WorldWideScience

Sample records for sound field diffusion

  1. Diffuse sound field: challenges and misconceptions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2016-01-01

    Diffuse sound field is a popular, yet widely misused concept. Although its definition is relatively well established, acousticians use this term for different meanings. The diffuse sound field is defined by a uniform sound pressure distribution (spatial diffusion or homogeneity) and uniform...... tremendously in different chambers because the chambers are non-diffuse in variously different ways. Therefore, good objective measures that can quantify the degree of diffusion and potentially indicate how to fix such problems in reverberation chambers are needed. Acousticians often blend the concept...... of mixing and diffuse sound field. Acousticians often refer diffuse reflections from surfaces to diffuseness in rooms, and vice versa. Subjective aspects of diffuseness have not been much investigated. Finally, ways to realize a diffuse sound field in a finite space are discussed....

  2. Estimating the diffuseness of sound fields: A wavenumber analysis method

    DEFF Research Database (Denmark)

    Nolan, Melanie; Davy, John L.; Brunskog, Jonas

    2017-01-01

    The concept of a diffuse sound field is widely used in the analysis of sound in enclosures. The diffuse sound field is generally described as composed of plane waves with random phases, which wave number vectors are uniformly distributed over all angles of incidence. In this study, an interpretat...

  3. Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.

    Science.gov (United States)

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-04-01

    The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.

  4. Analysis of radiation fields in tomography on diffusion gaseous sound

    International Nuclear Information System (INIS)

    Bekman, I.N.

    1999-01-01

    Perspectives of application of equilibrium and stationary variants of diffusion tomography with radioactive gaseous sounds for spatial reconstruction of heterogeneous media in materials technology were considered. The basic attention were allocated to creation of simple algorithms of detection of sound accumulation on the background of monotonically varying concentration field. Algorithms of transformation of two-dimensional radiation field in three-dimensional distribution of radiation sources were suggested. The methods of analytical elongation of concentration field permitting separation of regional anomalies on the background of local ones and vice verse were discussed. It was shown that both equilibrium and stationary variants of diffusion tomography detect the heterogeneity of testing material, provide reduction of spatial distribution of elements of its structure and give an estimation of relative degree of defectiveness

  5. Acoustic radiosity for computation of sound fields in diffuse environments

    Science.gov (United States)

    Muehleisen, Ralph T.; Beamer, C. Walter

    2002-05-01

    The use of image and ray tracing methods (and variations thereof) for the computation of sound fields in rooms is relatively well developed. In their regime of validity, both methods work well for prediction in rooms with small amounts of diffraction and mostly specular reflection at the walls. While extensions to the method to include diffuse reflections and diffraction have been made, they are limited at best. In the fields of illumination and computer graphics the ray tracing and image methods are joined by another method called luminous radiative transfer or radiosity. In radiosity, an energy balance between surfaces is computed assuming diffuse reflection at the reflective surfaces. Because the interaction between surfaces is constant, much of the computation required for sound field prediction with multiple or moving source and receiver positions can be reduced. In acoustics the radiosity method has had little attention because of the problems of diffraction and specular reflection. The utility of radiosity in acoustics and an approach to a useful development of the method for acoustics will be presented. The method looks especially useful for sound level prediction in industrial and office environments. [Work supported by NSF.

  6. Sound power radiated by sources in diffuse fields

    DEFF Research Database (Denmark)

    Polack, Jean-Dominique

    2000-01-01

    Sound power radiated by sources at low frequency notoriously depends on source position. We sampled the sound field of a rectangular room at 18 microphone and 4 source positions. Average power spectra were extrapolated from the reverberant field, taking into account the frequency dependent...

  7. SOUND FIELD DIFFUSIVITY AT THE TOP SURFACE OF SCHROEDER DIFFUSER BARRIERS

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam

    2006-10-01

    Full Text Available Reactive barriers are one of the most promising and novel environmental noise barriers. In this case using Schroeder diffusers (e.g. quadratic residue diffusers on the top surface of the T-shape barrier was shown to significantly improve the performance of absorbent T-shape barriers. The reasons behind the high performance of diffuser barriers are considered in this investigation. A question about the diffusivity behavior of Schroeder diffusers when they are utilized on the top of barrier was raised. Diffusion coefficients of a diffuser in different conditions at some receiver locations were predicted by using a 2D boundary element method. It was found that the diffusion coefficient of diffuser at the top of barrier is so small that the diffusivity of the structure is almost the same as rigid T-shape barrier. To find the barrier’s cap behavior, the total field above the top surface of profile barriers was also predicted. It was found that the lowest total energy is at the receiver side of the cap very close to the top surface,which could demonstrate the effect of top surface on absorbing the energy as wave transfers from source edge toward the receiver side of the cap. In this case the amount of minimum total energy depends on the frequency and the configuration of the top surface. A comparison between the reductions of total field at the source side of the cap with the improvements of barrier’s performance was also done. It was shown that the amount of decrease in total field compared to that of an absorbent barrier “Ref” is directly associated to the amount of improvement in the insertion loss made by the diffuser barrier compared to the “Ref” barrier in the wide area on the ground at the shadow zone. Finally it was concluded that the diffuser on the top of barrier does not act as a diffuser and a kind of similarity between the contribution of diffuser and absorbent material on the top of T-profile barrier is seen.

  8. Hearing Threshold and Equal Loudness Level Contours of 1/3-octave Noise Bands in a Diffuse Sound Field

    DEFF Research Database (Denmark)

    Nielsen, Maja Kirstine E.; Poulsen, Torben

    1994-01-01

    Hearing threshold levels and equal loudness level contours of 1/3-octave noise bands at 40 phons and 60 phon were measured for 27 normal hearing listeners in an approximately diffuse sound field. The threshold data in the frequency range 125 Hz to 1 kHz were 3-6 dB higher than the values given...

  9. Improvement of Low-Frequency Sound Field Obtained by an Optimized Boundary

    Institute of Scientific and Technical Information of China (English)

    JING Lu; ZHU Xiao-tian

    2006-01-01

    An approach based on the finite element analysis was introduced to improve low-frequency sound field. The optimized scatters on the wall redistribute the modes of the room and provide effective diffusion of sound field. The frequency response, eigenfrequency, spatial distribution and transient response were calculated. Experimental data were obtained through a 1:5 scaled set up. The results show that the optimized treatment has a positive effect on sound field and the improvement is obvious.

  10. Ultra-broadband and planar sound diffuser with high uniformity of reflected intensity

    Science.gov (United States)

    Fan, Xu-Dong; Zhu, Yi-Fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-Chun

    2017-09-01

    Schroeder diffusers, as a classical design of acoustic diffusers proposed over 40 years ago, play key roles in many practical scenarios ranging from architectural acoustics to noise control to particle manipulation. Despite the great success of conventional acoustic diffusers, it is still worth pursuing ideal acoustic diffusers that are essentially expected to produce perfect sound diffuse reflection within the unlimited bandwidth. Here, we propose a different mechanism for designing acoustic diffusers to overcome the basic limits in intensity uniformity and working bandwidth in the previous designs and demonstrate a practical implementation by acoustic metamaterials with dispersionless phase-steering capability. In stark contrast to the existing production of diffuse fields relying on random scattering of sound energy by using a specific mathematical number sequence of periodically distributed unit cells, we directly mold the reflected wavefront into the desired shape by precisely manipulating the local phases of individual subwavelength metastructures. We also benchmark our design via numerical simulation with a commercially available Schroeder diffuser, and the results verify that our proposed diffuser scatters incident acoustic energy into all directions more uniformly within an ultra-broad band regardless of the incident angle. Furthermore, our design enables further improvement of the working bandwidth just by simply downscaling each individual element. With ultra-broadband functionality and high uniformity of reflected intensity, our metamaterial-based production of the diffusive field opens a route to the design and application of acoustic diffusers and may have a significant impact on various fields such as architectural acoustics and medical ultrasound imaging/treatment.

  11. Plaatsafhankelijkheid van timbre bij nagalm (Place dependence of timbre in reverberant sound fields)

    NARCIS (Netherlands)

    Plomp, R.; Steeneken, H.J.M.

    1973-01-01

    The sound-pressure level of a simple tone in a diffuse sound field varies from point to point with a theoretical standard deviation of 5.57 dB. This variability affects the timbre of complex tones in reverberant sound fields, Experiments have shown that the timbre dissimilarity at any two positions

  12. An objective measure for the sensitivity of room impulse response and its link to a diffuse sound field

    DEFF Research Database (Denmark)

    Prislan, Rok; Brunskog, Jonas; Jacobsen, Finn

    2014-01-01

    This study is relevant to acoustic measurements in reverberation rooms such as measurements of sound transmission, sound absorption, and sound power levels of noise sources. The study presents a quantitative measure for the diffuseness in a room, which is first introduced theoretically and sub...

  13. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    Science.gov (United States)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  14. On the sound field requirements in the hearing protector standard ISO 4869-1

    DEFF Research Database (Denmark)

    Jensen, N. S.; Poulsen, Torben

    1999-01-01

    The sound field requirements in the ISO 4869 1 standard for hearing protector attenuation measurements comprise two parts: 1) a sound level difference requirement for positions around the head of the listener (ie at positions 15 cm from a reference point; up-down, front-back and left-right) and 2......) a directivity requirement for the sound incidence at the reference point, measured with a directional microphone, to ensure an approximate diffuse sound field. The level difference requirement (1) is not difficult to fulfil but the directivity requirement (2) may lead to contradicting results if the measurement...

  15. SOUND TRANSMISSION LOSS OF A DOUBLE-LEAF PARTITION WITH MICRO-PERFORATED PLATE INSERTION UNDER DIFFUSE FIELD INCIDENCE

    Directory of Open Access Journals (Sweden)

    A. Putra

    2013-06-01

    Full Text Available In noise control applications, a double-leaf partition has been applied widely as a lightweight structure for noise insulation, such as in car doors, train bodies, and aircraft fuselages. Unfortunately, the insulation performance deteriorates significantly at mass-air-mass resonance due to coupling between the panels and the air in the gap. This paper investigates the effect of a micro-perforated panel (MPP, inserted in the conventional double-panel partition, on sound transmission loss at troublesome resonant frequencies. It is found that the transmission loss improves at this resonance if the MPP is located at a distance of less than half that of the air gap. A mathematical model is derived for the diffuse field incidence of acoustic loading.

  16. SOUND FIELD DIFFUSIVITY AT THE TOP SURFACE OF SCHROEDER DIFFUSER BARRIERS

    OpenAIRE

    M. R. Monazzam

    2006-01-01

    Reactive barriers are one of the most promising and novel environmental noise barriers. In this case using Schroeder diffusers (e.g. quadratic residue diffusers) on the top surface of the T-shape barrier was shown to significantly improve the performance of absorbent T-shape barriers. The reasons behind the high performance of diffuser barriers are considered in this investigation. A question about the diffusivity behavior of Schroeder diffusers when they are utilized on the top of barrier wa...

  17. Energy-based method for near-real time modeling of sound field in complex urban environments.

    Science.gov (United States)

    Pasareanu, Stephanie M; Remillieux, Marcel C; Burdisso, Ricardo A

    2012-12-01

    Prediction of the sound field in large urban environments has been limited thus far by the heavy computational requirements of conventional numerical methods such as boundary element (BE) or finite-difference time-domain (FDTD) methods. Recently, a considerable amount of work has been devoted to developing energy-based methods for this application, and results have shown the potential to compete with conventional methods. However, these developments have been limited to two-dimensional (2-D) studies (along street axes), and no real description of the phenomena at issue has been exposed. Here the mathematical theory of diffusion is used to predict the sound field in 3-D complex urban environments. A 3-D diffusion equation is implemented by means of a simple finite-difference scheme and applied to two different types of urban configurations. This modeling approach is validated against FDTD and geometrical acoustic (GA) solutions, showing a good overall agreement. The role played by diffraction near buildings edges close to the source is discussed, and suggestions are made on the possibility to predict accurately the sound field in complex urban environments, in near real time simulations.

  18. Correlation Factors Describing Primary and Spatial Sensations of Sound Fields

    Science.gov (United States)

    ANDO, Y.

    2002-11-01

    The theory of subjective preference of the sound field in a concert hall is established based on the model of human auditory-brain system. The model consists of the autocorrelation function (ACF) mechanism and the interaural crosscorrelation function (IACF) mechanism for signals arriving at two ear entrances, and the specialization of human cerebral hemispheres. This theory can be developed to describe primary sensations such as pitch or missing fundamental, loudness, timbre and, in addition, duration sensation which is introduced here as a fourth. These four primary sensations may be formulated by the temporal factors extracted from the ACF associated with the left hemisphere and, spatial sensations such as localization in the horizontal plane, apparent source width and subjective diffuseness are described by the spatial factors extracted from the IACF associated with the right hemisphere. Any important subjective responses of sound fields may be described by both temporal and spatial factors.

  19. NIS method for uncertainty estimation of airborne sound insulation measurement in field

    Directory of Open Access Journals (Sweden)

    El-Basheer Tarek M.

    2017-01-01

    Full Text Available In structures, airborne sound insulation is utilized to characterize the acoustic nature of barriers between rooms. However, the assessment of sound insulation index is once in a while troublesome or indeed, even questionable, both in field and laboratory measurements, notwithstanding the way that there are some unified measurement methodology indicated in the ISO 140 series standards. There are issues with the reproducibility and repeatability of the measurement results. A few troubles might be brought on by non-diffuse acoustic fields, non-uniform reverberation time, or blunders of the reverberation time measurements. Some minor issues are additionally postured by flanking transmission. In this paper, investigation of the uncertainties of the above specified measurement parts and their impact on the consolidated uncertainty in 1/3-octave frequency band. The total measurement uncertainty model contributes several different partial uncertainties, which are evaluated by the method of type A or type B. Also, the determination of the sound reduction index decided by ISO 140-4 has been performed.

  20. An Exploratory Analysis of Sound Field Characteristics using the Impulse Response in a Car Cabin

    Directory of Open Access Journals (Sweden)

    Yoshiharu Soeta

    2018-03-01

    Full Text Available Sound environments in cars are becoming quieter and receiving attention because of the prevalence of low-noise engines such as hybrid and electric engines and the manifestation of automated driving. Although the car cabin has potential as a listening space, its acoustic quality has not been examined in detail. The present study investigated sound field characteristics in the car cabin using acoustic parameters obtained by impulse response analysis. In particular, effects of the passenger position, open windows and the use of an air conditioner on acoustic parameters were investigated. The passenger position affected the sound strength at low frequencies. Rear seats, except for the rear central seat, had lower interaural correlation than the front seats, suggesting that rear seats have more diffused sound fields. The opening of windows and use of air conditioners attenuated the ratio of early- and late-arriving energy at high frequencies, suggesting a loss of clarity for music.

  1. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  2. Effects of the Distance from a Diffusive Surface on the Objective and Perceptual Evaluation of the Sound Field in a Small Simulated Variable-Acoustics Hall

    Directory of Open Access Journals (Sweden)

    Louena Shtrepi

    2017-02-01

    Full Text Available Simulations of the acoustic effects that diffusive surfaces have on the objective acoustic parameters and on sound perception have not yet been fully understood. To this end, acoustic simulations have been performed in Odeon in the model of a variable-acoustic concert hall. This paper is presented as a follow-up study to a previous paper that dealt with in-field measurements only. As in measurements, a diffusive and a reflective condition of one of the lateral walls have been considered in the room models. Two modeling alternatives of the diffusive condition, that is, (a a flat surface with high scattering coefficient applied; and (b a triangular relief modeled including edge diffraction, have been investigated. Objective acoustic parameters, such as early decay time (EDT, reverberation time (T30, clarity (C80, definition (D50, and interaural cross correlation (IACC, have been compared between the two conditions. Moreover, an auditory experiment has been performed to determine the maximum distance from a diffusive surface at which the simulated acoustic scattering effects are still audible. Although the simulated objective results showed a good match with measured values, the subjective results showed that the differences between the diffuse and reflective conditions become significant when model (b is used.

  3. [A focused sound field measurement system by LabVIEW].

    Science.gov (United States)

    Jiang, Zhan; Bai, Jingfeng; Yu, Ying

    2014-05-01

    In this paper, according to the requirement of the focused sound field measurement, a focused sound field measurement system was established based on the LabVIEW virtual instrument platform. The system can automatically search the focus position of the sound field, and adjust the scanning path according to the size of the focal region. Three-dimensional sound field scanning time reduced from 888 hours in uniform step to 9.25 hours in variable step. The efficiency of the focused sound field measurement was improved. There is a certain deviation between measurement results and theoretical calculation results. Focal plane--6 dB width difference rate was 3.691%, the beam axis--6 dB length differences rate was 12.937%.

  4. Zero sound and quasiwave: separation in the magnetic field

    International Nuclear Information System (INIS)

    Bezuglyj, E.V.; Bojchuk, A.V.; Burma, N.G.; Fil', V.D.

    1995-01-01

    Theoretical and experimental results on the behavior of the longitudinal and transverse electron sound in a weak magnetic field are presented. It is shown theoretically that the effects of the magnetic field on zero sound velocity and ballistic transfer are opposite in sign and have sufficiently different dependences on the sample width, excitation frequency and relaxation time. This permits us to separate experimentally the Fermi-liquid and ballistic contributions in the electron sound signals. For the first time the ballistic transfer of the acoustic excitation by the quasiwave has been observed in zero magnetic field

  5. On the sound attenuation in fluid due to the thermal diffusion and viscous dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hanping, E-mail: hphu@ustc.edu.cn; Wang, Yandong; Wang, Dongdong

    2015-09-11

    We review the sound attenuation in fluid due to the thermal diffusion and viscous dissipation and derive the formula of the sound attenuation coefficient in fluid by solving a fully thermally–mechanically coupled equation set. Problem occurring in Stokes–Kirchhoff relation, the well-known and widely used classical formula for sound attenuation coefficient, is therefore found and pointed out. The reason for its generation is analyzed and verified. An improved formula to replace Stokes–Kirchhoff relation is suggested and the typical case for the error in calculating sound pressure level (SPL) of attenuated sound wave in fluid between the two formulas is also given. - Highlights: • Problem with Stokes–Kirchhoff relation. • Generation reason of defect in Stokes–Kirchhoff relation. • An improved formula for sound attenuation coefficient in fluid. • Typical cases of the calculation error by Stokes–Kirchhoff relation.

  6. Virtual Reality System with Integrated Sound Field Simulation and Reproduction

    Directory of Open Access Journals (Sweden)

    Ingo Assenmacher

    2007-01-01

    Full Text Available A real-time audio rendering system is introduced which combines a full room-specific simulation, dynamic crosstalk cancellation, and multitrack binaural synthesis for virtual acoustical imaging. The system is applicable for any room shape (normal, long, flat, coupled, independent of the a priori assumption of a diffuse sound field. This provides the possibility of simulating indoor or outdoor spatially distributed, freely movable sources and a moving listener in virtual environments. In addition to that, near-to-head sources can be simulated by using measured near-field HRTFs. The reproduction component consists of a headphone-free reproduction by dynamic crosstalk cancellation. The focus of the project is mainly on the integration and interaction of all involved subsystems. It is demonstrated that the system is capable of real-time room simulation and reproduction and, thus, can be used as a reliable platform for further research on VR applications.

  7. Ensemble statistics of active and reactive sound intensity in reverberation rooms

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Molares, Alfonso Rodrıguez

    2011-01-01

    This paper examines fundamental statistical properties of the active and reactive sound intensity in reverberant enclosures driven with pure tones. The existing theory for sound intensity in a diffuse sound field, which is based on Waterhouse’s random wave model and therefore limited to the region...

  8. Digital servo control of random sound fields

    Science.gov (United States)

    Nakich, R. B.

    1973-01-01

    It is necessary to place number of sensors at different positions in sound field to determine actual sound intensities to which test object is subjected. It is possible to determine whether specification is being met adequately or exceeded. Since excitation is of random nature, signals are essentially coherent and it is impossible to obtain true average.

  9. Reconstruction of sound fields with a spherical microphone array

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Walton, Tim

    2014-01-01

    waves traveling in any direction. In particular, rigid sphere microphone arrays are robust, and have the favorable property that the scattering introduced by the array can be compensated for - making the array virtually transparent. This study examines a recently proposed sound field reconstruction...... method based on a point source expansion, i.e. equivalent source method, using a rigid spherical array. The study examines the capability of the method to distinguish between sound waves arriving from different directions (i.e., as a sound field separation method). This is representative of the potential...

  10. Characterization of diffusivity based on spherical array processing

    DEFF Research Database (Denmark)

    Nolan, Melanie; Fernandez Grande, Efren; Jeong, Cheol-Ho

    2015-01-01

    -dimensional domain and consequently examine some of its fundamental properties: spatial distribution of sound pressure levels, particle velocity and sound intensity. The study allows for visualization of the intensity field inside a reverberant space, and successfully illustrates the behavior of the sound field...... in such an environment. This initial investigation shows the validity of the suggested processing and reveals interesting perspectives for future work. Ultimately, the aim is to define a proper and reliable measure of the diffuse sound field conditions in a reverberation chamber, with the prospect of improving...

  11. Ambipolar diffusion regulated collapse of filaments threaded by perpendicular magnetic fields

    Science.gov (United States)

    Burge, C. A.; Van Loo, S.; Falle, S. A. E. G.; Hartquist, T. W.

    2016-11-01

    the collapse is governed by magnetically-regulated ambipolar diffusion. The gas collapses at velocities much lower than the sound speed. For X ≲ 10-8, the gas is weakly coupled to the magnetic field and the magnetic support is removed by gravitationally-dominated ambipolar diffusion. Here, neutrals and ions only collide sporadically, that is the ambipolar diffusion length scale is larger than the Jeans length, and the gas can attain high collapse velocities. When decaying turbulence is included, additional support is provided to the filament. This slows down the collapse of the filament even in the absence of a magnetic field. When a magnetic field is present, the collapse rate increases by a ratio smaller than for the non-magnetic case. This is because of a speed-up of the ambipolar diffusion due to larger magnetic field gradients generated by the turbulence and because the ambipolar diffusion aids the dissipation of turbulence below the ambipolar diffusion length scale. The highest increase in the rate is observed for the lowest ionisation coefficient and the highest turbulent intensity.

  12. Sound field control for a low-frequency test facility

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik

    2013-01-01

    The two largest problems in controlling the reproduction of low-frequency sound for psychoacoustic experiments is the effect of the room due to standing waves and the relatively large sound pressure levels needed. Anechoic rooms are limited downward in frequency and distortion may be a problem even...... at moderate levels, while pressure-field playback can give higher sound pressures but is limited upwards in frequency. A new solution that addresses both problems has been implemented in the laboratory of Acoustics, Aalborg University. The solution uses one wall with 20 loudspeakers to generate a plane wave...... that is actively absorbed when it reaches the 20 loudspeakers on the opposing wall. This gives a homogeneous sound field in the majority of the room with a flat frequency response in the frequency range 2-300 Hz. The lowest frequencies are limited to sound pressure levels in the order of 95 dB. If larger levels...

  13. Decay of reverberant sound in a spherical enclosure

    International Nuclear Information System (INIS)

    Carroll, M.M.; Chien, C.F.

    1977-01-01

    The assumption of diffuse reflection (Lambert's Law) leads to integral equations for the wall intensity in a reverberant sound field in the steady state and during decay. The latter equation, in the special case of a spherical enclosure with uniformly absorbent walls and uniform wall intensity, allows exponential decay with a decay time which agrees closely with the Norris--Eyring prediction. The sound-intensity and sound-energy density in the medium, during decay, are also calculated

  14. Sound field reproduction as an equivalent acoustical scattering problem.

    Science.gov (United States)

    Fazi, Filippo Maria; Nelson, Philip A

    2013-11-01

    Given a continuous distribution of acoustic sources, the determination of the source strength that ensures the synthesis of a desired sound field is shown to be identical to the solution of an equivalent acoustic scattering problem. The paper begins with the presentation of the general theory that underpins sound field reproduction with secondary sources continuously arranged on the boundary of the reproduction region. The process of reproduction by a continuous source distribution is modeled by means of an integral operator (the single layer potential). It is then shown how the solution of the sound reproduction problem corresponds to that of an equivalent scattering problem. Analytical solutions are computed for two specific instances of this problem, involving, respectively, the use of a secondary source distribution in spherical and planar geometries. The results are shown to be the same as those obtained with analyses based on High Order Ambisonics and Wave Field Synthesis, respectively, thus bringing to light a fundamental analogy between these two methods of sound reproduction. Finally, it is shown how the physical optics (Kirchhoff) approximation enables the derivation of a high-frequency simplification for the problem under consideration, this in turn being related to the secondary source selection criterion reported in the literature on Wave Field Synthesis.

  15. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  16. Investigation of the validity of radiosity for sound-field prediction in cubic rooms

    Science.gov (United States)

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-12-01

    This paper explores acoustical (or time-dependent) radiosity using predictions made in four cubic enclosures. The methods and algorithms used are those presented in a previous paper by the same authors [Nosal, Hodgson, and Ashdown, J. Acoust. Soc. Am. 116(2), 970-980 (2004)]. First, the algorithm, methods, and conditions for convergence are investigated by comparison of numerous predictions for the four cubic enclosures. Here, variables and parameters used in the predictions are varied to explore the effect of absorption distribution, the necessary conditions for convergence of the numerical solution to the analytical solution, form-factor prediction methods, and the computational requirements. The predictions are also used to investigate the effect of absorption distribution on sound fields in cubic enclosures with diffusely reflecting boundaries. Acoustical radiosity is then compared to predictions made in the four enclosures by a ray-tracing model that can account for diffuse reflection. Comparisons are made of echograms, room-acoustical parameters, and discretized echograms. .

  17. Directivity of Spherical Polyhedron Sound Source Used in Near-Field HRTF Measurements

    International Nuclear Information System (INIS)

    Yu Guang-Zheng; Xie Bo-Sun; Rao Dan

    2010-01-01

    The omnidirectional character is one of important requirements for the sound source used in near-field head-related transfer function (HRTF) measurements. Based on the analysis on the radiation sound pressure and directivity character of various spherical polyhedron sound sources, a spherical dodecahedral sound source with radius of 0.035m is proposed and manufactured. Theoretical and measured results indicate that the sound source is approximately omnidirectional below the frequency of 8 kHz. In addition, the sound source has reasonable magnitude response from 350Hz to 20kHz and linear phase characteristics. Therefore, it is suitable for the near-field HRTF measurements. (fundamental areas of phenomenology(including applications))

  18. Sound field reconstruction based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2011-01-01

    be measured with a laser Doppler vibrometer; furthermore, it can be exploited to characterize an arbitrary sound field using tomographic techniques. This paper briefly reviews the fundamental principles governing the acousto-optic effect in air, and presents an investigation of the tomographic reconstruction...... within the audible frequency range by means of simulations and experimental results. The good agreement observed between simulations and measurements is further confirmed with representations of the sound field obtained with traditional microphone array measurements....

  19. Designing, Modeling, Constructing, and Testing a Flat Panel Speaker and Sound Diffuser for a Simulator

    Science.gov (United States)

    Dillon, Christina

    2013-01-01

    The goal of this project was to design, model, build, and test a flat panel speaker and frame for a spherical dome structure being made into a simulator. The simulator will be a test bed for evaluating an immersive environment for human interfaces. This project focused on the loud speakers and a sound diffuser for the dome. The rest of the team worked on an Ambisonics 3D sound system, video projection system, and multi-direction treadmill to create the most realistic scene possible. The main programs utilized in this project, were Pro-E and COMSOL. Pro-E was used for creating detailed figures for the fabrication of a frame that held a flat panel loud speaker. The loud speaker was made from a thin sheet of Plexiglas and 4 acoustic exciters. COMSOL, a multiphysics finite analysis simulator, was used to model and evaluate all stages of the loud speaker, frame, and sound diffuser. Acoustical testing measurements were utilized to create polar plots from the working prototype which were then compared to the COMSOL simulations to select the optimal design for the dome. The final goal of the project was to install the flat panel loud speaker design in addition to a sound diffuser on to the wall of the dome. After running tests in COMSOL on various speaker configurations, including a warped Plexiglas version, the optimal speaker design included a flat piece of Plexiglas with a rounded frame to match the curvature of the dome. Eight of these loud speakers will be mounted into an inch and a half of high performance acoustic insulation, or Thinsulate, that will cover the inside of the dome. The following technical paper discusses these projects and explains the engineering processes used, knowledge gained, and the projected future goals of this project

  20. A Real-Time Sound Field Rendering Processor

    Directory of Open Access Journals (Sweden)

    Tan Yiyu

    2017-12-01

    Full Text Available Real-time sound field renderings are computationally intensive and memory-intensive. Traditional rendering systems based on computer simulations suffer from memory bandwidth and arithmetic units. The computation is time-consuming, and the sample rate of the output sound is low because of the long computation time at each time step. In this work, a processor with a hybrid architecture is proposed to speed up computation and improve the sample rate of the output sound, and an interface is developed for system scalability through simply cascading many chips to enlarge the simulated area. To render a three-minute Beethoven wave sound in a small shoe-box room with dimensions of 1.28 m × 1.28 m × 0.64 m, the field programming gate array (FPGA-based prototype machine with the proposed architecture carries out the sound rendering at run-time while the software simulation with the OpenMP parallelization takes about 12.70 min on a personal computer (PC with 32 GB random access memory (RAM and an Intel i7-6800K six-core processor running at 3.4 GHz. The throughput in the software simulation is about 194 M grids/s while it is 51.2 G grids/s in the prototype machine even if the clock frequency of the prototype machine is much lower than that of the PC. The rendering processor with a processing element (PE and interfaces consumes about 238,515 gates after fabricated by the 0.18 µm processing technology from the ROHM semiconductor Co., Ltd. (Kyoto Japan, and the power consumption is about 143.8 mW.

  1. Second harmonic sound field after insertion of a biological tissue sample

    Science.gov (United States)

    Zhang, Dong; Gong, Xiu-Fen; Zhang, Bo

    2002-01-01

    Second harmonic sound field after inserting a biological tissue sample is investigated by theory and experiment. The sample is inserted perpendicular to the sound axis, whose acoustical properties are different from those of surrounding medium (distilled water). By using the superposition of Gaussian beams and the KZK equation in quasilinear and parabolic approximations, the second harmonic field after insertion of the sample can be derived analytically and expressed as a linear combination of self- and cross-interaction of the Gaussian beams. Egg white, egg yolk, porcine liver, and porcine fat are used as the samples and inserted in the sound field radiated from a 2 MHz uniformly excited focusing source. Axial normalized sound pressure curves of the second harmonic wave before and after inserting the sample are measured and compared with the theoretical results calculated with 10 items of Gaussian beam functions.

  2. An adaptive, data driven sound field control strategy for outdoor concerts

    DEFF Research Database (Denmark)

    Heuchel, Franz Maria; Caviedes Nozal, Diego; Brunskog, Jonas

    2017-01-01

    One challenge of outdoor concerts is to ensure adequate levels for the audience while avoiding disturbance of the surroundings. We outline the initial concept of a sound field control (SFC) system for tackling this issue using sound-zoning. The system uses Bayesian inference to update a sound...

  3. Effect of a magnetic field on fourth sound in 3He

    International Nuclear Information System (INIS)

    Daly, K.

    1988-01-01

    The influence of a magnetic field on the propagation of fourth sound in superfluid 3 He is studied. The field and temperature dependences of the average superfluid density /anti rho//sub s///rho/ and fourth sound Q are measured. The field dependence of /anti rho//sub s///rho/ is very different in a porous medium than predicted by Ginzburg-Landau theory applied to bulk liquid. In particular, a magnetic suppression of /anti rho//sub s///rho/ is observed in the temperature and pressure ranges corresponding to the A phase in bulk liquid. There is strong evidence of a magnetic suppression of T/sub c/ itself. The measured /anti rho//sub s///rho/ has a slight history dependence in a magnetic field, but none in zero field. The fourth-sound Q values are compared to the theoretical work of Smith, Jensen, and Wolfle. Quantitative confirmation of their work is problematic

  4. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  5. Sound field separation with cross measurement surfaces.

    Directory of Open Access Journals (Sweden)

    Jin Mao

    Full Text Available With conventional near-field acoustical holography, it is impossible to identify sound pressure when the coherent sound sources are located on the same side of the array. This paper proposes a solution, using cross measurement surfaces to separate the sources based on the equivalent source method. Each equivalent source surface is built in the center of the corresponding original source with a spherical surface. According to the different transfer matrices between equivalent sources and points on holographic surfaces, the weighting of each equivalent source from coherent sources can be obtained. Numerical and experimental studies have been performed to test the method. For the sound pressure including noise after separation in the experiment, the calculation accuracy can be improved by reconstructing the pressure with Tikhonov regularization and the L-curve method. On the whole, a single source can be effectively separated from coherent sources using cross measurement.

  6. Measurement of incident sound power using near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    ; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH...

  7. Effort variation regularization in sound field reproduction

    DEFF Research Database (Denmark)

    Stefanakis, Nick; Jacobsen, Finn; Sarris, Ioannis

    2010-01-01

    In this paper, active control is used in order to reproduce a given sound field in an extended spatial region. A method is proposed which minimizes the reproduction error at a number of control positions with the reproduction sources holding a certain relation within their complex strengths......), and adaptive wave field synthesis (AWFS), both under free-field conditions and in reverberant rooms. It is shown that effort variation regularization overcomes the problems associated with small spaces and with a low ratio of direct to reverberant energy, improving thus the reproduction accuracy...

  8. Plasma diffusion due to magnetic field fluctuations

    International Nuclear Information System (INIS)

    Okuda, H.; Lee, W.W.; Lin, A.T.

    1979-01-01

    Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale

  9. Spindle vibration and sound field measurement using optical vibrometry

    OpenAIRE

    Tatar, Kourosh

    2008-01-01

    Mechanical systems often produce a considerable amount of vibration and noise. To be able to obtain a complete picture of the dynamic behaviour of these systems, vibration and sound measurements are of significant importance. Optical metrology is well-suited for non-intrusive measurements on complex objects. The development and the use of remote non-contact vibration measurement methods for spindles are described and vibration measurements on thin- walled structures and sound field measuremen...

  10. Charged Particle Diffusion in Isotropic Random Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, P.; Matthaeus, W. H.; Chuychai, P.; Parashar, T. N.; Chhiber, R. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sonsrettee, W. [Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi 11120 (Thailand); Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5—I-50125 Firenze (Italy); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Montgomery, D. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Dmitruk, P. [Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, 1428 Buenos Aires (Argentina); Wan, M. [Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China)

    2017-03-10

    The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.

  11. Field theory of absorbing phase transitions with a non-diffusive conserved field

    International Nuclear Information System (INIS)

    Pastor-Satorras, R.; Vespignani, A.

    2000-04-01

    We investigate the critical behavior of a reaction-diffusion system exhibiting a continuous absorbing-state phase transition. The reaction-diffusion system strictly conserves the total density of particles, represented as a non-diffusive conserved field, and allows an infinite number of absorbing configurations. Numerical results show that it belongs to a wide universality class that also includes stochastic sandpile models. We derive microscopically the field theory representing this universality class. (author)

  12. Wave field synthesis, adaptive wave field synthesis and ambisonics using decentralized transformed control: Potential applications to sound field reproduction and active noise control

    Science.gov (United States)

    Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw

    2005-09-01

    Sound field reproduction finds applications in listening to prerecorded music or in synthesizing virtual acoustics. The objective is to recreate a sound field in a listening environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. Classical WFS, therefore, does not perform well in a real reproduction space such as room. Previous work has suggested that it is physically possible to reproduce a progressive wave field in-room situation using active control approaches. In this paper, a formulation of adaptive wave field synthesis (AWFS) introduces practical possibilities for an adaptive sound field reproduction combining WFS and active control (with WFS departure penalization) with a limited number of error sensors. AWFS includes WFS and closed-loop ``Ambisonics'' as limiting cases. This leads to the modification of the multichannel filtered-reference least-mean-square (FXLMS) and the filtered-error LMS (FELMS) adaptive algorithms for AWFS. Decentralization of AWFS for sound field reproduction is introduced on the basis of sources' and sensors' radiation modes. Such decoupling may lead to decentralized control of source strength distributions and may reduce computational burden of the FXLMS and the FELMS algorithms used for AWFS. [Work funded by NSERC, NATEQ, Université de Sherbrooke and VRQ.] Ultrasound/Bioresponse to

  13. Sound field control with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2012-01-01

    , and their performance is examined using computer simulations. Two performance indices are used in this work, (a) the level difference between the average sound energy density in the listening zone and that in the quiet zone (sometimes called “the acoustic contrast”), and (b) a normalized measure of the deviations...... between the desired and the generated sound field in the listening zone. It is concluded that the best compromise is obtained with a method that combines pure contrast maximization with a pressure matching technique.......This paper describes a method of generating a controlled sound field for listeners inside a circular array of loudspeakers without disturbing people outside the array appreciably. To achieve this objective, a double-layer array of loudspeakers is used. Several solution methods are suggested...

  14. SOUND FIELD SHIELDING BY FLAT ELASTIC LAYER AND THIN UNCLOSED SPHERICAL SHELL

    Directory of Open Access Journals (Sweden)

    G. Ch. Shushkevich

    2014-01-01

    Full Text Available An analytical solution of a boundary problem describing the process of penetration of a sound field of a spherical radiator located inside a thin unclosed spherical shell through a flat elastic layer is constructed. An influence of some parameters of the problem on the value of the attenuation coeffi-cient (screening of the sound field was studied by using a numerical simulation.

  15. Accurate three dimensional characterization of ultrasonic sound fields (by computer controlled rotational scanning)

    International Nuclear Information System (INIS)

    Gundtoft, H.E.; Nielsen, T.

    1981-07-01

    A rotational scanning system has recently been developed at Risoe National Laboratory. It allows sound fields from ultrasonic transducers to be examined in 3 dimensions. Using different calculation and plotting programs, any section in the sound field can be plotted. Results from examination of transducers for automatic inspection are presented. (author)

  16. Holographic reconstruction of sound fields based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Torras Rosell, Antoni; Jacobsen, Finn

    2013-01-01

    Recent studies have shown that it is possible to measure a sound field using acousto-optic tomography. Theacousto-optic effect, i.e., the interaction between sound and light, can be used to measure an arbitrary soundfield by scanning it with a laser Doppler vibrometer (LDV) over an aperture; This...

  17. Deformation of a sound field caused by a manikin

    DEFF Research Database (Denmark)

    Weinrich, Søren G.

    1981-01-01

    around the head at distances of 1 cm to 2 m, measured from the tip of the nose. The signals were pure tones at 1, 2, 4, 6, 8, and 10 kHz. It was found that the presence of the manikin caused changes in the SPL of the sound field of at most ±2.5 dB at a distance of 1 m from the surface of the manikin....... Only over an interval of approximately 20 ° behind the manikin (i.e., opposite the sound source) did the manikin cause much larger changes, up to 9 dB. These changes are caused by destructive interference between sounds coming from opposite sides of the manikin. In front of the manikin, the changes...

  18. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  19. Stability of Gradient Field Corrections for Quantitative Diffusion MRI

    OpenAIRE

    Rogers, Baxter P.; Blaber, Justin; Welch, E. Brian; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.

    2017-01-01

    In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fie...

  20. Acoustical measurements of sound fields between the stage and the orchestra pit inside an historical opera house

    Science.gov (United States)

    Sato, Shin-Ichi; Prodi, Nicola; Sakai, Hiroyuki

    2004-05-01

    To clarify the relationship of the sound fields between the stage and the orchestra pit, we conducted acoustical measurements in a typical historical opera house, the Teatro Comunale of Ferrara, Italy. Orthogonal factors based on the theory of subjective preference and other related factors were analyzed. First, the sound fields for a singer on the stage in relation to the musicians in the pit were analyzed. And then, the sound fields for performers in the pit in relation to the singers on the stage were considered. Because physical factors vary depending on the location of the sound source, performers can move on the stage or in the pit to find the preferred sound field.

  1. On propagation of sound waves in Q2D conductors in a quantizing magnetic field

    CERN Document Server

    Kirichenko, O V; Galbova, O; Ivanovski, G; Krstovska, D

    2003-01-01

    The attenuation of sound waves propagating normally to the layers of a Q2D conductor is analysed at low enough temperatures when quantization of the energy of conduction electrons results in an oscillatory dependence of the sound attenuation rate on the inverse magnetic field. The sound wave decrement is found for different orientations of the magnetic field with respect to the layers. A layered conductor is shown to be most transparent in the case when the magnetic field is orthogonal to the layers.

  2. On propagation of sound waves in Q2D conductors in a quantizing magnetic field

    International Nuclear Information System (INIS)

    Kirichenko, O.V.; Peschansky, V.G.; Galbova, O.; Ivanovski, G.; Krstovska, D.

    2003-01-01

    The attenuation of sound waves propagating normally to the layers of a Q2D conductor is analysed at low enough temperatures when quantization of the energy of conduction electrons results in an oscillatory dependence of the sound attenuation rate on the inverse magnetic field. The sound wave decrement is found for different orientations of the magnetic field with respect to the layers. A layered conductor is shown to be most transparent in the case when the magnetic field is orthogonal to the layers

  3. A GENERALIZED DIFFUSION TENSOR FOR FULLY ANISOTROPIC DIFFUSION OF ENERGETIC PARTICLES IN THE HELIOSPHERIC MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Effenberger, F.; Fichtner, H.; Scherer, K.; Barra, S.; Kleimann, J.; Strauss, R. D.

    2012-01-01

    The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the most general case, be fully anisotropic, i.e., one has to distinguish three diffusion axes in a local, field-aligned frame. We reexamine the transformation for the diffusion tensor from this local to a global frame, in which the Parker transport equation for energetic particles is usually formulated and solved. Particularly, we generalize the transformation formulae to allow for an explicit choice of two principal local perpendicular diffusion axes. This generalization includes the 'traditional' diffusion tensor in the special case of isotropic perpendicular diffusion. For the local frame, we describe the motivation for the choice of the Frenet-Serret trihedron, which is related to the intrinsic magnetic field geometry. We directly compare the old and the new tensor elements for two heliospheric magnetic field configurations, namely the hybrid Fisk and Parker fields. Subsequently, we examine the significance of the different formulations for the diffusion tensor in a standard three-dimensional model for the modulation of galactic protons. For this, we utilize a numerical code to evaluate a system of stochastic differential equations equivalent to the Parker transport equation and present the resulting modulated spectra. The computed differential fluxes based on the new tensor formulation deviate from those obtained with the 'traditional' one (only valid for isotropic perpendicular diffusion) by up to 60% for energies below a few hundred MeV depending on heliocentric distance.

  4. Field theory of propagating reaction-diffusion fronts

    International Nuclear Information System (INIS)

    Escudero, C.

    2004-01-01

    The problem of velocity selection of reaction-diffusion fronts has been widely investigated. While the mean-field limit results are well known theoretically, there is a lack of analytic progress in those cases in which fluctuations are to be taken into account. Here, we construct an analytic theory connecting the first principles of the reaction-diffusion process to an effective equation of motion via field-theoretic arguments, and we arrive at results already confirmed by numerical simulations

  5. Reproduction of nearby sources by imposing true interaural differences on a sound field control approach

    DEFF Research Database (Denmark)

    Badajoz, Javier; Chang, Ji-ho; Agerkvist, Finn T.

    2015-01-01

    In anechoic conditions, the Interaural Level Difference (ILD) is the most significant auditory cue to judge the distance to a sound source located within 1 m of the listener's head. This is due to the unique characteristics of a point source in its near field, which result in exceptionally high...... as Pressure Matching (PM), and a binaural control technique. While PM aims at reproducing the incident sound field, the objective of the binaural control technique is to ensure a correct reproduction of interaural differences. The combination of these two approaches gives rise to the following features: (i......, distance dependent ILDs. When reproducing the sound field of sources located near the head with line or circular arrays of loudspeakers, the reproduced ILDs are generally lower than expected, due to physical limitations. This study presents an approach that combines a sound field reproduction method, known...

  6. Subjective preference evaluation of sound fields by performing singers

    Science.gov (United States)

    Noson, Dennis

    2003-08-01

    A model of the auditory process is proposed for performing singers, which incorporates the added signal from bone conduction, as well as the psychological distance for subjective preference of the performer from the acoustic sound field of the stage. The explanatory power of previous scientific studies of vocal stage acoustics has been limited by a lack of an underlying theory of performer preference. Ando's theory, using the autocorrelation function (ACF) for parametrizing temporal factors, was applied to interpretation of singer sound field preference determined by the pair comparison method. Melisma style singing (no lyrics) was shown to increase the preferred delay time of reflections from a mean of 14 ms with lyrics to 23 ms without (pThesis advisor: Yoichi Ando Copies of this thesis are available from the author by inquiry at BRC Acoustics, 1741 First Avenue South, Seattle, WA 98134 USA. E-mail address: dnoson@brcacoustics.com

  7. An investigation of multi-rate sound decay under strongly non-diffuse conditions: The crypt of the Cathedral of Cadiz

    Science.gov (United States)

    Martellotta, Francesco; Álvarez-Morales, Lidia; Girón, Sara; Zamarreño, Teófilo

    2018-05-01

    Multi-rate sound decays are often found and studied in complex systems of coupled volumes where diffuse field conditions generally apply, although the openings connecting different sub-spaces are by themselves potential causes of non-diffuse behaviour. However, in presence of spaces in which curved surfaces clearly prevent diffuse field behaviour from being established, things become more complex and require more sophisticated tools (or, better, combinations of them) to be fully understood. As an example of such complexity, the crypt of the Cathedral of Cadiz is a relatively small space characterised by a central vaulted rotunda, with five radial galleries with flat and low ceiling. In addition, the crypt is connected to the main cathedral volume by means of several small openings. Acoustic measurements carried out in the crypt pointed out the existence of at least two decay processes combined, in some points, with flutter echoes. Application of conventional methods of analysis pointed out the existence of significant differences between early decay time and reverberation time, but was inconclusive in explaining the origin of the observed phenomena. The use of more robust Bayesian analysis permitted the conclusion that the late decay appearing in the crypt had a different rate than that observed in the cathedral, thus excluding the explanation based on acoustic coupling of different volumes. Finally, processing impulse responses collected by means of a B-format microphone to obtain directional intensity maps demonstrated that the late decay was originated from the rotunda where a repetitive reflection pattern appeared between the floor and the dome causing both flutter echoes and a longer reverberation time.

  8. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.

    Science.gov (United States)

    Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu

    2006-12-01

    A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.

  9. Sound and sound sources

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...

  10. Sound field simulation and acoustic animation in urban squares

    Science.gov (United States)

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  11. Seamless warping of diffusion tensor fields

    DEFF Research Database (Denmark)

    Xu, Dongrong; Hao, Xuejun; Bansal, Ravi

    2008-01-01

    To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping...... of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot...... transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT...

  12. Audibility of individual reflections in a complete sound field, III

    DEFF Research Database (Denmark)

    Bech, Søren

    1996-01-01

    This paper reports on the influence of individual reflections on the auditory localization of a loudspeaker in a small room. The sound field produced by a single loudspeaker positioned in a normal listening room has been simulated using an electroacoustic setup. The setup models the direct sound......-independent absorption coefficients of the room surfaces, and (2) a loudspeaker with directivity according to a standard two-way system and absorption coefficients according to real materials. The results have shown that subjects can distinguish reliably between timbre and localization, that the spectrum level above 2 k...

  13. Objective and Subjective Evaluation of Reflecting and Diffusing Surfaces in Auditoria

    Science.gov (United States)

    Cox, Trevor John

    Available from UMI in association with The British Library. Requires signed TDF. The performance of reflectors and diffusers used in auditoria have been evaluated both objectively and subjectively. Two accurate systems have been developed to measure the scattering from surfaces via the cross correlation function. These have been used to measure the scattering from plane panels, curved panels and quadratic residue diffusers (QRDs). The scattering measurements have been used to test theoretical prediction methods based on the Helmholtz-Kirchhoff integral equation. Accurate prediction methods were found for all surfaces tested. The limitations of the more approximate methods have been defined. The assumptions behind Schroeder's design of the QRD have been tested and the local reacting admittance assumption found to be valid over a wide frequency range. It was found that the QRD only produces uniform scattering at low frequencies. For an on-axis source the scattering from a curved panel was as good as from a QRD. For an oblique source the QRD produced much more uniform scattering than the curved panel. The subjective measurements evaluated the smallest perceivable change in the early sound field, the part most influenced by reflectors and diffusers. A natural sounding simulation of a concert hall field within an anechoic chamber was used. Standard objective parameters were reasonable values when compared to values found in real halls and subjective preference measurements. A difference limen was measured for early lateral energy fraction (.048 +/-.005); inter aural cross correlation (.075 +/-.008); clarity index (.67 +/-.13 dB); and centre time (8.6 +/- 1.6 ms). It was found that: (i) when changes are made to diffusers and reflectors, changes in spatial impression will usually be larger than those in clarity; and (ii) acousticians can gain most by paying attention to lateral sound in auditoria. It was also found that: (i) diffuse reflections in the early sound field

  14. A comparison of radiosity with current methods of sound level prediction in commercial spaces

    Science.gov (United States)

    Beamer, C. Walter, IV; Muehleisen, Ralph T.

    2002-11-01

    The ray tracing and image methods (and variations thereof) are widely used for the computation of sound fields in architectural spaces. The ray tracing and image methods are best suited for spaces with mostly specular reflecting surfaces. The radiosity method, a method based on solving a system of energy balance equations, is best applied to spaces with mainly diffusely reflective surfaces. Because very few spaces are either purely specular or purely diffuse, all methods must deal with both types of reflecting surfaces. A comparison of the radiosity method to other methods for the prediction of sound levels in commercial environments is presented. [Work supported by NSF.

  15. The influence of finite cavities on the sound insulation of double-plate structures.

    Science.gov (United States)

    Brunskog, Jonas

    2005-06-01

    Lightweight walls are often designed as frameworks of studs with plates on each side--a double-plate structure. The studs constitute boundaries for the cavities, thereby both affecting the sound transmission directly by short-circuiting the plates, and indirectly by disturbing the sound field between the plates. The paper presents a deterministic prediction model for airborne sound insulation including both effects of the studs. A spatial transform technique is used, taking advantage of the periodicity. The acoustic field inside the cavities is expanded by means of cosine-series. The transmission coefficient (angle-dependent and diffuse) and transmission loss are studied. Numerical examples are presented and comparisons with measurement are performed. The result indicates that a reasonably good agreement between theory and measurement can be achieved.

  16. Low frequency sound field control for loudspeakers in rectangular rooms using CABS (Controlled Acoustical Bass System)

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2010-01-01

    Rectangular rooms are the most common shape for sound reproduction, but at low frequencies the reflections from the boundaries of the room cause large spatial variations in the sound pressure level.  Variations up to 30 dB are normal, not only at the room modes, but basically at all frequencies....... As sound propagates in time, it seems natural that the problems can best be analyzed and solved in the time domain. A time based room correction system named CABS (Controlled Acoustical Bass System) has been developed for sound reproduction in rectangular listening rooms. It can control the sound...... sound field in the whole room, and short impulse response.  In a standard listening room (180 m3) only 4 loudspeakers are needed, 2 more than a traditional stereo setup. CABS is controlled by a developed DSP system. The time based approached might help with the understanding of sound field control...

  17. The effect of scattering on sound field control with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2012-01-01

    A recent study has shown that a circular double-layer array of loudspeakers makes it possible to achieve a sound field control that can generate a controlled field inside the array and reduce sound waves propagating outside the array. This is useful if it is desirable not to disturb people outside...... the array or to prevent the effect of reflections from the room. The study assumed free field condition, however in practice a listener will be located inside the array. The listener scatters sound waves, which propagate outward. Consequently, the scattering effect can be expected to degrade the performance...

  18. The propagation of sound in narrow street canyons

    Science.gov (United States)

    Iu, K. K.; Li, K. M.

    2002-08-01

    This paper addresses an important problem of predicting sound propagation in narrow street canyons with width less than 10 m, which are commonly found in a built-up urban district. Major noise sources are, for example, air conditioners installed on building facades and powered mechanical equipment for repair and construction work. Interference effects due to multiple reflections from building facades and ground surfaces are important contributions in these complex environments. Although the studies of sound transmission in urban areas can be traced back to as early as the 1960s, the resulting mathematical and numerical models are still unable to predict sound fields accurately in city streets. This is understandable because sound propagation in city streets involves many intriguing phenomena such as reflections and scattering at the building facades, diffusion effects due to recessions and protrusions of building surfaces, geometric spreading, and atmospheric absorption. This paper describes the development of a numerical model for the prediction of sound fields in city streets. To simplify the problem, a typical city street is represented by two parallel reflecting walls and a flat impedance ground. The numerical model is based on a simple ray theory that takes account of multiple reflections from the building facades. The sound fields due to the point source and its images are summed coherently such that mutual interference effects between contributing rays can be included in the analysis. Indoor experiments are conducted in an anechoic chamber. Experimental data are compared with theoretical predictions to establish the validity and usefulness of this simple model. Outdoor experimental measurements have also been conducted to further validate the model. copyright 2002 Acoustical Society of America.

  19. Separation of radiated sound field components from waves scattered by a source under non-anechoic conditions

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2010-01-01

    to the source. Thus the radiated free-field component is estimated simultaneously with solving the inverse problem of reconstructing the sound field near the source. The method is particularly suited to cases in which the overall contribution of reflected sound in the measurement plane is significant....

  20. Self-diffusion imaging by spin echo in Earth's magnetic field.

    Science.gov (United States)

    Mohoric, A; Stepisnik, J; Kos, M; Planinsi

    1999-01-01

    The NMR of the Earth's magnetic field is used for diffusion-weighted imaging of phantoms. Due to a weak Larmor field, care needs to be taken regarding the use of the usual high field assumption in calculating the effect of the applied inhomogeneous magnetic field. The usual definition of the magnetic field gradient must be replaced by a generalized formula valid when the strength of a nonuniform magnetic field and a Larmor field are comparable (J. Stepisnik, Z. Phys. Chem. 190, 51-62 (1995)). It turns out that the expression for spin echo attenuation is identical to the well-known Torrey formula only when the applied nonuniform field has a proper symmetry. This kind of problem may occur in a strong Larmor field as well as when the slow diffusion rate of particles needs an extremely strong gradient to be applied. The measurements of the geomagnetic field NMR demonstrate the usefulness of the method for diffusion and flow-weighted imaging. Copyright 1999 Academic Press.

  1. The effects of a sound-field amplification system on managerial time in middle school physical education settings.

    Science.gov (United States)

    Ryan, Stu

    2009-04-01

    The focus of this research effort was to examine the effect of a sound-field amplification system on managerial time in the beginning of class in a physical education setting. A multiple baseline design across participants was used to measure change in the managerial time of 2 middle school female physical education teachers using a portable sound-field amplification system. Managerial time is defined as the cumulative amount of time that students spend on organizational, transitional, and nonsubject matter tasks in a lesson. The findings showed that the amount of managerial time at the beginning of class clearly decreased when the teacher used sound-field amplification feedback to physical education students. Findings indicate an immediate need for administrators to determine the most appropriate, cost-effective procedure to support sound-field amplification systems in existing physical education settings.

  2. Sound field reconstruction using acousto-optic tomography

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2012-01-01

    When sound propagates through a medium, it results in pressure fluctuations that change the instantaneous density of the medium. Under such circumstances, the refractive index that characterizes the propagation of light is not constant, but influenced by the acoustic field. This kind of interaction...... the acousto-optic effect in air, and demonstrates that it can be measured with a laser Doppler vibrometer in the audible frequency range. The tomographic reconstruction is tested by means of computer simulations and measurements. The main features observed in the simulations are also recognized...

  3. Sounding the field: recent works in sound studies.

    Science.gov (United States)

    Boon, Tim

    2015-09-01

    For sound studies, the publication of a 593-page handbook, not to mention the establishment of at least one society - the European Sound Studies Association - might seem to signify the emergence of a new academic discipline. Certainly, the books under consideration here, alongside many others, testify to an intensification of concern with the aural dimensions of culture. Some of this work comes from HPS and STS, some from musicology and cultural studies. But all of it should concern members of our disciplines, as it represents a long-overdue foregrounding of the aural in how we think about the intersections of science, technology and culture.

  4. ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION

    International Nuclear Information System (INIS)

    Laitinen, T.; Dalla, S.

    2017-01-01

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.

  5. ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Dalla, S., E-mail: tlmlaitinen@uclan.ac.uk [Jeremiah Horrocks Institute, University of Central Lancashire, Preston (United Kingdom)

    2017-01-10

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.

  6. The sound field of a rotating dipole in a plug flow.

    Science.gov (United States)

    Wang, Zhao-Huan; Belyaev, Ivan V; Zhang, Xiao-Zheng; Bi, Chuan-Xing; Faranosov, Georgy A; Dowell, Earl H

    2018-04-01

    An analytical far field solution for a rotating point dipole source in a plug flow is derived. The shear layer of the jet is modelled as an infinitely thin cylindrical vortex sheet and the far field integral is calculated by the stationary phase method. Four numerical tests are performed to validate the derived solution as well as to assess the effects of sound refraction from the shear layer. First, the calculated results using the derived formulations are compared with the known solution for a rotating dipole in a uniform flow to validate the present model in this fundamental test case. After that, the effects of sound refraction for different rotating dipole sources in the plug flow are assessed. Then the refraction effects on different frequency components of the signal at the observer position, as well as the effects of the motion of the source and of the type of source are considered. Finally, the effect of different sound speeds and densities outside and inside the plug flow is investigated. The solution obtained may be of particular interest for propeller and rotor noise measurements in open jet anechoic wind tunnels.

  7. Interface for Barge-in Free Spoken Dialogue System Based on Sound Field Reproduction and Microphone Array

    Directory of Open Access Journals (Sweden)

    Hinamoto Yoichi

    2007-01-01

    Full Text Available A barge-in free spoken dialogue interface using sound field control and microphone array is proposed. In the conventional spoken dialogue system using an acoustic echo canceller, it is indispensable to estimate a room transfer function, especially when the transfer function is changed by various interferences. However, the estimation is difficult when the user and the system speak simultaneously. To resolve the problem, we propose a sound field control technique to prevent the response sound from being observed. Combined with a microphone array, the proposed method can achieve high elimination performance with no adaptive process. The efficacy of the proposed interface is ascertained in the experiments on the basis of sound elimination and speech recognition.

  8. Measurement of the thermal diffusivity and speed of sound of hydrothermal solutions via the laser-induced grating technique

    International Nuclear Information System (INIS)

    Butenhoff, T.J.

    1994-01-01

    Hydrothermal processing is being developed as a method for organic destruction for the Hanford Site in Washington. Hydrothermal processing refers to the redox reactions of chemical compounds in supercritical or near-supercritical aqueous solutions. In order to design reactors for the hydrothermal treatment of complicated mixtures found in the Hanford wastes, engineers need to know the thermophysical properties of the solutions under hydrothermal conditions. The author used the laser-induced grating technique to measure the thermal diffusivity and speed of sound of hydrothermal solutions. In this non-invasive optical technique, a transient grating is produced in the hydrothermal solution by optical absorption from two crossed time-coincident nanosecond laser pulses. The grating is probed by measuring the diffraction efficiency of a third laser beam. The grating relaxes via thermal diffusion, and the thermal diffusivity can be determined by measuring the decay of the grating diffraction efficiency as a function of the pump-probe delay time. In addition, intense pump pulses produce counterpropagating acoustic waves that appear as large undulations in the transient grating decay spectrum. The speed of sound in the sample is simply the grating fringe spacing divided by the undulation period. The cell is made from a commercial high pressure fitting and is equipped with two diamond windows for optical access. Results are presented for dilute dye/water solutions with T = 400 C and pressures between 20 and 70 MPa

  9. An investigation of sound fields based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2011-01-01

    Various types of transducers are nowadays capable of translating different properties of sound waves into mechanical/electrical quantities, which can afterwards be reinterpreted into acoustical ones. However, in certain applications, for example when using microphone arrays, the presence of bulk...... range, and in two different measurement scenarios where the sound field is well-known: in a rectangular duct and in an anechoic room. Models for predicting the acousto-optic effect in such scenarios are derived and measurements are carried out with a laser Doppler vibrometer. The results show a fairly...

  10. Glyph-Based Comparative Visualization for Diffusion Tensor Fields.

    Science.gov (United States)

    Zhang, Changgong; Schultz, Thomas; Lawonn, Kai; Eisemann, Elmar; Vilanova, Anna

    2016-01-01

    Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.

  11. Field Grow-out of Juvenile American Lobsters in Long Island Sound

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Early benthic stage American lobsters, Homarus americanus, were held in a pilot nursery system in Long Island Sound (LIS) to test field grow-out, as a step toward...

  12. Neoclassical diffusion in toroidal three-cut magnetic field

    International Nuclear Information System (INIS)

    Nemov, V.V.; Shishkin, A.A.

    1975-01-01

    Quasi-classical diffusion is investigated in the regime of toroidal drift of 'bananas' in a three cut magnetic field. Unlike previous papers, it is supposed that the inhomogeneity of a helical magnetic field epsilonsub(k) is of the same order or less than that of the toroidal inhomogeneity epsilonsub(t). The case is considered when the efficient frequency of particle collisions exceeds that of the 'banana' precession around the magnetic axis. Expressions for diffusion flows and coefficients are obtained that transform into available ones at epsilonsub(h) > > epsilonsub(t) [ru

  13. Diagram of collisional regimes for particle diffusion in a stochastic magnetic field

    International Nuclear Information System (INIS)

    Misguich, J.H.; Balescu, R.

    1995-01-01

    This document deals with static stochastic fields, where magnetic lines experience exponential separation and magnetic diffusion. It more particularly focuses on the diffusivity of collisional particles in such a fields and presents a general graph which describes most regimes of collisional and weakly collisional diffusion for guiding centers in a time-independent magnetic field. (TEC). 9 refs., 1 fig., 2 tabs

  14. Diffraction and diffusion in room acoustics

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Rasmussen, Birgit

    1996-01-01

    Diffraction and diffusion are two phenomena that are both related to the wave nature of sound. Diffraction due to the finite size of reflecting surfaces and the design of single reflectors and reflector arrays are discussed. Diffusion is the result of scattering of sound reflected from surfaces...... that are not plane but curved or irregular. The importance of diffusion has been demonstrated in concert halls. Methods for the design of diffusing surfaces and the development of new types of diffusers are reviewed. Finally, the importance of diffraction and diffusion in room acoustic computer models is discussed....

  15. Using a Sound Field to Reduce the Risks of Bird-Strike: An Experimental Approach.

    Science.gov (United States)

    Swaddle, John P; Ingrassia, Nicole M

    2017-07-01

    Each year, billions of birds collide with large human-made structures, such as building, towers, and turbines, causing substantial mortality. Such bird-strike, which is projected to increase, poses risks to populations of birds and causes significant economic costs to many industries. Mitigation technologies have been deployed in an attempt to reduce bird-strike, but have been met with limited success. One reason for bird-strike may be that birds fail to pay adequate attention to the space directly in front of them when in level, cruising flight. A warning signal projected in front of a potential strike surface might attract visual attention and reduce the risks of collision. We tested this idea in captive zebra finches (Taeniopygia guttata) that were trained to fly down a long corridor and through an open wooden frame. Once birds were trained, they each experienced three treatments at unpredictable times and in a randomized order: a loud sound field projected immediately in front of the open wooden frame; a mist net (i.e., a benign strike surface) placed inside the wooden frame; and both the loud sound and the mist net. We found that birds slowed their flight approximately 20% more when the sound field was projected in front of the mist net compared with when the mist net was presented alone. This reduction in velocity would equate to a substantial reduction in the force of any collision. In addition to slowing down, birds increased the angle of attack of their body and tail, potentially allowing for more maneuverable flight. Concomitantly, the only cases where birds avoided the mist net occurred in the sound-augmented treatment. Interestingly, the sound field by itself did not demonstrably alter flight. Although our study was conducted in a limited setting, the alterations of flight associated with our sound field has implications for reducing bird-strike in nature and we encourage researchers to test our ideas in field trials. © The Author 2017. Published by

  16. Influence of non-ideal diffuse sound field excitations on the control performance of active panel structures

    OpenAIRE

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-01-01

    The sound transmission loss of lightweight structures can be increased by the application of facing formworks. In the aircraft industry this task is accomplished by means of sidewall panels (linings) mounted on the primary fuselage structure of an aircraft. At low frequencies (

  17. Diffusive processes in a stochastic magnetic field

    International Nuclear Information System (INIS)

    Wang, H.; Vlad, M.; Vanden Eijnden, E.; Spineanu, F.; Misguich, J.H.; Balescu, R.

    1995-01-01

    The statistical representation of a fluctuating (stochastic) magnetic field configuration is studied in detail. The Eulerian correlation functions of the magnetic field are determined, taking into account all geometrical constraints: these objects form a nondiagonal matrix. The Lagrangian correlations, within the reasonable Corrsin approximation, are reduced to a single scalar function, determined by an integral equation. The mean square perpendicular deviation of a geometrical point moving along a perturbed field line is determined by a nonlinear second-order differential equation. The separation of neighboring field lines in a stochastic magnetic field is studied. We find exponentiation lengths of both signs describing, in particular, a decay (on the average) of any initial anisotropy. The vanishing sum of these exponentiation lengths ensures the existence of an invariant which was overlooked in previous works. Next, the separation of a particle's trajectory from the magnetic field line to which it was initially attached is studied by a similar method. Here too an initial phase of exponential separation appears. Assuming the existence of a final diffusive phase, anomalous diffusion coefficients are found for both weakly and strongly collisional limits. The latter is identical to the well known Rechester-Rosenbluth coefficient, which is obtained here by a more quantitative (though not entirely deductive) treatment than in earlier works

  18. A Measure Based on Beamforming Power for Evaluation of Sound Field Reproduction Performance

    DEFF Research Database (Denmark)

    Chang, Ji-ho; Jeong, Cheol-Ho

    2017-01-01

    This paper proposes a measure to evaluate sound field reproduction systems with an array of loudspeakers. The spatially-averaged squared error of the sound pressure between the desired and the reproduced field, namely the spatial error, has been widely used, which has considerable problems in two...... conditions. First, in non-anechoic conditions, room reflections substantially deteriorate the spatial error, although these room reflections affect human localization to a lesser degree. Second, for 2.5-dimensional reproduction of spherical waves, the spatial error increases consistently due...... to the difference in the amplitude decay rate, whereas the degradation of human localization performance is limited. The measure proposed in this study is based on the beamforming powers of the desired and the reproduced fields. Simulation and experimental results show that the proposed measure is less sensitive...

  19. Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms

    Science.gov (United States)

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-08-01

    This paper explores acoustical (or time-dependent) radiosity-a geometrical-acoustics sound-field prediction method that assumes diffuse surface reflection. The literature of acoustical radiosity is briefly reviewed and the advantages and disadvantages of the method are discussed. A discrete form of the integral equation that results from meshing the enclosure boundaries into patches is presented and used in a discrete-time algorithm. Furthermore, an averaging technique is used to reduce computational requirements. To generalize to nonrectangular rooms, a spherical-triangle method is proposed as a means of evaluating the integrals over solid angles that appear in the discrete form of the integral equation. The evaluation of form factors, which also appear in the numerical solution, is discussed for rectangular and nonrectangular rooms. This algorithm and associated methods are validated by comparison of the steady-state predictions for a spherical enclosure to analytical solutions.

  20. Diffusion of charged particles in a stochastic magnetic field

    International Nuclear Information System (INIS)

    Balescu, R.; Misguich, J.H.; Nakach, R.

    1992-07-01

    The diffusive motion of charged particles in a stochastic magnetic field is investigated systematically in a model in which the statistics of both the collisions and the magnetic field are described by coloured noises characterized, respectively, by a finite correlation time and finite correlation lengths. An analytic solution is obtained for the basic nonlinear differential equation of the model..It describes asymptotically a pure diffusion process, in which the mean square displacement in the perpendicular direction, Γ(t), grows proportionally to time (after a sufficiently long time). The corresponding diffusion coefficient scales like the fourth power of the magnetic fluctuation intensity. The values obtained are in very good agreement with experimental data in reverse-field pinch experiments. The present result contradicts earlier results predicting subdiffusive behaviour: Γ(t) ∼ t 1/2 or Γ(t) ∼ t 1/4 . The relation of these results to ours is discussed in detail

  1. Three-dimensional reconstruction of sound fields based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Torras Rosell, Antoni

    2013-01-01

    -optic tomography via scanning the field with a laser Doppler vibrometer. Consequently, the spatial characteristics of the sound field are captured in the measurement, implicitly bearing the potential for a full holographic reconstruction in a three-dimensional space. Recent studies have examined the reconstruction......, and compares the results to the ones obtained from conventional microphone array measurements....

  2. Knowledge about Sounds – Context-Specific Meaning Differently Activates Cortical Hemispheres, Auditory Cortical Fields and Layers in House Mice

    Directory of Open Access Journals (Sweden)

    Diana B. Geissler

    2016-03-01

    Full Text Available Activation of the auditory cortex (AC by a given sound pattern is plastic, depending, in largely unknown ways, on the physiological state and the behavioral context of the receiving animal and on the receiver's experience with the sounds. Such plasticity can be inferred when house mouse mothers respond maternally to pup ultrasounds right after parturition and naïve females have to learn to respond. Here we use c-FOS immunocytochemistry to quantify highly activated neurons in the AC fields and layers of seven groups of mothers and naïve females who have different knowledge about and are differently motivated to respond to acoustic models of pup ultrasounds of different behavioral significance. Profiles of FOS-positive cells in the AC primary fields (AI, AAF, the ultrasonic field (UF, the secondary field (AII, and the dorsoposterior field (DP suggest that activation reflects in AI, AAF, and UF the integration of sound properties with animal state-dependent factors, in the higher-order field AII the news value of a given sound in the behavioral context, and in the higher-order field DP the level of maternal motivation and, by left-hemisphere activation advantage, the recognition of the meaning of sounds in the given context. Anesthesia reduced activation in all fields, especially in cortical layers 2/3. Thus, plasticity in the AC is field-specific preparing different output of AC fields in the process of perception, recognition and responding to communication sounds. Further, the activation profiles of the auditory cortical fields suggest the differentiation between brains hormonally primed to know (mothers and brains which acquired knowledge via implicit learning (naïve females. In this way, auditory cortical activation discriminates between instinctive (mothers and learned (naïve females cognition.

  3. Impacts of distinct observations during the 2009 Prince William Sound field experiment: A data assimilation study

    Science.gov (United States)

    Li, Z.; Chao, Y.; Farrara, J.; McWilliams, J. C.

    2012-12-01

    A set of data assimilation experiments, known as Observing System Experiments (OSEs), are performed to assess the relative impacts of different types of observations acquired during the 2009 Prince William Sound Field Experiment. The observations assimilated consist primarily of three types: High Frequency (HF) radar surface velocities, vertical profiles of temperature/salinity (T/S) measured by ships, moorings, Autonomous Underwater Vehicles and gliders, and satellite sea surface temperatures (SSTs). The impact of all the observations, HF radar surface velocities, and T/S profiles is assessed. Without data assimilation, a frequently occurring cyclonic eddy in the central Sound is overly persistent and intense. The assimilation of the HF radar velocities effectively reduces these biases and improves the representation of the velocities as well as the T/S fields in the Sound. The assimilation of the T/S profiles improves the large scale representation of the temperature/salinity and also the velocity field in the central Sound. The combination of the HF radar surface velocities and sparse T/S profiles results in an observing system capable of representing the circulation in the Sound reliably and thus producing analyses and forecasts with useful skill. It is suggested that a potentially promising observing network could be based on satellite SSHs and SSTs along with sparse T/S profiles, and future satellite SSHs with wide swath coverage and higher resolution may offer excellent data that will be of great use for predicting the circulation in the Sound.

  4. Magnetic field line diffusion at the onset of stochasticity

    International Nuclear Information System (INIS)

    Elsaesser, K.; Deeskow, P.

    1987-01-01

    The Hamiltonian equations of a particle in a random set of waves just above the stochasticity threshold are considered both theoretically and numerically. First we derive the diffusion coefficient and the autocorrelation time perturbatively without using the thermodynamic limit, and we discuss the relevance of the Hamiltonian problem for particle acceleration and magnetic field line flow. Then we integrate the equations for an ensemble of magnetic field lines numerically for a model problem and show the time evolution of moments and correlations. Twice above the threshold we observe diffusive behaviour from the beginning, but the diffusion coefficient includes also the non-resonant modes. Just at threshold we find first a short phase of free acceleration, later a diffusion which is lower than predicted by the theoretical formula. The best way to analyze the problem is in terms of cumulants, but a reliable comparison with any theory requires also a time integration of the corresponding kinetic equations. (orig.)

  5. The Use of an Open Field Model to Assess Sound-Induced Fear and Anxiety Associated Behaviors in Labrador Retrievers.

    Science.gov (United States)

    Gruen, Margaret E; Case, Beth C; Foster, Melanie L; Lazarowski, Lucia; Fish, Richard E; Landsberg, Gary; DePuy, Venita; Dorman, David C; Sherman, Barbara L

    2015-01-01

    Previous studies have shown that the playing of thunderstorm recordings during an open-field task elicits fearful or anxious responses in adult beagles. The goal of our study was to apply this open field test to assess sound-induced behaviors in Labrador retrievers drawn from a pool of candidate improvised explosive devices (IED)-detection dogs. Being robust to fear-inducing sounds and recovering quickly is a critical requirement of these military working dogs. This study presented male and female dogs, with 3 minutes of either ambient noise (Days 1, 3 and 5), recorded thunderstorm (Day 2), or gunfire (Day 4) sounds in an open field arena. Behavioral and physiological responses were assessed and compared to control (ambient noise) periods. An observer blinded to sound treatment analyzed video records of the 9-minute daily test sessions. Additional assessments included measurement of distance traveled (activity), heart rate, body temperature, and salivary cortisol concentrations. Overall, there was a decline in distance traveled and heart rate within each day and over the five-day test period, suggesting that dogs habituated to the open field arena. Behavioral postures and expressions were assessed using a standardized rubric to score behaviors linked to canine fear and anxiety. These fear/anxiety scores were used to evaluate changes in behaviors following exposure to a sound stressor. Compared to control periods, there was an overall increase in fear/anxiety scores during thunderstorm and gunfire sound stimuli treatment periods. Fear/anxiety scores were correlated with distance traveled, and heart rate. Fear/anxiety scores in response to thunderstorm and gunfire were correlated. Dogs showed higher fear/anxiety scores during periods after the sound stimuli compared to control periods. In general, candidate IED-detection Labrador retrievers responded to sound stimuli and recovered quickly, although dogs stratified in their response to sound stimuli. Some dogs were

  6. Near-Field Sound Localization Based on the Small Profile Monaural Structure

    Directory of Open Access Journals (Sweden)

    Youngwoong Kim

    2015-11-01

    Full Text Available The acoustic wave around a sound source in the near-field area presents unconventional properties in the temporal, spectral, and spatial domains due to the propagation mechanism. This paper investigates a near-field sound localizer in a small profile structure with a single microphone. The asymmetric structure around the microphone provides a distinctive spectral variation that can be recognized by the dedicated algorithm for directional localization. The physical structure consists of ten pipes of different lengths in a vertical fashion and rectangular wings positioned between the pipes in radial directions. The sound from an individual direction travels through the nearest open pipe, which generates the particular fundamental frequency according to the acoustic resonance. The Cepstral parameter is modified to evaluate the fundamental frequency. Once the system estimates the fundamental frequency of the received signal, the length of arrival and angle of arrival (AoA are derived by the designed model. From an azimuthal distance of 3–15 cm from the outer body of the pipes, the extensive acoustic experiments with a 3D-printed structure show that the direct and side directions deliver average hit rates of 89% and 73%, respectively. The closer positions to the system demonstrate higher accuracy, and the overall hit rate performance is 78% up to 15 cm away from the structure body.

  7. Three-dimensional simulation of the electromagnetic ion/ion beam instability: cross field diffusion

    Directory of Open Access Journals (Sweden)

    H. Kucharek

    2000-01-01

    Full Text Available In a system with at least one ignorable spatial dimension charged particles moving in fluctuating fields are tied to the magnetic field lines. Thus, in one-and two-dimensional simulations cross-field diffusion is inhibited and important physics may be lost. We have investigated cross-field diffusion in self-consistent 3-D magnetic turbulence by fully 3-dimensional hybrid simulation (macro-particle ions, massless electron fluid. The turbulence is generated by the electromagnetic ion/ion beam instability. A cold, low density, ion beam with a high velocity stream relative to the background plasma excites the right-hand resonant instability. Such ion beams may be important in the region of the Earth's foreshock. The field turbulence scatters the beam ions parallel as well as perpendicular to the magnetic field. We have determined the parallel and perpendicular diffusion coefficient for the beam ions in the turbulent wave field. The result compares favourably well (within a factor 2 with hard-sphere scattering theory for the cross-field diffusion coefficient. The cross-field diffusion coefficient is larger than that obtained in a static field with a Kolmogorov type spectrum and similar total fluctuation power. This is attributed to the resonant behaviour of the particles in the fluctuating field.

  8. Heat diffusion and magnetic field generation

    International Nuclear Information System (INIS)

    Holstein, P.A.

    1983-10-01

    In the report of CECAM workshop in 1982 some results of heat diffusion, when the spontaneous B-field is calculated, have been given. Separately, a similar code (magneto-calo-dynamic or MCD code) has been built and it was interesting to compare them. Comparisom has been made during the workshop of October 1983

  9. Diffusion cooling of electrons in an A.C. field

    International Nuclear Information System (INIS)

    Robson, R.E.

    1997-01-01

    Boundaries affect the measured values of transport coefficients in all drift tube experiments, to a greater or lesser extent, and nowhere is this more apparent than in the experiment first devised by Cavalleri (1969) and subsequently adapted by Crompton and coworkers in the 1970s. The phenomenon of 'diffusion cooling' is particularly striking and arises essentially from a penetration of the 'boundary layer' (of thickness of the order of the mean free path for energy exchange) throughout a significant portion of the gas chamber. Although this is something of an obstacle to extracting the classical diffusion coefficient from experimental data, it is of great interest in its own right from a theoretical point of view, and the Crompton et al. experiments motivated several theoretical treatments which successfully explained diffusion cooling, albeit for zero applied field and on the basis of the 'two-term' spherical harmonic representation of the velocity distribution function. The present paper puts these theories in the context of the modern, generalised eigenvalue theory, which may be used as a basis for describing all swarm experiments. In addition, the earlier zero-field studies are generalised to the extent that an a.c. heating field is included, as was the case for the original Cavalleri experimental set-up. This field is found to enhance diffusion cooling effects for a simple model elastic collisional cross sections, by pumping electrons into the energy regime preferred for loss to the walls. 32 refs

  10. Radiated sound and turbulent motions in a blunt trailing edge flow field

    International Nuclear Information System (INIS)

    Shannon, Daniel W.; Morris, Scott C.; Mueller, Thomas J.

    2006-01-01

    The dipole sound produced by edge scattering of pressure fluctuations at a trailing edge is most often an undesirable effect in turbomachinery and control surface flows. The ability to model the flow mechanisms associated with the production of trailing edge acoustics is important for the quiet design of such devices. The objective of the present research was to experimentally measure flow field and acoustic variables in order to develop an understanding of the mechanisms that generate trailing edge noise. The results of these experiments have provided insight into the causal relationships between the turbulent flow field, unsteady surface pressure, and radiated far field acoustics. Experimental methods used in this paper include particle image velocimetry (PIV), unsteady surface pressures, and far field acoustic pressures. The model investigated had an asymmetric 45 o beveled trailing edge. Reynolds numbers based on chord ranged from 1.2 x 10 6 to 1.9 x 10 6 . It was found that the small-scale turbulent motions in the vicinity of the trailing edge were modulated by a large scale von Karman wake instability. The broadband sound produced by these motions was also found to be dependant on the 'phase' of the wake instability

  11. Echolocating bats emit a highly directional sonar sound beam in the field

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Boel Pedersen, Simon; Jakobsen, Lasse

    2009-01-01

    Bats use echolocation or biosonar to navigate and find prey at night. They emit short ultrasonic calls and listen for reflected echoes. The beam width of the calls is central to the function of the sonar, but directionality of echolocation calls has never been measured from bats flying in the wild....... We used a microphone array to record sounds and determine horizontal directionality for echolocation calls of the trawling Daubenton's bat, Myotis daubentonii, flying over a pond in its natural habitat. Myotis daubentonii emitted highly directional calls in the field. Directionality increased...... and directionality can be explained by the simple piston model. The model also suggests that the increase in the emitted intensity in the field is caused by the increased directionality, focusing sound energy in the forward direction. The bat may increase directionality by opening the mouth wider to emit a louder...

  12. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK: RESULTS FROM LITERATURE SURVEY

    International Nuclear Information System (INIS)

    Zhou, Q.; Hui-Hai Liu; Molz, F.J.; Zhang, Y.; Bodvarsson, G.S.

    2005-01-01

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D m e , a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D m e values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F D (defined as the ratio of D m e to the lab-scale matrix diffusion coefficient [D m ] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F D value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F D value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F D value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation

  13. Experimental investigation of a blunt trailing edge flow field with application to sound generation

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Daniel W. [University of Notre Dame, Department of Aerospace and Mechanical Engineering, B026 Hessert Laboratory, Notre Dame, IN (United States); Morris, Scott C. [University of Notre Dame, Department of Aerospace and Mechanical Engineering, 109 Hessert Laboratory, Notre Dame, IN (United States)

    2006-11-15

    The unsteady lift generated by turbulence at the trailing edge of an airfoil is a source of radiated sound. The objective of the present research was to measure the velocity field in the near wake region of an asymmetric beveled trailing edge in order to determine the flow mechanisms responsible for the generation of trailing edge noise. Two component velocity measurements were acquired using particle image velocimetry. The chord Reynolds number was 1.9 x 10{sup 6}. The data show velocity field realizations that were typical of a wake flow containing an asymmetric periodic vortex shedding. A phase average decomposition of the velocity field with respect to this shedding process was utilized to separate the large scale turbulent motions that occurred at the vortex shedding frequency (i.e., those responsible for the production of tonal noise) from the smaller scale turbulent motions, which were interpreted to be responsible for the production of broadband sound. The small scale turbulence was found to be dependent on the phase of the vortex shedding process implying a dependence of the broadband sound generated by the trailing edge on the phase of the vortex shedding process. (orig.)

  14. Diffusion-equation representations of landform evolution in the simplest circumstances: Appendix C

    Science.gov (United States)

    Hanks, Thomas C.

    2009-01-01

    The diffusion equation is one of the three great partial differential equations of classical physics. It describes the flow or diffusion of heat in the presence of temperature gradients, fluid flow in porous media in the presence of pressure gradients, and the diffusion of molecules in the presence of chemical gradients. [The other two equations are the wave equation, which describes the propagation of electromagnetic waves (including light), acoustic (sound) waves, and elastic (seismic) waves radiated from earthquakes; and LaPlace’s equation, which describes the behavior of electric, gravitational, and fluid potentials, all part of potential field theory. The diffusion equation reduces to LaPlace’s equation at steady state, when the field of interest does not depend on t. Poisson’s equation is LaPlace’s equation with a source term.

  15. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    Science.gov (United States)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2011-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  16. Problems in nonlinear acoustics: Scattering of sound by sound, parametric receiving arrays, nonlinear effects in asymmetric sound beams and pulsed finite amplitude sound beams

    Science.gov (United States)

    Hamilton, Mark F.

    1989-08-01

    Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.

  17. Evaluation of a Loudspeaker-Based Virtual Acoustic Environment for Investigating sound-field auditory steady-state responses

    DEFF Research Database (Denmark)

    Zapata-Rodriguez, Valentina; Marbjerg, Gerd Høy; Brunskog, Jonas

    2017-01-01

    Measuring sound-field auditory steady-state responses (ASSR) is a promising new objective clinical procedure for hearing aid fitting validation, particularly for infants who cannot respond to behavioral tests. In practice, room acoustics of non-anechoic test rooms can heavily influence the audito...... tool PARISM (Phased Acoustical Radiosity and Image Source Method) and validated through measurements. This study discusses the limitations of the system and the potential improvements needed for a more realistic sound-field ASSR simulation....

  18. Nonstationary random acoustic and electromagnetic fields as wave diffusion processes

    International Nuclear Information System (INIS)

    Arnaut, L R

    2007-01-01

    We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin-It o-hat and Fokker-Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general not separable, as a result of nonstationarity. A general solution of the Fokker-Planck equation is obtained in integral form, together with explicit closed-form solutions for several asymptotic cases. The findings extend known results on statistics and distributions of quasi-stationary ideal random fields (pure diffusions), which are retrieved as special cases

  19. Time evolution of negative binomial optical field in a diffusion channel

    International Nuclear Information System (INIS)

    Liu Tang-Kun; Wu Pan-Pan; Shan Chuan-Jia; Liu Ji-Bing; Fan Hong-Yi

    2015-01-01

    We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition. (paper)

  20. Acoustic transfer function of cavity and its application to rapid evaluation of sound field at low frequency band

    Institute of Scientific and Technical Information of China (English)

    YIN Gang; CHEN Hualing; HU Xuanli; HUANG Xieqing

    2001-01-01

    A new method to obtain numerical solution of Acoustic Transfer Function (ATF) by BEM is presented. For a simply supported panel backed by a rectangular cavity at low frequency band (0-200 Hz), the frequency property of ATF is analyzed. The relation between the accuracy of the rapid evaluation of sound field and the discretization schemes of the vibrational panel is discussed. The result shows that the method to obtain ATF and the rapid evaluation of sound field using the ATF is suitable to low frequency band. If an appropriate discretization scheme is choosed based on the frequency involved and the effort to obtain ATF, the accuracy of the rapid evaluation of sound field is acceptable.

  1. Effects of a conducting E layer on classical F region cross-field plasma diffusion

    International Nuclear Information System (INIS)

    Vickrey, J.F.; Kelley, M.C.

    1982-01-01

    The rate of cross-field plasma diffusion in the F region ionosphere is significantly increased when the magnetic field lines thread a highly conducting E region below. This reduces the lifetime of small-scale F region electron density irregularities in the polar ionosphere where the presence of a highly conducting E region is comonplace. A simple mmodel is developed to describe the effects of a conducting E layer on classical F region plasma diffusion. In the absence of an E region, the difference in ion and electron diffusion rates leads to a charge separation and, hence, to an electrostatic field that retards ion diffusion. When the highly conducting magnetic field lines are tied to a conducting E region, however, electrons can flow along B to reduce the ambipolar diffusion electric field, and ions can proceed perpendicular to B at a rate approaching their own (higher) diffusion velocity. It is shown that the enhanced total diffusion rate that results depends strongly on the height of the F layer and on the ratio of the E to F region Pedersen conductivities

  2. Comparison of field-measured radon diffusion coefficients with laboratory-measured coefficients

    International Nuclear Information System (INIS)

    Lepel, E.A.; Silker, W.B.; Thomas, V.W.; Kalkwarf, D.R.

    1983-04-01

    Experiments were conducted to compare radon diffusion coefficients determined for 0.1-m depths of soils by a steady-state method in the laboratory and diffusion coefficients evaluated from radon fluxes through several-fold greater depths of the same soils covering uranium-mill tailings. The coefficients referred to diffusion in the total pore volume of the soils and are equivalent to values for the quantity, D/P, in the Generic Environmental Impact Statement on Uranium Milling prepared by the US Nuclear Regulatory Commission. Two soils were tested: a well-graded sand and an inorganic clay of low plasticity. For the flux evaluations, radon was collected by adsorption on charcoal following passive diffusion from the soil surface and also from air recirculating through an aluminum tent over the soil surface. An analysis of variance in the flux evaluations showed no significant difference between these two collection methods. Radon diffusion coefficients evaluated from field data were statistically indistinguishable, at the 95% confidence level, from those measured in the laboratory; however, the low precision of the field data prevented a sensitive validation of the laboratory measurements. From the field data, the coefficients were calculated to be 0.03 +- 0.03 cm 2 /s for the sand cover and 0.0036 +- 0.0004 cm 2 /s for the clay cover. The low precision in the coefficients evaluated from field data was attributed to high variation in radon flux with time and surface location at the field site

  3. A Measure Based on Beamforming Power for Evaluation of Sound Field Reproduction Performance

    Directory of Open Access Journals (Sweden)

    Ji-Ho Chang

    2017-03-01

    Full Text Available This paper proposes a measure to evaluate sound field reproduction systems with an array of loudspeakers. The spatially-averaged squared error of the sound pressure between the desired and the reproduced field, namely the spatial error, has been widely used, which has considerable problems in two conditions. First, in non-anechoic conditions, room reflections substantially deteriorate the spatial error, although these room reflections affect human localization to a lesser degree. Second, for 2.5-dimensional reproduction of spherical waves, the spatial error increases consistently due to the difference in the amplitude decay rate, whereas the degradation of human localization performance is limited. The measure proposed in this study is based on the beamforming powers of the desired and the reproduced fields. Simulation and experimental results show that the proposed measure is less sensitive to room reflections and the amplitude decay than the spatial error, which is likely to agree better with the human perception of source localization.

  4. Diffusion Processes in the Positive Column in a longitudinal magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, B [Royal Institute of Technology, Stockholm (Sweden)

    1958-07-01

    The purpose of the present investigation is to study diffusion across a magnetic field in a configuration which is free from short-circuiting effects such as those described by Simon. It provides the possibility of deciding whether collision or 'drain' diffusion is operative. For the purpose a long cylindrical plasma column with a homogeneous magnetic field along the axis has been chosen. The theoretical treatment is given. On the basis of the collision diffusion theory Tonks, Rokhlin, Cummings and Tonks and Fataliev have pointed out that a longitudinal magnetic field will reduce the losses of particles to the walls. Consequently, when the magnetic field is present, a lower electron temperature and a smaller potential drop along the plasma column should be required to sustain a certain ion density. The present experiment forms an extension of that of Bickerton and von Engel into a range where the Schottky theory is applicable in the absence of a magnetic field and where the applied magnetic field is still made strong enough to influence the electron temperature.

  5. Masking release by combined spatial and masker-fluctuation effects in the open sound field.

    Science.gov (United States)

    Middlebrooks, John C

    2017-12-01

    In a complex auditory scene, signals of interest can be distinguished from masking sounds by differences in source location [spatial release from masking (SRM)] and by differences between masker-alone and masker-plus-signal envelopes. This study investigated interactions between those factors in release of masking of 700-Hz tones in an open sound field. Signal and masker sources were colocated in front of the listener, or the signal source was shifted 90° to the side. In Experiment 1, the masker contained a 25-Hz-wide on-signal band plus flanking bands having envelopes that were either mutually uncorrelated or were comodulated. Comodulation masking release (CMR) was largely independent of signal location at a higher masker sound level, but at a lower level CMR was reduced for the lateral signal location. In Experiment 2, a brief signal was positioned at the envelope maximum (peak) or minimum (dip) of a 50-Hz-wide on-signal masker. Masking was released in dip more than in peak conditions only for the 90° signal. Overall, open-field SRM was greater in magnitude than binaural masking release reported in comparable closed-field studies, and envelope-related release was somewhat weaker. Mutual enhancement of masking release by spatial and envelope-related effects tended to increase with increasing masker level.

  6. Low frequency sound field control in rectangular listening rooms using CABS (Controlled Acoustic Bass System) will also reduce sound transmission to neighbor rooms

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2011-01-01

    Sound reproduction is often taking place in small and medium sized rectangular rooms. As rectangular rooms have 3 pairs of parallel walls the reflections at especially low frequencies will cause up to 30 dB spatial variations of the sound pressure level in the room. This will take place not only...... at resonance frequencies, but more or less at all frequencies. A time based room correction system named CABS (Controlled Acoustic Bass System) has been developed and is able to create a homogeneous sound field in the whole room at low frequencies by proper placement of multiple loudspeakers. A normal setup...... from the rear wall, and thereby leaving only the plane wave in the room. With a room size of (7.8 x 4.1 x 2.8) m. it is possible to prevent modal frequencies up to 100 Hz. An investigation has shown that the sound transmitted to a neighbour room also will be reduced if CABS is used. The principle...

  7. Sound branding – a systemisation and characterisation of the field

    Directory of Open Access Journals (Sweden)

    Anders Bonde

    2016-03-01

    Full Text Available The main purpose of this article is to demonstrate that far more extensive literature on sound branding exists than hitherto acknowledged. The topic has been approached from various angles with differing emphases, and the article provides insight into the variation and range of the literature. Specifically, the article aims to establish an academic foundation for future sound-branding studies by researchers and students alike, who will no longer need to postulate a general lack of literature and research in the field. The article is based on systematically performed literature searches and presents an inductively developed categorisation of five different types of contribution. In this light, the article highlights that although it is now possible to determine that the literature is relatively extensive, a number of knowledge lacunae still exist because a range of questions and activities are ignored or only dealt with in passing.

  8. Laser vibrometry measurements of vibration and sound fields of a bowed violin

    Science.gov (United States)

    Gren, Per; Tatar, Kourosh; Granström, Jan; Molin, N.-E.; Jansson, Erik V.

    2006-04-01

    Laser vibrometry measurements on a bowed violin are performed. A rotating disc apparatus, acting as a violin bow, is developed. It produces a continuous, long, repeatable, multi-frequency sound from the instrument that imitates the real bow-string interaction for a 'very long bow'. What mainly differs is that the back and forward motion of the real bow is replaced by the rotating motion with constant velocity of the disc and constant bowing force (bowing pressure). This procedure is repeatable. It is long lasting and allows laser vibrometry techniques to be used, which measure forced vibrations by bowing at all excited frequencies simultaneously. A chain of interacting parts of the played violin is studied: the string, the bridge and the plates as well as the emitted sound field. A description of the mechanics and the sound production of the bowed violin is given, i.e. the production chain from the bowed string to the produced tone.

  9. Evaluation of diffusivity in the anterior lobe of the pituitary gland: 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    Science.gov (United States)

    Hiwatashi, A; Yoshiura, T; Togao, O; Yamashita, K; Kikuchi, K; Kobayashi, K; Ohga, M; Sonoda, S; Honda, H; Obara, M

    2014-01-01

    3D turbo field echo with diffusion-sensitized driven-equilibrium preparation is a non-echo-planar technique for DWI, which enables high-resolution DWI without field inhomogeneity-related image distortion. The purpose of this study was to evaluate the feasibility of diffusion-sensitized driven-equilibrium turbo field echo in evaluating diffusivity in the normal pituitary gland. First, validation of diffusion-sensitized driven-equilibrium turbo field echo was attempted by comparing it with echo-planar DWI. Five healthy volunteers were imaged by using diffusion-sensitized driven-equilibrium turbo field echo and echo-planar DWI. The imaging voxel size was 1.5 × 1.5 × 1.5 mm(3) for diffusion-sensitized driven-equilibrium turbo field echo and 1.5 × 1.9 × 3.0 mm(3) for echo-planar DWI. ADCs measured by the 2 methods in 15 regions of interests (6 in gray matter and 9 in white matter) were compared by using the Pearson correlation coefficient. The ADC in the pituitary anterior lobe was then measured in 10 volunteers by using diffusion-sensitized driven-equilibrium turbo field echo, and the results were compared with those in the pons and vermis by using a paired t test. The ADCs from the 2 methods showed a strong correlation (r = 0.79; P pituitary gland were 1.37 ± 0.13 × 10(-3) mm(2)/s, which were significantly higher than those in the pons (1.01 ± 0.24 × 10(-3) mm(2)/s) and the vermis (0.89 ± 0.25 × 10(-3) mm(2)/s, P pituitary gland.

  10. Dynamics of a quantum two-level system under the action of phase-diffusion field

    Energy Technology Data Exchange (ETDEWEB)

    Sobakinskaya, E.A. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Pankratov, A.L., E-mail: alp@ipm.sci-nnov.ru [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Vaks, V.L. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation)

    2012-01-09

    We study a behavior of quantum two-level system, interacting with noisy phase-diffusion field. The dynamics is shown to split into two regimes, determined by the coherence time of the phase-diffusion field. For both regimes we present a model of quantum system behavior and discuss possible applications of the obtained effect for spectroscopy. In particular, the obtained analytical formula for the macroscopic polarization demonstrates that the phase-diffusion field does not affect the absorption line shape, which opens up an intriguing possibility of noisy spectroscopy, based on broadband sources with Lorentzian line shape. -- Highlights: ► We study dynamics of quantum system interacting with noisy phase-diffusion field. ► At short times the phase-diffusion field induces polarization in the quantum system. ► At long times the noise leads to polarization decay and heating of a quantum system. ► Simple model of interaction is derived. ► Application of the described effects for spectroscopy is discussed.

  11. Diffusion in the kicked quantum rotator by random corrections to a linear and sine field

    International Nuclear Information System (INIS)

    Hilke, M.; Flores, J.C.

    1992-01-01

    We discuss the diffusion in momentum space, of the kicked quantum rotator, by introducing random corrections to a linear and sine external field. For the linear field we obtain a linear diffusion behavior identical to the case with zero average in the external field. But for the sine field, accelerator modes with quadratic diffusion are found for particular values of the kicking period. (orig.)

  12. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    Science.gov (United States)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

  13. Diffusion and drift regimes of plasma ionization wave propagation in a microwave field

    International Nuclear Information System (INIS)

    Khodataev, K.V.; Gorelik, B.R.

    1997-01-01

    Investigation into diffusion and drift modes of a plasma ionization wave propagation in the microwave field are conducted within the framework of a one-dimensional model with regard to gas ionization by electron shock in an electrical field, adhesion, mobility and diffusion of electrons

  14. Diffusive processes in the cross-field flow of intense plasma beams

    International Nuclear Information System (INIS)

    Newberger, B.; Rostoker, N.

    1988-09-01

    We consider magnetic field diffusion in the presence of strongly magnetized electrons (ω/sub ce//tau//sub co/ > 1) as a mechanism for the rapid field penetration observed in cross-field flows of high-β plasma beams. The diffusion has been investigated in several cases which are amenable to analytic solution. The flux penetration times are found to be insensitive to the particular configuration. Comparison with two experiments is made. Agreement within the limits of the experiments is found. Both require an anomalous collision rate which is consistent with observed fluctuations in one case but apparently not the other. 17 refs., 1 fig

  15. Ion-sound oscillations in strongly non-isotherm weakly ionized nonuniform hydrogen plasma

    International Nuclear Information System (INIS)

    Leleko, Ya.F.; Stepanov, K.N.

    2010-01-01

    A stationary distribution of strongly non-isotherm weakly ionized hydrogen plasma parameters is obtained in the hydrodynamic approximation in a quasi neutrality region in the transient layer between the plasma and dielectric taking the ionization, charge exchange, diffusion, viscosity, and a self-consistent field potential distribution. The ion-sound oscillation frequency and the collisional damping decrement as functions of the wave vector in the plasma with the obtained parameters are found in the local approximation.

  16. Auditory spatial attention to speech and complex non-speech sounds in children with autism spectrum disorder.

    Science.gov (United States)

    Soskey, Laura N; Allen, Paul D; Bennetto, Loisa

    2017-08-01

    One of the earliest observable impairments in autism spectrum disorder (ASD) is a failure to orient to speech and other social stimuli. Auditory spatial attention, a key component of orienting to sounds in the environment, has been shown to be impaired in adults with ASD. Additionally, specific deficits in orienting to social sounds could be related to increased acoustic complexity of speech. We aimed to characterize auditory spatial attention in children with ASD and neurotypical controls, and to determine the effect of auditory stimulus complexity on spatial attention. In a spatial attention task, target and distractor sounds were played randomly in rapid succession from speakers in a free-field array. Participants attended to a central or peripheral location, and were instructed to respond to target sounds at the attended location while ignoring nearby sounds. Stimulus-specific blocks evaluated spatial attention for simple non-speech tones, speech sounds (vowels), and complex non-speech sounds matched to vowels on key acoustic properties. Children with ASD had significantly more diffuse auditory spatial attention than neurotypical children when attending front, indicated by increased responding to sounds at adjacent non-target locations. No significant differences in spatial attention emerged based on stimulus complexity. Additionally, in the ASD group, more diffuse spatial attention was associated with more severe ASD symptoms but not with general inattention symptoms. Spatial attention deficits have important implications for understanding social orienting deficits and atypical attentional processes that contribute to core deficits of ASD. Autism Res 2017, 10: 1405-1416. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  17. Low frequency sound field enhancement system for rectangular rooms using multiple low frequency loudspeakers

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2006-01-01

    an enhancement system with extra loudspeakers the sound pressure level distribution along the listening area presents a significant improvement in the subwoofer frequency range. The system is simulated and implemented on the three different rooms and finally verified by measurements on the real rooms.......Rectangular rooms have strong influence on the low frequency performance of loudspeakers. Simulations of three different room sizes have been carried out using finite-difference time-domain method (FDTD) in order to predict the behaviour of the sound field at low frequencies. By using...

  18. A model for calculating specular and diffuse reflections in outdoor sound propagation

    NARCIS (Netherlands)

    Salomons, E.M.

    2006-01-01

    In many practical outdoor situations, the direct sound path between a noise source and a receiver is screened by an obstacle. In these situations indirect sound paths become important, in particular reflections of sound waves. Reflections may occur at objects such as a vertical wall, but also at the

  19. Separation of non-stationary multi-source sound field based on the interpolated time-domain equivalent source method

    Science.gov (United States)

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-05-01

    In the sound field with multiple non-stationary sources, the measured pressure is the sum of the pressures generated by all sources, and thus cannot be used directly for studying the vibration and sound radiation characteristics of every source alone. This paper proposes a separation model based on the interpolated time-domain equivalent source method (ITDESM) to separate the pressure field belonging to every source from the non-stationary multi-source sound field. In the proposed method, ITDESM is first extended to establish the relationship between the mixed time-dependent pressure and all the equivalent sources distributed on every source with known location and geometry information, and all the equivalent source strengths at each time step are solved by an iterative solving process; then, the corresponding equivalent source strengths of one interested source are used to calculate the pressure field generated by that source alone. Numerical simulation of two baffled circular pistons demonstrates that the proposed method can be effective in separating the non-stationary pressure generated by every source alone in both time and space domains. An experiment with two speakers in a semi-anechoic chamber further evidences the effectiveness of the proposed method.

  20. Measurement of the sound power incident on the walls of a reverberation room with near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2010-01-01

    area; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using 'statistically optimised near field acoustic holography...

  1. Fluid Sounds

    DEFF Research Database (Denmark)

    Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects and in arch......Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects...... and in architectural design. Aesthetics, psychoacoustics, perception, and cognition are all present in this expanding field embracing such categories as soundscape composition, sound art, sonic art, sound design, sound studies and auditory culture. Of greatest significance to the overall field is the investigation...

  2. Effects of fluctuations and noise on the neutron monitor diurnal anisotropy. II. Non-field-aligned diffusion

    International Nuclear Information System (INIS)

    Owens, A.J.

    1977-01-01

    The effects of non-field-aligned diffusion (i.e., terms in the diffusion tensor proportional to the antisymmetric coefficient kappa/sub A/) on the observed day-to-day deviation of the diffusive diurnal anisotropy from the daily average magnetic field direction are considered. Using reasonable parameters for the diffusion of cosmic rays in interplanetary space, I show that these terms give a natural explanation for the angular difference between the anisotropy and field directions during normal quiet interplanetary epochs

  3. Shape functions for separable solutions to cross-field diffusion problems

    International Nuclear Information System (INIS)

    Luning, C.D.; Perry, W.L.

    1984-01-01

    The shape function S(x), which arises in the study of nonlinear diffusion for cross-field diffusion in plasmas, satisfies the equation S''(x)+lambdaa(x)S/sup α/(x) = 0, 0 0. In the cases of physical interest a(x) possesses an integrable singularity at some point in (0,1) but is otherwise continuous. Existence of a positive solution to this problem is established

  4. Detection and description of surface breaking cracks by means of optical sound field visualization

    International Nuclear Information System (INIS)

    Crostack, H.A.; Krueger, A.

    1986-01-01

    The authors present an ultrasound testing method for surface-breaking cracks in components. The method is based on large-area imaging of ultrasound by means of an optical receiver system. The receiver system is based on the principle of holographic interferometry. Application of double exposure technique using a double pulse laser and of sensitivity boosting measures allowed to construct a holographic sound field camera (sensitivity threshold: 0.2 nm) which allows large-area sound detection (in the square meter range) without requiring the usual methods for vibrational insulation in contrast to all the other optical interferometric and holographic techniques. (orig./DG) [de

  5. Arrangements of a pair of loudspeakers for sound field control with double-layer arrays

    DEFF Research Database (Denmark)

    Chang, Jiho; Agerkvist, Finn T.; Olsen, Martin

    2013-01-01

    Recent studies have attempted to control sound fields, and also to reduce room reflections with a circular or spherical array of loudspeakers. One of the attempts was to suppress sound waves propagating to the walls outside the array with a circular double-layer array of loudspeakers. The double-layer...... array represents a set of a monopole and a dipole in the Kirchhoff-Helmholtz integral equation, and thus the distance between these layers should be short compared with the wavelength. In practice, however, this condition is occasionally hard to satisfy because of the sizes of loudspeaker cabinets...

  6. The partially averaged field approach to cosmic ray diffusion

    International Nuclear Information System (INIS)

    Jones, F.C.; Birmingham, T.J.; Kaiser, T.B.

    1976-08-01

    The kinetic equation for particles interacting with turbulent fluctuations is derived by a new nonlinear technique which successfully corrects the difficulties associated with quasilinear theory. In this new method the effects of the fluctuations are evaluated along particle orbits which themselves include the effects of a statistically averaged subset of the possible configurations of the turbulence. The new method is illustrated by calculating the pitch angle diffusion coefficient D/sub Mu Mu/ for particles interacting with slab-model magnetic turbulence, i.e., magnetic fluctuations linearly polarized transverse to a mean magnetic field. Results are compared with those of quasilinear theory and also with those of Monte Carlo calculations. The major effect of the nonlinear treatment in this illustration is the determination of D/sub Mu Mu/ in the vicinity of 90 deg pitch angles where quasilinear theory breaks down. The spatial diffusion coefficient parallel to a mean magnetic field is evaluated using D/sub Mu Mu/ as calculated by this technique. It is argued that the partially averaged field method is not limited to small amplitude fluctuating fields, and is, hence, not a perturbation theory

  7. On-axis and far-field sound radiation from resilient flat and dome-shaped radiators

    NARCIS (Netherlands)

    Aarts, R.M.; Janssen, A.J.E.M.

    2009-01-01

    On-axis and far-field series expansions are developed for the sound pressure due to an arbitrary, circular symmetric velocity distribution on a flat radiator in an infinite baffle. These expansions are obtained by expanding the velocity distributions in terms of orthogonal polynomials

  8. Sounding the Alarm: An Introduction to Ecological Sound Art

    Directory of Open Access Journals (Sweden)

    Jonathan Gilmurray

    2016-12-01

    Full Text Available In recent years, a number of sound artists have begun engaging with ecological issues through their work, forming a growing movement of ˝ecological sound art˝. This paper traces its development, examines its influences, and provides examples of the artists whose work is currently defining this important and timely new field.

  9. External field effects on diffusion and solidification derived from the free-volume model

    Science.gov (United States)

    Miller, R. I.; Ruff, R. C.

    1975-01-01

    Expressions for the diffusion coefficient and the solidification rate from the free-volume model of liquids developed by Turnbull and Cohen have been used to estimate the effects which microgravity and magnetic fields will have on these quantities. The mathematical formalism describing changes of the diffusion coefficient and the solidification rate is the same for both the microgravity and magnetic field cases, but the difference between the magnitudes of the two effects is quite large. The change in the two parameters is found to be less than .0001% for the microgravity case and on the order of 0.1 to 1.1% for the magnetic field case for four representative materials. The diffusion coefficient and the solidification rate are found to increase under the influence of an applied magnetic field, and this is in agreement with experimental observations.

  10. Nonlinear diffusion in the presence of a time-dependent external electric field

    International Nuclear Information System (INIS)

    Lima e Silva, T. de; Galvao, R.M.O.

    1987-09-01

    The influence of a time-dependent external electric field on the nonlinear diffusion process of weakly ionized plasmas is investigated. A new solution of the diffusion equation is obtained for the case when electron-ion collisions can be neglected. (author) [pt

  11. Acoustically assisted diffusion through membranes and biomaterials

    International Nuclear Information System (INIS)

    Floros, J.D.; Liang, H.

    1994-01-01

    Part of a special section on the symposium ''Ultrasonic Applications in the Food Industry.'' The use of high-intensity ultrasound in food processing is reviewed. Acoustic radiation, or sound, can be used to monitor various operations or products or to alter a process or product; however, the direct use of sound to improve food processes is not very popular. High-intensity acoustic radiation induces various changes as it passes through a medium, largely as a result of heating, cavitation, agitation and shear stresses, compression and rarefaction, and turbulence. The diffusion of sound through a medium is influenced by factors such as the temperature, acoustic intensity, acoustic frequency, direction of the acoustic wave, pulsation of the acoustic wave, and properties of the medium. Some potential applications of acoustic energy in food processes are increased drying efficiency, acceleration of diffusion through polymeric and biological membranes, and enhanced diffusion through porous materials

  12. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems

    Science.gov (United States)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.

    2018-05-01

    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  13. A wavenumber approach to quantifying the isotropy of the sound field in reverberant spaces

    DEFF Research Database (Denmark)

    Nolan, Melanie; Fernandez Grande, Efren; Brunskog, Jonas

    2018-01-01

    This study proposes an experimental method for evaluating isotropy in enclosures, based on an analysis of the wavenumber spectrum in the spherical harmonics domain. The wavenumber spectrum, which results from expanding an arbitrary sound field into a plane-wave basis, is used to characterize the ...

  14. DC Electric Field measurement in the Mid-latitude Ionosphere during MSTID by S-520-27 Sounding Rocket Experiments

    Science.gov (United States)

    Ishisaka, K.; Yamamoto, M.; Yokoyama, T.; Tanaka, M.; Abe, T.; Kumamoto, A.

    2015-12-01

    In the middle latitude ionospheric F region, mainly in summer, wave structures of electron density that have wave length of 100-200 km and period of one hour are observed. This phenomena is called Medium Scale Traveling Ionosphiric Disturbance; MSTID. MSTID has been observed by GPS receiving network, and its characteristic were studied. In the past, MSTID was thought to be generated by the Perkins instability, but its growth ratio was too small to be effective so far smaller than the real. Recently coupling process between ionospheric E and F regions are studied by using two radars and by computer simulations. Through these studies, we now have hypothesis that MSTID is generated by the combination of E-F region coupling and Perkins instability. The S-520-27 sounding rocket experiment on E-layer and F-layer was planned in order to verify this hypothesis. S-520-27 sounding rocket was launched at 23:57 JST on 20th July, 2013 from JAXA Uchinoura Space Center. S-520-27 sounding rocket reached 316km height. The S-520-27 payload was equipped with Electric Field Detector (EFD) with a two set of orthogonal double probes to measure DC electric field in the spin plane of the payload. The electrodes of two double probe antennas were used to gather the potentials which were detected with high impedance pre-amplifier using the floating (unbiased) double probe technique. As a results of measurements of DC electric fields by the EFD, the natural electric field was about +/-5mV/m, and varied the direction from southeast to east. Then the electric field was mapped to the horizontal plane at 280km height along the geomagnetic field line. In this presentation, we show the detail result of DC electric field measurement by S-520-27 sounding rocket and then we discuss about the correlation between the natural electric field and TEC variation by using the GPS-TEC.

  15. Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields

    Science.gov (United States)

    Wang, Lihua; Zhou, Yunxuan; Shen, Fang

    2018-01-01

    The complexity of suspended sediment concentration (SSC) distribution and diffusion has been widely recognized because it is influenced by sediment supply and various hydrodynamic forcing conditions that vary over space and over time. Sediment suspended by waves and transported by currents are the dominant sediment transport mechanisms in estuarine and coastal areas. However, it is unclear to what extent the SSC distribution is impacted by each hydrodynamic factor. Research on the quantitative influence of wind fields on the SSC diffusion range will contribute to a better understanding of the characteristics of sediment transport change and sedimentary geomorphic evolution. This study determined SSC from three Envisat Medium-Resolution Imaging Spectrometer acquisitions, covering the Yangtze Estuary and adjacent water area under the same season and tidal conditions but with varying wind conditions. SSC was examined based on the Semi-Empirical Radiative Transfer model, which has been well validated with the observation data. Integrating the corresponding wind field information from European Centre for Medium-Range Weather Forecasts further facilitated the discussion of wind fields affecting SSC, and in turn the influence of water and suspended sediment transportation and diffusion in the Yangtze estuarine and coastal area. The results demonstrated that the SSC present much more distinctive fluvial features in the inner estuary and wind fields are one of the major factors controlling the range of turbid water diffusion.

  16. Measuring diffusion-relaxation correlation maps using non-uniform field gradients of single-sided NMR devices.

    Science.gov (United States)

    Nogueira d'Eurydice, Marcel; Galvosas, Petrik

    2014-11-01

    Single-sided NMR systems are becoming a relevant tool in industry and laboratory environments due to their low cost, low maintenance and capacity to evaluate quantity and quality of hydrogen based materials. The performance of such devices has improved significantly over the last decade, providing increased field homogeneity, field strength and even controlled static field gradients. For a class of these devices, the configuration of the permanent magnets provides a linear variation of the magnetic field and can be used in diffusion measurements. However, magnet design depends directly on its application and, according to the purpose, the field homogeneity may significantly be compromised. This may prevent the determination of diffusion properties of fluids based on the natural inhomogeneity of the field using known techniques. This work introduces a new approach that extends the applicability of diffusion-editing CPMG experiments to NMR devices with highly inhomogeneous magnetic fields, which do not vary linearly in space. Herein, we propose a method to determine a custom diffusion kernel based on the gradient distribution, which can be seen as a signature of each NMR device. This new diffusion kernel is then utilised in the 2D inverse Laplace transform (2D ILT) in order to determine diffusion-relaxation correlation maps of homogeneous multi-phasic fluids. The experiments were performed using NMR MObile Lateral Explore (MOLE), which is a single-sided NMR device designed to maximise the volume at the sweet spot with enhanced depth penetration. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Ambilpolar Electric Field and Diffusive Cooling of Electrons in Meteor Trails

    Science.gov (United States)

    Pasko, V. P.; Kelley, M. C.

    2017-12-01

    Kelley and Price [GRL, 44, 2987, 2017] recently indicated that ambipolar electric fields may play a role in dynamics of dense plasmas generated by meteors. In the present work we discuss time dynamics of relaxation of electron temperature in meteor trails under relatively common conditions when meteor trail diffusion is not affected by the geomagnetic field (i.e., at low altitudes where both electrons and ions are not magnetized, or at higher altitudes in the plane defined by the trail and magnetic field when meteor trail is not aligned with the geomagnetic field [Ceplecha et al., Space Sci. Rev., 84, 327, 1998, and references therein]). The rate of ambipolar diffusion is a function of temperature and pressure [e.g., Hocking et al., Ann. Geophys., 34, 1119, 2016; Silber et al., Mon. Not. RAS, 469, 1869, 2017] and there is a significant spectroscopic evidence of initial plasma temperatures in meteor trails on the order 4400 deg K [Jennikens et al., Astrobiology, 4, 81, 2004]. For a representative altitude of 105 km chosen for our studies the results are consistent with previous analysis conducted in [Baggeley and Webb, J. Atm. Terr. Phys., 39, 1399, 1977; Ceplecha et al., 1998] indicating that the electron temperature remains elevated for significant time durations measured in tens of milliseconds. Our results indicate that in terms of their magnitudes the ambipolar electric fields can exceed the critical breakdown field of air, consistent with ideas expressed by Kelley and Price [GRL, 44, 2987, 2017], however, under considered conditions these fields lead to acceleration of electron cooling, with electron temperatures falling below the ambient air temperature (below 224 deg K at 105 km altitude). These effects are referred to as diffusive cooling [e.g., Rozhansky and Tsendin, Transport phenomena in partially ionized plasma, Taylor & Francis, 2001, p. 449] and represent a process in which diffusing electrons move against the force acting on them from ambipolar

  18. EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Snodin, A. P. [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Matthaeus, W. H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-08-20

    The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with these underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.

  19. Diffusion coefficient and Kolmogorov entropy of magnetic field lines

    International Nuclear Information System (INIS)

    Zimbardo, G.; Veltri, P.; Malara, F.

    1984-01-01

    A diffusion equation for magnetic field lines of force in a turbulent magnetic field, which describes both the random walk of a single line and how two nearby lines separate from each other, has been obtained using standard statistical techniques. Starting from such an equation, a closed set of equations for the moments may be obtained, in general, with suitable assumptions. From such a set of equations the Kolmogorov entropy may be explicitly calculated. The results have been applied to the most interesting examples of magnetic field geometries. (author)

  20. Stochastic diffusion of dust grains by the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Hassan, M.H.A.; Wallis, M.K.

    1983-10-01

    The effects of the sectored Interplanetary Magnetic Field on charged dust grains orbiting around the sun under radiation pressure and Poynting-Robertson drag forces are examined for initially circular and non-inclined orbits. The distribution function of the charged grains satisfies a Fokker-Planck equation in which the sectored field is taken as a source of stochastic impulses. By adopting the integrals of the impulse-free motion as variable parameters, the Fokker-Planck equation can be properly treated as a diffusion equation. Analytic solutions of the resulting diffusion equation show that dust grains injected near the ecliptic plane are scattered strongly to high helio-latitudes. The scattering is more pronounced for small grains injected at large distances from the Sun. (author)

  1. Forced sound transmission through a finite-sized single leaf panel subject to a point source excitation.

    Science.gov (United States)

    Wang, Chong

    2018-03-01

    In the case of a point source in front of a panel, the wavefront of the incident wave is spherical. This paper discusses spherical sound waves transmitting through a finite sized panel. The forced sound transmission performance that predominates in the frequency range below the coincidence frequency is the focus. Given the point source located along the centerline of the panel, forced sound transmission coefficient is derived through introducing the sound radiation impedance for spherical incident waves. It is found that in addition to the panel mass, forced sound transmission loss also depends on the distance from the source to the panel as determined by the radiation impedance. Unlike the case of plane incident waves, sound transmission performance of a finite sized panel does not necessarily converge to that of an infinite panel, especially when the source is away from the panel. For practical applications, the normal incidence sound transmission loss expression of plane incident waves can be used if the distance between the source and panel d and the panel surface area S satisfy d/S>0.5. When d/S ≈0.1, the diffuse field sound transmission loss expression may be a good approximation. An empirical expression for d/S=0  is also given.

  2. Experimental validation of sound field control with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2013-01-01

    This paper is concerned with experimental validation of a recently proposed method of controlling sound fields with a circular double-layer array of loudspeakers [Chang and Jacobsen, J. Acoust. Soc. Am. 131(6), 4518-4525 (2012)]. The double-layer of loudspeakers is realized with 20 pairs of closed...

  3. Bulk damping of sound in superfluid 3He--4He under stagnation of the normal component

    International Nuclear Information System (INIS)

    Karchava, T.A.; Sanikidze, D.G.; Chkhaidze, N.D.

    1983-01-01

    The propagation of waves in superfluid 3 He-- 4 He solutions is considered under partial stagnation of the normal component. The wave processes in capillaries are presented as a superposition of the first sound, second sound, and viscous and diffusion waves. The damping coefficients are calculated for the modified first sound and for the thermal wave in superfluid 3 He-- 4 He solutions and related to the viscosity, thermal conductivity, diffusion, barodiffusion, and thermodiffusion coefficients

  4. Field study of sound exposure by personal stereo

    DEFF Research Database (Denmark)

    Ordoñez, Rodrigo Pizarro; Reuter, Karen; Hammershøi, Dorte

    2006-01-01

    A number of large scale studies suggest that the exposure level used with personal stereo systems should raise concern. High levels can be produced by most commercially available mp3 players, and they are generally used in high background noise levels (i.e., while in a bus or rain). A field study...... on young people's habitual sound exposure to personal stereos has been carried out using a measurement method according to principles of ISO 11904-2:2004. Additionally the state of their hearing has also been assessed. This presentation deals with the methodological aspects relating to the quantification...... of habitual use, estimation of listening levels and exposure levels, and assessment of their state of hearing, by either threshold determination or OAE measurement, with a special view to the general validity of the results (uncertainty factors and their magnitude)....

  5. DIFFUSION OF MAGNETIC FIELD AND REMOVAL OF MAGNETIC FLUX FROM CLOUDS VIA TURBULENT RECONNECTION

    International Nuclear Information System (INIS)

    Santos-Lima, R.; De Gouveia Dal Pino, E. M.; Lazarian, A.; Cho, J.

    2010-01-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the

  6. Sonic mediations: body, sound, technology

    NARCIS (Netherlands)

    Birdsall, C.; Enns, A.

    2008-01-01

    Sonic Mediations: Body, Sound, Technology is a collection of original essays that represents an invaluable contribution to the burgeoning field of sound studies. While sound is often posited as having a bridging function, as a passive in-between, this volume invites readers to rethink the concept of

  7. Self-diffusion measurements in heterogeneous systems using NMR pulsed field gradient technique

    International Nuclear Information System (INIS)

    Heink, W.; Kaerger, J.; Walter, A.

    1978-01-01

    The experimental pecularities of the NMR pulsed field gradient technique are critical surveyed in its application to zeolite adsorbate adsorbent systems. After a presentation of the different transport parameters accessible by this technique, the consequences of the existence of inner field gradients being inherent to heterogeneous systems are analyzed. Experimental conditions and consequences of an application of pulsed field gradients of high intensity which are necessary for the measurement of small intracrystalline self-diffusion coefficients, are discussed. Gradient pulses of 0.15 Tcm -1 with pulse widths of 2 ms maximum and relative deviations of less than 0.01 per mille can be realized. Since for a number of adsorbate adsorbent systems a distinct dependence of the intracrystalline self-diffusion coeffcients on adsorbate concentration is observed, determination of zeolite pore fiiling factor is of considerable importance for the interpretation of the diffusivities obtained. It is demonstrated that also this information can be obtained by NMR technique in a straightforward way with a mean error of less than 5 to 10 %. Applying this new method and using an optimum experimental device as described, pore filling factor dependences of the self-diffusion coefficients of alkanes in NaX zeolites can be followed over more than two orders of magnitude. (author)

  8. Propagation and diffusion of a plasma column in a magnetic field

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Coutant, J.; Gadda, E.; Prevot, F.

    1966-12-01

    A plasma column is created in a magnetic field by longitudinal diffusion from a low-pressure pulsed discharge in hydrogen. Depending on the discharge conditions, two regimes are obtained in which the gas pumping speed has a different effect upon the plasma density in the column. Calculations are presented which can explain this effect by a difference in the transverse diffusion coefficient. (authors) [fr

  9. Selective attention to sound location or pitch studied with event-related brain potentials and magnetic fields.

    Science.gov (United States)

    Degerman, Alexander; Rinne, Teemu; Särkkä, Anna-Kaisa; Salmi, Juha; Alho, Kimmo

    2008-06-01

    Event-related brain potentials (ERPs) and magnetic fields (ERFs) were used to compare brain activity associated with selective attention to sound location or pitch in humans. Sixteen healthy adults participated in the ERP experiment, and 11 adults in the ERF experiment. In different conditions, the participants focused their attention on a designated sound location or pitch, or pictures presented on a screen, in order to detect target sounds or pictures among the attended stimuli. In the Attend Location condition, the location of sounds varied randomly (left or right), while their pitch (high or low) was kept constant. In the Attend Pitch condition, sounds of varying pitch (high or low) were presented at a constant location (left or right). Consistent with previous ERP results, selective attention to either sound feature produced a negative difference (Nd) between ERPs to attended and unattended sounds. In addition, ERPs showed a more posterior scalp distribution for the location-related Nd than for the pitch-related Nd, suggesting partially different generators for these Nds. The ERF source analyses found no source distribution differences between the pitch-related Ndm (the magnetic counterpart of the Nd) and location-related Ndm in the superior temporal cortex (STC), where the main sources of the Ndm effects are thought to be located. Thus, the ERP scalp distribution differences between the location-related and pitch-related Nd effects may have been caused by activity of areas outside the STC, perhaps in the inferior parietal regions.

  10. The effects of a stress field and chemical diffusion on electronic behaviour in InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Zhang Xu; Wang Chongyu

    2006-01-01

    The effects of a stress field and chemical diffusion on electronic behaviour in self-assembled InAs/GaAs quantum dots (QD) are investigated by using first-principle calculations. We find that a potential well appears in a QD without a lattice misfit and chemical diffusion, and both stress field and Ga chemical diffusion can induce the formation of a potential barrier, which strongly affects the electronic behaviour within the QD. The stress field can localize electrons to the base of the QD. And associated with Ga diffusion, the stress field will induce an inverted electronic alignment. The electronic behaviour in the QD without a stress field does not present the confined or localized characteristics caused by a lattice misfit, atomic size and Ga diffusion. This study provides useful information for modulating electronic behaviour by introducing a stress field and chemical diffusion

  11. Asymmetry of the Ion Diffusion Region Hall Electric and Magnetic Fields during Guide Field Reconnection: Observations and Comparison with Simulations

    International Nuclear Information System (INIS)

    Eastwood, J. P.; Shay, M. A.; Phan, T. D.; Oieroset, M.

    2010-01-01

    In situ measurements of magnetic reconnection in the Earth's magnetotail are presented showing that even a moderate guide field (20% of the reconnecting field) considerably distorts ion diffusion region structure. The Hall magnetic and electric fields are asymmetric and shunted away from the current sheet; an appropriately scaled particle-in-cell simulation is found to be in excellent agreement with the data. The results show the importance of correctly accounting for the effects of the magnetic shear when attempting to identify and study magnetic reconnection diffusion regions in nature.

  12. Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean flow

    Science.gov (United States)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2013-08-01

    This paper investigates the sound transmission characteristics through a system of double-panel lined with poroelastic material in the core. The panels are surrounded by external and internal fluid media where a uniform external mean flow exists on one side. Biot's theory is used to model the porous material. Three types of constructions—bonded-bonded, bonded-unbonded and unbonded-unbonded—are considered. The effect of Mach number of the external flow on the sound transmission over a wide frequency range in a diffuse sound field is examined. External mean flow is shown to give a modest increase in transmission loss at low frequency, but a significant increase at high frequency. It is brought out that calculations based on static air on the incidence side provide a conservative estimate of sound transmission through the sandwich structure. The acoustic performance of the sandwich panel for different configurations is presented. The effect of curvature of the panel is also brought out by using shallow shell theory.

  13. Diffusion affected magnetic field effect in exciplex fluorescence

    International Nuclear Information System (INIS)

    Burshtein, Anatoly I.; Ivanov, Anatoly I.

    2014-01-01

    The fluorescence of the exciplex, 1 [D +δ A −δ ], formed at contact of photoexcited acceptor 1 A * with an electron donor 1 D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, 1,3 [D + …A − ]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates

  14. Diffusion affected magnetic field effect in exciplex fluorescence

    Science.gov (United States)

    Burshtein, Anatoly I.; Ivanov, Anatoly I.

    2014-07-01

    The fluorescence of the exciplex, 1[D+δA-δ], formed at contact of photoexcited acceptor 1A* with an electron donor 1D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, 1, 3[D+…A-]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.

  15. Binaural loudness for artificial-head measurements in directional sound fields

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2008-01-01

    The effect of the sound incidence angle on loudness was investigated for fifteen listeners who matched the loudness of sounds coming from five different incidence angles in the horizontal plane to that of the same sound with frontal incidence. The stimuli were presented via binaural synthesis...... by using head-related transfer functions measured for an artificial head. The results, which exhibited marked individual differences, show that loudness depends on the direction from which a sound reaches the listener. The average results suggest a relatively simple rule for combining the two signals...... at the ears of an artificial head for binaural loudness predictions....

  16. Sound [signal] noise

    DEFF Research Database (Denmark)

    Bjørnsten, Thomas

    2012-01-01

    The article discusses the intricate relationship between sound and signification through notions of noise. The emergence of new fields of sonic artistic practices has generated several questions of how to approach sound as aesthetic form and material. During the past decade an increased attention...... has been paid to, for instance, a category such as ‘sound art’ together with an equally strengthened interest in phenomena and concepts that fall outside the accepted aesthetic procedures and constructions of what we traditionally would term as musical sound – a recurring example being ‘noise’....

  17. Field-scale forward and back diffusion through low-permeability zones

    Science.gov (United States)

    Yang, Minjune; Annable, Michael D.; Jawitz, James W.

    2017-07-01

    Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle.

  18. A particle velocity based method for separating all multi incoherent sound sources

    NARCIS (Netherlands)

    Winkel, J.C.; Yntema, Doekle Reinder; Druyvesteyn, W.F.; de Bree, H.E.

    2006-01-01

    In this paper we present a method to separate the contributions of different uncorrelated sound sources to the total sound field. When the contribution of each sound source to the total sound field is known, techniques with array-applications like direct sound field measurements or inverse acoustics

  19. Effective diffusion coefficient of radon in concrete, theory and method for field measurements

    International Nuclear Information System (INIS)

    Culot, M.V.J.; Olson, H.G.; Schiager, K.J.

    1976-01-01

    A linear diffusion model serves as the basis for determination of an effective radon diffusion coefficient in concrete. The coefficient was needed to later allow quantitative prediction of radon accumulation within and behind concrete walls after application of an impervious radon barrier. A resolution of certain discrepancies noted in the literature in the use of an effective diffusion coefficient to model diffusion of a radioactive gas through a porous medium is suggested. An outline of factors expected to affect the concrete physical structure and the effective diffusion coefficient of radon through it is also presented. Finally, a field method for evaluating effective radon diffusion coefficients in concrete is proposed and results of measurements performed on a concrete foundation wall are compared with similar published values of gas diffusion coefficients in concrete. (author)

  20. Diffusion affected magnetic field effect in exciplex fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Burshtein, Anatoly I. [Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Anatoly I., E-mail: Anatoly.Ivanov@volsu.ru [Volgograd State University, University Avenue, 100, Volgograd 400062 (Russian Federation)

    2014-07-14

    The fluorescence of the exciplex, {sup 1}[D{sup +δ}A{sup −δ}], formed at contact of photoexcited acceptor {sup 1}A{sup *} with an electron donor {sup 1}D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, {sup 1,3}[D{sup +}…A{sup −}]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.

  1. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation.

    Science.gov (United States)

    Salomons, Erik M; Lohman, Walter J A; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

  2. Diffusion with intrinsic trapping in 2-d incompressible stochastic velocity fields

    International Nuclear Information System (INIS)

    Vlad, M.; Spineanu, F.; Misguich, J.H.; Vlad, M.; Spineanu, F.; Balescu, R.

    1998-10-01

    A new statistical approach that applies to the high Kubo number regimes for particle diffusion in stochastic velocity fields is presented. This 2-dimensional model describes the partial trapping of the particles in the stochastic field. the results are close to the numerical simulations and also to the estimations based on percolation theory. (authors)

  3. Electric field enhanced adsorption and diffusion of adatoms in MoS{sub 2} monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wenwu [School of Physical Electronics, Center for Public Security Information and Equipment Integration Technology, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Wang, Zhiguo, E-mail: zgwang@uestc.edu.cn [School of Physical Electronics, Center for Public Security Information and Equipment Integration Technology, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Li, Zhijie [School of Physical Electronics, Center for Public Security Information and Equipment Integration Technology, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Fu, Y.Q., E-mail: richard.fu@northumbria.ac.uk [School of Physical Electronics, Center for Public Security Information and Equipment Integration Technology, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne, NE1 8ST (United Kingdom)

    2016-11-01

    A new phenomenon, electric field enhanced adsorption and diffusion of lithium, magnesium and aluminum ions in a MoS{sub 2} monolayer, was investigated using density functional theory in this study. With the electric field increased from 0 to 0.8 V/Å, the adsorption energies of the Li, Mg and Al atoms in the MoS{sub 2} monolayer were decreased from −2.01 to −2.49 eV, from −0.80 to −1.28 eV, and −2.71 to −3.01 eV, respectively. The corresponding diffusion barriers were simultaneously decreased from 0.23 to 0.08 eV, from 0.15 to 0.10 eV, and 0.24 to 0.21 eV for the Li, Mg and Al ions, respectively. We concluded that the external electric field can increase the charging speed of rechargeable ion batteries based on the MoS{sub 2} anode materials. - Highlights: • Effect of electric field on the adsorption and diffusion were investigated. • Adsorption energies of the adatoms in the MoS{sub 2} monolayer were enhanced. • Diffusion barriers of the adatoms in the MoS{sub 2} monolayer were decreased. • Electric field can be used to realize a fast charging rate of rechargeable ion batteries.

  4. A study on impulsive sound attenuation for a high-pressure blast flow field

    International Nuclear Information System (INIS)

    Kang, Kuk Jeong; Ko, Sung Ho; Lee, Dong Soo

    2008-01-01

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  5. A study on impulsive sound attenuation for a high-pressure blast flow field

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kuk Jeong [Agency for Defence Development, Daejeon (Korea, Republic of); Ko, Sung Ho; Lee, Dong Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2008-01-15

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  6. Analyzing panel acoustic contributions toward the sound field inside the passenger compartment of a full-size automobile.

    Science.gov (United States)

    Wu, Sean F; Moondra, Manmohan; Beniwal, Ravi

    2015-04-01

    The Helmholtz equation least squares (HELS)-based nearfield acoustical holography (NAH) is utilized to analyze panel acoustic contributions toward the acoustic field inside the interior region of an automobile. Specifically, the acoustic power flows from individual panels are reconstructed, and relative contributions to sound pressure level and spectrum at any point of interest are calculated. Results demonstrate that by correlating the acoustic power flows from individual panels to the field acoustic pressure, one can correctly locate the panel allowing the most acoustic energy transmission into the vehicle interior. The panel on which the surface acoustic pressure amplitude is the highest should not be used as indicative of the panel responsible for the sound field in the vehicle passenger compartment. Another significant advantage of this HELS-based NAH is that measurements of the input data only need to be taken once by using a conformal array of microphones in the near field, and ranking of panel acoustic contributions to any field point can be readily performed. The transfer functions between individual panels of any vibrating structure to the acoustic pressure anywhere in space are calculated not measured, thus significantly reducing the time and effort involved in panel acoustic contributions analyses.

  7. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Koukoulas, Triantafillos, E-mail: triantafillos.koukoulas@npl.co.uk; Piper, Ben [Acoustics Group, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  8. Efficient and Enhanced Diffusion of Vector Field for Active Contour Model

    OpenAIRE

    Liu, Guoqi; Sun, Lin; Liu, Shangwang

    2015-01-01

    Gradient vector flow (GVF) is an important external force field for active contour models. Various vector fields based on GVF have been proposed. However, these vector fields are obtained with many iterations and have difficulty in capturing the whole image area. On the other hand, the ability to converge to deep and complex concavity with these vector fields is also needed to improve. In this paper, by analyzing the diffusion equation of GVF, a normalized set is defined and a dynamically nor...

  9. Effects of temporal distribution of specular and diffuse reflections on perceived music quality

    Science.gov (United States)

    Smitthakorn, Pattra

    The purpose of this study was to investigate the effects of the temporal distribution of diffuse and specular reflections on the perceived acoustic qualities of music performance. Sets of impulse responses were designed with different temporal distributions of early acoustic energy (specular and diffuse reflections). Then, three types of anechoic sound sources---orchestral music, trumpet, and piano---were convolved with the designed impulse responses. The results from the listening tests revealed that different room environments were needed to acoustically support different source characteristics. The results show the following: (1) specular reflections arriving within 40 msec of the direct sound improved perceived "clarity" and "intimacy"; (2) specular reflections arriving between 40-80 msec after the direct sound improved perceived "clarity" for orchestral music; (3) specular reflections arriving later than 80 msec after the direct sound are not desirable; (4) large numbers of diffuse reflections arriving within 40 and 80 msec of the direct sound improved perceived "intimacy", "texture", and "overall impression" for all sound sources, heightened perceived "clarity" for trumpet and piano, and reduced perceived "glare" for trumpet; and (5) diffuse reflections arriving between 80-160 msec of the direct sound preserved perceived "reverberance" and reduced perceived "echoes" as opposed to specular reflections arriving in the same time period. The results of this study indicate that music performance halls should be designed to include diffuse reflections from surfaces within the 80 msec time period to achieve preferred texture, intimacy, clarity and overall impression and in the 160 msec time period to reduce echoes; specular reflections arriving within the 40 msec time period should be provided to enhance perceived clarity.

  10. Controlled Acoustic Bass System (CABS) A Method to Achieve Uniform Sound Field Distribution at Low Frequencies in Rectangular Rooms

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2008-01-01

    The sound field produced by loudspeakers at low frequencies in small- and medium-size rectangular listening rooms is highly nonuniform due to the multiple reflections and diffractions of sound on the walls and different objects in the room. A new method, called controlled acoustic bass system (CA......-frequency range. CABS has been simulated and measured in two different standard listening rooms with satisfactory results....

  11. Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study.

    Science.gov (United States)

    Chevillotte, Fabien; Perrot, Camille

    2017-08-01

    The purpose of this work is to systematically study the effect of the throat and the pore sizes on the sound absorbing properties of open-cell foams. The three-dimensional idealized unit cell used in this work enables to mimic the acoustical macro-behavior of a large class of cellular solid foams. This study is carried out for a normal incidence and also for a diffuse field excitation, with a relatively large range of sample thicknesses. The transport and sound absorbing properties are numerically studied as a function of the throat size, the pore size, and the sample thickness. The resulting diagrams show the ranges of the specific throat sizes and pore sizes where the sound absorption grading is maximized due to the pore morphology as a function of the sample thickness, and how it correlates with the corresponding transport parameters. These charts demonstrate, together with typical examples, how the morphological characteristics of foam could be modified in order to increase the visco-thermal dissipation effects.

  12. Investigation of the Stage Performance and Flow Fields in a Centrifugal Compressor with a Vaneless Diffuser

    Directory of Open Access Journals (Sweden)

    Ahti Jaatinen-Värri

    2014-01-01

    Full Text Available The effect of the width of the vaneless diffuser on the stage performance and flow fields of a centrifugal compressor is studied numerically and experimentally. The diffuser width is varied by reducing the diffuser flow area from the shroud side (i.e., pinching the diffuser. Seven different diffuser widths are studied with numerical simulation. In the modeling, the diffuser width b/b2 is varied within the range 1.00 to 0.50. The numerical results are compared with results obtained in previous studies. In addition, two of the diffusers are further investigated with experimental measurement. The main finding of the work is that the pinch reduces losses in the impeller associated with the tip-clearance flow. Furthermore, it is shown that a too large width reduction causes the flow to accelerate excessively, resulting in a highly nonuniform flow field and flow separation near the shroud.

  13. Sound transmission through triple-panel structures lined with poroelastic materials

    Science.gov (United States)

    Liu, Yu

    2015-03-01

    In this paper, previous theories on the prediction of sound transmission loss for a double-panel structure lined with poroelastic materials are extended to address the problem of a triple-panel structure. Six typical configurations are considered for a triple-panel structure based on the method of coupling the porous layers to the facing panels which determines critically the sound insulation performance of the system. The transfer matrix method is employed to solve the system by applying appropriate types of boundary conditions for these configurations. The transmission loss of the triple-panel structures in a diffuse sound field is calculated as a function of frequency and compared with that of corresponding double-panel structures. Generally, the triple-panel structure with poroelastic linings has superior acoustic performance to the double-panel counterpart, remarkably in the mid-high frequency range and possibly at low frequencies, by selecting appropriate configurations in which those with two air gaps in the structure exhibit the best overall performance over the entire frequency range. The poroelastic lining significantly lowers the cut-on frequency above which the triple-panel structure exhibits noticeably higher transmission loss. Compared with a double-panel structure, the wider range of system parameters for a triple-panel structure due to the additional partition provides more design space for tuning the sound insulation performance. Despite the increased structural complexity, the triple-panel structure lined with poroelastic materials has the obvious advantages in sound transmission loss while without the penalties in weight and volume, and is hence a promising replacement for the widely used double-panel sandwich structure.

  14. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    International Nuclear Information System (INIS)

    Riegler, W.

    2016-01-01

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, MICROMEGAS detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  15. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    CERN Document Server

    Riegler, Werner

    2016-11-07

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, Micromega detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  16. Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Lundell, Henrik; Sønderby, Casper Kaae

    2013-01-01

    Pulsed field gradient diffusion sequences (PFG) with multiple diffusion encoding blocks have been indicated to offer new microstructural tissue information, such as the ability to detect nonspherical compartment shapes in macroscopically isotropic samples, i.e. samples with negligible directional...

  17. A unified approach for the spatial enhancement of sound

    Science.gov (United States)

    Choi, Joung-Woo; Jang, Ji-Ho; Kim, Yang-Hann

    2005-09-01

    This paper aims to control the sound field spatially, so that the desired or target acoustic variable is enhanced within a zone where a listener is located. This is somewhat analogous to having manipulators that can draw sounds in any place. This also means that one can somehow see the controlled shape of sound in frequency or in real time. The former assures its practical applicability, for example, listening zone control for music. The latter provides a mean of analyzing sound field. With all these regards, a unified approach is proposed that can enhance selected acoustic variables using multiple sources. Three kinds of acoustic variables that have to do with magnitude and direction of sound field are formulated and enhanced. The first one, which has to do with the spatial control of acoustic potential energy, enables one to make a zone of loud sound over an area. Otherwise, one can control directional characteristic of sound field by controlling directional energy density, or one can enhance the magnitude and direction of sound at the same time by controlling acoustic intensity. Throughout various examples, it is shown that these acoustic variables can be controlled successfully by the proposed approach.

  18. Magnetic field dependence of the magnon spin diffusion length in the magnetic insulator yttrium iron garnet

    NARCIS (Netherlands)

    Cornelissen, L. J.; van Wees, B. J.

    2016-01-01

    We investigated the effect of an external magnetic field on the diffusive spin transport by magnons in the magnetic insulator Y3Fe5O12, using a nonlocal magnon transport measurement geometry. We observed a decrease in magnon spin diffusion length lambda(m) for increasing field strengths, where

  19. Surface modifications by field induced diffusion.

    Directory of Open Access Journals (Sweden)

    Martin Olsen

    Full Text Available By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages.

  20. Simulating radial diffusion of energetic (MeV electrons through a model of fluctuating electric and magnetic fields

    Directory of Open Access Journals (Sweden)

    T. Sarris

    2006-10-01

    Full Text Available In the present work, a test particle simulation is performed in a model of analytic Ultra Low Frequency, ULF, perturbations in the electric and magnetic fields of the Earth's magnetosphere. The goal of this work is to examine if the radial transport of energetic particles in quiet-time ULF magnetospheric perturbations of various azimuthal mode numbers can be described as a diffusive process and be approximated by theoretically derived radial diffusion coefficients. In the model realistic compressional electromagnetic field perturbations are constructed by a superposition of a large number of propagating electric and consistent magnetic pulses. The diffusion rates of the electrons under the effect of the fluctuating fields are calculated numerically through the test-particle simulation as a function of the radial coordinate L in a dipolar magnetosphere; these calculations are then compared to the symmetric, electromagnetic radial diffusion coefficients for compressional, poloidal perturbations in the Earth's magnetosphere. In the model the amplitude of the perturbation fields can be adjusted to represent realistic states of magnetospheric activity. Similarly, the azimuthal modulation of the fields can be adjusted to represent different azimuthal modes of fluctuations and the contribution to radial diffusion from each mode can be quantified. Two simulations of quiet-time magnetospheric variability are performed: in the first simulation, diffusion due to poloidal perturbations of mode number m=1 is calculated; in the second, the diffusion rates from multiple-mode (m=0 to m=8 perturbations are calculated. The numerical calculations of the diffusion coefficients derived from the particle orbits are found to agree with the corresponding theoretical estimates of the diffusion coefficient within a factor of two.

  1. A multipole-expanded effective field theory for vortex ring-sound interactions

    Science.gov (United States)

    Garcia-Saenz, Sebastian; Mitsou, Ermis; Nicolis, Alberto

    2018-02-01

    The low-energy dynamics of a zero temperature superfluid or of the compressional modes of an ordinary fluid can be described by a simple effective theory for a scalar field — the superfluid `phase'. However, when vortex lines are present, to describe all interactions in a local fashion one has to switch to a magnetic-type dual two-form description, which comes with six degrees of freedom (in place of one) and an associated gauge redundancy, and is thus considerably more complicated. Here we show that, in the case of vortex rings and for bulk modes that are much longer than the typical ring size, one can perform a systematic multipole expansion of the effective action and recast it into the simpler scalar field language. In a sense, in the presence of vortex rings the non-single valuedness of the scalar can be hidden inside the rings, and thus out of the reach of the multipole expansion. As an application of our techniques, we compute by standard effective field theory methods the sound emitted by an oscillating vortex ring.

  2. Sound intensity as a function of sound insulation partition

    OpenAIRE

    Cvetkovic , S.; Prascevic , R.

    1994-01-01

    In the modern engineering practice, the sound insulation of the partitions is the synthesis of the theory and of the experience acquired in the procedure of the field and of the laboratory measurement. The science and research public treat the sound insulation in the context of the emission and propagation of the acoustic energy in the media with the different acoustics impedance. In this paper, starting from the essence of physical concept of the intensity as the energy vector, the authors g...

  3. Directional sound radiation from substation transformers

    International Nuclear Information System (INIS)

    Maybee, N.

    2009-01-01

    This paper presented the results of a study in which acoustical measurements at two substations were analyzed to investigate the directional behaviour of typical arrays having 2 or 3 transformers. Substation transformers produce a characteristic humming sound that is caused primarily by vibration of the core at twice the frequency of the power supply. The humming noise radiates predominantly from the tank enclosing the core. The main components of the sound are harmonics of 120 Hz. Sound pressure level data were obtained for various directions and distances from the arrays, ranging from 0.5 m to over 100 m. The measured sound pressure levels of the transformer tones displayed substantial positive and negative excursions from the calculated average values for many distances and directions. The results support the concept that the directional effects are associated with constructive and destructive interference of tonal sound waves emanating from different parts of the array. Significant variations in the directional sound pattern can occur in the near field of a single transformer or an array, and the extent of the near field is significantly larger than the scale of the array. Based on typical dimensions for substation sites, the distance to the far field may be much beyond the substation boundary and beyond typical setbacks to the closest dwellings. As such, the directional sound radiation produced by transformer arrays introduces additional uncertainty in the prediction of substation sound levels at dwellings within a few hundred meters of a substation site. 4 refs., 4 figs.

  4. Preferred sound levels of portable music players and listening habits among adults: a field study.

    Science.gov (United States)

    Kähäri, Kim R; Aslund, T; Olsson, J

    2011-01-01

    The main purpose of this descriptive field study was to explore music listening habits and preferred listening levels with portable music players (PMPs). We were also interested in seeing whether any exposure differences could be observed between the sexes. Data were collected during 12 hours at Stockholm Central Station, where people passing by were invited to measure their preferred PMP listening level by using a KEMAR manikin. People were also asked to answer a questionnaire about their listening habits. In all, 60 persons (41 men and 19 women) took part in the questionnaire study and 61 preferred PMP levels to be measured. Forty-one of these sound level measurements were valid to be reported after consideration was taken to acceptable measuring conditions. The women (31 years) and the men (33 years) started to use PMPs on a regular basis in their early 20s. Ear canal headphones/ear buds were the preferred headphone types. Fifty-seven percent of the whole study population used their PMP on a daily basis. The measured LAeq60 sec levels corrected for free field ranged between 73 and 102 dB, with a mean value of 83 dB. Sound levels for different types of headphones are also presented. The results of this study indicate that there are two groups of listeners: people who listen less frequently and at lower, safer sound levels, and people with excessive listening habits that may indeed damage their hearing sensory organ in time.

  5. Preferred sound levels of portable music players and listening habits among adults: A field study

    Directory of Open Access Journals (Sweden)

    Kim R Kahari

    2011-01-01

    Full Text Available The main purpose of this descriptive field study was to explore music listening habits and preferred listening levels with portable music players (PMPs. We were also interested in seeing whether any exposure differences could be observed between the sexes. Data were collected during 12 hours at Stockholm Central Station, where people passing by were invited to measure their preferred PMP listening level by using a KEMAR manikin. People were also asked to answer a questionnaire about their listening habits. In all, 60 persons (41 men and 19 women took part in the questionnaire study and 61 preferred PMP levels to be measured. Forty-one of these sound level measurements were valid to be reported after consideration was taken to acceptable measuring conditions. The women (31 years and the men (33 years started to use PMPs on a regular basis in their early 20s. Ear canal headphones/ear buds were the preferred headphone types. Fifty-seven percent of the whole study population used their PMP on a daily basis. The measured LAeq60 sec levels corrected for free field ranged between 73 and 102 dB, with a mean value of 83 dB. Sound levels for different types of headphones are also presented. The results of this study indicate that there are two groups of listeners: people who listen less frequently and at lower, safer sound levels, and people with excessive listening habits that may indeed damage their hearing sensory organ in time.

  6. Quantitative studies of electric field intensity on atom diffusion of Cu/Ta/Si stacks during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei, E-mail: ray521252@gmail.com [Institute of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Stomatology Department, Nanjing General Hospital, Nanjing University, Medical School, Nanjing, 210002 (China); Asempah, Isaac; Dong, Song-Tao; Yin, Pian-Pian [Institute of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Jin, Lei, E-mail: ljin@nju.edu.cn [Stomatology Department, Nanjing General Hospital, Nanjing University, Medical School, Nanjing, 210002 (China)

    2017-03-31

    Highlights: • The electric field intensity accelerates the atom diffusion of Cu/Ta/Si stacks at 650 °C. • The acceleration effect is enhanced with an increment of electric field intensity. • An acceleration factor (1 + a·a{sup E/0.8}){sup 2} accelerating diffusion coefficient is determined by quantitative analysis. - Abstract: It has been shown that enhanced electric field intensity (0–4.0 kV/cm) has an obvious effect on accelerating atom diffusion in Cu/Ta/Si interconnect stacks at 650 °C. The theoretical deduction proves that diffusion coefficient is accelerated proportional to an acceleration factor (1 + a·α{sup E/0.8}){sup 2}. The analysis indicates that the accelerating effect is mainly attributed to the perturbation of the electric state of the defects and enhanced vacancy and dislocation densities.

  7. Techniques for Ultra-high Magnetic Field Gradient NMR Diffusion Measurements

    Science.gov (United States)

    Sigmund, Eric E.; Mitrovic, Vesna F.; Calder, Edward S.; Will Thomas, G.; Halperin, William P.; Reyes, Arneil P.; Kuhns, Philip L.; Moulton, William G.

    2001-03-01

    We report on development and application of techniques for ultraslow diffusion coefficient measurements through nuclear magnetic resonance (NMR) in high magnetic field gradients. We have performed NMR experiments in a steady fringe field gradient of 175 T/m from a 23 T resistive Bitter magnet, as well as in a gradient of 42 T/m from an 8 T superconducting magnet. New techniques to provide optimum sensitivity in these experiments are described. To eliminate parasitic effects of the temporal instability of the resistive magnet, we have introduced a passive filter: a highly conductive cryogen-cooled inductive shield. We show experimental demonstration of such a shield’s effect on NMR performed in the Bitter magnet. For enhanced efficiency, we have employed “frequency jumping” in our spectrometer system. Application of these methods has made possible measurements of diffusion coefficients as low as 10-10 cm^2/s, probing motion on a 250 nm length scale.

  8. Measurement of time series variation of thermal diffusivity of magnetic fluid under magnetic field by forced Rayleigh scattering method

    Energy Technology Data Exchange (ETDEWEB)

    Motozawa, Masaaki, E-mail: motozawa.masaaki@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Muraoka, Takashi [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Motosuke, Masahiro, E-mail: mot@rs.tus.ac.jp [Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Fukuta, Mitsuhiro, E-mail: fukuta.mitsuhiro@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan)

    2017-04-15

    It can be expected that the thermal diffusivity of a magnetic fluid varies from time to time after applying a magnetic field because of the growth of the inner structure of a magnetic fluid such as chain-like clusters. In this study, time series variation of the thermal diffusivity of a magnetic fluid caused by applying a magnetic field was investigated experimentally. For the measurement of time series variation of thermal diffusivity, we attempted to apply the forced Rayleigh scattering method (FRSM), which has high temporal and high spatial resolution. We set up an optical system for the FRSM and measured the thermal diffusivity. A magnetic field was applied to a magnetic fluid in parallel and perpendicular to the heat flux direction, and the magnetic field intensity was 70 mT. The FRSM was successfully applied to measurement of the time series variation of the magnetic fluid from applying a magnetic field. The results show that a characteristic configuration in the time series variation of the thermal diffusivity of magnetic fluid was obtained in the case of applying a magnetic field parallel to the heat flux direction. In contrast, in the case of applying a magnetic field perpendicular to the heat flux, the thermal diffusivity of the magnetic fluid hardly changed during measurement. - Highlights: • Thermal diffusivity was measured by forced Rayleigh scattering method (FRSM). • FRSM has high temporal and high spatial resolutions for measurement. • We attempted to apply FRSM to magnetic fluid (MF). • Time series variation of thermal diffusivity of MF was successfully measured by FRSM. • Anisotropic thermal diffusivity of magnetic fluid was also successfully confirmed.

  9. Parallel electric fields detected via conjugate electron echoes during the Echo 7 sounding rocket flight

    Science.gov (United States)

    Nemzek, R. J.; Winckler, J. R.

    1991-01-01

    Electron detectors on the Echo 7 active sounding rocket experiment measured 'conjugate echoes' resulting from artificial electron beam injections. Analysis of the drift motion of the electrons after a complete bounce leads to measurements of the magnetospheric convection electric field mapped to ionospheric altitudes. The magnetospheric field was highly variable, changing by tens of mV/m on time scales of as little as hundreds of millisec. While the smallest-scale magnetospheric field irregularities were mapped out by ionospheric conductivity, larger-scale features were enhanced by up to 50 mV/m in the ionosphere. The mismatch between magnetospheric and ionspheric convection fields indicates a violation of the equipotential field line condition. The parallel fields occurred in regions roughly 10 km across and probably supported a total potential drop of 10-100 V.

  10. A diffusive atmospheric pressure glow discharge in a coaxial pin-to-ring gap with a transverse magnetic field

    Directory of Open Access Journals (Sweden)

    YongSheng Wang

    2017-09-01

    Full Text Available Atmospheric pressure glow discharge (APGD has been widely used in the industrial field. The industrial applications are based on achieving stable and diffusive APGD in a relatively large space. The existing sources only achieved stable and diffusive APGD between a short inter-electrode distance within 5 millimeters. In this paper, the effect of a transverse stationary magnetic field on the diffusion of filamentary APGD was studied in a pin-to-ring coaxial gap. The APGD was driven by a high-voltage resonant power supply, and the stationary magnetic field was supplied by a permanent magnet. The stable and diffusive APGD was achieved in the circular area, which diameter was 20 millimeters. The experimental results revealed that more collision ionization occurred and the plasma was distributed diffusively in the discharge gap by applying the external transverse magnetic field. Besides, it is likely to obtain more stable and diffusive APGD in the coaxial pin-to-ring discharge gap when adjusting the input voltage, transverse magnetic flux density and resonant frequency of the power supply.

  11. Enhancement of adsorption and diffusion of lithium in single-walled carbon nanotubes by external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wenwu; Wang, Zhiguo, E-mail: zgwang@uestc.edu.cn; Fu, Y.Q., E-mail: richard.fu@northumbria.ac.uk [University of Electronic Science and Technology of China, School of Physical Electronics, Center for Public Security Information and Equipment Integration Technology (China)

    2016-11-15

    Effects of an external transverse electric field on the adsorption and diffusion of Li atoms on the single-walled carbon nanotubes (CNTs) were investigated using density functional theory. Results showed that the adsorption energy was significantly enhanced by applying the electric field. As the external electric field was increased from 0.0 to 0.6 V/Å, the adsorption energies were decreased from −1.37 to −2.31, −1.32 to −2.46, and −1.33 to −2.63 eV for the Li atoms adsorbed on (6,6), (8,8), and (10,10) CNTs, respectively. Meanwhile, the diffusion barriers of the Li atoms on the CNTs were also decreased as the external electric field was applied. When the external electric field was increased from 0.0 to 0.6 V/Å, the energy barriers were decreased from 0.42, 0.40, and 0.39 eV to 0.20, 0.17, and 0.15 eV for Li diffusion in the (6,6), (8,8), and (10,10) CNTs, respectively. The results proved that an external electric field can be applied to enhance the adsorption and diffusion of Li atoms on the CNTs (used as the anode) for lithium ion batteries.

  12. Enhancement of adsorption and diffusion of lithium in single-walled carbon nanotubes by external electric field

    International Nuclear Information System (INIS)

    Shi, Wenwu; Wang, Zhiguo; Fu, Y.Q.

    2016-01-01

    Effects of an external transverse electric field on the adsorption and diffusion of Li atoms on the single-walled carbon nanotubes (CNTs) were investigated using density functional theory. Results showed that the adsorption energy was significantly enhanced by applying the electric field. As the external electric field was increased from 0.0 to 0.6 V/Å, the adsorption energies were decreased from −1.37 to −2.31, −1.32 to −2.46, and −1.33 to −2.63 eV for the Li atoms adsorbed on (6,6), (8,8), and (10,10) CNTs, respectively. Meanwhile, the diffusion barriers of the Li atoms on the CNTs were also decreased as the external electric field was applied. When the external electric field was increased from 0.0 to 0.6 V/Å, the energy barriers were decreased from 0.42, 0.40, and 0.39 eV to 0.20, 0.17, and 0.15 eV for Li diffusion in the (6,6), (8,8), and (10,10) CNTs, respectively. The results proved that an external electric field can be applied to enhance the adsorption and diffusion of Li atoms on the CNTs (used as the anode) for lithium ion batteries.

  13. Sound Beams with Shockwave Pulses

    Science.gov (United States)

    Enflo, B. O.

    2000-11-01

    The beam equation for a sound beam in a diffusive medium, called the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, has a class of solutions, which are power series in the transverse variable with the terms given by a solution of a generalized Burgers’ equation. A free parameter in this generalized Burgers’ equation can be chosen so that the equation describes an N-wave which does not decay. If the beam source has the form of a spherical cap, then a beam with a preserved shock can be prepared. This is done by satisfying an inequality containing the spherical radius, the N-wave pulse duration, the N-wave pulse amplitude, and the sound velocity in the fluid.

  14. Aircraft panel with sensorless active sound power reduction capabilities through virtual mechanical impedances

    Science.gov (United States)

    Boulandet, R.; Michau, M.; Micheau, P.; Berry, A.

    2016-01-01

    This paper deals with an active structural acoustic control approach to reduce the transmission of tonal noise in aircraft cabins. The focus is on the practical implementation of the virtual mechanical impedances method by using sensoriactuators instead of conventional control units composed of separate sensors and actuators. The experimental setup includes two sensoriactuators developed from the electrodynamic inertial exciter and distributed over an aircraft trim panel which is subject to a time-harmonic diffuse sound field. The target mechanical impedances are first defined by solving a linear optimization problem from sound power measurements before being applied to the test panel using a complex envelope controller. Measured data are compared to results obtained with sensor-actuator pairs consisting of an accelerometer and an inertial exciter, particularly as regards sound power reduction. It is shown that the two types of control unit provide similar performance, and that here virtual impedance control stands apart from conventional active damping. In particular, it is clear from this study that extra vibrational energy must be provided by the actuators for optimal sound power reduction, mainly due to the high structural damping in the aircraft trim panel. Concluding remarks on the benefits of using these electrodynamic sensoriactuators to control tonal disturbances are also provided.

  15. Effects of microwave electric fields on the translational diffusion of dipolar molecules in surface potential: A simulation study

    Science.gov (United States)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2018-01-01

    Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.

  16. Spectrometer system for diffuse extreme ultraviolet radiation

    Science.gov (United States)

    Labov, Simon E.

    1989-01-01

    A unique grazing incidence spectrometer system has been designed to study diffuse line emission between 80 and 650 A with 10-30 A resolution. The minimum detectable emission line strength during a 5-min observation ranges from 100-2000 ph/sq cm sec str. The instrument uses mechanically ruled reflection gratings placed in front of a linear array of mirrors. These mirrors focus the spectral image on microchannel plate detectors located behind thin filters. The field of view is 40 min of arc by 15 deg, and there is no spatial imaging. This instrument has been fabricated, calibrated, and successfully flown on a sounding rocket to observe the astronomical background radiation.

  17. Sound Art Situations

    DEFF Research Database (Denmark)

    Krogh Groth, Sanne; Samson, Kristine

    2017-01-01

    and combine theories from several fields. Aspects of sound art studies, performance studies and contemporary art studies are presented in order to theoretically explore the very diverse dimensions of the two sound art pieces: Visual, auditory, performative, social, spatial and durational dimensions become......This article is an analysis of two sound art performances that took place June 2015 in outdoor public spaces in the social housing area Urbanplanen in Copenhagen, Denmark. The two performances were On the production of a poor acoustics by Brandon LaBelle and Green Interactive Biofeedback...... Environments (GIBE) by Jeremy Woodruff. In order to investigate the complex situation that arises when sound art is staged in such contexts, the authors of this article suggest exploring the events through approaching them as ‘situations’ (Doherty 2009). With this approach it becomes possible to engage...

  18. Assessment of the Bordas-Carnot Losses within the diffuser of tidal turbines using far-field and near-field CFD models.

    Science.gov (United States)

    Hajaali, Arthur

    2017-04-01

    This project has for ambition to analyse and further the general understanding on cross-flows interactions and behaviours at the mouth of a mini/small tidal hydropower plant and a river. Although, the study of these interactions could benefit and find applications in multiple hydraulic problems, this project concentrates its focus on the influence of the transposed turbulences generated by the cross-flow into the diffuser. These eddies affect the overall performance and efficiency of the bulb-turbines by minimizing the pressure recovery. In the past, these turbulences were accounted with the implementation of the Bordas-Carnot losses coefficient for the design of tidal project using bulb-turbines. The bulb turbine technology has been the interest and subject of many scientific papers but most of them concentrate and narrow their focus on the design of the rotor, blades and combiner. This project wants to focus the design of the diffuser by performing an analysis on the development of eddies and the turbulences using computational fluid dynamic (CFD) models. The Severn estuary is endowed with one of the highest tidal range around the hemisphere. The first part of the research requires to select case studies sites such as Briton-Ferry to virtually design mini-tidal plant in 0-Dimentional (D), 2D and 3D modelling to study development and behaviour of turbulences within the diffuser. The far-field model represents the marine environment prior and after the structure where bulb turbines are located. The near-field modelling has allowed researcher to study at much higher resolution and precision the design of a single turbine feeding model with predetermined and fix boundary condition. For this reason, a near-field model is required to study in depth the behaviour and evolution of the turbulence with the diffuser. One of the main challenge and advancement of this research is to find a methodology and system to link the far-field and near-field modelling to produce an

  19. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    Energy Technology Data Exchange (ETDEWEB)

    Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Kosovichev, A. G. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter of anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.

  20. Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential

    Science.gov (United States)

    Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.

    2017-09-01

    The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.

  1. Magnetic-field control of low-pressure diffuse discharges

    International Nuclear Information System (INIS)

    Cooper, J.R.

    1986-01-01

    Application of a magnetic field in a direction transverse to the electric field in a diffuse discharge can have a strong effect on the transport parameters in the discharge medium and on the external characteristics of the discharge as a whole. Deviations in these transport parameters were investigated in this work by means of Monte Carlo calculations, and the electrical characteristics of the total discharge were observed experimentally. Results of the theoretical investigation show that, in attaching gas mixtures, both the ionization and attachment-rate coefficients in the positive column of the discharge are changed such that the combined effect results in an increase in resistivity. Experimentally, it is seen that application of a crossed magnetic field to an abnormal glow discharge in attaching gases in a certain parameter range causes the discharge voltage to increase significantly. The effect seems to be most strongly influenced by processes in the cathode-fall region

  2. Controllable Micro-Particle Rotation and Transportation Using Sound Field Synthesis Technique

    Directory of Open Access Journals (Sweden)

    Shuang Deng

    2018-01-01

    Full Text Available Rotation and transportation of micro-particles using ultrasonically-driven devices shows promising applications in the fields of biological engineering, composite material manufacture, and micro-assembly. Current interest in mechanical effects of ultrasonic waves has been stimulated by the achievements in manipulations with phased array. Here, we propose a field synthesizing method using the fewest transducers to control the orientation of a single non-spherical micro-particle as well as its spatial location. A localized acoustic force potential well is established and rotated by using sound field synthesis technique. The resultant acoustic radiation torque on the trapped target determines its equilibrium angular position. A prototype device consisting of nine transducers with 2 MHz center frequency is designed and fabricated. Controllable rotation of a silica rod with 90 μm length and 15 μm diameter is then successfully achieved. There is a good agreement between the measured particle orientation and the theoretical prediction. Within the same device, spatial translation of the silica rod can also be realized conveniently. When compared with the existing acoustic rotation methods, the employed transducers of our method are strongly decreased, meanwhile, device functionality is improved.

  3. Diffusion of test particles in stochastic magnetic fields for small Kubo numbers

    International Nuclear Information System (INIS)

    Neuer, Marcus; Spatschek, Karl H.

    2006-01-01

    Motion of charged particles in a collisional plasma with stochastic magnetic field lines is investigated on the basis of the so-called A-Langevin equation. Compared to the previously used V-Langevin model, here finite Larmor radius effects are taken into account. The A-Langevin equation is solved under the assumption that the Lagrangian correlation function for the magnetic field fluctuations is related to the Eulerian correlation function (in Gaussian form) via the Corrsin approximation. The latter is justified for small Kubo numbers. The velocity correlation function, being averaged with respect to the stochastic variables including collisions, leads to an implicit differential equation for the mean square displacement. From the latter, different transport regimes, including the well-known Rechester-Rosenbluth diffusion coefficient, are derived. Finite Larmor radius contributions show a decrease of the diffusion coefficient compared to the guiding center limit. The case of small (or vanishing) mean fields is also discussed

  4. Computation of Trajectories and Displacement Fields in a Three-Dimensional Ternary Diffusion Couple: Parabolic Transform Method

    Directory of Open Access Journals (Sweden)

    Marek Danielewski

    2015-01-01

    Full Text Available The problem of Kirkendall’s trajectories in finite, three- and one-dimensional ternary diffusion couples is studied. By means of the parabolic transformation method, we calculate the solute field, the Kirkendall marker velocity, and displacement fields. The velocity field is generally continuous and can be integrated to obtain a displacement field that is continuous everywhere. Special features observed experimentally and reported in the literature are also studied: (i multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple evolve into two locations as a result of the initial distribution, (ii multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple move into two locations due to composition dependent mobilities, and (iii a Kirkendall plane that coincides with the interphase interface. The details of the deformation (material trajectories in these special situations are given using both methods and are discussed in terms of the stress-free strain rate associated with the Kirkendall effect. Our nonlinear transform generalizes the diagonalization method by Krishtal, Mokrov, Akimov, and Zakharov, whose transform of diffusivities was linear.

  5. A review of research progress in air-to-water sound transmission

    International Nuclear Information System (INIS)

    Peng Zhao-Hui; Zhang Ling-Shan

    2016-01-01

    International and domestic research progress in theory and experiment and applications of the air-to-water sound transmission are presented in this paper. Four classical numerical methods of calculating the underwater sound field generated by an airborne source, i.e., the ray theory, the wave solution, the normal-mode theory and the wavenumber integration approach, are introduced. Effects of two special conditions, i.e., the moving airborne source or medium and the rough air-water interface, on the air-to-water sound transmission are reviewed. In experimental studies, the depth and range distributions of the underwater sound field created by different kinds of airborne sources in near-field and far-field, the longitudinal horizontal correlation of underwater sound field and application methods for inverse problems are reviewed. (special topic)

  6. The evening diffuse radio aurora, field-aligned currents and particle precipitation

    International Nuclear Information System (INIS)

    Unwin, R.S.

    1980-01-01

    The relationship of the afternoon/evening diffuse radio aurora, proton and electron precipitation and field-aligned currents is studied with data from the auroral radar at Slope Point, New Zealand, and the ISIS 2 satellite. It is shown that there is a very close association between the radio aurora and (primarily downward) field-aligned currents, which confirms and extends previous work, but that there is no clear relation with either proton or electron precipitation. (author)

  7. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  8. Spatial Control of Photoacid Diffusion in Chemically Amplified Resist (CAR) via External Electric Field.

    Science.gov (United States)

    Kim, Jinok; Yoo, Gwangwe; Park, Jin; Park, Jin-Hong

    2018-09-01

    We investigated the effect of an electric field-based post exposure bake (EF-PEB) process on photoacid diffusion and pattern formation. To investigate the control of photoacid diffusion experimentally, the EF-PEB processes was performed at various temperatures. Cross sectional images of various EF-PEB processed samples were obtained by scanning electron microscopy (SEM) after ion beam milling. In addition, we conducted a numerical analysis of photoacid distribution and diffusion with following Fick's second law and compared the experimental results with our theoretical model. The drift distance was theoretically predicted by multiplying drift velocity and EF-PEB time, and the experimental values were obtained by finding the difference in pattern depths of PEB/EFPEB samples. Finally, an EF-PEB temperature of 85 °C was confirmed as the optimum condition to maximize photoacid drift distance using the electric field.

  9. Spherical loudspeaker array for local active control of sound.

    Science.gov (United States)

    Rafaely, Boaz

    2009-05-01

    Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.

  10. Non-linear diffusion of charged particles due to stochastic electromagnetic fields

    International Nuclear Information System (INIS)

    Martins, A.M.; Balescu, R.; Mendonca, J.T.

    1989-01-01

    It is well known that the energy confinement times observed in tokamak cannot be explained by the classical or neo-classical transport theory. The alternative explanations are based on the existence of various kinds of micro-instabilities, or on the stochastic destruction of the magnetic surfaces, due to the interaction of magnetic islands of different helicities. In the absence of a well established theory of anomalous transport it is perhaps important to study in some detail the diffusion coefficient of single charged particles in the presence of electromagnetic fluctuation, because it can provide the physical grounds for more complete and self-consistent calculations. In the present work we derive a general expression for the transverse diffusion coefficient of electrons and ions in a constant magnetic field and in the presence of space and time dependent electromagnetic fluctuation. We neglect macroscopic drifts due to inhomogeneity and field curvatures, but retain finite Larmor radius effects. (author) 3 refs

  11. Physics of thermo-acoustic sound generation

    Science.gov (United States)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  12. DIFFUSION OF THE PULSED ELECTROMAGNETIC FIELD INTO THE MULTI-LAYER CORE OF INDUCTOR AT PULSED DEVICES

    Directory of Open Access Journals (Sweden)

    Volodymyr T. Chemerys

    2008-02-01

    Full Text Available  The problem of the pulsed magnetic field distribution in the cross section of the inductor core at the induction accelerator of electron beam is under consideration in this paper. Owing to multi-layer structure of the core package it has the magnetic and electric anisotropy with different speed of the field diffusion along the sheets of magnetic and across the sheets. At the pulse duration less than one microsecond the essential non-uniformity of the field along both axes of the core cross section can be found. This effect reduces the efficiency of the ferromagnetic material using with corresponding loss of the accelerator efficiency. The main conclusion of the paper consists of the necessity to check the field diffusion characteristics in the process of inductor design to be sure that the pulsed field is able to fill the cross section of the core during the pulse switching. The magnetic characteristics of the anisotropic core have been investigated in the paper by one-dimensional and two-dimensional simulation in the quasi-stationary approximation using the traditional equation of the field diffusion.

  13. Towards Predicting Room Acoustical Effects on Sound-Field ASSR from Stimulus Modulation Power

    DEFF Research Database (Denmark)

    Zapata Rodriguez, Valentina; Laugesen, Søren; Jeong, Cheol-Ho

    ) is considered. Instead of using insert earphones to deliver the stimuli, as is customary, the auditory signals are reproduced from a loudspeaker placed in front of the subject, so as to include the hearing aid in the transmission path. Loudspeaker presentation of the stimulus can lower its effective modulation...... properties of the measurement room has not been considered. The present work explores the relation between the stimulus modulation power and the ASSR amplitude in a simulated sound-field ASSR data set with varying reverberation time. Three rooms were simulated using the Green's function approach...

  14. An emergency computation model for the wind field and diffusion during accidental nuclear pollutants releases

    International Nuclear Information System (INIS)

    Yoshikawa, T.; Kimura, F.; Koide, T.; Kurita, S.

    1990-01-01

    Since 1986, a simple computation model for a nuclear accident has been operating in the emergency information center of Japan Agency for Science and Technology. It was developed by introducing the variation method for wind and a random walk particle model for diffusion in 50-100 km scale. Furthermore, we developed a new model with dynamic equations and a diffusion equation to predict more accurately the wind and diffusion, including local thermal convection. The momentum equation and the continuity equation are solved numerically in nonhydrostatic and incompressible conditions, using a finite difference technique. Then, the equation of thermal energy preservation is solved for potential temperature in the predicted wind field of every time step. The diffusion of nuclear pollutants is computed numerically in the predicted wind field, using diffusion coefficients obtained from the predictive dynamic equations. These computations were verified with meteorological surveys and gas tracer diffusion experiments over flat land, along a sea shore and over a mountainous area. Horizontal circulations and vertical convections can be computed in any mesh size from several tens of meters to several kilometers, while small vertical convections less than 1 km or so cannot be represented with the former hydrostatic circulation models. (author)

  15. Farmers’ learning and diffusion of farmer field school’s knowledge

    DEFF Research Database (Denmark)

    Thai, Thi Minh; Hjortsø, Carsten Nico Portefée

    As farmers field school (FFS) increases in use in agricultural extension and rural development, understanding how FFS-introduced knowledge retained and diffused among participants and their community is needed. This study aimed to investigate how farmers’ learning determines their adoption...... of the FFS-introduced innovations and how these innovations are communicated among farmers. Results show that farmers’ cognitive ability to adjust, test, and adopt FFS-introduced innovations in combination with farmers attitude towards these innovations and linkages to the social system and dynamics...... of these linkages determine the process of utilizing the obtained knowledge and its outcomes. Adoption-diffusion of FFS-introduced innovations is a context-dependent interrelated process, strongly influenced by farming and cultural background, social coherence, collective tradition and connections with external...

  16. Sound waves in (2+1) dimensional holographic magnetic fluids

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex; Vazquez, Samuel E.

    2008-01-01

    We use the AdS/CFT correspondence to study propagation of sound waves in strongly coupled (2+1) dimensional conformal magnetic fluids. Our computation provides a nontrivial consistency check of the viscous magneto-hydrodynamics of Hartnoll-Kovtun-Mueller-Sachdev to leading order in the external field. Depending on the behavior of the magnetic field in the hydrodynamic limit, we show that it can lead to further attenuation of sound waves in the (2+1) dimensional conformal plasma, or reduce the speed of sound. We present both field theory and dual supergravity descriptions of these phenomena. While to the leading order in momenta the dispersion of the sound waves obtained from the dual supergravity description agrees with the one predicted from field theory, we find a discrepancy at higher order. This suggests that further corrections to HKMS magneto-hydrodynamics are necessary.

  17. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    2010-01-01

    The aim of this article is to shed light on a small part of the research taking place in the textile field. The article describes an ongoing PhD research project on textiles and sound and outlines the project's two main questions: how sound can be shaped by textiles and conversely how textiles can...

  18. Measurement of the velocity of sound in crystals by pulsed neutron diffraction

    International Nuclear Information System (INIS)

    Willis, B.T.M.; Carlile, C.J.; Ward, R.C.; David, W.I.F.; Johnson, M.W.

    1986-03-01

    The diffraction method of observing elementary excitations in crystals has been applied to the study of one-phonon thermal diffuse scattering from pyrolytic graphite on a high resolution pulsed neutron diffractometer. The variation of the phase velocity of sound as a function of direction in the crystal and efficient method of determining sound velocities in crystals under extreme conditions. (author)

  19. Sonotropic effects of commercial air transport sound on birds.

    Science.gov (United States)

    1962-03-01

    The Electra sound spectrum contains an audible chirp which appears identical in frequency and wave form to the chirp of field crickets. Field observations strongly indicate the sound of the taxiing Electra exerts an attraction for starlings, and poss...

  20. Visualizing Sound Directivity via Smartphone Sensors

    Science.gov (United States)

    Hawley, Scott H.; McClain, Robert E.

    2018-02-01

    When Yang-Hann Kim received the Rossing Prize in Acoustics Education at the 2015 meeting of the Acoustical Society of America, he stressed the importance of offering visual depictions of sound fields when teaching acoustics. Often visualization methods require specialized equipment such as microphone arrays or scanning apparatus. We present a simple method for visualizing angular dependence in sound fields, made possible via the confluence of sensors available via a new smartphone app that the authors have developed.

  1. Generation of the vorticity mode by sound in a Bingham plastic

    Science.gov (United States)

    Perelomova, Anna; Wojda, Pawel

    2011-10-01

    This study investigates interaction between acoustic and non-acoustic modes, such as vorticity mode, in some class of a non-newtonian fluid called Bingham plastic. The instantaneous equations describing interaction between different modes are derived. The attention is paid to the nonlinear effects in the field of intense sound. The resulting equations which describe dynamics of both sound and the vorticity mode apply to both periodic and aperiodic sound of any waveform. They use only instantaneous quantities and do not imply averaging over the sound period. The theory is illustrated by an example of acoustic force of vorticity induced in the field of a Gaussian sound beam. Some unusual peculiarities in both sound and the vorticity induced in its field as compared to a newtonian fluid, are discovered.

  2. Universality-class crossover by a nonorder field introduced to the pair contact process with diffusion

    Science.gov (United States)

    Park, Su-Chan

    2017-09-01

    The one-dimensional pair contact process with diffusion (PCPD), an interacting particle system with diffusion, pair annihilation, and creation by pairs, has defied consensus about the universality class to which it belongs. An argument by Hinrichsen [Physica A 361, 457 (2006), 10.1016/j.physa.2005.06.101] claims that freely diffusing particles in the PCPD should play the same role as frozen particles when it comes to the critical behavior. Therefore, the PCPD is claimed to have the same critical phenomena as a model with infinitely many absorbing states that belongs to the directed percolation (DP) universality class. To investigate if diffusing particles are really indistinguishable from frozen particles in the sense of the renormalization group, we study numerically a variation of the PCPD by introducing a nonorder field associated with infinitely many absorbing states. We find that a crossover from the PCPD to DP occurs due to the nonorder field. By studying a similar model, we exclude the possibility that the mere introduction of a nonorder field to one model can entail a nontrivial crossover to another model in the same universality class, thus we attribute the observed crossover to the difference of the universality class of the PCPD from the DP class.

  3. On the applicability of models for outdoor sound

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1999-01-01

    not only sound pressure levels but also phase information. Such methods are, however, not always able to predict the sound field for more complicated scenarios involving terrain features, atmospheric wind and temperature gradients and turbulence. Another class of methods is based upon approximate theory......The suitable prediction model for outdoor sound fields depends on the situation and the application. Computationally intensive methods such as Parabolic Equation methods, FFP methods and Boundary Element Methods all have advantages in certain situations. These approaches are accurate and predict...

  4. Diffusion phenomenon at the interface of Cu-brass under a strong gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Yudai; Tokuda, Makoto; Januszko, Kamila; Khandaker, Jahirul Islam; Mashimo, Tsutomu, E-mail: mashimo@gpo.kumamoto-u.ac.jp [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Iguchi, Yusuke [Department of Solid State Physics, Debrecen University, 4032 Debrecen (Hungary); Ono, Masao [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan)

    2015-03-28

    To investigate diffusion phenomenon at the interface between Cu and brass under a strong gravitational field generated by ultracentrifuge apparatus, we performed gravity experiments on samples prepared by electroplating with interfaces normal and parallel to the direction of gravity. For the parallel-mode sample, for which sedimentation cannot occur thorough the interface, the concentration change was significant within the lower gravity region; many pores were observed in this region. Many vacancies arising from crystal strain due to the strong gravitational field moved into the lower gravity region, and enhanced the atoms mobilities. For the two normal-mode samples, which have interface normal to the direction of gravity, the composition gradient of the brass-on-Cu sample was steeper than that for Cu-on-brass. This showed that the atoms of denser Cu diffuse in the direction of gravity, whereas Zn atoms diffuse in the opposite direction by sedimentation. The interdiffusion coefficients became higher in the Cu-on-brass sample, and became lower in the brass-on-Cu sample. This rise may be related to the behavior of the vacancies.

  5. Diffusion of chaotic field lines in tokamaks

    Science.gov (United States)

    Ali, Halima; Punjabi, Alkesh

    2006-10-01

    An important instability for the destruction of magnetic surfaces in tokamaks due to island overlapping is the tearing modes. Magnetic fields perturbed by tearing modes are given by the sinusoidal form Br=-1rR∑m,nbm^n ( mθ-n ) . The sinusoidal nature of perturbation creates islands structure near resonant surfaces. In this work, we consider two modes, ( m1,n1 )and ( m2,n2 )that interact with each other, leading to two chains of islands, called primary islands. We use a previously derived Hamiltonian map, the ψ-θ map, with and without higher order control terms to study the diffusion of chaotic field lines. We will present and discuss the results of this work, and discuss its implications with regard to magnetic transport barriers for a fixed q-profile and increasing strength of magnetic perturbations. This work is done under the DOE grant number DE-FG02-01ER54624. 1.A. Punjabi et al, Phys. Rev. lett., 69, 3322 (1992). 2. H. Ali, A. Punjabi, and A. Boozer, Int. J. Comp. Num. Ana. Applications 6, 17 (2005).

  6. Sound Scattering by a Flexible Plate Embedded on Free Surface

    Directory of Open Access Journals (Sweden)

    Eldad J. Avital

    2012-01-01

    Full Text Available Sound wave scattering by a flexible plate embedded on water surface is considered. Linear acoustics and plate elasticity are assumed. The aim is to assess the effect of the plate’s flexibility on sound scattering and the potential in using that flexibility for this purpose. A combined sound-structure solution is used, which is based on a Fourier transform of the sound field and a finite-difference numerical-solution of the plate’s dynamics. The solution is implemented for a circular plate subject to a perpendicular incoming monochromatic sound wave. A very good agreement is achieved with a finite-difference solution of the sound field. It is shown that the flexibility of the plate dampens its scattered sound wave regardless of the type of the plate’s edge support. A hole in the plate is shown to further scatter the sound wave to form maxima in the near sound field. It is suggested that applying an external oscillatory pressure on the plate can reduce significantly and even eliminate its scattered wave, thus making the plate close to acoustically invisible. A uniformly distributed external pressure is found capable of achieving that aim as long as the plate is free edged or is not highly acoustically noncompact.

  7. Self-reinforcing process of the reconnection electric field in the electron diffusion region and onset of collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Lu Quanming; Lu San; Huang Can; Wu Mingyu; Wang Shui

    2013-01-01

    The onset of collisionless magnetic reconnection is considered to be controlled by electron dynamics in the electron diffusion region, where the reconnection electric field is balanced mainly by the off-diagonal electron pressure tensor term. Two-dimensional particle-in-cell simulations are employed in this paper to investigate the self-reinforcing process of the reconnection electric field in the electron diffusion region, which is found to grow exponentially. A theoretical model is proposed to demonstrate such a process in the electron diffusion region. In addition the reconnection electric field in the pileup region, which is balanced mainly by the electromotive force term, is also found to grow exponentially and its growth rate is twice that in the electron diffusion region. (paper)

  8. Bottom-up driven involuntary auditory evoked field change: constant sound sequencing amplifies but does not sharpen neural activity.

    Science.gov (United States)

    Okamoto, Hidehiko; Stracke, Henning; Lagemann, Lothar; Pantev, Christo

    2010-01-01

    The capability of involuntarily tracking certain sound signals during the simultaneous presence of noise is essential in human daily life. Previous studies have demonstrated that top-down auditory focused attention can enhance excitatory and inhibitory neural activity, resulting in sharpening of frequency tuning of auditory neurons. In the present study, we investigated bottom-up driven involuntary neural processing of sound signals in noisy environments by means of magnetoencephalography. We contrasted two sound signal sequencing conditions: "constant sequencing" versus "random sequencing." Based on a pool of 16 different frequencies, either identical (constant sequencing) or pseudorandomly chosen (random sequencing) test frequencies were presented blockwise together with band-eliminated noises to nonattending subjects. The results demonstrated that the auditory evoked fields elicited in the constant sequencing condition were significantly enhanced compared with the random sequencing condition. However, the enhancement was not significantly different between different band-eliminated noise conditions. Thus the present study confirms that by constant sound signal sequencing under nonattentive listening the neural activity in human auditory cortex can be enhanced, but not sharpened. Our results indicate that bottom-up driven involuntary neural processing may mainly amplify excitatory neural networks, but may not effectively enhance inhibitory neural circuits.

  9. Low frequency sound field enhancement system for rectangular rooms, using multiple loudspeakers

    DEFF Research Database (Denmark)

    Celestinos, Adrian

    2007-01-01

    The scope of this PhD dissertation is within the performance of loudspeakers in rooms at low frequencies. The research concentrates on the improvement of the sound level distribution in rooms produced by loudspeakers at low frequencies. The work focuses on seeing the problem acoustically...... and solving it in the time domain. Loudspeakers are the last link in the sound reproduction chain, and they are typically placed in small or medium size rooms. When low frequency sound is radiated by a loudspeaker the sound level distribution along the room presents large deviations. This is due...... to the multiple reflection of sound at the rigid walls of the room. This may cause level differences of up to 20 dB in the room. Some of these deviations are associated with the standing waves, resonances or anti resonances of the room. The understanding of the problem is accomplished by analyzing the behavior...

  10. MAGNETIC FIELD STRUCTURE OF THE LARGE MAGELLANIC CLOUD FROM FARADAY ROTATION MEASURES OF DIFFUSE POLARIZED EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); McClure-Griffiths, N. M.; McConnell, D. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, NSW 1710 (Australia); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Haverkorn, M. [Department of Astrophysics, Radboud University, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Beck, R. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Wolleben, M. [Square Kilometre Array South Africa, The Park, Pinelands 7405 (South Africa); Stanimirovic, S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Dickey, J. M. [Physics Department, University of Tasmania, Hobart, TAS 7001 (Australia); Staveley-Smith, L., E-mail: mao@astro.wisc.edu [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia)

    2012-11-01

    We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large-scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction toward the Small Magellanic Cloud (SMC). We suggest that tidal interactions between the SMC and the LMC in the past 10{sup 9} years are likely to have shaped the magnetic field in these filaments.

  11. Degenerate four-wave mixing with the phase diffusion field

    International Nuclear Information System (INIS)

    Anderson, M.H.; Chen, CE.; Elliott, D.S.; Cooper, J.; Smith, S.J.

    1993-01-01

    We report measurements of the effect of laser fluctuations on a strong-field degenerate four-wave mixing interaction, carried out in a nearly Doppler-free, two-level system using a single laser with statistically well-defined phase fluctuations. The counterpropagating pump beams and the probe beam, each split from this phase-noise-modulated source, were fully correlated. The nonlinear medium was an optically-pumped diffuse beam of atomic sodium. By time-delaying the probe with respect to the pump beams, the composite field becomes non-Markovian. Four-wave mixing results in the generation of a phase-conjugate beam anti-parallel to the probe beam. With the laser field spectrum nearly Lorentzian in shape, and with a field linewidth greater (and, for comparison, much narrower) than the natural linewidth of the sodium, we measured the intensity of the phase-conjugate beam as the pump and probe beams were tuned through the D2 resonance, as a function of intensity of die pump beam (up to intensities several times the saturation intensity), and for varying delay between the pump and probe fields. This experiment provides a cleaner measurement of this interaction than any previously available

  12. Determination of the effective diffusion coefficient of water through cement-based materials when applying an electrical field

    International Nuclear Information System (INIS)

    Wattez, T.

    2013-01-01

    The safety and the reliability of a radioactive waste repository rely essentially on the confinement ability of the waste package and the storing structure. In the case of the low-level and intermediate level short-lived radioactive waste, the confinement property, relying on solid matrices made of cement-based materials, is assessed through a natural diffusion test, using a radioactive tracer, from which an effective diffusion coefficient is deduced. The evolution of the materials and more particularly the enhancement of the confinement properties of cement-based materials lead to test duration from a couple of months to a couple of years. The main objective of the present work involves the determination of the effective diffusion coefficient of reference chemical species, in our case the tritiated water, within a shorter time. The theoretical foundation is based on the description of ionic species mass transfer under the effects of an electrical field. With the definitions of a precise experimental protocol and of a formation factor, considered as an intrinsic topological feature of the porous network, it is possible to determine the effective diffusion coefficient of tritiated water for various types of concretes and mortars, and this within a few hours only. The comparison between the developed accelerated test, based on the application of a constant electrical field, and the normed natural diffusion test, using tritiated water, underlined two critical issues. First, omitting the impact of the radioactive decay of tritium during a natural diffusion test, leads to a non-negligible underestimation of the effective diffusion coefficient. Second, maintaining samples in high relative humidity conditions after casting is essential in order to avoid contrasted and unrelated results when performing the electrokinetic tests. Eventually, the validation of the electrokinetics technique, main objective of this work, rests on the assessment of the theoretical hypothesis

  13. Sound-like collective mode excitation with pion absorption in nuclear matter

    International Nuclear Information System (INIS)

    Qiu Xijiun; Shen Jianguo; Huang Lingfang

    1985-01-01

    The relativistic mean field theory consistent with bulk properties of nuclear matter is extended to study the excitations of the sound-like collective modes in nuclear matter. Corresponding relativistic mean field equations are solved numerically and self-consistently. The effective mass of nucleon, the speed of the sound and the amplitude of the sound-like solution are calculated. When the nuclear density is near or greater than the saturation density, the sound-like non-trivial solution could be found

  14. Fourth sound of holographic superfluids

    International Nuclear Information System (INIS)

    Yarom, Amos

    2009-01-01

    We compute fourth sound for superfluids dual to a charged scalar and a gauge field in an AdS 4 background. For holographic superfluids with condensates that have a large scaling dimension (greater than approximately two), we find that fourth sound approaches first sound at low temperatures. For condensates that a have a small scaling dimension it exhibits non-conformal behavior at low temperatures which may be tied to the non-conformal behavior of the order parameter of the superfluid. We show that by introducing an appropriate scalar potential, conformal invariance can be enforced at low temperatures.

  15. A kinetic theory of diffusion in general relativity with cosmological scalar field

    International Nuclear Information System (INIS)

    Calogero, Simone

    2011-01-01

    A new model to describe the dynamics of particles undergoing diffusion in general relativity is proposed. The evolution of the particle system is described by a Fokker-Planck equation without friction on the tangent bundle of spacetime. It is shown that the energy-momentum tensor for this matter model is not divergence-free, which makes it inconsistent to couple the Fokker-Planck equation to the Einstein equations. This problem can be solved by postulating the existence of additional matter fields in spacetime or by modifying the Einstein equations. The case of a cosmological scalar field term added to the left hand side of the Einstein equations is studied in some details. For the simplest cosmological model, namely the flat Robertson-Walker spacetime, it is shown that, depending on the initial value of the cosmological scalar field, which can be identified with the present observed value of the cosmological constant, either unlimited expansion or the formation of a singularity in finite time will occur in the future. Future collapse into a singularity also takes place for a suitable small but positive present value of the cosmological constant, in contrast to the standard diffusion-free scenario

  16. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    Science.gov (United States)

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  17. Design and Calibration Tests of an Active Sound Intensity Probe

    Directory of Open Access Journals (Sweden)

    Thomas Kletschkowski

    2008-01-01

    Full Text Available The paper presents an active sound intensity probe that can be used for sound source localization in standing wave fields. The probe consists of a sound hard tube that is terminated by a loudspeaker and an integrated pair of microphones. The microphones are used to decompose the standing wave field inside the tube into its incident and reflected part. The latter is cancelled by an adaptive controller that calculates proper driving signals for the loudspeaker. If the open end of the actively controlled tube is placed close to a vibrating surface, the radiated sound intensity can be determined by measuring the cross spectral density between the two microphones. A one-dimensional free field can be realized effectively, as first experiments performed on a simplified test bed have shown. Further tests proved that a prototype of the novel sound intensity probe can be calibrated.

  18. Non-stationary classical diffusion in field - reversed configurations

    International Nuclear Information System (INIS)

    Clemente, R.A.; Sakanaka, P.H.; Mania, A.J.

    1988-01-01

    Plasma decay in field-reversed configurations (FRC) is described using resistive MHD equations. Assuming non-stationariety together with uniform but time dependent plasma temperature and neglecting inertial effects in the momentum balance equation, it is possible to show that the functional dependence of the plasma pressure with the poloidal magnetic flux remains fixed during diffusion. This allows to describe FRC evolution as a continuous sequence of plasma equilibria satisfying proper boundary conditions. The method is applied to pressure profiles linear with the poloidal magnetic flux obtaining the evolution of the flux, the number of confined particles and the size of the plasma boundary. (author) [pt

  19. Numerical Analysis of Indoor Sound Quality Evaluation Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-Tuan Chou

    2013-01-01

    Full Text Available Indoors sound field distribution is important to Room Acoustics, but the field suffers numerous problems, for example, multipath propagation and scattering owing to sound absorption by furniture and other aspects of décor. Generally, an ideal interior space must have a sound field with clear quality. This provides both the speaker and the listener with a pleasant conversational environment. This investigation uses the Finite Element Method to assess the acoustic distribution based on the indoor space and chamber volume. In this situation, a fixed sound source at different frequencies is used to simulate the acoustic characteristics of the indoor space. This method considers the furniture and decoration sound absorbing material and thus different sound absorption coefficients and configurations. The preliminary numerical simulation provides a method that can forecast the distribution of sound in an indoor room in complex situations. Consequently, it is possible to arrange interior furnishings and appliances to optimize acoustic distribution and environmental friendliness. Additionally, the analytical results can also be used to calculate the Reverberation Time and speech intelligibility for specified indoor space.

  20. Diffuse spreading of inhomogeneities in the ionospheric dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shalimov, S. L., E-mail: pmsk7@mail.ru [Russian Academy of Sciences, Schmidt Institute of Physics of the Earth (Russian Federation); Kozlovsky, A. [Sodankylä Geophysical Observatory (Finland)

    2015-08-15

    According to results of sounding of the lower ionosphere at altitudes of about 100 km, the duration of radio reflections from sufficiently dense ionized meteor trails, which characterizes their lifetime, can reach a few tens of seconds to several tens of minutes. This is much longer than the characteristic spreading time (on the order of fractions of a second to several seconds) typical in meteor radar measurements. The presence of dust in the lower ionosphere is shown to affect the ambipolar diffusion coefficient, which determines the spreading of plasma inhomogeneities. It is found that the diffusion coefficient depends substantially on the charge and size of dust grains, which allows one to explain the results of ionospheric sounding.

  1. On the applicability of models for outdoor sound (A)

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1999-01-01

    not only sound pressure levels but also phase information. Such methods are, however, not always able to predict the sound field for more complicated scenarios involving terrain features, atmospheric wind and temperature gradients, and turbulence. Another class of methods is based upon approximate theory......The suitable prediction model for outdoor sound fields depends on the situation and the application. Computationally intensive methods such as parabolic equation methods, FFP methods, and boundary element methods all have advantages in certain situations. These approaches are accurate and predict...

  2. Quantifying benthic nitrogen fluxes in Puget Sound, Washington: a review of available data

    Science.gov (United States)

    Sheibley, Richard W.; Paulson, Anthony J.

    2014-01-01

    Understanding benthic fluxes is important for understanding the fate of materials that settle to the Puget Sound, Washington, seafloor, as well as the impact these fluxes have on the chemical composition and biogeochemical cycles of marine waters. Existing approaches used to measure benthic nitrogen flux in Puget Sound and elsewhere were reviewed and summarized, and factors for considering each approach were evaluated. Factors for selecting an appropriate approach for gathering information about benthic flux include: availability of resources, objectives of projects, and determination of which processes each approach measures. An extensive search of literature was undertaken to summarize known benthic nitrogen fluxes in Puget Sound. A total of 138 individual flux chamber measurements and 38 sets of diffusive fluxes were compiled for this study. Of the diffusive fluxes, 35 new datasets were located, and new flux calculations are presented in this report. About 65 new diffusive flux calculations are provided across all nitrogen species (nitrate, NO3-; nitrite, NO2-; ammonium, NH4+). Data analysis of this newly compiled benthic flux dataset showed that fluxes beneath deep (greater than 50 meters) water tended to be lower than those beneath shallow (less than 50 meters) water. Additionally, variability in flux at the shallow depths was greater, possibly indicating a more dynamic interaction between the benthic and pelagic environments. The overall range of bottom temperatures from studies in the Puget Sound area were small (5–16 degrees Celsius), and only NH4+ flux showed any pattern with temperature. For NH4+, flux values and variability increased at greater than about 12 degrees Celsius. Collection of additional study site metadata about environmental factors (bottom temperature, depth, sediment porosity, sediment type, and sediment organic matter) will help with development of a broader regional understanding benthic nitrogen flux in the Puget Sound.

  3. Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars

    International Nuclear Information System (INIS)

    Huisman, Thierry A.G.M.; Loenneker, Thomas; Barta, Gerd; Bellemann, Matthias E.; Hennig, Juergen; Fischer, Joachim E.; Il'yasov, Kamil A.

    2006-01-01

    The objectives were to study the ''impact'' of the magnetic field strength on diffusion tensor imaging (DTI) metrics and also to determine whether magnetic-field-related differences in T2-relaxation times of brain tissue influence DTI measurements. DTI was performed on 12 healthy volunteers at 1.5 and 3.0 Tesla (within 2 h) using identical DTI scan parameters. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured at multiple gray and white matter locations. ADC and FA values were compared and analyzed for statistically significant differences. In addition, DTI measurements were performed at different echo times (TE) for both field strengths. ADC values for gray and white matter were statistically significantly lower at 3.0 Tesla compared with 1.5 Tesla (% change between -1.94% and -9.79%). FA values were statistically significantly higher at 3.0 Tesla compared with 1.5 Tesla (% change between +4.04 and 11.15%). ADC and FA values are not significantly different for TE=91 ms and TE=125 ms. Thus, ADC and FA values vary with the used field strength. Comparative clinical studies using ADC or FA values should consequently compare ADC or FA results with normative ADC or FA values that have been determined for the field strength used. (orig.)

  4. Interacting diffusive unified dark energy and dark matter from scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Benisty, David; Guendelman, E.I. [Ben Gurion University of the Negev, Department of Physics, Beersheba (Israel)

    2017-06-15

    Here we generalize ideas of unified dark matter-dark energy in the context of two measure theories and of dynamical space time theories. In two measure theories one uses metric independent volume elements and this allows one to construct unified dark matter-dark energy, where the cosmological constant appears as an integration constant associated with the equation of motion of the measure fields. The dynamical space-time theories generalize the two measure theories by introducing a vector field whose equation of motion guarantees the conservation of a certain Energy Momentum tensor, which may be related, but in general is not the same as the gravitational Energy Momentum tensor. We propose two formulations of this idea: (I) by demanding that this vector field be the gradient of a scalar, (II) by considering the dynamical space field appearing in another part of the action. Then the dynamical space time theory becomes a theory of Diffusive Unified dark energy and dark matter. These generalizations produce non-conserved energy momentum tensors instead of conserved energy momentum tensors which leads at the end to a formulation of interacting DE-DM dust models in the form of a diffusive type interacting Unified dark energy and dark matter scenario. We solved analytically the theories for perturbative solution and asymptotic solution, and we show that the ΛCDM is a fixed point of these theories at large times. Also a preliminary argument as regards the good behavior of the theory at the quantum level is proposed for both theories. (orig.)

  5. Anomalous diffusion and Levy random walk of magnetic field lines in three dimensional turbulence

    International Nuclear Information System (INIS)

    Zimbardo, G.; Veltri, P.; Basile, G.; Principato, S.

    1995-01-01

    The transport of magnetic field lines is studied numerically where three dimensional (3-D) magnetic fluctuations, with a power law spectrum, and periodic over the simulation box are superimposed on an average uniform magnetic field. The weak and the strong turbulence regime, δB∼B 0 , are investigated. In the weak turbulence case, magnetic flux tubes are separated from each other by percolating layers in which field lines undergo a chaotic motion. In this regime the field lines may exhibit Levy, rather than Gaussian, random walk, changing from Levy flights to trapped motion. The anomalous diffusion laws left-angle Δx 2 i right-angle ∝s α with α>1 and α<1, are obtained for a number of cases, and the non-Gaussian character of the field line random walk is pointed out by computing the kurtosis. Increasing the fluctuation level, and, therefore stochasticity, normal diffusion (α congruent 1) is recovered and the kurtoses reach their Gaussian value. However, the numerical results show that neither the quasi-linear theory nor the two dimensional percolation theory can be safely extrapolated to the considered 3-D strong turbulence regime. copyright 1995 American Institute of Physics

  6. Wide-Screen Cinema and Stereophonic Sound.

    Science.gov (United States)

    Wysotsky, Michael Z.

    Developments in the techniques of wide screen cinema and stereophonic sound throughout the world are detailed in this book. Particular attention is paid to progress in the Soviet Union in these fields. Special emphasis is placed on the Soviet view of stereophonic sound as a vital adjunct in the search for enchanced realism as opposed to the…

  7. Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding

    Science.gov (United States)

    Harada, Y.; Gurnett, D. A.; Kopf, A. J.; Halekas, J. S.; Ruhunusiri, S.

    2018-01-01

    The upper ionosphere of Mars contains a variety of perturbations driven by solar wind forcing from above and upward propagating atmospheric waves from below. Here we explore the global distribution and variability of ionospheric irregularities around the exobase at Mars by analyzing topside sounding data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board Mars Express. As irregular structure gives rise to off-vertical echoes with excess propagation time, the diffuseness of ionospheric echo traces can be used as a diagnostic tool for perturbed reflection surfaces. The observed properties of diffuse echoes above unmagnetized regions suggest that ionospheric irregularities with horizontal wavelengths of tens to hundreds of kilometers are particularly enhanced in the winter hemisphere and at high solar zenith angles. Given the known inverse dependence of neutral gravity wave amplitudes on the background atmospheric temperature, the ionospheric irregularities probed by MARSIS are most likely associated with plasma perturbations driven by atmospheric gravity waves. Though extreme events with unusually diffuse echoes are more frequently observed for high solar wind dynamic pressures during some time intervals, the vast majority of the diffuse echo events are unaffected by varying solar wind conditions, implying limited influence of solar wind forcing on the generation of ionospheric irregularities. Combination of remote and in situ measurements of ionospheric irregularities would offer the opportunity for a better understanding of the ionospheric dynamics at Mars.

  8. Vibrotactile Detection, Identification and Directional Perception of signal-Processed Sounds from Environmental Events: A Pilot Field Evaluation in Five Cases

    Directory of Open Access Journals (Sweden)

    Parivash Ranjbar

    2008-09-01

    Full Text Available Objectives: Conducting field tests of a vibrotactile aid for deaf/deafblind persons for detection, identification and directional perception of environmental sounds. Methods: Five deaf (3F/2M, 22–36 years individuals tested the aid separately in a home environment (kitchen and in a traffic environment. Their eyes were blindfolded and they wore a headband and holding a vibrator for sound identification. In the headband, three microphones were mounted and two vibrators for signalling direction of the sound source. The sounds originated from events typical for the home environment and traffic. The subjects were inexperienced (events unknown and experienced (events known. They identified the events in a home and traffic environment, but perceived sound source direction only in traffic. Results: The detection scores were higher than 98% both in the home and in the traffic environment. In the home environment, identification scores varied between 25%-58% when the subjects were inexperienced and between 33%-83% when they were experienced. In traffic, identification scores varied between 20%-40% when the subjects were inexperienced and between 22%-56% when they were experienced. The directional perception scores varied between 30%-60% when inexperienced and between 61%-83% when experienced. Discussion: The vibratory aid consistently improved all participants’ detection, identification and directional perception ability.

  9. Foley Sounds vs Real Sounds

    DEFF Research Database (Denmark)

    Trento, Stefano; Götzen, Amalia De

    2011-01-01

    This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects...

  10. Propagation and diffusion of a plasma column in a magnetic field; Propagation et diffusion d'une colonne de plasma dans un champ magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Bottiglioni, F; Coutant, J; Gadda, E; Prevot, F [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-12-01

    A plasma column is created in a magnetic field by longitudinal diffusion from a low-pressure pulsed discharge in hydrogen. Depending on the discharge conditions, two regimes are obtained in which the gas pumping speed has a different effect upon the plasma density in the column. Calculations are presented which can explain this effect by a difference in the transverse diffusion coefficient. (authors) [French] On forme une colonne de plasma dans un champ magnetique par diffusion longitudinale a partir d'une decharge puisee dans l'hydrogene a basse pression. Selon les conditions de la decharge on observe deux regimes differents pour lesquels le pompage du gaz neutre a un effet different sur la densite resultante du plasma dans la colonne. On presente des calculs qui peuvent expliquer cet effet par une difference dans la diffusion transversale du plasma. (auteurs)

  11. Sound modes in holographic hydrodynamics for charged AdS black hole

    International Nuclear Information System (INIS)

    Matsuo, Yoshinori; Sin, Sang-Jin; Takeuchi, Shingo; Tsukioka, Takuya; Yoo, Chul-Moon

    2009-01-01

    In the previous paper we studied the transport coefficients of quark-gluon plasma in finite temperature and finite density in vector and tensor modes. In this paper, we extend it to the scalar modes. We work out the decoupling problem and hydrodynamic analysis for the sound mode in charged AdS black hole and calculate the sound velocity, the charge susceptibility and the electrical conductivity. We find that Einstein relation among the conductivity, the diffusion constant and the susceptibility holds exactly.

  12. Nonlinear second- and first-sound wave equations in 3He-4He mixtures

    International Nuclear Information System (INIS)

    Mohazzab, Masoud; Mulders, Norbert

    2000-01-01

    We derive nonlinear Burgers equations for first and second sound in mixtures of 3 He- 4 He, using a reductive perturbation method and obtain expressions for the nonlinear and dissipation coefficients. We further find a diffusion equation for a coupled temperature-concentration mode. The amplitude of first (second) sound generated from second (first) sound in mixtures is also derived. Our derivation includes the dependence of thermodynamical quantities on temperature, pressure, and 3 He concentration, and is valid up to a first order in terms of the isobaric expansion coefficient. We show that close to the λ line the nonlinearity of second sound in mixtures is enhanced as compared with pure 4 He

  13. 78 FR 13869 - Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy...

    Science.gov (United States)

    2013-03-01

    ...-123-LNG; 12-128-NG; 12-148-NG; 12- 158-NG] Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; CE FLNG, LLC; Consolidated...-NG Puget Sound Energy, Inc Order granting long- term authority to import/export natural gas from/to...

  14. Fuel density effect on near nozzle flow field in small laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2015-01-01

    Flow characteristics in small coflow diffusion flames were investigated with a particular focus on the near-nozzle region and on the buoyancy force exerted on fuels with densities lighter and heavier than air (methane, ethylene, propane, and n-butane). The flow-fields were visualized through the trajectories of seed particles. The particle image velocimetry technique was also adopted for quantitative velocity field measurements. The results showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle, emphasizing the importance of the relative density of the fuel to that of the air on the flow-field. Nozzle heating influenced the near-nozzle flow-field particularly among lighter fuels (methane and ethylene). Numerical simulations were also conducted, focusing specifically on the effect of specifying inlet boundary conditions for fuel. The results showed that a fuel inlet boundary with a fully developed velocity profile for cases with long tubes should be specified inside the fuel tube to permit satisfactory prediction of the flow-field. The calculated temperature fields also indicated the importance of the selection of the location of the inlet boundary, especially in testing various combustion models that include soot in small coflow diffusion flames. © 2014 The Combustion Institute.

  15. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    Science.gov (United States)

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  16. Light aircraft sound transmission studies - Noise reduction model

    Science.gov (United States)

    Atwal, Mahabir S.; Heitman, Karen E.; Crocker, Malcolm J.

    1987-01-01

    Experimental tests conducted on the fuselage of a single-engine Piper Cherokee light aircraft suggest that the cabin interior noise can be reduced by increasing the transmission loss of the dominant sound transmission paths and/or by increasing the cabin interior sound absorption. The validity of using a simple room equation model to predict the cabin interior sound-pressure level for different fuselage and exterior sound field conditions is also presented. The room equation model is based on the sound power flow balance for the cabin space and utilizes the measured transmitted sound intensity data. The room equation model predictions were considered good enough to be used for preliminary acoustical design studies.

  17. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach

    Science.gov (United States)

    Schaefer, Charles E.; Lippincott, David R.; Klammler, Harald; Hatfield, Kirk

    2018-02-01

    An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4 m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151 days. The magnitude, but not trend, of TCE rebound was reasonably described by a matrix back-diffusion screening model that employed an effective diffusion coefficient and first-order abiotic TCE dechlorination rate constant that was based on bench-scale testing. Furthermore, a shift in the TCE:DCE ratio and carbon isotopic enrichment was observed during the rebound, suggesting that both biotic and abiotic dechlorination were occurring within the rock matrix. The isotopic data and back-diffusion model together served as a convincing argument that matrix back-diffusion was the mechanism responsible for the observed contaminant rebound. Results of this field demonstration highlight the importance and applicability of rock matrix parameters determined at the bench-scale, and suggest that carbon isotopic enrichment can be used as a line of evidence for abiotic dechlorination within rock matrices.

  18. Good vibrations: Controlling light with sound (Conference Presentation)

    Science.gov (United States)

    Eggleton, Benjamin J.; Choudhary, Amol

    2016-10-01

    One of the surprises of nonlinear optics, is that light may interact strongly with sound. Intense laser light literally "shakes" the glass in optical fibres, exciting acoustic waves (sound) in the fibre. Under the right conditions, it leads to a positive feedback loop between light and sound termed "Stimulated Brillouin Scattering," or simply SBS. This nonlinear interaction can amplify or filter light waves with extreme precision in frequency which makes it uniquely suited to solve key problems in the fields of defence, biomedicine, wireless communications, spectroscopy and imaging. We have achieved the first demonstration of SBS in compact chip-scale structures, carefully designed so that the optical fields and the acoustic fields are simultaneously confined and guided. This new platform has opened a range of new functionalities that are being applied in communications and defence with breathtaking performance and compactness. My talk will introduce this new field and review our progress and achievements, including silicon based optical phononic processor.

  19. Cross-field diffusion of energetic (100 keV to 2 MeV) protons in interplanetary space

    Energy Technology Data Exchange (ETDEWEB)

    Costa Jr, Edio da [Instituto Federal de Minas Gerais-IFMG, Ouro Preto, MG, 35400-000 (Brazil); Tsurutani, Bruce T. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Alves, Maria Virgínia; Echer, Ezequiel [Instituto Nacional de Pesquisas Espaciais-INPE, São José dos Campos, SP, 12227-010 (Brazil); Lakhina, Gurbax S., E-mail: edio.junior@ifmg.edu.br, E-mail: costajr.e@gmail.com [Indian Institute for Geomagnetism, Navi Mumbai 410 218 (India)

    2013-12-01

    Magnetic field magnitude decreases (MDs) are observed in several regions of the interplanetary medium. In this paper, we characterize MDs observed by the Ulysses spacecraft instrumentation over the solar south pole by using magnetic field data to obtain the empirical size, magnetic field MD, and frequency of occurrence distribution functions. The interaction of energetic (100 keV to 2 MeV) protons with these MDs is investigated. Charged particle and MD interactions can be described by a geometrical model allowing the calculation of the guiding center shift after each interaction. Using the distribution functions for the MD characteristics, Monte Carlo simulations are used to obtain the cross-field diffusion coefficients as a function of particle kinetic energy. It is found that the protons under consideration cross-field diffuse at a rate of up to ≈11% of the Bohm rate. The same method used in this paper can be applied to other space regions where MDs are observed, once their local features are well known.

  20. Diffusion of the vertical field into the tape-wound magnet

    International Nuclear Information System (INIS)

    Gottardi, N.; Mast, F.; Preis, H.; Suess, R.

    1981-07-01

    A computer program was developed to calculate eddy currents in electrically conducting structures of general geometry in order to determine their magnetic fields. The program is based on the finite element network method (FEN), in which the structure considered is divided into directed, finite elements. Each element is then treated as a branch of a three-dimensional RL network. After R and L in all of the network branches have been calculated, the network differential equations represented in matrix form is solved. The time behaviour and distribution of the eddy currents then follow directly from the solution vector of the transient branch currents. The FEN is tested in the case of vertical field diffusion through the toroidal field coils of ZEPHYR. For this purpose an electrical model of the coil configurations was constructed on a scale of 1:5. The scaling laws applied are described. A detailed description of the measuring method used is given. The results of the calculations and measurements are compared for various frequencies of the vertical field. (orig./HT)

  1. A generalized sound extrapolation method for turbulent flows

    Science.gov (United States)

    Zhong, Siyang; Zhang, Xin

    2018-02-01

    Sound extrapolation methods are often used to compute acoustic far-field directivities using near-field flow data in aeroacoustics applications. The results may be erroneous if the volume integrals are neglected (to save computational cost), while non-acoustic fluctuations are collected on the integration surfaces. In this work, we develop a new sound extrapolation method based on an acoustic analogy using Taylor's hypothesis (Taylor 1938 Proc. R. Soc. Lon. A 164, 476-490. (doi:10.1098/rspa.1938.0032)). Typically, a convection operator is used to filter out the acoustically inefficient components in the turbulent flows, and an acoustics dominant indirect variable Dcp‧ is solved. The sound pressure p' at the far field is computed from Dcp‧ based on the asymptotic properties of the Green's function. Validations results for benchmark problems with well-defined sources match well with the exact solutions. For aeroacoustics applications: the sound predictions by the aerofoil-gust interaction are close to those by an earlier method specially developed to remove the effect of vortical fluctuations (Zhong & Zhang 2017 J. Fluid Mech. 820, 424-450. (doi:10.1017/jfm.2017.219)); for the case of vortex shedding noise from a cylinder, the off-body predictions by the proposed method match well with the on-body Ffowcs-Williams and Hawkings result; different integration surfaces yield close predictions (of both spectra and far-field directivities) for a co-flowing jet case using an established direct numerical simulation database. The results suggest that the method may be a potential candidate for sound projection in aeroacoustics applications.

  2. Techniques and instrumentation for the measurement of transient sound energy flux

    Science.gov (United States)

    Watkinson, P. S.; Fahy, F. J.

    1983-12-01

    The evaluation of sound intensity distributions, and sound powers, of essentially continuous sources such as automotive engines, electric motors, production line machinery, furnaces, earth moving machinery and various types of process plants were studied. Although such systems are important sources of community disturbance and, to a lesser extent, of industrial health hazard, the most serious sources of hearing hazard in industry are machines operating on an impact principle, such as drop forges, hammers and punches. Controlled experiments to identify major noise source regions and mechanisms are difficult because it is normally impossible to install them in quiet, anechoic environments. The potential for sound intensity measurement to provide a means of overcoming these difficulties has given promising results, indicating the possibility of separation of directly radiated and reverberant sound fields. However, because of the complexity of transient sound fields, a fundamental investigation is necessary to establish the practicability of intensity field decomposition, which is basic to source characterization techniques.

  3. Evidence for equivalence of diffusion processes of passive scalar and magnetic fields in anisotropic Navier-Stokes turbulence.

    Science.gov (United States)

    Jurčišinová, E; Jurčišin, M

    2017-05-01

    The influence of the uniaxial small-scale anisotropy on the kinematic magnetohydrodynamic turbulence is investigated by using the field theoretic renormalization group technique in the one-loop approximation of a perturbation theory. The infrared stable fixed point of the renormalization group equations, which drives the scaling properties of the model in the inertial range, is investigated as the function of the anisotropy parameters and it is shown that, at least at the one-loop level of approximation, the diffusion processes of the weak passive magnetic field in the anisotropically driven kinematic magnetohydrodynamic turbulence are completely equivalent to the corresponding diffusion processes of passively advected scalar fields in the anisotropic Navier-Stokes turbulent environments.

  4. Sound Scattering and Its Reduction by a Janus Sphere Type

    Directory of Open Access Journals (Sweden)

    Deliya Kim

    2014-01-01

    Full Text Available Sound scattering by a Janus sphere type is considered. The sphere has two surface zones: a soft surface of zero acoustic impedance and a hard surface of infinite acoustic impedance. The zones are arranged such that axisymmetry of the sound field is preserved. The equivalent source method is used to compute the sound field. It is shown that, by varying the sizes of the soft and hard zones on the sphere, a significant reduction can be achieved in the scattered acoustic power and upstream directivity when the sphere is near a free surface and its soft zone faces the incoming wave and vice versa for a hard ground. In both cases the size of the sphere’s hard zone is much larger than that of its soft zone. The boundary location between the two zones coincides with the location of a zero pressure line of the incoming standing sound wave, thus masking the sphere within the sound field reflected by the free surface or the hard ground. The reduction in the scattered acoustic power diminishes when the sphere is placed in free space. Variations of the scattered acoustic power and directivity with the sound frequency are also given and discussed.

  5. Universal formula for the holographic speed of sound

    Science.gov (United States)

    Anabalón, Andrés; Andrade, Tomás; Astefanesei, Dumitru; Mann, Robert

    2018-06-01

    We consider planar hairy black holes in five dimensions with a real scalar field in the Breitenlohner-Freedman window and derive a universal formula for the holographic speed of sound for any mixed boundary conditions of the scalar field. As an example, we numerically construct the most general class of planar black holes coupled to a single scalar field in the consistent truncation of type IIB supergravity that preserves the SO (3) × SO (3) R-symmetry group of the gauge theory. For this particular family of solutions, we find that the speed of sound exceeds the conformal value. From a phenomenological point of view, the fact that the conformal bound can be violated by choosing the right mixed boundary conditions is relevant for the existence of neutron stars with a certain mass-size relationship for which a large value of the speed of sound codifies a stiff equation of state. In the way, we also shed light on a puzzle regarding the appearance of the scalar charges in the first law. Finally, we generalize the formula of the speed of sound to arbitrary dimensional scalar-metric theories whose parameters lie within the Breitenlohner-Freedman window.

  6. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun

    2018-01-12

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation directivity in far fields. The strong directivity formed in the presence of the enclosure is attributed to interference of sources under degenerate Mie resonances in the enclosure of anisotropic property. Our numerical simulations of sound emission from the sources demonstrate the radiation of a highly directed sound beam of unidirectional or bidirectional patterns, depending on how the sources are configured inside the enclosure. Our scheme, if achieved, can solve the challenging problem of poor directivity of a subwavelength sound system, and can guide beam forming and collimation by miniaturized devices.

  7. Effects of the weak magnetic field and electron diffusion on the spatial potential and negative ion transport in the negative ion source

    International Nuclear Information System (INIS)

    Sakurabayashi, T.; Hatayama, A.; Bacal, M.

    2004-01-01

    The effects of the weak magnetic field on the negative ion (H - ) extraction in a negative ion source have been studied by means of a two-dimensional electrostatic particle simulation. A particle-in-cell model is used which simulates the motion of the charged particles in their self-consistent electric field. In addition, the effect of the electron diffusion across the weak magnetic field is taken into account by a simple random-walk model with a step length Δx per time step Δt; Δx=√(2D perpendicular )Δt)·ξ x , where D perpendicular ) and ξ x are the perpendicular diffusion coefficient and normal random numbers. Under this simple diffusion model, the electron diffusion has no significant effects on the H - transport. Most electrons are magnetized by the weak magnetic field and lost along the field line. As a result, more H - ions arrive instead of electrons in the region close to the plasma grid in order to ensure the plasma neutrality

  8. Metrics for Polyphonic Sound Event Detection

    Directory of Open Access Journals (Sweden)

    Annamaria Mesaros

    2016-05-01

    Full Text Available This paper presents and discusses various metrics proposed for evaluation of polyphonic sound event detection systems used in realistic situations where there are typically multiple sound sources active simultaneously. The system output in this case contains overlapping events, marked as multiple sounds detected as being active at the same time. The polyphonic system output requires a suitable procedure for evaluation against a reference. Metrics from neighboring fields such as speech recognition and speaker diarization can be used, but they need to be partially redefined to deal with the overlapping events. We present a review of the most common metrics in the field and the way they are adapted and interpreted in the polyphonic case. We discuss segment-based and event-based definitions of each metric and explain the consequences of instance-based and class-based averaging using a case study. In parallel, we provide a toolbox containing implementations of presented metrics.

  9. Visualization of Broadband Sound Sources

    OpenAIRE

    Sukhanov Dmitry; Erzakova Nadezhda

    2016-01-01

    In this paper the method of imaging of wideband audio sources based on the 2D microphone array measurements of the sound field at the same time in all the microphones is proposed. Designed microphone array consists of 160 microphones allowing to digitize signals with a frequency of 7200 Hz. Measured signals are processed using the special algorithm that makes it possible to obtain a flat image of wideband sound sources. It is shown experimentally that the visualization is not dependent on the...

  10. Sound pressure distribution within natural and artificial human ear canals: forward stimulation.

    Science.gov (United States)

    Ravicz, Michael E; Tao Cheng, Jeffrey; Rosowski, John J

    2014-12-01

    This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5-2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11-16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC.

  11. RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, S G [Physics Department, University of Auckland (New Zealand); Huenerbein, S v; Waddington, D [Research Institute for the Built and Human Environment, University of Salford (United Kingdom)], E-mail: s.vonhunerbein@salford.ac.uk

    2008-05-01

    The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group.

  12. RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models

    International Nuclear Information System (INIS)

    Bradley, S G; Huenerbein, S v; Waddington, D

    2008-01-01

    The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group

  13. Adsorption and diffusion of lithium in a graphene/blue-phosphorus heterostructure and the effect of an external electric field.

    Science.gov (United States)

    Fan, Kaimin; Tang, Jing; Wu, Shiyun; Yang, Chengfu; Hao, Jiabo

    2016-12-21

    The adsorption and diffusion behaviors of lithium (Li) in a graphene/blue-phosphorus (G/BP) heterostructure have been investigated using a first principles method based on density functional theory (DFT). The effect of an external electric field on the adsorption and diffusion behaviors has also been investigated. The results show that the adsorption energy of Li on the graphene side of the G/BP heterostructure is higher than that on monolayer graphene, and Li adsorption on the BP side of the G/BP/Li system is slightly stronger than that on monolayer BP (BP/Li). The adsorption energy of Li reaches 2.47 eV, however, the energy barriers of Li diffusion decrease in the interlayer of the G/BP heterostructure. The results mentioned above suggest that the rate performance of the G/BP heterostructure is better than that of monolayer graphene. Furthermore, the adsorption energies of Li atoms in the three different most stable sites, i.e., H G , T P and H 1 sites, increase by about 0.49 eV, 0.26 eV, and 0.13 eV, respectively, as the electric field intensity reaches 0.6 V Å -1 . The diffusion energy barrier is significantly decreased by an external electric field. It is demonstrated that the external electric field can not only enhance the adsorption but can also modulate the diffusion barriers of Li atoms in the G/BP heterostructure.

  14. Diffusion of cosmic rays at EeV energies in inhomogeneous extragalactic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Rafael Alves; Sigl, Günter, E-mail: rafael.alves.batista@desy.de, E-mail: guenter.sigl@desy.de [II. Institut für Theoretische Physik, Universität Hamburg Luruper Chaussee 149, 22761, Hamburg (Germany)

    2014-11-01

    Ultra-high energy cosmic rays can propagate diffusively in cosmic magnetic fields. When their propagation time is comparable to the age of the universe, a suppression in the flux relative to the case in the absence of magnetic fields will occur. In this work we find an approximate parametrization for this suppression for energies below ∼ Z EeV using several magnetic field distributions obtained from cosmological simulations of the magnetized cosmic web. We assume that the magnetic fields have a Kolmogorov power spectrum with the field strengths distributed according to these simulations. We show that, if magnetic fields are coupled to the matter distribution, low field strengths will fill most of the volume, making the suppression milder compared to the case of a constant magnetic field with strength equal to the mean value of this distribution. We also derive upper limits for this suppression to occur for some models of extragalactic magnetic fields, as a function of the coherence length of these fields.

  15. A comparative study of wood highway sound barriers

    Science.gov (United States)

    Stefan Grgurevich; Thomas Boothby; Harvey Manbeck; Courtney Burroughs; Stephen Cegelka; Craig Bernecker; Michael A. Ritter

    2002-01-01

    Prototype designs for wood highway sound barriers meeting the multiple criteria of structural integrity, acoustic effectiveness, durability, and potential for public acceptance have been developed. Existing installations of wood sound barriers were reviewed and measurements conducted in the field to estimate acoustic insertion losses. A complete matrix of design...

  16. Classical diffusion in a field-reversed mirror

    International Nuclear Information System (INIS)

    Auerbach, S.P.; Condit, W.C.

    1981-01-01

    Classical transport of particles and heat in field-reversed mirrors is discussed. The X-points (field nulls on axis) are shown to have no deleterious effect on transport; this conclusion is true for any transport model. For an elongated Hill's vortex equilibrium the classical diffusion coefficient is calculated analytically and used to construct an analytic solution to the transport equation for particles or energy; this yields exact results for particle and energy confinement times. These life-times are roughly 3 to 6 times shorter than previous heuristic estimates. Experimentally determined life-times are within a factor of 3 to 4 of our estimates. To assess the impact of these results on reactor designs, the authors construct an analytic reactor model in which neutral-beam input balances ion heat loss. Energy loss due to synchrotron radiation is calculated analytically and shown to be negligible, even with no wall reflection. Formulas are presented which give the reactor parameters in terms of plasma temperature, energy multiplication factor Q, and allowed neutron wall loading. The effect of anomalous resistivity is incorporated heuristically by assuming an anomalous resistivity which is enhanced by a factor A over classical resistivity. For large A the minimum power of a reactor scales as Asup(11/6). A=50 gives a reactor design which still seems reasonable, but A=200 leads to extremely large, high-power reactors. (author)

  17. An overview of MADONA: A multinational field study of high-resolution meteorology and diffusion over complex terrain

    DEFF Research Database (Denmark)

    Cionco, R.M.; aufm Kampe, W.; Biltoft, C.

    1999-01-01

    The multination, high-resolution field study of Meteorology And Diffusion Over Non-Uniform Areas (MADONA) was conducted by scientists from the United States, the United Kingdom, Germany, Denmark, Sweden, and the Netherlands at Porton Down, Salisbury, Wiltshire, United Kingdom, during September...... and October 1992. The host of the field study was the Chemical and Biological Defence Establishment (CBDE, now part of Defence Evaluation and Research Agency) at Porton Down. MADONA was designed and conducted for high-resolution meteorological data collection and diffusion experiments using smoke......, sulphurhexaflouride (SF6), and propylene gas during unstable, neutral, and stable atmospheric conditions in an effort to obtain terrain-influenced meteorological fields, dispersion, and concentration fluctuation measurements using specialized sensors and tracer generators. Thirty-one days of meteorological data were...

  18. Sound

    CERN Document Server

    Robertson, William C

    2003-01-01

    Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...

  19. Contributions in Radio Channel Sounding, Modeling, and Estimation

    DEFF Research Database (Denmark)

    Pedersen, Troels

    2009-01-01

    This thesis spans over three strongly related topics in wireless communication: channel-sounding, -modeling, and -estimation. Three main problems are addressed: optimization of spatio-temporal apertures for channel sounding; estimation of per-path power spectral densities (psds); and modeling...... relies on a ``propagation graph'' where vertices  represent scatterers and edges represent the wave propagation conditions between scatterers.  The graph has a recursive structure, which permits modeling of the transfer function of the graph. We derive a closed-form expression of the infinite......-bounce impulse response. This expression is used for simulation of the impulse response of randomly generated propagation graphs. The obtained realizations exhibit the well-observed  exponential power decay versus delay and specular-to-diffuse transition....

  20. Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel

    Science.gov (United States)

    Liu, Yu; Sebastian, Alexis

    2015-05-01

    This paper studies analytically the effects of an external mean flow and an internal gap mean flow on sound transmission through a double-wall sandwich panel lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials, and the transfer matrix method with three types of boundary conditions is applied to solve the system simultaneously. The random incidence transmission loss in a diffuse field is calculated numerically, and the limiting angle of incidence due to total internal reflection is discussed in detail. The numerical predictions suggest that the sound insulation performance of such a double-wall panel is enhanced considerably by both external and gap mean flows particularly in the high-frequency range. Similar effects on transmission loss are observed for the two mean flows. It is shown that the effect of the gap mean flow depends on flow velocity, flow direction, gap depth and fluid properties and also that the fluid properties within the gap appear to influence the transmission loss more effectively than the gap flow. Despite the implementation difficulty in practice, an internal gap flow provides more design space for tuning the sound insulation performance of a double-wall sandwich panel and has great potential for active/passive noise control.

  1. Sound For Animation And Virtual Reality

    Science.gov (United States)

    Hahn, James K.; Docter, Pete; Foster, Scott H.; Mangini, Mark; Myers, Tom; Wenzel, Elizabeth M.; Null, Cynthia (Technical Monitor)

    1995-01-01

    Sound is an integral part of the experience in computer animation and virtual reality. In this course, we will present some of the important technical issues in sound modeling, rendering, and synchronization as well as the "art" and business of sound that are being applied in animations, feature films, and virtual reality. The central theme is to bring leading researchers and practitioners from various disciplines to share their experiences in this interdisciplinary field. The course will give the participants an understanding of the problems and techniques involved in producing and synchronizing sounds, sound effects, dialogue, and music. The problem spans a number of domains including computer animation and virtual reality. Since sound has been an integral part of animations and films much longer than for computer-related domains, we have much to learn from traditional animation and film production. By bringing leading researchers and practitioners from a wide variety of disciplines, the course seeks to give the audience a rich mixture of experiences. It is expected that the audience will be able to apply what they have learned from this course in their research or production.

  2. 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings

    Science.gov (United States)

    Yang, Dikun; Oldenburg, Douglas W.; Haber, Eldad

    2014-03-01

    Airborne electromagnetic (AEM) methods are highly efficient tools for assessing the Earth's conductivity structures in a large area at low cost. However, the configuration of AEM measurements, which typically have widely distributed transmitter-receiver pairs, makes the rigorous modelling and interpretation extremely time-consuming in 3-D. Excessive overcomputing can occur when working on a large mesh covering the entire survey area and inverting all soundings in the data set. We propose two improvements. The first is to use a locally optimized mesh for each AEM sounding for the forward modelling and calculation of sensitivity. This dedicated local mesh is small with fine cells near the sounding location and coarse cells far away in accordance with EM diffusion and the geometric decay of the signals. Once the forward problem is solved on the local meshes, the sensitivity for the inversion on the global mesh is available through quick interpolation. Using local meshes for AEM forward modelling avoids unnecessary computing on fine cells on a global mesh that are far away from the sounding location. Since local meshes are highly independent, the forward modelling can be efficiently parallelized over an array of processors. The second improvement is random and dynamic down-sampling of the soundings. Each inversion iteration only uses a random subset of the soundings, and the subset is reselected for every iteration. The number of soundings in the random subset, determined by an adaptive algorithm, is tied to the degree of model regularization. This minimizes the overcomputing caused by working with redundant soundings. Our methods are compared against conventional methods and tested with a synthetic example. We also invert a field data set that was previously considered to be too large to be practically inverted in 3-D. These examples show that our methodology can dramatically reduce the processing time of 3-D inversion to a practical level without losing resolution

  3. Diffusion-weighted magnetic resonance imaging of extraocular muscles in patients with Grave's ophthalmopathy using turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    Science.gov (United States)

    Hiwatashi, A; Togao, O; Yamashita, K; Kikuchi, K; Momosaka, D; Honda, H

    2018-03-20

    The purpose of this study was to correlate diffusivity of extraocular muscles, measured by three-dimensional turbo field echo (3DTFE) magnetic resonance (MR) imaging using diffusion-sensitized driven-equilibrium preparation, with their size and activity in patients with Grave's ophthalmopathy. Twenty-three patients with Grave's ophthalmopathy were included. There were 17 women and 6 men with a mean age of 55.8±12.6 (SD) years (range: 26-83 years). 3DTFE with diffusion-sensitized driven-equilibrium MR images were obtained with b-values of 0 and 500s/mm 2 . The apparent diffusion coefficient (ADC) of extraocular muscles was measured on coronal reformatted MR images. Signal intensities of extraocular muscles on conventional MR images were compared to those of normal-appearing white matter, and cross-sectional areas of the muscles were also measured. The clinical activity score was also evaluated. Statistical analyses were performed with Pearson correlation and Mann-Whitney U tests. On 3DTFE with diffusion-sensitized driven-equilibrium preparation, the mean ADC of the extraocular muscles was 2.23±0.37 (SD)×10 -3 mm2/s (range: 1.70×10 -3 -3.11×10 -3 mm 2 /s). There was a statistically significant moderate correlation between ADC and the size of the muscles (r=0.61). There were no statistically significant correlations between ADC and signal intensity on conventional MR and the clinical activity score. 3DTFE with diffusion-sensitized driven-equilibrium preparation technique allows quantifying diffusivity of extraocular muscles in patients with Grave's ophthalmopathy. The diffusivity of the extraocular muscles on 3DTFE with diffusion-sensitized driven-equilibrium preparation MR images moderately correlates with their size. Copyright © 2018. Published by Elsevier Masson SAS.

  4. Sound absorption effects in a rectangular enclosure with the foamed aluminum sheet absorber

    International Nuclear Information System (INIS)

    Oh, Jae Eung; Chung, Jin Tai; Kim, Sang Hun; Chung, Kyung Ryul

    1998-01-01

    For the purpose of finding out the optimal thickness of sound absorber and the sound absorption effects due to the selected thickness at an interested frequency range, the analytical study identifies the interior and exterior sound field characteristics of a rectangular enclosure with foamed aluminum lining and the experimental verification is performed with random noise input. By using a two-microphone impedance tube, we measure experimentally the absorption coefficient and the impedance of simple sound absorbing materials. Measured acoustical parameters of the test samples are applied to the theoretical analysis to predict sound pressure field in the cavity. The sound absorption effects from measurements are compared to predicted ones in both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure

  5. Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.

    2014-01-01

    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.

  6. Differences in directional sound source behavior and perception between assorted computer room models

    DEFF Research Database (Denmark)

    Vigeant, Michelle C.; Wang, Lily M.; Rindel, Jens Holger

    2004-01-01

    considering reverberation time. However, for the three other parameters evaluated (sound pressure level, clarity index and lateral fraction), the changing diffusivity of the room does not diminish the importance of the directivity. The study therefore shows the importance of considering source directivity......Source directivity is an important input variable when using room acoustic computer modeling programs to generate auralizations. Previous research has shown that using a multichannel anechoic recording can produce a more natural sounding auralization, particularly as the number of channels...

  7. Differences in directional sound source behavior and perception between assorted computer room models

    DEFF Research Database (Denmark)

    Vigeant, M. C.; Wang, L. M.; Rindel, Jens Holger

    2004-01-01

    time. However, for the three other parameters evaluated (sound-pressure level, clarity index, and lateral fraction), the changing diffusivity of the room does not diminish the importance of the directivity. The study therefore shows the importance of considering source directivity when using computer......Source directivity is an important input variable when using room acoustic computer modeling programs to generate auralizations. Previous research has shown that using a multichannel anechoic recording can produce a more natural sounding auralization, particularly as the number of channels...

  8. Effect of pointed and diffused air injection on premixed flame confined in a Rijke tube

    Directory of Open Access Journals (Sweden)

    Nilaj N. Deshmukh

    2016-12-01

    Full Text Available The coupling between pressure fluctuations and unsteady heat release in a combustion systems results in acoustic oscillations inside the combustion system. These acoustic oscillations, when grow sufficiently, may cause serious structural damage thereby reducing the lifespan of jet engines, gas turbines, and industrial burners. The aim of the first part of study is to define acoustically stable and unstable regions. The second part is focused on studying the effect of change in pressure field near the flame on the amplitude and frequency of the oscillations of instability. This study is carried out for three-burner positions and equivalence ratio of 0.7 by varying heat supply and total flow rate. The results show two acoustically unstable regions for 0.1 and 0.2 burner positions and only one acoustically unstable region for 0.25 burner position. The effect of pointed injection and diffused injection over a premixed flame on the sound pressure level was studied. The results show for burner position of x/L = 0.2 there is 25 dB suppression is possible using pointed injection at higher total flow rate. The experiment of diffused injection shows sound amplification more than 12 dB was observed.

  9. Mechanobiology of LDL mass transport in the arterial wall under the effect of magnetic field, part I: Diffusion rate

    Energy Technology Data Exchange (ETDEWEB)

    Aminfar, Habib, E-mail: hh_aminfar@tabrizu.ac.ir [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mohammadpourfard, Mousa, E-mail: Mohammadpour@tabrizu.ac.ir [Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471 (Iran, Islamic Republic of); Khajeh, Kosar, E-mail: k.khajeh.2005@tabrizu.ac.ir [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2017-03-15

    It is well-known that the Low Density Lipoprotein (LDL) can accumulate and penetrate into the arterial wall. Here, we have investigated the diffusion rate of macromolecules across the porous layer of blood vessel under the effects of magnetic force. By using a finite volume technique, it was found that magnetic field makes alterations in diffusion rate of LDLs, also surface concentration of macromolecules on the walls. As well, the influence of different value of Re and Sc number in the presence of a magnetic field have shown as nondimensional concentration profiles. Magnetic field considered as a body force, porous layer simulated by using Darcy's law and the blood regarded as nano fluid which was examined as a single phase model. - Highlights: • LDLs mass transfer across the arterial wall under magnetic field has simulated numerically. • Arterial wall assumed as a homogeneous porous layer by using Darcy's law. • Blood containing 4% Vol. Fe{sub 3}O{sub 4} regarded as nanofluid and has examined by single phase model. • Magnetic field significantly affects the diffusion rate of LDLs through porous arterial wall.

  10. Learning about the Dynamic Sun through Sounds

    Science.gov (United States)

    Quinn, M.; Peticolas, L. M.; Luhmann, J.; MacCallum, J.

    2008-06-01

    Can we hear the Sun or its solar wind? Not in the sense that they make sound. But we can take the particle, magnetic field, electric field, and image data and turn it into sound to demonstrate what the data tells us. We present work on turning data from the two-satellite NASA mission called STEREO (Solar TErrestrial RElations Observatory) into sounds and music (sonification). STEREO has two satellites orbiting the Sun near Earth's orbit to study the coronal mass ejections (CMEs) from the Corona. One sonification project aims to inspire musicians, museum patrons, and the public to learn more about CMEs by downloading STEREO data and using it to make music. We demonstrate the software and discuss the way in which it was developed. A second project aims to produce a museum exhibit using STEREO imagery and sounds from STEREO data. We demonstrate a "walk across the Sun" created for this exhibit so people can hear the features on solar images. We show how pixel intensity translates into pitches from selectable scales with selectable musical scale size and octave locations. We also share our successes and lessons learned.

  11. An integrated system for dynamic control of auditory perspective in a multichannel sound field

    Science.gov (United States)

    Corey, Jason Andrew

    An integrated system providing dynamic control of sound source azimuth, distance and proximity to a room boundary within a simulated acoustic space is proposed for use in multichannel music and film sound production. The system has been investigated, implemented, and psychoacoustically tested within the ITU-R BS.775 recommended five-channel (3/2) loudspeaker layout. The work brings together physical and perceptual models of room simulation to allow dynamic placement of virtual sound sources at any location of a simulated space within the horizontal plane. The control system incorporates a number of modules including simulated room modes, "fuzzy" sources, and tracking early reflections, whose parameters are dynamically changed according to sound source location within the simulated space. The control functions of the basic elements, derived from theories of perception of a source in a real room, have been carefully tuned to provide efficient, effective, and intuitive control of a sound source's perceived location. Seven formal listening tests were conducted to evaluate the effectiveness of the algorithm design choices. The tests evaluated: (1) loudness calibration of multichannel sound images; (2) the effectiveness of distance control; (3) the resolution of distance control provided by the system; (4) the effectiveness of the proposed system when compared to a commercially available multichannel room simulation system in terms of control of source distance and proximity to a room boundary; (5) the role of tracking early reflection patterns on the perception of sound source distance; (6) the role of tracking early reflection patterns on the perception of lateral phantom images. The listening tests confirm the effectiveness of the system for control of perceived sound source distance, proximity to room boundaries, and azimuth, through fine, dynamic adjustment of parameters according to source location. All of the parameters are grouped and controlled together to

  12. Sound exposure measurements using hearing-aid technology

    DEFF Research Database (Denmark)

    Jensen, Simon Boelt; Drastrup, Mads; Morales, Esteban Chávez

    2016-01-01

    scenarios. The purpose of this work is to document the use of a modified behind-the-ear (BTE) hearing-aid as a portable sound pressure level (SPL) meter. In order to obtain sound level measurements with a BTE device comparable to sound field values that can be used with existing risk assessment strategies...... levels of sound exposures are experienced in modern society in many different situations such as attending concerts, sport events and others. This leads to an interest in measurement devices which are discreet and simple to use, in order to assess sound exposures encountered in typical daily life......, differences due to microphone positions and the presence of a person in the measurement must be taken into account. The present study presents measurements carried out to document the characteristics of the BTE device, using the same framework presented in the ISO 11904 standard series. The responses...

  13. How male sound pressure level influences phonotaxis in virgin female Jamaican field crickets (Gryllus assimilis

    Directory of Open Access Journals (Sweden)

    Karen Pacheco

    2014-06-01

    Full Text Available Understanding female mate preference is important for determining the strength and direction of sexual trait evolution. The sound pressure level (SPL acoustic signalers use is often an important predictor of mating success because higher sound pressure levels are detectable at greater distances. If females are more attracted to signals produced at higher sound pressure levels, then the potential fitness impacts of signalling at higher sound pressure levels should be elevated beyond what would be expected from detection distance alone. Here we manipulated the sound pressure level of cricket mate attraction signals to determine how female phonotaxis was influenced. We examined female phonotaxis using two common experimental methods: spherical treadmills and open arenas. Both methods showed similar results, with females exhibiting greatest phonotaxis towards loud sound pressure levels relative to the standard signal (69 vs. 60 dB SPL but showing reduced phonotaxis towards very loud sound pressure level signals relative to the standard (77 vs. 60 dB SPL. Reduced female phonotaxis towards supernormal stimuli may signify an acoustic startle response, an absence of other required sensory cues, or perceived increases in predation risk.

  14. Sound pressure level tools design used in occupational health by means of Labview software

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2015-01-01

    Conclusion: LabVIEW programming capabilities in the field of sound can be referred to the measurement of sound, frequency analysis, and sound control that actually the software acts like a sound level meter and sound analyzer. According to the mentioned features, we can use this software to analyze and process sound and vibration as a monitoring system.

  15. Thermal diffuse scattering in angular-dispersive neutron diffraction

    International Nuclear Information System (INIS)

    Popa, N.C.; Willis, B.T.M.

    1998-01-01

    The theoretical treatment of one-phonon thermal diffuse scattering (TDS) in single-crystal neutron diffraction at fixed incident wavelength is reanalysed in the light of the analysis given by Popa and Willis [Acta Cryst. (1994), (1997)] for the time-of-flight method. Isotropic propagation of sound with different velocities for the longitudinal and transverse modes is assumed. As in time-of-flight diffraction, there exists, for certain scanning variables, a forbidden range in the one-phonon TDS of slower-than-sound neutrons, and this permits the determination of the sound velocity in the crystal. A fast algorithm is given for the TDS correction of neutron diffraction data collected at a fixed wavelength: this algorithm is similar to that reported earlier for the time-of-flight case. (orig.)

  16. Spin drift and spin diffusion currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-09-15

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  17. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  18. Spin drift and spin diffusion currents in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  19. Confinement and diffusion in tokamaks

    International Nuclear Information System (INIS)

    McWilliams, R.

    1988-01-01

    The effect of electric field fluctuations on confinement and diffusion in tokamak is discussed. Based on the experimentally determined cross-field turbolent diffusion coefficient, D∼3.7*cT e /eB(δn i /n i ) rms which is also derived by a simple theory, the cross-field diffusion time, tp=a 2 /D, is calculated and compared to experimental results from 51 tokamak for standard Ohmic operation

  20. Prediction of the diffuse-field transmission loss of interior natural-ventilation openings and silencers.

    Science.gov (United States)

    Bibby, Chris; Hodgson, Murray

    2017-01-01

    The work reported here, part of a study on the performance and optimal design of interior natural-ventilation openings and silencers ("ventilators"), discusses the prediction of the acoustical performance of such ventilators, and the factors that affect it. A wave-based numerical approach-the finite-element method (FEM)-is applied. The development of a FEM technique for the prediction of ventilator diffuse-field transmission loss is presented. Model convergence is studied with respect to mesh, frequency-sampling and diffuse-field convergence. The modeling technique is validated by way of predictions and the comparison of them to analytical and experimental results. The transmission-loss performance of crosstalk silencers of four shapes, and the factors that affect it, are predicted and discussed. Performance increases with flow-path length for all silencer types. Adding elbows significantly increases high-frequency transmission loss, but does not increase overall silencer performance which is controlled by low-to-mid-frequency transmission loss.

  1. Phase-field simulation of solidification in multicomponent alloys coupled with thermodynamic and diffusion mobility databases

    International Nuclear Information System (INIS)

    Zhang Ruijie; Jing Tao; Jie Wanqi; Liu Baicheng

    2006-01-01

    To simulate quantitatively the microstructural evolution in the solidification process of multicomponent alloys, we extend the phase-field model for binary alloys to multicomponent alloys with consideration of the solute interactions between different species. These interactions have a great influence not only on the phase equilibria but also on the solute diffusion behaviors. In the model, the interface region is assumed to be a mixture of solid and liquid with the same chemical potential, but with different compositions. The simulation presented is coupled with thermodynamic and diffusion mobility databases, which can accurately predict the phase equilibria and the solute diffusion transportation in the whole system. The phase equilibria in the interface and other thermodynamic quantities are obtained using Thermo-Calc through the TQ interface. As an example, two-dimensional computations for the dendritic growth in Al-Cu-Mg ternary alloy are performed. The quantitative solute distributions and diffusion matrix are obtained in both solid and liquid phases

  2. Nonlinear effects during sound propagation in n-InSb at 4.20K

    International Nuclear Information System (INIS)

    Ilisavskij, Yu.V.; Chiplis, D.

    1975-01-01

    The absorption of transverse sound and the influence of longitudinal electric and magnetic fields thereon were studied in n-InSb at 4.2 0 K over a wide range of frequencies and intensities. The electron absorption of sound was found to depend strongly on input intensity due to the heating of electrons by the sound wave. It was discovered that the observed non-linearity was suppressed by the electric field. On the basis of comparison of the experimental results with the existing theories it is concluded that during the heating of electrons by sound, apart from changes in mobility, the carrier concentration in the conductivity band is also substantially changed. The measurements in the magnetic field agree qualitatively with the two-band conductivity model. (author)

  3. A note on measurement of sound pressure with intensity probes

    DEFF Research Database (Denmark)

    Juhl, Peter; Jacobsen, Finn

    2004-01-01

    be improved under a variety of realistic sound field conditions by applying a different weighting of the two pressure signals from the probe. The improved intensity probe can measure the sound pressure more accurately at high frequencies than an ordinary sound intensity probe or an ordinary sound level meter......The effect of scattering and diffraction on measurement of sound pressure with "two-microphone" sound intensity probes is examined using an axisymmetric boundary element model of the probe. Whereas it has been shown a few years ago that the sound intensity estimated with a two-microphone probe...... is reliable up to 10 kHz when using 0.5 in. microphones in the usual face-to-face arrangement separated by a 12 mm spacer, the sound pressure measured with the same instrument will typically be underestimated at high frequencies. It is shown in this paper that the estimate of the sound pressure can...

  4. Measurement of the Portsmouth Gaseous Diffusion Plant criticality accident alarm

    International Nuclear Information System (INIS)

    Tayloe, R.W. Jr.; McGinnis, B.

    1990-01-01

    Measurements of the Portsmouth Gaseous Diffusion Plant's nuclear criticality accident radiation alarm signal response time, sound wave frequency, and sound volume levels were made to demonstrate compliance with ANSI/ANS-8.3-1986. A steady-state alarm signal is produced within one-half second of obtaining a two-out-of-three detector trip. The fundamental alarm sound wave frequency is 440 hertz. The sound volume levels are greater than 10 decibels above background and ranged from 100 to 125 A-weighted decibels. The requirements of the standard were met; however the recommended maximum sound volume level of 115 dBA was exceeded. Emergency procedures require immediate evacuation upon initiation of a facility's radiation alarm. Comparison with standards for allowable time of exposure at different noise levels indicate that the elevated noise level at this location does not represent an occupational injury hazard. 8 refs., 5 figs

  5. Phase field study of interfacial diffusion-driven spheroidization in a composite comprized of two mutually insoluble phases

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Liang [Ames Laboratory; Russell, Alan [Ames Laboratory

    2014-03-27

    The phase field approach is a powerful computational technique to simulate morphological and microstructural evolution at the mesoscale. Spheroidization is a frequently observed morphological change of mesoscale heterogeneous structures during annealing. In this study, we used the diffuse interface phase field method to investigate the interfacial diffusion-driven spheroidization of cylindrical rod structures in a composite comprised of two mutually insoluble phases in a two-dimensional case. Perturbation of rod radius along a cylinder's axis has long been known to cause the necessary chemical potential gradient that drives spheroidization of the rod by Lord Rayleigh's instability theory. This theory indicates that a radius perturbation wavelength larger than the initial rod circumference would lead to cylindrical spheroidization. We investigated the effect of perturbation wavelength, interfacial energy, volume diffusion, phase composition, and interfacial percentage on the kinetics of spheroidization. The results match well with both the Rayleigh's instability criterion and experimental observations.

  6. Field Testing of an Unvented Roof with Fibrous Insulation, Tiles, and Vapor Diffusion Venting

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States); Lstiburek, J. W. [Building Science Corporation, Westford, MA (United States)

    2016-02-01

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane. As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design.

  7. Review of sound card photogates

    International Nuclear Information System (INIS)

    Gingl, Zoltan; Mingesz, Robert; Mellar, Janos; Makra, Peter

    2011-01-01

    Photogates are probably the most commonly used electronic instruments to aid experiments in the field of mechanics. Although they are offered by many manufacturers, they can be too expensive to be widely used in all classrooms, in multiple experiments or even at home experimentation. Today all computers have a sound card - an interface for analogue signals. It is possible to make very simple yet highly accurate photogates for cents, while much more sophisticated solutions are also available at a still very low cost. In our paper we show several experimentally tested ways of implementing sound card photogates in detail, and we also provide full-featured, free, open-source photogate software as a much more efficient experimentation tool than the usually used sound recording programs. Further information is provided on a dedicated web page, www.noise.physx.u-szeged.hu/edudev.

  8. A Analysis of the Low Frequency Sound Field in Non-Rectangular Enclosures Using the Finite Element Method.

    Science.gov (United States)

    Geddes, Earl Russell

    The details of the low frequency sound field for a rectangular room can be studied by the use of an established analytic technique--separation of variables. The solution is straightforward and the results are well-known. A non -rectangular room has boundary conditions which are not separable and therefore other solution techniques must be used. This study shows that the finite element method can be adapted for use in the study of sound fields in arbitrary shaped enclosures. The finite element acoustics problem is formulated and the modification of a standard program, which is necessary for solving acoustic field problems, is examined. The solution of the semi-non-rectangular room problem (one where the floor and ceiling remain parallel) is carried out by a combined finite element/separation of variables approach. The solution results are used to construct the Green's function for the low frequency sound field in five rooms (or data cases): (1) a rectangular (Louden) room; (2) The smallest wall of the Louden room canted 20 degrees from normal; (3) The largest wall of the Louden room canted 20 degrees from normal; (4) both the largest and the smallest walls are canted 20 degrees; and (5) a five-sided room variation of Case 4. Case 1, the rectangular room was calculated using both the finite element method and the separation of variables technique. The results for the two methods are compared in order to access the accuracy of the finite element method models. The modal damping coefficient are calculated and the results examined. The statistics of the source and receiver average normalized RMS P('2) responses in the 80 Hz, 100 Hz, and 125 Hz one-third octave bands are developed. The receiver averaged pressure response is developed to determine the effect of the source locations on the response. Twelve source locations are examined and the results tabulated for comparison. The effect of a finite sized source is looked at briefly. Finally, the standard deviation of the

  9. Geoelectric sounding for the determination of groundwater ...

    African Journals Online (AJOL)

    High apparent resistivity contrasts between the saturated freshwater zones and apparent low resistivity of the saturated seawater intrusion were measured on eleven vertical electrical soundings field curves using the Schlumberger electrode array in Iwaya area of Lagos. The field measurements were inverted to subsurface ...

  10. Non-musical sound branding – a conceptualization and research overview

    DEFF Research Database (Denmark)

    Graakjær, Nicolai J.; Bonde, Anders

    2018-01-01

    Purpose The purpose of this paper is to advance the understanding of sound branding by developing a new conceptual framework and providing an overview of the research literature on non-musical sound. Design/methodology/approach Using four mutually exclusive and collectively exhaustive types of non......-musical sound, the paper assesses and synthesizes 99 significant studies across various scholarly fields. Findings The overview reveals two areas in which more research may be warranted, that is, non-musical atmospherics and non-musical sonic logos. Moreover, future sound-branding research should examine...... in further detail the potentials of developed versus annexed object sounds, and mediated versus unmediated brand sounds. Research limitations/implications The paper provides important insights into critical issues that suggest directions for further research on non-musical sound branding. Practical...

  11. On the Electron Diffusion Region in Asymmetric Reconnection with a Guide Magnetic Field

    Science.gov (United States)

    Hesse, Michael; Liu, Yi-Hsin; Chen, Li-Jen; Bessho, Naoki; Kuznetsova, Masha; Birn, Joachim; Burch, James L.

    2016-01-01

    Particle-in-cell simulations in a 2.5-D geometry and analytical theory are employed to study the electron diffusion region in asymmetric reconnection with a guide magnetic field. The analysis presented here demonstrates that similar to the case without guide field, in-plane flow stagnation and null of the in-plane magnetic field are well separated. In addition, it is shown that the electric field at the local magnetic X point is again dominated by inertial effects, whereas it remains dominated by nongyrotropic pressure effects at the in-plane flow stagnation point. A comparison between local electron Larmor radii and the magnetic gradient scale lengths predicts that distribution should become nongyrotropic in a region enveloping both field reversal and flow stagnation points. This prediction is verified by an analysis of modeled electron distributions, which show clear evidence of mixing in the critical region.

  12. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun; Jadhali, Rasha Al; Zhang, Likun; Wu, Ying

    2018-01-01

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation

  13. Active low frequency sound field control in a listening room using CABS (Controlled Acoustic Bass System) will also reduce the sound transmitted to neighbour rooms

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2012-01-01

    Sound in rooms and transmission of sound between rooms gives the biggest problems at low frequencies. Rooms with rectangular boundaries have strong resonance frequencies and will give big spatial variations in sound pressure level (SPL) in the source room, and an increase in SPL of 20 dB at a wall...... Bass System) is a time based room correction system for reproduced sound using loudspeakers. The system can remove room modes at low frequencies, by active cancelling the reflection from at the rear wall to a normal stereo setup. Measurements in a source room using CABS and in two neighbour rooms have...... shown a reduction in sound transmission of up to 10 dB at resonance frequencies and a reduction at broadband noise of 3 – 5 dB at frequencies up to 100 Hz. The ideas and understanding of the CABS system will also be given....

  14. Reproduction of nearby sound sources using higher-order ambisonics with practical loudspeaker arrays

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2012-01-01

    the impact of two existing and a new proposed regularization function on the reproduced sound fields and on the main auditory cue for nearby sound sources outside the median plane, i.e, low-frequencies interaural level differences (ILDs). The proposed regularization function led to a better reproduction......In order to reproduce nearby sound sources with distant loudspeakers to a single listener, the near field compensated (NFC) method for higher-order Ambisonics (HOA) has been previously proposed. In practical realization, this method requires the use of regularization functions. This study analyzes...... of point source sound fields compared to existing regularization functions for NFC-HOA. Measurements in realistic playback environments showed that, for very close sources, significant ILDs for frequencies above about 250 Hz can be reproduced with NFC-HOA and the proposed regularization function whereas...

  15. Sound knowledge

    DEFF Research Database (Denmark)

    Kauffmann, Lene Teglhus

    as knowledge based on reflexive practices. I chose ‘health promotion’ as the field for my research as it utilises knowledge produced in several research disciplines, among these both quantitative and qualitative. I mapped out the institutions, actors, events, and documents that constituted the field of health...... of the research is to investigate what is considered to ‘work as evidence’ in health promotion and how the ‘evidence discourse’ influences social practices in policymaking and in research. From investigating knowledge practices in the field of health promotion, I develop the concept of sound knowledge...... result of a rigorous and standardized research method. However, this anthropological analysis shows that evidence and evidence-based is a hegemonic ‘way of knowing’ that sometimes transposes everyday reasoning into an epistemological form. However, the empirical material shows a variety of understandings...

  16. Leading edge effect in laminar boundary layer excitation by sound

    International Nuclear Information System (INIS)

    Leehey, P.; Shapiro, P.

    1980-01-01

    Essentially plane pure tone sound waves were directed downstream over a heavily damped smooth flat plate installed in a low turbulence (0.04%) subsonic wind tunnel. Laminar boundary layer disturbance growth rates were measured with and without sound excitation and compared with numerical results from spatial stability theory. The data indicate that the sound field and Tollmien-Schlichting (T-S) waves coexist with comparable amplitudes when the latter are damped; moreover, the response is linear. Higher early growth rates occur for excitation by sound than by stream turbulence. Theoretical considerations indicate that the boundary layer is receptive to sound excitation primarily at the test plate leading edge. (orig.)

  17. Sounding of Groundwater Through Conductive Media in Mars Analog Environments Using Transient Electromagnetics and Low Frequency GPR.

    Science.gov (United States)

    Jernsletten, J. A.; Heggy, E.

    2004-05-01

    INTRODUCTION: This study compares the use of (diffusive) Transient Electromagnetics (TEM) for sounding of subsurface water in conductive Mars analog environments to the use of (propagative) Ground-Penetrating Radar (GPR) for the same purpose. We show data from three field studies: 1) Radar sounding data (GPR) from the Nubian aquifer, Bahria Oasis, Egypt; 2) Diffusive sounding data (TEM) from Pima County, Arizona; and 3) Shallower sounding data using the Fast-Turnoff TEM method from Peña de Hierro in the Rio Tinto area, Spain. The latter is data from work conducted under the auspices of the Mars Analog Research and Technology Experiment (MARTE). POTENTIAL OF TEM: A TEM survey was carried out in Pima County, Arizona, in January 2003. Data was collected using 100 m Tx loops, a ferrite-cored magnetic coil Rx antenna, and a sounding frequency of 16 Hz. The dataset has ~500 m depth of investigation, shows a ~120 m depth to the water table (confirmed by several USGS test wells in the area), and a conductive (~20-40 Ω m) clay-rich soil above the water table. The Rio Tinto Fast-Turnoff TEM data was collected using 40 m Tx loops, 10 m Rx loops, and a 32 Hz sounding frequency. Note ~200 m depth of investigation and a conductive high at ~80 m depth (interpreted as water table). Data was also collected using 20 m Tx loops (10 m Rx loops) in other parts of the area. Note ~50 m depth of investigation and a conductive high at ~15 m depth (interpreted as subsurface water flow under mine tailings matching surface flows seen coming out from under the tailings, and shown on maps). Both of these interpretations were roughly confirmed by preliminary results from the MARTE ground truth drilling campaign carried out in September and October 2003. POTENTIAL OF GPR: A GPR experiment was carried out in February 2003 in the Bahria Oasis in the western Egyptian desert, using a 2 MHz monostatic GPR, mapping the Nubian Aquifer at depths of 100-900 m, beneath a thick layer of homogenous marine

  18. The relationship between target quality and interference in sound zones

    DEFF Research Database (Denmark)

    Baykaner, Khan; Coleman, Phillip; Mason, Russell

    2015-01-01

    Sound zone systems aim to control sound fields in such a way that multiple listeners can enjoy different audio programs within the same room with minimal acoustic interference. Often, there is a trade-off between the acoustic contrast achieved between the zones and the fidelity of the reproduced...... audio program in the target zone. A listening test was conducted to obtain subjective measures of distraction, target quality, and overall quality of listening experience for ecologically valid programs within a sound zoning system. Sound zones were reproduced using acoustic contrast control, planarity...

  19. Effect of field-aligned-beam in parallel diffusion of energetic particles in the Earth's foreshock

    Science.gov (United States)

    Matsukiyo, S.; Nakanishi, K.; Otsuka, F.; Kis, A.; Lemperger, I.; Hada, T.

    2016-12-01

    Diffusive shock acceleration (DSA) is one of the plausible acceleration mechanisms of cosmic rays. In the standard DSA model the partial density of the accelerated particles, diffused into upstream, exponentially decreases as the distance to the shock increases. Kis et al. (GRL, 31, L20801, 2004) examined the density gradients of energetic ions upstream of the bow shock with high accuracy by using Cluster data. They estimated the diffusion coefficients of energetic ions for the event in February 18, 2003 and showed that the obtained diffusion coefficients are significantly smaller than those estimated in the past statistical study. This implies that particle acceleration at the bow shock can be more efficient than considered before. Here, we focus on the effect of the field-aligned-beam (FAB) which is often observed in the foreshock, and examine how the FAB affects the efficiency of diffusion of the energetic ions by performing test particle simulations. The upstream turbulence is given by the superposition of parallel Alfven waves with power-law energy spectrum with random phase approximation. In the spectrum we further add a peak corresponding to the waves resonantly generated by the FAB. The dependence of the diffusion coefficient on the presence of the FAB as well as total energy of the turbulence, power-law index of the turbulence, and intensity of FAB oriented waves are discussed.

  20. Acoustic quality and sound insulation between dwellings

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1998-01-01

    to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the difficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...

  1. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  2. The Process of Optimizing Mechanical Sound Quality in Product Design

    DEFF Research Database (Denmark)

    Eriksen, Kaare; Holst, Thomas

    2011-01-01

    The research field concerning optimizing product sound quality is a relatively unexplored area, and may become difficult for designers to operate in. To some degree, sound is a highly subjective parameter, which is normally targeted sound specialists. This paper describes the theoretical...... and practical background for managing a process of optimizing the mechanical sound quality in a product design by using simple tools and workshops systematically. The procedure is illustrated by a case study of a computer navigation tool (computer mouse or mouse). The process is divided into 4 phases, which...... clarify the importance of product sound, defining perceptive demands identified by users, and, finally, how to suggest mechanical principles for modification of an existing sound design. The optimized mechanical sound design is followed by tests on users of the product in its use context. The result...

  3. A note on determination of the diffuse-field sensitivity of microphones using the reciprocity technique

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Jacobsen, Finn

    2008-01-01

    angles of incidence but also on the accuracy of the frequency response at normal incidence. By contrast, this paper is concerned with determining the absolute diffuse-field response of a microphone using the reciprocity technique. To examine this possibility, a reciprocity calibration setup is used...

  4. Molecular dynamics on diffusive time scales from the phase-field-crystal equation.

    Science.gov (United States)

    Chan, Pak Yuen; Goldenfeld, Nigel; Dantzig, Jon

    2009-03-01

    We extend the phase-field-crystal model to accommodate exact atomic configurations and vacancies by requiring the order parameter to be non-negative. The resulting theory dictates the number of atoms and describes the motion of each of them. By solving the dynamical equation of the model, which is a partial differential equation, we are essentially performing molecular dynamics simulations on diffusive time scales. To illustrate this approach, we calculate the two-point correlation function of a fluid.

  5. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  6. Utility of silicone filtering for diffusive model CO2 sensors in field experiments

    Directory of Open Access Journals (Sweden)

    Shinjiro Ohkubo

    2013-05-01

    Full Text Available Installing a diffusive model CO2 sensor in the soil is a direct and useful method to observe the time variation of gas CO2 concentration in soil. Furthermore, it requires no bulky measurement system. A hydrophobic silicone filter prevents water infiltration. Therefore, a sensor whose detection element is covered with a silicone filter can be durable in the field even when experiencing inundation (e.g. farmland with snow melting, wetland with varying water level. The utility of a diffusive model of CO2 sensor covered with silicone filter was examined in laboratory and field experiments. Applying the silicone filter delays the response to change in ambient CO2 concentration, which results from lower gas permeability than those of other conventionally used filters made of materials, such as polytetrafluoroethylene. Theoretically, apart from the precision of the sensor itself, diurnal variation of soil gas CO2 concentration is calculable from obtained series of data with a silicone-covered sensor with negligible error. The error is estimated at approximately 1% of the diurnal amplitude in most cases of a 10-min logging interval. Drastic changes that occur, such as those of a rainfall event, cause a larger gap separating calculated and real values. However, the proportion of this gap to the extent of the drastic increase was extremely small (0.43% for a 10-min logging interval. For accurate estimation, a smoothly varied data series must be prepared as input data. Using a moving average or applying a fitting curve can be useful when using a sensor or data logger with low resolution. Estimating the gas permeability coefficient is crucial for calculation. The gas permeability coefficient can be estimated through laboratory experiments. This study revealed the possibility of evaluating the time variation of soil gas CO2 concentration by installing a diffusive model of silicone-covered sensor in an inundated field.

  7. Analysis of the Numerical Diffusion in Anisotropic Mediums: Benchmarks for Magnetic Field Aligned Meshes in Space Propulsion Simulations

    Directory of Open Access Journals (Sweden)

    Daniel Pérez-Grande

    2016-11-01

    Full Text Available This manuscript explores numerical errors in highly anisotropic diffusion problems. First, the paper addresses the use of regular structured meshes in numerical solutions versus meshes aligned with the preferential directions of the problem. Numerical diffusion in structured meshes is quantified by solving the classical anisotropic diffusion problem; the analysis is exemplified with the application to a numerical model of conducting fluids under magnetic confinement, where rates of transport in directions parallel and perpendicular to a magnetic field are quite different. Numerical diffusion errors in this problem promote the use of magnetic field aligned meshes (MFAM. The generation of this type of meshes presents some challenges; several meshing strategies are implemented and analyzed in order to provide insight into achieving acceptable mesh regularity. Second, Gradient Reconstruction methods for magnetically aligned meshes are addressed and numerical errors are compared for the structured and magnetically aligned meshes. It is concluded that using the latter provides a more correct and straightforward approach to solving problems where anisotropicity is present, especially, if the anisotropicity level is high or difficult to quantify. The conclusions of the study may be extrapolated to the study of anisotropic flows different from conducting fluids.

  8. Hydrogen diffusion in the elastic fields of dislocations in iron

    Energy Technology Data Exchange (ETDEWEB)

    Sivak, A. B., E-mail: Sivak-AB@nrcki.ru; Sivak, P. A. [National Research Centre Kurchatov Institute (Russian Federation); Romanov, V. A.; Chernov, V. M. [National Research Tomsk State University (Russian Federation)

    2016-12-15

    The effect of dislocation stress fields on the sink efficiency thereof is studied for hydrogen interstitial atoms at temperatures of 293 and 600 K and at a dislocation density of 3 × 10{sup 14} m{sup –2} in bcc iron crystal. Rectilinear full screw and edge dislocations in basic slip systems 〈111〉(110), 〈111〉(112), 〈100〉(100), and 〈100〉(110) are considered. Diffusion of defects is simulated by means of the object kinetic Monte Carlo method. The energy of interaction between defects and dislocations is calculated using the anisotropic theory of elasticity. The elastic fields of dislocations result in a less than 25% change of the sink efficiency as compared to the noninteracting linear sink efficiency at a room temperature. The elastic fields of edge dislocations increase the dislocation sink efficiency, whereas the elastic fields of screw dislocations either decrease this parameter (in the case of dislocations with the Burgers vector being 1/2〈111〉) or do not affect it (in the case of dislocations with the Burgers vector being 〈100〉). At temperatures above 600 K, the dislocations affect the behavior of hydrogen in bcc iron mainly owing to a high binding energy between the hydrogen atom and dislocation cores.

  9. Development of a Student-Centered Instrument to Assess Middle School Students' Conceptual Understanding of Sound

    Science.gov (United States)

    Eshach, Haim

    2014-01-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound…

  10. Anomalous particle diffusion and Levy random walk of magnetic field lines in three-dimensional solar wind turbulence

    International Nuclear Information System (INIS)

    Zimbardo, Gaetano

    2005-01-01

    Plasma transport in the presence of turbulence depends on a variety of parameters such as the fluctuation level, δB/B 0 , the ratio between the particle Larmor radius and the turbulence correlation length, and the turbulence anisotropy. In this paper, we present the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B 0 = B 0 e z and a Fourier representation for magnetic fluctuations, which includes wavectors oblique with respect to B 0 . The energy density spectrum is a power law, and in k space it is described by the correlation lengths l x , l y , l z , which quantify the anisotropy of turbulence. For magnetic field lines, transport perpendicular to the background field depends on the Kubo number R (δB/B 0 ) (l z /l x ). For small Kubo numbers, R 0 , or the ratio l z /l x , we find first a quasilinear regime and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field depends heavily on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, δB/B 0 ≅ 0.5-1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case l z /l x ≤ 1, with a Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for l z /l x > 1 normal Gaussian diffusion is found. A possible expression for generalized double diffusion is discussed

  11. Diffusion and coupled fluxes in concentrated alloys under irradiation: a self-consistent mean-field approach

    International Nuclear Information System (INIS)

    Nastar, M.

    2008-01-01

    When an alloy is irradiated, atomic transport can occur through the two types of defects which are created: vacancies and interstitials. Recent developments of the self-consistent mean field (SCMF) kinetic theory could treat within the same formalism diffusion due to vacancies and interstitials in a multi-component alloy. It starts from a microscopic model of the atomic transport via vacancies and interstitials and yields the fluxes with a complete Onsager matrix of the phenomenological coefficients. The jump frequencies depend on the local environment through a 'broken bond model' such that the large range of frequencies involved in concentrated alloys is produced by a small number of thermodynamic and kinetic parameters. Kinetic correlations are accounted for through a set of time-dependent effective interactions within a non-equilibrium distribution function of the system. The different approximations of the SCMF theory recover most of the previous diffusion models. Recent improvements of the theory were to extend the multi-frequency approach usually restricted to dilute alloys to diffusion in concentrated alloys with jump frequencies depending on local concentrations and to generalize the formalism first developed for the vacancy diffusion mechanism to the more complex diffusion mechanism of the interstitial in the dumbbell configuration. (author)

  12. A numerical investigation of the influence of windscreens on measurement of sound intensity

    DEFF Research Database (Denmark)

    Juhl, Peter Møller; Jacobsen, Finn

    2006-01-01

    at low frequencies in strongly reactive sound fields. The theoretical part of this study was based on the assumption of a windscreen of infinite extent. In this paper windscreens of realistic size and shape are dealt with by means of a coupled boundary element model for the windscreen and the surrounding...... air. The error of the estimated intensity caused by the windscreen is calculated under a number of sound field conditions of varying reactivity. It is shown that the resulting error can be much larger than the intensity itself in a very reactive sound field. It is also shown that the shape and size...

  13. Finite-difference schemes for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  14. Sound Propagation An impedance Based Approach

    CERN Document Server

    Kim, Yang-Hann

    2010-01-01

    In Sound Propagation: An Impedance Based Approach , Professor Yang-Hann Kim introduces acoustics and sound fields by using the concept of impedance. Kim starts with vibrations and waves, demonstrating how vibration can be envisaged as a kind of wave, mathematically and physically. One-dimensional waves are used to convey the fundamental concepts. Readers can then understand wave propagation in terms of characteristic and driving point impedance. The essential measures for acoustic waves, such as dB scale, octave scale, acoustic pressure, energy, and intensity, are explained. These measures are

  15. Coupled simulation of meteorological parameters and sound intensity in a narrow valley

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, D. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Gross, G. [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    1997-07-01

    A meteorological mesoscale model is used to simulate the inhomogeneous distribution of temperature and the appertaining development of thermal wind systems in a narrow two-dimensional valley during the course of a cloud-free day. A simple sound particle model takes up the simulated meteorological fields and calculates the propagation of noise which originates from a line source at one of the slopes of this valley. The coupled modeling system ensures consistency of topography, meteorological parameters and the sound field. The temporal behaviour of the sound intensity level across the valley is examined. It is only governed by the time-dependent meteorology. The results show remarkable variations of the sound intensity during the course of a day depending on the location in the valley. (orig.) 23 refs.

  16. Cosmic ray diffusion: report of the workshop in cosmic ray diffusion theory

    International Nuclear Information System (INIS)

    Birmingham, T.J.; Jones, F.C.

    1975-02-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory. (auth)

  17. Anti-sound and Acoustical Cloaks

    Directory of Open Access Journals (Sweden)

    Veturia CHIROIU

    2016-12-01

    Full Text Available The principles by which the acoustics can be mimicked in order to reduce or cancel the vibrational field are based on anti-sound concept which can be materialized by acoustic cloaks. Geometric transformations open an elegant way towards the unconstrained control of sound through acoustic metamaterials. Acoustic cloaks can be achieved through geometric transformations which bring exotic metamaterial properties into the acoustic equations. Our paper brings new ideas concerning the technological keys for manufacturing of novel metamaterials based on the spatial compression of Cantor structures, and the architecture of 3D acoustic cloaks in a given frequency band, with application to architectural acoustics.

  18. Visualization of Broadband Sound Sources

    Directory of Open Access Journals (Sweden)

    Sukhanov Dmitry

    2016-01-01

    Full Text Available In this paper the method of imaging of wideband audio sources based on the 2D microphone array measurements of the sound field at the same time in all the microphones is proposed. Designed microphone array consists of 160 microphones allowing to digitize signals with a frequency of 7200 Hz. Measured signals are processed using the special algorithm that makes it possible to obtain a flat image of wideband sound sources. It is shown experimentally that the visualization is not dependent on the waveform, but determined by the bandwidth. Developed system allows to visualize sources with a resolution of up to 10 cm.

  19. Acoustic quality and sound insulation between dwellings

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1999-01-01

    to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings.......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the dif-ficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...

  20. CO2 diffuse emission from maar lake: An example in Changbai volcanic field, NE China

    Science.gov (United States)

    Sun, Yutao; Guo, Zhengfu; Liu, Jiaqi; Du, Jianguo

    2018-01-01

    Numerous maars and monogenetic volcanic cones are distributed in northeast China, which are related to westward deep subduction of the Pacific Ocean lithosphere, comprising a significant part of the "Pacific Ring of Fire". It is well known that diffuse CO2 emissions from monogenetic volcanoes, including wet (e.g., maar lake) and dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.), may contribute to budget of globally nature-derived greenhouse gases. However, their relationship between wet (e.g., maar lake) and concomitant dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.) related to monogenetic volcanic field is poorly understood. Yuanchi maar, one of the typical monogenetic volcanic systems, is located on the eastern flank of Tianchi caldera in Changbai volcanic field of northeast China, which displays all of three forms of CO2 degassing including the maar lake, soil micro-seepage and fault degassing. Measurements of efflux of CO2 diffusion from the Yuanchi maar system (YMS) indicate that the average values of CO2 emissions from soil micro-seepage, fault degassing and water-air interface diffusion are 24.3 ± 23.3 g m- 2 d- 1, 39.2 ± 22.4 g m- 2 d- 1 and 2.4 ± 1.1 g m- 2 d- 1, respectively. The minimum output of CO2 diffuse emission from the YMS to the atmosphere is about 176.1 ± 88.3 ton/yr, of which 80.4% results from the dry degassing system. Degassing from the fault contributes to the most of CO2 emissions in all of the three forms of degassing in the YMS. Contributions of mantle, crust, air and organic CO2 to the soil gas are 0.01-0.10%, 10-20%, 32-36% and 48-54%, respectively, which are quantitatively constrained by a He-C isotope coupling calculation model. We propose that CO2 exsolves from the upper mantle melting beneath the Tianchi caldera, which migrates to the crustal magma chamber and further transports to the surface of YMS along the deep fault system. During the transportation processes, the emission

  1. Stefan-Maxwell Relations and Heat Flux with Anisotropic Transport Coefficients for Ionized Gases in a Magnetic Field with Application to the Problem of Ambipolar Diffusion

    Science.gov (United States)

    Kolesnichenko, A. V.; Marov, M. Ya.

    2018-01-01

    The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.

  2. Characteristics and prediction of sound level in extra-large spaces

    OpenAIRE

    Wang, C.; Ma, H.; Wu, Y.; Kang, J.

    2018-01-01

    This paper aims to examine sound fields in extra-large spaces, which are defined in this paper as spaces used by people, with a volume approximately larger than 125,000m 3 and absorption coefficient less than 0.7. In such spaces inhomogeneous reverberant energy caused by uneven early reflections with increasing volume has a significant effect on sound fields. Measurements were conducted in four spaces to examine the attenuation of the total and reverberant energy with increasing source-receiv...

  3. The Environmental Cost of Marine Sound Sources

    NARCIS (Netherlands)

    Ainslie, M.A.; Dekeling, R.P.A.

    2011-01-01

    Cumulative acoustic exposure is used as an indicator for the risk of negative impact to animals as a consequence of exposure to underwater sound. The free-field energy of a single source, defined as the total acoustic energy that would exist in the source’s free field, is shown to be closely related

  4. On Sound: Reconstructing a Zhuangzian Perspective of Music

    Directory of Open Access Journals (Sweden)

    So Jeong Park

    2015-12-01

    Full Text Available A devotion to music in Chinese classical texts is worth noticing. Early Chinese thinkers saw music as a significant part of human experience and a core practice for philosophy. While Confucian endorsement of ritual and music has been discussed in the field, Daoist understanding of music was hardly explored. This paper will make a careful reading of the Xiánchí 咸池 music story in the Zhuangzi, one of the most interesting, but least noticed texts, and reconstruct a Zhuangzian perspective from it. While sounds had been regarded as mere building blocks of music and thus depreciated in the hierarchical understanding of music in the mainstream discourse of early China, sound is the alpha and omega of music in the Zhuangzian perspective. All kinds of sounds, both human and natural, are invited into musical discourse. Sound is regarded as the real source of our being moved by music, and therefore, musical consummation is depicted as embodiment through sound.

  5. Reflector construction by sound path curves - A method of manual reflector evaluation in the field

    International Nuclear Information System (INIS)

    Siciliano, F.; Heumuller, R.

    1985-01-01

    In order to describe the time-of-flight behavior of various reflectors we have set up models and derived from them analytical and graphic approaches to reflector reconstruction. In the course of this work, maximum achievable accuracy and possible simplifications were investigated. The aim of the time-of-flight reconstruction method is to determine the points of a reflector on the basis of a sound path function (sound path as the function of the probe index position). This method can only be used on materials which are isotropic in terms of sound velocity since the method relies on time of flight being converted into sound path. This paper deals only with two-dimensional reconstruction, in other words all statements relate to the plane of incidence. The method is based on the fact that the geometrical location of the points equidistant from a certain probe index position is a circle. If circles with radiuses equal to the associated sound path are drawn for various search unit positions the points of intersection of the circles are the desired reflector points

  6. Sound intensity and its measurement

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    1997-01-01

    The paper summarises the basic theory of sound intensity and its measurement and gives an overview of the state of the art with particular emphasis on recent developments in the field. Eighty references are given, most of which to literature published in the past two years. The paper describes...

  7. Resuspension of toxic aerosol using MATHEW--ADPIC wind field--transport and diffusion codes

    International Nuclear Information System (INIS)

    Porch, W.M.

    1979-01-01

    Computer codes have been written which estimate toxic aerosol resuspension based on computed deposition from a primary source, wind, and surface characteristics. The primary deposition pattern and the transport, diffusion, and redeposition of the resuspended toxic aerosol are calculated using a mass-consistent wind field model including topography (MATHEW) and a particle-in-cell diffusion and transport model (ADPIC) which were developed at LLL. The source term for resuspended toxic aerosol is determined by multiplying the total aerosol flux as a function of wind speed by the area of highest concentration and the fraction of suspended material estimated to be toxic. Preliminary calculations based on a test problem at the Nevada Test Site determined an hourly averaged maximum resuspension factor of 10 -4 for a 15 m/sec wind which is within an admittedly large range of resuspension factor measurements using experimental data

  8. Spin diffusion in disordered organic semiconductors

    Science.gov (United States)

    Li, Ling; Gao, Nan; Lu, Nianduan; Liu, Ming; Bässler, Heinz

    2015-12-01

    An analytical theory for spin diffusion in disordered organic semiconductors is derived. It is based on percolation theory and variable range hopping in a disordered energy landscape with a Gaussian density of states. It describes universally the dependence of the spin diffusion on temperature, carrier density, material disorder, magnetic field, and electric field at the arbitrary magnitude of the Hubbard energy of charge pairs. It is found that, compared to the spin transport carried by carriers hopping, the spin exchange will hinder the spin diffusion process at low carrier density, even under the condition of a weak electric field. Importantly, under the influence of a bias voltage, anomalous spreading of the spin packet will lead to an abnormal temperature dependence of the spin diffusion coefficient and diffusion length. This explains the recent experimental data for spin diffusion length observed in Alq3.

  9. Extraction of thermal Green's function using diffuse fields: a passive approach applied to thermography

    Science.gov (United States)

    Capriotti, Margherita; Sternini, Simone; Lanza di Scalea, Francesco; Mariani, Stefano

    2016-04-01

    In the field of non-destructive evaluation, defect detection and visualization can be performed exploiting different techniques relying either on an active or a passive approach. In the following paper the passive technique is investigated due to its numerous advantages and its application to thermography is explored. In previous works, it has been shown that it is possible to reconstruct the Green's function between any pair of points of a sensing grid by using noise originated from diffuse fields in acoustic environments. The extraction of the Green's function can be achieved by cross-correlating these random recorded waves. Averaging, filtering and length of the measured signals play an important role in this process. This concept is here applied in an NDE perspective utilizing thermal fluctuations present on structural materials. Temperature variations interacting with thermal properties of the specimen allow for the characterization of the material and its health condition. The exploitation of the thermographic image resolution as a dense grid of sensors constitutes the basic idea underlying passive thermography. Particular attention will be placed on the creation of a proper diffuse thermal field, studying the number, placement and excitation signal of heat sources. Results from numerical simulations will be presented to assess the capabilities and performances of the passive thermal technique devoted to defect detection and imaging of structural components.

  10. Fractional diffusion equations and anomalous diffusion

    CERN Document Server

    Evangelista, Luiz Roberto

    2018-01-01

    Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.

  11. Mean Field Limits for Interacting Diffusions in a Two-Scale Potential

    Science.gov (United States)

    Gomes, S. N.; Pavliotis, G. A.

    2018-06-01

    In this paper, we study the combined mean field and homogenization limits for a system of weakly interacting diffusions moving in a two-scale, locally periodic confining potential, of the form considered in Duncan et al. (Brownian motion in an N-scale periodic potential, arXiv:1605.05854, 2016b). We show that, although the mean field and homogenization limits commute for finite times, they do not, in general, commute in the long time limit. In particular, the bifurcation diagrams for the stationary states can be different depending on the order with which we take the two limits. Furthermore, we construct the bifurcation diagram for the stationary McKean-Vlasov equation in a two-scale potential, before passing to the homogenization limit, and we analyze the effect of the multiple local minima in the confining potential on the number and the stability of stationary solutions.

  12. Sustained Magnetic Responses in Temporal Cortex Reflect Instantaneous Significance of Approaching and Receding Sounds.

    Directory of Open Access Journals (Sweden)

    Dominik R Bach

    Full Text Available Rising sound intensity often signals an approaching sound source and can serve as a powerful warning cue, eliciting phasic attention, perception biases and emotional responses. How the evaluation of approaching sounds unfolds over time remains elusive. Here, we capitalised on the temporal resolution of magnetoencephalograpy (MEG to investigate in humans a dynamic encoding of perceiving approaching and receding sounds. We compared magnetic responses to intensity envelopes of complex sounds to those of white noise sounds, in which intensity change is not perceived as approaching. Sustained magnetic fields over temporal sensors tracked intensity change in complex sounds in an approximately linear fashion, an effect not seen for intensity change in white noise sounds, or for overall intensity. Hence, these fields are likely to track approach/recession, but not the apparent (instantaneous distance of the sound source, or its intensity as such. As a likely source of this activity, the bilateral inferior temporal gyrus and right temporo-parietal junction emerged. Our results indicate that discrete temporal cortical areas parametrically encode behavioural significance in moving sound sources where the signal unfolded in a manner reminiscent of evidence accumulation. This may help an understanding of how acoustic percepts are evaluated as behaviourally relevant, where our results highlight a crucial role of cortical areas.

  13. Generation of sound zones in 2.5 dimensions

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Olsen, Martin; Møller, Martin

    2011-01-01

    in a certain direction within a certain region of a room and at the same time suppress sound in another region. The method is examined through simulations and experiments. For comparison a simpler method based on the idea of maximising the ratio of the potential acoustic energy in an ensonified zone......Amethod for generating sound zones with different acoustic properties in a room is presented. The method is an extension of the two-dimensional multi-zone sound field synthesis technique recently developed by Wu and Abhayapala; the goal is, for example, to generate a plane wave that propagates...... to the potential acoustic energy in a quiet zone is also examined....

  14. A critical examination of some of the field indicators that have been proposed in connection with sound power determination using the intensity method

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    1996-01-01

    A considerable number of 'field indicators' or 'quality indicators' have been proposed in connection with sound power determination based on measurement of intensity. For example, the ISO 9614-1 standard prescribes the use four indicators, and in the North American ANSI S12.12 standard no less th...

  15. Measuring the vertical electrical field above an oceanic convection system using a meteorological sounding balloon

    Science.gov (United States)

    Chen, A. B.; Chiu, C.; Lai, S.; Chen, C.; Kuo, C.; Su, H.; Hsu, R.

    2012-12-01

    The vertical electric field above thundercloud plays an important role in the generation and modeling of transient luminous events. For example, Pasko [1995] proposed that the high quasi-static E-field following the positive cloud-to-ground lightning could accelerate and input energy to ambient electrons; as they collide and excite nitrogen and oxygen molecules in upper atmosphere, sprites may be induced. A series of balloon experiments led by Holzworth have investigated the temporal and spatial fluctuations of the electric field and conductivity in the upper atmosphere at different sites [Holzworth 2005, and references in]. But the strength and variation of the vertical electric field above thundercloud, especially oceanic ones, are not well documented so far. A lightweight, low-cost measurement system including an electric field meter and the associated aviation electronics are developed to carry out the in-situ measurement of the vertical electric field and the inter-cloud charge distribution. Our measuring system was first deployed using a meteorological sounding balloon from Taitung, Taiwan in May 2012. The measured electric field below 3km height shows an exponential decay and it is consistent with the expected potential gradient variation between ionosphere and the Earth surface. But the background strength of the measured E-field grows up exponentially and a violent fluctuations is also observed when the balloon flew over a developing oceanic convection cell. The preliminary results from this flight will be reported and discussed. This low-cost electric field meter is developed within one year. In the coming months, more flights will be performed with the aim to measure the rapid variation of the electric field above thundercloud as well as the E-field that may induce transient luminous events. Our ground campaigns show that the occurrence rates of blue and gigantic jet are relatively high in the vicinity of Taiwan. Our experiment can be used to diagnose

  16. The application of standard definitions of sound to the fields of underwater acoustics and acoustical oceanography

    Science.gov (United States)

    Carey, William M.

    2004-05-01

    Recent societal concerns have focused attention on the use of sound as a probe to investigate the oceans and its use in naval sonar applications. The concern is the impact the use of sound may have on marine mammals and fishes. The focus has changed the fields of acoustical oceanography (AO) and underwater acoustics (UW) because of the requirement to communicate between disciplines. Multiple National Research Council publications, Dept. of Navy reports, and several monographs have been written on this subject, and each reveals the importance as well as the misapplication of ASA standards. The ANSI-ASA standards are comprehensive, however not widely applied. The clear definition of standards and recommendations of their use is needed for both scientists and government agencies. Traditionally the U.S. Navy has been responsible for UW standards and calibration; the ANSI-ASA standards have been essential. However, recent changes in the Navy and its laboratory structure may necessitate a more formal recognition of ANSI-ASA standards and perhaps incorporation of UW-AO in the Bureau of Standards. A separate standard for acoustical terminology, reference levels, and notation used in the UW-AO is required. Since the problem is global, a standard should be compatible and cross referenced with the International Standard (CEI/IEC 27-3).

  17. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  18. Enhanced Soundings for Local Coupling Studies Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Craig R [University at Albany, State University of New York; Santanello, Joseph A [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Gentine, Pierre [Columbia Univ., New York, NY (United States)

    2016-04-01

    This document presents initial analyses of the enhanced radiosonde observations obtained during the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Enhanced Soundings for Local Coupling Studies Field Campaign (ESLCS), which took place at the ARM Southern Great Plains (SGP) Central Facility (CF) from June 15 to August 31, 2015. During ESLCS, routine 4-times-daily radiosonde measurements at the ARM-SGP CF were augmented on 12 days (June 18 and 29; July 11, 14, 19, and 26; August 15, 16, 21, 25, 26, and 27) with daytime 1-hourly radiosondes and 10-minute ‘trailer’ radiosondes every 3 hours. These 12 intensive operational period (IOP) days were selected on the basis of prior-day qualitative forecasts of potential land-atmosphere coupling strength. The campaign captured 2 dry soil convection advantage days (June 29 and July 14) and 10 atmospherically controlled days. Other noteworthy IOP events include: 2 soil dry-down sequences (July 11-14-19 and August 21-25-26), a 2-day clear-sky case (August 15-16), and the passing of Tropical Storm Bill (June 18). To date, the ESLCS data set constitutes the highest-temporal-resolution sampling of the evolution of the daytime planetary boundary layer (PBL) using radiosondes at the ARM-SGP. The data set is expected to contribute to: 1) improved understanding and modeling of the diurnal evolution of the PBL, particularly with regard to the role of local soil wetness, and (2) new insights into the appropriateness of current ARM-SGP CF thermodynamic sampling strategies.

  19. Evidence for Enhanced Matrix Diffusion in Geological Environment

    Science.gov (United States)

    Sato, Kiminori; Fujimoto, Koichiro; Nakata, Masataka; Shikazono, Naotatsu

    2013-01-01

    Molecular diffusion in rock matrix, called as matrix diffusion, has been appreciated as a static process for elemental migration in geological environment that has been acknowledged in the context of geological disposal of radioactive waste. However, incomprehensible enhancement of matrix diffusion has been reported at a number of field test sites. Here, the matrix diffusion of saline water at Horonobe, Hokkaido, Japan is highlighted directly probing angstrom-scale pores on a field scale up to 1 km by positron--positronium annihilation spectroscopy. The first application of positron--positronium annihilation spectroscopy to field-scale geophysical research reveals the slight variation of angstrom-scale pores influenced by saline water diffusion with complete accuracy. We found widely interconnected 3 Å pores, which offer the pathway of saline water diffusion with the highly enhanced effective matrix diffusion coefficient of 4× 10-6 cm2 s-1. The present findings provide unambiguous evidence that the angstrom-scale pores enhance effective matrix diffusion on a field scale in geological environment.

  20. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    Directory of Open Access Journals (Sweden)

    A. Gallice

    2011-10-01

    Full Text Available A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30–35 km altitude is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s−1 in the troposphere and 0.2 m s−1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects

  1. Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses.

    Science.gov (United States)

    Helmer, K G; Chou, M-C; Preciado, R I; Gimi, B; Rollins, N K; Song, A; Turner, J; Mori, S

    2016-02-27

    It is now common for magnetic-resonance-imaging (MRI) based multi-site trials to include diffusion-weighted imaging (DWI) as part of the protocol. It is also common for these sites to possess MR scanners of different manufacturers, different software and hardware, and different software licenses. These differences mean that scanners may not be able to acquire data with the same number of gradient amplitude values and number of available gradient directions. Variability can also occur in achievable b-values and minimum echo times. The challenge of a multi-site study then, is to create a common protocol by understanding and then minimizing the effects of scanner variability and identifying reliable and accurate diffusion metrics. This study describes the effect of site, scanner vendor, field strength, and TE on two diffusion metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA) using two common analyses (region-of-interest and mean-bin value of whole brain histograms). The goal of the study was to identify sources of variability in diffusion-sensitized imaging and their influence on commonly reported metrics. The results demonstrate that the site, vendor, field strength, and echo time all contribute to variability in FA and MD, though to different extent. We conclude that characterization of the variability of DTI metrics due to site, vendor, field strength, and echo time is a worthwhile step in the construction of multi-center trials.

  2. Hear where we are sound, ecology, and sense of place

    CERN Document Server

    Stocker, Michael

    2013-01-01

    Throughout history, hearing and sound perception have been typically framed in the context of how sound conveys information and how that information influences the listener. Hear Where We Are inverts this premise and examines how humans and other hearing animals use sound to establish acoustical relationships with their surroundings. This simple inversion reveals a panoply of possibilities by which we can re-evaluate how hearing animals use, produce, and perceive sound. Nuance in vocalizations become signals of enticement or boundary setting; silence becomes a field ripe in auditory possibilities; predator/prey relationships are infused with acoustic deception, and sounds that have been considered territorial cues become the fabric of cooperative acoustical communities. This inversion also expands the context of sound perception into a larger perspective that centers on biological adaptation within acoustic habitats. Here, the rapid synchronized flight patterns of flocking birds and the tight maneuvering of s...

  3. Radiation impedance of condenser microphones and their diffuse-field responses

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2010-01-01

    and (b) measuring the pressure on the membrane of the microphone. The first measurement is carried out by means of laser vibrometry. The second measurement cannot be implemented in practice. However, the pressure on the membrane can be calculated numerically by means of the boundary element method......The relation between the diffuse-field response and the radiation impedance of a microphone has been investigated. Such a relation can be derived from classical theory. The practical measurement of the radiation impedance requires (a) measuring the volume velocity of the membrane of the microphone...... at frequencies below the resonance frequency of the microphone. Although the method may not be of great practical utility, it provides a useful validation of the estimates obtained by other means....

  4. Aerodynamic sound of flow past an airfoil

    Science.gov (United States)

    Wang, Meng

    1995-01-01

    The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord

  5. Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter

    Science.gov (United States)

    Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.

    2017-04-01

    The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.

  6. Dictionary Learning on the Manifold of Square Root Densities and Application to Reconstruction of Diffusion Propagator Fields*

    Science.gov (United States)

    Sun, Jiaqi; Xie, Yuchen; Ye, Wenxing; Ho, Jeffrey; Entezari, Alireza; Blackband, Stephen J.

    2013-01-01

    In this paper, we present a novel dictionary learning framework for data lying on the manifold of square root densities and apply it to the reconstruction of diffusion propagator (DP) fields given a multi-shell diffusion MRI data set. Unlike most of the existing dictionary learning algorithms which rely on the assumption that the data points are vectors in some Euclidean space, our dictionary learning algorithm is designed to incorporate the intrinsic geometric structure of manifolds and performs better than traditional dictionary learning approaches when applied to data lying on the manifold of square root densities. Non-negativity as well as smoothness across the whole field of the reconstructed DPs is guaranteed in our approach. We demonstrate the advantage of our approach by comparing it with an existing dictionary based reconstruction method on synthetic and real multi-shell MRI data. PMID:24684004

  7. Spin-diffusions and diffusive molecular dynamics

    Science.gov (United States)

    Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon

    2017-12-01

    Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.

  8. ``Hiss, clicks and pops'' - The enigmatic sounds of meteors

    Science.gov (United States)

    Finnegan, J. A.

    2015-04-01

    The improbability of sounds heard simultaneously with meteors allows the phenomenon to remain on the margins of scientific interest and research. This is unjustified, since these audibly perceived electric field effects indicate complex, inconsistent and still unresolved electric-magnetic coupling and charge dynamics; interacting between the meteor; the ionosphere and mesosphere; stratosphere; troposphere and the surface of the earth. This paper reviews meteor acoustic effects, presents illustrating reports and hypotheses and includes a summary of similar and additional phenomena observed during the 2013 February 15 asteroid fragment disintegration above the Russian district of Chelyabinsk. An augmenting theory involving near ground, non uniform electric field production of Ozone, as a stimulated geo-physical phenomenon to explain some hissing `meteor sounds' is suggested in section 2.2. Unlike previous theories, electric-magnetic field fluctuation rates are not required to occur in the audio frequency range for this process to acoustically emit hissing and intermittent impulsive sounds; removing the requirements of direct conversion, passive human transduction or excited, localised acoustic `emitters'. Links to the Armagh Observatory All-sky meteor cameras, electrophonic meteor research and full construction plans for an extremely low frequency (ELF) receiver are also included.

  9. The Sound Field around a Tuning Fork and the Role of a Resonance Box

    Science.gov (United States)

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2015-01-01

    Atypical two-tine tuning fork is barely audible when held vibrating at an arm's length. It is enough, however, to touch its base to a table or, better, to a resonance box and the emitted sound becomes much louder. An inquiring student may pose questions: (1) Why is a bare tuning fork such a weak emitter of sound? (2) What is the role of the…

  10. Diffusion in reactor materials

    International Nuclear Information System (INIS)

    Fedorov, G.B.; Smirnov, E.A.

    1984-01-01

    The monograph contains a brief description of the principles underlying the theory of diffusion, as well as modern methods of studying diffusion. Data on self-diffusion and diffusion of impurities in a nuclear fuel and fissionable materials (uranium, plutonium, thorium, zirconium, titanium, hafnium, niobium, molybdenum, tungsten, beryllium, etc.) is presented. Anomalous diffusion, diffusion of components, and interdiffusion in binary and ternary alloys were examined. The monograph presents the most recent reference material on diffusion. It is intended for a wide range of researchers working in the field of diffusion in metals and alloys and attempting to discover new materials for application in nuclear engineering. It will also be useful for teachers, research scholars and students of physical metallurgy

  11. Diffusion of test particles in stochastic magnetic fields in the percolative regime

    International Nuclear Information System (INIS)

    Neuer, Marcus; Spatschek, Karl H.

    2006-01-01

    For stochastic magnetic flux functions with percolative contours the test particle transport is investigated. The calculations make use of the stochastic Liouville approach. They start from the so-called A-Langevin equations, including stochastic magnetic field components and binary collisions. Using the decorrelation trajectory method, a relation between the Lagrangian velocity correlation function and the Eulerian magnetic field correlation is derived and introduced into the Green-Kubo formalism. Finite Larmor radius effects are included. Interesting results are presented in the percolation regime corresponding to high Kubo numbers. Previous results are found to be limiting cases for small Kubo numbers. For different percolative scenarios the diffusion is analyzed and strong influences of the percolative structures on the transport scaling are found. The finite Larmor radius effects are discussed in detail. Numerical simulations of the A-Langevin equation confirm the semianalytical predictions

  12. Quantitative diffusion MRI using reduced field-of-view and multi-shot acquisition techniques: Validation in phantoms and prostate imaging.

    Science.gov (United States)

    Zhang, Yuxin; Holmes, James; Rabanillo, Iñaki; Guidon, Arnaud; Wells, Shane; Hernando, Diego

    2018-04-17

    To evaluate the reproducibility of quantitative diffusion measurements obtained with reduced Field of View (rFOV) and Multi-shot EPI (msEPI) acquisitions, using single-shot EPI (ssEPI) as a reference. Diffusion phantom experiments, and prostate diffusion-weighted imaging in healthy volunteers and patients with known or suspected prostate cancer were performed across the three different sequences. Quantitative diffusion measurements of apparent diffusion coefficient, and diffusion kurtosis parameters (healthy volunteers), were obtained and compared across diffusion sequences (rFOV, msEPI, and ssEPI). Other possible confounding factors like b-value combinations and acquisition parameters were also investigated. Both msEPI and rFOV have shown reproducible quantitative diffusion measurements relative to ssEPI; no significant difference in ADC was observed across pulse sequences in the standard diffusion phantom (p = 0.156), healthy volunteers (p ≥ 0.12) or patients (p ≥ 0.26). The ADC values within the non-cancerous central gland and peripheral zone of patients were 1.29 ± 0.17 × 10 -3  mm 2 /s and 1.74 ± 0.23 × 10 -3  mm 2 /s respectively. However, differences in quantitative diffusion parameters were observed across different number of averages for rFOV, and across b-value groups and diffusion models for all the three sequences. Both rFOV and msEPI have the potential to provide high image quality with reproducible quantitative diffusion measurements in prostate diffusion MRI. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Imagining Sound

    DEFF Research Database (Denmark)

    Grimshaw, Mark; Garner, Tom Alexander

    2014-01-01

    We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....

  14. Experimental implementation of a low-frequency global sound equalization method based on free field propagation

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Pedersen, Christian Sejer; Lydolf, Morten

    2007-01-01

    An experimental implementation of a global sound equalization method in a rectangular room using active control is described in this paper. The main purpose of the work has been to provide experimental evidence that sound can be equalized in a continuous three-dimensional region, the listening zone......, which occupies a considerable part of the complete volume of the room. The equalization method, based on the simulation of a progressive plane wave, was implemented in a room with inner dimensions of 2.70 m x 2.74 m x 2.40 m. With this method,the sound was reproduced by a matrix of 4 x 5 loudspeakers...... in one of the walls. After traveling through the room, the sound wave was absorbed on the opposite wall, which had a similar arrangement of loudspeakers, by means of active control. A set of 40 digital FIR filters was used to modify the original input signal before it was fed to the loudspeakers, one...

  15. Analysis of sound absorption performance of an electroacoustic absorber using a vented enclosure

    Science.gov (United States)

    Cho, Youngeun; Wang, Semyung; Hyun, Jaeyub; Oh, Seungjae; Goo, Seongyeol

    2018-03-01

    The sound absorption performance of an electroacoustic absorber (EA) is primarily influenced by the dynamic characteristics of the loudspeaker that acts as the actuator of the EA system. Therefore, the sound absorption performance of the EA is maximum at the resonance frequency of the loudspeaker and tends to degrade in the low-frequency and high-frequency bands based on this resonance frequency. In this study, to adjust the sound absorption performance of the EA system in the low-frequency band of approximately 20-80 Hz, an EA system using a vented enclosure that has previously been used to enhance the radiating sound pressure of a loudspeaker in the low-frequency band, is proposed. To verify the usefulness of the proposed system, two acoustic environments are considered. In the first acoustic environment, the vent of the vented enclosure is connected to an external sound field that is distinct from the sound field coupled to the EA. In this case, the acoustic effect of the vented enclosure on the performance of the EA is analyzed through an analytical approach using dynamic equations and an impedance-based equivalent circuit. Then, it is verified through numerical and experimental approaches. Next, in the second acoustic environment, the vent is connected to the same external sound field as the EA. In this case, the effect of the vented enclosure on the EA is investigated through an analytical approach and finally verified through a numerical approach. As a result, it is confirmed that the characteristics of the sound absorption performances of the proposed EA system using the vented enclosure in the two acoustic environments considered in this study are different from each other in the low-frequency band of approximately 20-80 Hz. Furthermore, several case studies on the change tendency of the performance of the EA using the vented enclosure according to the critical design factors or vent number for the vented enclosure are also investigated. In the future

  16. Sound Radiation of Aerodynamically Excited Flat Plates into Cavities

    Directory of Open Access Journals (Sweden)

    Johannes Osterziel

    2017-10-01

    Full Text Available Flow-induced vibrations and the sound radiation of flexible plate structures of different thickness mounted in a rigid plate are experimentally investigated. Therefore, flow properties and turbulent boundary layer parameters are determined through measurements with a hot-wire anemometer in an aeroacoustic wind tunnel. Furthermore, the excitation of the vibrating plate is examined by laser scanning vibrometry. To describe the sound radiation and the sound transmission of the flexible aluminium plates into cavities, a cuboid-shaped room with adjustable volume and 34 flush-mounted microphones is installed at the non flow-excited side of the aluminium plates. Results showed that the sound field inside the cavity is on the one hand dependent on the flow parameters and the plate thickness and on the other hand on the cavity volume which indirectly influences the level and the distribution of the sound pressure behind the flexible plate through different excited modes.

  17. Plasma diffusion in systems with disrupted magnetic surfaces

    International Nuclear Information System (INIS)

    Morozov, D.K.; Pogutse, O.P.

    1982-01-01

    Plasma diffusion is analyzed in the case in which the system of magnetic surfaces is disrupted by a stochastic perturbation of the magnetic field. The diffusion coefficient is related to the statistical properties of the field. The statistical characteristics of the field are found when the magnetic surfaces near the separatrix are disrupted by an external perturbation. The diffusion coefficient is evaluated in the region in which the magnetic surfaces are disrupted. In this region the diffusion coefficient is of the Bohm form

  18. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    Science.gov (United States)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  19. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2014-09-22

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  20. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan; Cha, Min; Chung, Suk-Ho

    2014-01-01

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  1. Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage

    International Nuclear Information System (INIS)

    Tardiveau, P; Moreau, N; Bentaleb, S; Postel, C; Pasquiers, S

    2009-01-01

    The dynamics of a point-to-plane corona discharge induced in high pressure air under nanosecond scale high overvoltage is investigated. The electrical and optical properties of the discharge can be described in space and time with fast and precise current measurements coupled to gated and intensified imaging. Under atmospheric pressure, the discharge exhibits a diffuse pattern like a multielectron avalanche propagating through a direct field ionization mechanism. The diffuse regime can exist since the voltage rise time is much shorter than the characteristic time of the field screening effects, and as long as the local field is higher than the critical ionization field in air. As one of these conditions is not fulfilled, the discharge turns into a multi-channel regime and the diffuse-to-filamentary transition strongly depends on the overvoltage, the point-to-plane gap length and the pressure. When pressure is increased above atmospheric pressure, the diffuse stage and its transition to streamers seem to satisfy similarity rules as the key parameter is the reduced critical ionization field only. However, above 3 bar, neither diffuse avalanche nor streamer filaments are observed but a kind of streamer-leader regime, due to the fact that mechanisms such as photoionization and heat diffusion are not similar to pressure.

  2. Fractal diffusion equations: Microscopic models with anomalous diffusion and its generalizations

    International Nuclear Information System (INIS)

    Arkhincheev, V.E.

    2001-04-01

    To describe the ''anomalous'' diffusion the generalized diffusion equations of fractal order are deduced from microscopic models with anomalous diffusion as Comb model and Levy flights. It is shown that two types of equations are possible: with fractional temporal and fractional spatial derivatives. The solutions of these equations are obtained and the physical sense of these fractional equations is discussed. The relation between diffusion and conductivity is studied and the well-known Einstein relation is generalized for the anomalous diffusion case. It is shown that for Levy flight diffusion the Ohm's law is not applied and the current depends on electric field in a nonlinear way due to the anomalous character of Levy flights. The results of numerical simulations, which confirmed this conclusion, are also presented. (author)

  3. Hanford 67-series: a volume of atmospheric field diffusion measurements

    International Nuclear Information System (INIS)

    Nickola, P.W.

    1977-11-01

    This volume documents atmospheric diffusion experiments carried out at the Hanford reservation during the period 1967 to 1973. A total of 103 tracer releases during 54 release periods is tabulated. Multi-tracer releases (generally from different elevations) were made during most of the experimental periods. Release heights varied from ground level to an elevation of 111 m. Tracers were sampled simultaneously on as many as 10 arcs at distances of up to 12.8 km from the tracer release point. As many as 718 field sampling locations were employed during some of the experiments. Vertical profiles of concentration were monitored on towers during 23 of the 54 release periods. Concurrent vertical profiles of mean temperature, of mean wind speed and direction, and of direction standard deviation are also tabled for elevations up to 122 m

  4. The low-frequency sound power measuring technique for an underwater source in a non-anechoic tank

    Science.gov (United States)

    Zhang, Yi-Ming; Tang, Rui; Li, Qi; Shang, Da-Jing

    2018-03-01

    In order to determine the radiated sound power of an underwater source below the Schroeder cut-off frequency in a non-anechoic tank, a low-frequency extension measuring technique is proposed. This technique is based on a unique relationship between the transmission characteristics of the enclosed field and those of the free field, which can be obtained as a correction term based on previous measurements of a known simple source. The radiated sound power of an unknown underwater source in the free field can thereby be obtained accurately from measurements in a non-anechoic tank. To verify the validity of the proposed technique, a mathematical model of the enclosed field is established using normal-mode theory, and the relationship between the transmission characteristics of the enclosed and free fields is obtained. The radiated sound power of an underwater transducer source is tested in a glass tank using the proposed low-frequency extension measuring technique. Compared with the free field, the radiated sound power level of the narrowband spectrum deviation is found to be less than 3 dB, and the 1/3 octave spectrum deviation is found to be less than 1 dB. The proposed testing technique can be used not only to extend the low-frequency applications of non-anechoic tanks, but also for measurement of radiated sound power from complicated sources in non-anechoic tanks.

  5. Multicomponent diffusion in two-temperature magnetohydrodynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Chang, C.H.

    1996-01-01

    A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas mixtures [J. D. Ramshaw, J. Non-Equilib. Thermodyn. 18, 121 (1993)] is generalized to include the velocity-dependent Lorentz force on charged species in a magnetic field B. This generalization is used to extend a previous treatment of ambipolar diffusion in two-temperature multicomponent plasmas [J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 13, 489 (1993)] to situations in which B and the electrical current density are nonzero. General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both single- and two-temperature multicomponent magnetohydrodynamics (MHD). It is shown that the usual zero-field form of the Stefan-Maxwell equations can be preserved in the presence of B by introducing generalized binary diffusion tensors dependent on B. A self-consistent effective binary diffusion approximation is presented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description should be well suited for numerical calculations. copyright 1996 The American Physical Society

  6. Characteristics of Superjunction Lateral-Double-Diffusion Metal Oxide Semiconductor Field Effect Transistor and Degradation after Electrical Stress

    Science.gov (United States)

    Lin, Jyh‑Ling; Lin, Ming‑Jang; Lin, Li‑Jheng

    2006-04-01

    The superjunction lateral double diffusion metal oxide semiconductor field effect has recently received considerable attention. Introducing heavily doped p-type strips to the n-type drift region increases the horizontal depletion capability. Consequently, the doping concentration of the drift region is higher and the conduction resistance is lower than those of conventional lateral-double-diffusion metal oxide semiconductor field effect transistors (LDMOSFETs). These characteristics may increase breakdown voltage (\\mathit{BV}) and reduce specific on-resistance (Ron,sp). In this study, we focus on the electrical characteristics of conventional LDMOSFETs on silicon bulk, silicon-on-insulator (SOI) LDMOSFETs and superjunction LDMOSFETs after bias stress. Additionally, the \\mathit{BV} and Ron,sp of superjunction LDMOSFETs with different N/P drift region widths and different dosages are discussed. Simulation tools, including two-dimensional (2-D) TSPREM-4/MEDICI and three-dimensional (3-D) DAVINCI, were employed to determine the device characteristics.

  7. Sound radiation contrast in MR phase images. Method for the representation of elasticity, sound damping, and sound impedance changes

    International Nuclear Information System (INIS)

    Radicke, Marcus

    2009-01-01

    The method presented in this thesis combines ultrasound techniques with the magnetic-resonance tomography (MRT). An ultrasonic wave generates in absorbing media a static force in sound-propagation direction. The force leads at sound intensities of some W/cm 2 and a sound frequency in the lower MHz range to a tissue shift in the micrometer range. This tissue shift depends on the sound power, the sound frequency, the sound absorption, and the elastic properties of the tissue. A MRT sequence of the Siemens Healthcare AG was modified so that it measures (indirectly) the tissue shift, codes as grey values, and presents as 2D picture. By means of the grey values the sound-beam slope in the tissue can be visualized, and so additionally sound obstacles (changes of the sound impedance) can be detected. By the MRT images token up spatial changes of the tissue parameters sound absorption and elasticity can be detected. In this thesis measurements are presented, which show the feasibility and future chances of this method especially for the mammary-cancer diagnostics. [de

  8. Directional loudness in an anechoic sound field, head-related transfer functions, and binaural summation

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2006-01-01

    planes. Matches were obtained via a two-interval, adaptive forced-choice (2AFC) procedure for three center frequencies (0.4, 1 and 5 kHz) and two overall levels (45 and 65 dB SPL). The results showed that loudness is not constant over sound incidence angles, with directional sensitivity varying over......The effect of sound incidence angle on loudness was investigated using real sound sources positioned in an anechoic chamber. Eight normal-hearing listeners produced loudness matches between a frontal reference location and seven sources placed at other directions, both in the horizontal and median...... a range of up to 10 dB, exhibiting considerable frequency dependence, but only minor effects of overall level. The pattern of results varied substantially between subjects, but was largely accounted for by variations in individual head-related transfer functions. Modeling of binaural loudness based...

  9. Development of sound absorption measuring system with acoustic chamber; Kogata kyuon koka sokutei sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takahira, M.; Noba, M. [Toyota Motor Corp., Aichi (Japan); Matsuoka, H. [Nippon Soken, Inc., Tokyo (Japan)

    1998-05-01

    In order to measure sound absorption performance necessary to develop sound absorption materials, development was made on a device consisting of a small sound box capable of measurement inexpensively and easily, as a measure against the reverberation chamber method. In order to obtain stabilized diffusion sound internally, the sound box has a shape of asymmetric seven-side body in which sides do not face squarely with each other. The box was so sized that a large number of resonant vibration postures can be constituted at the targeted frequency simultaneously in the box. The box has a commercially available cone speaker with good acoustic output characteristics in frequency range of higher than 500 Hz installed on an inner side of the box. The sound source uses a method to derive sound absorption rate from difference of sound pressure levels. In order to eliminate need of averaging treatment by using a multi-point measurement inside the box, a discussion was given to provide an opening on part of the box to place the sound receiving point outside the opening. A square test piece is placed on the floor 0.5 meter or more away from the speaker in the box. As a result of the experiment, it was verified that the sound absorption rate obtained by this device corresponds well with that by the reverberation chamber method. The size of the test piece was also found adequate. 2 refs., 11 figs., 1 tab.

  10. Sound field separation with a double layer velocity transducer array (L)

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    of the array. The technique has been examined and compared with direct velocity based reconstruction, as well as with a technique based on the measurement of the sound pressure and particle velocity. The double layer velocity method circumvents some of the drawbacks of the pressure-velocity based...

  11. Active equalisation of the sound field in an extended region of a room

    DEFF Research Database (Denmark)

    Orozco-Santillán, Arturo

    1997-01-01

    studied by means of an idealised frequency domain model. The analysis is based on the calculation of the complex source strengths that minimise the difference between the actual sound pressure and the desired sound pressure in the listening area. Results in relation to the position of the sources......, the frequency range, and the size and location of the listening area are presented. However, the frequency-domain approach results in non-causal impulse responses that can be realised only at the expense of a delay. Therefore, this analysis is supplemented with a study of the equalisation carried out...

  12. Summary of high field diffusion MRI and microscopy data demonstrate microstructural aberration in chronic mild stress rat brain

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove

    2016-01-01

    amygdala of the same brain hemispheres is also included with three different stains: DiI and Hoechst stained microscopic images (confocal microscopy) andALDH1L1 antibody based immunohistochemistry.These stains may be used to evaluate neurite density (DiI), nuclear density (Hoechst) and astrocytic density...... (ALDH1L1). This combination of high field diffusion data and high resolution images from microscopy enables comparison of microstructural parameters derived from diffusion MRIto histological microstructure. The data provided here is used in the article (Jespersen, 2016) [1]....

  13. Improvements on the directional characteristics of a calibration sound source using the Boundary Element Method

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda; Barrera Figueroa, Salvador; Juhl, Peter Møller

    2008-01-01

    is of particular importance to achieve a sound field that reaches both microphones with the same level and that is sufficiently uniform at the microphone positions, in order to reduce the effect of misalignment. An existing sound source has been modeled using the Boundary Element Method, and the simulations have......The project Euromet-792 aims to investigate and improve methods for secondary free-field calibration of microphones. In this framework, the comparison method is being studied at DFM in relation to the more usual substitution method of microphone calibration. The design of the sound source...... been used to modify the source and make it suitable for this kind of calibration. It has been found that a central plug, already present in the device, can be re-shaped in such a way that makes the sound field on the microphone positions more uniform, even at rather high frequencies. Measurements have...

  14. Contribution of oblateness of the sun to radar sounding according to ...

    African Journals Online (AJOL)

    The Newtonian theory of radar sounding in the gravitational field of a spherical sun is well known [1]. It is now well established that most of the astronomical bodies including the sun are spheroidal (proplate or oblate) in shape [5,11,12]. The Newtonian mechanics has been used to resolve satisfactorily the radar sounding ...

  15. Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties

    OpenAIRE

    Yoshio Kurosawa; Takao Yamaguchi

    2015-01-01

    High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy ...

  16. Correspondence between sound propagation in discrete and continuous random media with application to forest acoustics.

    Science.gov (United States)

    Ostashev, Vladimir E; Wilson, D Keith; Muhlestein, Michael B; Attenborough, Keith

    2018-02-01

    Although sound propagation in a forest is important in several applications, there are currently no rigorous yet computationally tractable prediction methods. Due to the complexity of sound scattering in a forest, it is natural to formulate the problem stochastically. In this paper, it is demonstrated that the equations for the statistical moments of the sound field propagating in a forest have the same form as those for sound propagation in a turbulent atmosphere if the scattering properties of the two media are expressed in terms of the differential scattering and total cross sections. Using the existing theories for sound propagation in a turbulent atmosphere, this analogy enables the derivation of several results for predicting forest acoustics. In particular, the second-moment parabolic equation is formulated for the spatial correlation function of the sound field propagating above an impedance ground in a forest with micrometeorology. Effective numerical techniques for solving this equation have been developed in atmospheric acoustics. In another example, formulas are obtained that describe the effect of a forest on the interference between the direct and ground-reflected waves. The formulated correspondence between wave propagation in discrete and continuous random media can also be used in other fields of physics.

  17. Parameterizing Sound: Design Considerations for an Environmental Sound Database

    Science.gov (United States)

    2015-04-01

    associated with, or produced by, a physical event or human activity and 2) sound sources that are common in the environment. Reproductions or sound...Rogers S. Confrontation naming of environmental sounds. Journal of Clinical and Experimental Neuropsychology . 2000;22(6):830–864. 14 VanDerveer NJ

  18. Visualizing Sound Directivity via Smartphone Sensors

    Science.gov (United States)

    Hawley, Scott H.; McClain, Robert E., Jr.

    2018-01-01

    When Yang-Hann Kim received the Rossing Prize in Acoustics Education at the 2015 meeting of the Acoustical Society of America, he stressed the importance of offering visual depictions of sound fields when teaching acoustics. Often visualization methods require specialized equipment such as microphone arrays or scanning apparatus. We present a…

  19. Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds.

    Science.gov (United States)

    Eggleston, David B; Lillis, Ashlee; Bohnenstiehl, DelWayne R

    2016-01-01

    We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments. Similar to laboratory results, field experiments showed that oyster larval settlement in "larval housings" suspended above oyster reefs was significantly higher compared with off-reef sites.

  20. Multi-site Study of Diffusion Metric Variability: Characterizing the Effects of Site, Vendor, Field Strength, and Echo Time using the Histogram Distance

    Science.gov (United States)

    Helmer, K. G.; Chou, M-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.

    2016-01-01

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables. PMID:27350723

  1. Multi-site Study of Diffusion Metric Variability: Characterizing the Effects of Site, Vendor, Field Strength, and Echo Time using the Histogram Distance.

    Science.gov (United States)

    Helmer, K G; Chou, M-C; Preciado, R I; Gimi, B; Rollins, N K; Song, A; Turner, J; Mori, S

    2016-02-27

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables.

  2. Antiproton cross-field diffusion in antihydrogen production experiments due to anisotropic binary interactions

    International Nuclear Information System (INIS)

    Ordonez, C.A.; Correa, J.R.

    2007-01-01

    Collisional processes in electrostatic ion storage rings and reflecting-beam-type electrostatic ion traps can be associated with anisotropic binary interactions, because shielding of the Coulomb interactions may not take place in one or more dimensions. Collisional scattering theory has recently been developed for describing the velocity-space scattering processes in such systems [J.R. Correa, Y. Chang, C.A. Ordonez, Phys. Plasmas 12 (2005) 084505]. The theory is extended to enable the effect of a magnetic field to be included. The theory is intended to be applicable, for example, to antiproton scattering within nested Penning traps that are used to produce antihydrogen [M. Amoretti et al., Nature 419 (2002) 456; G. Gabrielse et al., Phys. Rev. Lett. 89 (2002) 213401]. The theory is applied for considering the cross-magnetic-field diffusion of the antiprotons

  3. Interactive Sound Propagation using Precomputation and Statistical Approximations

    Science.gov (United States)

    Antani, Lakulish

    Acoustic phenomena such as early reflections, diffraction, and reverberation have been shown to improve the user experience in interactive virtual environments and video games. These effects arise due to repeated interactions between sound waves and objects in the environment. In interactive applications, these effects must be simulated within a prescribed time budget. We present two complementary approaches for computing such acoustic effects in real time, with plausible variation in the sound field throughout the scene. The first approach, Precomputed Acoustic Radiance Transfer, precomputes a matrix that accounts for multiple acoustic interactions between all scene objects. The matrix is used at run time to provide sound propagation effects that vary smoothly as sources and listeners move. The second approach couples two techniques---Ambient Reverberance, and Aural Proxies---to provide approximate sound propagation effects in real time, based on only the portion of the environment immediately visible to the listener. These approaches lie at different ends of a space of interactive sound propagation techniques for modeling sound propagation effects in interactive applications. The first approach emphasizes accuracy by modeling acoustic interactions between all parts of the scene; the second approach emphasizes efficiency by only taking the local environment of the listener into account. These methods have been used to efficiently generate acoustic walkthroughs of architectural models. They have also been integrated into a modern game engine, and can enable realistic, interactive sound propagation on commodity desktop PCs.

  4. Survey on visualization and analysis techniques based on diffusion MRI for in-vivo anisotropic diffusion structures

    International Nuclear Information System (INIS)

    Masutani, Yoshitaka; Sato, Tetsuo; Urayama, Shin-ichi; Bihan, D.L.

    2008-01-01

    In association with development of diffusion MR imaging technologies for anisotropic diffusion measurement in living body, related research is explosively increasing including research fields of applied mathematics and visualization in addition to MR imaging, biomedical image technology, and medical science. One of the reasons is that the diffusion MRI data set is a set of high dimensional image information beyond conventional scalar or vector images, and is attractive for the researchers in the related fields. This survey paper is mainly aimed at introducing state-of-the-art of post processing techniques reported in the literature for diffusion MRI data, such as analysis and visualization. (author)

  5. Making fictions sound real - On film sound, perceptual realism and genre

    Directory of Open Access Journals (Sweden)

    Birger Langkjær

    2010-05-01

    Full Text Available This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences.

  6. Making fictions sound real - On film sound, perceptual realism and genre

    Directory of Open Access Journals (Sweden)

    Birger Langkjær

    2009-09-01

    Full Text Available This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences.

  7. Anomalous particle diffusion and Levy random walk of magnetic field lines in three dimensional solar wind turbulence

    International Nuclear Information System (INIS)

    Zimbardo, G.

    2005-01-01

    Plasma transport in the presence of turbulence depends on a variety of parameters like the fluctuation level ? B/B0, the ratio between the particle Larmor radius and the turbulence correlation lengths, and the turbulence anisotropy. In this presentation, we review the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B0 = B0ez and a Fourier representation for magnetic fluctuations, with wavectors forming any angle with respect to B0. The energy density spectrum is a power law, and in k space the constant amplitude surfaces are ellipsoids, described by the correlation lengths lx, ly, lz, which quantify the anisotropy of turbulence. For magnetic field lines, we find that transport perpendicular to the background field depends on the Kubo number R = ? B B0 lz lx . For small Kubo numbers, R ? 1, we find anomalous, non Gaussian transport regimes (both sub and superdiffusive) which can be described as a Levy random walk. Increasing the Kubo number, i.e., the fluctuation level ? B/B0 and/or the ratio lz/lx, we find first a quasilinear and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field heavily depends on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, ? B/B0 ? 0.5 ?1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case lz/lx ? 1, with Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for lz/lx > 1 normal, Gaussian diffusion is found. Increasing the ratio between the particle Larmor radius and the turbulence correlation lengths, the parallel superdiffusion is

  8. Application of porous material to reduce aerodynamic sound from bluff bodies

    International Nuclear Information System (INIS)

    Sueki, Takeshi; Takaishi, Takehisa; Ikeda, Mitsuru; Arai, Norio

    2010-01-01

    Aerodynamic sound derived from bluff bodies can be considerably reduced by flow control. In this paper, the authors propose a new method in which porous material covers a body surface as one of the flow control methods. From wind tunnel tests on flows around a bare cylinder and a cylinder with porous material, it has been clarified that the application of porous materials is effective in reducing aerodynamic sound. Correlation between aerodynamic sound and aerodynamic force fluctuation, and a surface pressure distribution of cylinders are measured to investigate a mechanism of aerodynamic sound reduction. As a result, the correlation between aerodynamic sound and aerodynamic force fluctuation exists in the flow around the bare cylinder and disappears in the flow around the cylinder with porous material. Moreover, the aerodynamic force fluctuation of the cylinder with porous material is less than that of the bare cylinder. The surface pressure distribution of the cylinder with porous material is quite different from that of the bare cylinder. These facts indicate that aerodynamic sound is reduced by suppressing the motion of vortices because aerodynamic sound is induced by the unstable motion of vortices. In addition, an instantaneous flow field in the wake of the cylinder is measured by application of the PIV technique. Vortices that are shed alternately from the bare cylinder disappear by application of porous material, and the region of zero velocity spreads widely behind the cylinder with porous material. Shear layers between the stationary region and the uniform flow become thin and stable. These results suggest that porous material mainly affects the flow field adjacent to bluff bodies and reduces aerodynamic sound by depriving momentum of the wake and suppressing the unsteady motion of vortices. (invited paper)

  9. Active control of radiated sound power from a baffled, rectangular panel

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    1996-01-01

    with an array of eleven microphones in front of the panel, is very close to minimising the actual radiated sound power. Practical experiments where such an array estimate has been minimised using the filtered X LMS algorithm have shown that substantial reductions of radiated sound power can be obtained over......Active control of radiated sound power from a rectangular baffled panel by minimisation of an accurate power estimate, using piezoceramic actuators, has been investigated. Computer simulations have shown that minimising a power estimate obtained by discretised integration of the far field intensity...... a broad frequency range using few piezoceramic actuators, provided that an accurate estimate of the sound power is available for minimisation....

  10. A multidimensional multigroup diffusion model for the determination of the frequency-dependent field of view of a neutron detector

    International Nuclear Information System (INIS)

    van der Hagen, T.H.J.J.; Hoogenboom, J.E.; van Dam, H.

    1992-01-01

    This paper reports on the sensitivity of a neutron detector to parametric fluctuations in the core of a reactor which depends on the position and the frequency of the perturbation. The basic neutron diffusion model for the calculation of this so-called field of view (FOV) of the detector is extended with respect to the dimensionality of the problem and the number of energy groups involved. The physical meaning of the FOV concept is illustrated by means of some simple examples, which can be handled analytically. The possibility of calculating the FOV by a conventional neutron diffusion code is demonstrated. In that case, the calculation in n neutron energy groups leads to 2n modified neutron diffusion equations

  11. Kubo formulae for the shear and bulk viscosity relaxation times and the scalar field theory shear $\\tau_\\pi$ calculation

    OpenAIRE

    Czajka, Alina; Jeon, Sangyong

    2017-01-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the r...

  12. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  13. Field Testing of an Unvented Roof with Fibrous Insulation, Tiles and Vapor Diffusion Venting

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States); Lstiburek, J. W. [Building Science Corporation, Westford, MA (United States)

    2016-02-05

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane. As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).

  14. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin

    2013-01-01

    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  15. The German scientific balloon and sounding rocket programme

    International Nuclear Information System (INIS)

    Dahl, A.F.

    1980-01-01

    This report contains information on sounding rocket projects in the scientific field of astronomy, aeronomy, magnetosphere, and material science under microgravity. The scientific balloon projects are performed with emphasis on astronomical research. By means of tables it is attempted to give a survey, as complete as possible, of the projects the time since the last symposium in Ajaccio, Corsica, and of preparations and plans for the future until 1983. The scientific balloon and sounding rocket projects form a small successful part of the German space research programme. (Auth.)

  16. Ultrathin metasurface with high absorptance for waterborne sound

    KAUST Repository

    Mei, Jun

    2018-01-12

    We present a design for an acoustic metasurface which can efficiently absorb low-frequency sound energy in water. The metasurface has a simple structure and consists of only two common materials: i.e., water and silicone rubber. The optimized material and geometrical parameters of the designed metasurface are determined by an analytic formula in conjunction with an iterative process based on the retrieval method. Although the metasurface is as thin as 0.15 of the wavelength, it can absorb 99.7% of the normally incident sound wave energy. Furthermore, the metasurface maintains a substantially high absorptance over a relatively broad bandwidth, and also works well for oblique incidence with an incident angle of up to 50°. Potential applications in the field of underwater sound isolation are expected.

  17. Experimental study of the possibility of reducing the resistance and unevenness of output field of velocities in flat diffuser channels with large opening angles

    Science.gov (United States)

    Dmitriev, S. S.; Vasil'ev, K. E.; Mokhamed, S. M. S. O.; Gusev, A. A.; Barbashin, A. V.

    2017-11-01

    In modern combined cycle gas turbines (CCGT), when designing the reducers from the output diffuser of a gas turbine to a boiler-utilizer, wide-angle diffusers are used, in which practically from the input a flow separation and transition to jet stream regime occurs. In such channels, the energy loss in the field of velocities sharply rise and the field of velocities in the output from them is characterized by considerable unevenness that worsens the heat transfer process in the first by motion tube bundles of the boiler-utilizer. The results of experimental research of the method for reducing the energy loss and alignment of the field of velocities at the output from a flat asymmetrical diffuser channel with one deflecting wall with the opening angle of 40° by means of placing inside the channel the flat plate parallel to the deflecting wall are presented in the paper. It is revealed that, at this placement of the plate in the channel, it has a chance to reduce the energy loss by 20%, considerably align the output field of velocities, and decrease the dynamic loads on the walls in the output cross-section. The studied method of resistance reduction and alignment of the fields of velocities in the flat diffuser channels was used for optimization of the reducer from the output diffuser of the gas turbine to the boiler-utilizer of CCGT of PGU-450T type of Kaliningrad Thermal Power Plant-2. The obtained results are evidence that the configuration of the reducer installed in the PGU-450T of Kaliningrad Thermal Power Plant-2 is not optimal. It follows also from the obtained data that working-off the reducer should be necessarily conducted by the test results of the channel consisting of the model of reducer with the model of boiler-utilizer installed behind it. Application of the method of alignment of output field of velocities and reducing the resistance in the wide-angle diffusers investigated in the work made it possible—when using the known model of diffusion

  18. Effect of ac electric fields on counterflow diffusion flame of methane

    KAUST Repository

    Chul Choi, Byung

    2012-08-01

    The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force. © 2012 The Korean Society of Mechanical Engineers.

  19. Effect of ac electric fields on counterflow diffusion flame of methane

    KAUST Repository

    Chul Choi, Byung; Kuk Kim, Hyung; Chung, Suk-Ho

    2012-01-01

    The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force. © 2012 The Korean Society of Mechanical Engineers.

  20. Making Sound Connections

    Science.gov (United States)

    Deal, Walter F., III

    2007-01-01

    Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…

  1. Numerical design and testing of a sound source for secondary calibration of microphones using the Boundary Element Method

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Juhl, Peter Møller; Barrera Figueroa, Salvador

    2009-01-01

    Secondary calibration of microphones in free field is performed by placing the microphone under calibration in an anechoic chamber with a sound source, and exposing it to a controlled sound field. A calibrated microphone is also measured as a reference. While the two measurements are usually made...... apart to avoid acoustic interaction. As a part of the project Euromet-792, aiming to investigate and improve methods for secondary free-field calibration of microphones, a sound source suitable for simultaneous secondary free-field calibration has been designed using the Boundary Element Method...... of the Danish Fundamental Metrology Institute (DFM). The design and verification of the source are presented in this communication....

  2. A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.

    Directory of Open Access Journals (Sweden)

    Ana Calabrese

    2011-01-01

    Full Text Available In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF, a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-response function of auditory neurons using a generalized linear model (GLM. In this model, each cell's input is described by: 1 a stimulus filter (STRF; and 2 a post-spike filter, which captures dependencies on the neuron's spiking history. The output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs and modulation limited (ml noise. We compare this model to normalized reverse correlation (NRC, the traditional method for STRF estimation, in terms of predictive power and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning than does the NRC method when responses to complex sounds are studied in these neurons.

  3. Reactive force field simulation of proton diffusion in BaZrO{sub 3} using an empirical valence bond approach

    Energy Technology Data Exchange (ETDEWEB)

    Raiteri, Paolo; Gale, Julian D [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box 1987, Perth, WA 6845 (Australia); Bussi, Giovanni, E-mail: paolo@ivec.org, E-mail: julian@ivec.org [Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste (Italy)

    2011-08-24

    A new reactive force field to describe proton diffusion within the solid oxide fuel cell material BaZrO{sub 3} has been derived. Using a quantum mechanical potential energy surface, the parameters of an interatomic potential model to describe hydroxyl groups within both pure and yttrium-doped BaZrO{sub 3} have been determined. Reactivity is then incorporated through the use of the empirical valence bond model. Molecular dynamics simulations (EVB-MD) have been performed to explore the diffusion of hydrogen using a stochastic thermostat and barostat whose equations are extended to the isostress-isothermal ensemble. In the low concentration limit, the presence of yttrium is found not to significantly influence the diffusivity of hydrogen, despite the proton having a longer residence time at oxygen adjacent to the dopant. This lack of influence is due to the fact that trapping occurs infrequently, even when the proton diffuses through octahedra adjacent to the dopant. The activation energy for diffusion is found to be 0.42 eV, in good agreement with experimental values, though the prefactor is slightly underestimated.

  4. Abnormal sound detection device

    International Nuclear Information System (INIS)

    Yamada, Izumi; Matsui, Yuji.

    1995-01-01

    Only components synchronized with rotation of pumps are sampled from detected acoustic sounds, to judge the presence or absence of abnormality based on the magnitude of the synchronized components. A synchronized component sampling means can remove resonance sounds and other acoustic sounds generated at a synchronously with the rotation based on the knowledge that generated acoustic components in a normal state are a sort of resonance sounds and are not precisely synchronized with the number of rotation. On the other hand, abnormal sounds of a rotating body are often caused by compulsory force accompanying the rotation as a generation source, and the abnormal sounds can be detected by extracting only the rotation-synchronized components. Since components of normal acoustic sounds generated at present are discriminated from the detected sounds, reduction of the abnormal sounds due to a signal processing can be avoided and, as a result, abnormal sound detection sensitivity can be improved. Further, since it is adapted to discriminate the occurrence of the abnormal sound from the actually detected sounds, the other frequency components which are forecast but not generated actually are not removed, so that it is further effective for the improvement of detection sensitivity. (N.H.)

  5. Approximate Seismic Diffusive Models of Near-Receiver Geology: Applications from Lab Scale to Field

    Science.gov (United States)

    King, Thomas; Benson, Philip; De Siena, Luca; Vinciguerra, Sergio

    2017-04-01

    This paper presents a novel and simple method of seismic envelope analysis that can be applied at multiple scales, e.g. field, m to km scale and laboratory, mm to cm scale, and utilises the diffusive approximation of the seismic wavefield (Wegler, 2003). Coefficient values for diffusion and attenuation are obtained from seismic coda energies and are used to describe the rate at which seismic energy is scattered and attenuated into the local medium around a receiver. Values are acquired by performing a linear least squares inversion of coda energies calculated in successive time windows along a seismic trace. Acoustic emission data were taken from piezoelectric transducers (PZT) with typical resonance frequency of 1-5MHz glued around rock samples during deformation laboratory experiments carried out using a servo-controlled triaxial testing machine, where a shear/damage zone is generated under compression after the nucleation, growth and coalescence of microcracks. Passive field data were collected from conventional geophones during the 2004-2008 eruption of Mount St. Helens volcano (MSH), USA where a sudden reawakening of the volcanic activity and a new dome growth has occurred. The laboratory study shows a strong correlation between variations of the coefficients over time and the increase of differential stress as the experiment progresses. The field study links structural variations present in the near-surface geology, including those seen in previous geophysical studies of the area, to these same coefficients. Both studies show a correlation between frequency and structural feature size, i.e. landslide slip-planes and microcracks, with higher frequencies being much more sensitive to smaller scale features and vice-versa.

  6. Curating sound performance as laboratories of envisioning

    DEFF Research Database (Denmark)

    Holmboe, Rasmus

    This paper is based on my dissertation research that investigates how sound performance can be presented and represented - in real time, as well as in and through the archive. This double perspective opens a field of curatorial problems related to the simultaneous movements of both envisioning...

  7. Sound transmission reduction with intelligent panel systems

    Science.gov (United States)

    Fuller, Chris R.; Clark, Robert L.

    1992-01-01

    Experimental and theoretical investigations are performed of the use of intelligent panel systems to control the sound transmission and radiation. An intelligent structure is defined as a structural system with integrated actuators and sensors under the guidance of an adaptive, learning type controller. The system configuration is based on the Active Structural Acoustic Control (ASAC) concept where control inputs are applied directly to the structure to minimize an error quantity related to the radiated sound field. In this case multiple piezoelectric elements are employed as sensors. The importance of optimal shape and location is demonstrated to be of the same order of influence as increasing the number of channels of control.

  8. Sound beam manipulation based on temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Feng [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Quan, Li; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  9. MEASUREMENTS OF THE MEAN DIFFUSE GALACTIC LIGHT SPECTRUM IN THE 0.95–1.65 μm BAND FROM CIBER

    Energy Technology Data Exchange (ETDEWEB)

    Arai, T.; Matsuura, S.; Sano, K.; Matsumoto, T.; Nakagawa, T.; Onishi, Y. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Bock, J.; Lanz, A.; Korngut, P.; Zemcov, M. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Cooray, A.; Smidt, J. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Kim, M. G.; Lee, H. M. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Shirahata, M. [National Institutes of Natural Science, National Astronomical Observatory of Japan (NAOJ), Tokyo 181-8588 (Japan); Tsumura, K. [Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai 980-8578 (Japan)

    2015-06-10

    We report measurements of the diffuse galactic light (DGL) spectrum in the near-infrared, spanning the wavelength range 0.95–1.65 μm by the Cosmic Infrared Background ExpeRiment. Using the low-resolution spectrometer calibrated for absolute spectro-photometry, we acquired long-slit spectral images of the total diffuse sky brightness toward six high-latitude fields spread over four sounding rocket flights. To separate the DGL spectrum from the total sky brightness, we correlated the spectral images with a 100 μm intensity map, which traces the dust column density in optically thin regions. The measured DGL spectrum shows no resolved features and is consistent with other DGL measurements in the optical and at near-infrared wavelengths longer than 1.8 μm. Our result implies that the continuum is consistently reproduced by models of scattered starlight in the Rayleigh scattering regime with a few large grains.

  10. Silicon transport under rotating and combined magnetic fields in liquid phase diffusion growth of SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Armour, N.; Dost, S. [Crystal Growth Laboratory, University of Victoria, Victoria, BC, V8W 3P6 (Canada)

    2010-04-15

    The effect of applied rotating and combined (rotating and static) magnetic fields on silicon transport during the liquid phase diffusion growth of SiGe was experimentally studied. 72-hour growth periods produced some single crystal sections. Single and polycrystalline sections of the processed samples were examined for silicon composition. Results show that the application of a rotating magnetic field enhances silicon transport in the melt. It also has a slight positive effect on flattening the initial growth interface. For comparison, growth experiments were also conducted under combined (rotating and static) magnetic fields. The processed samples revealed that the addition of static field altered the thermal characteristics of the system significantly and led to a complete melt back of the germanium seed. Silicon transport in the melt was also enhanced under combined fields compared with experiments with no magnetic field. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Studies of protonic self-diffusion and conductivity in 12-tungstophophoric acid hydrates by pulsed field gradient 1H NMR and ac Conductivity

    International Nuclear Information System (INIS)

    Slade, R.C.; Pressman, H.A.; Barker, J.; Strange, J.H.

    1988-01-01

    Temperature dependent protonic conductivities σ and 1/H self-diffusion coefficients, D, are reported for polycrystalline hydrates of 12-tungstophosphoric acid (TPA). Conductivities were measured using ac admittane spectrometry and diffusion coefficients by the pulsed field gradient NMR technique. Conductivities for the hydrates TPA.nH 2 O (n=6, 14, 21) increase with n. Examination of σ and D values and of activation techniques shows self-diffusion and conduction to occur by different mechanisms in the higher hydrates. 25 refs.; 14 figs.; 1 table

  12. Sound Search Engine Concept

    DEFF Research Database (Denmark)

    2006-01-01

    Sound search is provided by the major search engines, however, indexing is text based, not sound based. We will establish a dedicated sound search services with based on sound feature indexing. The current demo shows the concept of the sound search engine. The first engine will be realased June...

  13. Sounding rockets explore the ionosphere

    International Nuclear Information System (INIS)

    Mendillo, M.

    1990-01-01

    It is suggested that small, expendable, solid-fuel rockets used to explore ionospheric plasma can offer insight into all the processes and complexities common to space plasma. NASA's sounding rocket program for ionospheric research focuses on the flight of instruments to measure parameters governing the natural state of the ionosphere. Parameters include input functions, such as photons, particles, and composition of the neutral atmosphere; resultant structures, such as electron and ion densities, temperatures and drifts; and emerging signals such as photons and electric and magnetic fields. Systematic study of the aurora is also conducted by these rockets, allowing sampling at relatively high spatial and temporal rates as well as investigation of parameters, such as energetic particle fluxes, not accessible to ground based systems. Recent active experiments in the ionosphere are discussed, and future sounding rocket missions are cited

  14. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi

    2006-07-01

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusion model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.

  15. Application of semi-supervised deep learning to lung sound analysis.

    Science.gov (United States)

    Chamberlain, Daniel; Kodgule, Rahul; Ganelin, Daniela; Miglani, Vivek; Fletcher, Richard Ribon

    2016-08-01

    The analysis of lung sounds, collected through auscultation, is a fundamental component of pulmonary disease diagnostics for primary care and general patient monitoring for telemedicine. Despite advances in computation and algorithms, the goal of automated lung sound identification and classification has remained elusive. Over the past 40 years, published work in this field has demonstrated only limited success in identifying lung sounds, with most published studies using only a small numbers of patients (typically Ndeep learning algorithm for automatically classify lung sounds from a relatively large number of patients (N=284). Focusing on the two most common lung sounds, wheeze and crackle, we present results from 11,627 sound files recorded from 11 different auscultation locations on these 284 patients with pulmonary disease. 890 of these sound files were labeled to evaluate the model, which is significantly larger than previously published studies. Data was collected with a custom mobile phone application and a low-cost (US$30) electronic stethoscope. On this data set, our algorithm achieves ROC curves with AUCs of 0.86 for wheeze and 0.74 for crackle. Most importantly, this study demonstrates how semi-supervised deep learning can be used with larger data sets without requiring extensive labeling of data.

  16. The sound manifesto

    Science.gov (United States)

    O'Donnell, Michael J.; Bisnovatyi, Ilia

    2000-11-01

    Computing practice today depends on visual output to drive almost all user interaction. Other senses, such as audition, may be totally neglected, or used tangentially, or used in highly restricted specialized ways. We have excellent audio rendering through D-A conversion, but we lack rich general facilities for modeling and manipulating sound comparable in quality and flexibility to graphics. We need coordinated research in several disciplines to improve the use of sound as an interactive information channel. Incremental and separate improvements in synthesis, analysis, speech processing, audiology, acoustics, music, etc. will not alone produce the radical progress that we seek in sonic practice. We also need to create a new central topic of study in digital audio research. The new topic will assimilate the contributions of different disciplines on a common foundation. The key central concept that we lack is sound as a general-purpose information channel. We must investigate the structure of this information channel, which is driven by the cooperative development of auditory perception and physical sound production. Particular audible encodings, such as speech and music, illuminate sonic information by example, but they are no more sufficient for a characterization than typography is sufficient for characterization of visual information. To develop this new conceptual topic of sonic information structure, we need to integrate insights from a number of different disciplines that deal with sound. In particular, we need to coordinate central and foundational studies of the representational models of sound with specific applications that illuminate the good and bad qualities of these models. Each natural or artificial process that generates informative sound, and each perceptual mechanism that derives information from sound, will teach us something about the right structure to attribute to the sound itself. The new Sound topic will combine the work of computer

  17. Sound and vibration sensitivity of VIIIth nerve fibers in the grassfrog, Rana temporaria

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Jørgensen, M B

    1996-01-01

    thresholds from 0.02 cm/s2. The sound and vibration sensitivity was compared for each fiber using the offset between the rate-level curves for sound and vibration stimulation as a measure of relative vibration sensitivity. When measured in this way relative vibration sensitivity decreases with frequency from......We have studied the sound and vibration sensitivity of 164 amphibian papilla fibers in the VIIIth nerve of the grassfrog, Rana temporaria. The VIIIth nerve was exposed using a dorsal approach. The frogs were placed in a natural sitting posture and stimulated by free-field sound. Furthermore......, the animals were stimulated with dorso-ventral vibrations, and the sound-induced vertical vibrations in the setup could be canceled by emitting vibrations in antiphase from the vibration exciter. All low-frequency fibers responded to both sound and vibration with sound thresholds from 23 dB SPL and vibration...

  18. Unsound Sound

    DEFF Research Database (Denmark)

    Knakkergaard, Martin

    2016-01-01

    This article discusses the change in premise that digitally produced sound brings about and how digital technologies more generally have changed our relationship to the musical artifact, not simply in degree but in kind. It demonstrates how our acoustical conceptions are thoroughly challenged...... by the digital production of sound and, by questioning the ontological basis for digital sound, turns our understanding of the core term substance upside down....

  19. Inverse Diffusion Curves Using Shape Optimization.

    Science.gov (United States)

    Zhao, Shuang; Durand, Fredo; Zheng, Changxi

    2018-07-01

    The inverse diffusion curve problem focuses on automatic creation of diffusion curve images that resemble user provided color fields. This problem is challenging since the 1D curves have a nonlinear and global impact on resulting color fields via a partial differential equation (PDE). We introduce a new approach complementary to previous methods by optimizing curve geometry. In particular, we propose a novel iterative algorithm based on the theory of shape derivatives. The resulting diffusion curves are clean and well-shaped, and the final image closely approximates the input. Our method provides a user-controlled parameter to regularize curve complexity, and generalizes to handle input color fields represented in a variety of formats.

  20. Pitch-angle diffusion of electrons through growing and propagating along a magnetic field electromagnetic wave in Earth's radiation belts

    International Nuclear Information System (INIS)

    Choi, C.-R.; Dokgo, K.; Min, K.-W.; Woo, M.-H.; Choi, E.-J.; Hwang, J.; Park, Y.-D.; Lee, D.-Y.

    2015-01-01

    The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can be applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts

  1. Relating auditory attributes of multichannel sound to preference and to physical parameters

    DEFF Research Database (Denmark)

    Choisel, Sylvain; Wickelmaier, Florian Maria

    2006-01-01

    playing a role in sound quality evaluation. Eight selected attributes are quantified by a panel of 39 listeners using paired-comparison judgments and probabilistic choice models, and related to overall preference. A multiple-regression model predicts preference well, and some similarities are observed......Sound reproduced by multichannel systems is affected by many factors giving rise to various sensations, or auditory attributes. Relating specific attributes to overall preference and to physical measures of the sound field provides valuable information for a better understanding of the parameters...

  2. The relationship between sound insulation and acoustic quality in dwellings

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1998-01-01

    to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings.......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the difficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...

  3. Similarity and pleasantness assessments of water-fountain sounds recorded in urban public spaces.

    Science.gov (United States)

    Ekman, Maria Rådsten; Lundén, Peter; Nilsson, Mats E

    2015-11-01

    Water fountains are potential tools for soundscape improvement, but little is known about their perceptual properties. To explore this, sounds were recorded from 32 fountains installed in urban parks. The sounds were recorded with a sound-field microphone and were reproduced using an ambisonic loudspeaker setup. Fifty-seven listeners assessed the sounds with regard to similarity and pleasantness. Multidimensional scaling of similarity data revealed distinct groups of soft variable and loud steady-state sounds. Acoustically, the soft variable sounds were characterized by low overall levels and high temporal variability, whereas the opposite pattern characterized the loud steady-state sounds. The perceived pleasantness of the sounds was negatively related to their overall level and positively related to their temporal variability, whereas spectral centroid was weakly correlated to pleasantness. However, the results of an additional experiment, using the same sounds set equal in overall level, found a negative relationship between pleasantness and spectral centroid, suggesting that spectral factors may influence pleasantness scores in experiments where overall level does not dominate pleasantness assessments. The equal-level experiment also showed that several loud steady-state sounds remained unpleasant, suggesting an inherently unpleasant sound character. From a soundscape design perspective, it may be advisable to avoid fountains generating such sounds.

  4. Early Sound Symbolism for Vowel Sounds

    Directory of Open Access Journals (Sweden)

    Ferrinne Spector

    2013-06-01

    Full Text Available Children and adults consistently match some words (e.g., kiki to jagged shapes and other words (e.g., bouba to rounded shapes, providing evidence for non-arbitrary sound–shape mapping. In this study, we investigated the influence of vowels on sound–shape matching in toddlers, using four contrasting pairs of nonsense words differing in vowel sound (/i/ as in feet vs. /o/ as in boat and four rounded–jagged shape pairs. Crucially, we used reduplicated syllables (e.g., kiki vs. koko rather than confounding vowel sound with consonant context and syllable variability (e.g., kiki vs. bouba. Toddlers consistently matched words with /o/ to rounded shapes and words with /i/ to jagged shapes (p < 0.01. The results suggest that there may be naturally biased correspondences between vowel sound and shape.

  5. The isolation of low frequency impact sounds in hotel construction

    Science.gov (United States)

    LoVerde, John J.; Dong, David W.

    2002-11-01

    One of the design challenges in the acoustical design of hotels is reducing low frequency sounds from footfalls occurring on both carpeted and hard-surfaced floors. Research on low frequency impact noise [W. Blazier and R. DuPree, J. Acoust. Soc. Am. 96, 1521-1532 (1994)] resulted in a conclusion that in wood construction low frequency impact sounds were clearly audible and that feasible control methods were not available. The results of numerous FIIC (Field Impact Insulation Class) measurements performed in accordance with ASTM E1007 indicate the lack of correlation between FIIC ratings and the reaction of occupants in the room below. The measurements presented include FIIC ratings and sound pressure level measurements below the ASTM E1007 low frequency limit of 100 Hertz, and reveal that excessive sound levels in the frequency range of 63 to 100 Hertz correlate with occupant complaints. Based upon this history, a tentative criterion for maximum impact sound level in the low frequency range is presented. The results presented of modifying existing constructions to reduce the transmission of impact sounds at low frequencies indicate that there may be practical solutions to this longstanding problem.

  6. Sound Art and Spatial Practices: Situating Sound Installation Art Since 1958

    OpenAIRE

    Ouzounian, Gascia

    2008-01-01

    This dissertation examines the emergence and development ofsound installation art, an under-recognized tradition that hasdeveloped between music, architecture, and media art practicessince the late 1950s. Unlike many musical works, which are concernedwith organizing sounds in time, sound installations organize sounds inspace; they thus necessitate new theoretical and analytical modelsthat take into consideration the spatial situated-ness of sound. Existingdiscourses on “spatial sound” privile...

  7. Extending the radial diffusion model of Falthammar to non-dipole background field

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Gregory Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    A model for radial diffusion caused by electromagnetic disturbances was published by Falthammar (1965) using a two-parameter model of the disturbance perturbing a background dipole magnetic field. Schulz and Lanzerotti (1974) extended this model by recognizing the two parameter perturbation as the leading (non--dipole) terms of the Mead Williams magnetic field model. They emphasized that the magnetic perturbation in such a model induces an electric ield that can be calculated from the motion of field lines on which the particles are ‘frozen’. Roederer and Zhang (2014) describe how the field lines on which the particles are frozen can be calculated by tracing the unperturbed field lines from the minimum-B location to the ionospheric footpoint, and then tracing the perturbed field (which shares the same ionospheric footpoint due to the frozen -in condition) from the ionospheric footpoint back to a perturbed minimum B location. The instantaneous change n Roederer L*, dL*/dt, can then be computed as the product (dL*/dphi)*(dphi/dt). dL*/Dphi is linearly dependent on the perturbation parameters (to first order) and is obtained by computing the drift across L*-labeled perturbed field lines, while dphi/dt is related to the bounce-averaged gradient-curvature drift velocity. The advantage of assuming a dipole background magnetic field, as in these previous studies, is that the instantaneous dL*/dt can be computed analytically (with some approximations), as can the DLL that results from integrating dL*/dt over time and computing the expected value of (dL*)^2. The approach can also be applied to complex background magnetic field models like T89 or TS04, on top of which the small perturbations are added, but an analytical solution is not possible and so a numerical solution must be implemented. In this talk, I discuss our progress in implementing a numerical solution to the calculation of DL*L* using arbitrary background field models with simple electromagnetic

  8. Diffuse axonal injury at ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Christoph Moenninghoff

    Full Text Available Diffuse axonal injury (DAI is a specific type of traumatic brain injury caused by shearing forces leading to widespread tearing of axons and small vessels. Traumatic microbleeds (TMBs are regarded as a radiological marker for DAI. This study aims to compare DAI-associated TMBs at 3 Tesla (T and 7 T susceptibility weighted imaging (SWI to evaluate possible diagnostic benefits of ultra-high field (UHF MRI.10 study participants (4 male, 6 female, age range 20-74 years with known DAI were included. All MR exams were performed with a 3 T MR system (Magnetom Skyra and a 7 T MR research system (Magnetom 7 T, Siemens AG, Healthcare Sector, Erlangen, Germany each in combination with a 32-channel-receive coil. The average time interval between trauma and imaging was 22 months. Location and count of TMBs were independently evaluated by two neuroradiologists on 3 T and 7 T SWI images with similar and additionally increased spatial resolution at 7 T. Inter- and intraobserver reliability was assessed using the interclass correlation coefficient (ICC. Count and diameter of TMB were evaluated with Wilcoxon signed rank test.Susceptibility weighted imaging revealed a total of 485 TMBs (range 1-190, median 25 at 3 T, 584 TMBs (plus 20%, range 1-262, median 30.5 at 7 T with similar spatial resolution, and 684 TMBs (plus 41%, range 1-288, median 39.5 at 7 T with 10-times higher spatial resolution. Hemorrhagic DAI appeared significantly larger at 7 T compared to 3 T (p = 0.005. Inter- and intraobserver correlation regarding the counted TMB was high and almost equal 3 T and 7 T.7 T SWI improves the depiction of small hemorrhagic DAI compared to 3 T and may be supplementary to lower field strengths for diagnostic in inconclusive or medicolegal cases.

  9. Fe+3 diffusion coefficient in Fricke xylenol gel through shielding half of a 6 MV photon beam field size

    International Nuclear Information System (INIS)

    Cavalcante, Fernanda; Oliveira, Lucas de; Almeida, Adelaide de

    2009-01-01

    Diffusion of ions can be observed in a solution or gel when a difference occurs in their concentrations. For dosimetric gels, the diffusion can interfere on measurements of absorbed dose delivered to the patient in a radiotherapic treatment, when the time interval for measurements pos-irradiation is considered long. In the present work, a pos-irradiation Fricke Xylenol Gel (FXG) spatial dose distribution was obtained for several time intervals and the diffusion coefficient was inferred following a literature theoretical methodology. Using FXG samples, whose [Fe 2+ ] are oxidated to [Fe +3 ] when irradiated, the diffusion coefficient for the last ion was obtained in order that one can have the real spatial dose distribution right after the irradiation and this was done using half shielded 6 MV photons field size. Each sample, for each time interval selected (from 2.8 up to 28.6 hours) was analyzed in function of their optical absorbance. From Fick's law and from an error equation, the diffusion coefficient was inferred, which can be used to correct the absorbance positions promptly after irradiation. The diffusion coefficient found for the FXG dosimeter, has the value of 0.452 mm 2 /h, that is between the interval of 0.3 up to 2.0 mm 2 /h, predicted for gel type dosimeters. (author)

  10. Finite-volume scheme for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)

    2016-02-01

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  11. Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T.

    Science.gov (United States)

    Beaujoin, Justine; Palomero-Gallagher, Nicola; Boumezbeur, Fawzi; Axer, Markus; Bernard, Jeremy; Poupon, Fabrice; Schmitz, Daniel; Mangin, Jean-François; Poupon, Cyril

    2018-06-01

    The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer's disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of diffusion MRI potential, using ultra-high field (11.7 T) and strong gradients (750 mT/m), to reveal the extra- and intra-hippocampal connectivity in addition to its microstructure. To this purpose, a multiple-shell diffusion-weighted acquisition protocol was developed to reach an ultra-high spatio-angular resolution with a good signal-to-noise ratio. The MRI data set was analyzed using analytical Q-Ball Imaging, Diffusion Tensor Imaging (DTI), and Neurite Orientation Dispersion and Density Imaging models. High Angular Resolution Diffusion Imaging estimates allowed us to obtain an accurate tractography resolving more complex fiber architecture than DTI models, and subsequently provided a map of the cross-regional connectivity. The neurite density was akin to that found in the histological literature, revealing the three hippocampal layers. Moreover, a gradient of connectivity and neurite density was observed between the anterior and the posterior part of the hippocampus. These results demonstrate that ex vivo ultra-high field/ultra-high gradients diffusion-weighted MRI allows the mapping of the inner connectivity of the human hippocampus, its microstructure, and to accurately reconstruct elements of the polysynaptic intra-hippocampal pathway using fiber tractography techniques at very high spatial/angular resolutions.

  12. The self-similar field and its application to a diffusion problem

    International Nuclear Information System (INIS)

    Michelitsch, Thomas M

    2011-01-01

    We introduce a continuum approach which accounts for self-similarity as a symmetry property of an infinite medium. A self-similar Laplacian operator is introduced which is the source of self-similar continuous fields. In this way ‘self-similar symmetry’ appears in an analogous manner as transverse isotropy or cubic symmetry of a medium. As a consequence of the self-similarity the Laplacian is a non-local fractional operator obtained as the continuum limit of the discrete self-similar Laplacian introduced recently by Michelitsch et al (2009 Phys. Rev. E 80 011135). The dispersion relation of the Laplacian and its Green’s function is deduced in closed forms. As a physical application of the approach we analyze a self-similar diffusion problem. The statistical distributions, which constitute the solutions of this problem, turn out to be Lévi-stable distributions with infinite variances characterizing the statistics of one-dimensional Lévi flights. The self-similar continuum approach introduced in this paper has the potential to be applied on a variety of scale invariant and fractal problems in physics such as in continuum mechanics, electrodynamics and in other fields. (paper)

  13. Investigating the impact of noise incidence angle on the sound insulation of a supply air window

    DEFF Research Database (Denmark)

    Hansen, Morten B.; Tambo, Torben

    2015-01-01

    for the highest frequencies are less than the sound insulation of the same window measured in the laboratory. The aim of this paper is through simulations in the geometric acoustic simulation software ODEON, to investigate the impact of noise incidence angle on the sound insulation of the Supply Air Window......The Danish Environmental Agency introduced in 2007 a guideline “Noise from roads”, in which noise limits for open windows were introduced. This guideline has led to investigations of open windows with good sound insulation, and among one of these windows are the “Supply Air Window”. Prior sound...... insulation measurements of the Supply Air Window show a difference in the frequency range above 2 kHz, for field measurements carried out according to EN ISO 140-5 and laboratory measurements carried out according to EN ISO 10140-2. It is found that the sound insulation measured in the field setup...

  14. Sound a very short introduction

    CERN Document Server

    Goldsmith, Mike

    2015-01-01

    Sound is integral to how we experience the world, in the form of noise as well as music. But what is sound? What is the physical basis of pitch and harmony? And how are sound waves exploited in musical instruments? Sound: A Very Short Introduction looks at the science of sound and the behaviour of sound waves with their different frequencies. It also explores sound in different contexts, covering the audible and inaudible, sound underground and underwater, acoustic and electronic sound, and hearing in humans and animals. It concludes with the problem of sound out of place—noise and its reduction.

  15. The German scientific balloon and sounding rocket projects

    International Nuclear Information System (INIS)

    Dalh, A.F.

    1978-01-01

    This report contains information on the sounding rocket projects: experiment preparation for spacelab (astronomy), aeronomy, magnetosphere, and material science. Except for material science the scientific balloon projects are performed in the some scientific fields, but with a strong emphasis on astronomical research. It is tried to provide by means of tables a survey as complete as possible of the projects for the time since the last symposium in Elmau and of the plans for the future until 1981. The scientific balloon and sounding rocket projects form a small succesful part of the German space research programme. (author)

  16. Atmospheric turbulence and diffusion research

    International Nuclear Information System (INIS)

    Hosker, R.P. Jr.

    1993-01-01

    The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange

  17. Vorticity field, helicity integral and persistence of entanglement in reaction-diffusion systems

    International Nuclear Information System (INIS)

    Trueba, J L; Arrayas, M

    2009-01-01

    We show that a global description of the stability of entangled structures in reaction-diffusion systems can be made by means of a helicity integral. A vorticity vector field is defined for these systems, as in electromagnetism or fluid dynamics. We have found under which conditions the helicity is conserved or lost through the boundaries of the medium, so the entanglement of structures observed is preserved or disappears during time evolution. We illustrate the theory with an example of knotted entanglement in a FitzHugh-Nagumo model. For this model, we introduce new non-trivial initial conditions using the Hopf fibration and follow the time evolution of the entanglement. (fast track communication)

  18. Vorticity field, helicity integral and persistence of entanglement in reaction-diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Trueba, J L; Arrayas, M [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)

    2009-07-17

    We show that a global description of the stability of entangled structures in reaction-diffusion systems can be made by means of a helicity integral. A vorticity vector field is defined for these systems, as in electromagnetism or fluid dynamics. We have found under which conditions the helicity is conserved or lost through the boundaries of the medium, so the entanglement of structures observed is preserved or disappears during time evolution. We illustrate the theory with an example of knotted entanglement in a FitzHugh-Nagumo model. For this model, we introduce new non-trivial initial conditions using the Hopf fibration and follow the time evolution of the entanglement. (fast track communication)

  19. A numerical study of one-dimensional replicating patterns in reaction-diffusion systems with non-linear diffusion coefficients

    International Nuclear Information System (INIS)

    Ferreri, J. C.; Carmen, A. del

    1998-01-01

    A numerical study of the dynamics of pattern evolution in reaction-diffusion systems is performed, although limited to one spatial dimension. The diffusion coefficients are nonlinear, based on powers of the scalar variables. The system keeps the dynamics of previous studies in the literature, but the presence of nonlinear diffusion generates a field of strong nonlinear interactions due to the presence of receding travelling waves. This field is limited by the plane of symmetry of the space domain and the last born outgoing travelling wave. These effects are discussed. (author). 10 refs., 7 figs

  20. Effect of a sound wave on the stability of an argon discharge

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Karapetyan, D.M.; Tavakalyan, L.B.

    1992-01-01

    The effect of a sound wave on the stability of the positive column of an argon discharge has been studied experimentally in the range of pressures from 40 to 180 torr and discharge currents from 40 to 110 mA in a tube with an interior diameter of 9.8 cm. It is shown that, depending on the intensity of the sound wave and the discharge parameters, sound can cause the positive column either to contract or to leave the contracted state. The electric field strength has been measured as a function of the sound intensity. An analogy between the effect of sound and that of longitudinal pumping of the gas on the argon discharge parameters has been established. The radial temperature of the gas has been studied in an argon discharge as a function of the sound intensity for different gas pressures. A direct relationship has been established between the sign of the detector effect produced by a sound wave in a discharge and the processes of contraction and filamentation of a discharge. 11 refs., 4 figs., 1 tab

  1. The effect of brain lesions on sound localization in complex acoustic environments.

    Science.gov (United States)

    Zündorf, Ida C; Karnath, Hans-Otto; Lewald, Jörg

    2014-05-01

    Localizing sound sources of interest in cluttered acoustic environments--as in the 'cocktail-party' situation--is one of the most demanding challenges to the human auditory system in everyday life. In this study, stroke patients' ability to localize acoustic targets in a single-source and in a multi-source setup in the free sound field were directly compared. Subsequent voxel-based lesion-behaviour mapping analyses were computed to uncover the brain areas associated with a deficit in localization in the presence of multiple distracter sound sources rather than localization of individually presented sound sources. Analyses revealed a fundamental role of the right planum temporale in this task. The results from the left hemisphere were less straightforward, but suggested an involvement of inferior frontal and pre- and postcentral areas. These areas appear to be particularly involved in the spectrotemporal analyses crucial for effective segregation of multiple sound streams from various locations, beyond the currently known network for localization of isolated sound sources in otherwise silent surroundings.

  2. Timbral aspects of reproduced sound in small rooms. I

    DEFF Research Database (Denmark)

    Bech, Søren

    1995-01-01

    , has been simulated using an electroacoustic setup. The model included the direct sound, 17 individual reflections, and the reverberant field. The threshold of detection and just-noticeable differences for an increase in level were measured for individual reflections using eight subjects for noise......This paper reports some of the influences of individual reflections on the timbre of reproduced sound. A single loudspeaker with frequency-independent directivity characteristics, positioned in a listening room of normal size with frequency-independent absorption coefficients of the room surfaces...... and speech. The results have shown that the first-order floor and ceiling reflections are likely to individually contribute to the timbre of reproduced speech. For a noise signal, additional reflections from the left sidewall will contribute individually. The level of the reverberant field has been found...

  3. Diffusion with Varying Drag; the Runaway Problem.

    Science.gov (United States)

    Rollins, David Kenneth

    We study the motion of electrons in an ionized plasma of electrons and ions in an external electric field. A probability distribution function describes the electron motion and is a solution of a Fokker-Planck equation. In zero field, the solution approaches an equilibrium Maxwellian. For arbitrarily small field, electrons overcome the diffusive effects and are freely accelerated by the field. This is the electron runaway phenomenon. We treat the electric field as a small perturbation. We consider various diffusion coefficients for the one dimensional problem and determine the runaway current as a function of the field strength. Diffusion coefficients, non-zero on a finite interval are examined. Some non-trivial cases of these can be solved exactly in terms of known special functions. The more realistic case where the diffusion coefficient decays with velocity are then considered. To determine the runaway current, the equivalent Schrodinger eigenvalue problem is analysed. The smallest eigenvalue is shown to be equal to the runaway current. Using asymptotic matching a solution can be constructed which is then used to evaluate the runaway current. The runaway current is exponentially small as a function of field strength. This method is used to extract results from the three dimensional problem.

  4. Diffusion with varying drag; the runaway problem

    International Nuclear Information System (INIS)

    Rollins, D.K.

    1986-01-01

    The motion of electrons in an ionized plasma of electrons and ions in an external electric field is studied. A probability distribution function describes the electron motion and is a solution of a Fokker-Planck equation. In zero field, the solution approaches an equilibrium Maxwellian. For arbitrarily small field, electrons overcome the diffusive effects and are freely accelerated by the field. This is the electron-runaway phenomenon. The electric field is treated as a small perturbation. Various diffusion coefficients are considered for the one dimensional problem, and the runaway current is determined as a function of the field strength. Diffusion coefficients, non-zero on a finite interval are examined. Some non-trivial cases of these can be solved exactly in terms of known special functions. The more realistic case where the diffusion coeffient decays with velocity are then considered. To determine the runaway current, the equivalent Schroedinger eigenvalue problem is analyzed. The smallest eigenvalue is shown to be equal to the runaway current. Using asymptotic matching, a solution can be constructed which is then used to evaluate the runaway current. The runaway current is exponentially small as a function of field strength. This method is used to extract results from the three dimensional problem

  5. Cortical representations of communication sounds.

    Science.gov (United States)

    Heiser, Marc A; Cheung, Steven W

    2008-10-01

    This review summarizes recent research into cortical processing of vocalizations in animals and humans. There has been a resurgent interest in this topic accompanied by an increased number of studies using animal models with complex vocalizations and new methods in human brain imaging. Recent results from such studies are discussed. Experiments have begun to reveal the bilateral cortical fields involved in communication sound processing and the transformations of neural representations that occur among those fields. Advances have also been made in understanding the neuronal basis of interaction between developmental exposures and behavioral experiences with vocalization perception. Exposure to sounds during the developmental period produces large effects on brain responses, as do a variety of specific trained tasks in adults. Studies have also uncovered a neural link between the motor production of vocalizations and the representation of vocalizations in cortex. Parallel experiments in humans and animals are answering important questions about vocalization processing in the central nervous system. This dual approach promises to reveal microscopic, mesoscopic, and macroscopic principles of large-scale dynamic interactions between brain regions that underlie the complex phenomenon of vocalization perception. Such advances will yield a greater understanding of the causes, consequences, and treatment of disorders related to speech processing.

  6. Oyster larvae settle in response to habitat-associated underwater sounds.

    Science.gov (United States)

    Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R

    2013-01-01

    Following a planktonic dispersal period of days to months, the larvae of benthic marine organisms must locate suitable seafloor habitat in which to settle and metamorphose. For animals that are sessile or sedentary as adults, settlement onto substrates that are adequate for survival and reproduction is particularly critical, yet represents a challenge since patchily distributed settlement sites may be difficult to find along a coast or within an estuary. Recent studies have demonstrated that the underwater soundscape, the distinct sounds that emanate from habitats and contain information about their biological and physical characteristics, may serve as broad-scale environmental cue for marine larvae to find satisfactory settlement sites. Here, we contrast the acoustic characteristics of oyster reef and off-reef soft bottoms, and investigate the effect of habitat-associated estuarine sound on the settlement patterns of an economically and ecologically important reef-building bivalve, the Eastern oyster (Crassostrea virginica). Subtidal oyster reefs in coastal North Carolina, USA show distinct acoustic signatures compared to adjacent off-reef soft bottom habitats, characterized by consistently higher levels of sound in the 1.5-20 kHz range. Manipulative laboratory playback experiments found increased settlement in larval oyster cultures exposed to oyster reef sound compared to unstructured soft bottom sound or no sound treatments. In field experiments, ambient reef sound produced higher levels of oyster settlement in larval cultures than did off-reef sound treatments. The results suggest that oyster larvae have the ability to respond to sounds indicative of optimal settlement sites, and this is the first evidence that habitat-related differences in estuarine sounds influence the settlement of a mollusk. Habitat-specific sound characteristics may represent an important settlement and habitat selection cue for estuarine invertebrates and could play a role in driving

  7. Oyster larvae settle in response to habitat-associated underwater sounds.

    Directory of Open Access Journals (Sweden)

    Ashlee Lillis

    Full Text Available Following a planktonic dispersal period of days to months, the larvae of benthic marine organisms must locate suitable seafloor habitat in which to settle and metamorphose. For animals that are sessile or sedentary as adults, settlement onto substrates that are adequate for survival and reproduction is particularly critical, yet represents a challenge since patchily distributed settlement sites may be difficult to find along a coast or within an estuary. Recent studies have demonstrated that the underwater soundscape, the distinct sounds that emanate from habitats and contain information about their biological and physical characteristics, may serve as broad-scale environmental cue for marine larvae to find satisfactory settlement sites. Here, we contrast the acoustic characteristics of oyster reef and off-reef soft bottoms, and investigate the effect of habitat-associated estuarine sound on the settlement patterns of an economically and ecologically important reef-building bivalve, the Eastern oyster (Crassostrea virginica. Subtidal oyster reefs in coastal North Carolina, USA show distinct acoustic signatures compared to adjacent off-reef soft bottom habitats, characterized by consistently higher levels of sound in the 1.5-20 kHz range. Manipulative laboratory playback experiments found increased settlement in larval oyster cultures exposed to oyster reef sound compared to unstructured soft bottom sound or no sound treatments. In field experiments, ambient reef sound produced higher levels of oyster settlement in larval cultures than did off-reef sound treatments. The results suggest that oyster larvae have the ability to respond to sounds indicative of optimal settlement sites, and this is the first evidence that habitat-related differences in estuarine sounds influence the settlement of a mollusk. Habitat-specific sound characteristics may represent an important settlement and habitat selection cue for estuarine invertebrates and could play a

  8. Comparison of sound propagation and perception of three types of backup alarms with regards to worker safety

    Directory of Open Access Journals (Sweden)

    Véronique Vaillancourt

    2013-01-01

    Full Text Available A technology of backup alarms based on the use of a broadband signal has recently gained popularity in many countries. In this study, the performance of this broadband technology is compared to that of a conventional tonal alarm and a multi-tone alarm from a worker-safety standpoint. Field measurements of sound pressure level patterns behind heavy vehicles were performed in real work environments and psychoacoustic measurements (sound detection thresholds, equal loudness, perceived urgency and sound localization were carried out in the laboratory with human subjects. Compared with the conventional tonal alarm, the broadband alarm generates a much more uniform sound field behind vehicles, is easier to localize in space and is judged slighter louder at representative alarm levels. Slight advantages were found with the tonal alarm for sound detection and for perceived urgency at low levels, but these benefits observed in laboratory conditions would not overcome the detrimental effects associated with the large and abrupt variations in sound pressure levels (up to 15-20 dB within short distances observed in the field behind vehicles for this alarm, which are significantly higher than those obtained with the broadband alarm. Performance with the multi-tone alarm generally fell between that of the tonal and broadband alarms on most measures.

  9. Bayesian regularization of diffusion tensor images

    DEFF Research Database (Denmark)

    Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif

    2007-01-01

    Diffusion tensor imaging (DTI) is a powerful tool in the study of the course of nerve fibre bundles in the human brain. Using DTI, the local fibre orientation in each image voxel can be described by a diffusion tensor which is constructed from local measurements of diffusion coefficients along...... several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...

  10. Particle diffusion in a spheromak

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Levinton, F.M.; Yamada, M.

    1988-01-01

    The local carbon particle diffusion coefficient was measured in the Proto S-1/C spheromak using a test particle injection scheme. When the plasma was not in a force-free Taylor state, and when there were pressure gradients in the plasma, the particle diffusion was five times that predicted by Bohm and was consistent with collisional drift wave diffusion. The diffusion appears to be driven by correlations of the fluctuating electric field and density. During the decay phase of the discharge when the plasma was in the Taylor state, the diffusion coefficient of the carbon was classical. 23 refs., 4 figs

  11. What is Sound?

    OpenAIRE

    Nelson, Peter

    2014-01-01

    What is sound? This question is posed in contradiction to the every-day understanding that sound is a phenomenon apart from us, to be heard, made, shaped and organised. Thinking through the history of computer music, and considering the current configuration of digital communi-cations, sound is reconfigured as a type of network. This network is envisaged as non-hierarchical, in keeping with currents of thought that refuse to prioritise the human in the world. The relationship of sound to musi...

  12. Broadcast sound technology

    CERN Document Server

    Talbot-Smith, Michael

    1990-01-01

    Broadcast Sound Technology provides an explanation of the underlying principles of modern audio technology. Organized into 21 chapters, the book first describes the basic sound; behavior of sound waves; aspects of hearing, harming, and charming the ear; room acoustics; reverberation; microphones; phantom power; loudspeakers; basic stereo; and monitoring of audio signal. Subsequent chapters explore the processing of audio signal, sockets, sound desks, and digital audio. Analogue and digital tape recording and reproduction, as well as noise reduction, are also explained.

  13. Propagation of sound

    DEFF Research Database (Denmark)

    Wahlberg, Magnus; Larsen, Ole Næsbye

    2017-01-01

    properties can be modified by sound absorption, refraction, and interference from multi paths caused by reflections.The path from the source to the receiver may be bent due to refraction. Besides geometrical attenuation, the ground effect and turbulence are the most important mechanisms to influence...... communication sounds for airborne acoustics and bottom and surface effects for underwater sounds. Refraction becomes very important close to shadow zones. For echolocation signals, geometric attenuation and sound absorption have the largest effects on the signals....

  14. Atmospheric diffusion at coastal site in presence of sea-breeze

    International Nuclear Information System (INIS)

    Messaci, M.

    1987-03-01

    The coastal sites present special features so much by the dominant wind system then by the lower layers of the atmosphere. Two types of experiments were handled on a coastal site in presence of sea breeze. First, vertical atmospheric sounding by radiosounding and by throwing experimental balloons; then the discharge of tracer: the SF6. The first experiment lead us to put in a prominent position the Internal Boundary Layer and the determination of its height. Whereas the second experiment allowed us to estimate the diffusion parameters of the site as well as to obtain interesting conclusions on diffusivity of the environment studied and the influence of certain factors

  15. Making fictions sound real

    DEFF Research Database (Denmark)

    Langkjær, Birger

    2010-01-01

    This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related...... to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy...... of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences....

  16. Theoretical analysis of sound transmission loss through graphene sheets

    International Nuclear Information System (INIS)

    Natsuki, Toshiaki; Ni, Qing-Qing

    2014-01-01

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials

  17. Theoretical analysis of sound transmission loss through graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan); Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Ni, Qing-Qing [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan)

    2014-11-17

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials.

  18. Jump in the amplitude of a sound wave associated with contraction of a nitrogen discharge

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Mkrtchyan, A.R.; Tavakalyan, L.B.

    1993-01-01

    The use of a sound wave created by an external source and directed along the positive column of a nitrogen discharge in order to make the discharge pass to the contracted state is studied experimentally. A phenomenon involving a jump in the sound wave amplitude, caused by the discharge contraction, is observed and studied. It is established that the amplitude of the sound wave as a function of the discharge current near the jump exhibits hysteresis. It is shown that in the field of a high-intensity sound wave causing the discharge to expand eliminates the jump in the sound amplitude. The dependence of the growth time of the sound amplitude caused by the jump in this quantity on the sound wave intensity is determined. 24 refs., 4 figs., 1 tab

  19. Rainforests as concert halls for birds: Are reverberations improving sound transmission of long song elements?

    DEFF Research Database (Denmark)

    Nemeth, Erwin; Dabelsteen, Torben; Pedersen, Simon Boel

    2006-01-01

    that longer sounds are less attenuated. The results indicate that higher sound pressure level is caused by superimposing reflections. It is suggested that this beneficial effect of reverberations explains interspecific birdsong differences in element length. Transmission paths with stronger reverberations......In forests reverberations have probably detrimental and beneficial effects on avian communication. They constrain signal discrimination by masking fast repetitive sounds and they improve signal detection by elongating sounds. This ambivalence of reflections for animal signals in forests is similar...... to the influence of reverberations on speech or music in indoor sound transmission. Since comparisons of sound fields of forests and concert halls have demonstrated that reflections can contribute in both environments a considerable part to the energy of a received sound, it is here assumed that reverberations...

  20. The perceptual basis of spatial sound perception

    NARCIS (Netherlands)

    Kohlrausch, A.G.

    2003-01-01

    Our ability to derive spatial impressions from a sound field is based on the facts that we have two sensors which are spatially separated by typically 18 cm and that the space in between these sensors is filled by acoustically nontransparant material. The first fact leads to a time difference at the