to many interviews on local and national radio programs, and occasionally on programs haviang world-wide coverage, such as the BBC. As a result of this media coverage, we have been approached many times by composers requesting copies of our space sounds for use in their various projects, many of which involve electronic synthesis of music. One of these collaborations led to "Sun Rings," which is a musical event produced by the Kronos Quartet that has played to large audiences all over the world. With the availability of modern computer graphic techniques we have recently been attempting to integrate some of these sound of space into an educational audio/video web site that illustrates the scientific principles involved in the origin of space plasma waves. Typically I try to emphasize that a substantial gas pressure exists everywhere in space in the form of an ionized gas called a plasma, and that this plasma can lead to a wide variety of wave phenomenon. Examples of some of this audio/video material will be presented.

  11. Parameterizing Sound: Design Considerations for an Environmental Sound Database

    Science.gov (United States)

    2015-04-01

    associated with, or produced by, a physical event or human activity and 2) sound sources that are common in the environment. Reproductions or sound...Rogers S. Confrontation naming of environmental sounds. Journal of Clinical and Experimental Neuropsychology . 2000;22(6):830–864. 14 VanDerveer NJ

  12. Short-range ensemble predictions based on convection perturbations in the Eta Model for the Serra do Mar region in Brazil

    Science.gov (United States)

    Bustamante, J. F. F.; Chou, S. C.; Gomes, J. L.

    2009-04-01

    The Southeast Brazil, in the coastal and mountain region called Serra do Mar, between Sao Paulo and Rio de Janeiro, is subject to frequent events of landslides and floods. The Eta Model has been producing good quality forecasts over South America at about 40-km horizontal resolution. For that type of hazards, however, more detailed and probabilistic information on the risks should be provided with the forecasts. Thus, a short-range ensemble prediction system (SREPS) based on the Eta Model is being constructed. Ensemble members derived from perturbed initial and lateral boundary conditions did not provide enough spread for the forecasts. Members with model physics perturbation are being included and tested. The objective of this work is to construct more members for the Eta SREPS by adding physics perturbed members. The Eta Model is configured at 10-km resolution and 38 layers in the vertical. The domain covered is most of Southeast Brazil, centered over the Serra do Mar region. The constructed members comprise variations of the cumulus parameterization Betts-Miller-Janjic (BMJ) and Kain-Fritsch (KF) schemes. Three members were constructed from the BMJ scheme by varying the deficit of saturation pressure profile over land and sea, and 2 members of the KF scheme were included using the standard KF and a momentum flux added to KF scheme version. One of the runs with BMJ scheme is the control run as it was used for the initial condition perturbation SREPS. The forecasts were tested for 6 cases of South America Convergence Zone (SACZ) events. The SACZ is a common summer season feature of Southern Hemisphere that causes persistent rain for a few days over the Southeast Brazil and it frequently organizes over Serra do Mar region. These events are particularly interesting because of the persistent rains that can accumulate large amounts and cause generalized landslides and death. With respect to precipitation, the KF scheme versions have shown to be able to reach the

  13. Sound transmission through triple-panel structures lined with poroelastic materials

    Science.gov (United States)

    Liu, Yu

    2015-03-01

    In this paper, previous theories on the prediction of sound transmission loss for a double-panel structure lined with poroelastic materials are extended to address the problem of a triple-panel structure. Six typical configurations are considered for a triple-panel structure based on the method of coupling the porous layers to the facing panels which determines critically the sound insulation performance of the system. The transfer matrix method is employed to solve the system by applying appropriate types of boundary conditions for these configurations. The transmission loss of the triple-panel structures in a diffuse sound field is calculated as a function of frequency and compared with that of corresponding double-panel structures. Generally, the triple-panel structure with poroelastic linings has superior acoustic performance to the double-panel counterpart, remarkably in the mid-high frequency range and possibly at low frequencies, by selecting appropriate configurations in which those with two air gaps in the structure exhibit the best overall performance over the entire frequency range. The poroelastic lining significantly lowers the cut-on frequency above which the triple-panel structure exhibits noticeably higher transmission loss. Compared with a double-panel structure, the wider range of system parameters for a triple-panel structure due to the additional partition provides more design space for tuning the sound insulation performance. Despite the increased structural complexity, the triple-panel structure lined with poroelastic materials has the obvious advantages in sound transmission loss while without the penalties in weight and volume, and is hence a promising replacement for the widely used double-panel sandwich structure.

  14. Pectoral sound generation in the blue catfish Ictalurus furcatus.

    Science.gov (United States)

    Mohajer, Yasha; Ghahramani, Zachary; Fine, Michael L

    2015-03-01

    Catfishes produce pectoral stridulatory sounds by "jerk" movements that rub ridges on the dorsal process against the cleithrum. We recorded sound synchronized with high-speed video to investigate the hypothesis that blue catfish Ictalurus furcatus produce sounds by a slip-stick mechanism, previously described only in invertebrates. Blue catfish produce a variably paced series of sound pulses during abduction sweeps (pulsers) although some individuals (sliders) form longer duration sound units (slides) interspersed with pulses. Typical pulser sounds are evoked by short 1-2 ms movements with a rotation of 2°-3°. Jerks excite sounds that increase in amplitude after motion stops, suggesting constructive interference, which decays before the next jerk. Longer contact of the ridges produces a more steady-state sound in slides. Pulse pattern during stridulation is determined by pauses without movement: the spine moves during about 14 % of the abduction sweep in pulsers (~45 % in sliders) although movement appears continuous to the human eye. Spine rotation parameters do not predict pulse amplitude, but amplitude correlates with pause duration suggesting that force between the dorsal process and cleithrum increases with longer pauses. Sound production, stimulated by a series of rapid movements that set the pectoral girdle into resonance, is caused by a slip-stick mechanism.

  15. Human Sound Externalization in Reverberant Environments

    DEFF Research Database (Denmark)

    Catic, Jasmina

    In everyday environments, listeners perceive sound sources as externalized. In listening conditions where the spatial cues that are relevant for externalization are not represented correctly, such as when listening through headphones or hearing aids, a degraded perception of externalization may...... occur. In this thesis, the spatial cues that arise from a combined effect of filtering due to the head, torso, and pinna and the acoustic environment were analysed and the impact of such cues for the perception of externalization in different frequency regions was investigated. Distant sound sources...... were simulated via headphones using individualized binaural room impulse responses (BRIRs). An investigation of the influence of spectral content of a sound source on externalization showed that effective externalization cues are present across the entire frequency range. The fluctuation of interaural...

  16. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice.

    Directory of Open Access Journals (Sweden)

    Derrick E Fouts

    2008-07-01

    Full Text Available We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world, while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%, one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578. Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but

  17. Parallel-plate third sound waveguides with fixed and variable plate spacings for the study of fifth sound in superfluid helium

    International Nuclear Information System (INIS)

    Jelatis, G.J.

    1983-01-01

    Third sound in superfluid helium four films has been investigated using two parallel-plate waveguides. These investigations led to the observation of fifth sound, a new mode of sound propagation. Both waveguides consisted of two parallel pieces of vitreous quartz. The sound speed was obtained by measuring the time-of-flight of pulsed third sound over a known distance. Investigations from 1.0-1.7K were possible with the use of superconducting bolometers, which measure the temperature component of the third sound wave. Observations were initially made with a waveguide having a plate separation fixed at five microns. Adiabatic third sound was measured in the geometry. Isothermal third sound was also observed, using the usual, single-substrate technique. Fifth sound speeds, calculated from the two-fluid theory of helium and the speeds of the two forms of third sound, agreed in size and temperature dependence with theoretical predictions. Nevertheless, only equivocal observations of fifth sound were made. As a result, the film-substrate interaction was examined, and estimates of the Kapitza conductance were made. Assuming the dominance of the effects of this conductance over those due to the ECEs led to a new expression for fifth sound. A reanalysis of the initial data was made, which contained no adjustable parameters. The observation of fifth sound was seen to be consistent with the existence of an anomalously low boundary conductance

  18. Product sounds : Fundamentals and application

    NARCIS (Netherlands)

    Ozcan-Vieira, E.

    2008-01-01

    Products are ubiquitous, so are the sounds emitted by products. Product sounds influence our reasoning, emotional state, purchase decisions, preference, and expectations regarding the product and the product's performance. Thus, auditory experience elicited by product sounds may not be just about

  19. Sonic mediations: body, sound, technology

    NARCIS (Netherlands)

    Birdsall, C.; Enns, A.

    2008-01-01

    Sonic Mediations: Body, Sound, Technology is a collection of original essays that represents an invaluable contribution to the burgeoning field of sound studies. While sound is often posited as having a bridging function, as a passive in-between, this volume invites readers to rethink the concept of

  20. System for actively reducing sound

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2005-01-01

    A system for actively reducing sound from a primary noise source, such as traffic noise, comprising: a loudspeaker connector for connecting to at least one loudspeaker for generating anti-sound for reducing said noisy sound; a microphone connector for connecting to at least a first microphone placed

  1. Airborne sound transmission loss characteristics of wood-frame construction

    Science.gov (United States)

    Rudder, F. F., Jr.

    1985-03-01

    This report summarizes the available data on the airborne sound transmission loss properties of wood-frame construction and evaluates the methods for predicting the airborne sound transmission loss. The first part of the report comprises a summary of sound transmission loss data for wood-frame interior walls and floor-ceiling construction. Data bases describing the sound transmission loss characteristics of other building components, such as windows and doors, are discussed. The second part of the report presents the prediction of the sound transmission loss of wood-frame construction. Appropriate calculation methods are described both for single-panel and for double-panel construction with sound absorption material in the cavity. With available methods, single-panel construction and double-panel construction with the panels connected by studs may be adequately characterized. Technical appendices are included that summarize laboratory measurements, compare measurement with theory, describe details of the prediction methods, and present sound transmission loss data for common building materials.

  2. Investigation of genesis of gallop sounds in dogs by quantitative phonocardiography and digital frequency analysis.

    Science.gov (United States)

    Aubert, A E; Denys, B G; Meno, F; Reddy, P S

    1985-05-01

    Several investigators have noted external gallop sounds to be of higher amplitude than their corresponding internal sounds (S3 and S4). In this study we hoped to determine if S3 and S4 are transmitted in the same manner as S1. In 11 closed-chest dogs, external (apical) and left ventricular pressures and sounds were recorded simultaneously with transducers with identical sensitivity and frequency responses. Volume and pressure overload and positive and negative inotropic drugs were used to generate gallop sounds. Recordings were made in the control state and after the various interventions. S3 and S4 were recorded in 17 experiments each. The amplitude of the external S1 was uniformly higher than that of internal S1 and internal gallop sounds were inconspicuous. With use of Fourier transforms, the gain function was determined by comparing internal to external S1. By inverse transform, the amplitude of the internal gallop sounds was predicted from external sounds. The internal sounds of significant amplitude were predicted in many instances, but the actual recordings showed no conspicuous sounds. The absence of internal gallop sounds of expected amplitude as calculated from the external gallop sounds and the gain function derived from the comparison of internal and external S1 make it very unlikely that external gallop sounds are derived from internal sounds.

  3. Wood for sound.

    Science.gov (United States)

    Wegst, Ulrike G K

    2006-10-01

    The unique mechanical and acoustical properties of wood and its aesthetic appeal still make it the material of choice for musical instruments and the interior of concert halls. Worldwide, several hundred wood species are available for making wind, string, or percussion instruments. Over generations, first by trial and error and more recently by scientific approach, the most appropriate species were found for each instrument and application. Using material property charts on which acoustic properties such as the speed of sound, the characteristic impedance, the sound radiation coefficient, and the loss coefficient are plotted against one another for woods. We analyze and explain why spruce is the preferred choice for soundboards, why tropical species are favored for xylophone bars and woodwind instruments, why violinists still prefer pernambuco over other species as a bow material, and why hornbeam and birch are used in piano actions.

  4. Sounds in context

    DEFF Research Database (Denmark)

    Weed, Ethan

    A sound is never just a sound. It is becoming increasingly clear that auditory processing is best thought of not as a one-way afferent stream, but rather as an ongoing interaction between interior processes and the environment. Even the earliest stages of auditory processing in the nervous system...... time-course of contextual influence on auditory processing in three different paradigms: a simple mismatch negativity paradigm with tones of differing pitch, a multi-feature mismatch negativity paradigm in which tones were embedded in a complex musical context, and a cross-modal paradigm, in which...... auditory processing of emotional speech was modulated by an accompanying visual context. I then discuss these results in terms of their implication for how we conceive of the auditory processing stream....

  5. Sound for Health

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    From astronomy to biomedical sciences: music and sound as tools for scientific investigation Music and science are probably two of the most intrinsically linked disciplines in the spectrum of human knowledge. Science and technology have revolutionised the way artists work, interact, and create. The impact of innovative materials, new communication media, more powerful computers, and faster networks on the creative process is evident: we all can become artists in the digital era. What is less known, is that arts, and music in particular, are having a profound impact the way scientists operate, and think. From the early experiments by Kepler to the modern data sonification applications in medicine – sound and music are playing an increasingly crucial role in supporting science and driving innovation. In this talk. Dr. Domenico Vicinanza will be highlighting the complementarity and the natural synergy between music and science, with specific reference to biomedical sciences. Dr. Vicinanza will take t...

  6. Sound in Ergonomics

    Directory of Open Access Journals (Sweden)

    Jebreil Seraji

    1999-03-01

    Full Text Available The word of “Ergonomics “is composed of two separate parts: “Ergo” and” Nomos” and means the Human Factors Engineering. Indeed, Ergonomics (or human factors is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data and methods to design in order to optimize human well-being and overall system performance. It has applied different sciences such as Anatomy and physiology, anthropometry, engineering, psychology, biophysics and biochemistry from different ergonomics purposes. Sound when is referred as noise pollution can affect such balance in human life. The industrial noise caused by factories, traffic jam, media, and modern human activity can affect the health of the society.Here we are aimed at discussing sound from an ergonomic point of view.

  7. Pitch Based Sound Classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U

    2006-01-01

    A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft......-max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classification windows is achieved. Further more it is shown that linear input performs as well as a quadratic......, and that even though classification gets marginally better, not much is achieved by increasing the window size beyond 1 s....

  8. Airspace: Antarctic Sound Transmission

    OpenAIRE

    Polli, Andrea

    2009-01-01

    This paper investigates how sound transmission can contribute to the public understanding of climate change within the context of the Poles. How have such transmission-based projects developed specifically in the Arctic and Antarctic, and how do these works create alternative pathways in order to help audiences better understand climate change? The author has created the media project Sonic Antarctica from a personal experience of the Antarctic. The work combines soundscape recordings and son...

  9. Discovery of Sound in the Sea: Resources for Educators, Students, the Public, and Policymakers.

    Science.gov (United States)

    Vigness-Raposa, Kathleen J; Scowcroft, Gail; Miller, James H; Ketten, Darlene R; Popper, Arthur N

    2016-01-01

    There is increasing concern about the effects of underwater sound on marine life. However, the science of sound is challenging. The Discovery of Sound in the Sea (DOSITS) Web site ( http://www.dosits.org ) was designed to provide comprehensive scientific information on underwater sound for the public and educational and media professionals. It covers the physical science of underwater sound and its use by people and marine animals for a range of tasks. Celebrating 10 years of online resources, DOSITS continues to develop new material and improvements, providing the best resource for the most up-to-date information on underwater sound and its potential effects.

  10. Floquet topological insulators for sound

    Science.gov (United States)

    Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea

    2016-06-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

  11. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  12. Characteristic sounds facilitate visual search.

    Science.gov (United States)

    Iordanescu, Lucica; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2008-06-01

    In a natural environment, objects that we look for often make characteristic sounds. A hiding cat may meow, or the keys in the cluttered drawer may jingle when moved. Using a visual search paradigm, we demonstrated that characteristic sounds facilitated visual localization of objects, even when the sounds carried no location information. For example, finding a cat was faster when participants heard a meow sound. In contrast, sounds had no effect when participants searched for names rather than pictures of objects. For example, hearing "meow" did not facilitate localization of the word cat. These results suggest that characteristic sounds cross-modally enhance visual (rather than conceptual) processing of the corresponding objects. Our behavioral demonstration of object-based cross-modal enhancement complements the extensive literature on space-based cross-modal interactions. When looking for your keys next time, you might want to play jingling sounds.

  13. Heterogeneous associations between smoking and a wide range of initial presentations of cardiovascular disease in 1937360 people in England: lifetime risks and implications for risk prediction.

    Science.gov (United States)

    Pujades-Rodriguez, Mar; George, Julie; Shah, Anoop Dinesh; Rapsomaniki, Eleni; Denaxas, Spiros; West, Robert; Smeeth, Liam; Timmis, Adam; Hemingway, Harry

    2015-02-01

    It is not known how smoking affects the initial presentation of a wide range of chronic and acute cardiovascular diseases (CVDs), nor the extent to which associations are heterogeneous. We estimated the lifetime cumulative incidence of 12 CVD presentations, and examined associations with smoking and smoking cessation. Cohort study of 1.93 million people aged ≥30years, with no history of CVD, in 1997-2010. Individuals were drawn from linked electronic health records in England, covering primary care, hospitalizations, myocardial infarction (MI) registry and cause-specific mortality (the CALIBER programme). During 11.6 million person-years of follow-up, 114859 people had an initial non-fatal or fatal CVD presentation. By age 90 years, current vs never smokers' lifetime risks varied from 0.4% vs 0.2% for subarachnoid haemorrhage (SAH), to 8.9% vs 2.6% for peripheral arterial disease (PAD). Current smoking showed no association with cardiac arrest or sudden cardiac death [hazard ratio (HR)=1.04, 95% confidence interval (CI) 0.91-1.19).The strength of association differed markedly according to disease type: stable angina (HR=1.08, 95% CI 1.01-1.15),transient ischaemic attack (HR=1.41, 95% CI 1.28-1.55), unstable angina (HR=1.54, 95% CI 1.38-1.72), intracerebral haemorrhage (HR=1.61, 95% CI 1.37-1.89), heart failure (HR=1.62, 95% CI 1.47-1.79), ischaemic stroke (HR=1.90, 95% CI 1.72-2.10), MI (HR=2.32, 95% CI 2.20-2.45), SAH (HR= 2.70, 95% CI 2.27-3.21), PAD (HR=5.16, 95% CI 4.80-5.54) and abdominal aortic aneurysm (AAA) (HR=5.18, 95% CI 4.61-5.82). Population-attributable fractions were lower for women than men for unheralded coronary death, ischaemic stroke, PAD and AAA. Ten years after quitting smoking, the risks of PAD, AAA (in men) and unheralded coronary death remained increased (HR=1.36, 1.47 and 2.74, respectively). The heterogeneous associations of smoking with different CVD presentations suggests different underlying mechanisms and have important

  14. Active sound reduction system and method

    NARCIS (Netherlands)

    2016-01-01

    The present invention refers to an active sound reduction system and method for attenuation of sound emitted by a primary sound source, especially for attenuation of snoring sounds emitted by a human being. This system comprises a primary sound source, at least one speaker as a secondary sound

  15. Sounds of a Star

    Science.gov (United States)

    2001-06-01

    Acoustic Oscillations in Solar-Twin "Alpha Cen A" Observed from La Silla by Swiss Team Summary Sound waves running through a star can help astronomers reveal its inner properties. This particular branch of modern astrophysics is known as "asteroseismology" . In the case of our Sun, the brightest star in the sky, such waves have been observed since some time, and have greatly improved our knowledge about what is going on inside. However, because they are much fainter, it has turned out to be very difficult to detect similar waves in other stars. Nevertheless, tiny oscillations in a solar-twin star have now been unambiguously detected by Swiss astronomers François Bouchy and Fabien Carrier from the Geneva Observatory, using the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory. This telescope is mostly used for discovering exoplanets (see ESO PR 07/01 ). The star Alpha Centauri A is the nearest star visible to the naked eye, at a distance of a little more than 4 light-years. The new measurements show that it pulsates with a 7-minute cycle, very similar to what is observed in the Sun . Asteroseismology for Sun-like stars is likely to become an important probe of stellar theory in the near future. The state-of-the-art HARPS spectrograph , to be mounted on the ESO 3.6-m telescope at La Silla, will be able to search for oscillations in stars that are 100 times fainter than those for which such demanding observations are possible with CORALIE. PR Photo 23a/01 : Oscillations in a solar-like star (schematic picture). PR Photo 23b/01 : Acoustic spectrum of Alpha Centauri A , as observed with CORALIE. Asteroseismology: listening to the stars ESO PR Photo 23a/01 ESO PR Photo 23a/01 [Preview - JPEG: 357 x 400 pix - 96k] [Normal - JPEG: 713 x 800 pix - 256k] [HiRes - JPEG: 2673 x 3000 pix - 2.1Mb Caption : PR Photo 23a/01 is a graphical representation of resonating acoustic waves in the interior of a solar-like star. Red and blue

  16. Microstructure representations for sound absorbing fibrous media: 3D and 2D multiscale modelling and experiments

    Science.gov (United States)

    Zieliński, Tomasz G.

    2017-11-01

    The paper proposes and investigates computationally-efficient microstructure representations for sound absorbing fibrous media. Three-dimensional volume elements involving non-trivial periodic arrangements of straight fibres are examined as well as simple two-dimensional cells. It has been found that a simple 2D quasi-representative cell can provide similar predictions as a volume element which is in general much more geometrically accurate for typical fibrous materials. The multiscale modelling allowed to determine the effective speeds and damping of acoustic waves propagating in such media, which brings up a discussion on the correlation between the speed, penetration range and attenuation of sound waves. Original experiments on manufactured copper-wire samples are presented and the microstructure-based calculations of acoustic absorption are compared with the corresponding experimental results. In fact, the comparison suggested the microstructure modifications leading to representations with non-uniformly distributed fibres.

  17. Acoustic behavior of a fibrous bulk material. [Kevlar 29 sound absorber

    Science.gov (United States)

    Hersh, A. S.; Walker, B.

    1979-01-01

    A semiempirical model is presented describing the acoustic behavior of Kevlar 29, a bulk absorbing material. The model is based on an approximate solution to the one-dimensional equations representing conservation of fluctuating mass, momentum and energy. By treating the material as a momentum sink, theoretical expressions of the material complex propagation constants and characteristic impedance were derived in terms of a single constant. Evaluating the constant at a single frequency for a particular specimen, excellent agreement between prediction and measurement was achieved for a large range of sound frequencies and material porosities and thicknesses. Results show that Kevlar 29 absorbs sound efficiently even at low frequencies. This is explained in terms of a frequency dependent material phase speed.

  18. Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds.

    Directory of Open Access Journals (Sweden)

    Tomomi Yamada

    Full Text Available The sound produced by a dental air turbine handpiece (dental drill can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: "metallic and unpleasant" and "powerful". LAeq had a strong relationship with "powerful impression", calculated sharpness was positively related to "metallic impression", and "unpleasant impression" was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating a

  19. Sound exposure during outdoor music festivals

    Directory of Open Access Journals (Sweden)

    Tron V Tronstad

    2016-01-01

    Full Text Available Most countries have guidelines to regulate sound exposure at concerts and music festivals. These guidelines limit the allowed sound pressure levels and the concert/festival’s duration. In Norway, where there is such a guideline, it is up to the local authorities to impose the regulations. The need to prevent hearing-loss among festival participants is self-explanatory, but knowledge of the actual dose received by visitors is extremely scarce. This study looks at two Norwegian music festivals where only one was regulated by the Norwegian guideline for concert and music festivals. At each festival the sound exposure of four participants was monitored with noise dose meters. This study compared the exposures experienced at the two festivals, and tested them against the Norwegian guideline and the World Health Organization’s recommendations. Sound levels during the concerts were higher at the festival not regulated by any guideline, and levels there exceeded both the national and the Worlds Health Organization’s recommendations. The results also show that front-of-house measurements reliably predict participant exposure.

  20. Sound Exposure During Outdoor Music Festivals

    Science.gov (United States)

    Tronstad, Tron V.; Gelderblom, Femke B.

    2016-01-01

    Most countries have guidelines to regulate sound exposure at concerts and music festivals. These guidelines limit the allowed sound pressure levels and the concert/festival's duration. In Norway, where there is such a guideline, it is up to the local authorities to impose the regulations. The need to prevent hearing-loss among festival participants is self-explanatory, but knowledge of the actual dose received by visitors is extremely scarce. This study looks at two Norwegian music festivals where only one was regulated by the Norwegian guideline for concert and music festivals. At each festival the sound exposure of four participants was monitored with noise dose meters. This study compared the exposures experienced at the two festivals, and tested them against the Norwegian guideline and the World Health Organization's recommendations. Sound levels during the concerts were higher at the festival not regulated by any guideline, and levels there exceeded both the national and the Worlds Health Organization's recommendations. The results also show that front-of-house measurements reliably predict participant exposure. PMID:27569410

  1. Handbook for sound engineers

    CERN Document Server

    Ballou, Glen

    2015-01-01

    Handbook for Sound Engineers is the most comprehensive reference available for audio engineers, and is a must read for all who work in audio.With contributions from many of the top professionals in the field, including Glen Ballou on interpretation systems, intercoms, assistive listening, and fundamentals and units of measurement, David Miles Huber on MIDI, Bill Whitlock on audio transformers and preamplifiers, Steve Dove on consoles, DAWs, and computers, Pat Brown on fundamentals, gain structures, and test and measurement, Ray Rayburn on virtual systems, digital interfacing, and preamplifiers

  2. Facing Sound - Voicing Art

    DEFF Research Database (Denmark)

    Lønstrup, Ansa

    2013-01-01

    This article is based on examples of contemporary audiovisual art, with a special focus on the Tony Oursler exhibition Face to Face at Aarhus Art Museum ARoS in Denmark in March-July 2012. My investigation involves a combination of qualitative interviews with visitors, observations of the audience´s...... interactions with the exhibition and the artwork in the museum space and short analyses of individual works of art based on reception aesthetics and phenomenology and inspired by newer writings on sound, voice and listening....

  3. JINGLE: THE SOUNDING SYMBOL

    Directory of Open Access Journals (Sweden)

    Bysko Maxim V.

    2013-12-01

    Full Text Available The article considers the role of jingles in the industrial era, from the occurrence of the regular radio broadcasting, sound films and television up of modern video games, audio and video podcasts, online broadcasts, and mobile communications. Jingles are researched from the point of view of the theory of symbols: the forward motion is detected in the process of development of jingles from the social symbols (radio callsigns to the individual signs-images (ringtones. The role of technical progress in the formation of jingles as important cultural audio elements of modern digital civilization.

  4. Experiments on second-sound shock waves in superfluid helium

    International Nuclear Information System (INIS)

    Cummings, J.C.; Schmidt, D.W.; Wagner, W.J.

    1978-01-01

    The waveform and velocity of second-sound waves in superfluid helium have been studied experimentally using superconducting, thin-film probes. The second-sound waves were generated with electrical pulses through a resistive film. Variations in pulse power, pulse duration, and bath temperature were examined. As predicted theoretically, the formation of a shock was observed at the leading or trailing edge of the waves depending on bath temperature. Breakdown of the theoretical model was observed for large pulse powers. Accurate data for the acoustic second-sound speed were derived from the measurements of shock-wave velocities and are compared with previous results

  5. High sound screening in low impedance slit arrays

    International Nuclear Information System (INIS)

    Estrada, Hector; Bravo, Jose Maria; Meseguer, Francisco

    2011-01-01

    We report on the key role of the acoustical impedance ratio between the solid and the host fluid in the transmission properties of slit arrays. Numerical calculations predict huge sound screening effects up to 60 dB for low impedance ratio values. The screening band appears over a broad frequency region and is very robust against dissipative losses of the material as well as against the sound incident angle. This counterintuitive result is discussed in terms of the hydrodynamic short circuit, where the fluid and the solid at the radiating interface vibrate out of phase, resulting in a huge sound blocking effect.

  6. Ratio-scaling of listener preference of multichannel reproduced sound

    DEFF Research Database (Denmark)

    Choisel, Sylvain; Wickelmaier, Florian

    2005-01-01

    -trivial assumption in the case of complex spatial sounds. In the present study the Bradley-Terry-Luce (BTL) model was employed to investigate the unidimensionality of preference judgments made by 40 listeners on multichannel reproduced sound. Short musical excerpts played back in eight reproduction modes (mono...... music). As a main result, the BTL model was found to predict the choice frequencies well. This implies that listeners were able to integrate the complex nature of the sounds into a unidimensional preference judgment. It further implies the existence of a preference scale on which the reproduction modes...

  7. Sound field control for a low-frequency test facility

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik

    2013-01-01

    The two largest problems in controlling the reproduction of low-frequency sound for psychoacoustic experiments is the effect of the room due to standing waves and the relatively large sound pressure levels needed. Anechoic rooms are limited downward in frequency and distortion may be a problem even...... at moderate levels, while pressure-field playback can give higher sound pressures but is limited upwards in frequency. A new solution that addresses both problems has been implemented in the laboratory of Acoustics, Aalborg University. The solution uses one wall with 20 loudspeakers to generate a plane wave...... that is actively absorbed when it reaches the 20 loudspeakers on the opposing wall. This gives a homogeneous sound field in the majority of the room with a flat frequency response in the frequency range 2-300 Hz. The lowest frequencies are limited to sound pressure levels in the order of 95 dB. If larger levels...

  8. SAMe-TT2R2 Score in the Outpatient Anticoagulation Clinic to Predict Time in Therapeutic Range and Adverse Events.

    Science.gov (United States)

    Pivatto Junior, Fernando; Scheffel, Rafael Selbach; Ries, Lucas; Wolkind, Ricardo Roitman; Marobin, Roberta; Barkan, Sabrina Sigal; Amon, Luís Carlos; Biolo, Andréia

    2017-04-01

    The SAMe-TT2R2 score was developed to predict which patients on oral anticoagulation with vitamin K antagonists (VKAs) will reach an adequate time in therapeutic range (TTR) (> 65%-70%). Studies have reported a relationship between this score and the occurrence of adverse events. To describe the TTR according to the score, in addition to relating the score obtained with the occurrence of adverse events in patients with nonvalvular atrial fibrillation (AF) on oral anticoagulation with VKAs. Retrospective cohort study including patients with nonvalvular AF attending an outpatient anticoagulation clinic of a tertiary hospital. Visits to the outpatient clinic and emergency, as well as hospital admissions to the institution, during 2014 were evaluated. The TTR was calculated through the Rosendaal´s method. We analyzed 263 patients (median TTR, 62.5%). The low-risk group (score 0-1) had a better median TTR as compared with the high-risk group (score ≥ 2): 69.2% vs. 56.3%, p = 0.002. Similarly, the percentage of patients with TTR ≥ 60%, 65% or 70% was higher in the low-risk group (p vitamina K (AVKs) atingirão um tempo na faixa terapêutica (TFT) adequado (> 65%-70%) no seguimento. Estudos também o relacionaram com a ocorrência de eventos adversos. Descrever o TFT de acordo com o escore, além de relacionar a pontuação obtida com a ocorrência de eventos adversos adversos em pacientes com fibrilação atrial (FA) não valvar em anticoagulação oral com AVKs. Estudo de coorte retrospectivo incluindo pacientes com FA não valvar em acompanhamento em ambulatório de anticoagulação de um hospital terciário. Foi realizada uma avaliação retrospectiva de consultas ambulatoriais, visitas a emergência e internações hospitalares na instituição no período de janeiro-dezembro/2014. O TFT foi calculado aplicando-se o método de Rosendaal. Foram analisados 263 pacientes com TFT mediano de 62,5%. O grupo de baixo risco (0-1 ponto) obteve um TFT mediano maior em

  9. Mercury in Long Island Sound sediments

    Science.gov (United States)

    Varekamp, J.C.; Buchholtz ten Brink, Marilyn R.; Mecray, E.I.; Kreulen, B.

    2000-01-01

    Mercury (Hg) concentrations were measured in 394 surface and core samples from Long Island Sound (LIS). The surface sediment Hg concentration data show a wide spread, ranging from 600 ppb Hg in westernmost LIS. Part of the observed range is related to variations in the bottom sedimentary environments, with higher Hg concentrations in the muddy depositional areas of central and western LIS. A strong residual trend of higher Hg values to the west remains when the data are normalized to grain size. Relationships between a tracer for sewage effluents (C. perfringens) and Hg concentrations indicate that between 0-50 % of the Hg is derived from sewage sources for most samples from the western and central basins. A higher percentage of sewage-derived Hg is found in samples from the westernmost section of LIS and in some local spots near urban centers. The remainder of the Hg is carried into the Sound with contaminated sediments from the watersheds and a small fraction enters the Sound as in situ atmospheric deposition. The Hg-depth profiles of several cores have well-defined contamination profiles that extend to pre-industrial background values. These data indicate that the Hg levels in the Sound have increased by a factor of 5-6 over the last few centuries, but Hg levels in LIS sediments have declined in modern times by up to 30 %. The concentrations of C. perfringens increased exponentially in the top core sections which had declining Hg concentrations, suggesting a recent decline in Hg fluxes that are unrelated to sewage effluents. The observed spatial and historical trends show Hg fluxes to LIS from sewage effluents, contaminated sediment input from the Connecticut River, point source inputs of strongly contaminated sediment from the Housatonic River, variations in the abundance of Hg carrier phases such as TOC and Fe, and focusing of sediment-bound Hg in association with westward sediment transport within the Sound.

  10. How Pleasant Sounds Promote and Annoying Sounds Impede Health: A Cognitive Approach

    Directory of Open Access Journals (Sweden)

    Tjeerd C. Andringa

    2013-04-01

    Full Text Available This theoretical paper addresses the cognitive functions via which quiet and in general pleasurable sounds promote and annoying sounds impede health. The article comprises a literature analysis and an interpretation of how the bidirectional influence of appraising the environment and the feelings of the perceiver can be understood in terms of core affect and motivation. This conceptual basis allows the formulation of a detailed cognitive model describing how sonic content, related to indicators of safety and danger, either allows full freedom over mind-states or forces the activation of a vigilance function with associated arousal. The model leads to a number of detailed predictions that can be used to provide existing soundscape approaches with a solid cognitive science foundation that may lead to novel approaches to soundscape design. These will take into account that louder sounds typically contribute to distal situational awareness while subtle environmental sounds provide proximal situational awareness. The role of safety indicators, mediated by proximal situational awareness and subtle sounds, should become more important in future soundscape research.

  11. Analysis of environmental sounds

    Science.gov (United States)

    Lee, Keansub

    Environmental sound archives - casual recordings of people's daily life - are easily collected by MPS players or camcorders with low cost and high reliability, and shared in the web-sites. There are two kinds of user generated recordings we would like to be able to handle in this thesis: Continuous long-duration personal audio and Soundtracks of short consumer video clips. These environmental recordings contain a lot of useful information (semantic concepts) related with activity, location, occasion and content. As a consequence, the environment archives present many new opportunities for the automatic extraction of information that can be used in intelligent browsing systems. This thesis proposes systems for detecting these interesting concepts on a collection of these real-world recordings. The first system is to segment and label personal audio archives - continuous recordings of an individual's everyday experiences - into 'episodes' (relatively consistent acoustic situations lasting a few minutes or more) using the Bayesian Information Criterion and spectral clustering. The second system is for identifying regions of speech or music in the kinds of energetic and highly-variable noise present in this real-world sound. Motivated by psychoacoustic evidence that pitch is crucial in the perception and organization of sound, we develop a noise-robust pitch detection algorithm to locate speech or music-like regions. To avoid false alarms resulting from background noise with strong periodic components (such as air-conditioning), a new scheme is added in order to suppress these noises in the domain of autocorrelogram. In addition, the third system is to automatically detect a large set of interesting semantic concepts; which we chose for being both informative and useful to users, as well as being technically feasible. These 25 concepts are associated with people's activities, locations, occasions, objects, scenes and sounds, and are based on a large collection of

  12. Sounds like Team Spirit

    Science.gov (United States)

    Hoffman, Edward

    2002-01-01

    I recently accompanied my son Dan to one of his guitar lessons. As I sat in a separate room, I focused on the music he was playing and the beautiful, robust sound that comes from a well-played guitar. Later that night, I woke up around 3 am. I tend to have my best thoughts at this hour. The trouble is I usually roll over and fall back asleep. This time I was still awake an hour later, so I got up and jotted some notes down in my study. I was thinking about the pure, honest sound of a well-played instrument. From there my mind wandered into the realm of high-performance teams and successful projects. (I know this sounds weird, but this is the sort of thing I think about at 3 am. Maybe you have your own weird thoughts around that time.) Consider a team in relation to music. It seems to me that a crack team can achieve a beautiful, perfect unity in the same way that a band of brilliant musicians can when they're in harmony with one another. With more than a little satisfaction I have to admit, I started to think about the great work performed for you by the Knowledge Sharing team, including this magazine you are reading. Over the past two years I personally have received some of my greatest pleasures as the APPL Director from the Knowledge Sharing activities - the Masters Forums, NASA Center visits, ASK Magazine. The Knowledge Sharing team expresses such passion for their work, just like great musicians convey their passion in the music they play. In the case of Knowledge Sharing, there are many factors that have made this so enjoyable (and hopefully worthwhile for NASA). Three ingredients come to mind -- ingredients that have produced a signature sound. First, through the crazy, passionate playing of Alex Laufer, Michelle Collins, Denise Lee, and Todd Post, I always know that something startling and original is going to come out of their activities. This team has consistently done things that are unique and innovative. For me, best of all is that they are always

  13. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 20 to 90 deg. 3: Influence of control deflection on predicted model D spin modes

    Science.gov (United States)

    Ralston, J. N.; Barnhart, B. P.

    1984-01-01

    The influence of control deflections on the rotational flow aerodynamics and on predicted spin modes is discussed for a 1/6-scale general aviation airplane model. The model was tested for various control settings at both zero and ten degree sideslip angles. Data were measured, using a rotary balance, over an angle-of-attack range of 30 deg to 90 deg, and for clockwise and counter-clockwise rotations covering an omegab/2V range of 0 to 0.5.

  14. Sound therapies for tinnitus management.

    Science.gov (United States)

    Jastreboff, Margaret M

    2007-01-01

    Many people with bothersome (suffering) tinnitus notice that their tinnitus changes in different acoustical surroundings, it is more intrusive in silence and less profound in the sound enriched environments. This observation led to the development of treatment methods for tinnitus utilizing sound. Many of these methods are still under investigation in respect to their specific protocol and effectiveness and only some have been objectively evaluated in clinical trials. This chapter will review therapies for tinnitus using sound stimulation.

  15. Cascaded Amplitude Modulations in Sound Texture Perception

    Directory of Open Access Journals (Sweden)

    Richard McWalter

    2017-09-01

    Full Text Available Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  16. Sound [signal] noise

    DEFF Research Database (Denmark)

    Bjørnsten, Thomas

    2012-01-01

    The article discusses the intricate relationship between sound and signification through notions of noise. The emergence of new fields of sonic artistic practices has generated several questions of how to approach sound as aesthetic form and material. During the past decade an increased attention...... has been paid to, for instance, a category such as ‘sound art’ together with an equally strengthened interest in phenomena and concepts that fall outside the accepted aesthetic procedures and constructions of what we traditionally would term as musical sound – a recurring example being ‘noise’....

  17. Musical Sound, Instruments, and Equipment

    Science.gov (United States)

    Photinos, Panos

    2017-12-01

    'Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding. The development is focused on musical instruments and acoustics. The construction of musical scales and the frequency relations are reviewed and applied in the description of musical instruments. The frequency spectrum of selected instruments is explored using freely available sound analysis software. Sound amplification and sound recording, including analog and digital approaches, are discussed in two separate chapters. The book concludes with a chapter on acoustics, the physical factors that affect the quality of the music experience, and practical ways to improve the acoustics at home or small recording studios. A brief technical section is provided at the end of each chapter, where the interested reader can find the relevant physics and sample calculations. These quantitative sections can be skipped without affecting the comprehension of the basic material. Questions are provided to test the reader's understanding of the material. Answers are given in the appendix.

  18. Sounding out the logo shot

    OpenAIRE

    Nicolai Jørgensgaard Graakjær

    2013-01-01

    This article focuses on how sound in combination with visuals (i.e. ‘branding by’) may possibly affect the signifying potentials (i.e. ‘branding effect’) of products and corporate brands (i.e. ‘branding of’) during logo shots in television commercials (i.e. ‘branding through’). This particular focus adds both to the understanding of sound in television commercials and to the understanding of sound brands. The article firstly presents a typology of sounds. Secondly, this typology is applied...

  19. Do top predators cue on sound production by mesopelagic prey?

    Science.gov (United States)

    Baumann-Pickering, S.; Checkley, D. M., Jr.; Demer, D. A.

    2016-02-01

    Deep-scattering layer (DSL) organisms, comprising a variety of mesopelagic fishes, and squids, siphonophores, crustaceans, and other invertebrates, are preferred prey for numerous large marine predators, e.g. cetaceans, seabirds, and fishes. Some of the DSL species migrate from depth during daylight to feed near the surface at night, transitioning during dusk and dawn. We investigated if any DSL organisms create sound, particularly during the crepuscular periods. Over several nights in summer 2015, underwater sound was recorded in the San Diego Trough using a high-frequency acoustic recording package (HARP, 10 Hz to 100 kHz), suspended from a drifting surface float. Acoustic backscatter from the DSL was monitored nearby using a calibrated multiple-frequency (38, 70, 120, and 200 kHz) split-beam echosounder (Simrad EK60) on a small boat. DSL organisms produced sound, between 300 and 1000 Hz, and the received levels were highest when the animals migrated past the recorder during ascent and descent. The DSL are globally present, so the observed acoustic phenomenon, if also ubiquitous, has wide-reaching implications. Sound travels farther than light or chemicals and thus can be sensed at greater distances by predators, prey, and mates. If sound is a characteristic feature of pelagic ecosystems, it likely plays a role in predator-prey relationships and overall ecosystem dynamics. Our new finding inspires numerous questions such as: Which, how, and why have DSL organisms evolved to create sound, for what do they use it and under what circumstances? Is sound production by DSL organisms truly ubiquitous, or does it depend on the local environment and species composition? How may sound production and perception be adapted to a changing environment? Do predators react to changes in sound? Can sound be used to quantify the composition of mixed-species assemblages, component densities and abundances, and hence be used in stock assessment or predictive modeling?

  20. Sounding the Alarm: An Introduction to Ecological Sound Art

    Directory of Open Access Journals (Sweden)

    Jonathan Gilmurray

    2016-12-01

    Full Text Available In recent years, a number of sound artists have begun engaging with ecological issues through their work, forming a growing movement of ˝ecological sound art˝. This paper traces its development, examines its influences, and provides examples of the artists whose work is currently defining this important and timely new field.

  1. Underwater Ranging

    OpenAIRE

    S. P. Gaba

    1984-01-01

    The paper deals with underwater laser ranging system, its principle of operation and maximum depth capability. The sources of external noise and methods to improve signal-to-noise ratio are also discussed.

  2. Determining the speed of sound in the air by sound wave interference

    Science.gov (United States)

    Silva, Abel A.

    2017-07-01

    Mechanical waves propagate through material media. Sound is an example of a mechanical wave. In fluids like air, sound waves propagate through successive longitudinal perturbations of compression and decompression. Audible sound frequencies for human ears range from 20 to 20 000 Hz. In this study, the speed of sound v in the air is determined using the identification of maxima of interference from two synchronous waves at frequency f. The values of v were correct to 0 °C. The experimental average value of {\\bar{ν }}\\exp =336 +/- 4 {{m}} {{{s}}}-1 was found. It is 1.5% larger than the reference value. The standard deviation of 4 m s-1 (1.2% of {\\bar{ν }}\\exp ) is an improved value by the use of the concept of the central limit theorem. The proposed procedure to determine the speed of sound in the air aims to be an academic activity for physics classes of scientific and technological courses in college.

  3. Sound, memory and interruption

    DEFF Research Database (Denmark)

    Pinder, David

    2016-01-01

    This chapter considers how art can interrupt the times and spaces of urban development so they might be imagined, experienced and understood differently. It focuses on the construction of the M11 Link Road through north-east London during the 1990s that demolished hundreds of homes and displaced...... around a thousand people. The highway was strongly resisted and it became the site of one of the country’s longest and largest anti-road struggles. The chapter addresses specifically Graeme Miller’s sound walk LINKED (2003), which for more than a decade has been broadcasting memories and stories...... of people who were violently displaced by the road as well as those who actively sought to halt it. Attention is given to the walk’s interruption of senses of the given and inevitable in two main ways. The first is in relation to the pace of the work and its deployment of slowness and arrest in a context...

  4. Recycling Sounds in Commercials

    DEFF Research Database (Denmark)

    Larsen, Charlotte Rørdam

    2012-01-01

    Commercials offer the opportunity for intergenerational memory and impinge on cultural memory. TV commercials for foodstuffs often make reference to past times as a way of authenticating products. This is frequently achieved using visual cues, but in this paper I would like to demonstrate how...... such references to the past and ‘the good old days’ can be achieved through sounds. In particular, I will look at commercials for Danish non-dairy spreads, especially for OMA margarine. These commercials are notable in that they contain a melody and a slogan – ‘Say the name: OMA margarine’ – that have basically...... remained the same for 70 years. Together these identifiers make OMA an interesting Danish case to study. With reference to Ann Rigney’s memorial practices or mechanisms, the study aims to demonstrate how the auditory aspects of Danish margarine commercials for frying tend to be limited in variety...

  5. The sounds of science

    Science.gov (United States)

    Carlowicz, Michael

    As scientists carefully study some aspects of the ocean environment, are they unintentionally distressing others? That is a question to be answered by Robert Benson and his colleagues in the Center for Bioacoustics at Texas A&M University.With help from a 3-year, $316,000 grant from the U.S. Office of Naval Research, Benson will study how underwater noise produced by naval operations and other sources may affect marine mammals. In Benson's study, researchers will generate random sequences of low-frequency, high-intensity (180-decibel) sounds in the Gulf of Mexico, working at an approximate distance of 1 km from sperm whale herds. Using an array of hydrophones, the scientists will listen to the characteristic clicks and whistles of the sperm whales to detect changes in the animals' direction, speed, and depth, as derived from fluctuations in their calls.

  6. Sound of proteins

    DEFF Research Database (Denmark)

    2007-01-01

    In my group we work with Molecular Dynamics to model several different proteins and protein systems. We submit our modelled molecules to changes in temperature, changes in solvent composition and even external pulling forces. To analyze our simulation results we have so far used visual inspection...... and statistical analysis of the resulting molecular trajectories (as everybody else!). However, recently I started assigning a particular sound frequency to each amino acid in the protein, and by setting the amplitude of each frequency according to the movement amplitude we can "hear" whenever two aminoacids...... example of soundfile was obtained from using Steered Molecular Dynamics for stretching the neck region of the scallop myosin molecule (in rigor, PDB-id: 1SR6), in such a way as to cause a rotation of the myosin head. Myosin is the molecule responsible for producing the force during muscle contraction...

  7. Using Pop-II models to predict effects of wolf predation and hunter harvests on elk, mule deer, and moose on the northern range

    Science.gov (United States)

    Mack, John A.; Singer, Francis J.

    1993-01-01

    The effects of establishing a gray wolf (Canis lupus) population in Yellowstone National Park were predicted for three ungulate species—elk (Cervus elaphus), mule deer (Odocoileus hemionus), and moose (Alces alces)—using previously developed POP-II population models. We developed models for 78 and 100 wolves. For each wolf population, we ran scenarios using wolf predation rates of 9, 12, and 15 ungulates/wolf/year. With 78 wolves and the antlerless elk harvest reduced 27%, our modeled elk population estimated were 5-18% smaller than the model estimate without wolves. With 100 wolves and the antlerless elk harvest reduced 27%, our elk population estimated were 11-30% smaller than the population estimates without wolves. Wolf predation effects were greater on the modeled mule deer population than on elk. With 78 wolves and no antlerless deer harvest, we predicted the mule deer population could be 13-44% larger than without wolves. With 100 wolves and no antlerless deer harvest, the mule deer population was 0-36% larger than without wolves. After wolf recovery, our POP-II models suggested moose harvests would have to be reduced at least 50% to maintain moose numbers at the levels predicted when wolves were not present. Mule deer and moose population data are limited, and these wolf predation effects may be overestimated if population sizes or male-female ratios were underestimated in our population models. We recommend additional mule deer and moose population data be obtained.

  8. Verification of an ENSO-Based Long-Range Prediction of Anomalous Weather Conditions During the Vancouver 2010 Olympics and Paralympics

    Science.gov (United States)

    Mo, Ruping; Joe, Paul I.; Doyle, Chris; Whitfield, Paul H.

    2014-01-01

    A brief review of the anomalous weather conditions during the Vancouver 2010 Winter Olympic and Paralympic Games and the efforts to predict these anomalies based on some preceding El Niño-Southern Oscillation (ENSO) signals are presented. It is shown that the Olympic Games were held under extraordinarily warm conditions in February 2010, with monthly mean temperature anomalies of +2.2 °C in Vancouver and +2.8 °C in Whistler, ranking respectively as the highest and the second highest in the past 30 years (1981-2010). The warm conditions continued, but became less anomalous, in March 2010 for the Paralympic Games. While the precipitation amounts in the area remained near normal through this winter, the lack of snow due to warm conditions created numerous media headlines and practical problems for the alpine competitions. A statistical model was developed on the premise that February and March temperatures in the Vancouver area could be predicted using an ENSO signal with considerable lead time. This model successfully predicted the warmer-than-normal, lower-snowfall conditions for the Vancouver 2010 Winter Olympics and Paralympics.

  9. Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale

    Science.gov (United States)

    William S. Currie; Mark E. Harmon; Ingrid C. Burke; Stephen C. Hart; William J. Parton; Whendee L. Silver

    2009-01-01

    We analyzed results from 10-year long field incubations of foliar and fine root litter from the Long-term lntersite Decomposition Experiment Team (LIDET) study. We tested whether a variety of climate and litter quality variables could be used to develop regression models of decomposition parameters across wide ranges in litter quality and climate and whether these...

  10. Designing a Sound Reducing Wall

    Science.gov (United States)

    Erk, Kendra; Lumkes, John; Shambach, Jill; Braile, Larry; Brickler, Anne; Matthys, Anna

    2015-01-01

    Acoustical engineers use their knowledge of sound to design quiet environments (e.g., classrooms and libraries) as well as to design environments that are supposed to be loud (e.g., concert halls and football stadiums). They also design sound barriers, such as the walls along busy roadways that decrease the traffic noise heard by people in…

  11. Thinking The City Through Sound

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob

    2011-01-01

    n Acoutic Territories. Sound Culture and Everyday Life Brandon LaBelle sets out to charts an urban topology through sound. Working his way through six acoustic territories: underground, home, sidewalk, street, shopping mall and sky/radio LaBelle investigates tensions and potentials inherent in mo...

  12. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    2010-01-01

    The aim of this article is to shed light on a small part of the research taking place in the textile field. The article describes an ongoing PhD research project on textiles and sound and outlines the project's two main questions: how sound can be shaped by textiles and conversely how textiles can...

  13. Basic semantics of product sounds

    NARCIS (Netherlands)

    Özcan Vieira, E.; Van Egmond, R.

    2012-01-01

    Product experience is a result of sensory and semantic experiences with product properties. In this paper, we focus on the semantic attributes of product sounds and explore the basic components for product sound related semantics using a semantic differential paradigmand factor analysis. With two

  14. Measuring the 'complexity' of sound

    Indian Academy of Sciences (India)

    cate that specialized regions of the brain analyse different types of sounds [1]. Music, ... The left panel of figure 1 shows examples of sound–pressure waveforms from the nat- ... which is shown in the right panels in the spectrographic representation using a 45 Hz .... Plot of SFM(t) vs. time for different environmental sounds.

  15. Long-range Prediction of climatic Change in the Eastern Seaboard of Thailand over the 21st Century using various Downscaling Approaches

    Science.gov (United States)

    Bejranonda, Werapol; Koch, Manfred; Koontanakulvong, Sucharit

    2010-05-01

    the different scales of the hydrological (local to regional) and of the GCM (global), one is faced with the problem of 'downscaling' the coarse grid resolution output of the GCM to the fine grid of the hydrological model. Although there have been numerous downscaling approaches proposed to that regard over the last decade, the jury is still out about the best method to use in a particular application. The focus here is on the downscaling part of the investigation, i.e. the proper preparation of the GCM's output to serve as input, i.e. the driving force, to the hydrological model (which is not further discussed here). Daily ensembles of climate variables computed by means of the CGCM3 model of the Canadian Climate Center which has a horizontal grid resolution of approximately the size of the whole study basin are used here, indicating clearly the need for downscaling. Daily observations of local climate variables available since 1971 are used as additional input to the various downscaling tools proposed which are, namely, the stochastic weather generator (LARS-WG), the statistical downscaling model (SDSM), and a multiple linear regression model between the observed variables and the CGCM3 predictors. Both the 2D and the 3D versions of the CGCM3 model are employed to predict, 100 years ahead up to year 2100, the monthly rainfall and temperatures, based on the past calibration period (training period) 1971-2000. To investigate the prediction performance, multiple linear regression, autoregressive (AR) and autoregressive integrated moving average (ARIMA) models are applied to the time series of the observation data which are aggregated into monthly time steps to be able compare them with the downscaling results above. Likewise, multiple linear regression and ARIMA models also executed on the CGCM3 predictors and the Pacific / Indian oceans indices as external regressors to predict short-term local climate variations. The results of the various downscaling method are

  16. Control of Sound Transmission with Active-Passive Tiles

    OpenAIRE

    Goldstein, Andre L.

    2006-01-01

    Nowadays, numerous applications of active sound transmission control require lightweight partitions with high transmission loss over a broad frequency range and simple control strategies. In this work an active-passive sound transmission control approach is investigated that potentially addresses these requirements. The approach involves the use of lightweight stiff panels, or tiles, attached to a radiating base structure through active-passive soft mounts and covering the structure surface. ...

  17. Sound field reconstruction based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2011-01-01

    be measured with a laser Doppler vibrometer; furthermore, it can be exploited to characterize an arbitrary sound field using tomographic techniques. This paper briefly reviews the fundamental principles governing the acousto-optic effect in air, and presents an investigation of the tomographic reconstruction...... within the audible frequency range by means of simulations and experimental results. The good agreement observed between simulations and measurements is further confirmed with representations of the sound field obtained with traditional microphone array measurements....

  18. Sounds scary? Lack of habituation following the presentation of novel sounds.

    Directory of Open Access Journals (Sweden)

    Tine A Biedenweg

    Full Text Available BACKGROUND: Animals typically show less habituation to biologically meaningful sounds than to novel signals. We might therefore expect that acoustic deterrents should be based on natural sounds. METHODOLOGY: We investigated responses by western grey kangaroos (Macropus fulignosus towards playback of natural sounds (alarm foot stomps and Australian raven (Corvus coronoides calls and artificial sounds (faux snake hiss and bull whip crack. We then increased rate of presentation to examine whether animals would habituate. Finally, we varied frequency of playback to investigate optimal rates of delivery. PRINCIPAL FINDINGS: Nine behaviors clustered into five Principal Components. PC factors 1 and 2 (animals alert or looking, or hopping and moving out of area accounted for 36% of variance. PC factor 3 (eating cessation, taking flight, movement out of area accounted for 13% of variance. Factors 4 and 5 (relaxing, grooming and walking; 12 and 11% of variation, respectively discontinued upon playback. The whip crack was most evocative; eating was reduced from 75% of time spent prior to playback to 6% following playback (post alarm stomp: 32%, raven call: 49%, hiss: 75%. Additionally, 24% of individuals took flight and moved out of area (50 m radius in response to the whip crack (foot stomp: 0%, raven call: 8% and 4%, hiss: 6%. Increasing rate of presentation (12x/min ×2 min caused 71% of animals to move out of the area. CONCLUSIONS/SIGNIFICANCE: The bull whip crack, an artificial sound, was as effective as the alarm stomp at eliciting aversive behaviors. Kangaroos did not fully habituate despite hearing the signal up to 20x/min. Highest rates of playback did not elicit the greatest responses, suggesting that 'more is not always better'. Ultimately, by utilizing both artificial and biological sounds, predictability may be masked or offset, so that habituation is delayed and more effective deterrents may be produced.

  19. The Opponent Channel Population Code of Sound Location Is an Efficient Representation of Natural Binaural Sounds

    Science.gov (United States)

    Młynarski, Wiktor

    2015-01-01

    In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a “panoramic” code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding. PMID:25996373

  20. The Aesthetic Experience of Sound

    DEFF Research Database (Denmark)

    Breinbjerg, Morten

    2005-01-01

    to react on. In an ecological understanding of hearing our detection of audible information affords us ways of responding to our environment. In my paper I will address both these ways of using sound in relation to computer games. Since a game player is responsible for the unfolding of the game, his......The use of sound in (3D) computer games basically falls in two. Sound is used as an element in the design of the set and as a narrative. As set design sound stages the nature of the environment, it brings it to life. As a narrative it brings us information that we can choose to or perhaps need...... exploration of the virtual space laid out before him is pertinent. In this mood of exploration sound is important and heavily contributing to the aesthetic of the experience....

  1. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  2. Predicting borderline personality disorder features from personality traits, identity orientation, and attachment styles in Italian nonclinical adults: issues of consistency across age ranges.

    Science.gov (United States)

    Fossati, Andrea; Borroni, Serena; Feeney, Judith; Maffei, Cesare

    2012-04-01

    The aims of this study were to assess whether Borderline Personality Disorder (BPD) features could be predicted by Big Five traits, impulsivity, identity orientation, and adult attachment patterns in a sample of 1,192 adult nonclinical participants, and to evaluate the consistency of these regression models across four age groups (49 years, and >50 years, respectively). In the full sample, measures of neuroticism (N), impulsivity, and anxious insecure attachment were substantial predictors of BPD features (adjusted R(2) = .38, p personality traits and disturbed attachment patterns.

  3. A- and C-weighted sound levels as predictors of the annoyance caused by shooting sounds, for various facade attenuation types

    NARCIS (Netherlands)

    Vos, J.

    2003-01-01

    In a previous study on the annoyance caused by a great variety of shooting sounds [J. Acoust. Soc. Am. 109, 244-253 (2001)], it was shown that the annoyance, as rated indoors with the windows closed, could be adequately predicted from the outdoor A-weighted and C-weighted sound-exposure levels [ASEL

  4. Sound waves in (2+1) dimensional holographic magnetic fluids

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex; Vazquez, Samuel E.

    2008-01-01

    We use the AdS/CFT correspondence to study propagation of sound waves in strongly coupled (2+1) dimensional conformal magnetic fluids. Our computation provides a nontrivial consistency check of the viscous magneto-hydrodynamics of Hartnoll-Kovtun-Mueller-Sachdev to leading order in the external field. Depending on the behavior of the magnetic field in the hydrodynamic limit, we show that it can lead to further attenuation of sound waves in the (2+1) dimensional conformal plasma, or reduce the speed of sound. We present both field theory and dual supergravity descriptions of these phenomena. While to the leading order in momenta the dispersion of the sound waves obtained from the dual supergravity description agrees with the one predicted from field theory, we find a discrepancy at higher order. This suggests that further corrections to HKMS magneto-hydrodynamics are necessary.

  5. Cascaded Amplitude Modulations in Sound Texture Perception

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; Dau, Torsten

    2017-01-01

    . In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture...... model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures....... In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model...

  6. Restriction in lateral bending range of motion, lumbar lordosis, and hamstring flexibility predicts the development of low back pain: a systematic review of prospective cohort studies.

    Science.gov (United States)

    Sadler, Sean G; Spink, Martin J; Ho, Alan; De Jonge, Xanne Janse; Chuter, Vivienne H

    2017-05-05

    Low back pain (LBP) is an increasingly common condition worldwide with significant costs associated with its management. Identification of musculoskeletal risk factors that can be treated clinically before the development of LBP could reduce costs and improve the quality of life of individuals. Therefore the aim was to systematically review prospective cohort studies investigating lower back and / or lower limb musculoskeletal risk factors in the development of LBP. MEDLINE, EMBASE, AMED, CINAHL, SPORTDiscus, and the Cochrane Library were searched from inception to February 2016. No age, gender or occupational restrictions of participants were applied. Articles had to be published in English and have a 12 month follow-up period. Musculoskeletal risk factors were defined as any osseous, ligamentous, or muscular structure that was quantifiably measured at baseline. Studies were excluded if participants were pregnant, diagnosed with cancer, or had previous low back surgery. Two authors independently reviewed and selected relevant articles. Methodological quality was evaluated independently by two reviewers using a generic tool for observational studies. Twelve articles which evaluated musculoskeletal risk factors for the development of low back pain in 5459 participants were included. Individual meta-analyses were conducted based on risk factors common between studies. Meta-analysis revealed that reduced lateral flexion range of motion (OR = 0.41, 95% CI 0.24-0.73, p = 0.002), limited lumbar lordosis (OR = 0.73, 95% CI 0.55-0.98, p = 0.034), and restricted hamstring range of motion (OR = 0.96, 95% CI 0.94-0.98, p = 0.001) were significantly associated with the development of low back pain. Meta-analyses on lumbar extension range of motion, quadriceps flexibility, fingertip to floor distance, lumbar flexion range of motion, back muscle strength, back muscle endurance, abdominal strength, erector spinae cross sectional area, and quadratus

  7. Validating a perceptual distraction model in a personal two-zone sound system

    DEFF Research Database (Denmark)

    Rämö, Jussi; Christensen, Lasse; Bech, Søren

    2017-01-01

    This paper focuses on validating a perceptual distraction model, which aims to predict user’s perceived distraction caused by audio-on-audio interference, e.g., two competing audio sources within the same listening space. Originally, the distraction model was trained with music-on-music stimuli...... using a simple loudspeaker setup, consisting of only two loudspeakers, one for the target sound source and the other for the interfering sound source. Recently, the model was successfully validated in a complex personal sound-zone system with speech-on-music stimuli. Second round of validations were...... conducted by physically altering the sound-zone system and running a set of new listening experiments utilizing two sound zones within the sound-zone system. Thus, validating the model using a different sound-zone system with both speech-on-music and music-on-speech stimuli sets. Preliminary results show...

  8. Community Response to Multiple Sound Sources: Integrating Acoustic and Contextual Approaches in the Analysis

    Directory of Open Access Journals (Sweden)

    Peter Lercher

    2017-06-01

    levels of 40 dBA,Lden to ensure the protection of quiet areas and prohibit the silent “filling up” of these areas with new sound sources. Eventually, to better predict the annoyance in the exposure range between 40 and 60 dBA and support the protection of quiet areas in city and rural areas in planning sound indicators need to be oriented at the noticeability of sound and consider other traffic related by-products (air quality, vibration, coping strain in future studies and environmental impact assessments.

  9. Depth- and range-dependent variation in the performance of aquatic telemetry systems: understanding and predicting the susceptibility of acoustic tag–receiver pairs to close proximity detection interference

    Directory of Open Access Journals (Sweden)

    Stephen R. Scherrer

    2018-01-01

    Full Text Available Background Passive acoustic telemetry using coded transmitter tags and stationary receivers is a popular method for tracking movements of aquatic animals. Understanding the performance of these systems is important in array design and in analysis. Close proximity detection interference (CPDI is a condition where receivers fail to reliably detect tag transmissions. CPDI generally occurs when the tag and receiver are near one another in acoustically reverberant settings. Here we confirm transmission multipaths reflected off the environment arriving at a receiver with sufficient delay relative to the direct signal cause CPDI. We propose a ray-propagation based model to estimate the arrival of energy via multipaths to predict CPDI occurrence, and we show how deeper deployments are particularly susceptible. Methods A series of experiments were designed to develop and validate our model. Deep (300 m and shallow (25 m ranging experiments were conducted using Vemco V13 acoustic tags and VR2-W receivers. Probabilistic modeling of hourly detections was used to estimate the average distance a tag could be detected. A mechanistic model for predicting the arrival time of multipaths was developed using parameters from these experiments to calculate the direct and multipath path lengths. This model was retroactively applied to the previous ranging experiments to validate CPDI observations. Two additional experiments were designed to validate predictions of CPDI with respect to combinations of deployment depth and distance. Playback of recorded tags in a tank environment was used to confirm multipaths arriving after the receiver’s blanking interval cause CPDI effects. Results Analysis of empirical data estimated the average maximum detection radius (AMDR, the farthest distance at which 95% of tag transmissions went undetected by receivers, was between 840 and 846 m for the deep ranging experiment across all factor permutations. From these results, CPDI was

  10. Depth- and range-dependent variation in the performance of aquatic telemetry systems: understanding and predicting the susceptibility of acoustic tag-receiver pairs to close proximity detection interference.

    Science.gov (United States)

    Scherrer, Stephen R; Rideout, Brendan P; Giorli, Giacomo; Nosal, Eva-Marie; Weng, Kevin C

    2018-01-01

    Passive acoustic telemetry using coded transmitter tags and stationary receivers is a popular method for tracking movements of aquatic animals. Understanding the performance of these systems is important in array design and in analysis. Close proximity detection interference (CPDI) is a condition where receivers fail to reliably detect tag transmissions. CPDI generally occurs when the tag and receiver are near one another in acoustically reverberant settings. Here we confirm transmission multipaths reflected off the environment arriving at a receiver with sufficient delay relative to the direct signal cause CPDI. We propose a ray-propagation based model to estimate the arrival of energy via multipaths to predict CPDI occurrence, and we show how deeper deployments are particularly susceptible. A series of experiments were designed to develop and validate our model. Deep (300 m) and shallow (25 m) ranging experiments were conducted using Vemco V13 acoustic tags and VR2-W receivers. Probabilistic modeling of hourly detections was used to estimate the average distance a tag could be detected. A mechanistic model for predicting the arrival time of multipaths was developed using parameters from these experiments to calculate the direct and multipath path lengths. This model was retroactively applied to the previous ranging experiments to validate CPDI observations. Two additional experiments were designed to validate predictions of CPDI with respect to combinations of deployment depth and distance. Playback of recorded tags in a tank environment was used to confirm multipaths arriving after the receiver's blanking interval cause CPDI effects. Analysis of empirical data estimated the average maximum detection radius (AMDR), the farthest distance at which 95% of tag transmissions went undetected by receivers, was between 840 and 846 m for the deep ranging experiment across all factor permutations. From these results, CPDI was estimated within a 276.5 m radius of the

  11. Fourth sound in relativistic superfluidity theory

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.; Fomin, P.I.

    1995-01-01

    The Lorentz-covariant equations describing propagation of the fourth sound in the relativistic theory of superfluidity are derived. The expressions for the velocity of the fourth sound are obtained. The character of oscillation in sound is determined

  12. The sound of high winds. The effect of atmospheric stability on wind turbine sound and microphone noise

    International Nuclear Information System (INIS)

    Van den Berg, G.P.

    2006-01-01

    In this thesis issues are raised concerning wind turbine noise and its relationship to altitude dependent wind velocity. The following issues are investigated: what is the influence of atmospheric stability on the speed and sound power of a wind turbine?; what is the influence of atmospheric stability on the character of wind turbine sound?; how widespread is the impact of atmospheric stability on wind turbine performance: is it relevant for new wind turbine projects; how can noise prediction take this stability into account?; what can be done to deal with the resultant higher impact of wind turbine sound? Apart from these directly wind turbine related issues, a final aim was to address a measurement problem: how does wind on a microphone affect the measurement of the ambient sound level?

  13. Evidence and theory for the prediction of tectonic activity in the Basin and Range Province of Nevada and Utah for the next one million years

    International Nuclear Information System (INIS)

    Lovejoy, E.M.P.

    1979-01-01

    Major conclusions of the report are: Important seismic activity in the next one million years will be restricted to the Intermountain Seismic Belt. Minor seismic activity in the same period will be restricted to the Nevada Seismic Belt, Sierra Nevada front, and Reno-Yellowstone lineament. There will be seismic inactivity in the same period in the rest of the Basin and Range Province except locally along high mountain frontal fault zones. In these zones, isostatic unloading will produce slow, secular, mild seismic activity for many millions of years to come

  14. EUVS Sounding Rocket Payload

    Science.gov (United States)

    Stern, Alan S.

    1996-01-01

    During the first half of this year (CY 1996), the EUVS project began preparations of the EUVS payload for the upcoming NASA sounding rocket flight 36.148CL, slated for launch on July 26, 1996 to observe and record a high-resolution (approx. 2 A FWHM) EUV spectrum of the planet Venus. These preparations were designed to improve the spectral resolution and sensitivity performance of the EUVS payload as well as prepare the payload for this upcoming mission. The following is a list of the EUVS project activities that have taken place since the beginning of this CY: (1) Applied a fresh, new SiC optical coating to our existing 2400 groove/mm grating to boost its reflectivity; (2) modified the Ranicon science detector to boost its detective quantum efficiency with the addition of a repeller grid; (3) constructed a new entrance slit plane to achieve 2 A FWHM spectral resolution; (4) prepared and held the Payload Initiation Conference (PIC) with the assigned NASA support team from Wallops Island for the upcoming 36.148CL flight (PIC held on March 8, 1996; see Attachment A); (5) began wavelength calibration activities of EUVS in the laboratory; (6) made arrangements for travel to WSMR to begin integration activities in preparation for the July 1996 launch; (7) paper detailing our previous EUVS Venus mission (NASA flight 36.117CL) published in Icarus (see Attachment B); and (8) continued data analysis of the previous EUVS mission 36.137CL (Spica occultation flight).

  15. Steerable sound transport in a 3D acoustic network

    Science.gov (United States)

    Xia, Bai-Zhan; Jiao, Jun-Rui; Dai, Hong-Qing; Yin, Sheng-Wen; Zheng, Sheng-Jie; Liu, Ting-Ting; Chen, Ning; Yu, De-Jie

    2017-10-01

    Quasi-lossless and asymmetric sound transports, which are exceedingly desirable in various modern physical systems, are almost always based on nonlinear or angular momentum biasing effects with extremely high power levels and complex modulation schemes. A practical route for the steerable sound transport along any arbitrary acoustic pathway, especially in a three-dimensional (3D) acoustic network, can revolutionize the sound power propagation and the sound communication. Here, we design an acoustic device containing a regular-tetrahedral cavity with four cylindrical waveguides. A smaller regular-tetrahedral solid in this cavity is eccentrically emplaced to break spatial symmetry of the acoustic device. The numerical and experimental results show that the sound power flow can unimpededly transport between two waveguides away from the eccentric solid within a wide frequency range. Based on the quasi-lossless and asymmetric transport characteristic of the single acoustic device, we construct a 3D acoustic network, in which the sound power flow can flexibly propagate along arbitrary sound pathways defined by our acoustic devices with eccentrically emplaced regular-tetrahedral solids.

  16. Analysis of sound pressure levels emitted by children's toys.

    Science.gov (United States)

    Sleifer, Pricila; Gonçalves, Maiara Santos; Tomasi, Marinês; Gomes, Erissandra

    2013-06-01

    To verify the levels of sound pressure emitted by non-certified children's toys. Cross-sectional study of sound toys available at popular retail stores of the so-called informal sector. Electronic, mechanical, and musical toys were analyzed. The measurement of each product was carried out by an acoustic engineer in an acoustically isolated booth, by a decibel meter. To obtain the sound parameters of intensity and frequency, the toys were set to produce sounds at a distance of 10 and 50cm from the researcher's ear. The intensity of sound pressure [dB(A)] and the frequency in hertz (Hz) were measured. 48 toys were evaluated. The mean sound pressure 10cm from the ear was 102±10 dB(A), and at 50cm, 94±8 dB(A), with ptoys was above 85dB(A). The frequency ranged from 413 to 6,635Hz, with 56.3% of toys emitting frequency higher than 2,000Hz. The majority of toys assessed in this research emitted a high level of sound pressure.

  17. A framework for automatic heart sound analysis without segmentation

    Directory of Open Access Journals (Sweden)

    Tungpimolrut Kanokvate

    2011-02-01

    Full Text Available Abstract Background A new framework for heart sound analysis is proposed. One of the most difficult processes in heart sound analysis is segmentation, due to interference form murmurs. Method Equal number of cardiac cycles were extracted from heart sounds with different heart rates using information from envelopes of autocorrelation functions without the need to label individual fundamental heart sounds (FHS. The complete method consists of envelope detection, calculation of cardiac cycle lengths using auto-correlation of envelope signals, features extraction using discrete wavelet transform, principal component analysis, and classification using neural network bagging predictors. Result The proposed method was tested on a set of heart sounds obtained from several on-line databases and recorded with an electronic stethoscope. Geometric mean was used as performance index. Average classification performance using ten-fold cross-validation was 0.92 for noise free case, 0.90 under white noise with 10 dB signal-to-noise ratio (SNR, and 0.90 under impulse noise up to 0.3 s duration. Conclusion The proposed method showed promising results and high noise robustness to a wide range of heart sounds. However, more tests are needed to address any bias that may have been introduced by different sources of heart sounds in the current training set, and to concretely validate the method. Further work include building a new training set recorded from actual patients, then further evaluate the method based on this new training set.

  18. Objective Scaling of Sound Quality for Normal-Hearing and Hearing-Impaired Listeners

    DEFF Research Database (Denmark)

    Nielsen, Lars Bramsløw

    ) Subjective sound quality ratings of clean and distorted speech and music signals, by normal-hearing and hearing-impaired listeners, to provide reference data, 2) An auditory model of the ear, including the effects of hearing loss, based on existing psychoacoustic knowledge, coupled to 3) An artificial neural......A new method for the objective estimation of sound quality for both normal-hearing and hearing-impaired listeners has been presented: OSSQAR (Objective Scaling of Sound Quality and Reproduction). OSSQAR is based on three main parts, which have been carried out and documented separately: 1...... network, which was trained to predict the sound quality ratings. OSSQAR predicts the perceived sound quality on two independent perceptual rating scales: Clearness and Sharpness. These two scales were shown to be the most relevant for assessment of sound quality, and they were interpreted the same way...

  19. Sound Clocks and Sonic Relativity

    Science.gov (United States)

    Todd, Scott L.; Menicucci, Nicolas C.

    2017-10-01

    Sound propagation within certain non-relativistic condensed matter models obeys a relativistic wave equation despite such systems admitting entirely non-relativistic descriptions. A natural question that arises upon consideration of this is, "do devices exist that will experience the relativity in these systems?" We describe a thought experiment in which `acoustic observers' possess devices called sound clocks that can be connected to form chains. Careful investigation shows that appropriately constructed chains of stationary and moving sound clocks are perceived by observers on the other chain as undergoing the relativistic phenomena of length contraction and time dilation by the Lorentz factor, γ , with c the speed of sound. Sound clocks within moving chains actually tick less frequently than stationary ones and must be separated by a shorter distance than when stationary to satisfy simultaneity conditions. Stationary sound clocks appear to be length contracted and time dilated to moving observers due to their misunderstanding of their own state of motion with respect to the laboratory. Observers restricted to using sound clocks describe a universe kinematically consistent with the theory of special relativity, despite the preferred frame of their universe in the laboratory. Such devices show promise in further probing analogue relativity models, for example in investigating phenomena that require careful consideration of the proper time elapsed for observers.

  20. Sound localization and occupational noise

    Directory of Open Access Journals (Sweden)

    Pedro de Lemos Menezes

    2014-02-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the effects of occupational noise on sound localization in different spatial planes and frequencies among normal hearing firefighters. METHOD: A total of 29 adults with pure-tone hearing thresholds below 25 dB took part in the study. The participants were divided into a group of 19 firefighters exposed to occupational noise and a control group of 10 adults who were not exposed to such noise. All subjects were assigned a sound localization task involving 117 stimuli from 13 sound sources that were spatially distributed in horizontal, vertical, midsagittal and transverse planes. The three stimuli, which were square waves with fundamental frequencies of 500, 2,000 and 4,000 Hz, were presented at a sound level of 70 dB and were randomly repeated three times from each sound source. The angle between the speaker's axis in the same plane was 45°, and the distance to the subject was 1 m. RESULT: The results demonstrate that the sound localization ability of the firefighters was significantly lower (p<0.01 than that of the control group. CONCLUSION: Exposure to occupational noise, even when not resulting in hearing loss, may lead to a diminished ability to locate a sound source.

  1. A compilation of correlation parameters for predicting the enthalpy and thermal conductivity of solid foods within the temperature range of -40 C to +40 C

    Energy Technology Data Exchange (ETDEWEB)

    Amos, N.D. [Comvita New Zealand Limited, Private Bag 1, Te Puke 3153 (New Zealand); Willix, J.; North, M.F. [AgResearch Limited, MIRINZ Centre, Ruakura Campus, East Street, Private Bag 3123, Hamilton (New Zealand); Chadderton, T. [Crop and Food Research Ltd, PO Box 5114, Nelson (New Zealand)

    2008-11-15

    This paper presents thermal conductivity data for 40 foods, enthalpy data for 58 foods and density data for nine foods, along with the compositions of the foods. Measurements cover a range of solid food types (including meats, fats, offal, fish, dairy products and horticultural products). Some measurements reported are for foods that have never before been studied, others have been published elsewhere, but are included here for convenience. Thermal conductivity was measured using a guarded hot-plate apparatus, enthalpy using an adiabatic calorimeter and density using a water displacement meter. Thermal conductivity and enthalpy values were measured within the temperature range of -40 C to +40 C. (author) [French] Cette publication presente des donnes sur la conductivite thermique, l'enthalpie et la densite respectivement de 40, 58 et 9 produits alimentaires, ainsi que leurs compositions. Les mesures couvrent une variete de types de produits alimentaires (viande, matieres grasses, abats, poisson, produits laitiers, produits horticoles). Certaines sont rapportees pour des produits qui n 'ant jamais ete etudie auparavant, d'autres ant ete publie ailleurs mais sont aussi inclues pour plus de commodite. La conductivite thermique a ete mesure avec un appareil a plaque electrique protegee, l'enthalpie avec un calorimetre adiabatique et la densite avec un appareil mesurant Ie deplacement d'eau. La conductivite thermique et l'enthalpie ont ete toutes les mesures pour une fourchette de temperatures allant de -40 C a 40 C. (orig.)

  2. Fourth sound of holographic superfluids

    International Nuclear Information System (INIS)

    Yarom, Amos

    2009-01-01

    We compute fourth sound for superfluids dual to a charged scalar and a gauge field in an AdS 4 background. For holographic superfluids with condensates that have a large scaling dimension (greater than approximately two), we find that fourth sound approaches first sound at low temperatures. For condensates that a have a small scaling dimension it exhibits non-conformal behavior at low temperatures which may be tied to the non-conformal behavior of the order parameter of the superfluid. We show that by introducing an appropriate scalar potential, conformal invariance can be enforced at low temperatures.

  3. Sound intensity as a function of sound insulation partition

    OpenAIRE

    Cvetkovic , S.; Prascevic , R.

    1994-01-01

    In the modern engineering practice, the sound insulation of the partitions is the synthesis of the theory and of the experience acquired in the procedure of the field and of the laboratory measurement. The science and research public treat the sound insulation in the context of the emission and propagation of the acoustic energy in the media with the different acoustics impedance. In this paper, starting from the essence of physical concept of the intensity as the energy vector, the authors g...

  4. An Integrated Approach to Motion and Sound

    National Research Council Canada - National Science Library

    Hahn, James K; Geigel, Joe; Lee, Jong W; Gritz, Larry; Takala, Tapio; Mishra, Suneil

    1995-01-01

    Until recently, sound has been given little attention in computer graphics and related domains of computer animation and virtual environments, although sounds which are properly synchronized to motion...

  5. Step length after discrete perturbation predicts accidental falls and fall-related injury in elderly people with a range of peripheral neuropathy.

    Science.gov (United States)

    Allet, Lara; Kim, Hogene; Ashton-Miller, James; De Mott, Trina; Richardson, James K

    2014-01-01

    Distal symmetric polyneuropathy increases fall risk due to inability to cope with perturbations. We aimed to 1) identify the frontal plane lower limb sensorimotor functions which are necessary for robustness to a discrete, underfoot perturbation during gait; and 2) determine whether changes in the post-perturbed step parameters could distinguish between fallers and non fallers. Forty-two subjects (16 healthy old and 26 with diabetic PN) participated. Frontal plane lower limb sensorimotor functions were determined using established laboratory-based techniques. The subjects' most extreme alterations in step width or step length in response to a perturbation were measured. In addition, falls and fall-related injuries were prospectively recorded. Ankle proprioceptive threshold (APrT; p=.025) and hip abduction rate of torque generation (RTG; p=.041) independently predicted extreme step length after medial perturbation, with precise APrT and greater hip RTG allowing maintenance of step length. Injured subjects demonstrated greater extreme step length changes after medial perturbation than non-injured subjects (percent change = 18.5 ± 9.2 vs. 11.3 ± 4.57; p = .01). The ability to rapidly generate frontal plane hip strength and/or precisely perceive motion at the ankle is needed to maintain a normal step length after perturbation, a parameter which distinguishes between subjects sustaining a fall-related injury and those who did not. © 2014.

  6. Step length after discrete perturbation predicts accidental falls and fall-related injury in elderly people with a range of peripheral neuropathy

    Science.gov (United States)

    Allet, L; Kim, H; Ashton-Miller, JA; De Mott, T; Richardson, JK

    2013-01-01

    Aims Distal symmetric polyneuropathy increases fall risk due to inability to cope with perturbations. We aimed to 1) identify the frontal plane lower limb sensorimotor functions which are necessary for robustness to a discrete, underfoot perturbation during gait; and 2) determine whether changes in the post-perturbed step parameters could distinguish between fallers and non fallers. Methods Forty-two subjects (16 healthy old and 26 with diabetic PN) participated. Frontal plane lower limb sensorimotor functions were determined using established laboratory-based techniques. The subjects' most extreme alterations in step width or step length in response to a perturbation were measured. In addition, falls and fall-related injuries were prospectively recorded. Results Ankle proprioceptive threshold (APrT; p=.025) and hip abduction rate of torque generation (RTG; p=.041) independently predicted extreme step length after medial perturbation, with precise APrT and greater hip RTG allowing maintenance of step length. Fallers demonstrated greater extreme step length changes after medial perturbation than non fallers (percent change = 16.41±8.42 vs 11.0±4.95; p=.06) Conclusions The ability to rapidly generate frontal plane hip strength and/or precisely perceive motion at the ankle is needed to maintain a normal step length after perturbation, a parameter, which distinguishes between fallers and non fallers. PMID:24183899

  7. submitter Proton therapy treatment monitoring with the DoPET system: activity range, positron emitters evaluation and comparison with Monte Carlo predictions

    CERN Document Server

    Muraro, S; Belcari, N; Bisogni, M G; Camarlinghi, N; Cristoforetti, L; Guerra, A Del; Ferrari, A; Fracchiolla, F; Morrocchi, M; Righetto, R; Sala, P; Schwarz, M; Sportelli, G; Topi, A; Rosso, V

    2017-01-01

    Ion beam irradiations can deliver conformal dose distributions minimizing damage to healthy tissues thanks to their characteristic dose profiles. Nevertheless, the location of the Bragg peak can be affected by different sources of range uncertainties: a critical issue is the treatment verification. During the treatment delivery, nuclear interactions between the ions and the irradiated tissues generate β+ emitters: the detection of this activity signal can be used to perform the treatment monitoring if an expected activity distribution is available for comparison. Monte Carlo (MC) codes are widely used in the particle therapy community to evaluate the radiation transport and interaction with matter. In this work, FLUKA MC code was used to simulate the experimental conditions of irradiations performed at the Proton Therapy Center in Trento (IT). Several mono-energetic pencil beams were delivered on phantoms mimicking human tissues. The activity signals were acquired with a PET system (DoPET) based on two plana...

  8. Exposure to excessive sounds and hearing status in academic classical music students

    Directory of Open Access Journals (Sweden)

    Małgorzata Pawlaczyk-Łuszczyńska

    2017-02-01

    Full Text Available Objectives: The aim of this study was to assess hearing of music students in relation to their exposure to excessive sounds. Material and Methods: Standard pure-tone audiometry (PTA was performed in 168 music students, aged 22.5±2.5 years. The control group included 67 subjects, non-music students and non-musicians, aged 22.8±3.3 years. Data on the study subjects’ musical experience, instruments in use, time of weekly practice and additional risk factors for noise-induced hearing loss (NIHL were identified by means of a questionnaire survey. Sound pressure levels produced by various groups of instruments during solo and group playing were also measured and analyzed. The music students’ audiometric hearing threshold levels (HTLs were compared with the theoretical predictions calculated according to the International Organization for Standardization standard ISO 1999:2013. Results: It was estimated that the music students were exposed for 27.1±14.3 h/week to sounds at the A-weighted equivalent-continuous sound pressure level of 89.9±6.0 dB. There were no significant differences in HTLs between the music students and the control group in the frequency range of 4000–8000 Hz. Furthermore, in each group HTLs in the frequency range 1000–8000 Hz did not exceed 20 dB HL in 83% of the examined ears. Nevertheless, high frequency notched audiograms typical of the noise-induced hearing loss were found in 13.4% and 9% of the musicians and non-musicians, respectively. The odds ratio (OR of notching in the music students increased significantly along with higher sound pressure levels (OR = 1.07, 95% confidence interval (CI: 1.014–1.13, p < 0.05. The students’ HTLs were worse (higher than those of a highly screened non-noise-exposed population. Moreover, their hearing loss was less severe than that expected from sound exposure for frequencies of 3000 Hz and 4000 Hz, and it was more severe in the case of frequency of 6000 Hz. Conclusions: The

  9. Exposure to excessive sounds and hearing status in academic classical music students.

    Science.gov (United States)

    Pawlaczyk-Łuszczyńska, Małgorzata; Zamojska-Daniszewska, Małgorzata; Dudarewicz, Adam; Zaborowski, Kamil

    2017-02-21

    The aim of this study was to assess hearing of music students in relation to their exposure to excessive sounds. Standard pure-tone audiometry (PTA) was performed in 168 music students, aged 22.5±2.5 years. The control group included 67 subjects, non-music students and non-musicians, aged 22.8±3.3 years. Data on the study subjects' musical experience, instruments in use, time of weekly practice and additional risk factors for noise-induced hearing loss (NIHL) were identified by means of a questionnaire survey. Sound pressure levels produced by various groups of instruments during solo and group playing were also measured and analyzed. The music students' audiometric hearing threshold levels (HTLs) were compared with the theoretical predictions calculated according to the International Organization for Standardization standard ISO 1999:2013. It was estimated that the music students were exposed for 27.1±14.3 h/week to sounds at the A-weighted equivalent-continuous sound pressure level of 89.9±6.0 dB. There were no significant differences in HTLs between the music students and the control group in the frequency range of 4000-8000 Hz. Furthermore, in each group HTLs in the frequency range 1000-8000 Hz did not exceed 20 dB HL in 83% of the examined ears. Nevertheless, high frequency notched audiograms typical of the noise-induced hearing loss were found in 13.4% and 9% of the musicians and non-musicians, respectively. The odds ratio (OR) of notching in the music students increased significantly along with higher sound pressure levels (OR = 1.07, 95% confidence interval (CI): 1.014-1.13, p students' HTLs were worse (higher) than those of a highly screened non-noise-exposed population. Moreover, their hearing loss was less severe than that expected from sound exposure for frequencies of 3000 Hz and 4000 Hz, and it was more severe in the case of frequency of 6000 Hz. The results confirm the need for further studies and development of a hearing conservation program for

  10. Cortical processing of pitch: Model-based encoding and decoding of auditory fMRI responses to real-life sounds.

    Science.gov (United States)

    De Angelis, Vittoria; De Martino, Federico; Moerel, Michelle; Santoro, Roberta; Hausfeld, Lars; Formisano, Elia

    2017-11-13

    Pitch is a perceptual attribute related to the fundamental frequency (or periodicity) of a sound. So far, the cortical processing of pitch has been investigated mostly using synthetic sounds. However, the complex harmonic structure of natural sounds may require different mechanisms for the extraction and analysis of pitch. This study investigated the neural representation of pitch in human auditory cortex using model-based encoding and decoding analyses of high field (7 T) functional magnetic resonance imaging (fMRI) data collected while participants listened to a wide range of real-life sounds. Specifically, we modeled the fMRI responses as a function of the sounds' perceived pitch height and salience (related to the fundamental frequency and the harmonic structure respectively), which we estimated with a computational algorithm of pitch extraction (de Cheveigné and Kawahara, 2002). First, using single-voxel fMRI encoding, we identified a pitch-coding region in the antero-lateral Heschl's gyrus (HG) and adjacent superior temporal gyrus (STG). In these regions, the pitch representation model combining height and salience predicted the fMRI responses comparatively better than other models of acoustic processing and, in the right hemisphere, better than pitch representations based on height/salience alone. Second, we assessed with model-based decoding that multi-voxel response patterns of the identified regions are more informative of perceived pitch than the remainder of the auditory cortex. Further multivariate analyses showed that complementing a multi-resolution spectro-temporal sound representation with pitch produces a small but significant improvement to the decoding of complex sounds from fMRI response patterns. In sum, this work extends model-based fMRI encoding and decoding methods - previously employed to examine the representation and processing of acoustic sound features in the human auditory system - to the representation and processing of a relevant

  11. The isolation of low frequency impact sounds in hotel construction

    Science.gov (United States)

    LoVerde, John J.; Dong, David W.

    2002-11-01

    One of the design challenges in the acoustical design of hotels is reducing low frequency sounds from footfalls occurring on both carpeted and hard-surfaced floors. Research on low frequency impact noise [W. Blazier and R. DuPree, J. Acoust. Soc. Am. 96, 1521-1532 (1994)] resulted in a conclusion that in wood construction low frequency impact sounds were clearly audible and that feasible control methods were not available. The results of numerous FIIC (Field Impact Insulation Class) measurements performed in accordance with ASTM E1007 indicate the lack of correlation between FIIC ratings and the reaction of occupants in the room below. The measurements presented include FIIC ratings and sound pressure level measurements below the ASTM E1007 low frequency limit of 100 Hertz, and reveal that excessive sound levels in the frequency range of 63 to 100 Hertz correlate with occupant complaints. Based upon this history, a tentative criterion for maximum impact sound level in the low frequency range is presented. The results presented of modifying existing constructions to reduce the transmission of impact sounds at low frequencies indicate that there may be practical solutions to this longstanding problem.

  12. Usefulness of bowel sound auscultation: a prospective evaluation.

    Science.gov (United States)

    Felder, Seth; Margel, David; Murrell, Zuri; Fleshner, Phillip

    2014-01-01

    Although the auscultation of bowel sounds is considered an essential component of an adequate physical examination, its clinical value remains largely unstudied and subjective. The aim of this study was to determine whether an accurate diagnosis of normal controls, mechanical small bowel obstruction (SBO), or postoperative ileus (POI) is possible based on bowel sound characteristics. Prospectively collected recordings of bowel sounds from patients with normal gastrointestinal motility, SBO diagnosed by computed tomography and confirmed at surgery, and POI diagnosed by clinical symptoms and a computed tomography without a transition point. Study clinicians were instructed to categorize the patient recording as normal, obstructed, ileus, or not sure. Using an electronic stethoscope, bowel sounds of healthy volunteers (n = 177), patients with SBO (n = 19), and patients with POI (n = 15) were recorded. A total of 10 recordings randomly selected from each category were replayed through speakers, with 15 of the recordings duplicated to surgical and internal medicine clinicians (n = 41) blinded to the clinical scenario. The sensitivity, positive predictive value, and intra-rater variability were determined based on the clinician's ability to properly categorize the bowel sound recording when blinded to additional clinical information. Secondary outcomes were the clinician's perceived level of expertise in interpreting bowel sounds. The overall sensitivity for normal, SBO, and POI recordings was 32%, 22%, and 22%, respectively. The positive predictive value of normal, SBO, and POI recordings was 23%, 28%, and 44%, respectively. Intra-rater reliability of duplicated recordings was 59%, 52%, and 53% for normal, SBO, and POI, respectively. No statistically significant differences were found between the surgical and internal medicine clinicians for sensitivity, positive predictive value, or intra-rater variability. Overall, 44% of clinicians reported that they rarely listened

  13. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation.

    Science.gov (United States)

    Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T

    2016-05-01

    Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.

  14. Solid phase stability of molybdenum under compression: Sound velocity measurements and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiulu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan (China); Liu, Zhongli [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); College of Physics and Electric Information, Luoyang Normal University, 471022 Luoyang, Henan (China); Jin, Ke; Xi, Feng; Yu, Yuying; Tan, Ye; Dai, Chengda; Cai, Lingcang [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China)

    2015-02-07

    The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of the longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.

  15. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    Science.gov (United States)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    This paper describes the development as well as the on-ground and the in-flight evaluation of a low cost Global Positioning System (GPS) system for real-time tracking of sounding rockets. The flight unit comprises a modified ORION GPS receiver and a newly designed switchable antenna system composed of a helical antenna in the rocket tip and a dual-blade antenna combination attached to the body of the service module. Aside from the flight hardware a PC based terminal program has been developed to monitor the GPS data and graphically displays the rocket's path during the flight. In addition an Instantaneous Impact Point (IIP) prediction is performed based on the received position and velocity information. In preparation for ESA's Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, Kiruna, on 19 Feb. 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. In addition to the ORION receiver, an Ashtech G12 HDMA receiver and a BAE (Canadian Marconi) Allstar receiver, both connected to a wrap-around antenna, have been flown on the same rocket as part of an independent experiment provided by the Goddard Space Flight Center. This allows an in-depth verification and trade-off of different receiver and antenna concepts.

  16. Theoretical analysis of sound transmission loss through graphene sheets

    International Nuclear Information System (INIS)

    Natsuki, Toshiaki; Ni, Qing-Qing

    2014-01-01

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials

  17. Theoretical analysis of sound transmission loss through graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan); Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Ni, Qing-Qing [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan)

    2014-11-17

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials.

  18. Segmentation of heart sound recordings by a duration-dependent hidden Markov model

    International Nuclear Information System (INIS)

    Schmidt, S E; Graff, C; Toft, E; Struijk, J J; Holst-Hansen, C

    2010-01-01

    Digital stethoscopes offer new opportunities for computerized analysis of heart sounds. Segmentation of heart sound recordings into periods related to the first and second heart sound (S1 and S2) is fundamental in the analysis process. However, segmentation of heart sounds recorded with handheld stethoscopes in clinical environments is often complicated by background noise. A duration-dependent hidden Markov model (DHMM) is proposed for robust segmentation of heart sounds. The DHMM identifies the most likely sequence of physiological heart sounds, based on duration of the events, the amplitude of the signal envelope and a predefined model structure. The DHMM model was developed and tested with heart sounds recorded bedside with a commercially available handheld stethoscope from a population of patients referred for coronary arterioangiography. The DHMM identified 890 S1 and S2 sounds out of 901 which corresponds to 98.8% (CI: 97.8–99.3%) sensitivity in 73 test patients and 13 misplaced sounds out of 903 identified sounds which corresponds to 98.6% (CI: 97.6–99.1%) positive predictivity. These results indicate that the DHMM is an appropriate model of the heart cycle and suitable for segmentation of clinically recorded heart sounds

  19. The science of sound recording

    CERN Document Server

    Kadis, Jay

    2012-01-01

    The Science of Sound Recording will provide you with more than just an introduction to sound and recording, it will allow you to dive right into some of the technical areas that often appear overwhelming to anyone without an electrical engineering or physics background.  The Science of Sound Recording helps you build a basic foundation of scientific principles, explaining how recording really works. Packed with valuable must know information, illustrations and examples of 'worked through' equations this book introduces the theory behind sound recording practices in a logical and prac

  20. Nonlinear effects in the propagation of shortwave transverse sound in pure superconductors

    International Nuclear Information System (INIS)

    Gal'perin, Y.

    1982-01-01

    Various mechanisms are analyzed which lead to nonlinear phenomena (e.g., the dependence of the absorption coefficient and of the velocity of sound on its intensity) in the propagation of transverse shortwave sound in pure superconductors (the wavelength of the sound being much less than the mean free path of the quasiparticles). It is shown that the basic mechanism, over a wide range of superconductor parameters and of the sound intensity, is the so-called momentum nonlinearity. The latter is due to the distortion (induced by the sound wave) of the quasimomentum distribution of resonant electrons interacting with the wave. The dependences of the absorption coefficient and of the sound velocity on its intensity and on the temperature are analyzed in the vicinity of the superconducting transition point. The feasibility of an experimental study of nonlinear acoustic phenomena in the case of transverse sound is considered

  1. Nonlocal nonlinear coupling of kinetic sound waves

    Directory of Open Access Journals (Sweden)

    O. Lyubchyk

    2014-11-01

    Full Text Available We study three-wave resonant interactions among kinetic-scale oblique sound waves in the low-frequency range below the ion cyclotron frequency. The nonlinear eigenmode equation is derived in the framework of a two-fluid plasma model. Because of dispersive modifications at small wavelengths perpendicular to the background magnetic field, these waves become a decay-type mode. We found two decay channels, one into co-propagating product waves (forward decay, and another into counter-propagating product waves (reverse decay. All wavenumbers in the forward decay are similar and hence this decay is local in wavenumber space. On the contrary, the reverse decay generates waves with wavenumbers that are much larger than in the original pump waves and is therefore intrinsically nonlocal. In general, the reverse decay is significantly faster than the forward one, suggesting a nonlocal spectral transport induced by oblique sound waves. Even with low-amplitude sound waves the nonlinear interaction rate is larger than the collisionless dissipation rate. Possible applications regarding acoustic waves observed in the solar corona, solar wind, and topside ionosphere are briefly discussed.

  2. Facilitated auditory detection for speech sounds

    Directory of Open Access Journals (Sweden)

    Carine eSignoret

    2011-07-01

    Full Text Available If it is well known that knowledge facilitates higher cognitive functions, such as visual and auditory word recognition, little is known about the influence of knowledge on detection, particularly in the auditory modality. Our study tested the influence of phonological and lexical knowledge on auditory detection. Words, pseudo words and complex non phonological sounds, energetically matched as closely as possible, were presented at a range of presentation levels from sub threshold to clearly audible. The participants performed a detection task (Experiments 1 and 2 that was followed by a two alternative forced choice recognition task in Experiment 2. The results of this second task in Experiment 2 suggest a correct recognition of words in the absence of detection with a subjective threshold approach. In the detection task of both experiments, phonological stimuli (words and pseudo words were better detected than non phonological stimuli (complex sounds, presented close to the auditory threshold. This finding suggests an advantage of speech for signal detection. An additional advantage of words over pseudo words was observed in Experiment 2, suggesting that lexical knowledge could also improve auditory detection when listeners had to recognize the stimulus in a subsequent task. Two simulations of detection performance performed on the sound signals confirmed that the advantage of speech over non speech processing could not be attributed to energetic differences in the stimuli.

  3. Experimental methodology for obtaining sound absorption coefficients

    Directory of Open Access Journals (Sweden)

    Carlos A. Macía M

    2011-07-01

    Full Text Available Objective: the authors propose a new methodology for estimating sound absorption coefficients using genetic algorithms. Methodology: sound waves are generated and conducted along a rectangular silencer. The waves are then attenuated by the absorbing material covering the silencer’s walls. The attenuated sound pressure level is used in a genetic algorithm-based search to find the parameters of the proposed attenuation expressions that include geometric factors, the wavelength and the absorption coefficient. Results: a variety of adjusted mathematical models were found that make it possible to estimate the absorption coefficients based on the characteristics of a rectangular silencer used for measuring the attenuation of the noise that passes through it. Conclusions: this methodology makes it possible to obtain the absorption coefficients of new materials in a cheap and simple manner. Although these coefficients might be slightly different from those obtained through other methodologies, they provide solutions within the engineering accuracy ranges that are used for designing noise control systems.

  4. Cortical processing of dynamic sound envelope transitions.

    Science.gov (United States)

    Zhou, Yi; Wang, Xiaoqin

    2010-12-08

    Slow envelope fluctuations in the range of 2-20 Hz provide important segmental cues for processing communication sounds. For a successful segmentation, a neural processor must capture envelope features associated with the rise and fall of signal energy, a process that is often challenged by the interference of background noise. This study investigated the neural representations of slowly varying envelopes in quiet and in background noise in the primary auditory cortex (A1) of awake marmoset monkeys. We characterized envelope features based on the local average and rate of change of sound level in envelope waveforms and identified envelope features to which neurons were selective by reverse correlation. Our results showed that envelope feature selectivity of A1 neurons was correlated with the degree of nonmonotonicity in their static rate-level functions. Nonmonotonic neurons exhibited greater feature selectivity than monotonic neurons in quiet and in background noise. The diverse envelope feature selectivity decreased spike-timing correlation among A1 neurons in response to the same envelope waveforms. As a result, the variability, but not the average, of the ensemble responses of A1 neurons represented more faithfully the dynamic transitions in low-frequency sound envelopes both in quiet and in background noise.

  5. Visualization of Broadband Sound Sources

    OpenAIRE

    Sukhanov Dmitry; Erzakova Nadezhda

    2016-01-01

    In this paper the method of imaging of wideband audio sources based on the 2D microphone array measurements of the sound field at the same time in all the microphones is proposed. Designed microphone array consists of 160 microphones allowing to digitize signals with a frequency of 7200 Hz. Measured signals are processed using the special algorithm that makes it possible to obtain a flat image of wideband sound sources. It is shown experimentally that the visualization is not dependent on the...

  6. The propagation of sound in narrow street canyons

    Science.gov (United States)

    Iu, K. K.; Li, K. M.

    2002-08-01

    This paper addresses an important problem of predicting sound propagation in narrow street canyons with width less than 10 m, which are commonly found in a built-up urban district. Major noise sources are, for example, air conditioners installed on building facades and powered mechanical equipment for repair and construction work. Interference effects due to multiple reflections from building facades and ground surfaces are important contributions in these complex environments. Although the studies of sound transmission in urban areas can be traced back to as early as the 1960s, the resulting mathematical and numerical models are still unable to predict sound fields accurately in city streets. This is understandable because sound propagation in city streets involves many intriguing phenomena such as reflections and scattering at the building facades, diffusion effects due to recessions and protrusions of building surfaces, geometric spreading, and atmospheric absorption. This paper describes the development of a numerical model for the prediction of sound fields in city streets. To simplify the problem, a typical city street is represented by two parallel reflecting walls and a flat impedance ground. The numerical model is based on a simple ray theory that takes account of multiple reflections from the building facades. The sound fields due to the point source and its images are summed coherently such that mutual interference effects between contributing rays can be included in the analysis. Indoor experiments are conducted in an anechoic chamber. Experimental data are compared with theoretical predictions to establish the validity and usefulness of this simple model. Outdoor experimental measurements have also been conducted to further validate the model. copyright 2002 Acoustical Society of America.

  7. Frog sound identification using extended k-nearest neighbor classifier

    Science.gov (United States)

    Mukahar, Nordiana; Affendi Rosdi, Bakhtiar; Athiar Ramli, Dzati; Jaafar, Haryati

    2017-09-01

    Frog sound identification based on the vocalization becomes important for biological research and environmental monitoring. As a result, different types of feature extractions and classifiers have been employed to evaluate the accuracy of frog sound identification. This paper presents a frog sound identification with Extended k-Nearest Neighbor (EKNN) classifier. The EKNN classifier integrates the nearest neighbors and mutual sharing of neighborhood concepts, with the aims of improving the classification performance. It makes a prediction based on who are the nearest neighbors of the testing sample and who consider the testing sample as their nearest neighbors. In order to evaluate the classification performance in frog sound identification, the EKNN classifier is compared with competing classifier, k -Nearest Neighbor (KNN), Fuzzy k -Nearest Neighbor (FKNN) k - General Nearest Neighbor (KGNN)and Mutual k -Nearest Neighbor (MKNN) on the recorded sounds of 15 frog species obtained in Malaysia forest. The recorded sounds have been segmented using Short Time Energy and Short Time Average Zero Crossing Rate (STE+STAZCR), sinusoidal modeling (SM), manual and the combination of Energy (E) and Zero Crossing Rate (ZCR) (E+ZCR) while the features are extracted by Mel Frequency Cepstrum Coefficient (MFCC). The experimental results have shown that the EKNCN classifier exhibits the best performance in terms of accuracy compared to the competing classifiers, KNN, FKNN, GKNN and MKNN for all cases.

  8. Efficient techniques for wave-based sound propagation in interactive applications

    Science.gov (United States)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  9. Introducing the Oxford Vocal (OxVoc Sounds Database: A validated set of non-acted affective sounds from human infants, adults and domestic animals

    Directory of Open Access Journals (Sweden)

    Christine eParsons

    2014-06-01

    Full Text Available Sound moves us. Nowhere is this more apparent than in our responses to genuine emotional vocalisations, be they heartfelt distress cries or raucous laughter. Here, we present perceptual ratings and a description of a freely available, large database of natural affective vocal sounds from human infants, adults and domestic animals, the Oxford Vocal (OxVoc Sounds database. This database consists of 173 non-verbal sounds expressing a range of happy, sad and neutral emotional states. Ratings are presented for the sounds on a range of dimensions from a number of independent participant samples. Perceptions related to valence, including distress, vocaliser mood, and listener mood are presented in Study 1. Perceptions of the arousal of the sound, listener motivation to respond and valence (positive, negative are presented in Study 2. Perceptions of the emotional content of the stimuli in both Study 1 and Study 2 were consistent with the predefined categories (e.g., laugh stimuli perceived as positive. While the adult vocalisations received more extreme valence ratings, rated motivation to respond to the sounds was highest for the infant sounds. The major advantages of this database are the inclusion of vocalisations from naturalistic situations, which represent genuine expressions of emotion, and the inclusion of vocalisations from animals and infants, providing comparison stimuli for use in cross-species and developmental studies. The associated website provides a detailed description of the physical properties of the each sound stimulus along with cross-category descriptions.

  10. Thump, ring: the sound of a bouncing ball

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J I, E-mail: katz@wuphys.wustl.ed [Department of Physics and McDonnell Center for the Space Sciences, Washington University, St Louis, MO 63130 (United States)

    2010-07-15

    A basketball bounced on a stiff surface produces a characteristic loud thump, followed by a high-pitched ringing. Describing the ball as an inextensible but flexible membrane containing compressed air, I formulate an approximate theory of the generation of these sounds and predict their amplitudes and waveforms.

  11. Thump, ring: the sound of a bouncing ball

    International Nuclear Information System (INIS)

    Katz, J I

    2010-01-01

    A basketball bounced on a stiff surface produces a characteristic loud thump, followed by a high-pitched ringing. Describing the ball as an inextensible but flexible membrane containing compressed air, I formulate an approximate theory of the generation of these sounds and predict their amplitudes and waveforms.

  12. Two-dimensional dissipation in third sound resonance

    International Nuclear Information System (INIS)

    Buck, A.L.; Mochel, J.M.; Illinois Univ., Urbana

    1981-01-01

    The first determination of non-linear superflow dissipation in a truly two-dimensional helium film is reported. Superfluid velocities were measured using third sound resonance on a closed superfluid film. The predicted power law dissipation function, with exponent of approximately eight, is observed at three temperatures in a film of 0.58 mobile superfluid layers. (orig.)

  13. Brain activation during anticipation of sound sequences.

    Science.gov (United States)

    Leaver, Amber M; Van Lare, Jennifer; Zielinski, Brandon; Halpern, Andrea R; Rauschecker, Josef P

    2009-02-25

    Music consists of sound sequences that require integration over time. As we become familiar with music, associations between notes, melodies, and entire symphonic movements become stronger and more complex. These associations can become so tight that, for example, hearing the end of one album track can elicit a robust image of the upcoming track while anticipating it in total silence. Here, we study this predictive "anticipatory imagery" at various stages throughout learning and investigate activity changes in corresponding neural structures using functional magnetic resonance imaging. Anticipatory imagery (in silence) for highly familiar naturalistic music was accompanied by pronounced activity in rostral prefrontal cortex (PFC) and premotor areas. Examining changes in the neural bases of anticipatory imagery during two stages of learning conditional associations between simple melodies, however, demonstrates the importance of fronto-striatal connections, consistent with a role of the basal ganglia in "training" frontal cortex (Pasupathy and Miller, 2005). Another striking change in neural resources during learning was a shift between caudal PFC earlier to rostral PFC later in learning. Our findings regarding musical anticipation and sound sequence learning are highly compatible with studies of motor sequence learning, suggesting common predictive mechanisms in both domains.

  14. 27 CFR 9.151 - Puget Sound.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Puget Sound. 9.151 Section... Sound. (a) Name. The name of the viticultural area described in this section is “Puget Sound.” (b) Approved maps. The appropriate maps for determining the boundary of the Puget Sound viticultural area are...

  15. A further test of relevance of ASEL and CSEL in the determination of the rating sound level for shooting sounds

    NARCIS (Netherlands)

    Vos, J.

    1998-01-01

    In a previous study on the annoyance caused by shooting sounds [Proceedings Internoise '96, Vol. 5, 2231-2236], it was shown that an almost perfect prediction of the annoyance, as rated indoors with the windows closed, was obtained on the basis of the weighted sum of the outdoor A-weighted and

  16. Binaural loudness for artificial-head measurements in directional sound fields

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2008-01-01

    The effect of the sound incidence angle on loudness was investigated for fifteen listeners who matched the loudness of sounds coming from five different incidence angles in the horizontal plane to that of the same sound with frontal incidence. The stimuli were presented via binaural synthesis...... by using head-related transfer functions measured for an artificial head. The results, which exhibited marked individual differences, show that loudness depends on the direction from which a sound reaches the listener. The average results suggest a relatively simple rule for combining the two signals...... at the ears of an artificial head for binaural loudness predictions....

  17. Intelligent Systems Approaches to Product Sound Quality Analysis

    Science.gov (United States)

    Pietila, Glenn M.

    . Next, an unsupervised jury clustering algorithm is used to identify and classify subgroups within a jury who have conflicting preferences. In addition, a nested Artificial Neural Network (ANN) architecture is developed to predict subjective preference based on objective sound quality metrics, in the presence of non-linear preferences. Finally, statistical decomposition and correlation algorithms are reviewed that can help an analyst establish a clear understanding of the variability of the product sounds used as inputs into the jury study and to identify correlations between preference scores and sound quality metrics in the presence of non-linearities.

  18. Evaluating the lower-tropospheric COSMIC GPS radio occultation sounding quality over the Arctic

    Science.gov (United States)

    Yu, Xiao; Xie, Feiqin; Ao, Chi O.

    2018-04-01

    Lower-tropospheric moisture and temperature measurements are crucial for understanding weather prediction and climate change. Global Positioning System radio occultation (GPS RO) has been demonstrated as a high-quality observation technique with high vertical resolution and sub-kelvin temperature precision from the upper troposphere to the stratosphere. In the tropical lower troposphere, particularly the lowest 2 km, the quality of RO retrievals is known to be degraded and is a topic of active research. However, it is not clear whether similar problems exist at high latitudes, particularly over the Arctic, which is characterized by smooth ocean surface and often negligible moisture in the atmosphere. In this study, 3-year (2008-2010) GPS RO soundings from COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) over the Arctic (65-90° N) show uniform spatial sampling with average penetration depth within 300 m above the ocean surface. Over 70 % of RO soundings penetrate deep into the lowest 300 m of the troposphere in all non-summer seasons. However, the fraction of such deeply penetrating profiles reduces to only about 50-60 % in summer, when near-surface moisture and its variation increase. Both structural and parametric uncertainties of GPS RO soundings were also analyzed. The structural uncertainty (due to different data processing approaches) is estimated to be within ˜ 0.07 % in refractivity, ˜ 0.72 K in temperature, and ˜ 0.05 g kg-1 in specific humidity below 10 km, which is derived by comparing RO retrievals from two independent data processing centers. The parametric uncertainty (internal uncertainty of RO sounding) is quantified by comparing GPS RO with near-coincident radiosonde and European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim profiles. A systematic negative bias up to ˜ 1 % in refractivity below 2 km is only seen in the summer, which confirms the moisture impact on GPS RO quality.

  19. Learning to Produce Syllabic Speech Sounds via Reward-Modulated Neural Plasticity

    Science.gov (United States)

    Warlaumont, Anne S.; Finnegan, Megan K.

    2016-01-01

    At around 7 months of age, human infants begin to reliably produce well-formed syllables containing both consonants and vowels, a behavior called canonical babbling. Over subsequent months, the frequency of canonical babbling continues to increase. How the infant’s nervous system supports the acquisition of this ability is unknown. Here we present a computational model that combines a spiking neural network, reinforcement-modulated spike-timing-dependent plasticity, and a human-like vocal tract to simulate the acquisition of canonical babbling. Like human infants, the model’s frequency of canonical babbling gradually increases. The model is rewarded when it produces a sound that is more auditorily salient than sounds it has previously produced. This is consistent with data from human infants indicating that contingent adult responses shape infant behavior and with data from deaf and tracheostomized infants indicating that hearing, including hearing one’s own vocalizations, is critical for canonical babbling development. Reward receipt increases the level of dopamine in the neural network. The neural network contains a reservoir with recurrent connections and two motor neuron groups, one agonist and one antagonist, which control the masseter and orbicularis oris muscles, promoting or inhibiting mouth closure. The model learns to increase the number of salient, syllabic sounds it produces by adjusting the base level of muscle activation and increasing their range of activity. Our results support the possibility that through dopamine-modulated spike-timing-dependent plasticity, the motor cortex learns to harness its natural oscillations in activity in order to produce syllabic sounds. It thus suggests that learning to produce rhythmic mouth movements for speech production may be supported by general cortical learning mechanisms. The model makes several testable predictions and has implications for our understanding not only of how syllabic vocalizations develop

  20. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...